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Abstract 

 

As agricultural technologies have progressed rapidly over the past decades, animal and plant 

phenotyping has become one of the primary research topics. Conventional phenotyping relies 

heavily on manual measurements, which are labor-intensive, time-consuming, and subject to error. 

The purpose of this thesis is to present an innovative solution for estimating animal pose and 

quantifying pine tree architecture traits using 3D stereo machine vision and deep learning 

techniques. 

It is currently necessary to undergo a complex, costly, and labor-intensive procedure for equine 

locomotion research to conduct horse kinematic gait analysis (EKGA). For the measurement of 

equine biomechanical parameters, an automated stereo video processing pipeline has been 

developed and evaluated. DeepLabCut (DLC) was trained on stereo videos of 40 walking horses 

to detect body landmarks. Landmark detection was conducted using an ARIMA filter, which had 

RMSE and MAE values of 5.14 pixels and 4.87 pixels, respectively. An analysis of stride length 

(SL) and stance duration (SD) was performed as a case study. The Faster R-CNN model and the 

mode filter were applied to perform individual hoof gait phase detection, yielding precision and 

recall values of 0.83 and 0.95, respectively. A semi-global block matching algorithm (SGBM) was 

used to estimate the depth maps, and accuracy was assessed by comparing estimated head lengths 

to measurements taken in the field. Bland-Altman analysis for DLC-detected head coordinates 

when combined with SGBM, yielded a bias of -0.014m with upper and lower limits of agreement 

(LoA) of 0.03 m and -0.061m, in that order. Moreover, Bland-Altman analysis on SD and SL also 

revealed biases of -0.02 s and -0.042 m compared to image-level manual measurements. 

Furthermore, both the upper and lower LOAs for SD were 0.01907 and -0.24 seconds, and for SL 
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they were 0.04 and -0.12 meters. In summary, the proposed method shows promising potential for 

performing EKGA in an automated, cost-efficient, and rapid manner.  

A similar approach was used to provide a high throughput phenotyping solution for pine trees 

in 3D. Loblolly pines have long been one of the most significant forest trees for producing saw-

wood in the Southern United States. The yield potential of a pine tree is significantly impacted by 

its stem and branch characteristics. A low-throughput technique, visual grading, is currently used 

in progeny trials to measure economically significant features such as stem straightness, branch 

angle, and branch diameter. To phenotype pine architecture, stereo 3D imaging and deep learning 

were combined. The stem diameter, branch angle, and branch diameter of ten loblolly pine trees 

belonging to different families were measured manually in a progeny test. An annotated dataset 

was created using contour polygons on the branches and trunks of each tree of interest. To segment 

branches and trunks using the dataset, a pre-trained Mask R-CNN model was fine-tuned and tested. 

The semi-global block matching (SGBM) algorithm was employed to reconstruct the 3D shapes 

of small trunks and thin branches. After the 3D point clouds were extracted, they were further 

processed using principal component analysis (PCA), random sample consensus (RANSAC), and 

statistical outlier removal. As compared to manual measurements, the three system-derived 

parameters had RMSEs of 0.05 m, 5.0 degrees, and 5.6 mm. Bland-Altman analysis showed that 

stem diameter, branch angle, and branch diameter all had standard deviations of 0.005 m, 5.0 deg, 

and 5.4 mm, and biases of 0.011 m, -0.4 deg, and -1.4 mm, respectively. As a precision 

phenotyping tool for the characterization of loblolly pine tree architecture, the proposed system 

shows promising potential. By facilitating the selection of tree architecture that is highly 

productive and resilient to severe weather events and climatic variability, it facilitates a better 

understanding of tree architecture. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 BACKGROUND 

This thesis aims to solve two phenotyping problems, kinematic equine gait analysis and 

extracting pine architecture traits using a combination of deep learning models and 3D machine 

vision systems and algorithms. Thus, it consists of two parts. The first, explains our approach to 

extract the biomechanical properties of horses using the aforementioned tools. Following that, the 

same tools but different algorithms were used to perform a novel and high-throughput plant 

phenotyping pipeline for loblolly pine trees. 

The following provides a background for the equine gait analysis section of the thesis. 

According to estimates, the horse industry contributes approximately 122 billion dollars to the 

U.S. economy each year (Grice, 2018). Moreover, horses do not only contribute to people's 

livelihoods in the U.S., but they also play a significant role in the agriculture, construction, tourism, 

mining, and public transportation sectors in developing countries (Behnke and Nakirya, 2012). In 

light of these economic and cultural implications, it is imperative to study biomechanical 

parameters. Equine performance is influenced by the quality of their locomotion whether they are 

used for racing, pleasure, or sport (Serra Bragança et al., 2018a). Horse owners can experience 

financial losses due to lameness and a possible end to their horse's athletic career. This is because 

their horses are unable to train or compete due to lameness. Lameness is not a disease, but merely 

a sign of a disturbance in locomotion (Dyson et al., 2008; Jeffcott et al., 1982). Lameness 

examinations are used to localize its root cause to determine possible veterinary treatment.  

Analysis of equine gait patterns is crucial to improving the breeding of horses, predicting their 

performance potential, and reducing training costs (Barrey, 1999). In addition to determining the 
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health of a horse's musculoskeletal system, this measurement can also be used to assess 

performance. Behavioral analysis and gait analysis have been shown to reduce the cost of training 

(Rose et al., 2009). Monitoring horse gait patterns regularly can assist in detecting injuries and 

lameness early. Gait analysis is also used to assess the effectiveness of training or the increase in 

fitness of the horse (Rose et al., 2009). Physiotherapy or another treatment may be necessary if the 

horse's gait patterns are abnormal or drastically different from normal. Lameness was a problem 

for 53-68% of Thoroughbred racehorses under four years of age in 1980 (Jeffcott et al., 1982). 

Based on the National Equine Health Survey of 2016, 33% of UK horses suffered from lameness 

(Shrestha et al., 2017). The biomechanical parameters of high-performing racehorses and sport 

horses are also analyzed using gait analysis (Echterhoff et al., 2018). The importance of equine 

gait analysis and its detection technique cannot be overstated.  

