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Abstract

The fields of trajectory optimization and optimal control are closely connected. Practical

trajectory optimization techniques are built on the indirect and direct methods for solving op-

timal control problems. Indirect methods seek to satisfy the first-order necessary conditions

of optimality, while direct methods discretize the problem and transcribe it into a large-scale

nonlinear programming (NLP) problem. This study provides a basic overview of the direct and

indirect methods. The indirect necessary conditions and Pontryagin’s Minimum Principle are

reviewed, and the approaches taken by direct methods are presented. The focus of this study

then shifts to pseudospectral direct methods, which belong to the class of collocation meth-

ods. The theoretical groundwork of pseudospectral methods is laid, leading to a pseudospec-

tral formulation and software for solving general optimal control problems. Several types of

pseudospectral methods are presented, including the Legendre-Gauss and Chebyshev-Gauss

methods. Special attention is given to the Legendre-Gauss-Radau (LGR) method, which is the

primary transcription employed by the MATLAB-based Tiger Optimization Software (TOPS).

TOPS is a general-purpose pseudospectral optimal control software developed by the author as

part of their research in the Aero-Astro Computational and Experimental (ACE) Lab. A multi-

interval pseudospectral method is presented, and the discrete form of the optimality conditions

are derived. The study shifts focus from theory to application, and the practical aspects of

pseudospectral optimal control methods are discussed. Another objective of this research is to

compile the author’s knowledge with regard to implementing pseudospectral techniques, thus

enabling the reader to easily implement their own pseudospectral method. Several mesh refine-

ment methods are compared and their merits are compared. In addition, several techniques that

improve the efficiency of an NLP solver are presented, including efficient and exact derivative

formulas and several scaling techniques. Finally, several example optimal control problems are

solved using TOPS. The solutions obtained from TOPS are compared to the solutions obtained

using indirect techniques to verify their accuracy and demonstrate the capabilities of TOPS.
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Chapter 1

Introduction

To touch the stars has been the dream of mankind since before recorded history. Myths and

legends that are ingrained in our consciousness sprung from the earliest stories parents told

their children about the stars. Their secrets call us to watch them, name them, and separate

them from each other. But to truly reveal the secrets of the heavens, we must be able to reach

them. If this is not impossible, we can, at least, try to get a better view. With the advent of

modern technology, it became possible for humanity to witness the heavens firsthand, either

through manned spaceflight or unmanned probes and telescopes. However, along the way, we

discovered that it was incredibly difficult and costly to explore space. The technologies needed

to do so, such as communication and propulsion systems, are expensive to develop and build.

Life support systems are needed for humans to survive in the harsh vacuum of space. To make

matters worse, Earth’s gravity is so difficult to escape that propellant comprises over 80 percent

of most launch vehicles! In fact, fuel expenditure is where most of the non-recoupable cost

lies in space exploration. Reducing the fuel required to reach a desired science objective is

one of the most fundamental problems of space exploration. However, reducing propellant

expenditure is second to actually reaching a target. Motion within an inverse-square gravity

field is notoriously non-intuitive and becomes chaotic when multiple bodies are present. All of

these factors combine into a seemingly insurmountable challenge.

In spite of this, humanity has risen to meet it. Two new fields of mathematics were created

to describe and predict the motion of the heavenly bodies - orbital mechanics, pioneered by

Kepler [152] and Newton [181] and general/special relativity, pioneered by Einstein [42]. The

explosion of computational technology in the last 60 years is due in no small part to the field of
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space exploration. Computers were designed that could make rapid calculations and generate

safe trajectories within these complex gravity fields. Science objectives were finally achievable.

As manufacturing techniques improved, we created powerful computers small enough to carry

on-board spacecraft or in a backpack. Since practical trajectory optimization is primarily a

computational practice for real-world problems, these powerful computers provided tools for

solving difficult trajectory design problems [15]. Today, feasible and safe trajectories can be

easily generated, so the focus has shifted to improving (i.e., optimizing) these trajectories.

Optimization-based methods are a subset of computational guidance and control (CGC),

which is itself a subset of GNC discipline. During space mission design, optimization methods

are typically applied to launchers, planetary landers, satellites, and manned spacecraft with the

goal of improving their operational efficiency by some measure. In a general sense, the goal is

to solve the optimization problem defined in Eq. (1.1)

min
x(·)∈X

J [x(·)] , (1.1)

where J : Rn → R is a cost functional, X ⊆ Rn denotes the state admissible sets, where n is

the number of states variables [111]. A cost functional, J , is a “function of functions” that takes

an entire function and outputs a scalar. We distinguish the points x from the function, x(·). The

study of functionals is rooted in calculus of variations, and optimal control theory is a branch

of calculus of variations [145]. From an engineering perspective, the objective of optimal

control theory is to determine control time-history that will cause a process to satisfy physical

constraints while simultaneously minimizing (or maximizing) some performance criterion [91].

Inspecting Eq. (1.1) we can see that optimal control theory is so general that it can be

applied to any controllable physical process. However, due to author’s research focus on space

mission design, the discussion of optimal control will be restricted to the field of space vehicle

trajectory optimization. To understand why optimization is important to this field, consider the

recent and future operations that space vehicles will perform. In recent years, in an effort to

drive down the cost of spaceflight, reusable launchers and planetary landers have become pop-

ular. These vehicles require accurate Entry, Descent, and Landing (EDL) algorithms to reduce
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fuel consumption or access scientifically interesting regions autonomously [20]. These scientif-

ically interesting regions are oftentimes hazardous, and future landers are required to navigate

challenging environments in real-time with no human input [97, 142] due to communication

delays or the risk and cost of a manned mission. In the future, space missions will require au-

tonomous docking of spacecraft [192], which was recently demonstrated by SpaceX’s Dragon

capsule that automatically docked with the ISS [118]. Autonomous control of space vehicles is

one of the most promising and actively researched applications of optimal control theory.

Advances in the field of space propulsion have also led to the development and use of

efficient electric propulsion systems [96]. Low-thrust electric propulsion systems are very at-

tractive due to high specific impulse values that reduce the amount of propellant required for a

desired ∆v, which is a limiting factor for space missions. However, the resulting low-thrust tra-

jectory optimization problems become numerically difficult to solve due to long transfer times

and many-revolution nature of the resulting trajectories [166, 70]. The challenges presented

by low-thrust trajectory design have been studied for many years. Early work in the field

by Edelbaum [40] used the calculus of variations to derive optimal steering laws that model

thrust as orbital element perturbations. Haissig et al. [75] used averaging methods to obtain

low-thrust minimum-fuel transfers between coplanar elliptical orbits. These analytic averag-

ing techniques as well as Lyapunov guidance laws [135] have been used extensively to design

low-thrust multiple-revolution trajectories [95, 57, 79, 77, 134, 82].

These continuous-thrust trajectory optimization problems have served as one of the moti-

vating problems for optimal control theory since its inception [150]. The application of optimal

control theory allows for these problems to be solved efficiently and quickly using a variety of

optimization methods [8]. This study will primarily focus on one of the most widely used

optimization methods, namely, direct methods [15]. However, indirect methods will also be

presented, although with less depth.
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1.1 Notation

Before proceeding, it is worthwhile to briefly discuss the notation that will be used throughout

this study. This study will use notation closely matching that of Ross [145] with changes

appropriately highlighted.

In this study, dimensions of vectors and spaces are denoted by N(·), where (·) is replaced

by a subscript that appropriately links the dimension to the vector of interest. For example,

Nx denotes the dimension of a vector x, and x ∈ RNx . Additionally, x ∈ R1×Nx denotes a

row vector, while x ∈ RNx×1 denotes a column vector. An n × m matrix has n rows and m

columns. However, this notation will sometimes be dropped for the sake of generality. When

considering a matrix P ∈ Rn×m, the subscript Pi will denote the i-th row of the matrix. The j-

th column will be denoted by P(:,j). Extending this convention, Pi:j will denote rows i through

j and P(:,i:j) will denote columns i through j. We will let 0n×m denote an all-zeros matrix of

size n ×m and 1n×m to denote a matrix of all ones of size n ×m. In addition, we define the

“unrolled” form of P as,

P(:) =



P(:,1)

P(:,2)

...

P(:,m)


, (1.2)

where P(:) ∈ Rnm is a column vector resulting from each column of P being placed under the

previous column while traversing P from left to right. The unrolled form of P is primarily

useful for computational indexing purposes. The operation diag(p), where p ∈ Rn, denotes

the following operation:

diag(p) =


p1 0 · · · 0

0 p2 · · · 0
...

... . . . ...

0 0 · · · pn

 , (1.3)

where pi is the i-th element of p. In addition, ⟨A,B⟩ denotes the standard matrix innter product

defined by,

⟨A,B⟩ = trace(A⊤B). (1.4)
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Since many functions, functionals, and their values are represented through letters with

superscripts or subscripts, we distinguish between them. The symbol x denotes a point in the

space RNx . The symbol x(·) denotes an entire function in the space, X . The symbol x(t)

denotes the function x(·) evaluated at a point t. It follows that x(t0) means the function x(·)

evaluated at the point x(t0). For the sake of convenience, we oftentimes abbreviate this function

evaluation as x0. The symbol x0 will typically be used to denote the numerical value of x0.

Next, we discuss more matrix notation that is relevant for programming and compact

representation of a discrete OCP. Consider f(x) : RNx → RNf , which is a function that maps

row vectors ∈ Nx to row vectors ∈ Nf . When implementing such a function on a computer, we

may wish to evaluate f at the points {x1,x2, . . . ,xN}. This operation is denoted as follows.

X ∈ RN×Nx =



x1

x2

...

xN


, f(X) ∈ RN×Nf =



f(x1)

f(x2)

...

f(xN)


. (1.5)

Thus, we treat f(·) or any such function as an overloaded operator (see pp.8-9 of [145])

that may produce a vector or matrix output, depending on the dimensions of the input. Occa-

sionally, we may denote f(X) as [f(xi)]
N
i=1 to distinguish between differently sized f(X) if

we are considering multiple distinct X .

It is also worthwhile to define the notation for derivatives of vectors and vector-valued

functions. Consider f(x) : RNx → R to be a function that maps a row or column vector to

scalars. The first derivative of f with respect to x is referred to as the gradient, and is given by,

∇xf(x) ∈ R1×Nx =

[
∂f

∂x1

,
∂f

∂x2

, · · · , ∂f

∂xNx

]
. (1.6)

Next, consider f(x) : RNx → RNf . Here, x may be a row or column vector and the

operation f(x) has the same orientation as x. The first derivative of this function with respect
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to x is referred to as the Jacobian, and is given by,

∇xf(x) ∈ RNf×Nx =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xNx

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xNx

...
... . . . ...

∂fNf

∂x1

∂fNf

∂x2
· · ·

∂fNf

∂xNx


. (1.7)

Finally, consider the second derivative of a scalar-valued function f(x,y) : RNx×RNy →

R. The mixed second derivative with respect to x and y is given by,

∇xyf(x,y) ∈ RNx×Ny =



∂2f
∂x1∂y1

∂2f
∂x1∂y2

· · · ∂2f
∂x1∂yNy

∂2f
∂x2∂y1

∂2f
∂x2∂y2

· · · ∂2f
∂x2∂yNy

...
... . . . ...

∂2f
∂xNx∂y1

∂2f
∂xNx∂y2

· · · ∂2f
∂xNx∂yNy


. (1.8)

If f(x) is a function of a single vector, then this mixed partial derivative matrix is referred

to as the Hessian, and is given by,

∇xxf(x) ∈ RNx×Nx =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xNx

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xNx

...
... . . . ...

∂2f
∂xNx∂x1

∂2f
∂xNx∂x2

· · · ∂2f
∂x2

Nx


. (1.9)

Note that the second derivative matrices are symmetric about the diagonal. Thus,

∇xyf(x,y) = [∇yxf(x,y)]
⊤ and ∇xxf(x) = [∇xxf(x)]

⊤.

The reader is informed that discussion of the topics in this study may necessitate abuse or

change of these notations. Any such abuse or change will be highlighted and the difference in

meaning will be explained.
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1.2 The Bolza Optimal Control Problem

The formulation of an optimal control problem requires:

1. A mathematical model of the system or process that is being controlled.

2. A statement of the physical constraints.

3. A performance criterion (cost functional).

It is advantageous to obtain the simplest possible mathematical description that will ac-

curately predict the response of such a system or process to known inputs. Most systems (but

not all) studied in optimal control theory are described using time-varying ordinary differen-

tial equations (ODEs). These represent the system dynamics and are typically represented in

a state-space form. Consider some state variables (states), x1(t), x2(t), . . . , xn(t), and some

control variables (controls), u1(t), u2(t), . . . , um(t). We may write the time rate of change of

the states as,

ẋ1(t) = f1(x1(t), . . . xn(t), u1(t), . . . , um(t), t),

ẋ2(t) = f2(x1(t), . . . xn(t), u1(t), . . . , um(t), t),

...

ẋn(t) = fn(x1(t), . . . xn(t), u1(t), . . . , um(t), t),

where fi is an algebraic expression. Thus, we can define the state and control vectors of the

system as follows

x(t) =



x1(t)

x2(t)

...

xn(t)


∈ Rn×1, u(t) =



u1(t)

u2(t)

...

um(t)


∈ Rm×1. (1.10)
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This allows us to write the system dynamics in a compact state-space form as,

ẋ(t) = f(x(t),u(t), t). (1.11)

Many sources use n and m to denote the dimension of the state and control, respec-

tively. However, for the sake of clarity, we adopt the notations Nx and Nu to denote the di-

mension of the states and controls. Thus, x(t) ∈ RNx , f(x(t),u(t), t) ∈ RNx , and u(t) ∈

RNu . In Eq. (1.11), the time t ∈ [t0, tf ]. It is important to note that the left- and right-hand

sides of Eq. (1.11) should not be conflated. Although they are equal, the right-hand side,

f(x(t),u(t), t) is a “rule” that is independent of ẋ(t) (see p.7 in [145]). In fact, Eq. (1.11)

is often treated as a constraint. However, it is such an important constraint that it should be

treated differently than other constraints. Any other constraint can be represented as,

eL ≤ e(x0,xf , t0, tf ) ≤ eU , (1.12)

hL ≤ h(x(t),u(t), t) ≤ hU , (1.13)

where e(x0,xf , t0, tf ) ∈ RNe are called the event constraints, whereas h(x(t),u(t), t) ∈ RNh

are called path constraints. The vectors eL and eU are the Ne-dimensional lower and upper

bounds on the event constraints, respectively. The vectors hL and hU are the Nh-dimensional

lower and upper bounds on the path constraints, respectively. Event constraints are functions

only of initial and final states and times. For this reason, they are often referred to as boundary

constraints. The path constraints are functions of the state, control, and time at any point along

the trajectory. It is common in the literature to restate Eq. (1.12) and Eq. (1.13) as,

e(x0,xf , t0, tf ) ≤ 0, (1.14)

h(x(t),u(t), t) ≤ 0, (1.15)

by simply introducing additional inequality constraints. Although Eq. (1.14) and Eq. (1.15) are

admittedly more opaque than their previous forms, they are used more frequently. Additionally,

Eq. (1.14) and Eq. (1.15) are more compact and in many cases more friendly to computational
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implementation. As such, we will use the forms given in Eq. (1.14) and Eq. (1.15). Note that

Eq. (1.14) is sometimes altered and takes the form,

e(x0,xf , t0, tf ) = 0. (1.16)

This form arises primarily from convention, as in practice event or boundary constraints

are most often enforced as an equality constraint. It is less common to set a range of values as

a final condition rather than an algebraic constraint or numerical value. However, Eq. (1.14) is

more general, so it is adopted.

The performance criterion or cost functional may be represented as,

J [x(·),u(·), t0, tf ] = E(x0,xf , t0, tf ) +

∫ tf

t0

F (x(t),u(t), t)dt. (1.17)

In Eq. (1.17), E(x0,xf , t0, tf ) ∈ R is called the endpoint/terminal cost and is a function of

initial and final states and times. This term is also called the Mayer cost in a traditional setting.

The term F (x(t),u(t) ∈ R is called the running cost, and it is a function of the instantaneous

state, control, and time at every point along the trajectory. It is traditionally called the Lagrange

cost. In Eq. (1.17), the arguments of J are the decision variables. They are also functions,

while the arguments of E and F are those functions evaluated along the trajectory or at its

boundaries. While it may not be obvious at first, the state is indeed a decision variable. Given

a control time history, many state time histories may be dynamically feasible (i.e., satisfy the

dynamic constraints). However, only some x(·) and u(·) will satisfy the dynamics and other

constraints while minimizing the cost.

Now that we have formulated a model, constraints, and performance criterion, we may

formulate a general framework for OCPs. Consider the continuous-time OCP defined on the

9



interval t ∈ [t0, tf ].

x ∈ RNx , u ∈ RNu , t0, tf ,

(B)



Minimize J [x(·),u(·), t0, tf ] = E(x0,xf , t0, tf ) +

∫ tf

t0

F (x(t),u(t), t)dt,

Subject to : ẋ(t) = f(x(t),u(t), t),

e(x0,xf , t0, tf ) ≤ 0,

h(x(t),u(t), t) ≤ 0.

Problem B is known as the Bolza OCP, and is a general form of a constrained, time-varying

OCP with equality and inequality along-the-path state constraints.

1.3 Direct and Indirect Methods

Trajectory optimization problems are typically solved through the use of direct or indirect

methods [180, 15] or genetic/evolutionary algorithms [46, 160]. As stated previously, this study

will focus on direct and indirect methods. On a high level, direct methods “discretize then opti-

mize” by transcribing the original OCP into a nonlinear program (NLP) problem through some

parameterization scheme of the states and controls. The discrete problem can then be solved

using a variety of robust NLP solvers. Direct methods can further be divided into simultane-

ous methods that parameterize the state and control and sequential methods that parameterize

the control only [49, 88]. Indirect methods, on the other hand, “optimize then discretize” by

analytically deriving the set of first-order necessary (and in some cases, second-order [85, 25]

sufficinet) conditions of optimality for the problem and applying Pontryagin’s Minimum Prin-

ciple (PMP) to obtain an extremal control. This process results in HBVPs and in simpler cases

in two-point boundary-value problems (TPBVPs), typically solved using single- or multiple-

shooting methods that produce high-resolution solutions.

The primary advantage of indirect methods, when applied to low-thrust trajectory design,

is that high-resolution solutions can be obtained that are guaranteed to be local extrema [31].
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Additionally, indirect methods are more numerically tractable for long-duration low-thrust tra-

jectory optimization problems. A major difficulty that is inherent to indirect methods is the

sensitivity of the solution to the unknown initial costate values, which must be guessed to

solve the TPBVPs [166, 168]. This often limits practical applications of the indirect method.

To alleviate this sensitivity, numerical methods such as continuation and homotopy are used

[166, 173]. These techniques begin by solving a simplified form of the desired problem. The

solution is used to solve progressively more difficult forms of the problem until the original

problem solution is recovered within some tolerance.

On the other hand, the appeal of direct methods is their robustness and large radius of

convergence [31]. In addition, path constraints (which indirect methods traditionally have dif-

ficulty incorporating) are trivial to include. Dickmanns et al. [36] and Hargraves and Paris [76]

popularized direct methods within the aerospace community by solving an OCP using Hermite

polynomial function approximations. Direct methods are now extremely mature and used ex-

tensively in the aerospace field. The distinctions between different direct approaches primarily

lie in the method in which the integration rules are constructed. The most common approaches

use the trapezoid rule [16] or Hermite-Simpson Runge-Kutta methods [76]. One that has be-

come very popular in the last two decades are pseudospectral (PS) methods [12, 58, 60]. These

methods use a basis of global orthogonal Legendre or Chebychev polynomials to approximate

the states, while the control variables are arbitrarily approximated [47, 49]. In addition to highly

accurate solutions for a relatively sparse NLP, PS methods also allow for a mapping between

the Karush-Kuhn-Tucker (KKT) multipliers used internally by many NLP solvers and the con-

tinuous time costates [49, 12, 58, 60]. This mapping produces a costate estimate that may be

used to initialize indirect shooting schemes.

1.4 Contributions and TOPS

This study primarily focuses on PS direct methods and the development of an in-house MAT-

LAB solver to be used as a general-purpose optimal control software package. However, in-

direct methods will be presented for comparison with direct methods. Fig. 1.1 shows a broad

overview of the different types of optimal control methods. This thesis focuses on the topics

11



enclosed in the red box in Fig. 1.1. Additionally, this document will present multiple flavors of

PS methods as well as techniques to improve their capability and performance in solving chal-

lenging OCPs. This document also seeks to dispel the air of vagueness that often surrounds

the literature when it comes to implementing PS methods. Finally, the elements of PS theory

that are implemented in the Tiger Optimization Software (TOPS), a MATLAB-based PS opti-

mal control software package, are described. TOPS is then used to solve several demonstrative

problems, for which the indirect solutions are used for validation. Another goal of this effort is

to pave the way for researchers who are interested in learning more about PS methods. More

specifically, the software is written in a manner to make it as modular and documented as pos-

sible. This is done in the hope that future researchers will be able to easily understand the

implementation of the PS features of TOPS and contribute to the development of the software

by investigating the items listed in the “future work” section. In addition, TOPS is compatible

with several popular NLP solvers to improve the capability of the software. It is the opinion and

experience of the author that the best strategy to learn PS methods is through coded examples.

Figure 1.1: An overview of the solution methods for solving OCPs
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Chapter 2

Overview of Indirect Methods

The field of indirect methods originated in the earliest attempts to solve OCPs. Queen Dido

of Carthage was the first person to attempt a problem that can be solved using the calculus of

variations, the cornerstone of the indirect method. Queen Dido was given a bull’s hide and

promised all the land she could enclose within it. Having cleverly cut it into strips and tied the

ends together, her problem was to determine a suitable shape to enclose the maximum area.

The calculus of variations can be used to prove that she should have chosen a circle [91]. Other

prominent pioneers of the field include Sir Isaac Newton, Johann and Jacob Bernoulli (who

first solved the Brachistochrone problem), L’Hospital, and of course, Lev Pontryagin, whose

minimum principle revolutionized the study of the field [164].

2.1 The Calculus of Variations and the Euler-Lagrange Equations

The indirect method was originally built on functional analysis, the foundation of which is the

calculus of variations (COV) . While traditional calculus allows us to find a point that minimizes

or maximizes a function, the calculus of variations allows us to find a function that minimizes

or maximizes a functional, which can be viewed as a “function of functions” that maps the

results into a scalar value. The classic example of a functional is the integral operation,

J [x(·)] =
∫ tf

t0

L(x(t))dt, (2.1)

where L = L(x(t)) : RNx → R is a nonlinear function that depends on x(t), the instantaneous

value of x(·) evaluated at t. The COV employs the concept of the increment of a functional, J ,
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denoted as,

∆J(x(t), δx(t)) =̂ J(x(t) + δx(t))− J(x(t)) = δJ(x(t), δx(t)) + g(x(t), δx(t)) · ∥δx(t)∥,

(2.2)

where δx(t) denotes the variation of the function x(t). The fundamental theorem of the calcu-

lus of variations is,

Theorem 2.1 If x∗(t) is an extremal, the variation of J , denoted as δJ , must vanish on x∗(t).

That is,

δJ(x∗(t), δx(t)) = 0, (2.3)

for all admissible δx(t).

Proofs of Theorem 2.1 can be found in [62, 198, 91]. As the focus of this study is direct meth-

ods, the derivations of the Euler-Lagrange equations will not be shown. However, rigorous

application of this principle allows the first-order necessary conditions of optimality for con-

strained, multivariate functionals to be obtained. These are referred to as the Euler-Lagrange

equations and are given as follows. Consider the functions below.

H(x(t),u(t),λ(t), t) = F (x(t),u(t), t) + λ⊤(t)f(x(t),u(t), t), (2.4)

Φ(xf , tf ,ν) = E(xf , tf ) + ν⊤e(xf , tf ). (2.5)

Here, H is referred to as the control Hamiltonian and Φ (sometimes denoted as Ē) is re-

ferred to as the endpoint Lagrangian [91] or the augmented terminal cost [171]. The terms λ(t)

and ν are Lagrange multipliers that are used to enforce the dynamics and boundary conditions,

respectively. The costates are λ and the endpoint covector is called ν. The first-order necessary
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conditions of optimality (Euler-Lagrange equations) are given as,

ẋ∗(t) =
∂H

∂λ(t)
(x∗(t),u∗(t),λ∗(t), t) , (2.6)

λ̇∗(t) = − ∂H

∂x(t)
(x∗(t),u∗(t),λ∗(t), t) , (2.7)

0 =
∂H

∂u(t)
(x∗(t),u∗(t),λ∗(t), t) , (2.8)

and

[
∂Φ

∂x(t)

(
x∗
f , tf

)
− λ∗

f

]⊤
δxf +

[
H(x∗

f ,u
∗
f ,λ

∗
f , tf ) +

∂Φ

∂t

(
x∗
f , tf

)]
δtf = 0. (2.9)

Eq. (2.7) is referred to as the adjoint equation or costate dynamics. Eq. (2.8) is referred

to as the strong form of optimality. The entirety of Eq. (2.9) is referred to as the transversality

condition. The bracketed terms in Eq. (2.9) only apply if their variational multiplier is non-zero.

For example, if some boundary conditions are free (i.e., δxf ̸= 0), then
[

∂Φ
∂x(t)

(xf , tf )− λf

]
=

0. However, if boundary conditions are fixed, then the bracketed term should not be used. The

same logic applies should δtf ̸= 0.

The difficulty of this problem is that it requires searching over infinite dimensional state

spaces for x(t), u(t), and λ(t), which means that we are looking for the entire optimal time

history of the state, costate, and control simultaneously. This problem is very difficult. Another

difficulty that astute readers may have noticed lies in Eq. (2.8), which states that the optimal

control law is obtained by setting the derivative of the Hamiltonian with respect to u equal to

zero and solving for u. If the Hamiltonian is linear with respect to control, it is impossible to

determine the optimal control law, as in the derivative, the control vanishes. The solution to

this problem is presented in the next section.

2.2 Pontryagin’s Maximum (Minimum) Principle

Pontryagin’s Minimum Principle (PMP) was developed by Lev Pontryagin and his students in

the 1960s and published in 1987 [140], where it was referred to as the Maximum Principle due

to a difference in sign of the Hamiltonian. At the heart of PMP is the Hamiltonian Mimization
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Condition, shown below.

u∗(t) ∈ argmin
u(t)∈U

H(x∗(t),u(t),λ∗(t), t), (2.10)

where U denotes the admissible control set. Thus, the Minimum Principle states that min-

imizing the Hamiltonian only with respect to u while holding other terms static produces a

candidate extremal control solution [140, 145, 111]. This converts the infinite-dimensional op-

timization problem into a finite-dimensional optimization problem. Rather than minimize over

the entire function space, U, we need only solve a parameter optimization of u at each time in-

stant t. In addition, it also allows the derivation of the extremal control without using Eq. (2.8)

and when the Hamiltonian is linear in control (except for singular control arcs [105, 108, 106]).

Thus, the first order necessary conditions become,

ẋ∗(t) =
∂H

∂λ(t)
(x∗(t),u∗(t),λ∗(t), t) , (2.6)

λ̇∗(t) = − ∂H

∂x(t)
(x∗(t),u∗(t),λ∗(t), t) , (2.7)

H (x∗(t),u∗(t),λ∗(t), t) ≤ H (x∗(t),u(t),λ∗(t), t) , (2.11)

for all t ∈ [t0, tf ],

and

[
∂Φ

∂x(t)

(
x∗
f , tf

)
− λ∗

f

]⊤
δxf +

[
H(x∗

f ,u
∗
f ,λ

∗
f , tf ) +

∂Φ

∂t

(
x∗
f , tf

)]
δtf = 0. (2.9)

These are the first-order necessary conditions for optimality. Together, they form a two-

point boundary value problem (TPBVP) that must be solved by a “guess and check” shooting

method. In a shooting method, the optimal control law is derived using Eq. (2.8) or Eq. (2.10).

This control law is a function of the state and costate values at time t ∈ [t0, tf ]. Initial conditions

for the states are typically known, and costate initial values have to be guessed. The state-

costate differential equations are then propagated simultaneously to the final time. This is where

the phrase “optimize then discretize” originates. The optimality conditions are formulated for
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the problem and are then satisfied at every discrete time instant stepped through by a fixed or

variable step-size numerical integration scheme.