Detailed background information is provided below for the phenotyping section of the thesis 

regarding loblolly pine trees. In the decades between 1930 and 1990, loblolly pines grew rapidly 

due to extensive plantings and natural regeneration. Loblolly pine (Pinus taeda L.) is the major 

timber species in the southeastern United States. Approximately 13.4 million hectares (45 percent) 

of southern U.S. commercial forest land were under this type of forest in 1989. Prior to the 

European settlement of North America, only 2 million predominantly loblolly pine forests 

occupied the southern United States. Humans have shaped the growth of the loblolly pine (Schultz, 

1999). The Southern United States has greatly benefited from tree improvement programs and 

genetic engineering in forestry. The southeastern U.S. pine plantations have experienced increased 

growth for the past two decades thanks to the control of competing vegetation (Allen et al., 2005; 

Borders and Bailey, 2001; Wheeler et al., 2015; White et al., 2013). In forest genetics, a set of 

novel methodologies emerged about 1980 that allowed, for example, descriptions of individuals 
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and populations based on DNA sequence information. Scientists rooted in basic plant biology and 

ecology have developed a largely distinct community around this work, one that is often removed 

from forestry practice. A decade of increasingly sophisticated efforts led to extensive plantations 

of improved loblolly pine. This was driven by a desire to increase productivity, disease resistance, 

seedling survival, and shorten harvest rotations, leading the Southern U.S. to become the world's 

most productive timber region (Allen et al., 2005). Pinus species have been studied for their genetic 

relationships between wood density and growth capacity. A moderately positive correlation has 

been found between height and Pinus taeda (Matziris and Zobel, 1973). 

A tree's DBH (breast height diameter) measurement affects both forest management and 

progeny management procedures (silviculture treatments, thinning, and final cuttings). 

Commercial birch log harvesting from thinnings was initially done to furnish raw material for the 

manufacture of sound-knotted furniture, such as shelves and tables for the home (Kilpeläinen et 

al., 2011; Peuhkurinen et al., 2007; Uusitalo, 1997; Uusitalo and Isotalo, 2005). Tree branching 

geometry and the resulting crown shape greatly influence sunlight utilization as well as their knot 

footprint in the body of the stem of the trees. Tree crown shapes vary considerably among and 

within terrestrial biomes. A characteristic tree crown shape is nearly impossible to determine for a 

particular biome, partly due to the difficulty of describing tree crown shapes. This is because the 

shape varies depending on local growing conditions and the age of the tree. Most tropical and 

temperate forests consist of layers of tall, top-heavy trees, while the lower layers tend to be bushy. 

Many biophysical processes are indirectly impacted by branches, which are dominant factors 

controlling the exchange of matter between vegetation and the atmosphere, hydrosphere, and 

lithosphere (Li et al., 2002; Rosell et al., 2009; van der Zande et al., 2006). The majority of biomass 

in boreal forests comes from cones, but to describe pines, spruces, and larches as large cones would 
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be too simplified. As observed from satellite data, most terrestrial forests consist mostly of top-

heavy trees, i.e., biomass near the ground is relatively small compared to the above ground 

(Forrester et al., 2018; Lindh et al., 2018; Niklas, 1982). 

It is therefore essential to measure the characteristics of the stem, branches, and needles to 

determine the characteristics of a desirable genotype (Repola, 2009). There are variations between 

genotypes when it comes to stem and branch traits (Salonen et al., 1997). 

1.2 RELATED WORK 

Related work to the equine gait analysis section of the thesis is as follows. Based on the speed 

and pattern of footfall, a horse's locomotion can be classified into four major gaits. Walking is a 

four-beat gait that always has two or three feet in contact with the ground at once and is the slowest. 

Compared to the walk, the trot is faster and consists of two diagonal beats with two moments of 

suspension (all four feet are off the ground at the same time (Vinika Gupta, 2021).  

Subjective visual examination is widely accepted as an effective method for assessing most gait 

events. However, observers are limited by the restrictions of the human eye's maximum temporal 

resolution, as well as their limited perception of asymmetry and memory. Furthermore, visual 

evaluations are also subject to substantial drawbacks, notably low inter-observer agreement and a 

challenge to document gait changes consistently and interchangeably (S. Dyson, 2014; 

Hammarberg et al., 2016; Hewetson et al., 2006; Serra Bragança et al., 2018b; Thomsen et al., 

2010).  

Equine gait measurement systems were once limited to sophisticated gait labs because of 

financial and practical constraints, but they are now more affordable and practical, making them a 

routine part of everyday clinical practice. Consequently, this development raises new concerns 

about the validity and usefulness of available systems. During a given period of time, EKGA 
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examines the change in position of body segments on a plane. Time, displacement, velocity, and 

acceleration of motion are described quantitatively by linear and angular variables (Barrey, 1999). 

By extracting the precise positions of body landmarks, gait parameters can be generated to 

objectively evaluate locomotion. The most developed motion-capturing system in EKGA is based 

on marker-based optical motion capture (OMC). A horse's upper body is tracked optically through 

image processing in products such as QHorse (Qualisys AB, Sweden). Static strain gauges can 

also be used to measure joint angles and displacements (Serra Bragança et al., 2018). An alternative 

way to evaluate gait is by using inertial measurement units (IMUs) (Serra Bragança et al., 2020) 

like Equinosis (Equinosis LLC, USA) (Bosch et al., 2018). It has been reported that optoelectronic 

and IMU-based motion systems can be used to evaluate equine hoof movement. It appears that the 

IMU sensors are more accurate when analyzing fast motions, such as landing durations and 

breakover durations (Hagen et al., 2021). The position of the sensors on a horse, however, affected 

the kinematic data obtained from EKGA systems equipped with inertial sensors. A sensor-based 

method is also limited by the number and position of markers that are determined beforehand, and 

therefore, cannot be altered after data collection (Moorman et al., 2012). 

Since computer vision and deep learning have advanced rapidly in recent years, markerless 

motion capture technology has improved substantially. The development of deep learning-based 

video analytics tools has led to the development of markerless animal pose estimation tools. As an 

example, DeepLabCut (DLC) and LEAP pioneered the use of deep convolutional neural networks 

(CNNs) to detect body landmarks from a single camera frame (Mathis et al., 2018; Pereira et al., 

2019). With transfer-learning and data augmentation techniques, it was demonstrated that DLC 

could achieve near-human-level labeling accuracy on a small dataset (Mathis et al., 2018; Vonstad 

et al., 2020). An imaging system with multiple views can be used for markerless 3D pose 
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estimation by capturing a scene from numerous cameras at different viewing angles and 

triangulating the body landmarks' coordinates from these views. There have been a number of deep 

learning-based software tools developed, including a 3D version of DLC, AniPose, DANNCE, 

FreiPose, and DeepFly3D (Bala et al., 2020; Dunn et al., 2021; Günel et al., 2019; Karashchuk, 

Rupp, et al., 2021; Karashchuk, Tuthill, et al., 2021; Marshall et al., 2021; Zimmermann et al., 

2020). Even though multi-view imaging systems are highly accurate, they can be costly to manage 

and require precise calibration of the camera when setting up a new scene. In conjunction with 

pose estimation software tools, a single binocular stereo camera can provide RGB and depth 

images that offer a cost-effective and easy-to-use alternative to 3D animal motion capture. In field 

conditions, it is possible to relocate stereo cameras without calibration quickly. 