When applying Eq. (2.8) or Eq. (2.10), for simple cases, one obtains a control law, u∗(t) =

u∗(x(t),λ(t), t) [153, 28]. For more complex problems, such a closed-form expression may

not exist and one has to solve a transcendental equation to obtain control [106]. The costates

λ(t) that govern this control law have little intuitive physical meaning. Because of this, their

initial values are unknown and must be guessed. Once the state and costate equations are prop-

agated for the initial conditions, the final conditions are known and can be checked to see how

well they satisfy the problem-specific boundary conditions and the transversality condition.

Such a solution is called a candidate extremal solution. Only a locally or globally extremal

solution will satisfy all the boundary conditions and the transversality condition. Thus, the

solutions of indirect method are guaranteed to be local or global extremal. Gradient-descent

solvers can take the initial costate guess, improve upon it, and re-propagate until a guess that

satisfies the optimality conditions is found. However, these shooting schemes are extremely

sensitive to the quality of the initial costate guess [111]. In addition to this, more Lagrange

multipliers must be introduced when incorporating path constraints other than the dynamics.

These multipliers must also be guessed. In fact, this is the primary shortcoming of indirect

methods: there is no guarantee of convergence for an arbitrary initial costate guess [171].

2.3 Composite Smooth Control and Homotopy

A promising new technique that has been regularly used to reduce the “curse of sensitivity” is

composite smooth control (CSC) [177] combined with continuation/homotopy [6]. Consider

the problem of a minimum-fuel orbit transfer. This is a prevalent problem in the field of space

mission design, and its solutions are incredibly useful for practical applications. The optimal

control law for such a problem takes the following form:

T ∗ =

 Tmax, S(x,λ) > 0,

0, S(x,λ) < 0,
(2.12)
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where S(x,λ) is a switching function obtained using PMP and Tmax is the maximum allowable

thrust. The value of S determines whether the thrust is on or off. It is evident from Eq. (2.12)

that T ∗ is a discontinuous or “bang-bang” control. When using time-marching integrators

such as a variable step-size Runge-Kutta method, absolute discontinuities such as this cause

numerical difficulties and further increase sensitivity. The idea with CSC is to approximate

such a control using smoothing functions, such as a Hyperbolic Tangent Smoothing (HTS)

[168] or Heaviside step function [157, 9]. HTS functions take the form,

δ(t) =
1

2

[
1 + tanh

(
S(x(t),λ(t))

ρ

)]
, (2.13)

where δ ∈ [0, 1] ∀ S. If we want to recover T , we simply take T = Tmaxδ, where δ may be

considered the throttle. Here, S may be interpreted as a “distance measure” that defines the

closeness of the event encoded in its value. This general notion of distance measures can be

used to construct a number of composite functions that indicate whether a constraint or control

should be active [166]. Thus, the added benefit of CSC is that these trigonometric approxima-

tions can be used to enforce the state and control path constraints given by Eq. (1.15) that are

otherwise quite difficult to enforce using indirect methods [107]. The parameter ρ is referred

to as the continuation parameter. Fig. 2.1 shows Eq. (2.13) for decreasing values of ρ for a

Figure 2.1: Eq. (2.13) for decreasing values of ρ

representative scenario where S ∈ [−2, 2]. It can be seen that as the continuation parameter

decreases, the throttle more closely approximates the true discontinuous control while remain-

ing smooth and differentiable. Solutions for low values of ρ will closely approximate the true
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solution to the problem. This is the key idea behind homotopy: the original problem is em-

bedded in a family of neighboring problems using a smooth approximation of some aspect of

the dynamics for which the smoothed problem is trivially solved. Since this smoothness can be

varied using the continuation parameter, numerical continuation can be performed on its value.

This means that once a smoothed problem converges, the solution is used to re-initialize the

same problem for a reduced continuation parameter. Thus, solutions are swept across values

of the continuation parameter until the original problem is recovered to the desired accuracy

[175, 176]. Homotopy of this type can be performed on the entire dynamics model such that

as the homotopy parameter is swept out, highly nonlinear terms are slowly introduced to a

simplified dynamics model through numerical continuation. However, the existence of such a

continuous zero curve such that the solutions of continuation steps are near one another is not

guaranteed [125].

Recent works have made optimal control problems with discontinuous control profiles

much more amenable to numerical treatments such as numerical homotopy and improved con-

trol smoothing/regularization techniques [14, 63, 139, 74, 200, 199, 30, 124, 202, 102, 169,

126, 170, 98, 127, 162, 128]. Methods for alleviating the difficulty associated with generating

an initial costate guess have also been developed [174, 29, 84]. Such improved techniques have

also inspired the development of various indirect methods that make practical low-thrust tra-

jectory optimization problems easier to solve without the need for detailed derivation of often-

times complicated necessary conditions. These methods have been applied to problems such

as low-thrust electric propulsion (EP) transfers with the inclusion of operational constraints

such as eclipsing [167, 161] and even the modeling of high-fidelity multi-mode EP systems

[165]. Petukhov and Wook [136] presents a joint-optimization framework that uses the indirect

method to implicitly optimize spacecraft hardware parameters (initial mass, thrust, and power)

by elevating the thrust and power parameters to states in the system and deriving of a set of

first-order necessary conditions that minimize propellant mass. Arya et al. [8, 7] present an

indirect method for concurrent trajectory and high-fidelity thruster design by using the recently

developed CSC [177] method to perform an optimization on the discrete operating modes of the
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electric thruster such that the optimal thrust and specific impulse time history may be retrieved

at discrete values, which is consistent with the actual operation of EP systems.

To summarize, the primary advantage of indirect methods is the guarantee that a solution

is a local extremal and high-resolution time history of states and controls are obtained. Addi-

tionally, for low-thrust trajectory optimization problems, indirect methods are often among the

popular solution methods, as the computationally intensive parameter optimization methods

used by direct transcription can prohibit their use [111]. The primary disadvantages of indirect

methods include their extreme sensitivity to the unknown initial costate guess and the difficulty

of incorporating path constraints. Additionally, indirect methods require the necessary condi-

tions of optimality to be re-derived for each new problem. There are, however, recent progress

in overcoming some of these issues. For instance, Mall and Taheri have developed an advanced

trigonometric regularization method – unified trigonometrization method (UTM) – for solving

problems with multiple state and control path constraints [104, 105, 103, 109, 106].
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Chapter 3

Overview of Direct Methods

Direct methods are compelling alternatives to indirect methods, primarily due to their ease

of use, the engineering accuracy of the solutions obtained using them, their large radius of

convergence, and the ability for a class of direct methods (i.e., convex optimization) to be

used for on-board automated guidance systems [111]. Direct methods first discretize Problem

(B) into a parameter optimization problem using specialized techniques. The resulting NLP

problem is then optimized using NLP solvers. The method used to discretize the problem is

typically called a transcription technique. There are a multitude of different direct transcription

schemes. In the general case, the resulting NLP problems are solved via a primal-dual interior

point method (IPM) or Sequential Quadratic Programs (SQPs) [111]. Today, an extensive

selection of software exists in nearly every programming language thanks to a large community

that has been actively developing, improving, and researching numerical methods for the past

40 years [195, 55]. Due to this software ecosystem, the ease of use of direct methods, and

their ability to “effortlessly” handle path constraints like Eq. (1.15), direct methods [39] can be

considered to be among the most popular methods for solving OCPs [194].

In general, Problem (B) must be reduced into a finite-dimensional problem to be solved.

This is achieved through the process of discretization, in which the continuous constraints of the

problem are converted into finite-dimensional algebraic constraints. The time-horizon of the

problem is divided into a finite number of segments, the endpoints of which are referred to as

mesh points or nodes. A polynomial basis is then applied to approximate the state or control or

both at the discrete nodes. This method was termed “direct transcription” by Canon et al. [26].

Methods that discretize only the state or control are called sequential methods, while those that
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discretize both are called simultaneous methods [88]. When the state is approximated using

some polynomial, the differential algebraic constraints can be enforced using some derivative

approximation or integration scheme specific to the polynomial basis. This is referred to as a

collocation method, which is among the most popular direct methods [90].

3.1 Collocation Methods

To further clarify the meaning of “collocation,” consider the differential (left) and integral forms

(right) of the dynamics equations,

ẋ(t) = f(x(t),u(t), t), x(t) = x(t0) +

∫ t

t0

f(x(t),u(t), t)dt. (3.1)

In a collocation method, a polynomial basis is chosen to interpolate the state. Since poly-

nomials may be differentiated or integrated, integration or differentiation rules may be con-

structed from these polynomials. Using these integration rules, the derivative or integral ele-

ments can be represented as,

ẋ(t) ≈
N∑
i=1

dixi(t),

∫ t

t0

f(x(t),u(t), t)dt ≈
N∑
i=1

wif(xi(t),ui(t), t), (3.2)

where di is some differentiation operator (a matrix value) and wi is some quadrature weight

(a scalar value). Further discussion will clarify how these can be obtained. However, for now,

these elements replace their corresponding elements in Eq. (3.1) and we obtain,

N∑
i=1

dixi(t) = f(x(t),u(t), t) x(t) = x(t0) +
N∑
i=1

wif(xi(t),ui(t), t). (3.3)

The relations in Eq. (3.2) and Eq. (3.3) are then evaluated at the N support points ti ∈

[t0, tf ], which are called collocation points. This is the process of collocation. Since both state

and control are discrete values at the support points, collocation is a type of simultaneous direct

method.
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Collocation methods are now extremely mature and used extensively in the aerospace

field. The distinctions between different direct approaches primarily lie in the method in which

the integration or differentiation rules are constructed. The most common approaches use the

trapezoid rule [16] or Hermite-Simpson Runge-Kutta methods [76]. The defect equation (used

for enforcing the dynamics) for the trapezoidal method is,

xk+1 = xk +
hk

2
[fk + fk+1] , (Trapezoidal). (3.4)

The defect equation for the compressed Hermite-Simpson method is,

xk+1 = xk +
hk

6

[
fk + 4fk+ 1

2
+ fk+1

]
,

fk+ 1
2
= f

[
xk+ 1

2
,uk+ 1

2
, tk +

hk

2

]
,

xk+ 1
2
= 1

2
(xk+1 + xk) +

hk

8
(fk − fk+1) ,

uk+ 1
2
= 1

2
(uk+1 + uk) .

(3.5)

In Eq. (3.5), (k = 0, . . . , N) where N is the number of collocation points and fk is

shorthand for f(xk,uk, tk). The time step-size is the distance between the collocation points,

hk = tk+1 − tk [16].

One family of transcriptions that has become very popular in the last two decades is PS

methods [12, 58, 60]. These methods use a basis of global orthogonal Lagrange or Chebychev

polynomials to approximate the state and control variables [47, 49]. In addition to highly

accurate solutions for a relatively sparse NLP problem, PS methods also allow for a mapping

between the Karush-Kuhn-Tucker (KKT) multipliers used internally by many NLP solvers and

the continuous time costates [49, 12, 58, 60]. This mapping produces a costate estimate that

may be used to initialize indirect shooting schemes.

3.2 Other Direct Methods

There are many other less widely used but promising types of direct methods. A few will be

briefly discussed here before moving on to PS methods.
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One of the most promising new types of direct methods is convex optimization. Convex

optimization methods have exploded in popularity in the optimization community due to the

following fact: if a function is convex, global statements can be made from local function

evaluations [111]. The strongest of these include a guarantee of finding a global optimum

[143] and polynomial bounds on the maximum iteration count of an algorithm solving a convex

problem [133]. As these types of methods are not the focus of this study, it is sufficient to define

a set, C ⊆ Rn, to be convex if it contains every point in the line segment connecting any two

of its points (i.e., a convex combination of the two pints). Similarly, a function f : Rn 7→ R

is convex if its domain is convex and it lies below the line segment connecting any two of its

points [22, 195]. A convex discrete problem takes the form,

X = (x1, . . . ,xN), U = (u1, . . . ,uN−1), tf ,

(P : Convex)



Minimize J [X,U , tf ] = J(xN , tf ),

Subject to : xk+1 = Akxk +Bkuk + dk, ∀ (k = 1, . . . , N − 1),

e(x1,xN) = 0,

h(xk,uk, k) ≤ 0 ∀ (k = 1, . . . , N − 1).

In (P : Convex), J ∈ R is the convex cost function, e ∈ RNe is an affine function defin-

ing the boundary conditions, and h ∈ RNh defines a convex set of path constraints. Problem

(P : Convex) can be solved using efficient algorithms designed to solve convex problems [21].

It turns out that in many aerospace applications, such as spacecraft rendezvous and rocket land-

ing [2], the dynamics can be expressed in the form shown in (P : Convex). The stipulation with

convex optimization is that the problem must be convex. Many realistic problems are not con-

vex. However, they can sometimes be convexified through a process of lossless convexification

in which the original problem is reformulated in such a way that it remains the same, but is now

convex [111]. However, this is not always possible, leading to the field of sequential convex

programming (SCP) . SCP is based on the idea of solving a convex approximation of Problem

24



(B) through linearization. Each time this problem is solved, the approximated solution is up-

dated. This continues as new solutions are obtained. This convex approximation is referred to

as the subproblem [37]. Application of convex optimization for spacecraft low-thrust trajec-

tory design are demonstrated in [189, 188, 80, 121]. In recent years, convex optimization and

pseudospectral methods have been combined to solve powered descent and landing problems

[155].

Another family of direct methods is differential dynamic programming (DDP) . DDP is

also built on the idea of linearization, solving a discrete-time OCP through the use of an additive

cost function. One attractive feature of the DDP algorithm is that it generates a decision rule

(i.e., a control law) for the entire state space [196]. This means that a DDP algorithm need

only be run once in order to obtain a closed-loop optimal control. Although it will not be

discussed in detail, it has been used with great success for low-thrust long-duration trajectory

optimization [191]. NASA Mystic software uses a variant of DDP for low-thrust trajectory

optimization [93].
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Chapter 4

The Theory of Pseudospectral Methods

Over the last two decades, PS optimal control has gained popularity. PS methods were origi-

nally derived from the spectral methods used to solve fluid dynamics problems [27]. Since their

adaptation to optimal control, numerous theoretical results have been published [47, 49, 147,

51, 148, 12, 60, 145] for solving many different types of constrained optimization problems.

This has led to numerous practical applications of PS methods, including flight maneuvers for

NASA missions [11, 89], long-duration low-thrust orbit transfer maneuvers [81, 73, 70], and

atmospheric flight optimization [116, 117] to name a few.

In a PS method, the state and control are both discretized while the state alone is parame-

terized using global orthogonal polynomials [58]. Differentiation and quadrature rules derived

from these polynomials and their support points are used to discretize Problem (B) and solve it

using an NLP solver. While PS methods do have an indirect form [48], it is not used in practice.

This chapter will focus exclusively on the theory and implementation of direct PS methods.

The details of several PS schemes will be presented and their strengths and weaknesses will be

considered. Mesh refinement schemes will be presented and discussed, as well as practical

methods to calculate derivatives of the NLP resulting from a PS transcription. Scaling methods

and their usefulness will be discussed. The elements of this section that are implemented in

TOPS will also be highlighted.

4.1 Orthogonal Polynomials and Legendre-Gauss Pseudospectral Methods

Although the title to this section makes reference to a popular flavor of PS methods, a PS

method can be derived making no assumptions as to the type of discretization being used.
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There are four elements to a PS method: domain transformation, interpolation, differentiation,

and integration [149].

4.1.1 Domain Transformation

The first step to any PS method is to map the physical time domain, t ∈ [t0, tf ] to the scaled

computational domain, τ ∈ [−1, 1]. This is done so that specific types of interpolating polyno-

mials can be used. The transformation can be generated as follows.

t0 ≤ t ≤ tf → 0 ≤ t− t0 ≤ tf − t0 → 0 ≤ t− t0
tf − t0

≤ 1,

→ 0 ≤ 2
t− t0
tf − t0

≤ 2 → −1 ≤ 2
t− t0
tf − t0

− 1 ≤ 1,

Here, we take

τ(t, t0, tf ) = 2
t− t0
tf − t0

− 1, (4.1)

which can be inverted to produce

t(τ, t0, tf ) =
tf − t0

2
τ +

tf + t0
2

. (4.2)

This transformation will be used in the following derivations to scale the generalized prob-

lem to the interval [−1, 1]. It is also helpful to define the following derivative.

dt

dτ
=

tf − t0
2

, (4.3)
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Eq. (4.3) can be used to scale derivatives to the interval τ ∈ [−1, 1]. Using this informa-

tion, we may re-express Problem (B) as,

x(t) ∈ RNx , u(t) ∈ RNu , t0 ∈ R, tf ∈ R,

(B1)



Minimize J [x(·),u(·), t0, tf ] = E(x0,xf , t0, tf ) +

∫ tf

t0

F [x(t),u(t), t] dt,

Subject to :
dx(τ)

dτ
=

tf − t0
2

f(x(τ),u(τ), τ),

e(x0,xf , t0, tf ) ≤ 0,

h(x(τ),u(τ), τ) ≤ 0.

Note in Problem (B1), the running cost F is not yet transformed to the interval [−1, 1].

This will be done shortly. Also note that this transformation assumes a finite time horizon. For

an infinite time horizon, the transformation takes the form [58],

t(τ) =
1 + τ

1− τ
. (4.4)

This study will assume a finite time horizon formulation of the OCPs.

4.1.2 Interpolation

At the heart of PS methods are the Lagrange interpolating polynomials. First, let πN :=

{τ1, τ2, . . . , τN} be a set of distinct points on the interval [−1, 1]. Let {ℓ1(τ), ℓ2(τ), . . . , ℓN(τ)}

be a set of Lagrange basis polynomials given by,

ℓj(τ) =
N∏
i=1
i ̸=j

τ − τi
τj − τi

, (j = 1, . . . , N). (4.5)

The Lagrange basis polynomials ℓj(τi), (i, j = 1, . . . , N) satisfy the following property,

ℓj(τi) =

 1, i = j,

0, i ̸= j.
(4.6)
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Using the Kronecker delta, this relationship can be re-expressed as ℓj(τi) = δji. Next, we

interpolate the k-th component of the state using a weighted interpolant of the form,

xk(τ) ≈
N∑
j=1

W (τ)

W (τj)
xjkℓj(τ), (k = 1, . . . , Nx), (4.7)

where W is a positive weight function [149]. Choosing the simplest case of W (τ) = 1, we

obtain,

xk(τ) ≈
N∑
j=1

xjkℓj(τ), (k = 1, . . . , Nx). (4.8)

Eq. (4.8) is the classical Lagrange interpolating polynomial. Note that since the interpo-

lating polynomial satisfies the Kronecker condition, the polynomial coefficients xjk are exactly

equal to the continuous function value evaluated at the corresponding support points. In other

words,

xjk = xk(τj), (4.9)

where (j = 1, . . . , N) and (k = 1, . . . , Nx). This feature is an extremely important aspect of

PS methods [48].

4.1.3 Differentiation

Now that the state is approximated by a continuous interpolating polynomial, we can approxi-

mate its derivative. Differentiating Eq. (4.8) with respect to τ we obtain,

ẋk(τ) ≈
N∑
j=1

xjkℓ̇j(τ), (k = 1, . . . , Nx), (4.10)

since xjk are constant coefficients. Note that we denote,

ẋ(τ) =
dx(τ)

dτ
, (4.11)

but when necessary, the dot notation may be interchanged with Leibniz derivative notation for

clarity. Next, let,

Dij = ℓ̇j(τi), (4.12)
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where Dij is called the differentiation matrix. In matrix form, the state and differentiation

matrices can be expressed as,

D =



ℓ̇1 (τ1) ℓ̇2 (τ1) · · · ℓ̇N (τ1)

ℓ̇1 (τ2) ℓ̇2 (τ2) · · · ℓ̇N (τ2)

...
... . . . ...

ℓ̇1 (τN) ℓ̇2 (τN) · · · ℓ̇N (τN)


, X =



x1

x2

...

xN


, (4.13)

where D ∈ RN×N , X ∈ RN×Nx , and xi ∈ RNx are row vectors corresponding to the state

vector at time ti. Using these matrices, we may write,

ẋk(τi) = [DX]ik . (4.14)

Equation (4.14) approximates the left-hand side of the dynamics, ẋ(t) = f(x(t),u(t), t),

during the collocation process. Next, (B1) is re-expressed as,

X ∈ RN×Nx , U ∈ RN×Nu , x(t) ∈ RNx , u(t) ∈ RNu , t0 ∈ R, tf ∈ R,

(B2)



Minimize J [X,U ,x(·),u(·), t0, tf ] = E(x1,xN , t0, tf )

+

∫ tf

t0

F [x(t),u(t), t(τ, t0, tf )] dt,

Subject to : DX =
tf − t0

2
f(X,U , t(τ , t0, tf )),

e(x1,xN , t0, tf ) ≤ 0,

h(X,U , t(τ , t0, tf )) ≤ 0,

where we have defined two matrices according to,

U ∈ RN×Nu =



u1

u2

...

uN


, t ∈ RN =



t1

t2
...

tN


,
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in which ui ∈ RNu are row vectors. Additionally, ti, (i = 1, 2, . . . , N) are the time values

associated with the collocation points. A vector τ may be constructed in an identical fashion

to t, and the expression t(τ , t0, tf ) is given by Eq. (4.2). Note that we have not yet fully

discretized the domain, since the running cost is still a function of continuous functions and is

not discretized/approximated. This will be remedied shortly.

4.1.4 Integration

Since we are operating on the domain τ ∈ [−1, 1], we may apply weighted quadrature to

approximate the integral. Consider the arbitrary function g(t) defined in [t0, tf ] being integrated

over the same interval. In order to interpolate this function using a basis of weighted Lagrange

polynomials, we must transform this integral to the interval [−1, 1]. Rearranging Eq. (4.3) as,

dt =
tf − t0

2
dτ, (4.15)

we may write, ∫ tf

t0

g(t)dt =
tf − t0

2

∫ 1

−1

g [t(τ, t0, tf )] dτ. (4.16)

Note that in Eq. (4.16) we have changed the argument of g(t) to g [t(τ, t0, tf )]. This is done

for two reasons. The first is that we are making no assumptions on the operations performed

by g(t). They may be dependent on the domain of g(t) being [t0, tf ]. Second, we do not know

that g(t) is defined on [−1, 1], so when evaluating g, we simply replace its argument with the

affine transformation given in Eq. (4.2). Next, we may write

tf − t0
2

∫ 1

−1

g [t(τ, t0, tf )] dτ =
tf − t0

2

N∑
j=1

∫ 1

−1

W (τ)

W (τj)
gjℓj(τ)dτ, (4.17)

where (j = 1, . . . , N). Since gj are constant coefficients, we may factor them out of the

integral. Thus, we obtain,

tf − t0
2

∫ 1

−1

g [t(τ, t0, tf )] dτ =
tf − t0

2

N∑
j=1

wjgj, (4.18)
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where wj are referred to as the quadrature weights and are given by,

wj =

∫ 1

−1

W (τ)

W (τj)
ℓj(τ)dτ. (4.19)

Eq. (4.19) is a generalized expression for the quadrature weights. For specific transcription

methods, explicit formulas are given to compute these weights.

4.1.5 Gaussian Quadrature Points and the Pseudospectral Bolza Problem

In the discussion above, we have considered an arbitrary grid of support points or “nodes.” In

practice, the placement of these nodes is incredibly important and is an important step in imple-

menting PS methods. Davis and Rabinowitz [35] showed that the best selection of grid points

for interpolation, integration, and differentiation of functions is a grid of Gaussian quadrature

points. By “best,” the author means that for N nodes, a Gaussian distribution of those nodes will

minimize the approximation error present in the aforementioned operations. In fact, Gaussian

points greatly reduce the Runge phenomenon that appears for an even distribution of points

[51]. All Gaussian quadrature points lie in the domain [−1, 1] and are more densely packed

around the endpoints of the interval.

In the following sections, several NLPs will be formulated using Legendre-Gauss tran-

scriptions. Additionally, a Chebyshev-Gauss discretization will be briefly shown. All Legendre-

Gauss points can be obtained from the roots of the Legendre polynomials and/or linear combi-

nations of the polynomials and their derivatives [61] while the Chebyshev-Gauss points can be

obtained from the extrema of the Chebyshev polynomials [50].
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Now that we have formulated all the necessary elements, we may use them to generate a

PS discretization of Problem (B). This is presented below.

X ∈ RN×Nx , U ∈ RN×Nu , t0 ∈ R, tf ∈ R,

(BPS)



Minimize J [X,U , t0, tf ] = E(x1,xN , t0, tf ) +
tf − t0

2

N∑
i=1

wiF (Xi,Ui, ti),

Subject to : DX =
tf − t0

2
f(X,U , t),

e(x1,xN , t0, tf ) ≤ 0,

h(X,U , t) ≤ 0.

Problem (BPS) can be solved to obtain the discrete values of the states and controls at the

N collocation points. To recover the continuous states, we can use Eq. (4.8) and arbitrarily

interpolate U . Note that we abuse notation in (BPS), as every argument t is really t(τ, t0, tf )

given by Eq. (4.2). However, the dependence is dropped for the sake of notational convenience.

Although we have presented the dynamic constraints of Problem (BPS) in a matrix form,

it is oftentimes easier to first formulate the PS problem using summations rather than matrix

multiplications and convert to matrix notation afterwards. Some authors prefer this notation

[101]. For an Nx-dimensional state, this takes the form,

ẋ(τj) ≈ Ẋ(τj) =
N∑
j=1

DijXj = DX =
tf − t0

2
f(X,U , τ ), (i = 1, . . . , N), (4.20)

where we remind the reader that Xj denotes the j-th row of the matrix X ∈ RN×Nx .

Now that we have formulated a general PS discretization of Problem (B), we may begin

discussing the aforementioned variants and their differences. A methodical approach will be

taken for each variant in order to more clearly contrast each method. For the sake of clarity,

a single-interval formulation will be considered for each variant. However, a multi-interval

formulation will be shown for the LGR method implemented in TOPS. In each method, N

will always denote the number of collocation points. This is because some schemes employ

non-collocated discretization points.
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4.2 Legendre-Gauss-Lobatto Points

The first set of points that will be discussed are the Legendre-Gauss-Lobatto (LGL) points.

These are the most commonly used set of LG points and, in the opinion of the author, the

easiest to implement. The LGL method is also the most well-understood of the Legendre-Gauss

methods as it has been studied the longest [45, 61] and convergence proofs for the control have

been developed by Ross and Karpenko [149]. The optimal control software DIDO uses LGL

points [146], but it does not use the exact transcription shown in this thesis.

Consider collocation at N LGL points. The LGL points are obtained as [1],

LGL ⇒ the roots of ṖN−1(τ) together with the points −1 and 1.

Here, PN(τ) is the N -th degree Legendre polynomial. Thus, ṖN−1(τ) is the derivative of

the N -th degree Legendre polynomial with respect to τ . Note that quadrature approximations

using the LGL points are exact for polynomials of degree up to 2N − 3 [59]. There is no

closed-form expression for the LGL points, but they can be calculated numerically to machine

precision [27]. Links to download such algorithms for specific transcriptions can be found in

the preface of Shen et al. [159]. Additionally, numerous helpful PS algorithms are provided

by Greg von Winckel at the MATLAB file exchange [183]. Fig. 4.1 shows a schematic of the

Figure 4.1: The LGL Points

distribution of six LGL points. Note that the LGL points lie in the closed interval τ ∈ [−1, 1].
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The quadrature weights for the LGL transcription are given as [51, 159],

wLGL
i =

2

M(M + 1) [PM(τi)]
2 , (i = 0, 1, . . . ,M), (4.21)

and the differentiation matrix can be calculated as

DLGL
ij =



−M(M + 1)

4
, i = j = M,

PM(τi)

PM(τJ)

1

(τi − τj)
, i ̸= j, 1 ≤ i, j ≤M,

0, 2 ≤ i = j ≤M − 1,

M(M + 1)

4
, i = j = M.

(4.22)

Note the indices of Eqs. (4.21) and (4.22) differ slightly from our notation, since we use

N to denote the number of collocation points. Since the indices are (i, j = 0, . . . ,M), set

M ← N−1 to calculate weight and differentiation matrices of appropriate sizes. An algorithm

that calculates PS differentiation matrices for an arbitrary grid can be found in [185]. Using

Eq. (4.22), the state derivative becomes,

ẋ(τj) ≈
N∑
j=1

DLGL
ij Xj = DLGLXLGL, (4.23)

where (i = 1, 2 . . . , N). Now, we may re-write Problem (BPS) as,

X = XLGL ∈ RN×Nx , U = ULGL ∈ RN×Nu , t0 ∈ R, tf ∈ R,

(BLGL)



Minimize J [X,U , t0, tf ] = E(x1,xN , t0, tf )

+
tf − t0

2

N∑
i=1

wLGL
i F (Xi,Ui, ti),

Subject to : DLGLX =
tf − t0

2
f(X,U , tLGL),

e(x1,xN , t0, tf ) ≤ 0,

h(X,U , tLGL) ≤ 0.
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In Problem (BLGL), we define,

tLGL = [t1, t2, . . . , tN ]
⊤, (4.24)

to be the time points in the domain [−1, 1] associated with the LGL points obtained using

Eq. (4.2). This completes the single-interval LGL PS transcription.

A special feature of PS transcriptions is that they offer a mapping between the discrete-

time Karush-Kuhn-Tucker multipliers used internally by NLP solvers and the continuous-time

Lagrange multipliers (costates). This is referred to as the covector mapping theorem [49, 51,

60, 67, 69]. It is an incredibly powerful feature of PS methods and unifies direct and indirect

PS methods. First, we define

λ1:N =



λ1

λ2

...

λN


, Λ1:N =



Λ1

Λ2

...

ΛN


, γ1:N =



γ1

γ2

...

γN


, Γ1:N =



Γ1

Γ2

...

ΓN


. (4.25)

In Eq. (4.25), λ1:N ∈ RN×Nx are the continuous-time costates evaluated at the collocation

points and Λ1:N ∈ RN×Nx are their discrete time KKT counterparts. Similarly, γ1:N ∈ RN×Nh

are the continuous-time multipliers associated with the path constraints, h, and Γ1:N ∈ RN×Nh

are their discrete-time KKT counterparts. The mapping between them is given below.

λLGL
i =

ΛLGL
i

wLGL
i

, γLGL
i =

ΓLGL
i

wLGL
i

, (i = 1, . . . , N). (4.26)

TOPS offers an option to use a multi-interval LGL transcription. See Appendix A for

instructions on how to use this transcription in TOPS.
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4.2.1 LGL Costate Estimate Inaccuracies

It is important to note that the costates obtained using the Lobatto transcription are noisy and

exhibit oscillatory behavior about their optimal value [49]. This oscillation is due to a null-

space in the matrix linear system of the LGL dynamic constraint [59] that allows for infinitely

many solutions to be obtained for ΛLGL. As such, they must be filtered to obtain a reasonable

approximation of the continuous-time costates. The LGR and Legendre-Gauss (LG) transcrip-

tions do not exhibit this oscillatory behavior [59].

Consider the well-known orbit-raising problem posited by Bryson and Ho [23], stated

fully in Section 6.2. This problem has been used as an optimal control example extensively

in the literature. A solution was obtained using an indirect method to obtain the exact values

of the costates. Next, TOPS was used to solve the problem using an LGR and then an LGL

transcription. A global polynomial (one mesh segment) was used containing 60 collocation

points for both cases. The state and control solutions were nearly identical using the LGR and

LGL transcriptions. However, Fig. 4.2 shows a comparison of the costate estimates obtained

using the two transcriptions. In Fig. 4.2, the dashed lines with markers represent the costate

(a) LGR Costate Estimate (b) LGL Costate Estimate

Figure 4.2: Costate Estimates for Orbit Raising Problem Using LGR and LGL Transcriptions

values obtained using a PS transcription, while the solid lines represent the indirect costates

obtained using a single-shooting scheme. In Fig. 4.2a, the LGR estimate of the costates lies

exactly on top of the indirect costates. However, in Fig. 4.2b, the LGL estimates of the costates

exhibit varying degrees of oscillations about the true value. The exact estimate provided by the
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LGR transcription is the primary reason TOPS defaults to an LGR scheme. Since the author of

TOPS and researchers in the ACE lab use indirect methods frequently, the ability to obtain high-

quality costate estimates is useful for initializing indirect single- or multiple-shooting methods

to obtain high-resolution solutions to difficult problems using advanced regularized indirect

methods [177].

4.3 Legendre-Gauss-Radau Points

The next set of points that will be discussed are the Legendre-Gauss-Radau points. These are

less commonly used than LGL points and are much more “tricky” to implement than LGL

points due to their asymmetry about the origin in the interval [−1, 1]. These are the primary

set of Gauss points implemented in TOPS. Historically, the LGR points have been the least

studied or used set of Guass points presented here [61]. However, this has changed in recent

years, largely due to the efforts of Dr. Anil Rao and his collaborators [60] at the University of

Florida. It is worth noting that for both LGR and LG points, no formal proof of control conver-

gence has been produced. For this reason, some influential members of the PS optimal control

field disapprove of their use [52]. However, in practice, Radau points exhibit an exponential

convergence rate for smooth problems and proofs of costate convergence do exist [59, 87, 99].

Consider collocation at N LGR points. The LGR points are obtained as [159, 59],

LGR ⇒ the roots of PN−1(τ) + PN(τ).

where PN(τ) is the N -th degree Legendre polynomial. Note that quadrature approximations

using the LGR points are exact for polynomials of degree up to 2N − 2 [59]. Like the LGL

points, there is no closed-form expression to obtain the LGR points. Algorithms that can cal-

culate them to machine precision can be found at [184]. Fig. 4.3 shows a schematic of the

distribution of six LGR and LGL points. Note that the LGR points lie in the half open interval

τ ∈ [−1, 1) while the LGL points lie in the closed interval τ ∈ [−1, 1]. The quadrature weights
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Figure 4.3: The LGL and LGR Points

for the LGR transcription are given as [159, 51],

wLGR
i =

1− τi

(M + 1)2 [PM(τi)]
2 , (i = 0, 1, . . . ,M), (4.27)

and the differentiation matrix can be calculated as,

DLGR
ij =



−M(M + 2)

4
, i = j = 0,

PM(τi)

PM(τj)

(1− τj)

(1− τi)

1

(τi − τj)
i ̸= j, 0 ≤ i, j ≤M,

1

2(1− τi)
, 1 ≤ i = j ≤M.

(4.28)

In Eq. (4.27) and Eq. (4.28), the indices differ from our notation once again. We let

M ← N − 1 to calculate the weights and differentation matrix for N collocation points.

Again, a MATLAB-based algorithm to calculate this differentiation matrix can be found at

[185]. However, we are not yet finished with this transcription. The reader may have noticed

that in Fig. 4.3 the set of LGR points do not include the point τ = 1. Thus, if the transcription

remains unchanged, endpoint boundary conditions cannot be enforced. As in [60], we intro-

duce a non-collocated point τN+1 = 1, which is used to approximate the state only at the final

time. Thus, the approximation of the state derivative becomes,

ẋ(τj) ≈
N+1∑
j=1

DLGR
ij Xj = DLGRXLGR, (4.29)
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where (i = 1, 2, . . . , N) and DLGR is the N by N+1 rectangular LGR differentiation matrix.

This extra column is associated with the Lagrange polynomial ℓN+1(τ). To obtain this matrix

using Eq. (4.28), evaluate the formula (or provided algorithm) for N +1 points and then delete

the (N + 1)-th row of the resulting matrix. We may denote the non-collocated discretization

point as xf ∈ RNx , a row vector. Thus, we may write,

X = XLGR ∈ RN×Nx , xf ∈ RNx U = ULGR ∈ RN×Nu , t0 ∈ R, tf ∈ R,

(BLGR)



Minimize J [X,xf ,U , t0, tf ] = E(x1,xf , t0, tf )

+
tf − t0

2

N∑
i=1

wLGR
i F (Xi,Ui, ti),

Subject to : DLGR

[
X
xf

]
=

tf − t0
2

f(X,U , tLGR),

e(x1,xf , t0, tf ) ≤ 0,

h(X,U , tLGR) ≤ 0.

In Problem (BLGR) we define,

tLGR = [t1, t2, . . . , tN ]
⊤, (4.30)

to be the transformed time points in the domain [−1, 1) associated with the LGR points only.

They are obtained using Eq. (4.2). Note that in Problem (BLGR), the matrix multiplication

DLGR

[
X
xf

]
produces an N by N resultant matrix, so the equality is consistent with regards

to the dimensions of the left- and right-hand sides. The covector mapping theorem for the LGR

PS method is given as,

λLGR
i =

ΛLGR
i

wLGR
i

, (i = 1, . . . , N), (4.31)

λLGR
i =

[
DLGR

(:,i)

]⊤
ΛLGR

i , (i = N + 1), (4.32)

γLGR
i =

ΓLGR
i

wLGR
i

, (i = 1, . . . , N), (4.33)
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where DLGR
(:,i) denotes the i-th column of the LGR differentiation matrix and wLGR

i are the

LGR quadrature weights. Note that Eq. (4.31), Eq. (4.32), and Eq. (4.33) are taken from [33].

However, Françolin et al. [56] derive different costate estimate expressions that may potentially

be more accurate. However, the estimate presented in [56] requires derivative information, and

as such is excluded for the sake of ease of use.

There is one outstanding point regarding the LGR method that must be addressed. Since

the non-collocated point is only introduced to the state, the final control value is not obtained

using the standard LGR points and must be extrapolated. The remedy to this is to use the

flipped LGR points, which are obtained as,

Flipped LGR ⇒ the roots of − (PN−1(τ) + PN(τ)).

Thus, the flipped LGR points are just the negative LGR points. The flipped LGR points

are identical to the standard set of LGR points, except for the fact that they are mirrored across

the y-axis. To use these points, introduce the non-collocated point at τ = −1 rather than τ = 1

and follow the procedure above. The primary difference is to reverse the order of the quadrature

weights once they are obtained. It is obvious that the control will no longer be obtained at the

initial time. However, it is sometimes desirable to extrapolate the initial control value rather

than the final control value.

4.3.1 Integral Formulation of LGR Method

In [58] it was shown that the differential LGR PS method given in Problem (BLGR) has an

equivalent integrated formulation for both the standard and flipped LGR points. This results

from the property that,

D(:,1) = −D(:,2:N+1)1, (4.34)

where 1 ∈ RN×1. This allows for a proof that D(:,2:N+1) is non-singular. Defining A =

D−1
(:,2:N+1), we may write,

X2:N+1 = x1 +
tf − t0

2
Aif(X

LGR,ULGR, tLGR). (4.35)
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This integral formulation is equivalent to the differential formulation presented previously.

Note that for a multiple-interval scheme, the row vector x1 is the state at τ (k)1 , the initial point

in every interval k. The primary reason to implement this method is numerical, as the NLP

problem resulting from using this collocation equation produces derivatives that exhibit some-

what more sparsity than those resulting from the differential formulation. In addition, it is an

implicit integration scheme and may exhibit additional stability compared to the differential

form.

4.4 Legendre-Gauss Points

The final set of Legendre-Gauss points that will be discussed are the Legendre-Gauss (LG)

points themselves. In the experience of the author, these are the least used of the Gauss points.

Similar to the LGR points, no state/control convergence proofs exist for the LG points. How-

ever, a proof of costate convergence does exist [59].

Consider collocation at N LG points. The LG points are obtained as [1],

LG ⇒ the roots of PN(τ).

Note that interpolation and differentiation/quadrature operations using the LG points are

exact for polynomials of degree up to 2N − 1 [59]. There is no closed form expression for the

LG points. However, the locations of Gauss points can be calculated numerically to machine

precision using algorithms found in the preface of Shen et al. [159]. Additional MATLAB based

algorithms can be found in the MATLAB file exchange [182]. Fig. 4.4 shows a schematic of

the distribution of LG, LGR, and LGL points. Note that the LG points lie on the open interval

τ ∈ (−1, 1). The quadrature weights for the LG transcription are given as [51, 159],

wLG
i =

2

(1− τ 2i )
[
ṖM+1(τi)

]2 , (i = 0, 1, . . . ,M), (4.36)
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Figure 4.4: The LG, LGR, and LG Points

and the differentiation matrix can be calculated as,

DLG
ij =


ṖM(τi)

(τi − τj)ṖM(τj)
, i ̸= j, 0 ≤ i, j ≤M,

τi
1− τ 2i

, i = j,

(4.37)

again letting M ← N − 1. A MATLAB-based algorithm that can be used to calculate this

differentiation matrix can be found at [185]. Next, we let τ0 = −1 and τN+1 = 1 be non-

collocated discretization points. We denote the state vectors associated with these points to

be x0 and xf , respectively. Note that we do not approximate the state at every point with a

Lagrange polynomial. Instead, we approximate the state at the collocation points and only the

point τ0 [59]. Thus, the state approximation becomes,

ẋ(τj) ≈
N∑
j=0

DLG
ij Xj = DLGXLG, (4.38)

where N is the number of LG points and DLG is the N by N+1 rectangular LG differentiation

matrix. Using the property D(:,0) = −D(:,1:N)1 for the LG differentiation matrix, Garg et al.

[60] show that,

xf = x0 +w⊤
LGf(X

LG,ULG, tLG), (4.39)
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where we define,

wLG = [wLG
1 , wLG

2 , . . . , wLG
N ]⊤, (4.40)

to be a column vector of the LG weights and,

tLG = [t1, t2, . . . , tN ]
⊤, (4.41)

to be the time points in the domain (−1, 1) associated with the LG points only. They are

obtained using Eq. (4.2). Thus, we may write,

x0 ∈ R, X = XLG ∈ RN×Nx , xf ∈ RNx , U = ULG ∈ RN×Nu , t0 ∈ R, tf ∈ R,

(BLG)



Minimize J [x0,X,xf ,U , t0, tf ] = E(x0,xf , t0, tf )

+
tf − t0

2

N∑
i=1

wLG
i F (Xi,Ui, ti),

Subject to : DLG

[
x0

X

]
=

tf − t0
2

f(X,U , tLG),

xf = x0 +w⊤
LGf(X,U , tLG),

e(x0,xf , t0, tf ) ≤ 0,

h(X,U , tLG) ≤ 0.

It is obvious from this formulation that neither the initial nor the final control values can

be obtained explicitly and must be extrapolated. In the opinion of the author, the primary

reason to use these points is accuracy for computational cost, as the LG points offer the highest

accuracy of the three transcriptions for the fewest number of collocation points [59]. The
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covector mapping theorem for the LG PS method is given as [33],

λLG
i = ΛLG

N+1 −
[
DLG

(:,0)

]⊤
ΛLG, (i = 0), (4.42)

λLG
i = diag(w)−1ΛLG, (i = 1, . . . , N), (4.43)

λLG
i = ΛLG

N+1, (i = N + 1), (4.44)

γLG
i =

ΓLG
i

wLG
i

(i = 1, . . . , N). (4.45)

Note that the inequality constraint multipliers are only obtained at the collocation points.

4.5 Multi-Interval LGR Pseudospectral Transcription

Now the multi-interval formulation of the LGR transcription is presented. Note that this for-

mulation can be easily adapted to other PS transcriptions if appropriate care is taken. Multi-

interval methods are primarily used for mesh refinement purposes. See Section 5.2.2 for

more details. Before continuing, the reader is informed that Section 4.5.1 presents a simplified

form of the multi-interval LGR PS method. However, this section is included for completeness.

Let us partition the independent variable τ ∈ S = [−1, 1] into K mesh intervals, Sk =

[Tk−1, Tk], (k = 1, 2, . . . , K) such that −1 = T0 < T1 < · · · < TK = 1. Assuming k > 1, it

follows that Sk ⊂ S ∀ k. Thus, the set {Sk}Kk=1 has the property that

K⋃
k=1

Sk = S. (4.46)

In addition, each interval Sk has no overlap with any other interval. Thus, Tk > Tk−1 ∀ k.

The superscript (k) and the subscript k will be used interchangeably to denote the mesh interval

to which a particular value belongs. For example, we denote the i-th state in mesh interval k as

X
(k)
i , while denoting the mesh interval itself as Sk. In the interest of reducing notational clutter,
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superscripts denoting the method being used (e.g., XLGR) will be dropped. The multiple-

interval form of the Bolza optimal control problem is,

x ∈ RNx , u ∈ RNu , t0 ∈ R, tf ∈ R, (k = 1, . . . , K),

(BMI)



Minimize J [x(·),u(·), t0, tf ] = E(x
(1)
0 ,x

(K)
f , t0, tf )

+
tf − t0

2

N∑
k=1

∫ Tk

Tk−1

F (x(k),u(k), t(k))dτ,

Subject to
dx(k)(τ)

dτ
=

tf − t0
2

f(x(k),u(k), t(k)),

e(x
(1)
0 ,x

(K)
f , t0, tf ) ≤ 0,

h(x(k),u(k), t(k)) ≤ 0.

Following the procedure in [41], each interval Sk of Problem (BMI) is transformed to the

independent variable s ∈ [−1, 1]. First, note that s and τ can be related as,

τ =
Tk − Tk−1

2
s+

Tk + Tk−1

2
, (4.47)

which implies that,
dτ

ds
=

Tk − Tk−1

2
:= σk. (4.48)

The state of the continuous-time Bolza OCP can be approximated in each mesh interval

as,

x(k)(s) ≈X(k)(s) =

Nk+1∑
j=1

X
(k)
j ℓ

(k)
j (s), (4.49)

where

ℓ
(k)
j (s) =

Nk+1∏
l=1
l ̸=j

s− s
(k)
l

s
(k)
j − s

(k)
l

. (4.50)

Differentiating Eq. (4.49) with respect to s gives us,

ẋ(k)(s) ≈ Ẋ(k)(s) =

Nk+1∑
j=1

X
(k)
j ℓ̇

(k)
j (s). (4.51)
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Collocating at the Nk LGR points in each mesh interval, we obtain the dynamic constraints

for interval (k = 1, . . . , K) as,

Nk+1∑
j=1

D
(k)
ij X

(k)
j =

tf − t0
2

σkf(X
(k)
i ,U

(k)
i , t

(k)
i ), (i = 1, . . . , Nk), (4.52)

where

D
(k)
ij =

dℓ
(k)
j

(
s
(k)
i

)
ds

= ℓ̇
(k)
j

(
s
(k)
i

)
, (i = 1, . . . , Nk), (j = 1, . . . , Nk + 1), (4.53)

are the elements of the Nk × (Nk + 1) rectangular LGR differentiation matrix [58, 60] in

the interval Sk. Here, we have introduced a non-collocated point at the end of each mesh

interval. Note that by transforming each interval to the domain s ∈ [−1, 1], the derivatives

of the Lagrange polynomial basis are defined over [−1, 1] in each segment. Thus, D(k) and

w(k) may be obtained using the standard formulas. Additionally, t(k) is actually a function of

τ (k), s(k), Tk, Tk−1, t0, and tf and can be obtained by applying Eq. (4.47) and then Eq. (4.2).

For obvious reasons, these dependencies are dropped. In addition to the standard equality

constraints that are part of the NLP, we must enforce continuity of the state. Otherwise, the NLP

will allow for a discontinuity or “jump” in the state value at the mesh points. This constraint

takes the form,

x
(k−1)
Nk+1 = x

(k)
1 , (k = 2, . . . , K − 1). (4.54)

However, the equality constraint given by Eq. (4.54) can be satisfied implicitly by using

the same NLP variable for x(k)
Nk+1 and x

(k+1)
0 at the interior mesh points, although this does

make the NLP somewhat more difficult to implement. Next, we apply Gaussian quadrature to

the cost to obtain,

J [X,U , t0, tf ] = E
(
x
(1)
1 ,x

(K)
Nk+1, t0, tf

)
+

tf − t0
2

K∑
k=1

Nk∑
i=1

σkw
(k)
i F

(
X

(k)
i ,U

(k)
i , t

(k)
i

)
. (4.55)
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The discrete Bolza problem leads to the following NLP.

X ∈ R(Nt+1)×Nx , U ∈ RNt×Nu , t0, tf ,

(BLGR
MI )



Minimize J [X,U , t0, tf ] = E(x
(1)
1 ,xf , t0, tf )

+
tf − t0

2

K∑
k=1

Nk∑
i=1

σkw
(k)
i F (X

(k)
i ,U

(k)
i , t

(k)
i ),

Subject to :

Nk+1∑
j=1

D
(k)
ij X

(k)
j =

tf − t0
2

σkf(X
(k)
i ,U

(k)
i , t

(k)
i ),

e(x
(1)
1 ,xf , t0, tf ) ≤ 0,

h(X
(k)
i ,U

(k)
i , t

(k)
i ) ≤ 0,

(i = 1, . . . , Nk), (j = 1, . . . , Nk + 1), (k = 1, . . . , K).

In (BLGR
MI ), Nt =

∑K
k=1Nk is the total number of LGR support points. This completes the

multi-interval LGR PS method. At this point, it may be difficult to interpret the overwhelming

number of sums and indices. The next section aims to explain the details of the complex

notation introduced during the derivation of (BLGR
MI ) and re-express the problem in a simpler

form.

4.5.1 Matrix Form of the Bolza NLP

A common difficulty for researchers new to the field of PS direct methods is that the equations

of the PS method are difficult to understand without first suffering through a painful dissection

of these equations or seeing them implemented. Indeed, the author of this study shared similar

complaints with his advisor when they began their study of PS methods. This section endeavors

to alleviate the difficulties by posing Problem (BLGR
MI ) in a manner more friendly to both the eye

and implementation on a computer. In order to accomplish this, variables belonging to mesh

intervals (k) will be arranged into matrices that can be used in a “global” sense. Let us first
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re-define the states, controls, and KKT multipliers as,

X =



X(1)

X(2)

...

X(K)


, U =



U (1)

U (2)

...

U (K)


, Λ =



Λ(1)

Λ(2)

...

Λ(K)


, Γ =



Γ(1)

Γ(2)

...

Γ(K)


, (4.56)

where X ∈ RNt×Nx , U ∈ RNt×Nu , Λ ∈ R(Nt+1)×Nx , and Γ ∈ RNt×Nh . Notice that the

non-collocated point is not included in X . Instead, define xf ∈ R1×Nx as the row vector of

non-collocated state NLP variables at tf . Next, define a composite differentiation matrix as,

D =



D
(1)
N1×(N1+1) 0N1×N2 . . . 0N1×NK

0N2×N1 D
(2)
N2×(N2+1) . . . 0N2×NK

...
... . . . ...

0NK×N1 0NK×N2 . . . D
(K)
NK×(NK+1)


∈ RNt×(Nt+1). (4.57)

In Eq. (4.57), Nt = N1 + N2 + . . . + NK and subscripts denote the matrix dimension.

Note in Eq. (4.57) that the all-zero blocks have one less column than the differentiation matrix

blocks. This is because the same NLP variable is used for both the (non-collocated) segment

end-point and for the first point of the next segment. Thus, the differentiation matrices must

be overlapped so that the last column of D(k−1) lies in the same column and directly above

the first column of D(k). A visualization of the sparsity pattern that this produces for an LGR

composite differentiation matrix is shown in Fig. 4.5a. Fig. 4.5b shows the sparsity pattern

for the integral formulation. This sparsity pattern is specific only to the Radau PS method,

although this overlapping method could potentially be used for any other transcription. Let

w(k) = [w
(k)
i ]Nk

i=1 denote the LGR weights in interval k and let 1n×m represent an n×m matrix

of all ones. Then, σ(k) = σk1Nk×1 represents the weight scaling vector in segment k. Finally,

let t(k) = [ti]
Nk
i=1 denote the times at the LGR point in segment k and s(k) = [si]

Nk
i=1 denote the

LGR support points in Sk = [Tk−1, Tk] where (k = 1, . . . , K). We may define several global
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(a) Composite Differentiation Matrix (b) Composite Integration Matrix

Figure 4.5: LGR Composite D/I Matrices Sparsity Patterns.

matrices as follows.

t =



t(1)

t(2)

...

t(K)


, s =



s(1)

s(2)

...

s(K)


, w =



w(1)

w(2)

...

w(K)


, σ = diag



σ(1)

σ(2)

...

σ(K)


. (4.58)

Note that t, s,w ∈ RNt×1 while σ ∈ RNt×Nt . Although s is not used directly in this

formulation, it must be used to obtain t in the NLP solver for free-final-time problems, where

tf is a decision variable. Additionally, it is used in Section 5.4 to transform certain derivatives.
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Now, Problem (BLGR
MI ) may be restated using a compact matrix notation.

X ∈ RNt×Nx , xf ∈ R1×Nx , U ∈ RNt×Nu , t0, tf ,

(BLGR
MAT)



Minimize J [X,xf ,U , t0, tf ] = E(x
(1)
1 ,xf , t0, tf )

+
tf − t0

2
w⊤σF (X,U , t) ,

Subject to : D

[
X
xf

]
=

tf − t0
2

σf(X,U , t),

e(x
(1)
1 ,xf , t0, tf ) ≤ 0,

h(X,U , t) ≤ 0.

Finally, the costate estimate may be re-written as,

λ1:Nt = diag(w)−1Λ1:Nt , (4.59)

λNt+1 = D(:,Nt+1)ΛNt+1, (4.60)

γ1:Nt = σ−1diag(w)−1Γ1:Nt . (4.61)

The benefits of re-formulating Problem (BLGR
MI ) into Problem (BLGR

MAT) are twofold. The

first is readability. The second and the more practical reason, is that for interpreted comput-

ing languages such as MATLAB or Python, sparse matrix operations are generally much faster

than loops. Looping can become quite inefficient when inside a function that must be evaluated

many times. Assembling sparse weight, scaling, and differentiation matrices prior to optimiza-

tion allows loops to be eliminated and computational efficiency to be increased in general. Now

that we have established a general, programming-friendly formulation for discrete OCPs using

an LGR PS method, a numerical implementation is introduced.

4.6 Chebyshev-Gauss-Lobatto Pseudospectral Method

Another very common set of Gauss points are the Chebyshev-Gauss-Lobatto (CGL) points.

CGL points are popular for a number of reasons. The first is that when approximating a func-

tion, a Chebyshev expansion is very close to the best polynomial approximation in the infinity
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norm [27, 179]. In addition to this, the CGL points, wights, and differentiation matrix are

computed using a closed-form expression, making them very attractive from a computational

perspective [27, 50, 69]. The CGL points are given as [178, 69],

τk = cos

[
π(M − k)

M

]
, (k = 0, 1, . . . ,M). (4.62)

These points lie in the interval [−1, 1] and are the extrema of the N -th order Chebyshev

polynomial,

TM(τ) = cos
[
M cos−1(τ)

]
. (4.63)

The state is approximated using a basis of Lagrange basis polynomials as,

x(τ) ≈X(τ) =
N∑
k=1

xkϕk(τ), (4.64)

where,

ϕk(τ) =
(−1)k+1

M2ck

(1− τ 2)ṪM(τ)

τ − τk
, (4.65)

ck =

 2, if k = 0,M,

1, if 1 ≤ k ≤M − 1.
(4.66)

For M even, the weights are given by

wCGL
s =


1

M2 − 1
, (s = 0,M),

4

M

M/2′′∑
j=0

1

1− 4j2
cos

(
2πjs

M

)
, (s = 1, 2, . . . ,M/2),

(4.67)

and for M odd, we have

wCGL
s =


1

M2
, (s = 0,M),

4

M

(M−1)/2′′∑
j=0

1

1− 4j2
cos

(
2πjs

M

)
, (s = 1, 2, . . . , (M − 1)/2),

(4.68)
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where the double prime superscript for the summation index means that the first and last ele-

ments of the sumations should be halved [69]. For N collocation points, take M ← N − 1.

Note that these weights are the Clenshaw-Curtis quadrature weights [179].

This integration scheme is exact for polynomials of degree N−1. While this is slightly less

accurate the Gaussian schemes, the weights and matrices can be calculated using Fast-Fourier-

Transform (FFT) algorithms. Additionally, the discrete integration scheme is convergent for

any continuous function [69] and its practical accuracy is as good as Gauss quadrature, since

the factor-of-2 accuracy exhibited by Gauss schemes is rarely realized in computational algo-

rithms [179]. Next, the differentation matrix is given by,

DCGL
kj =



ck
cj

(−1)j+k

τj − τk
, j ̸= k,

τk
2(1− τ 2k )

, 1 ≤ j = k ≤M − 1,

−2M2 + 1

6
, j = k = 0,

2M2 + 1

6
, j = k = M,

(4.69)

where we take M ≤ N − 1 for N collocation points. Thus, the single-interval CGL NLP

problem is given by,

X = XCGL ∈ RN×Nx , U = UCGL ∈ RN×Nu , t0 ∈ R, tf ∈ R

(BCGL)



Minimize J [X,U , t0, tf ] = E(x1,xN , t0, tf )

+
tf − t0

2

N∑
i=1

wCGL
i F (Xi,Ui, ti),

Subject to : DCGLX =
tf − t0

2
f(X,U , tCGL),

e(x1,xN , t0, tf ) ≤ 0,

h(X,U , tCGL) ≤ 0,

where we take,

tCGL = [t1, t2, . . . , tN ]
⊤, (4.70)
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to be the discrete time values associated with the CGL collocation points. A multi-interval form

can be adapted from Section 4.5. The covector mapping for the CGL transcription is given as,

λCGL
i =

ΛCGL
i

wCGL
i

, γCGL
i =

ΓCGL
i

wCGL
i

, (i = 1, . . . , N). (4.71)

A CGL scheme is implemented in the TOPS solver and can be used by setting the user-flag

p.opts.transcription = 'CGL'.