Below is the relevant work to the phenotyping of loblolly pine trees presented in the thesis. 

Using tools such as tape measures, calipers, protractor, and hypsometers, it is possible to measure 

tree height, stem diameter, and branch characteristics (Fleck et al., 2011). As it is critical to 

measure tree attributes and characteristics accurately when conducting progeny trials and genotype 

selection (Næsset et al., 2004). It is true that direct measurement methods are the most reliable and 

accurate, however, they cannot be repeated for large fields. To address the aforementioned issue, 

allometric models are sometimes fitted to empirical samples based on basic tree metrics such as 

stem diameter (Dhôte et al., 2000; Gaffrey et al., 1998; Tarp-Johansen et al., 1997). Fitting a model 

to measurements to make an estimation necessitates a time-consuming procedure of model 

calibration and uncertainty estimation, which again, demands manual and human-level 

measurements (Gupta et al., 2005). In the literature, three main non-contact techniques are used, 

including sight-, range sensing-, and image-based methods. Sight-based methods are commonly 

used in forest inventories and progeny test since pine tree morphological characterization relies on 
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expert visual assessment. Assessing quality attributes requires extensive fieldwork and is only 

possible in surveys based on samples (Kankare et al., 2014).  

LiDAR (light detection and ranging) and terrestrial laser scanning (TLS) are the most widely 

employed methods for digitalizing tree architectures based on range sensing (Gorte et al., 2004; 

Kankare et al., 2014; Liang et al., 2016; Pfeifer et al., 2004; Srinivasan et al., 2014). In spite of the 

fact that LiDAR can be used to rebuild tree architecture (Tienaho et al., 2022), LiDAR data 

collection is time-consuming, has low spatial resolution, and is expensive (Wilkes et al., 2017). 

Further, TLS produces a significant amount of data that must be processed, requires specialized 

expertise, and is extremely costly to process. Therefore, using the aforementioned tools to perform 

a high-throughput pine tree architecture analysis in a progeny test field remains difficult because 

of the high density of pine trees and the occlusion caused by branches and needles. 

Even though 2D methods are generally used in image-based phenotyping techniques, they 

cannot accurately represent three-dimensional (3D) quantities (Gibbs et al., 2018; Kaminuma et 

al., 2004). Studies have demonstrated that 3D modeling of plants provides more accuracy and 

robustness (Apelt et al., 2015). It is essential to use 3D imaging for the phenotyping of plants in 

order to track precise geometry (Ziamtsov and Navlakha, 2020). As well as providing quantitative 

descriptions, 3D imaging also permits measurements of additional traits not possible with 2D 

images (Paulus et al., 2014). There is, however, no research that employs image-based approaches 

to rebuild pine trees in the field. Meanwhile, recent developments in multi-view stereo vision 

(MVS) have been made for a variety of other plants. Stereo machine vision uses more than two 

images to reconstruct 3D canopy models using passive imaging. Nguyen et al. (2016) use this 

method to reconstruct a plant canopy's 3D structure by using information like height, width, 

volume, and leaf area. A canopy model has been successfully reconstructed with this method (Bao 
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et al., 2019; Salas-Fernandez et al., 2017). To reconstruct 3D models, Klodt and Cremers (2015) 

employed a multiple-view imaging method. Two webcams and a time-of-flight (ToF) camera were 

combined by Li and Tang (2017) to develop a low-cost three-dimensional plant morphological 

trait analysis system for corn seedlings. By using a low-cost setup, this study shows that it is 

possible to reconstruct a 3D scene at high spatial resolution. Inspired by the aforementioned studies 

in high-throughput plant phenotyping and with the recent developments in commercial RGB-

Depth cameras, a 3D reconstruction of a scene can be achieved with a one-time factory-calibrated 

commercial binocular camera (Paul et al., 2020). 

Plants and fruits, including apples, oranges, and other fruits, have been segmented and counted 

through deep learning-based approaches (Chu et al., 2021; de Melo et al., 2020; Ganesh et al., 

2019; Yikun Liu et al., 2021). As well, some studies have used convolutional neural networks to 

detect and segment sorghum leaves and stems (Baweja et al., 2018; Sodhi et al., 2017; Xiang et 

al., 2021). Deep learning models have been successfully used to segment plant organs, such as the 

work done by Zhang et al. (2017), which identifies branches in apple trees using R-CNN networks. 

1.3 RESEARCH OBJECTIVES 

The purpose of the first study was to investigate the feasibility of combining stereo 3D machine 

vision and deep convolutional neural networks (CNNs) to automate EKGA in the field. The 

specific research objectives were to develop and evaluate a method for tracking body landmarks 

in 3D space and measuring stride lengths and stance durations from side-viewing stereo videos of 

horses in motion. This pipeline was designed to produce SL and SD as outputs because they play 

a crucial role in validating hypotheses in EKGA and lameness detection research. In the future, we 

will be able to apply the developed pipeline to studies focusing on equine locomotion, such as gait 

and sports performance, in which phenotyping of biomechanical parameters is paramount. 
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The second objective in this thesis was to examine whether it would be feasible to quantify 

branch and stem characteristics of loblolly pine trees using low-cost and non-contact stereo 

machine vision, deep learning, and image and point cloud processing methods. The specific 

research objectives were to 1) develop an image processing pipeline to measure stem diameter, 

branch angle and branch diameter, and 2) evaluate the performance of the pipeline in measuring 

the aforementioned traits at the different height levels along the tree stem. 

1.4 THESIS OUTLINE 

The thesis consists of two journal articles that describe our experiments combining deep 

learning models and stereo cameras: (1) equine kinematic gait analysis using stereo videography 

and deep learning: stride length and stance duration estimation, and (2) phenotyping of architecture 

traits of loblolly pine trees using stereo machine vision and deep learning models: stem diameter, 

branch angle, and branch diameter. The introduction and objectives of the study are presented in 

Chapter 1. The first article (Chapter 2) describes the study in which our developed system was 

used to identify and track horse body landmarks as well as measure stride length and stance 

duration. In the second article (Chapter 3), a detailed description of the developed system for the 

3D reconstruction of loblolly pine trees as well as the measurement of their traits using point cloud 

analysis tools was presented. A general conclusion and a list of recommendations for future 

research are drawn in Chapter 4. 
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CHAPTER 2. EQUINE KINEMATIC GAIT ANALYSIS USING 

STEREO VIDEOGRAPHY AND DEEP LEARNING: STRIDE 

LENGTH AND STANCE DURATION 

Highlights 
• Stereo machine vision and deep learning techniques were investigated for in-field equine kinematic gait analysis.  
• The proposed pipeline tracks equine body landmarks in 3D space and estimates stride length and stance duration.  
• The system provides a cost-effective, rapid, and easy-to-use tool for equine locomotion research. 

2.1 ABSTRACT 

Equine kinematic gait analysis (EKGA) currently requires a complicated, expensive, and labor-

intensive procedure for equine locomotion research. An automated stereo video processing 

pipeline was developed and evaluated for measuring equine biomechanical parameters. Using 

stereo videos of 40 different walking horses, a DeepLabCut (DLC) model was trained to detect 

body landmarks in individual frames. With an ARIMA filter, the landmark detection had RMSE 

and MAE values of 5.14 pixels and 4.87 pixels, respectively. As a case study, methods were 

developed to extract stride length (SL) and stance duration (SD). Individual hoof gait phase 

detection was achieved using a fine-tuned Faster R-CNN model and a mode filter, yielding 

precision and recall values of 0.83 and 0.95, respectively. The semi-global block matching 

(SGBM) algorithm was used to estimate depth maps and the accuracy was assessed by comparing 

head length estimation with in-field measurements. A Bland-Altman analysis for DLC-detected 

head coordinates when combined with SGBM, yielded a bias of -0.014m with upper and lower 

limits of agreement (LoA) of 0.03 m and -0.061m, respectively. Furthermore, Bland-Altman 

analyses on SD and SL when compared to image-level manual measurements showed biases of -

0.02 s and -0.042 m, respectively. Also, upper and lower LOAs were 0.01907s and -0.24 s for SD 
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and 0.04 m and -0.12 m for SL. The proposed method shows promising potential in performing 

EKGA in an automated, cost-effective, and rapid manner.  

Keywords. 3D Reconstruction, Animal Pose Estimation, Deep Learning, Equine Kinematic 

Gait Analysis, Stereo Matching. 

2.2 INTRODUCTION 

It is estimated that the total annual contribution of the horse industry to the U.S. economy is 

approximately 122 billion dollars according to (Grice, 2018). Moreover, horses’ relevance is not 

specific to the U.S, as they contribute to people's livelihoods specifically in developing countries 

in a wide range of sectors, including but not limited to agriculture, construction, tourism, mining, 

and public transportation (Behnke and Nakirya, 2012). Due to such economic and cultural impacts, 

studying biomechanical parameters is of paramount importance. This can be helpful in the 

performance evaluation of horses and to determine the health of a horse’s musculoskeletal system. 

It has been demonstrated that studying gait and behavioral analysis can potentially reduce training 

costs (Barrey et al., 1995; Rose et al., 2009). Horse training effectiveness and fitness evaluations 

can be done via qualitative or quantitative analysis of the biomechanical properties of the horses. 

A variety of methods have been proposed to perform an analysis of the motion of horses to measure 

temporal stride parameters. Typically, veterinarians evaluate a horse's musculoskeletal system 

through a clinical examination where an expert observes the horse walking and trotting "in hand” 

(led by a person) to find any visible asymmetries in its movements and to identify the localization 

of lameness (Pfau et al., 2016). However, this approach is subjective and is based on the examiner's 

technical knowledge (Keegan et al., 2000) which can lead to different diagnoses from different 

examiners. Hence, equine kinematic gait analysis (EKGA) technologies that are quantitative, 

objective, and automated are of great value to a wide range of applications.  
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EKGA examines the change in position of body segments on a given plane for a determined 

period. Quantitatively, motions are described by linear and angular variables relating to time, 

displacement, velocity, and acceleration (Barrey, 1999). One method to objectively evaluate 

locomotion lies in generating gait parameters based on extracting the precise positions of body 

landmarks. Marker-based optical motion capture (OMC) systems are by far the most developed 

motion-capturing methods in EKGA. In commercial marker-based products such as QHorse 

(Qualisys AB, Sweden), reflective markers on the upper body of a horse are tracked optically via 

image processing techniques. The angle and displacement of a joint can also be measured using 

strain gauges (Serra Bragança et al., 2018). Another approach is to use inertial measurement units 

(IMUs) (Serra Bragança et al., 2020) such as Equinosis (Equinosis LLC, USA) as a technique of 

gait evaluation (Bosch et al., 2018). A few reports have examined the comparability of 

optoelectronic and IMU-based motion systems to evaluate equine hoof motion. When analyzing 

fast motions like landing duration and break over duration, the two systems show less agreement 

while the IMU sensors seem to perform better (Hagen et al., 2021).  However, sensor positions on 

a horse were found to affect the kinematic data derived from EKGA systems equipped with inertial 

sensors (Moorman et al., 2012). Another limitation of sensor-based methods is the number and 

placement of markers that need to be determined beforehand, and thus, unalterable after data 

collection.  

In comparison, markerless motion capture technology has been significantly improved due to 

the rapid advancements in computer vision and deep learning in recent years. Various deep 

learning-based video analytics tools have been developed for markerless animal pose estimation. 

For instance, DeepLabCut (DLC) and LEAP were the first to exploit the use of deep convolutional 

neural networks (CNNs) for animal pose estimation by performing frame-based body landmark 
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detection from a single camera (Mathis et al., 2018; Pereira et al., 2019). It was demonstrated that 

DLC could achieve near-human-level labeling accuracy on a small dataset thanks to transfer-

learning and data augmentation techniques (Mathis et al., 2018; Vonstad et al., 2020). For 

markerless three-dimensional (3D) pose estimation, a multi-view imaging system is needed to 

capture a scene from many cameras at different viewing points and triangulate the 3D coordinates 

of the detected body landmarks. Various deep learning-based software tools have been developed 

including the 3D version of DLC, AniPose (Karashchuk, Rupp, et al., 2021), DANNCE (Dunn et 

al., 2021; Karashchuk, Tuthill, et al., 2021), OpenMonkeyStudio (Bala et al., 2020), FreiPose 

(Zimmermann et al., 2020), and DeepFly3D (Günel et al., 2019). While highly accurate, multi-

view imaging systems are costly, difficult to manage, and require accurate camera calibration 

during setup for new scenes. A single binocular stereo camera that provides RGB and depth images 

may offer a cost-effective and easy-to-use alternative for 3D animal motion capture in conjunction 

with the pose estimation software tools. A single stereo camera can be easily relocated without 

calibration to accommodate constraints under field conditions.  