4.7 Covector Mapping Theorem

The covector mapping theorem is a powerful feature of PS methods. It was first proved by

Fahroo and Ross [49] for the LGL points, but several proofs for the LG, LGR, and CGL tran-

scriptions have been developed since then [59, 12, 69]. This section will briefly detail the

relationship between the KKT conditions and a PS discretization of the continuous costate

equation provided in [59, 60, 61]. This derivation of the mappings for a generalized LGR NLP

problem was presented by Darby et al. [33]. However, Françolin et al. [56] presents another

derivation that is potentially more accurate.

Consider a simplified single-interval form of the continuous Problem (B) given earlier as,

x ∈ RNx , u ∈ RNu ,

(BS)



Minimize J [x(·),u(·)] = E(x0,xf ) +

∫ 1

−1

F (x,u, τ)dτ,

Subject to : ẋ = f(x,u, τ),

e(x0,xf ) = 0,

h(x,u, τ) ≤ 0.

We assume that the time interval has already been scaled to [−1, 1]. We also adopt the

notation e = 0 to better represent the derivation process. The idea behind the covector mapping

theorem is to derive the first-order optimality conditions for the continuous problem, derive the

KKT conditions for the discrete problem, and then compare the resulting expressions. The
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augmented Hamiltonian and endpoint Lagrangian for Problem (BS) are [33],

H(x,λ,u,γ) = F (x,u, τ) + ⟨λ,f(x,u, τ)⟩ − ⟨γ,h(x,u, τ)⟩ , (4.72)

Φ(x0,xf ,ν) = E(x0,xf )− ⟨ν, e(x0,xf )⟩ . (4.73)

In Eqs. (4.72) and (4.73), λ, γ, and ν are the Lagrange multipliers associated with the

state, inequality, and equality constraints, respectively, and share the same dimensions. As-

suming a fixed time horizon and applying the first order optimality conditions, we obtain,

0 = ∇uH = ∇u (F + ⟨λ,f⟩ − ⟨γ,h⟩) , (4.74)

λ̇ = ∇xH = ∇x (F + ⟨λ,f⟩ − ⟨γ,h⟩) , (4.75)

λ0 = −∇x0Φ = −∇x0 (E − ⟨ν, e⟩) , (4.76)

λf = ∇xf
Φ = ∇xf

(E − ⟨ν, e⟩) . (4.77)

From the complementary slackness condition, the Lagrange multiplier γ takes the value,

γj(τ) = 0, when, hj(τ) < 0, 1 ≤ j ≤ Nh, (4.78)

γj(τ) < 0, when, hj(τ) = 0, 1 ≤ j ≤ Nh. (4.79)

Next, consider the discrete form of Problem (BS) obtained using an LGR transcription.

X ∈ RN×Nx , xf ∈ R1×Nx , U ∈ RN×Nu ,

(BLGR
S )



Minimize J [X,xf ,U , t0, tf ] = E(x0,xf ) +w⊤F (X,U , τ ) ,

Subject to : D

[
X
xf

]
= f(X,U , τ ),

e(x0,xf ) = 0,

h(X,U , τ ) ≤ 0.
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The Lagrangian of (BLGR
S ) is given by,

L = E(x0,xf ) + ⟨w, F (X,U , τ)⟩ − ⟨µ, e(x0,xf )⟩

−
〈
Λ,D

[
X,
xf

]
− f(X,U , τ )

〉
− ⟨Γ,h(X,U , τ )⟩ , (4.80)

The KKT conditions are given by,

∇XL = 0, ∇UL = 0. (4.81)

We will see that once we take these derivatives, the results may be re-structured to be

identical to the first-order necessary conditions of optimality. The intermediate steps will be

skipped for brevity, but a detailed step-by-step description of the procedure can be found in

Fahroo and Ross [49]. The discrete results are,

0 = ∇U (⟨w, F ⟩+ ⟨Λ,f⟩ − ⟨Γ,h⟩) , (4.82)

D⊤
(:,1)Λ = ∇x1 (⟨w, F ⟩+ ⟨Λ,f⟩ − ⟨Γ,h⟩) +∇x1 (E − ⟨µ, e⟩) , (4.83)

D⊤
(:,2:N)Λ = ∇X2:N

(⟨w, F ⟩+ ⟨Λ,f⟩ − ⟨Γ,h⟩) , (4.84)

D⊤
(:,N+1)Λ = ∇xf

(E − ⟨µ, e⟩) . (4.85)

If we multiply Eqs. (4.82) to (4.84) by diag(w)−1 and compare them to Eq. (4.74) and Eq. (4.75),

we can see that,

λi =
Λi

wi

, (i = 1, . . . , N), (4.86)

γi =
Γi

wi

, (i = 1, . . . , N). (4.87)

For the multiple-interval formulation, the RHS of Eq. (4.87) gains a coefficient of σ, as

shown earlier. In addition, we can take the change of variables, π = D⊤
(:,N+1)Λ. We also define
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the matrix D† as follows.

D† = −D11 −
1

w1

D†
ij = −

wj

wi

Dji. (4.88)

Substituting Eqs. (4.86) to (4.88) into Eqs. (4.82) to (4.85) and simplifying, we obtain the

transformed adjoint system as,

0 = ∇UH, (4.89)

D†
(:,1)λ = −∇X1H +

1

w1

∇X1 (E − ⟨µ, e⟩) , (4.90)

D†
(:,2:N)Λ = −∇X2:N

H, (4.91)

π = ∇xf
(E − ⟨µ, e⟩) . (4.92)

From Eq. (4.77) and Eq. (4.92), we see that,

λN+1 = π = D⊤
(:,N+1)Λ. (4.93)

This completes the covector mapping theorem for a single interval. The reader should

be aware that this derivation was intentionally simplistic and skipped several important steps.

This was done in the spirit of illustrating the broad strokes of the covector mapping theorem. If

the reader desires to inflict further agony upon themselves, they may find numerous (and more

rigorous) derivations throughout the literature [49, 12, 52, 51, 58, 69, 59, 61].
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Chapter 5

How to Use Pseudospectral Methods

Now that the theory behind PS methods has be thoroughly established, we move on to practical

application of the methods presented in Chapter 4. If the reader has skipped the previous

chapter, the author reminds them that they proceed at their own peril. Since a basic PS method

is deceptively easy to implement, a lack of understanding of the why that motivates some of

the applications presented here can cause things to go wrong as the reader tries to improve

the efficiency of their algorithm. The primary difficulty will most likely occur when trying to

provide analytical derivatives or create/implement a mesh-refinement algorithm. The reader is

encouraged to at least read Section 4.1 and Section 4.5.1 before proceeding.

5.1 A Pseudocode Pseudospectral Algorithm

In this section, the author presents a brief MATLAB-friendly pseudocode PS algorithm that

summarizes the key parts of the algorithm implemented in TOPS. However, the code for TOPS

will be made publicly available under appropriate license later under ACE lab’s GitHub ac-

count https://github.com/TheAceLab, so the reader is encouraged to browse it for

themselves once they have absorbed the basics here.

Most NLP solvers are called in the following way.

1 % ===== Example NLP Solver Call ===== %

2 % NLP Solvers need a few things:

3 % 1. Objective/constraint functions
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4 % 2. Initial guess (z0)

5 % 3. Box constraints/variable bounds

6

7 [solution, exit_data] = NLP_Solver(objective_fun, constraint_fun, z0, ...

lower_bounds, upper_bounds, p);

Here, the structure p contains relevant problem data that we calculate out-of-the-loop (OOTL).

By OOTL, the author means that the user should generate this data prior to calling the NLP

solver and store it appropriately in p. In addition, most NLP solvers treat the optimization

variables (here denoted “z0”) as a column vector. This means that all states and controls must

be “stacked” on top of each other. For the LGR transcription, the state and control matrices

take the form,

X =



X(1)

...

X(K)

xf


, U =


U (1)

...

U (K)

 . (5.1)

We have slightly redefined the matrix X originally defined in Section 4.5 for clarity. The

author prefers to form the NLP optimization vector as,

z =



X(:,1)

...

X(:,Nx)

U(:,1)

...

U(:,Nu)

t0

tf



=



X(:)

U(:)

t0

tf


. (5.2)

In the rightmost expression, we have used the notation defined in Section 1.1. In other

words, place each column of the state and control matrices underneath the previous column,

and then stack the state on top of the control. This is referred to as “unrolling.” This allows
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for easy, linear indexing and, in the opinion of the author, makes derivative calculations easier.

To recover the rolled form of the states/controls, the user can write, state_indices ...

= reshape(1:(N+1)*Nx, (N+1), Nx). This will create a state indexing matrix with the

same dimensions as the state matrix, X . Thus, calling X = z(state_indices) returns the

state in the appropriate dimensions. A control indexing matrix can be generated similarly for

N points. An LGR PS objective function typically looks like this.

1 % ===== My objective function ===== %

2 % Inputs:

3 % z: Current NLP optimization vector.

4 % p: Problem data.

5 % Outputs:

6 % J: Cost evaluated at z.

7 % ================================= %

8 J = function objective_fun(z,p)

9 % NLP solvers typically use a column optimization vector, but we

10 % need our states and controls as a matrix! We can get the

11 % indices of these matrices OOTL.

12 X = z(p.state_indices); % A ((N+1) x Nx) matrix.

13 Xc = X(1:end-1,:); % A (N x Nx) matrix (excludes final state).

14 U = z(p.control_indices); % An (N x Nu) matrix.

15 x1 = X(1,:); % Initial state.

16 xf = X(end,:); % Final state (not collocated).

17

18 % For fixed time problems...

19 t0 = p.t0;

20 tf = p.tf;

21

22 % For variable time problems...

23 if p.variable_final_time

24 t0 = z(p.t0_index);

25 tf = z(p.tf_index);

26 end
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27

28 % Get a time vector for the running cost.

29 t = tau_to_t_affine(p.tau,t0,tf);

30

31 % These are functions defined by the user that take the current

32 % state and evaluate the endpoint and running cost functions.

33 E = user_endpoint_cost(x1,xf,t0,tf,p);

34 F = user_running_cost(Xc,U,t,p);

35

36 % Now we do PS quadrature. It's very easy!

37 w = p.quadrature_weights; % This is a column vector calculated OOTL

38 J = E + diag(w)*F; % And we're done!

39 end % objective function

Here, the objective function calls two user-defined functions that will calculate the end-

point cost and running cost Lagrangian. There are safer ways to do this using user-defined

symbolic expressions rather than functions, but that will not be discussed here, as it is a com-

putational issue not specific to the PS method. Now that we have completed our objective

function, we can take a look at the constraints function. This function usually calculates both

the equality and inequality constraints.

1 % ===== My Example Constraint Function ===== %

2 % Inputs:

3 % z: Current NLP optimization vector.

4 % p: Problem data.

5 % Outputs:

6 % equality: Equality constraints.

7 % inequality: Inequality constraints.

8 % ========================================== %

9 [equality,inequality] = function constraint_fun(z,p)

10 % First, we need our states and controls in matrix form.

11 X = z(p.state_indices); % States plus non-collocated state value.

12 Xc = X(1:end-1,:); % Only the collocated states.
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13 U = z(p.control_indices); % Controls (same number of rows as Xc).

14 x1 = X(1,:); % Initial state.

15 xf = X(end,:); % Final state (not collocated).

16

17 % For fixed time problems...

18 t0 = p.t0;

19 tf = p.tf;

20

21 % For variable time problems...

22 if p.variable_time

23 t0 = z(p.t0_index); % Initial/final times are part of z.

24 tf = z(p.tf_index);

25 end

26

27 % Get a time vector for the dynamics.

28 t = tau_to_t_affine(p.tau,t0,tf);

29

30 % Now we calculate our dynamics constraints.

31 D = p.differentiation_matrix; % We calculate this OOTL.

32 defect = D*X - 0.5*(tf - t0)*user_dynamics_fun(Xc,U,t,p);

33

34 % Get event constraints, e.

35 e = user_event_fun(x1, xf, t0, tf, p);

36

37 % Get inequality constraints, h.

38 h = user_inequality_fun(Xc, U, t, p);

39

40 % Stack everything!

41 equality = [defect; e];

42 inequality = [h];

43 end

Upper and lower bounds are easy to construct. Note that most NLP solvers apply upper

and lower bounds to z, not X or U , such that zL ≤ z ≤ zU , where zL and zU are the

lower and upper bounds of the variables in z, respectively. The primary values that should
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be stored in p are initial and final times, Gaussian point distributions of τ ∈ [−1, 1] for the

affine scaling given by Eq. (4.2), and the differentiation/integration matrices, as well as other

problem-specific information. Anything that can be calculated outside the functions passed to

the NLP solver should be calculated outside those functions. Store anything compatible with

sparse formats in sparse matrices, such as the global LGR differentiation matrix discussed in

Section 4.5. Sparse matrix operations can greatly increase the efficiency of the algorithm for

problems with thousands or tens of thousands of constraints. In fact, the combined size of the

constraint vectors for the LGR transcription is calculated as,

Nc = Nt(Nx +Nh) +Ne. (5.3)

There are many ways to increase the efficiency of a PS algorithm. However, this can

become a complex task, so the pseudocode algorithm here is extremely simplified.

5.2 Mesh Refinement

Mesh refinement is an important step in solving OCPs. This is because as OCPs become

more difficult, the need for an algorithmic method of determining how to size or alter the

number of points within a mesh becomes paramount. Simply increasing the number of nodes

or dividing a mesh arbitrarily becomes computationally intractable as the dimension of the

problem increases. In fact, this approach can lead to a degradation in the quality of the solution,

even though a more dense mesh is being used [34]. As such, it is evident that an algorithmic

approach is needed. In order to implement such an algorithm, two elements are required:

1. An error estimate for the current solution.

2. A logic for altering the current mesh based on the error estimate and other factors.

This section will discuss these two topics and present the primary mesh refinement al-

gorithm used by TOPS. A more recent algorithm that could potentially outperform it is also

introduced, although it has not been fully implement in TOPS. In addition, several techniques
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that have been developed to improve mesh refinement for non-smooth problems are introduced

and their merits and drawbacks are discussed.

5.2.1 hp and ph Mesh Refinement

Mesh refinement methods are typically classified as h methods or p methods [18, 16, 83]. The

h methods have a long history of use with Runge-Kutta and Euler methods. They use a fixed-

degree polynomial to approximate the state in each mesh segment. Convergence to a high-

accuracy solution is achieved by splitting a segment in which the error is high into multiple

mesh segments [18]. The advent of p methods coincided with the development of PS methods

[131]. Original implementations approximated a single segment using a globoal polynomial

with numerous support/collocation points. Error reduction is achieved in a p method by in-

creasing the degree of the interpolating polynomial. For a PS method, this is synonymous with

increasing the number of collocation points. For problems with smooth solutions, this method

converges at an exponential rate [54].

However, both h and p methods have their drawbacks. In the case of an h method, an

extremely fine mesh may be required to achieve the desired accuracy. With a p method, an

accurate solution may require the use of an unreasonably large polynomial approximation.

The solution presented in recent years is to combine the two methods into an adaptive mesh-

refinement algorithm. These hp and ph methods allow the degree of the approximating polyno-

mial and the number of mesh segments to vary [10]. In an hp method, mesh segment division

is given priority, followed by increasing polynomial degree if necessary. In a ph method, the

order is reversed, and an increase in polynomial degree is prioritized.

A ph-Adaptive Mesh Refinement Algorithm

The method presented here was introduced by Patterson et al. [131]. The error estimate used in

this method is based on the Euler Runge-Kutta scheme (an RK12 scheme) that approximates
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the absolute error in the solution of ẏ(t) = f(y(t)) as,

E = |ŷt+1 − yt+1|, (5.4)

yt+1 = yt + hf(yt), (5.5)

ŷt+1 = yt + hf(ȳ), (5.6)

ȳ = yt +
h

2
f(yt). (5.7)

The approach taken in this algorithm is very similar. For the sake of clarity, a single-

segment scheme will be considered. However, this exact process can be performed on each

mesh segment with no modification. Consider a state and control solution obtained for N LGR

collocation points, denoted τ = {τ1, τ2, . . . , τN}. Note that Patterson et al. [131] and Garg

et al. [60] show that errors in the state are tightly coupled with errors in the costate, so applying

this algorithm to the costate does not improve the error estimate. Thus, we want to estimate the

error in the state only at M = N + 1 LGR points given by τ̂ = {τ̂1, τ̂2, . . . , τ̂M}. Let the state

and control be interpolated at the M LGR points plus a non-collocated M + 1 point using,

X(τ̂i) =
N+1∑
j=1

xjℓj(τ̂i), U(τ̂i) =
N∑
j=1

ujℓj(τ̂i), (i = 1, . . . ,M). (5.8)

It is worth mentioning that many Lagrange interpolation algorithms are freely available

to download. Additionally, the control is arbitrarily interpolated using Lagrange polynomials

in Eq. (5.8). In the experience of the author, this method works best. Note in Eq. (5.8) that

although we interpolate at M points, the support points are still the N LGR points. Next, we

use the implicit integral form of the LGR collocation method to construct a better estimate of

the state as,

X̂(τ̂i+1) = x1 +
tf − t0

2
Af [X(τ̂i),U(τ̂i), τ̂i] , (i = 1, . . . ,M), (5.9)

where A is an LGR integration matrix of size M×M . Note here the difference between X̂(τ̂i),

which is obtained by collocation, and X(τ̂i), which is simply interpolated. We may construct
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the errors in the i-th component of the state as,

E(τ̂i) =
∣∣∣X̂(τ̂i)−X(τ̂i)

∣∣∣, (i = 1, . . . ,M + 1), (5.10)

erel(τ̂i) =
E(τ̂i)

1 + max
j∈1,...,M+1

|X(τ̂j)|
, (i = 1, . . . ,M + 1), (5.11)

where E(τ̂i) ∈ R1×Nx is the absolute error and erel(τ̂i) ∈ R1×Nx is the relative error. The

division in Eq. (5.11) is performed element-wise, as we are dividing an Nk ×Nx matrix by an

1×Nx row vector resulting from the max(·) operation. The maximum relative error is defined

as,

emax = max
j∈1,...,Nx
i∈1,...,M+1

ej(τ̂i), (5.12)

where ej(τ̂i) denotes the i-th row and j-th column of erel. Based on a bound to the error,

Patterson et al. [131] show that the number of points that should be added to a segment for a

target mesh error ε should be,

P =
⌈
logN

(emax

ε

)⌉
, (5.13)

where ε is the tolerance on the maximum relative error chosen by the user and ⌈·⌉ means to

round the argument towards +∞ to the nearest integer. Thus, for a given mesh interval, the

new number of points N̄ is given by,

N̄ = N + P. (5.14)

Note that a logarithmic function with an arbitrary base can be expressed as,

logN(x) =
ln(x)

ln(N)
. (5.15)

Next, let the user define the parameters Nmin and Nmax which are the minimum and max-

imum polynomial degrees for the segment, respectively. If N̄ > Nmax, then the segment is
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divided into B subintervals, given by,

B = max

(⌈
N̄

Nmin

⌉
, 2

)
. (5.16)

Each new segment is set to have Nmin collocation points. This ensures that each new

segment will contain Nmin collocation points and the sum of these collocation points is given

by BNmin. The full algorithm is given below.

1. Generate an initial mesh with K segments with Nk points in each segment.

2. Generate the PS elements for the current mesh.

3. Solve the problem on the current mesh.

4. Set k = 1. Begin iterating over the mesh segments.

4.1. Interpolate the state and control at M (k) = N (k) + 1 points.

4.2. Calculate e
(k)
max for the current mesh segment using Eq. (5.12).

4.3. If e(k)max > ε, continue. Otherwise, go to Step 4.6.

4.4. For the current mesh segment, calculate N̄ and B.

4.5. If N̄ > Nmax, divide the current segment into B even segments and set the number

of collocation points in each segment to Nmin. Otherwise, set the number of points

in the segment to N̄ .

4.6. Let k ← k + 1.

5. If e
(k)
max < ε in every mesh segment, quit and return the current solution to the user.

Otherwise, continue.

6. Return to Step 2.

This concludes the ph-adaptive mesh refinement algorithm. To use this algorithm in TOPS, set

p.mesh.algorithm = "ph".
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5.2.2 Discontinuity Detection

Discontinuity detection is a topic that has been studied extensively in the literature of PS op-

timal control. Discontinuity detection is also an important step for direct methods that use a

polynomial basis to approximate the states. Thus, they are important for PS methods. To il-

lustrate the importance of discontinuity detection, consider the following story that is based on

true events.

An over-enthusiastic young graduate student has just finished coding their own PS opti-

mization software and decides to test it out on the apparently simple problem presented in Sec-

tion 6.1. This problem is ideal, as it has a closed-form solution and exhibits a single bang-on

arc control profile. The graduate student inputs the problem parameters into their new software

and designs a mesh with two segments and 10 collocation points in each. They click “run,”

and to their excitement, the solver converges to a solution. The obtained solution is shown

in Fig. 5.1a. The student notices the support points they chose lie on or nearly on the exact

solution. This is encouraging and a good sign of convergence. However, they also notice that

the interpolated solution is inaccurate. Enlightened by a stroke of genius, the student decides

to double the number of collocation points in each segment. They run the solver again, and

obtain another solution that is shown in Fig. 5.1b. Disappointingly, the results are not much

better. Finally, in a fit of rage, the student doubles the number of points again. To their chagrin,

the result they obtained in Fig. 5.1c is worse than the previous one! The student gives up and

goes home for the day. After a good night of rest, the student realizes that if they place a new

knot at the exact location of the discontinuity, then they will not have to interpolate over the

discontinuity! From the exact solution, they know that the thrust turns on at,

t = 1.41516 [TU]. (5.17)

They manually place a mesh knot at exactly that time, and run the algorithm. The results

are shown in Fig. 5.2. Needless to say, the graduate student is thrilled. However, they will not

always have a closed-form solution to every problem to examine. If they did, there would be

no need for their new software. Thus, they realize that their software requires an algorithmic
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(a) Control Profile for N = 10 (b) Control Profile for N = 20

(c) Control Profile for N = 40

Figure 5.1: Moon lander control profiles exhibiting oscillation.

Figure 5.2: Solution for a manually-placed Knot.
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way to detect the location of these discontinuities. Short of this, it needs a way to approximate

their location and place more knots in the vicinity of discontinuities. The simplest solution is to

use the mesh refinement algorithm presented in Section 5.2.1. This algorithm works quite well

at locating and “bracketing” a discontinuity. The solution for the problem is shown in Fig. 5.3.

Note that the solution is nearly identical to the true solution. However, the mesh refinement

Figure 5.3: Solution using the ph-adaptive mesh-refinement.

algorithm uses many more points close to the discontinuity than the manual knotting method.

Regardless, the ph adaptive method requires no user input other than defining the desired mesh

error tolerance and the initial mesh parameters.

In the experience of the author, the ph-adaptive mesh refinement algorithm in Section 5.2.1

is the most successful mesh refinement algorithm that the author has implemented themselves.

This conclusion was drawn after implementing several different mesh refinement algorithms.

The reason for this is primarily because it is extremely difficult to create a “catch-all” mesh

refinement algorithm that is efficient and can exactly place knots. However, the method pre-

sented in [131] has proven effective for a wide variety of problems that the author has solved,

discontinuous or otherwise.
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The next mesh-refinement algorithm that is included in TOPS was introduced by Liu et al.

[101]. Consider two approximations of the state, given by,

x(τ) ≈
N∑
i=0

âipi(τ), x(τ) ≈
N+1∑
i=1

xiℓi(τ), (5.18)

where pi(τ) is a basis of interpolating Legendre polynomials, âi are the Legendre polynomial

coefficients, ℓi(τ) are the Lagrange basis polynomials, and xi are the values of the states at

the support points. The premise of this mesh-refinement algorithm is that the decay rate of

the Legendre polynomial coefficients can be used to indicate whether a function is smooth

or discontinuous [186]. Mavriplis [113] and Liu et al. [101] show that the state degree of

discontinuity in a mesh segment is estimated to be the decay rate of the Legendre polynomial

coefficients in the mesh interval. The decay rate σ > 0 is obtained using an exponential least-

squares fit of the form [113],

âi = c10−σi, (i = 0, 1, . . . , N). (5.19)

Note that Eq. (5.19) should be evaluated at (i = 0, 1, . . . , N). The Legendre polynomial

coefficients âi for state x ∈ R(N+1)×1 can be approximated as,



â0

â1
...

âN


=



p0 (τ1) p1 (τ1) · · · pN (τ1)

p0 (τ2) p1 (τ2) · · · pN (τ2)

...
... . . . ...

p0 (τN+1) p2 (τN+1) · · · pN (τN+1)



−1 

x1

x2

...

xN+1


, (5.20)

Using Eqs. (5.19) and (5.20), we may use any least-squares fitting method to solve a root-

finding sub-problem to determine σ. Assume that for a mesh segment, the error approximate

given by Eq. (5.12), e(k)max, is greater than the user-defined tolerance. If σ for the segment is

greater than a user-defined threshold σ, then, the mesh interval is considered smooth. If σ ≤ σ,

the segment is considered non-smooth and the approximation is improved by dividing the mesh
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segment. The new number of points in a smooth mesh segment is given by,

N̄ = N +

⌈
log10

(
emax

ε

)
σ

⌉
, (5.21)

where N is the previous number of points and ε is the mesh error tolerance. The number of

segments that a non-smooth mesh segment should be divided into is,

H =

⌈
N̄

N

⌉
. (5.22)

The mesh-refinement algorithm based on the decay rate is given as follows.

1. Generate and initial mesh with K segments and Nk points in each segment.

2. Generate the PS elements for the current mesh.

3. Solve the problem on the current mesh.

4. Set k = 1 and begin iterating over the mesh segments.

4.1. Calculate e
(k)
max for the segment according to Eq. (5.12).

4.2. If e(k)max > ε, continue. Otherwise, go to Step 4.8.

4.3. For the current mesh segment, calculate σ, N̄k, and H(k). Calculate B(k) according

to Eq. (5.12).

4.4. If σ(k) > σ̄ and N̄k < Nmax, set the number of points in the segment to N̄k.

4.5. If σ(k) > σ̄ and N̄k > Nmax, divide the segment into B(k) evenly spaced segments.

4.6. If σ(k) < σ̄, divide the mesh into H(k) evenly spaced segments.

4.7. Set Nk = Nmin in all newly created segments.

4.8. Let k ← k + 1.

5. If e(k)max < ε in every segment, quit and return the solution to the user.

6. Otherwise, go to Step 2.
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This algorithm is referred to as the hp-legendre adaptive mesh refinement algorithm. To use

this algorithm in TOPS, set p.mesh.algorithm = "hp-legendre".

It is worth noting that Gong et al. [67] refers to the Legendre polynomial coefficients

as the spectral coefficients. These coefficients can be obtained for the states, controls, and

costates using Eq. (5.20) by replacing the state coefficients with the desired values. Gong et al.

[67] use the norm of the spectral coefficients as an error measure. If the maximum norm of

these coefficients is less than some value, the algorithm stops. This is referred to as the Jackson

stopping criterion. However, the authors of [67] do not recommend using this stopping criterion

for discontinuous problems. As such, it is not incorporated in TOPS.

Knotting Methods

The third and final mesh-refinement algorithm that is implemented in TOPS is based on an idea

presented by Ross and Fahroo [148] and Gong et al. [67]. In these papers, the PS differentiation

matrix is used to determine the location of discontinuities in the control. Assume the control is

approximated as,

U(τ) =
N∑
i=1

uiℓi(τ). (5.23)

This is an arbitrary choice of interpolation. Collocating at the LGR points, we can approx-

imate the control derivative using the PS differentiation matrix DN = D(:,1:N) as,

U̇ = DNU . (5.24)

However, if we consider the normalization,

U̇ =
|DNU |

max
j∈1,...,Nu
i∈1,...,N

|DNU |ij
, (5.25)

we ensure that U̇ ∈ [0, 1]. Here, | · | denotes the absolute value of the matrix. Consider the

moon-lander problem presented in Section 6.1. TOPS was used to solve the problem on a mesh

with 10 segments and three points in each segment. Fig. 5.4 shows a normalized rough control
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solution as well as the value of Eq. (5.25) for the control solution. Fig. 5.4 shows that the

Figure 5.4: Control derivative approximation.

control switch instant is indicated or “captured” by Eq. (5.25). As such, this method can be

used in a mesh-refinement algorithm to determine whether a segment should be divided. The

mesh-refinement algorithm is given below.

1. Generate an initial mesh and select a user-defined derivative threshold, σ ∈ [0, 1].

2. Generate the PS elements for the current mesh.

3. Solve the problem on the current mesh.

4. Begin iterating over mesh segments.

5. Get the matrix value U̇ using the global differentiation matrix.

6. Set k = 1 and begin iterating over mesh segments.

6.1. Calculate e
(k)
max according to Eq. (5.12).

6.2. If e(k)max < ε, skip this iteration. Otherwise, continue.

6.3. Find all the points in k for which U̇
(k)

(τ
(k)
i ) ≥ σ.

i. If this condition is true for adjacent points, place the new knot at the midpoint

of those points.
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ii. If this condition is true at the first point in the segment (i.e., an existing knot),

place the new knot halfway between the existing knot and the last point of the

previous segment.

iii. If this condition is true at τ (1)1 = −1 = t0 or τ (K)
N+1 = +1 = tf , then divide the

mesh segment in the middle.

6.4. If U̇
(k)

(τ
(k)
i ) < σ for all points in the current segment, increase points/divide ac-

cording to the ph-adaptive mesh refinement found in Section 5.2.1.

6.5. Set the number of points in all newly created mesh segments equal to Nmin.

6.6. Let k ← k + 1.

7. If e(k)max < ε for all k, quit and return to the user.

8. Return to Step 2.

The author has dubbed this algorithm an hph-adaptive mesh-refinement algorithm. To use

this algorithm in TOPS, set p.mesh.algorithm = "hph". After thorough testing, it seems

to be less effective than the error-based algorithm given in Section 5.2.1. However, for the

sake of variety, it was not removed from TOPS. Should they feel so inclined, the reader is

encouraged to improve upon this algorithm. It is worth noting that Gong et al. [67] suggests

applying Eq. (5.25) to states in order to detect discontinuities. However, when applying the

operation DX , we simply obtain f . If we instead apply the operation given by,

ḟ =
|DNf |

max
j∈1,...,Nx
i∈1,...,N

|DNf |ij
, (5.26)

we obtain new information about any discontinuities in the state, as we are approximating the

acceleration or jerk profile of the dynamics. In addition, this method can detect discontinuities

that are not due to controls, much like the method given in Section 5.2.1. Consider the result

of this operation when applied to the Moon-Lander problem in Fig. 5.5. It can be seen that we

recover the control derivative profile. However, for more complex problems, this method can

fail to produce a mesh division due to a poorly behaved outlier derivative. Numerically, this

75



Figure 5.5: Second State Derivative

means that there is some large value in |Df | that reduces the magnitude of other discontinuities

that may contribute to solution error.

The final topic that is presented is an explicit knotting method. By this, the author means

that the locations of the knots are considered to be optimization variables. Consider the LGR

PS collocation and quadrature equations for the multi-interval method given by,

D

[
X
xf

]
=

tf − t0
2

σf(X,U , t), (5.27)

J [X,xf ,U , t0, tf ] = E(x
(1)
1 ,xf , t0, tf ) +

tf − t0
2

w⊤σF (X,U , t) , (5.28)

where,

σ =



σ11N1×1

σ21N2×1

...

σK1NK×1


, (5.29)

and

σk =
Tk − Tk−1

2
, (k = 2, . . . , K). (5.30)

Here, K is the total number of segments. If we let the interior mesh points Tk, where

(k = 2, 3, . . . , K − 1) be optimization variables, the solver should (in theory) automatically
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place the knots at their optimal locations. The new optimization vector is,

z =



X(:)

U(:)

t0

tf

T


, (5.31)

where we define the column vector T to be,

T = [T1, T2, . . . , TK−1]
⊤. (5.32)

Two additional constraints are necessary. They are given by,

K∑
k=1

σk = 1, (5.33)

σk > 0, (5.34)

for (k = 1, . . . , K). The equality constraint in Eq. (5.33) ensures that the derivative of the scal-

ing factor remains equal to 1 so that the knots remain in the interval [−1, 1]. This, combined

with the constraint in Eq. (5.34), ensures that the knots remain in ascending order. In theory

and for some simple problems, this method works shockingly well. However, as problems

become more difficult with multiple rapidly changing states and controls, it is the author’s ex-

perience that this particular form of knotting method fails completely. Knots tend to “squeeze”

themselves together at arbitrary points, creating dense mesh segments that degrade the solution

quality. In practice, post-optimization knotting is safer, more stable, and less sensitive to the

initial mesh.

Anti-Aliasing and Testing Optimality

An interesting feature in direct optimal control methods is that the converged solution is often

an alias of the true continuous-time solution sampled at the support points of the direct solution
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[150]. Consider again the Moon-Lander problem given in Section 6.1. The problem is solved

using TOPS for two even mesh intervals with 15 points in each. Fig. 5.6 shows a control so-

lution that exhibits aliasing. In this solution, the control solution support points lie exactly on

Figure 5.6: Control solution exhibiting aliasing.

the true solution. However, if one interpolates the direct solution (see the dashed orange line in

Fig. 5.6), the true optimal control is not recovered. Ross et al. [150] develop a mesh-refinement

algorithm using this principle. The algorithm first breaks the solution into segments and ob-

tains a low-grade solution on a rough grid. Following this, the solution is used to construct

a continuous-time control polynomial using linear or spline interpolants. This is then used to

propagate the initial dynamics to the next phase, upon which the process is repeated.

Although this mesh-refinement method is intended primarily as a computationally cheap

on-board optimization algorithm, it does introduce a very useful self-test for feasibility and

optimality in lieu of an indirect solution. This test can be performed with the following steps.

1. Solve the problem to a requested mesh accuracy.

2. Using the discrete control solution, reconstruct the continuous-time control using arbi-

trary interpolation.

3. Numerically propagate the equations of motion from the initial conditions using a time-

marching integrator (such as ode45 in MATLAB) to the final time.
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4. Determine the absolute difference between the design boundary conditions and the final

states obtained through propagation, ϵ =
∣∣xf − xf

∣∣.
5. If the residuals calculated are within an acceptable engineering threshold, the solution is

verifiably feasible.

Ross et al. [151] discuss the necessity of this feasibility check for flight applications. In

general, a residual on the order of 10−3 denotes a flight-worthy solution using this optimality

check.

To conclude this section, a short survey of useful papers covering mesh-refinement algo-

rithms for PS methods is presented, should the reader decide to implement their own algo-

rithm. Ross and Fahroo [148] presented an early attempt at algorithmic mesh refinement for

solving discontinuous problems using PS methods that implements the differentiation matrix.

This work was the inspiration for the hph-adaptive mesh-refinement algorithm. More recently,

Koeppen et al. [92] and Ross and Proulx [144] introduced the use of Birkhoff basis functions

as an evolution on the PS method that is insensitive to the size of the problem. Darby et al. [34]

and Patterson et al. [131] introduced two hp- and ph-adaptive mesh-refinement algorithms that

are specifically designed for PS methods and very capable of capturing discontinuities. The

ph-adaptive mesh-refinement algorithm used by TOPS is directly adapted from Patterson et al.

[131]. Liu et al. [100] introduces an hp algorithm that uses the second derivative of the state to

approximate the location of discontinuities. Liu et al. [101] uses the decay rates of Legendre

polynomial coefficients in order to approximate the locations of discontinuities. This algorithm

was the inspiration for the hp-Legendre adaptive mesh-refinement algorithm used in TOPS.

Agamawi et al. [4] and Pager and Rao [123] use the covector mapping theorem and exploit the

separability of the Hamiltonian to obtain a general form of the PMP switching function using

jump functions or hyper-dual differentiation [3]. This general switching function is then used

to approximate the locations of the control switching locations. In addition, it can be used to

determine the presence and location of singular arcs.
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5.3 Calculating Derivatives

One of the critical and most effective ways to increase the convergence performance of any

NLP solver is to provide analytical derivatives of the objective and constraints with respect to

the decision variables [43, 44]. All state-of-the-art gradient-based NLP solvers require first

and/or second derivatives of the NLP functions to be provided. There are generally two types

of NLP solvers: 1) Quasi-Newton NLP solvers, which use only first derivatives of the objective

and constraint functions [129]. These solvers typically approximate the second derivatives

using a quasi-Newton approximation algorithm. Examples of popular quasi-Newton solvers

include SNOPT [65] and NPSOL [64], both of which are available in several programming

languages. 2) Newton NLP solvers, which require first and second derivatives. The objective

gradient and constraint Jacobian are calculated in addition to the Hessian (second derivative)

of the Lagrangian.

Consider the general form of an NLP problem as

(NLP)


Minimize J (z) ,

Subject to : c(z) ≤ 0,

ceq(z) = 0.

In most NLP solvers, the Lagrangian is defined as,

L = σJ(z) + Γ⊤c(z) +Λ⊤ceq(z), (5.35)

where z is the column vector of decision variables, J(z) is the cost, c(z) is the column vector

of inequality constraints, and ceq(z) is the column vector of equality constraints. Additionally,

Γ and Λ are the KKT multipliers associated with c and ceq, respectively. The multiplier σ is

an NLP solver input used to extract the objective and constraint terms individually. Typically,

analytical second-derivatives are supplied to Newton solvers, which results in great increases

in computational speed and accuracy over the approximations used by quasi-Newton solvers.

Two popular second-derivative solvers include IPOPT [115, 19] and KNITRO [24]. Since every
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NLP solver requires the derivatives of the problem functions, it is evident that providing those

derivatives in an efficient and accurate manner is extremely important to convergence. This

importance is compounded by the fact that the majority of time required for an NLP solver to

obtain a solution is spent computing derivatives [3]. Thus, the efficiency aspect of computing

derivatives is incredibly important to the computational feasibility of large OCPs.

The PS optimization software TOPS is capable of using first and second derivatives. Since

it is primarily for academic and educational use, the solver aims to be as accessible and “ready-

to-go” upon download in its final version. Thus, the NLP solver that is provided with TOPS is

MATLAB’s fmincon NLP solver. This solver will automatically switch between a sequential-

quadratic-programming (SQP) algorithm if using finite differences or first derivatives and an

interior-point algorithm if using second derivatives. However, TOPS is capable of using both

SNOPT and IPOPT if installations are found on the MATLAB path. Once installed, switch-

ing between these solvers is as simple as changing the flag, p.opts.solver = 'fmincon'

to p.opts.solver = 'ipopt' or p.opts.solver = 'snopt'. Currently, all analyti-

cal first and second derivatives are automatically provided to the solver by the open-source

MATLAB-based automatic differentiation (AD) software ADiGator [190]. Currently, IPOPT

is recommended for two reasons.

1. IPOPT is open source and free to download, so any user with a MATLAB license may

download and use it with TOPS. The author recommends using Dr. Enrico Bertolazzi’s re-

write of the IPOPT MATLAB interface. It is up-to-date and compatible with recent releases of

MATLAB. Instructions to download and install it are available at [13].

2. IPOPT will generally out-perform SNOPT in vectorized second-derivative mode. Note

that if only first derivatives are currently supplied, fmincon’s SQP algorithm will marginally

outperform IPOPT in first derivative mode and SNOPT will drastically outperform IPOPT in

first derivative mode. The choice is up to the user, since first and second derivatives are auto-

matically generated by TOPS by setting p.opts.derivative_level to 1 for first derivatives

and 2 for second derivatives. Setting it to 0 will use finite differences. Further work to increase

the efficiency of the second derivative generation is currently ongoing.
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The remainder of this section will discuss several different methods of calculating the

derivatives of the NLP functions. The accuracy of each method will be compared and the ad-

vantages and disadvantages of each will be highlighted. Finally, the analytical first-derivatives

of the NLP functions and their sparsity patterns are presented.

5.3.1 Finite Differences

The easiest way of computing derivatives is the finite-difference method. This method is em-

ployed by most NLP solvers in the absence of user-supplied derivative information. Consider

a real-valued function, f(x) : R → R. Consider the n-th order Taylor expansion of f(x + h)

about x, an arbitrary point in the domain of f , where h is assumed to be small.

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + · · ·+ hn

n!
f (n)(x) +O(hn+1), (5.36)

where f (n)(x) denotes the n-th derivative of f(x). We can rearrange Eq. (5.36) as follows.

f ′(x) =
f(x+ h)− f(x)

h
+O(h2). (5.37)

Truncating any term greater and/or equal to the second-order terms of the Taylor series by

assuming a small h, we obtain,

f ′(x) ≈ f(x+ h)− f(x)

h
. (5.38)

This is the well-known forward finite difference derivative approximation. We can obtain

an expression for the central finite difference formula using a similar approach as

f ′(x) ≈ f(x+ h)− f(x− h)

2h
. (5.39)
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Expressions for second derivatives are obtained as,

f ′′(x) ≈ f(x+ 2h)− 2f(x+ h) + f(x)

h2
, (Forward), (5.40)

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
, (Central). (5.41)

Note that the finite difference expressions are only an approximation that theoretically be-

comes exact as h → 0, since we ignore higher-order terms in the expansion (see Eq. (5.36)).

However, this is not the case in practice. Not only are finite difference approximations subject

to truncation error, they are also subject to the machine roundoff error caused by the addition

and/or subtraction operations performed on f in the numerator. Roundoff or subtractive can-

cellation error occurs when two numbers become so close to each other that a computer cannot

tell them apart due to the finite number of bits representing the number [120]. Thus, a computer

cannot tell the difference between f(x) and f(x+ h) for a small h. In practice, this means that

as h is reduced, there is a lower bound to the approximation error. Decreasing h any lower

will increase the error [3] as subtractive cancellation errors begin to dominate. Thus, one must

select h according to,

h = hO(1)(1 + |x|), (5.42)

where x is the magnitude of the independent variable of interest and hO(1)(·) is a function that

selects the optimal step size for a function whose input and output are O(1). More information

can be found in [66].

5.3.2 Hyper-Complex Differentiation

The next type of differentiation method that will be discussed is hyper-complex differentiation.

This method is usually divided into bi-complex step and hyper-dual differentiation methods.

However, hyper-dual numbers are an extension or generalization of complex numbers [53], so

they are considered together here. First, consider the Taylor series expansion using an imagi-

nary step value, ih, where i2 = −1.

f(x+ ih) = f(x) + ihf ′(x)− h2

2!
f ′′(x)− i

h3

3!
f ′′′(x) + · · · . (5.43)
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We can separate Eq. (5.43) into its real and imaginary parts as

f(x+ ih) =

(
f(x)− h2

2!
f ′′(x) + · · ·

)
+ ih

(
f ′(x)− h2

3!
f ′′′(x) + · · ·

)
. (5.44)

Re-grouping and combining higher-order terms, we obtain the following expression.

f(x+ ih) = f(x) + ihf ′(x) +O(h2). (5.45)

Thus, we see that the first derivative is given by the imaginary part of Eq. (5.45) divided

by the step size, h. Truncating the higher-order terms, we obtain,

f(x) = Real[f(x+ ih)], f ′(x) ≈ Imag[f(x+ ih)]

h
. (5.46)

Eq. (5.46) is referred to as the bi-complex step derivative approximation. Truncation error

is reduced by reducing the step size h. However, note that there are no additions or subtractions

performed on f in the numerator. Thus, the only source of error is truncation error and reducing

h to an arbitrarily small number does not introduce subtractive cancellation error. Thus, bi-

complex step derivatives are accurate to machine precision for a sufficiently small h. Note that

although Eq. (5.46) is not subject to roundoff error, the bi-complex arithmetic that is required

to evaluate the function is still subject to roundoff error [94, 3]. This limits the step size from

being too small. In practice, h typically takes values between 10−14 and 10−20.

Next, consider the concept of a dual number, given by,

d = x+ ϵ1y, (5.47)

where d ∈ D1, x, y ∈ R ≡ D0, and ϵ1 denotes the imaginary component of the dual number in

the dual plane D1. This new imaginary number has the properties that ϵ21 = 0 and ϵ1 ̸= 0. This

can be thought of in a similar manner to i2 = −1. If we consider a higher-order dual number
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plane (or a hyper-dual plane), we get,

w = d1 + ϵ2d2, (5.48)

where d1, d2 ∈ D1 and ϵ2 designates an imaginary component that is distinct from the imaginary

component in the ϵ1 direction. This new imaginary direction shares the properties of the original

in that ϵ22 = 0 while ϵ2 ̸= 0. They also possess the commutative property, ϵ1ϵ2 = ϵ2ϵ1, and

the nullity property, (ϵ1ϵ2)2 = 0 [3]. Based on this definition, all powers of a Taylor series

expansion of f(x+h1ϵ1+h2ϵ2+0ϵ1ϵ2) containing third or higher derivatives become identically

zero and truncate exactly. Thus, we have,

f(x+ h1ϵ1 + h2ϵ2 + 0ϵ1ϵ2) = f(x) + h1f
′(x)ϵ1 + h2f

′(x)ϵ2 + h1h2f
′′(x)ϵ1ϵ2. (5.49)

For a univariate function, we have the following expressions.

f(x) = Real[f(x+ hϵ1)], f ′(x) =
Eps1[f(x+ hϵ1)]

h
, (5.50)

where Eps1 denotes the component of the hyper-dual number associated with ϵ1. For multivari-

ate functions f(x) where x ∈ Rn, we have the following expressions [3].

∂f(x, y)

∂x
=

Eps1[f(x+ hϵ1, y + hϵ2)]

h
, (5.51)

∂f(x, y)

∂y
=

Eps2[f(x+ hϵ1, y + hϵ2)]

h
, (5.52)

∂2f(x, y)

∂x2
=

Eps1,2[f(x+ hϵ1 + hϵ2, y)]

h2
, (5.53)

∂2f(x, y)

∂y2
=

Eps1,2[f(x, y + hϵ1 + hϵ2)]

h2
, (5.54)

∂2f(x, y)

∂x∂y
=

Eps1,2[f(x, y + hϵ1 + hϵ2)]

h2
. (5.55)

Here, Eps1 and Eps2 denote the imaginary parts associated with ϵ1 and ϵ2, respectively,

while Eps12 denotes the imaginary part associated with ϵ1ϵ2. Due to the properties of hyper-

dual arithmetic, these derivative equations avoid susceptibility to roundoff during the function
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evaluation [3]. Since there is no truncation error, these derivatives are exact for all step sizes.

Thus, a step size of h = 1 may be taken arbitrarily. It is worth noting that hyper-dual dif-

ferentiation needs only a single function evaluation to obtain the function value and its first

and second derivatives. While this seems to imply that hyper-dual differentiation may require

less evaluation time than finite differences, this is usually not the case due to the additional

arithmetic involved with the hyper-dual operations. Hyper-dual numbers are generally slightly

more expensive than a finite difference approximation, taking between one and 3.5 times more

operations than central finite differencing [53]. However, they are substantially more accurate.

An NLP solver using hyper-dual or bi-complex derivatives will generally converge in fewer

iterations than a solver using finite differences. This may not be the case for bi-complex step

methods, which may take even more arithmetic operations due to the complexity of bi-complex

arithmetic [94]. MATLAB implementations of hyper-dual number classes can be found at [5]

and [120].

Application of the bi-complex step derivative approximation to spacecraft low-thrust tra-

jectory optimization is demonstrated in [172] for calculating the state transition matrix (STM)

while regularizing the control. The STM is a method for mapping sensitivities along a con-

tinuous trajectory, which can be used to construct the requited derivative of the residuals with

respect to the unknown initial costate values when a single-shooting scheme is used for solving

TPBVPs using an indirect method. Proper computation of the STMs is an important step for

solving challenging low-thrust trajectory optimization problems [132, 137, 138]. Application

of the bi-complex step derivative approximation for calculating the contribution of the gravi-

tational harmonics (up to any degree and order), which is needed for constructing the costates

differential equations (in a numerical manner) is demonstrated in [167].

To conclude this section, we will compare the accuracy of the three derivative approxima-

tion methods introduced for first-order derivatives. Consider the relative error in some quantity

x to be given by,

ϵr =
|x− x̂|
1 + |x|

, (5.56)
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where x̂ is an approximation of x. The accuracy of the three methods is tested on the example

function,

f(x) =
x2

sin(x) + xex
, (5.57)

evaluated at x = π/4. The analytical derivative of Eq. (5.57) is given by,

f ′(x) =
2x sin(x)− x2 cos(x) + (x2 − x3)ex

[sin(x) + xex]2
. (5.58)

The hyper-dual class implemented [5] was used to calculate the hyper-dual derivatives.

It can be seen in Fig. 5.7 that the central finite differences approximation error decreases un-

Figure 5.7: First-order derivative approximation.

til h ≈ 10−5 and then begins to increase again due to roundoff error. The bi-complex step

derivative approximation error decreases as h decreases until it reaches machine precision and

ϵr ≈ 10−16. The hyper-dual derivative approximation remains at a constant machine precision

error regardless of step size. Note that TOPS is currently capable of using bi-complex step dif-

ferentiation for first derivative calculations by setting p.opts.derivative_type = 'CS'.

In the future, hyper-dual differentiation will be implemented.
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5.3.3 Automatic/Algorithmic Differentiation

The final method of obtaining derivative that will be briefly discussed is automatic or algorith-

mic differentiation (AD). AD is an open field of research. The general idea behind AD is to

decompose a function into its elementary operations and then apply the calculus chain rule to

those operations in order to evaluate the derivative [112]. Since calculus rules are being ap-

plied, the derivatives calculated using AD are exact to machine precision. There are two ways

to implement AD:

1) Operator-overloading (OO) . This computational technique applies the principles of

overloaded functions and dual numbers in order to evaluate a function and its derivative si-

multaneously. Typically, OO techniques are implemented using a custom pseudo-dual-number

class that allows simultaneous storage of the current function value and its derivative. This

class also overloads basic mathematical functions with complex or hyper-dual arithmetic rules.

Simply evaluating the function with an overloaded class variable allows for the function and its

derivative to be calculated.

2) Source-to-source (S2S) . This type of AD examines the function source code and uses it

to produce an entirely new function that calculates the original function value and the derivative.

Typically, S2S is slightly faster than OO since dual number arithmetic is not being used and the

derivative calculations are hard coded.

There are also two modes of AD: forward- and reverse-mode AD. The details of these two

types of AD are beyond the scope of this study. If the user wishes to learn more about the

theory and differences of each, see Griewank and Walther [72] and Griewank [71]. For practi-

cal implementation, see Neidinger [119]. Suffice it to say that forward-mode AD is excellent

at calculating gradients while reverse-mode AD is more appropriate for calculating the deriva-

tive adjoint, which is used frequently in reinforcement learning. TOPS uses the open-source

source-to-source forward-mode AD software ADiGator [190] to supply first derivatives and

second derivatives of the NLP functions. The primary reason this software is used is due to

its automatic exploitation of sparsity. Derivatives that are zero are not calculated, thus saving

significant amounts of computational effort. This will be discussed further in Section 5.4.
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5.4 Exact Derivatives and Exploiting Sparsity

Up until this point, we have discussed several methods of calculating the derivatives of an NLP

function. But, we have not yet fully defined these NLP derivatives. The NLP first derivatives

are shown below.

∇zJ(z), ∇zc(z), ∇zceq(z). (5.59)

In Eq. (5.59), z is the NLP decision vector given in Eq. (5.2), J(z) is the cost function,

and c(z) and ceq(z) are the inequality and equality constraints, respectively. They are both

column vectors. The only second derivative required is the Hessian of the Lagrangian, given

by,

∇zzL = ∇zz[J(z) + Γ⊤c(z) +Λ⊤ceq(z)]. (5.60)

Here, Γ and Λ are the KKT multipliers associated with the inequality and equality con-

straints, respectively. They are the same size as c and ceq such that each element of the KKT

vectors corresponds to a value in the constraint vectors. The naive (and usually inefficient)

way to generate these derivatives is to simply construct functions that calculate J , c, and ceq

and then use finite differences or dual-number differentiation to calculate the derivative with

respect to each element of z. However, we can avoid this by taking advantage of the structure

of a PS method to only calculate non-zero derivatives. Consider the example Jacobian sparsity

pattern given in Fig. 5.8. Fig. 5.8 considers an arbitrary free final time example problem with

four states X1:4, one control U1, path constraints h, and event constraints e. It is evident that

there is a clear sparsity pattern and that only calculating the non-zero elements is necessary. If a

method of automatically locating and calculating these non-zero derivatives can be formulated,

efficiency can be drastically increased. This is because most of the time spent solving an NLP

problem is spent calculating derivatives [129, 3].

Consider the matrix form of the Radau PS method given in Problem (BLGR
MAT). In this

section, we will only give exact formulas for first derivatives. However, for second derivative

expressions, the reader is encouraged to read Patterson and Rao [129], which contains the first

derivative expressions given in this section as well as second derivative expressions. First, we
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Figure 5.8: Example Jacobian Sparsity Pattern

must form a global vector quantity in addition to those defined in the previous sections. First,

let,

F ∈ RNt×1 = F (X,U , t), (5.61)

f ∈ RNt×Nx = f(X,U , t). (5.62)

Here, we evaluate the scalar overloaded operator F ∈ R at the global decision variable

matrices, X , U , and t. The result is a column vector. Similarly, evaluation of f at the global

decision variables produces a matrix. When we need to highlight this operation for an arbitrary

function or variable p, we will use the notation,

[p]Nt
s=1 =



p(X(t1),U(t1), t1)

p(X(t2),U(t2), t2)

...

p(X(tNt),U(tNt), tNt)


. (5.63)

Here, [p]Nt
s=1 is a shorthand expression for evaluating the argument in the brackets at the

NLP variables associated with time ts, where (s = 1, . . . , Nt). The result is a column vector if
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p is a scalar, and a matrix if p is a vector. We then let,

∆ ∈ RNt×Nx = D

[
X
xf

]
− tf − t0

2
σf , (5.64)

be the defect constraints for the dynamics, f . Next, let,

h ∈ RN×Nh = h(X,U , t), (5.65)

e ∈ RNe×1 = e(x
(1)
1 ,xf , t0, tf ), (5.66)

be the matrix and vector associated with the path inequality and boundary equality constraints

when evaluated at the global decision vector and endpoints, respectively. For the sake of no-

tational expedience, we combine all constraints into a single vector, C. We also break up the

cost function into two terms. Thus, the decision vector, constraint vector, and cost are given as,

z =


X(:)

U(:)

t0

tf

 , C =


∆(:)

h(:)

e

 , J(z) = ω(z) + θ(z), (5.67)

where in Eq. (5.67), we have

ω(z) = E(x
(1)
1 ,xf , t0, tf ), θ =

tf − t0
2

w⊤σF . (5.68)

The reader is reminded that the notation X(:) is defined in Section 1.1 and is encouraged

to review the notational conventions presented in that section before continuing. Now, we may

consider the first derivative of the objective function.
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5.4.1 Gradient of the Objective

Recall that the NLP derivatives are obtained by differentiating each element with respect to the

optimization vector, z. Thus, from Eq. (5.67), our objective gradient is given by,

∇zJ = ∇zω +∇zθ. (5.69)

We can split the gradient∇z into its unrolled components,

∇z = [∇X(:)
,∇U(:)

,∇t0 ,∇tf ]. (5.70)

Recall also that even though X(:) and U(:) are column vectors, the result of the gradient

with respect to a column vector is still a row vector. Thus, the derivatives of the endpoint cost

with respect to z is given as,

∇zω = [∇X(:)
ω,∇U(:)

ω,∇t0ω,∇tfω]. (5.71)

The elements of this derivative are given below as

∇X(:)
ω = [∇X(:,1)

ω, ∇X(:,2)
ω, . . . , ∇X(:,Nx)

ω], (5.72)

∇U(:)
ω = [01×NtNu ], (5.73)

∇t0ω =
∂E

∂t0
, (5.74)

∇tfω =
∂E

∂tf
. (5.75)

Here, the derivative with respect to U(:) is always zero, since the endpoint cost is not a

function of U for the LGR transcription. The elements of Eq. (5.72) are given by,

∇X(:,i)
ω =

[
∂E

∂xi(t0)
, 01×(Nt−1),

∂E

∂xi(tf )

]
, (i = 1, . . . , Nx). (5.76)
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This completes the derivative elements for the objective gradient. The advantage of this

form is that it is general, and it requires far fewer derivative evaluations than simply iterating

over the elements of z to get the derivative of ω with respect to each. While iteration over z

would take Nt(Nx+Nu)+Nx+2 function evaluations, taking advantage of this sparse structure

requires only 2Nx + 2 function evaluations. Next, we generate derivatives of the running cost

given by Eq. (5.68) with respect to z. This is given by,

∇zθ = [∇X(:)
θ,∇U(:)

θ,∇t0θ,∇tf θ], (5.77)

where,

∇X(:)
θ = [∇X(:,1)

θ, ∇X(:,2)
θ, . . . , ∇X(:,Nx)

θ], (5.78)

∇U(:)
θ = [∇U(:,1)

θ, ∇U(:,2)
θ, . . . , ∇U(:,Nu)

θ]. (5.79)

Since the running cost depends on control, derivatives with respect to U no longer disap-

pear. Although it may initially seem like the running cost may not depend on tf for the LGR

PS method, this is not the case. Recall that the overloaded vector functions f and F in Problem

(BLGR
MAT) are functions of t and that t is obtained from s using,

t =
tf − t0

2
s+

tf + t0
2

. (5.80)

From Eq. (5.80), the implicit dependencies on t0 and tf become clear. To obtain the

derivative of these vectorized functions, we may use the chain rule, such that

∂x

∂t0
=

∂x

∂t

∂t

∂t0
, (5.81)

∂x

∂tf
=

∂x

∂t

∂t

∂tf
. (5.82)
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Since t is a column vector, we obtain these partial derivatives from Eq. (5.80) as,

α :=
∂t

∂t0
= diag

1− s

2
, (5.83)

β :=
∂t

∂tf
= diag

1 + s

2
. (5.84)

Using these expressions, we obtain the derivative elements ∇X(:,i)
θ, ∇U(:,i)

θ, ∇t0θ, and ∇tf θ

as,

∇X(:,i)
θ =

tf − t0
2

{
diag(w)σ

[
∂F

∂xi

]Nt

s=1

}⊤

, 0

 , (i = 1, . . . , Nx), (5.85)

∇U(:,j)
θ =

tf − t0
2

{
diag(w)σ

[
∂F

∂uj

]Nt

s=1

}⊤

, (j = 1, . . . , Nu), (5.86)

∇t0θ = −1

2
w⊤σF +

tf − t0
2

w⊤

{
ασ

[
∂F

∂t

]Nt

s=1

}
, (5.87)

∇tf θ =
1

2
w⊤σF +

tf − t0
2

w⊤

{
βσ

[
∂F

∂t

]Nt

s=1

}
. (5.88)

Note that scalar 0 as the last element of Eq. (5.85) is the derivative with respect to the non-

collocated point xf . Although these highly-vectorized equations may look imposing, they will

become much easier to understand should the reader examine the compute-all functions

used by TOPS. Using all of these equations, one may compute the derivatives of ω and θ

with respect to the sub-elements of z. The objective gradient is then computed according to

Eq. (5.69).