This study investigated the feasibility of combing stereo 3D machine vision and deep 

convolutional neural networks (CNN) to automate EKGA under field conditions. The specific 

research objectives were to develop and evaluate the performance of a data processing pipeline 

that can track body landmarks in 3D space and measure stride length (SL) and stance duration 

(SD) from side-viewing stereo videos of horses in locomotion. As a case study, SL and SD were 

selected to be the outputs of this pipeline because of their paramount importance in verifying 

various hypotheses in EKGA and lameness detection studies (Arkell et al., 2006; Keegan, 2007). 

Our developed pipeline can then be applied to equine genetic studies focusing on locomotion, such 

as gait and sports performance, which require precise phenotyping of biomechanical parameters.  
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2.3 MATERIALS AND METHODS 

2.3.1 Stereo Video Data Collection 

The developed stereo video acquisition system consisted of a ZED2 stereo camera 

(StereoLabs, France), a Jetson Xavier NX embedded computer (NVIDIA, USA), and a Wi-Fi 

router (TP-Link, China) as shown in Figure 2-1a. A web-based user interface was developed using 

Robot Operating System 2 (DiLuoffo et al., 2018) for camera control and monitoring on mobile 

devices (i.e., a laptop). The system was put on a tripod at a height of 1.5 m off the ground. The 

stereo videos were saved in the SVO format (a proprietary file format created by StereoLabs) at 

15 frames per second (FPS) and with a resolution of 2208 × 1242 pixels for both the left and right 

cameras of the ZED2. The angular field-of-view of the stereo camera was 110° × 70°, horizontal 

× vertical, respectively. Each horse was handled to move from the left side to the right side of the 

stereo video frame. The distance between each horse in motion and the camera was maintained at 

approximately 3m. The duration of the videos varied between 65 and 85 frames. The horses 

included different breeds (i.e., Warmbloods, Morgans, Quarter Horses, and Thoroughbreds), and 

different coat colors. Prior to video recording, a single individual collected body measurements of 

each horse as outlined in (Brooks et al., 2010). Additionally, a variety of outdoor lighting 

conditions (i.e., sunny, cloudy, overcast, backlit, etc.) were present in the dataset. A subset of the 

collected left-view images of the stereo videos in the dataset is shown in Figure 2-1b. Nineteen out 

of the forty horses were diagnosed by a veterinarian to have some levels of difficulty walking 

during the data collection. Those horses were diagnosed with either injury or inherent physical 

problems such as suspensory and soft tissue damage, sciatic issues, muscular lameness, and 

navicular syndrome. 
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Figure 2-1. (a) Stereo video acquisition system: a ZED2 stereo camera, a Jetson Xavier NX embedded computer, a 
Wi-Fi router, and a monitoring device; and (b) sample images from the stereo video dataset that show different horse 
breeds under various lighting conditions.  

Table 2-1 depicts the intrinsic parameters of the ZED2 stereo camera.  Forty trotting or 

walking horses were video recorded at the Auburn University Equestrian Center 

(32.5856297220309, -85.5088532) during July of 2021. 

Table 2-1. Intrinsic parameters of the used ZED2 stereo camera. Where C! and C" are the coordinates of the 
principal point of the left lens of the stereo camera in the image coordinate system. f is the focal length and T! is the 
baseline between the two lenses of the ZED2 stereo camera. 

Stereo Camera Parameters Values (Unit) 

𝒇 1058.75 Pixels 

𝐂𝐱 1133.64 Pixels 

𝐂𝐲 659.75 Pixels 

𝐓𝐱 0.12 m 

2.3.2 Data Processing Pipeline  

The stereo video processing pipeline is composed of three main modules: body landmark 

detection, hoof stride phase detection, and stereo 3D reconstruction. As depicted in Figure 2-2, the 

first step is to detect the body landmarks from the 2D video frames using DLC. Next, each hoof 

and its stride phase (i.e., stance or swing) was detected using a Faster R-CNN (Ren et al., 2015) 

object detector. Lastly, the detected body landmarks were projected back to 3D space using a semi-
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global block matching algorithm (SGBM) (Hirschmuller, 2008). Two stride parameters, SL and 

SD, were used as case studies to evaluate the system. The implementation details are described in 

the following sections.  

 

Figure 2-2. The proposed pipeline is designed to detect equine body landmarks, track those landmarks in the 3D space, 
and determine stride length and stance duration as case studies. Three points X, Y, and Z indicate how the 3D 
landmarks are positioned, specifically the hooves. In the gait cycle, Phase is the hoof phase, e.g., Stance or Swing. 

2.3.3 Body Landmark Detection and Filtering  

A DLC key point detection model was fine-tuned to detect equine body landmarks in individual 

video frames from the left lens of the stereo camera. Twenty frames were extracted from every 

video for annotation. DLC offers three methods to sample the frames: k-means clustering-based 

sampling, random sampling, and manual sampling. The k-means clustering method performs a k-

means clustering of the pixel values in the video frames. A pre-defined number of frames are then 

sampled from the pool of grouped images. This sampling method aims to include different visual 

variations from all the available scenes. The k-means clustering method was used to provide equal 

opportunity for the different horse skin colors, backgrounds, and lighting conditions to be 

represented in the dataset. Such diverse dataset generates a model that is more robust to be applied 

in outdoor field conditions. The number of clusters was set to 10, and two frames were sampled 
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from each cluster. The sixteen annotated body landmarks consisted of the hooves (4), the fetlocks 

(4), the knees (2), and the hocks (2), as well as nostril, poll, wither, and hip as shown in Table 2-

2. For the DLC model 1200 frames were annotated, with 800 for model training and 400 for testing. 

Table 2-2. Detailed descriptions of the DLC-based equine body landmark detection and Faster R-CNN-based gait 
phase detection datasets and models from 40 videos. 