5.4.2 Jacobian of the Constraints

Next, we consider the derivative of the constraints with respect to the decision vector. This is

defined as,

∇zC =


∇z∆(:)

∇zh(:)

∇ze

 . (5.89)
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The first derivatives of the defect constraints, can be computed according to,

∇z∆(:,k) =
[
∇X(:)

∆(:,k), ∇U(:)
∆(:,k),∇t0∆(:,k),∇tf∆(:,k)

]
, (5.90)

for (k = 1, . . . , Nx). The X(:) and U(:) elements of this derivative can be broken down as,

∇X(:)
∆(:,k) =

[
∇X(:,1)

∆(:,k), ∇X(:,2)
∆(:,k), . . . , ∇X(:,Nx)

∆(:,k)

]
, (5.91)

∇U(:)
∆(:,k) =

[
∇U(:,1)

∆(:,k), ∇U(:,2)
∆(:,k), . . . , ∇U(:,Nu)

∆(:,k)

]
, (5.92)

where (k = 1, . . . , Nx). The reader is again reminded that the derivative element ∇X(:,i)
∆(:,k)

is a row vector, even though the argument ∆(:,k) is a column vector. The first derivatives of

the defect constraints given by ∇X(:,i)
∆(:,k) and ∇U(:,j)

∆(:,k) for (i = 1, . . . , Nx) and (j =

1, . . . , Nu) can be obtained as,

∇X(:,i)
∆(:,k) =

[
δikD(:,1:Nt) −

tf − t0
2

diag

(
σ

[
∂fk
∂xi

]Nt

s=1

)
, δikD(:,Nt+1)

]
, (5.93)

∇U(:,j)
∆(:,k) = −

tf − t0
2

diag

(
σ

[
∂fi
∂uj

]Nt

s=1

)
, (5.94)

for (i, k = 1, . . . , Nx) and (j = 1, . . . , Nu). In Eq. (5.93), δik is the Kronecker delta function,

given by,

δik =

{
1, i = k,

0, otherwise.
(5.95)

Note that although Eq. (5.93) is concise, it is difficult to express it clearly in a single math-

ematical expression. The reader is encouraged to explore the vectorized optimization examples

of the ADiGator toolbox [190] for several examples of how this equation can be implemented

computationally. A copy of ADiGator can be downloaded for free from Dr. Matthew Wein-

stein’s Github page. The derivatives with respect to time, given by ∇t0∆(:,k) and ∇t0∆(:,k) are
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obtained as,

∇t0∆(:,k) =
1

2
[fk]

Nt
s=1 −

tf − t0
2

ασ

[
∂fk
∂t

]Nt

s=1

, (5.96)

∇tf∆(:,k) = −
1

2
[fk]

Nt
s=1 −

tf − t0
2

βσ

[
∂fk
∂t

]Nt

s=1

, (5.97)

for (k = 1, . . . , Nx). Thus, we have obtained the derivatives of the defect constraints with

respect to the optimization vector. The first derivative of the path constraints is given by,

∇zh(:,p) =
[
∇X(:)

h(:,p), ∇U(:)
h(:,p),∇t0h(:,p),∇tfh(:,p)

]
, (5.98)

where (p = 1, . . . , Nh). The elements associated with the X and U components can be further

broken down as,

∇X(:)
h(:,p) =

[
∇X(:,1)

h(:,p), ∇X(:,2)
h(:,p), . . . ,∇X(:,Nx)

h(:,p)

]
, (5.99)

∇U(:)
h(:,p) =

[
∇U(:,1)

h(:,p), ∇U(:,2)
h(:,p), . . . ,∇U(:,Nu)

h(:,p)

]
. (5.100)

The elements∇X(:,i)
h(:,p) and ∇U(:,j)

h(:,p) can be calculated as,

∇X(:,i)
h(:,p) =

[
diag

[
∂hp

∂xi

]Nt

s=1

, 0Nt×1

]
, (5.101)

∇U(:,j)
h(:,p) = diag

[
∂hp

∂uj

]Nt

s=1

, (5.102)

where (i = 1, . . . , Nx), (j = 1, . . . , Nu), and (p = 1, . . . , Nh). The derivatives associated with

the initial and final times,∇t0h(:,p) and∇tfh(:,p) can be calculated as,

∇t0h(:,p) = α

[
∂hp

∂t

]Nt

s=1

, (5.103)

∇t0h(:,p) = β

[
∂hp

∂t

]Nt

s=1

. (5.104)

Using the sparse derivative forms, one may calculate the derivatives of the path con-

straints with respect to X , U , and t and simply evaluate these derivative expressions at the
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Nt collocation points. We still have to calculate the derivative of the boundary conditions,

e(x
(1)
1 ,xf , t0, tf ). The first derivatives are given as,

∇zeq =
[
∇X(:)

eq,∇U(:)
eq,∇t0eq,∇tf eq

]
, (5.105)

for (q = 1, . . . , ne). The derivative elements with respect to X and U are given by,

∇X(:)
=
[
∇X(:,1)

eq, ∇X(:,2)
eq, . . . , ∇X(:,Nx)

eq

]
, (5.106)

∇U(:)
= [01×NtNu ] . (5.107)

Since we are using the LGR transcription, the control is not obtained at the final value.

However, even for other transcriptions, the boundary constraints are not usually expressed as a

function of final control values, so the derivative with respect to U remains zero regardless of

transcription. The derivative elements∇X(:,i)
eq can be obtained in a sparse manner as,

∇X(:,i)
eq =

[
∂eq

∂xi(t0)
, 01×(Nt−1),

∂eq
∂xi(tf )

]
, (5.108)

where (q = 1, . . . , Ne). The derivative elements∇t0eq and ∇tf eq are given by,

∇t0eq =
∂eq
∂t0

, (5.109)

∇tf eq =
∂eq
∂tf

. (5.110)

This concludes the exact expressions for the first derivatives. For the sake of expedi-

ency, the second derivative Lagrangian Hessian expressions are not included, as they are quite

lengthy. However, the reader is again encouraged to read Patterson and Rao [129] if they desire

to understand the computation of second derivatives in a sparse manner.

The author cannot express how invaluable ADiGator [190] is to the AD functionality of

TOPS, as well as for increasing the efficiency of any NLP solver by providing exact derivatives.
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Throughout this section, there are terms that take the form,

∇xf =

[
∂f

∂x

]Nt

s=1

, (5.111)

where x is some row/column vector that has a value at every point ts. This expression is a

partial derivative that must be evaluated Nt times and then inserted into various expressions to

calculate the derivatives. When using finite differences or dual-number differentiation, this will

require a loop that iterates over the values of x to get the derivative of f with respect to xi at

every point in x, where (i = 1, . . . , Nx). Vectorization of this process is usually very difficult.

However, ADiGator has a “vectorized” mode of operation that can generate a single derivative

expression for an arbitrary number of points, Nt. Thus, a derivative file need only be generated

once and then the derivatives can be evaluated in a vectorized form for an arbitrary Nt. This can

drastically improve the performance of an NLP solver being used in an interpreted language

like MATLAB, as loops are entirely eliminated from the process of obtaining derivatives. The

reader is once again encouraged to download a copy of ADiGator, read the manual, and explore

the examples to understand this process. TOPS also contains several routines for calculating

these derivatives using ADiGator, although they are not commented as thoroughly.

5.5 Nested Implementation of the Objective and Constraint Functions

Another very useful computational “trick” for improving the efficiency of many NLP solvers is

a process known as NLP nesting. To explain this process, it is necessary to understand that most

NLP solvers call the objective and constraint functions separately. This can be wasteful if the

objective and constraint function share variables or perform the same calculation. In addition

to this, they can sometimes evaluate the objective and constraints at the same point multiple

times in a row. Thus, it can improve computational efficiency to compute the objective and

constraints in a single function and evaluate it only when the point of evaluation changes. This

can be accomplished as follows.

1. Write a “compute-all” function that computes both the objective and constraints in the

same variable scope.
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2. Write a function that wraps the NLP solver and can store recent values output by the

compute-all function.

3. Write a nested objective and constraint function within the wrapper function that are

passed as the objective and constraint functions to the NLP solver.

4. Write an if-else statement within these nested functions that checks if the input value

from the NLP solver is the same as the previous input value, which is stored outside

these functions.

5. If the value passed by the NLP solver is not the same, call the compute-all function to

compute the objective and constraints.

6. If the value passed by the NLP solver is the same, do not call the compute-all function

and simply return the previously stored values.

In order to illustrate this, a pseudocode function is provided as an example.

1 % ================================

2 % Example Nested NLP Function

3 % ================================

4 function [z_sol, f_sol, exitflag] = solve_NLP(z0,options)

5 % First, we initialize variables for the storage of re-used values.

6 z_last = []; % The last value passed by the NLP solver.

7 obj_all = []; % We store the objective value here.

8 c_all = []; % We store the inequalities here.

9 ceq_all = []; % We store the equalities here.

10

11 % This is where we call our NLP solver. We use fmincon for this

12 % example.

13 [z_sol, f_sol, exitflag] = ...

fmincon(obj_fun,z0,[],[],[],[],[],[],constr_fun,options);

14

15 % Next, we define our nested objective and constraint functions.
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16 function obj = obj_fun(z)

17 % Here, we check if the z being passed is equal to the last

18 % value of z that was passed.

19 if z ̸= z_last

20 % If z isn't the same as the previous z value, we call

21 % compute_all.

22 [obj_all,c_all,ceq_all] = compute_all(z);

23 z_last = z;

24 end

25

26 % Set the output.

27 obj = obj_all;

28 end

29

30 function [c,ceq] = constr_fun(z)

31 % We repeat the process performed in obj_fun.

32 if z ̸= z_last

33 % If z isn't the same as the previous z value, we call

34 % compute_all.

35 [obj_all,c_all,ceq_all] = compute_all(z);

36 end

37

38 % Set the output.

39 c = c_all;

40 ceq = ceq_all;

41 end

42 end

This concludes the example code. Although this is a pseudocode, the user may replicate this

code exactly and simply write their own “compute-all” function. In the experience of the author,

this can halve the time required to obtain a solution to the PS NLP. Since it is an exceedingly

easy and simple change to implement, the reader is encouraged to do so when solving any

NLP problem. This process is extendable to first and second derivatives. These share many

calculations during their computations, which can lead to further increases in efficiency.
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5.6 Automatic Scaling

A somewhat controversial aspect of solving NLPs is the process of automatic scaling. This is

a process by which the NLP variables are scaled using an affine transformation such that the

lower and upper bounds of the variables are 0 and 1, respectively [156]. Some scaling methods

scale the variables to the range [−1, 1] [141], while some scale them to the range [−0.5, 0.5]

[130]. These scaling ranges are arbitrary and primarily a preference of the user. In theory, NLP

scaling should increase the efficiency and accuracy of the NLP solver, since all design variables

are of the same magnitude and near machine zero. This is where floating-point arithmetic is

most accurate, since there are more decimal places available for computations and roundoff

error is reduced. However, Ross et al. [151] shows that oftentimes this procedure of scaling all

NLP variables to a range close to zero can have an unintended effect on the KKT multipliers

and costates. Although the NLP variables become well-scaled, the KKT multipliers become

badly scaled. The KKT multipliers for the automatically scaled problem can become extremely

large depending on the problem and drive the NLP solver to a poor solution.

In the experience of the author, this proposition is true for many practical problems. The

simple act of automatic scaling, while improving the computational speed of the solver, can

destabilize the solution and cause convergence to a pseudo-minimizer. Ross et al. [151] propose

a heuristic process by which a set of designer scaling units is chosen through trial-and-error to

“balance” the magnitude of the scaled states and costates in order to maximize the performance

of the NLP solver. However, this is still a “guess-and-check” method that requires significant

user input, so TOPS provides an automatic scaling technique that the user may apply to their

problem. If the scaling technique does not produce satisfactory results, the user may fall back

on the scaling and balancing technique or rely on traditional or canonical scaling techniques

(which depends on the problem) for the state parameters.

5.6.1 Affine Scaling

The scaling technique used by TOPS is presented here. Consider an arbitrary variable x ∈ [l, u],

where l is a lower bound for x and u is an upper bound for x. If the user desires to scale the
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variables to the range [0, 1], the following procedure can be used.

l ≤ x ≤ u,

0 ≤ x− l ≤ u− l,

0 ≤ 1

u− l
x− l

u− l
≤ 1,

Here, we take,

x̃ = Kxx+ b, (5.112)

where,

Kx =
1

u− l
, b = − l

u− l
. (5.113)

We may extend this to the NLP optimization vector, z ∈ [zl, zu], where zl and zu corre-

spond element-wise to the lower and upper bounds of z. The equivalent affine scaling formula

is [156, 110],

z̃ = Kzz + b, (5.114)

where,

Kz = diag
(

1

zu − zl

)
, b = − zl

zu − zl

. (5.115)

Here, Kz ∈ RNz×Nz and b ∈ RNz×1. In practice, the NLP states are scaled to z̃ prior

to the optimization process and are unscaled to z in the compute-all function to evaluate the

user-functions. Thus, the inverse transformation of Eq. (5.115) is given by,

z = K−1
z (z̃ − b). (5.116)

This process of scaling and unscaling requires that the output of certain user functions

be re-scaled. For an isoscaling method, this re-scaling process is only applied to derivatives,

which include the defect constraints and the NLP gradient and Jacobians. The derivative of the

scaled state given in Eq. (5.114) with respect to any variable is,

˙̃z = Kzż. (5.117)
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After applying this to the dynamics function, we obtain,

f̃(:) = Kxf(:), (5.118)

where Kx is the block-diagonal portion of Kz that only includes state-scaling information. It

is obtained by taking rows and columns 1 through (Nt + 1)Nx from Kz. Applying this to the

defect constraints, we obtain,

∆̃ = Kx∆. (5.119)

Note that when scaling using this method, the derivatives are no longer with respect to z,

but instead with respect to z̃. Thus, in order to find the derivatives with respect to z̃, we use

chain rule, such that,
∂C

∂z̃
=

∂C

∂z

∂z

∂z̃
. (5.120)

We obtain this chain rule derivative term as,

∂z

∂z̃
= K−1

z . (5.121)

Thus, the constraint Jacobian becomes,

∇̃zC = ∇zC ·K−1
z , (5.122)

where ∇̃z denotes the derivative with respect to z̃. The back-scaled costates are given as,

λ = Kzλ̃. (5.123)

In this isoscaling method, the objective and any additional inequality or equality con-

straints are not scaled. In the experience of the author, this method is the most consistent scal-

ing method. In addition, it only applies to the states and controls, which are the only elements

of an OCP that are usually scaled using canonical or designer units.
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5.6.2 Adverse Effects of Scaling

An unfortunate side effect of any scaling method can be seen when examining the costate

solution for a scaled OCP [151]. Consider the Orbit-Raising problem, defined in Section 6.2.

This problem was solved twice, once with scaling, and once without scaling. The costate

solutions for each case are shown in Fig. 5.9. It is evident by comparing Fig. 5.9a to Fig. 5.9b

(a) Non-scaled Solution (b) Scaled Solution

Figure 5.9: Orbit-Raising Costate Solutions

that using the isoscaling method immediately doubles the maximum magnitudes of the costate

solutions. For this particular problem, large costate values do not cause a problem, as the

maximum values are still close to zero. However, for some problems (such as the Earth to

Dionysus problem shown in Section 6.3), the scaled costate values can become extremely large,

on the order of 109. This produces issues in the discrete Lagrangian of the problem, given by,

L = σJ + λ⊤c. (5.124)

In Eq. (5.124), the dot product operation given by λ⊤c involves multiplying a value on

the order of 109 (λi) by a value on the order of 1 (ci). This value is then summed with other

values that have undergone similar multiplications. Due to the limits of floating-point precision,

significant digits are lost in this operation due to truncation error. This results in a loss of

constraint information and potential non-convergence of the solver or convergence to a pseudo-

minimizer. [151] suggests selecting “designer” units to scale the problem, solving the problem
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on a rough mesh, and then manually iterating on these scaling coefficients until the magnitudes

of the state and costate are roughly equal. This is referred to as “balancing.” In theory, balancing

will maximize the performance of the solver. However, it requires significant user input and

is primarily applicable to direct methods. The user should be aware of this numerical issue

present in all constrained OCPs.

5.6.3 Projected-Jacobian Rows Normalization Scaling

An interesting type of scaling that the author has encountered is the Projected-Jacobian Rows

Normalization (PJRN) scaling method, introduced by Sagliano [154]. The study mentioned

considers the condition number of the Jacobian as a measure of the quality of a scaling method.

This is because the Jacobian defines the search direction for gradient-descent solvers during

the iterative solution process. Thus, the logic follows that a well-conditioned Jacobian will

produce fewer rounding errors than a poorly-conditioned Jacobian and provide a more accurate

search direction. The aim of the scaling method is to scale the Jacobian such that the 2-norm

of each row has a magnitude equal to one. This is accomplished as follows. Assume the states

are scaled according to Eq. (5.114) and Eq. (5.115). Also consider an NLP Jacobian given by,

Jac =


∇zJ

∇z∆

∇zG

 , (5.125)

where we have included the objective gradient in the expression. This is for notational con-

venience. In addition, we split the constraint Jacobian ∇zC into the defect constraints, ∇z∆

and non-defect constraints,∇zG. Recall that the defect and non-defect constraints are column

vectors. Consider scaling each element of the derivatives as,

J̃ = KJJ, (5.126)

∆̃ = Kf∆, (5.127)

G̃ = KgG. (5.128)
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Here, Kj is a parameter, which normalizes the cost function, J , while Kf ∈ RNtNx×NtNx

and Kg ∈ RNtNg×NtNg are diagonal scaling matrices for the defect constraints and the non-

defect constraints, respectively. In the PJRN method, the diagonal matrices Kf and Kg are

selected as,

Kfii
=

1

∥(∇z∆ ·K−1
x )i∥2

, Kgii =
1

∥(∇zG ·K−1
x )i∥2

, (5.129)

where (·)i denotes the i-th row of the matrix produced by the matrix multiplication in the

denominator. Note that all off-diagonal elements of Kf and Kg are zero. Although KJ is

often a user-defined parameter [155], it can be computed as,

Kj =
1

∥(∇zJ ·K−1
x )i∥2

, (5.130)

in the case of no manual user scaling. The scaled Jacobian of the PJRN method is given by,

J̃ac =


∇̃zJ̃

∇̃z∆̃

∇̃zG̃

 =


KJ · ∇zJ ·K−1

x

Kf · ∇z∆ ·K−1
x

Kg · ∇zG ·K−1
x

 . (5.131)

Thus, in the PJRN method, the objective and constraints are scaled according to Eq. (5.131).

The result of Eq. (5.131) is a Jacobian whose rows have a norm equal to one and whose condi-

tion number is very low. In addition, [156] introduces a transformation for the KKT multipliers,

given by,

Λ =
[
KJK

−1
f

]−1
Λ̃, Γ =

[
KjK

−1
g

]−1
Γ̃, (5.132)

where λ̃ and γ̃ are the KKT multipliers associated with the PJRN scaled problem. The contin-

uous multipliers may be obtained using expressions given in Section 4.5.

In the qualitative experience of the author, this method seems to be less effective than

the affine scaling method for many problems. It is less computationally expensive than other

Jacobian normalization methods, such as the one described in Rao et al. [141], Patterson and

Rao [130], which evaluates the Jacobian at randomly sampled points distributed about z and
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obtains the scaling terms as,

Kfii
= mean

1

∥(∇z∆)i∥
, Kgii = mean

1

∥(∇zG)i∥
, (5.133)

where the mean is evaluated for the number of randomly sampled points. In the experience of

the author, PJRN scaling can work extremely well for increasing computational speed for some

problems. However, the PJRN method seems to suffer from instability. By instability, the au-

thor means that when using scaling methods for which the scaling coefficients are different for

each time point, an NLP solver may converge to an infeasible or suboptimal solution for a given

problem. Ross et al. [151] suggests that this instability is due to the presence of unaccounted

terms for additional dynamics that result from the use of an implicitly time-varying scaling

coefficient, which is the case for the PJRN and averaging methods just discussed. This is be-

cause when transforming a scaled state to the continuous domain, one obtains an expression of

the form,

x̃(t) = Kx(t)x(t) + b(t), (5.134)

where Kx(t) and b(t) become functions of time due to the fact that the scaling coefficients are

different for each value of x(ti). Thus, there is an implicit time dependence for the scaling

coefficients. The result of differentiating Eq. (5.134) is given as,

dx̃(t)

dt
= Kx(t)

dx(t)

dt
+

dKx(t)

dt
x(t) +

db(t)

dt
. (5.135)

In Eq. (5.135), the derivatives of Kx and b no longer vanish because they are no longer

constants with respect to time. There is no clear way to approximate these additional derivative

terms. In the PJRN and averaging methods, the new time-varying terms are not accounted

for in the dynamics due to the assumption that the derivatives of Kz and bz with respect to

time vanish. For this reason, the author has only implemented an affine (constant K and b)

automatic scaling routine in TOPS.
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Chapter 6

Example Problems

In this section, several example problems will be solved in TOPS and compared to their indirect

solutions. The problems will increase in difficulty, beginning with a very simple problem

with a closed-form solution to a state-of-the-art variable-specific-impulse propulsion system

model for the orbit transfer problems. The author would like to acknowledge that Dr. Daniel

Herber’s open-source basic PS solver [78] was extremely useful for the author when learning

PS methods. The author has built TOPS to be both an educational tool to those new to PS

methods as well as a practical, effective open-source PS software. All solutions obtained in

this section were obtained on a Surface Book 2 Windows Laptop using an Intel(R) Core(TM)

i7-8650U CPU @ 1.90 GHz clock speed with 8.0 GB of VRAM.

6.1 Moon-Lander Problem

The first example problem is one that has been used as a demonstration problem throughout

the paper. The problem is given in [114] as an optimal thrust soft lunar landing problem. It is a

one-dimensional problem with simple dynamics and a discontinuous control profile exhibiting
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a single bang-on arc. The problem is stated as follows.

x(t) = [h, v], u(t) = u, tf ,

(ML)



Minimize J [x(·),u(·), tf ] =
∫ tf

t0

u(t) dt,

Subject to : ḣ = v,

v̇ = −g + u,

0 ≤ u ≤ 3,

(h0, v0, t0) = (10 m,−2m/s, 0),

(hf , vf , tf ) = (0, 0, free) .

Here, g = 1.5 m/s2. Note also that tf is free, although this is not a minimum-time

problem. Usually, leaving tf unconstrained for such cases will cause tf → ∞ (see p.32 of

[145]), but in this case the dynamics naturally constrain the system to satisfy the boundary

conditions in a finite time. The exact solution to this problem is given by,

h∗(t) =

 −
3
4
t2 + v0t+ h0, t ≤ s∗,

3
4
t2 + (−3s∗ + v0)t+

3
2
(s∗)2 + h0, t ≥ s∗,

(6.1)

v∗(t) =

 −
3
2
t+ v0, t ≤ s∗,

3
2
t− 3s∗ + v0, t ≥ s∗,

(6.2)

u∗(t) =

 0, t ≤ s∗,

3, t ≥ s∗,
(6.3)

where s∗ is the single switch time, which is given by,

s∗ =
t∗f
2
+

v0
3
, t∗f =

2

3
v0 +

4

3

√
1

2
v20 +

3

2
h0. (6.4)

It can easily be calculated that for the boundary conditions given in Problem (ML), the

problem has a switch and final time of (s∗, t∗f ) = (1.4154, 4.1641). This is a “bang-bang”
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(a) State Solution (b) Control Solution

Figure 6.1: Exact and TOPS solutions to the moon-lander problem.

optimal control problem, in that the control is discontinuous and switches between its maxi-

mum and minimum values. This problem was solved in TOPS using the ph-adaptive mesh-

refinement algorithm with Nmin = 3 and Nmax = 12 with 3 evenly spaced initial segments.

The mesh accuracy requested was ε = 10−8. The constraint violation and optimality toler-

ances were both set to 10−6. Linear interpolation between the boundary conditions was used

to provide an initial guess. The problem was solved using fmincon, SNOPT, and IPOPT all

in quasi-Newton (first derivative) mode. This is because exact vectorized derivative calcula-

tions for free final time problems have not yet been implemented in TOPS. All first derivatives

were provided by ADiGator. Table 6.1 contains statistics for each NLP solver that was used

to solve this problem. The solution obtained using SNOPT is shown in Fig. 6.1. Note in Ta-

Table 6.1: Moon-lander problem solution comparisons.

Solver J∗ Npts Nseg Mesh Iter. ϵsol CPU Time [sec]
Exact 8.2462 - - - - -

fmincon 8.2462 47 15 9 9.191× 10−9 1.557
SNOPT 8.2462 49 15 9 5.223× 10−10 0.551
IPOPT 8.2462 47 15 9 9.214× 10−9 2.239

ble 6.1 that IPOPT does not obtain a solution as quickly as fmincon or SNOPT, which are both

using SQP Hessian approximation algorithms. This is expected. However, running IPOPT in

non-vectorized second derivative mode for this problem actually increased the CPU time to

approximately 4 seconds. This is due to the inefficiency of the non-vectorized AD derivatives.
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All NLP solvers produced solutions with a similar number of collocation points, Npts, and the

same number of mesh segments, Nseg. The mesh-refinement algorithm converged in 9 itera-

tions for each solver, and the requested mesh accuracy was satisfied for each case. Fig. 6.1

shows the state and control solutions produced by SNOPT. The state was interpolated using

Lagrange polynomials while the control was linearly interpolated. Note that when interpo-

lated, the TOPS state and control solutions lie exactly on top of the exact solution. Also note

in Fig. 6.1 that the collocation points are densely clustered near the location of the discontinu-

ity, effectively capturing the bang-bang control switch. The final time produced by TOPS was

tf = 4.1641, which is equal to the final time for the exact solution.

6.2 Orbit-Raising Problem

The orbit-raising problem is a classic introductory optimization problem Bryson and Ho [23].