Model Backbon
e Pre-trained Categories Total Tool Training Testing 

DeepLabC
ut (DLC) 

Version 
2.2 

ResNet-
101 

ImageNet 
Dataset 

Poll 810 

DLC 
GUI 

Annotation 
Tool 

20 Frames 
per Video, 800 
Frames in Total 

  

10 Frames 
per Video, 400 
Frames in Total 

Withers 814 

Nostril 803 

Front Right Hoof 831 

Front Right Fetlock 834 

Front Right Knee 823 

Front Left Hoof 823 

Front Left Fetlock 842 

Front Left Knee 841 

Rear Right Hoof 834 

Rear Right Fetlock 821 

Rear Right Hock 845 

Rear Left Hoof 812 

Rear Left Fetlock 848 

Rear Left Hock 813 

Hip 810 

Faster R-
CNN 

ResNet-
101 
DC5 3X 

COCO 
Dataset 

Swing 1066 
COCO 

Annotator 
80% of 

Total 
20% of 

Total Stance 2133 

Occluded 24 

 

In many cases, landmarks such as withers, nostrils, and hips were obvious and relatively simple 

to annotate. However, landmarks such as the hoof, fetlock, hock, and knee of the left limbs could 

be occluded by the right limbs due to the side viewing angle. Body landmarks that were occluded 

were annotated based on the horse pose where they were most likely to be found. The key point 

detection performance was evaluated on seven landmarks (i.e., four hooves, nostril, poll, and 

wither) due to their paramount importance in equine gait analysis studies. ResNet101 was selected 

as the backbone for the DLC model. To train the model, the number of iterations was set to the 
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value of 530,000 and a step-based learning rate decay method was used to set the learning rate to 

be 0.01, 0.005, and 0.002 for each one-third of the number of iterations. To add more variation to 

the training set, data augmentation was employed. A series of image transformations were applied 

to the annotated frames including gaussian noise (10%), elastic transformation, random rotation (0 

to 15 deg), and motion blur. After an initial model training, the performance of the trained body 

landmark detector was evaluated using the test dataset. The detected landmarks were assessed both 

visually and based on the DLC-derived confidence level. If the detections were not associated with 

the correct body part or if they had a confidence level below 45%, they were selected to be 

annotated by a user to correctly update the body landmark. The newly annotated frames were then 

added to the previously developed training set. Finally, the pre-trained model was retrained with 

the new training dataset. The evaluation procedure described above was repeated three times to 

achieve a more accurate model.  

As the DLC-predicted body landmark locations contain some errors and occasional extreme 

outliers, an autoregressive integrated moving average (ARIMA) filter in the post-processing tools 

of DLC was used to smooth the hoof trajectories as outlined and incorporated by (Mathis et al., 

2018) in the DLC’s framework. A nonseasonal ARIMA model is specified as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), 

where p, d, and q refer to the number of autoregressive terms, the degrees of differentiations, and 

the number of lagged forecast errors, respectively (Kotu and Deshpande, 2019). An ARIMA (3, 0, 

1) model was fitted to the landmark detection coordinates. Considering that the horses' motion was 

almost perpendicular to the camera, constant averaging with respect to one axis is appropriate. 

Plots of the sample autocorrelation function (ACF) and partial autocorrelation function (PACF) of 

the hoof trajectory were used to identify the orders. After the third lag, the PACF graph of the 

trajectory cut and that was used to determine the autoregressive term. The moving average (MA) 
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term was determined by plotting the ACF.  This filter was applied to generate a one-step-ahead 

forecast. The variance of the filtered trajectory was then calculated. For every landmark in the 2D 

space, the algorithm crossed out the ones that fall outside of the computed variance and replaced 

them with predicted coordinates. 

2.3.4 Hoof and Gait Phase Detection and Filtering 

To determine the gait phases of individual hooves, a pretrained Faster R-CNN model (Ren et 

al., 2015) with a Resnet-101 DC5 3X backbone in Detectron2 (Wu et al., 2019) was fine-tuned to 

detect the bounding boxes of hooves and the associated swing phase and stance phase of the gait. 

The number of epochs was set to 500 and the base learning rate was set to 0.001. The learning rate 

was decreased during training using a step-decay method with a minimum value of 0.0005. The 

size of each patch and the number of regions of interest per image were set to 2 and 128, 

respectively. COCO Annotator V0.11.1 (Brooks, 2019) was used to draw a bounding box around 

each hoof and assign a gait phase. If the sole of a hoof was visually determined to be more than 

five pixels away from the ground or to form an angle of five degrees or higher from the ground 

surface, that hoof was labeled as "Swing". Hooves that were in contact with the ground were 

labeled, as "Stance" as outlined by (Clayton, 2004). Hooves that were covered by another hoof 

were labeled as "Occluded". A series of data augmentation techniques (i.e., resizing, changing 

brightness, altering contrast and saturation, and flipping) were randomly applied to the frames to 

increase the generalization capacity of the trained model. As shown in Table 2, the numbers of 

annotated instances for "Swing", "Stance", and "Occluded" were 1066, 2133, and 24, respectively. 

For training the model, 80% of the total 810 frames were used and the remaining 20% was used to 

evaluate its performance. 
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2.3.5 Gait Phase Assignment to Hoof Landmarks 

The Faster R-CNN-based gait phase detection results were assigned to the corresponding DLC-

based hoof landmarks in each frame. Initially, all DLC-based hoof landmarks were labeled as 

"Neutral". The 2D coordinates were checked to see if the detected hooves were within the 

bounding box of the Faster R-CNN model output. For all the hooves, the label of the bounding 

boxes was associated with them, in which their DLC detected coordinates fell and had the shortest 

Euclidean distance with the center of the aforementioned bounding box. This procedure was 

applied to each hoof throughout the video. Using these two models together enabled the 

determination of the 2D coordinates of the hooves and their gait phase. This combined algorithm 

was evaluated by manually annotating the gait phases of each hoof in each frame of the 40-video 

dataset. The result was a comprehensive dataset with 6872 instances of "Stance", 4582 instances 

of "Swing", and 178 instances of "Occluded". 

2.3.5.1 Hoof and Phase Detection Filtering  

To measure distance in metric units (e.g., meter), a stereo 3D reconstruction of the 2D image 

landmark coordinates was needed. For each rectified stereo image pair, a disparity map was 

generated by using the semi-global block matching algorithm (SGBM) in the OpenCV library 

(Bradski, 2000). Note that stereo image rectification was automatically performed by the ZED 

software development kit (SDK) during image acquisition. SGBM has shown the ability to handle 

untextured areas with a smoothness term in its optimization objective function (Hirschmuller, 

2008), which is suitable for horse bodies that have regions of homogenous coat colors. Considering 

the stereo camera baseline, its minimum imaging distance, a matching window size of 5 pixels, a 

disparity range of 100 pixels, the disparity map and the stereo camera parameters, the 2D landmark 

coordinates were projected back into 3D space using a set of equations (Equation 2-1): 
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where x, y, and z are the coordinates of the landmark in 3D space, u and v are the coordinates 

in 2D image space of a landmark in the left image, 𝑊 is a dummy variable and 𝑑 is the calculated 

disparity for each pixel location. Optical center coordinates for the left lens (c# = 1133.64	pixels 

and c$ = 659.827	pixels) were extracted from the ZED2 camera calibration file, as well as its 

focal length (f = 1058.75	pixles) and baseline (T# = 0.1200m). 

2.3.6 Stance Duration and Stride Length Estimation 

As a case study for the proposed pipeline, SL and SD were selected to be the output 

biomechanical parameters. SL and SD hold valuable information on the biomechanical soundness 

of horses as discussed previously. For instance, limb lameness has been shown to cause shorter 

stance duration and shorter stride length in horses (Barrey, 1999; Moorman et al., 2012; Nakamura 

et al., 2015; Peham et al., 2001; Serra Bragança et al., 2018). Literature has also shown that stride 

length correlates with horse size, so it is a reliable indirect measure of pipeline performance (Hole 

et al., 2002; Rooney et al., 1991). Thus, regression and pair-wise correlation were conducted to 

determine if an association exists between the pipeline’s SL, SD and body measurements. SL and 

SD were examined in the horses diagnosed with lameness for outliers. 

To determine the duration of a stance, if the same hoof phase was seen in more than two 

consecutive frames, those frames are counted as valid for that phase. In this way the number of 
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frames in which each hoof was in the stance or swinging was determined. SD was calculated as 

the frame count for a stance phase divided by frame rate (i.e., 15 FPS). The average stance location 

was calculated in 3D space and a Euclidean distance between two consecutive stance locations 

was measured. Using this method, the SL of every detected hoof was calculated. An image level 

evaluation was conducted by manually annotating all the landmarks of interest, such as the hooves, 

nostrils, and poll, in all the consecutive frames in the 40-video dataset. It resulted in a dataset of 

2915, 2907, 2901, and 2908 instances for "Right Front Hoof", "Left Front Hoof", "Right Rear 

Hoof", and "Left Front Hoof", respectively.  

2.4 EVALUATION METHODS 

Individual modules in the proposed data processing pipeline were assessed by using the metrics 

discussed below. Furthermore, ground truth values of SD and SL were obtained using manual 

annotations of landmarks and gait phases. 

2.4.1 Landmark Detection Assessment 

 To assess the accuracy of the 2D keypoint detection algorithm (DLC) to correctly estimate the 

coordinates of the body landmarks, root mean square error (RMSE) and mean absolute error 

(MAE) were used. RMSE is calculated using by (Equation 2-2) 
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where 𝑌X = 	 (𝑢,[ 𝑣\)  is the predicted 2D coordinates of the landmark in pixels, 𝑌 = 	 (𝑢, 𝑣) is the 

manually labeled coordinates of the same landmark, 𝑛 is the total number of the body landmark 

detections, and finally, 𝑖 is the present frame in a sequence of frames. This RMSE value is 
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uniformly averaged for u and v values to get one RMSE. Similarly, to calculate MAE, Equation 

2-3 was utilized. The parameters are the same as Equation 2-2. 
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2.4.2 Hoof and Phase Detection Evaluation 

Average precision (AP) (Zhu, 2004) was used to evaluate the accuracy of the Faster R-CNN-

based hoof and gait phase detection model. In the field of object detection, AP is a popular metric 

for evaluating object detectors (e.g., Faster R-CNN and SSD) by calculating the average precision 

value over a range of recall values between 0 and 1. Here, AP is calculated as the area under the 

precision-recall curve, generated by Detectron2. The performance of Faster R-CNN in the hoof 

gait phase detection was assessed both in the training and testing datasets using the mean AP value 

for the "Swing" and "Stance" phases. 

2.4.3 Estimation of the Phase of a Hoof Using Coordinates Evaluation 

For each hoof coordinates that were identified by DLC, accuracy, precision, and recall of the 

associated hoof cycle phase were computed. These phases were determined by the trained Faster 

R-CNN model. To assess the efficiency of the post-processing procedures, these values were 

computed before and after the mode based and ARIMA filtering methods were applied. Equation 

2-4 was used to calculate precision. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2-4) 

where true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) 

were based upon manual labeling of the gait phases of hooves and comparing them to the outputs 
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of the pipeline. Precision, recall, and F1 were calculated using Equations 2-5, 2-6, and 2-7. Those 

metrics were used to assess the phase detection algorithm both before and after including the post-

processing techniques. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (2-5) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐺𝑟𝑜𝑢𝑛𝑑	𝑇𝑟𝑢𝑡ℎ	𝑂𝑏𝑗𝑒𝑐𝑡𝑠	 (2-6) 

 
𝐹)𝑠𝑐𝑜𝑟𝑒 =

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

(2-7) 

 

2.4.4 Stereo 3D Reconstruction Evaluation 

Head length was used to evaluate the stereo 3D reconstruction accuracy as it should not change 

throughout the videos. In-field measurement is fairly accurate compared to SL and SD which 

cannot be measured reliably with tape measures. In the field ground truth head length was 

measured from the two top corners of the nostrils straight to the front of the poll using a tape 

measure as defined in the previously mentioned protocol in data collection section. The accuracy 

of the 3D reconstruction module was assessed using a semi-automated method that used 

annotations from all the nostrils and polls body marks for all frames in the 40 videos collected for 

the dataset. A dataset of 2904 instances for nostril and 2912 instances for poll was created from 

the annotated images. In the semi-automated method, head length was computed as the Euclidean 

distance between nostril and poll in 3D space for each frame using manual image annotations and 

SGBM. Then, those measurements were averaged over all frames in a video for evaluation. The 

semi-automated head length aimed to assess the accuracy without considering the error introduced 
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by DLC-based landmark detection. Similarly, fully automated head length estimation was also 

obtained using DLC results and SGBM. The two sets of computed values were then compared to 

in-field head length measurements. RMSE and MAE were used to assess the accuracy of the 

pipeline measurements against in-field data collection.   