Many students who have studied orbital mechanics and optimal control are intimately familiar

with it. The orbit-raising problem is given as follows.

x(t) = [r, θ, u, v], u(t) = ϕ,

(OR)



Minimize J [x(·),u(·), tf ] = −r(tf ),
Subject to ṙ = u,

θ̇ =
v

r
,

u̇ =
v2

r
− 1

r2
+ A(t) sin(θ),

v̇ = −uv

r
+ A(t) cos(θ),

A(t) =
T

(m0 − |ṁ|t)
,

(r0, θ0, u0, v0) = (1, 0, 0, 1),

(uf , vf , tf ) =
(
0,
√
1/rf , 3.32

)
,

Here, m0 = 1, ṁ = 0.0749, and T = 0.1405. All units are non-dimensionalized. The

goal of this problem is to make a circular-to-circular orbit transfer in a set amount of time that

maximizes the final orbital radius. There is no closed-form solution to this problem. However,

the author has solved this problem using an indirect shooting method in order to compare the

direct and indirect solutions. When solving this problem, no mesh refinement was used. This
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was for two reasons. The first is that this problem will be used to illustrate the differences

in the costate estimates produced by the LGR and LGL transcriptions. The second is that the

solution is known to be smooth [150], so in general mesh refinement can be achieved by simply

increasing the degree of the interpolating polynomial. This problem was solved for a single

mesh interval containing 60 collocation points. It was solved using fmincon, SNOPT, and

IPOPT for LGR points, and once using SNOPT for LGL points. All first derivatives were sup-

plied using ADiGator. Since this is not a free final time problem, vectorized second derivatives

were supplied to IPOPT using ADiGator. Note from Table 6.2 that when providing vector-

ized second derivatives, IPOPT outperforms SNOPT. An initial guess was provided by linearly

interpolating between boundary conditions. A comparison of the computational statistics and

objective value obtained using each NLP solver are given in Table 6.2. The control solution

Table 6.2: Orbit-raising problem solutions comparison.

Solver r(tf ) Npts Nseg Mesh Iter. ϵsol CPU Time [sec]
Indirect 1.5253 - - - - -
fmincon 1.5253 60 1 1 - 4.67

SNOPT-LGR 1.5253 60 1 1 - 1.47
IPOPT 1.5253 60 1 1 - 0.51

SNOPT-LGL 1.5253 60 1 1 - 1.70

obtained using the indirect shooting scheme and TOPS is shown in Fig. 6.2. Note in Fig. 6.2

Figure 6.2: Control profile for indirect method and TOPS.

that the control solution obtained by TOPS lies nearly exactly on top of the indirect solution.
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(a) Indirect State Solution (b) TOPS State Solution

Figure 6.3: Indirect and TOPS state solutions to the orbit-raising problem.

(a) LGL Costate Estimate (b) TOPS State Solution

Figure 6.4: Costate estimates obtained with the LGR and LGL PS methods.

In addition, Table 6.2 shows that the objective value computed by each solver was identical to

the indirect objective value. Next, we examine the state profiles obtained. It is evident from

Fig. 6.3 that the solutions obtained using the indirect method and TOPS are nearly identical.

The state and control solutions obtained using the LGR and LGL transcriptions are identical.

However, a significant difference arises when we examine the costate solutions obtained by

the LGR and LGL transcriptions. Note that in Fig. 6.4a that the costate obtained by the LGR

PS method lies exactly on the indirect solution. However, as soon as we employ the LGL

method in Fig. 6.4b, the costates begin to exhibit oscillations or “chattering” about the optimal

value. This is a well-known phenomenon, and the reason it occurs is discussed in Section 4.2.1.
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Certain filtering techniques can be used to eliminate these oscillations [48]. However, this chat-

tering phenomenon is known to occur in certain situations for the solution for LGR and LGL

state/control solutions, even though the costates may converge to the optimal solution [52].

However, this primarily occurs for problems that exhibit singular arcs, and methods have been

developed to overcome this issue [123].

6.3 Earth-to-Dionysus (E2D) Problem

The next problem that will be considered is the Earth to asteroid 3671 Dionysus minimum-fuel

rendezvous problem. 3671 Dionysus is a potentially hazardous asteroid due to its minimum

orbit intersection distance with the earth is less than 0.5 AU and it has a diameter greater than

150 meters. As such, it is of interest for unmanned low-thrust exploratory missions. This

problem is presented in [171] and is given as,

x := [p, f, g, h, k, L,m] ∈ R7, α̂ := [α̂r, α̂t, α̂n, δ] ∈ R4, tf ,

(E2D)



Minimize J [x(·), tf ] = −m(tf ),

Subject to : ẋ =

A

(
Tmax

m
δα̂

)
+ b

−Tmax

c
δ

 ,

∥α̂∥ = 1,

δ ∈ [0, 1],

(xMEE(t0),m(t0), t0) = (x0
MEE,m

0, t0),

(xMEE(tf ), tf ) = (xf
MEE, t

f ),

Here, xMEE = [p, f, g, h, k, L] are the Modified Equinoctial Elements (MEE), a set of non-

singular orbital elements that are well-behaved for long-duration low-thrust problems [171, 86].
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The matrices A and b are given by,

A =



0 2p
w

√
p
µ

0√
p
µ
sin(L)

√
p
µ

1
w
[(w + 1) cos(L) + f ] −

√
p
µ

g
w
κ

−
√

p
µ
cos(L)

√
p
µ

1
w
[(w + 1) sin(L) + g]

√
p
µ

f
w
κ

0 0
√

p
µ
s2 cos(L)

2w

0 0
√

p
µ
s2 sin(L)

2w

0 0
√

p
µ

1
w
κ


, b =



0

0

0

0

0
√
µp
(

w
p

)2


, (6.5)

where w = 1 + f cos(L) + g sin(L), s2 = 1 + h2 + k2, κ = h sin(L) − k cos(L), and µ is

the gravitational parameter of the central body. For the purposes of this study, the central body

is Sun and its gravitational parameter is denoted µs. The position, r, and velocity, v, of the

spacecraft relative to a Sun-centered inertial (SCI) frame can be expressed in terms of the MEE

set [17] as,

r =


p

ws2
[cos(L) + α cos(L) + 2hk sin(L)]

p
ws2

[sin(L)− α sin(L) + 2hk cos(L)]

2p
ws2

(h− k)

 , (6.6)

v =


−M [sin(L) + α sin(L)− 2hk cos(L) + g − 2fhk + αg]

−M [− cos(L) + α cos(L) + 2hk sin(L)− f + 2ghk + αf ]

2M [h cos(L) + k sin(L) + fh+ gk]

 , (6.7)

where α = h2 − k2 and M = 1
s2

√
p
. The problem parameters are given in Table 6.3. This prob-

Table 6.3: Earth to Dionysus problem data.

Parameter Value Units
µs 132712440018 [km3/s2]

AU 149.6× 106 [km]

g0 9.8065 [m/s2]

m0 4000 [kg]

Tmax 0.32 [N ]

Isp 3000 [sec]

Nrev 5 [−]
tf 3534 [days]
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lem was manually scaled using canonical units, as the automatic scaling method destabilized

the solution. The canonical units were selected as follows.

DU = 1 AU TU =

√
DU3

µs

= 5.0228× 106 [sec] (6.8)

All EOMs, boundary conditions, and flight times were scaled using these units. The scaled

boundary conditions are given by,

x0
MEE =


0.99969 AU
−3.7668× 10−3

0.016287
−7.70206× 10−6

6.18817× 10−7

14.16189

 , xf
MEE =


1.55370 AU
0.15303
−0.51995
0.016183
0.11814
46.33024

 . (6.9)

This is a benchmark problem and is relatively difficult to solve. As such, TOPS took much

longer to reach a solution. In addition to this, the only solver that could obtain a solution in

a reasonable amount of time was SNOPT. This will most likely change with the full imple-

mentation of vectorized second derivatives. This problem belongs to the class of low-thrust

long-duration trajectory optimization problems, which are numerically difficult to solve due to

the long transfer time and the existence of several orbital revolutions around the Sun [170].

In order to solve this problem, an initial mesh was selected using 15 mesh segments with

3 collocation points in each segment. The mesh parameters were Nmin = 3 and Nmax = 6. The

mesh accuracy was selected to be ε = 10−4. Linear interpolation between boundary conditions

was used to provide an initial guess. Table 6.4 shows the solution statistics for the problem.

Fig. 6.5 shows the E2D transfer trajectory and throttle history produced by the indirect method

Table 6.4: Earth to dionysus problem solution information.

Solver m(tf ) [kg] Npts Nseg Mesh Iter. ϵsol CPU Time [sec]
Indirect 2716.21 - - - - -

TOPS (SNOPT) 2718.33 151 45 5 9.83× 10−5 296.91

and TOPS. Note in Fig. 6.5a that the indirect and TOPS solutions are visually indistinguish-

able from one another. However, when we look at Fig. 6.5b, we see that the final thrust arc is
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(a) E2D Trajectory Solutions. (b) E2D Throttle Solutions.

Figure 6.5: Trajectory and Throttle Solutions for the E2D Problem.

not as effectively captured as the previous thrust arcs. This is an inherent shortcoming in the

mesh refinement process. Reducing the mesh error tolerance too low can cause unnecessary

points to be thrown and drastically increase the solution time, while too high of a mesh error

tolerance can cause poor quality solutions. This solution struck a balance between quality and

computational time, and the solution objective values given in Table 6.3 show a difference of

approximately two kilograms. Fig. 6.6 shows the indirect and TOPS solutions for the state and

costate time histories. Note in Fig. 6.6b that the costate time histories differ by a significant

(a) E2D MEE Time History Solutions. (b) E2D Costate Solutions.

Figure 6.6: State and Costate Solutions for the E2D Problem.

margin for the costates associated with the h and k MEEs. This may be due to convergence to a

local extrema or numerical difficulties associated with the Lagrangian Hessian approximation

internally calculated by SNOPT. Regardless of this difference, the solution produced by TOPS
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is an excellent preliminary trajectory planning solution that can be further refined using indi-

rect methods. This difficulty in solving a long-duration low-thrust problem is to be expected

for pseudospectral methods, but the advent of Birkoff-based PS methods may alleviate this

difficulty [144].

6.4 Satellite Constellation Formation Problem

The satellite constellation problem is an interesting problem that was solved by the author using

an indirect method in [163]. This problem considers the case of two “deputy” or “chaser”

satellites being deployed by a launch vehicle into a low Earth orbit (LEO) . The objective of

the chaser satellites is to insert themselves into the orbit of a chief satellite that has already

been deployed. The chaser satellites attempt to make a minimum-fuel maneuver such that the

final orbit of the first chaser is the chief’s orbit plus a phase angle of one degree (a leading

orbit), while the second chaser assumes the chief’s orbit mines a phase angle of one degree

(a trailing orbit). The inspiration for this problem is the deployment of Starlink satellites that

perform similar maneuvers to form satellite constellation “chains.” The aim of these chains is

to provide constant satellite coverage for a particular latitude.

This constellation formation problem is simplified here to the case of one deputy assuming

a leading orbit. However, two-deputy indirect solutions can be found in [163]. An interesting

aspect of the problem is that it is solved in a Local-Vertical-Local-Horizontal (LVLH) frame of

reference. This frame of reference is shown in Fig. 6.7 relative to an Earth-Centered-Inertial

(ECI) frame. As can be seen from Fig. 6.7, this is a non-inertial frame of reference defined by

the position and velocity of the chief in its orbit. The EOMs for this frame of reference are

complex and non-intuitive, and are given in Problem (Sat). The problem statement is given
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Figure 6.7: The ECI:{Î , Ĵ , K̂} and co-moving LVLH:{ôr, ôθ, ôh} frames.

below.

x := [x, y, z, vx, vy, vz] ∈ R6, m ∈ R, u := [α̂r, α̂t, α̂n, δ] ∈ R4, tf ,

(Sat)



Minimize J [x(·), tf ] = −m(tf ),

Subject to : ẋ =



vx + yθ̇c
vy − xθ̇c

vz
vyθ̇c − µ(rc+x)

∥rc+r∥3 +
µ
r2c

−vxθ̇c − µ

∥rc+r∥3y

− µ

∥rc+r∥3 z


+ Tmax

m
δu+ aJ2 = fv,

∥u∥ = 1,

δ ∈ [0, 1],

(x(t0),m(t0), t0) = (x0,m0, t0),

(x(tf ), tf ) = (xf , tf ),

In Problem (Sat), θ̇c is the angular velocity of the chief satellite and rc is the position

vector of the chief relative to the Earth’s center expressed in the LVLH frame. Here, the chaser’s

position vector rd, the position vector of the chief rc, the angular velocity vector of the chief

ωc, the relative position vector of the deputy r = rd−rc, and the control u are given along the
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bases of the LVLH frame as

rd = (rc + x)ôr + yôθ + zôh, rc = rcôr,

r = xôr + yôθ + zôh, ωc = θ̇côh,

u = uxôr + uyôθ + uzôh.

(6.10)

We assume a circular, 550 kilometer equatorial chief orbit that is unperturbed, so θ̇c and

rc are constants. In addition, aJ2 is the acceleration due to the J2 zonal harmonic, which is

the dominant perturbation for LEO satellites [193, 32]. Expressions for the J2 acceleration in

the ECI frame can be found in Curtis [32], and the standard Euler 3-1-3 rotation sequence can

be used to map the perturbations in the LVLH frame. However, it was found in [163] that the

J2 perturbation had a negligible effect on the solution for this problem, so it is ignored. The

problem data is given in Table 6.5. The time of flight was selected to be 8 orbital periods of the

chief. This problem was scaled similarly to Section 6.3 using canonical units with DU = Re.

Table 6.5: Constellation problem data.

Parameter Value Units
µ 398600 [km3/s2]

Re 6371 [km]

rc 550 [km]

θ̇c 0.0011 [1/sec]

g0 9.8065 [m/s2]

m0 260 [kg]

Tmax 0.5 [N ]

Isp 2000 [sec]

tf 8 [Chief Periods]

A phase angle of ϕ = 1◦ was selected. The unscaled initial conditions in the LVLH frame are

given by,

x0 =



−10 km
0 km

10 km

0 km/s

0 km/s

0 km/s


, xf


rc cos(ϕ)− rc

rc sin(ϕ)
0 km
0 km/s
0 km/s
0 km/s

 . (6.11)
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To solve this problem, an initial mesh was selected with 15 evenly distributed segments

with Nmin = 3 and Nmax = 9. The requested mesh accuracy was ε = 10−6. First derivatives

were supplied using AD and linear interpolation between the boundary conditions was used

as an initial guess. Note that this was an intentionally poor guess for a Cartesian space but the

solver still converged to the correct solution. This problem is a better example of the capabilities

of TOPS for shorter time-horizon trajectory optimization problems. The solution statistics are

shown in Table 6.6. From Table 6.5, it is evident that there is difference in objective values

Table 6.6: Constellation minimum-fuel problem solution information.

Solver m(tf ) [kg] Npts Nseg Mesh Iter. ϵsol CPU Time [sec]
Indirect 259.7221 - - - - -

TOPS (SNOPT) 259.7217 173 36 8 9.567× 10−7 82.67

obtained by an indirect shooting method and TOPS are negligible. Fig. 6.8 shows the 2D

and 3D minimum-fuel trajectories obtained using both methods. Note in Fig. 6.8b that the

(a) 2D (Overhead) Trajectory. (b) 3D Trajectory.

Figure 6.8: LVLH Trajectory Solutions.

trajectories lie nearly exactly on top of one another. The initial and final position labels in the

legend of Fig. 6.8 are the initial and final positions of the deputy. The deputy is deployed in a

lower orbit than the chief. Since the deputy is in a lower-altitude orbit (and hence, on a faster

orbit than the chief), it needs to overtake the chief. Thus, the deputy immediately drops its

orbit. This increases the relative velocity of the deputy and begins to increase the phase angle

between the chief and the chaser. The deputy then increases its orbital radius and uses the
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relative orbital motion to “loop” back to the chief and assume its final position in the leading

orbit.

Next, we examine the throttle and costate solutions obtained using each method. These

are given in Fig. 6.9. Note from Fig. 6.9a that TOPS captured all thrust-coast arcs, including a

(a) Throttle Solution, δ. (b) Costate Solutions.

Figure 6.9: Constellation Problem Control and Costate Solutions.

very short-duration coast arc around 8 [TU]. These short-duration arcs usually very difficult to

capture when using CSC methods and caused some difficulty when solving this problem using

the indirect shooting method. However, since the state values are arbitrary for a PS method,

absolute discontinuities can sometimes be more easily captured on the “initial pass” of the

direct method. Fig. 6.9b shows the costate solutions obtained by the indirect method and by

TOPS. For this problem, the costates are captured exactly by the solver. This problem is an

excellent demonstration of the capabilities of TOPS.
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Chapter 7

Further Work

Over the past two decades, PS methods have become extremely mature and have become

widely used throughout the engineering world due to their high-accuracy [51], sparse compu-

tational implementation [129], and both theoretical and in-practice guarantees of convergence

[68, 149, 59]. In various aerospace applications, very accurate solutions [197, 70, 151] have

been generated by PS methods using polynomial degrees of N ≤ 100. The same is true for

problems typically solved in TOPS. Due to their growth in popularity, PS methods have been

used to solve increasingly difficult problems. Oftentimes, in order to achieve the desired lev-

els of accuracy for these problems, polynomial degrees of N ≫ 100 are required. This issue

is present even for simple problems with discontinuous control solution. Consider the Moon-

Lander problem given in Section 6.1. In order to obtain an accurate solution for this simple

two-state problem using a single segment, a polynomial degree of N ≈ 400 is required (see

Fig. 7.1). However, this approach of strictly increasing the polynomial degree poses an issue

for Lagrange-interpolant based PS methods since the condition number associated with the

dynamics approximation,

DX = f(X,U , t), (7.1)

becomes very large as N increases. This is due primarily to the large condition number associ-

ated with the differentiation matrix D, which grows according to O(N2) for the Legendre PS

methods [92]. For example, the condition number for the LGR differentiation matrix is approx-

imately 103 for N = 100 (or O(N2)). To alleviate this issue, the problem must be split into

multiple intervals and the polynomial degree decreased in each interval to reduce the condition
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(a) N = 50 (b) N = 400

Figure 7.1: Single-Interval Solutions to the Moon Lander Problem

number of the differentiation matrix and obtain a solution [41, 131]. However, this process

significantly reduces the rate of convergence of the problem, and the spectral convergence rate

associated with PS methods can vanish entirely [92]. This greatly increases the computational

load associated with a PS method. However, in recent years, a new breed of “well-conditioned”

PS methods have been developed and introduced [122, 187, 38]. These new PS methods have

transitioned from using Lagrange interpolants to using Birkoff interpolants, which are a gener-

alization of Lagrange and Hermite interpolants [158]. This new form of PS methods offers

a reduction in the growth of the condition number of the dynamics approximation from

O(N2) to O(1) [92] for problems with known initial conditions. This seems to imply that the

only form of mesh refinement needed when using a Birkhoff PS method is to simply increase

the number of collocation points. In the general case, the condition number is O(
√
N) for

OCPs whose initial conditions are unknown. Much work has been done by Ross and Proulx

[144], who have developed practical methods to compute the elements of a Birkoff-based PS

method. In addition, they have developed a generalized framework for a Birkhoff PS method

that is structurally very similar to the Lagrange PS methods. As such, they should be quite easy

to implement for anyone familiar with PS methods. In fact, Ross and Proulx [144] show that

Birkhoff-based methods exhibit identical behavior regardless of the choice of Lagrange or

Chebyshev transcription points. This means that there is no difference between LGL, LGR,
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LG, and CGL solutions when using a Birkoff PS method. The reason for this is currently un-

known, and is an open area of research. See Ross and Proulx [144] and Ross [146] for further

information on the topic of Birkhoff PS methods. The authors of [144] have already imple-

mented this Birkhoff PS method into the DIDO optimization toolbox [146] with promising

results. In addition, [201] has used the Birkhoff PS method in combination with SCP methods

to successfully solve a LEO rendezvous problem. The primary focus of further work on

TOPS should be to transition from the currently implemented Lagrange PS methods to

Birkhoff PS methods.

Another practical topic of research is the development of a novel automatic scaling and

mesh-refinement algorithm that incorporates the “scaling and balancing” concepts introduced

by Ross et al. [151]. The idea presented in this study is that scaling parameters should be cho-

sen so that the magnitudes of the states and costate approximations obtained using the covector

mapping theorem should be of approximately the same order. The paper introduces this as a

process that must be performed by hand in order to increase the quality of the solution. The

author of this study proposes that this process may be automated by deriving an approximate

relationship between the scaling coefficients and the difference in magnitude of the state and

costates. This approximate relationship could (in theory) be used to automatically select new

values of scaling coefficients that will automatically re-scale the problem between mesh re-

finement iterations. This process may potentially be treated as a feedback control system, and

appropriate systems control theory can possibly be applied to solve this problem.

An specific area where TOPS needs improvement is its mesh-refinement algorithm. The

primary mesh-refinement algorithm used by TOPS is the ph-adaptive mesh-refinement algo-

rithm [131] given in Section 5.2. This algorithm is not a very efficient algorithm and throws

many unnecessary collocation points, although it is quite general. As such, a more efficient

mesh-refinement algorithm would greatly benefit TOPS, specifically for solving bang-bang

problems with many control switches. A mesh-refinement algorithm that exhibits excellent

potential was introduced by Agamawi et al. [4]. This mesh-refinement algorithm is cutting-

edge and produces efficient, accurate solutions for discontinuous problems. Additional mesh-

refinement algorithm suggestions can be found throughout Section 5.2. In addition, TOPS
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currently employs vectorized AD second derivative calculations only for fixed final time prob-

lems. In the near future, the author plans to implement correct vectorized second derivative

calculations for free final time problems.

A final area of improvement for TOPS is the implementation of “warm-starts” for the

NLP solvers used by the software. This may be accomplished by providing the costate values

obtained from a particular previous solution to a particular field of the NLP solver using a

prolongation operator [67]. This may apparently increase the performance of the solver, but

has not yet been implemented in TOPS.
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space vehicle control. Annual Reviews in Control, 52:282–315, 2021.

[112] J. R. Martins and J. T. Hwang. Review and unification of methods for computing deriva-

tives of multidisciplinary computational models. AIAA journal, 51(11):2582–2599,

2013.

[113] C. Mavriplis. Adaptive mesh strategies for the spectral element method. Computer

methods in applied mechanics and engineering, 116(1-4):77–86, 1994.

[114] J. Meditch. On the problem of optimal thrust programming for a lunar soft landing.

IEEE Transactions on Automatic Control, 9(4):477–484, 1964.

[115] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM

Journal on optimization, 2(4):575–601, 1992.

[116] A. T. Miller and A. V. Rao. Rapid ascent-entry vehicle mission optimization using

hp-adaptive gaussian quadrature collocation. In AIAA Atmospheric Flight Mechanics

Conference, page 0249, 2017.

[117] K. Mohan, M. Patterson, and A. Rao. Optimal trajectory and control generation for

landing of multiple aircraft in the presence of obstacles. In AIAA Guidance, Navigation,

and Control Conference, page 4826, 2012.

[118] B. J. Naasz, M. Strube, J. Van Eepoel, B. W. Barbee, and K. M. Getzandanner. Satellite

servicing’s autonomous rendezvous and docking testbed on the international space sta-

tion. In Annual AAS Rocky Mountain Section Guidance and Control Conference, number

LEGNEW-OLDGSFC-GSFC-LN-1040, 2011.

[119] R. D. Neidinger. Introduction to automatic differentiation and matlab object-oriented

programming. SIAM review, 52(3):545–563, 2010.

[120] M. Neuenhofen. Review of theory and implementation of hyper-dual numbers for first

and second order automatic differentiation. arXiv preprint arXiv:1801.03614, 2018.

139



[121] N. P. Nurre and E. Taheri. Comparison of indirect and convex-based methods for low-

thrust minimum-fuel trajectory optimization. In 2022 AAS/AIAA Astrodynamics Special-

ist Conference, AAS 22-782, Charlotte, NC, USA, August 7-11, 2022.

[122] S. Olver and A. Townsend. A fast and well-conditioned spectral method. siam REVIEW,

55(3):462–489, 2013.

[123] E. R. Pager and A. V. Rao. Method for solving bang-bang and singular optimal control

problems using adaptive radau collocation. Computational Optimization and Applica-

tions, 81(3):857–887, 2022.

[124] B. Pan, P. Lu, X. Pan, and Y. Ma. Double-Homotopy Method for Solving Optimal

Control Problems. Journal of Guidance, Control, and Dynamics, 39(8):1706–1720,

Aug. 2016. ISSN 0731-5090, 1533-3884. doi: 10.2514/1.G001553. URL https:

//arc.aiaa.org/doi/10.2514/1.G001553.

[125] B. Pan, X. Pan, and S. Zhang. A new probability-one homotopy method for solving

minimum-time low-thrust orbital transfer problems. Astrophysics and Space Science,

363(9):1–12, 2018.

[126] B. Pan, Y. Ma, and Y. Ni. A new fractional homotopy method for solving nonlinear

optimal control problems. Acta Astronautica, 161:12–23, Aug. 2019. ISSN 00945765.

doi: 10.1016/j.actaastro.2019.05.005. URL https://linkinghub.elsevier.

com/retrieve/pii/S0094576518317314.

[127] B. Pan, X. Pan, and Y. Ma. A quadratic homotopy method for fuel-optimal low-thrust

trajectory design. Proceedings of the Institution of Mechanical Engineers, Part G: Jour-

nal of Aerospace Engineering, 233(5):1741–1757, Apr. 2019. ISSN 0954-4100, 2041-

3025. doi: 10.1177/0954410018761965. URL http://journals.sagepub.

com/doi/10.1177/0954410018761965.

140



[128] X. Pan and B. Pan. Practical Homotopy Methods for Finding the Best Minimum-

Fuel Transfer in the Circular Restricted Three-Body Problem. IEEE Access, 8:47845–

47862, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2978246. URL https:

//ieeexplore.ieee.org/document/9023950/.

[129] M. A. Patterson and A. V. Rao. Exploiting sparsity in direct collocation pseudospectral

methods for solving optimal control problems. Journal of Spacecraft and Rockets, 49

(2):354–377, 2012.

[130] M. A. Patterson and A. V. Rao. Gpops-ii: A matlab software for solving multiple-

phase optimal control problems using hp-adaptive gaussian quadrature collocation meth-

ods and sparse nonlinear programming. ACM Transactions on Mathematical Software

(TOMS), 41(1):1–37, 2014.

[131] M. A. Patterson, W. W. Hager, and A. V. Rao. A ph mesh refinement method for optimal

control. Optimal Control Applications and Methods, 36(4):398–421, 2015.

[132] E. Pellegrini and R. P. Russell. On the computation and accuracy of trajectory state

transition matrices. Journal of Guidance, Control, and Dynamics, 39(11):2485–2499,

2016.

[133] J. Peng, C. Roos, and T. Terlaky. Primal-dual interior-point methods for second-order

conic optimization based on self-regular proximities. SIAM Journal on Optimization, 13

(1):179–203, 2002.

[134] J. T. Peterson, S. K. Singh, J. L. Junkins, and E. Taheri. Lyapunov guidance in orbit el-

ement space for low-thrust cislunar trajectories. Advances in the Astronautical Sciences

AAS Guidance, Navigation, and Control 2020, 172, AAS 20-115, 2020.

[135] A. E. Petropoulos, Z. B. Tarzi, G. Lantoine, T. Dargent, and R. Epenoy. Techniques for

designing many-revolution electric-propulsion trajectories. Advances in the Astronauti-

cal Sciences, 152(3):2367–2386, 2014.

141



[136] V. Petukhov and W. S. Wook. Joint Optimization of the Trajectory and the Main Pa-

rameters of an Electric Propulsion System. Procedia Engineering, 185:312–318, 2017.

ISSN 18777058. doi: 10.1016/j.proeng.2017.03.309. URL https://linkinghub.

elsevier.com/retrieve/pii/S1877705817314637.

[137] V. Petukhov and S. W. Yoon. Optimization of perturbed spacecraft trajectories using

complex dual numbers. part 1: Theory and method. Cosmic Research, 59(5):401–413,

2021.

[138] V. Petukhov and S. W. Yoon. Optimization of perturbed spacecraft trajectories using

complex dual numbers. part 2: Numerical results. Cosmic Research, 59(6):517–528,

2021.

[139] V. G. Petukhov. Method of continuation for optimization of interplanetary low-thrust

trajectories. Cosmic Research, 50(3):249–261, May 2012. ISSN 0010-9525, 1608-

3075. doi: 10.1134/S0010952512030069. URL http://link.springer.com/

10.1134/S0010952512030069.

[140] L. S. Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

[141] A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders, and

G. T. Huntington. Algorithm 902: Gpops, a matlab software for solving multiple-phase

optimal control problems using the gauss pseudospectral method. ACM Transactions on

Mathematical Software (TOMS), 37(2):1–39, 2010.

[142] E. A. Robertson. Synopsis of precision landing and hazard avoidance (PL&HA) capa-

bilities for space exploration. In AIAA Guidance, Navigation, and Control Conference,

page 1897, 2017.

[143] R. T. Rockafellar. Convex analysis, volume 18. Princeton university press, 1970.

[144] I. Ross and R. Proulx. Further results on fast birkhoff pseudospectral optimal control

programming. Journal of Guidance, Control, and Dynamics, 42(9):2086–2092, 2019.

142



[145] I. M. Ross. A primer on Pontryagin’s principle in optimal control. Collegiate publishers,

2 edition, 2015.

[146] I. M. Ross. Enhancements to the dido optimal control toolbox. arXiv preprint

arXiv:2004.13112, 2020.

[147] I. M. Ross and F. Fahroo. Legendre pseudospectral approximations of optimal control

problems. In New trends in nonlinear dynamics and control and their applications, pages

327–342. Springer, 2003.

[148] I. M. Ross and F. Fahroo. Pseudospectral knotting methods for solving nonsmooth op-

timal control problems. Journal of Guidance, Control, and Dynamics, 27(3):397–405,

2004.

[149] I. M. Ross and M. Karpenko. A review of pseudospectral optimal control: From theory

to flight. Annual Reviews in Control, 36(2):182–197, 2012.

[150] I. M. Ross, Q. Gong, and P. Sekhavat. Low-thrust, high-accuracy trajectory optimization.

Journal of Guidance, Control, and Dynamics, 30(4):921–933, 2007.

[151] I. M. Ross, Q. Gong, M. Karpenko, and R. Proulx. Scaling and balancing for high-

performance computation of optimal controls. Journal of Guidance, Control, and Dy-

namics, 41(10):2086–2097, 2018.

[152] J. L. Russell. Kepler’s laws of planetary motion: 1609–1666. The British journal for the

history of science, 2(1):1–24, 1964.

[153] R. P. Russell. Primer vector theory applied to global low-thrust trade studies. Journal of

Guidance, Control, and Dynamics, 30(2):460–472, 2007.

[154] M. Sagliano. Performance analysis of linear and nonlinear techniques for automatic

scaling of discretized control problems. Operations Research Letters, 42(3):213–216,

2014.

143



[155] M. Sagliano. Pseudospectral convex optimization for powered descent and landing.

Journal of guidance, control, and dynamics, 41(2):320–334, 2018.

[156] M. Sagliano, S. Theil, M. Bergsma, V. D’Onofrio, L. Whittle, and G. Viavattene. On the

radau pseudospectral method: theoretical and implementation advances. CEAS Space

Journal, 9(3):313–331, 2017.

[157] H. Saranathan and M. J. Grant. Relaxed autonomously switched hybrid system ap-

proach to indirect multiphase aerospace trajectory optimization. Journal of Spacecraft

and Rockets, 55(3):611–621, 2018.

[158] I. J. Schoenberg. On hermite-birkhoff interpolation. Journal of Mathematical Analysis

and Applications, 16(3):538–543, 1966.

[159] J. Shen, T. Tang, and L.-L. Wang. Spectral methods: algorithms, analysis and applica-

tions, volume 41. Springer Science & Business Media, 2mod011.

[160] A. Shirazi, J. Ceberio, and J. A. Lozano. Spacecraft trajectory optimization: A review

of models, objectives, approaches and solutions. Progress in Aerospace Sciences, 102:

76–98, 2018.

[161] S. Singh, J. Junkins, B. Anderson, and E. Taheri. Eclipse-Conscious Transfer to Lunar

Gateway Using Ephemeris-Driven Terminal Coast Arcs. Journal of Guidance, Con-

trol, and Dynamics, 44(11):1972–1988, Nov. 2021. ISSN 1533-3884. doi: 10.2514/1.

G005920. URL https://arc.aiaa.org/doi/10.2514/1.G005920.

[162] S. K. Singh, B. D. Anderson, E. Taheri, and J. L. Junkins. Exploiting manifolds

of L 1 halo orbits for end-to-end Earth–Moon low-thrust trajectory design. Acta

Astronautica, 183:255–272, June 2021. ISSN 00945765. doi: 10.1016/j.actaastro.

2021.03.017. URL https://linkinghub.elsevier.com/retrieve/pii/

S0094576521001302.

144



[163] S. Sowell and E. Taheri. Minimum-time and minimum-fuel low-thrust trajectory design

for satellite formation in low-earth orbits. In 2022 American Control Conference (ACC),

pages 2938–2943. IEEE, 2022.

[164] H. J. Sussmann and J. C. Willems. 300 years of optimal control: from the brachys-

tochrone to the maximum principle. IEEE Control Systems Magazine, 17(3):32–44,

1997.

[165] E. Taheri. Composite Smooth Control Method for Low-Thrust Trajectory Design:

Variable Specific Impulse Engine. In AIAA Scitech 2020 Forum, Orlando, FL, Jan.

2020. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-595-1.

doi: 10.2514/6.2020-2184. URL https://arc.aiaa.org/doi/10.2514/6.

2020-2184.

[166] E. Taheri. Optimization of many-revolution minimum-time low-thrust trajectories using

sundman transformation. In AIAA Scitech 2021 Forum, page 1343, 2021.

[167] E. Taheri. Optimization of Many-Revolution Minimum-Time Low-Thrust Trajectories

Using Sundman Transformation. In AIAA Scitech 2021 Forum, VIRTUAL EVENT, Jan.

2021. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-609-5.

doi: 10.2514/6.2021-1343. URL https://arc.aiaa.org/doi/10.2514/6.

2021-1343.

[168] E. Taheri and J. L. Junkins. Generic smoothing for optimal bang-off-bang spacecraft

maneuvers. Journal of Guidance, Control, and Dynamics, 41(11):2470–2475, 2018.

[169] E. Taheri and J. L. Junkins. Generic Smoothing for Optimal Bang-Off-Bang Spacecraft

Maneuvers. Journal of Guidance, Control, and Dynamics, 41(11):2470–2475, Nov.

2018. ISSN 0731-5090, 1533-3884. doi: 10.2514/1.G003604. URL https://arc.

aiaa.org/doi/10.2514/1.G003604.

[170] E. Taheri and J. L. Junkins. How Many Impulses Redux. The Journal of the As-

tronautical Sciences, 67(2):257–334, June 2020. ISSN 0021-9142, 2195-0571. doi:

145



10.1007/s40295-019-00203-1. URL http://link.springer.com/10.1007/

s40295-019-00203-1.

[171] E. Taheri, I. Kolmanovsky, and E. Atkins. Enhanced smoothing technique for indirect

optimization of minimum-fuel low-thrust trajectories. Journal of Guidance, Control,

and Dynamics, 39(11):2500–2511, 2016.

[172] E. Taheri, I. Kolmanovsky, and E. Atkins. Enhanced Smoothing Technique for Indirect

Optimization of Minimum-Fuel Low-Thrust Trajectories. Journal of Guidance, Control,

and Dynamics, 39(11):2500–2511, Nov. 2016. ISSN 0731-5090, 1533-3884. doi: 10.

2514/1.G000379. URL https://arc.aiaa.org/doi/10.2514/1.G000379.

[173] E. Taheri, N. I. Li, and I. Kolmanovsky. Co-state initialization for the minimum-time

low-thrust trajectory optimization. Advances in Space Research, 59(9):2360–2373,

2017.

[174] E. Taheri, N. I. Li, and I. Kolmanovsky. Co-state initialization for the minimum-

time low-thrust trajectory optimization. Advances in Space Research, 59(9):2360–

2373, May 2017. ISSN 02731177. doi: 10.1016/j.asr.2017.02.010. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0273117717301072.

[175] E. Taheri, J. L. Junkins, I. Kolmanovsky, and A. Girard. A novel approach for optimal

trajectory design with multiple operation modes of propulsion system, part 1. Acta

Astronautica, 172:151–165, 2020.

[176] E. Taheri, J. L. Junkins, I. Kolmanovsky, and A. Girard. A novel approach for optimal

trajectory design with multiple operation modes of propulsion system, part 2. Acta

Astronautica, 172:166–179, 2020.

[177] E. Taheri, J. L. Junkins, I. Kolmanovsky, and A. Girard. A novel approach for op-

timal trajectory design with multiple operation modes of propulsion system, part 1.

Acta Astronautica, 172:151–165, July 2020. ISSN 00945765. doi: 10.1016/j.actaastro.

146



2020.02.042. URL https://linkinghub.elsevier.com/retrieve/pii/

S0094576520301156.

[178] L. N. Trefethen. Finite difference and spectral methods for ordinary and partial differ-

ential equations. 1996.

[179] L. N. Trefethen. Is gauss quadrature better than clenshaw–curtis? SIAM review, 50(1):

67–87, 2008.
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Appendix A

How to Use TOPS

A.1 Example Problem Setup

This appendix section aims to provide a “tutorial” of sorts on how to solve an optimal con-
trol problem using the Tiger Optimization Software. In order to keep this section as simple
as possible, we will provide pseudoscode functions that demonstrate how to set up the Orbit-
Raising problem presented in Section 6.2. When you first setup TOPS, you must run the file
“INSTALL TOPS.m”. This file will download the required files to perform Lagrange inter-
polation, add TOPS to the MATLAB path, and look for installations of SNOPT, IPOPT, and
ADiGator. To use AD, you need to download a copy of ADiGator from Matthew Weinstein’s
Github page [190]. A simple Google search for “Matthew Weinstein ADiGator” will produce
the ADiGator Github link from which the user can download the required source code. Down-
load the .zip file and unzip the contents to the location ‘TOPS/Automatic Differentiation/’, and
the AD capabilities of TOPS will be good to go. To set up SNOPT and IPOPT, place the source
folders for these solvers (e.g., ‘snopt7’ or ’ipoptmatlab’) in the folder ‘TOPS/NLP Solvers/’.
For a free MATLAB copy of IPOPT, simply Google search “IPOPT MATLAB Bertolazzi” and
a link to the Github page with instructions to install the mexed IPOPT solver should be one of
the first results. Note that this version of IPOPT is also available as a MATLAB toolbox, so
if the user wants to install the toolbox rather than downloading the source code, they may so.
TOPS should be able to use it just fine. Remember to run “INSTALL TOPS.m” when starting
MATLAB or after installing ADiGator, SNOPT, or IPOPT.

After this, navigate to the “TOPS/problems” folder and create a new folder for your prob-
lem. The folder for this problem is already included under the problems folder as “orbit-
raising.” We create a main file called “OR main.m” that will define the problem and call TOPS
to solve it. An example main file is provided below.

1 % =================================
2 % Orbit Raising Problem Main File
3 % OR_main.m
4 % =================================
5 clear;
6 clc;
7

8 % Store user function handles in "p.func" for all the functions you need.
9 p.func.dynamics = @OR_dynamics; % A function that calculates "f".

10 p.func.mayer = @OR_mayer; % Mayer cost function.
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11 % p.func.lagrange = @OR_lagrange; % Lagrange cost function
12 p.func.event = @OR_event; % Event defects function.
13 p.func.initial = @OR_initial; % Initial guess function.
14 % p.func.path_eq = @OR_path_eq; % Additional path equality function.
15 % p.func.path_ineq = @OR_path_ineq; % Path inequality function.
16

17 % Tell the solver how many states and controls we have.
18 p.ns = 4; % x = [r, theta, u, v]
19 p.nu = 1; % u = phi
20

21 % Also, we tell it that this is NOT a free final time problem.
22 p.varTF = 0; % 0 = no, 1 = yes.
23

24 % Next, we store our problem specific constants in 'p.prob'.
25 p.prob.m0 = 1; % The initial mass.
26 p.prob.mDot = 0.0749; % The mass flow rate.
27 p.prob.T = 0.1405; % The maximum thrust.
28 p.prob.mu = 1; % Scaled gravitational parameter
29

30 % After this, we can set our initial and final states.
31 p.prob.S0 = [1, 0, 0, 1];
32 p.prob.SF = 0; % Here, r(tf) is free, theta(tf) is free, u(tf)
33 % should be 0 (circle-to-circle), and v(tf) is
34 % constrained to equal sqrt(mu/r(tf)). The
35 % only one to put here is uf.
36

37 % Define problem time horizon. Always include these arguments,
38 % even for a free-final-time problem, and use tf as a guess.
39 p.prob.t0 = 0;
40 p.prob.tf = 3.32;
41

42 % === Variable Bounds === %
43 % Here, we construct some basic state bounds. Make sure these are stored
44 % in 'p.XU', 'p.XL', etc.
45 p.XU = [4, 4, 2, 2]; % [r, theta, u, v]
46 p.XL = [0, 0, 0, 0];
47

48 % If the variable is unbounded, just set the corresponding bound to
49 % plus or minus inf. For example,
50 % p.XU = [inf, inf, inf inf];
51 % p.XL = -[inf, inf, inf, inf];
52

53 % Next, we set our control bounds. We include these to
54 % restrict the search space and improve convergence. Always
55 % store these as shown below.
56 p.UU = 2*pi; % Phi upper bound.
57 p.UL = -2*pi; % Phi lower bound.
58

59 % If we have time bounds, store them in these structures. We don't need
60 % them since this is a fixed final time problem.
61 % p.tU = 2*p.prob.tf;
62 % p.tL = 0;
63

64 % === Mesh Setup === %
65 % Next, we should define our initial mesh. If defined, p.Narray and
66 % p.Tarray will overwrite the numSegInit option.
67 p.Narray = [20,20]; % Number of points in each segment.
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68 p.Tarray = [0,0.5,1]; % Relative locations of mesh points (boundaries).
69

70 % Next, we set up some mesh options. If you include these, you don't
71 % have to define p.Narray or p.Tarray.
72 p.mesh.eps = 1e-4; % Here, we ask for a mesh accuracy of 10ˆ-4;
73 p.mesh.Nmin = 10; % Here, we set our Nmin for the ph scheme.
74 p.mesh.Nmax = 20; % Set Nmax for the ph scheme.
75

76 % This option let us set the initial number of mesh segments.
77 % We don't need it, since we already set up our mesh in p.Narray.
78 p.mesh.numSegInit = 2;
79

80 % Since we aren't using mesh refinement, we don't need them.
81 % Next, we set the maximum number of mesh refinement iterations.
82 p.mesh.Mmax = 1; % Just 1 for no mesh refinement.
83

84 % Finally, set the mesh algorithm.
85 p.mesh.algorithm = 'ph'; % Ph is your best bet. You can choose
86 % 'hp-legendre' or 'hp-u', but they may not work.
87

88 % === Solver Setup === %
89 % First, select our solver.
90 p.opts.solver = 'fmincon';
91

92 % Next, we set some options.
93 p.opts.max_iter = 20000; % Max solver iterations.
94 p.opts.constr_tol = 1e-6; % Set our solver constraint tolerance.
95 p.opts.optim_tol = 1e-6; % Set our solver optimality tolerance.
96

97 % === Scaling Options === %
98 % This option lets us choose to use the automatic affine scaling
99 % method introduced earlier. We don't need it now.

100 p.opts.scale = 0; % 0 = no, 1 = yes.
101

102 % === PS Transcription settings === %
103 % Let's select our transcription. We can pick between LGR, LGL, and CGL.
104 p.opts.transcription = 'LGR';
105

106 % === Derivative Options === %
107 % These options let us choose to use AD derivatives or not.
108 % We can pick 0, 1, or 2 for the corresponding derivative level.
109 p.opts.derivative_level = 1; % Just use AD first derivatives.
110

111 % Next, select our derivative type. We can pick between AD or complex step.
112 % 'ad-vect' is the fastest and most efficient for most problems.
113 p.opts.derivative_type = 'ad-vect'; % 'ad', 'ad-vect', or 'cs' (first
114 % derivatives only)
115

116 % === Solve the Problem === %
117 % Finally, we solve the problem by calling TOPS with p as the argument.
118 [t,X,U,f,p,L] = TOPS(p);
119

120 % For output, we get our time vector t, the states X, the controls U,
121 % the objective value f, and the costates L and an output structure p.
122

123 % === Plot Solution === %
124 U = wrapTo2Pi(U); % wrap control
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125

126 % Plot state solution.
127 figure()
128 hold on;
129 plot(t, X, '-o', 'LineWidth', 2, 'MarkerSize', 4);
130 xlabel('Time [TU]')
131 ylabel('State Solution')
132 legend('r', '\theta', 'u', 'v', 'location', 'northwest')
133 xlim([p.prob.t0 p.prob.tf])
134

135 % Plot control solution.
136 figure()
137 hold on;
138 plot(t, U, '-o', 'LineWidth', 2, 'MarkerSize', 4);
139 xlabel('Time [TU]')
140 ylabel('Control Solution')
141 xlim([p.prob.t0 p.prob.tf])
142

143 % Plot costate solution.
144 figure()
145 hold on;
146 plot(t, L, '-o', 'LineWidth', 2, 'MarkerSize', 4);
147 xlabel('Time [TU]')
148 ylabel('Costate Solution')
149 legend('L_r', 'L_\theta', 'L_u', 'L_v', 'location', 'northwest')
150 xlim([p.prob.t0 p.prob.tf])
151

152 % And we're done!

And that is it for the main file! Since we do not have any non-dynamic path equalities, inequal-
ities, or a Lagrange cost for this problem, we do not need to define those functions. However,
we will still include them to show how one should write these functions. Let us first look at the
dynamics function.

1 % =================================
2 % Orbit raising problem dynamics file
3 % OR_dynamics.m
4 % =================================
5 % Inputs:
6 % X: The state matrix.
7 % U: The control matrix.
8 % t: A time vector.
9 % p: Problem data structure.

10 % Outputs:
11 % f: The state derivative.
12 % =================================
13 function f = OR_dynamics(X,U,t,p)
14 % First, we extract any information that we need for our dynamics file
15 % from 'p'.
16 T = p.prob.T;
17 m0 = p.prob.m0;
18 mDot = p.prob.mDot;
19

20 % Next, we extract our states and controls from X and U.
21 r = X(:,1);
22 theta = X(:,2);

154



23 u = X(:,3);
24 v = X(:,4);
25

26 phi = U(:,1); % Only control we have.
27

28 % Next, we do an intermediate calculation to get A.
29 A = T./(m0 - mDot.*t); % Time-varying thrust.
30

31 % Finally, we calculate our state derivatives.
32 rDot = u; % Radial velocity.
33 thetaDot = v./r; % Angular velocity.
34 uDot = (v.ˆ2)./r - 1./(r.ˆ2) + A.*sin(phi); % Radial acceleration.
35 vDot = -(u.*v)./r + A.*cos(phi); % Angular acceleration.
36

37 % Last, we concatenate the column-vector derivatives row-wise.
38 f = [rDot, thetaDot, uDot, vDot];
39 end

It is important to note that the entire dynamics function should be vectorized, which means that
it should be able to operate on inputs whose row dimension is an arbitrary positive number.
Practically, this means that matrix operations are prohibited and element-wise multiplication
and division should be used. Additionally, the output matrix f should be preallocated at the
start of the file or created at the end, as is shown in the above dynamics file. Now that we have
our dynamics function, we can take a look at our Mayer or endpoint cost function.

1 % =====================================
2 % Orbit Raising Problem Mayer cost.
3 % OR_mayer.m
4 % =====================================
5 % Inputs:
6 % x0: The initial state (1 by Nx).
7 % xf: The final state (1 by Nx).
8 % tf: The final time.
9 % p: Problem data.

10 % Outputs:
11 % E: The Mayer cost.
12 % =====================================
13 function E = OR_mayer(x0,xf,tf,p)
14 % This function is pretty straightforward. Our cost is just the
15 % negative final radius.
16 E = -xf(1); % phi = -r(t_f)
17 end

Well that was easy! Let’s look at the Lagrange cost function, even though we don’t have a
Lagrange cost for this problem.

1 % =====================================
2 % Orbit Raising Problem Lagrange cost.
3 % OR_Lagrange.m
4 % =====================================
5 % Inputs:
6 % X: The state matrix.
7 % U: The control matrix.
8 % t: The time vector.
9 % p: Problem data.
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10 % Outputs:
11 % F: Lagrangian of the cost.
12 % =====================================
13 function F = OR_lagrange(X,U,t,p)
14 % EXAMPLE ONLY. Do not include this in the actual problem.
15

16 % If we did have a Lagrange cost, we would just place the Lagrangian
17 % in this function. It might look like this.
18 F = (T./m).*U;
19 end

The Lagrange cost function is very simple too. This function should also be vectorized. Let’s
look at the events function next.

1 % =====================================
2 % Orbit Raising Problem event constraints.
3 % OR_event.m
4 % =====================================
5 % Inputs:
6 % x0: The initial state (1 by Nx).
7 % xf: The final state (1 by Nx).
8 % tf: The final time.
9 % p: Problem data.

10 % Outputs:
11 % e: The event constraints.
12 % =====================================
13 function e = OR_event(x0,xf,t,p)
14 % We stored our known BCs earlier in p.prob.SF. This function
15 % should calculate the event constraints and output them as a vector.
16 e1 = x0(1:4) - p.prob.S0; % Here, we enforce initial conditions.
17 e2 = xf(3); % u(tf) = 0.
18 e3 = xf(4) - sqrt(1/xf(1)); % v(tf) - sqrt(mu/r(tf)) = 0.
19

20 % Finally, we stack them as an output.
21 e = [e1; e2; e3];
22 end

Next, we can take a look at the initial guess function. This function constructs an initial guess
for z.

1 % =====================================
2 % Orbit raising problem initial guess constructor.
3 % OR_initial.m
4 % =====================================
5 % Inputs:
6 % tx: Time points associated with the states (LGR and discretization ...

point).
7 % tu: Time points associated with the controls (only the LGR points).
8 % p: Problem data.
9 % Outputs:

10 % z0: Initial guess.
11 % =====================================
12 function z0 = OR_initial(tx,tu,p)
13 % First, we make a function that will linearly interpolate between
14 % our initial and final conditions at the points given in tx
15 % and tu.
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16 interp_fun = @(t,z0,zf) (zf - z0)/(t(end) - t(1)).*t + z0;
17

18 % Next, we intialize our state and control guesses.
19 S0 = []; U0 = []; % initialize
20

21 % Make an initial guess for our final states. We assume a final radius
22 % of 3 AU and a final theta of pi.
23 SFg = [3; pi; 0; sqrt(p.prob.mu/3)]; % rf = 3, thetaf = pi as our guess.
24

25 % Next, we iterate over the states to get our guess for each state/control.
26 % The 'tx' variable are the LGR support points plus the non-collocated
27 % point at the final time. Your initial guess should provide values for the
28 % states at these points ONLY, so 'tx' is provided for your convenience.
29 for i = 1:p.ns
30 S0 = [S0; interp_fun(tx, p.prob.S0(i), SFg(i))];
31 end
32

33 % Next, we interpolate between -pi and pi for our intial control guess.
34 % The parameter 'tu' is similar to 'tx' but it omits the non-discretized
35 % point. Your control guess should be obtained at all points in 'tu', so
36 % it is provided for your convenience.
37 U0 = [U0; interp_fun(tu, -pi, pi)];
38

39 % Combine the initial guess such that z0 = [X0(:); U0(:); tf0]. TOPS won't
40 % solve an initial final time problem right now because they are rare. It
41 % may solve them in the future.
42 z0 = [S0(:); U0(:)];
43 end

Again, this process is fairly simple. This just requires a bit of typing. We have finished every-
thing we need for the orbit-raising problem. However, we will look at what the path equality
and inequality functions should look like.

1 % =====================================
2 % Example path equality function.
3 % OR_path_eq.m
4 % =====================================
5 % Inputs:
6 % X: The state matrix.
7 % U: The control matrix.
8 % t: The time vector.
9 % p: Problem data.

10 % Outputs:
11 % e: A matrix of path equalities.
12 % =====================================
13 function e = OR_path_eq(X,U,t,p)
14 % EXAMPLE ONLY. Do not include this in the actual problem.
15

16 % This function should be used to define path equalities that are
17 % not part of the dynamics. Take a three-dimensional low thrust problem.
18 % We want to constrain a thrust aiming vector to have a magnitude of 1,
19 % given by norm(u_aim) = 1, where u_aim = [ur, ut, uh]. We can
20 % re-write this as u_aimˆ2 = 1. This is constructed as follows.
21 e = U(:,1).ˆ2 + U(:,2).ˆ2 + U(:,3).ˆ2 - 1;
22 end
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Note that the path equality function should also be vectorized. All equality constraints should
be written in a defect form, such that the defect is equal to zero. Finally, we will look at the
path inequality function. This is almost identical to the path equality function.

1 % =====================================
2 % Example path inequality function.
3 % OR_path_ineq.m
4 % =====================================
5 % Inputs:
6 % X: The state matrix.
7 % U: The control matrix.
8 % t: The time vector.
9 % p: Problem data.

10 % Outputs:
11 % h: A matrix of path inequalities.
12 % =====================================
13 function h = OR_path_ineq(X,U,t,p)
14 % EXAMPLE ONLY. Do not include in actual problem.
15

16 % This function should be used to define path inequalities. This is
17 % fairly straightforward. They should look like this.
18 h1 = a - b; % a ≤ b
19 h2 = c - d; % d ≥ c
20

21 % Combine them as follows.
22 h = [h1, h2];
23 end

This concludes the tutorial on how to set up a problem in TOPS! The solutions for the orbit
raising problem that were found using this code can be seen in Section 6.2. To see this code in
the TOPS solver, look under ‘TOPS/problems/orbit-raising’.
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A.2 TOPS Options

This section contains a list of default TOPS options.

Solver Settings
Setting Default Value Options Description
p.opts.solver 'fmincon' 'fmincon', ...

'snopt', ...

'ipopt'

NLP solver choice.
A string or char
vector. Only use
SNOPT or IPOPT if
on MATLAB path.

p.opts.max iter 10000 [-] Maximum number
of solver/major
iterations.

p.opts.constr tol 1e-6 [-] Constraint violation
tolerance.

p.opts.optim tol 1e-6 [-] Optimality
tolerance.

p.opts.fmincon [] All fmincon options. Store non-default
fmincon options.
Will iteration and
tolerance options
unless overwritten.

p.opts.snopt [] All SNOPT options. User SNOPT
options.

p.opts.ipopt [] All IPOPT options. User IPOPT options.

Derivative Settings
Setting Default Value Options Description
p.opts.derivative level [-] 0, 1, 2 Derivative level.

Will throw error if
this field is not set.

p.opts.derivative type 'ad-vect' 'ad', 'ad-vect',
'cs'.

Derivative method.
If 'cs', will set
derivative level to 1.

p.opts.check derivatives 0 0, 1 NLP check on AD
derivatives.

Scaling Settings
Setting Default Value Options Description
p.opts.scale 0 0, 1 Use automatic

scaling.
p.opts.scale type 'affine' 'affine', 'pjrn'. Scaling method to

use. Capable of
using the PJRN
method, but it is not
advised.
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Mesh Options
Setting Default Value Options Description
p.Narray [] Any array of

positive integers.
Number of
collocation points in
each mesh interval.
Should have one less
element that
p.Tarray.
Automatically
calculated if empty.

p.Tarray [] Any strictly
increasing sequence.
Ex: [0, 0.5, 1]

is a two interval
mesh with the knot
at half the final time.

Locations of the
mesh points. Should
include the initial
and final mesh
points.
Automatically
calculated if empty.

p.mesh.algorithm 'ph' 'ph'

'hp-legendre',
'hph'

Mesh refinement
algorithm.

p.mesh.Mmax 1 Any integer ≥ 1. Number of mesh
iterations.

p.mesh.Nmin 5 Any integer ≥ 3. Minimum
collocation points in
a segment.

p.mesh.Nmax 15 Any integer ≤ Inf. Max collocation
points in a segment.
Inf results in a pure
p method and Nmax
= Nmin results in a
true h method.

p.mesh.numSegInit 1 Any integer ≥ 1. Initial number of
evenly spaced mesh
segments.

p.mesh.eps 1e-4 Problem-dependent
value. Should
generally be ≤
1e-3.

Mesh accuracy
tolerance.

p.mesh.deltafobjtol 1e-4 [-] If change in
objective between
mesh iterations is
less than this,
algorithm
terminates.

p.mesh.uDotMax 1 In [0,1]. For hph algorithm.
p.mesh.sigma bar 1 In [0,1]. For hp-Legendre

algorithm.
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