Additionally, Bland-Altman (B-A) analysis (Bland and Altman, 1999) was employed to 

evaluate bias and limits of agreement (LoA) between in-field manual measurements and semi- or 

fully automated head length estimations. In B-A, by generating a scatter plot of the differences 

between measurements of two systems is evaluated (Equation 2-8) as a function of the average of 

those measurements. Any systematic difference between the two measurement systems (i.e., bias), 

is quantified by the mean difference (Equation 2-9). Two LOAs lie at 1.96 standard deviations of 

difference above and below the bias with confidence intervals of 95% (Equations 2-10 to 2-12). 

The closer the bias is to zero, the more accurate the proposed method is against the reference 

method.  If the LOAs are close to the bias line, the spread of differences is very small, suggesting 

that in most cases, the spread is very narrow. As part of our Bland-Altman plots, regression lines 

indicate whether bias was (mostly) constant over the measurements in our data set and whether 

homoscedasticity was present. A similar pattern of data presentation has been observed in other 

studies in this area (Bosch et al., 2018; Hatrisse et al., 2022).  

 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑀𝑒𝑡ℎ𝑜𝑑 − 	𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑	𝑀𝑒𝑡ℎ𝑜𝑑 (2-8) 

 𝐵𝑖𝑎𝑠 = 𝑀𝑒𝑎𝑛	(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (2-9) 

 𝑆𝐷 = 	𝑆𝑡𝑎𝑛𝑑𝑎𝑟	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (2-10) 

 

 𝐿𝑖𝑚𝑖𝑡𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐻𝑖𝑔ℎ	(𝑈𝑝𝑝𝑒𝑟	𝐿𝑂𝐴) = 𝐵𝑖𝑎𝑠 + 1.96	 × 	𝑆𝐷 (2-11) 
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 𝐿𝑖𝑚𝑖𝑡𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐿𝑜𝑤	(𝐿𝑜𝑤𝑒𝑟	𝐿𝑂𝐴) = 𝐵𝑖𝑎𝑠 − 	1.96	 × 	𝑆𝐷 (2-12) 

 

The intra-class correlation (ICC) was also calculated to quantify the consistency between field 

and system-derived measurements (Barnhart et al., 2016). This step was done using the R package 

psychometric (version 2.2). The ICC yields values between zero and one. If ICC is zero, there is 

poor consistency between the two measurement systems, and if it is one, there is complete 

consistency. More specifically, ICC is calculated by (Equation 2-13)  

 

 𝐼𝐶𝐶 =
𝑡**

z𝑡** +
𝜎&
𝑛+
|
 

(2-13) 

 

where 𝑡** is the variance of the intercept of the model, 𝜎& is the residual variance for the model, 

and 𝑛+ is the size of the population.  

2.4.5 Stride Length and Stance Duration Evaluation 

SL and SD estimations were evaluated by annotating the 2D coordinates of the hooves in all 

frames of the videos and finding their 3D coordinates via SGBM. A manually annotated dataset 

of hooves’ phases was used, as described in the "Gait phase assignment to hoof landmarks" section, 

to calculate the SD and consecutively SL of the landmarks. A comparison was then conducted 

between the ground truth measurements and the output of the pipeline through B-A analysis. An 

ICC analysis was also conducted on the measured values for SL and SD. Revisions were also made 

to equations 2-2 and 2-3 in order to make them 3D. In 3D space, 𝑌X = 	 V𝑋,~ 𝑌X, 𝑍�Y represents the 

predicted coordinates of a landmark. As well as 𝑌 = (𝑋, 𝑌, 𝑍)  being the manually annotated 

landmarks that were projected into 3D space.  
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2.4.6 Experiment Environment 

Model training and data analyses were performed on a workstation equipped with an AMD 

Ryzen Threadripper 2970WX 4.2 GHz 24-Core Processor, 64 GB RAM, and two Nvidia Titan 

RTX GPUs with 48 GB of VRAM, running a Linux Ubuntu 20.04.4 LTS operating system.  

2.5 RESULTS 

2.5.1 Landmark Detection 

The training loss of the DLC landmark detection model was 0.002 pixels. For the testing dataset, 

the RMSE and MAE for landmark detection without an ARIMA filter were 8.24 pixels and 6.52 

pixels. Using the ARIMA filter, the RMSE and MAE were reduced to 5.14 pixels and 4.87 pixels. 

The detection errors of DLC equipped with an ARIMA filter of the seven individual landmarks 

for both the training and the testing datasets are shown in Figure 2-3. Higher means of detection 

error can be seen for body landmarks that were periodically occluded (i.e., left hooves). For 

instance, the left rear hoof had an error of 16 pixels as compared to 10 pixels for the right rear 

hoof. Nostril detection had the lowest mean error of 3.00 pixels in the training dataset and 5.00 

pixels in the testing set. As qualitative results, Figure 2-4 depicts examples of the DLC detected 

landmarks in the testing dataset. The 2D coordinates of the landmarks were determined and marked 

by different colors. 
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Figure 2-3. DLC detection errors for the (a) training dataset and (b) testing dataset for seven horse body landmarks. 
The cross mark in each boxplot stands in for the mean, the horizontal center line for the medians, and the outside-box 
dots for the outliers. Each boxplot's top and lower boundaries correspond to the 25% and 75% percentiles. 

 

 

Figure 2-4. A visual evaluation of the performance of DLC in detecting body landmarks; (a) shows how DLC detects 
landmarks on the horse's body thoroughly. The hoof and fetlock on the rear left side of (b) are occluded and therefore 
not picked up by DLC. Likewise, the knee and hock on the left side of (c) are similarly not detected. 

2.5.2 Hoof and Gait Phase Detection 

Training the Faster R-CNN model was done with the specified dataset discussed in Table 2-2, 

and Figure 2-5 depicts the training losses. Figure 2-5 depicts significant losses in the hoof phase 

detection algorithm, i.e., classification and box regression losses during the training session. The 

value of classification accuracy increased during training, starting from around 0.85 and 

approaching 1.0. The performance of the Faster R-CNN model was evaluated with the test dataset 

Train Dataset Test Dataset

(a) (b) (c)
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and yielded an AP of 33.196 and 39.714 for the swing phase and stance phase, respectively. A 

visual representation of the phase detections algorithm applied on an instance from the testing 

dataset, in conjunction with their corresponding bounding boxes, is shown in Figure 2-6.    

 

Figure 2-5. Total loss, class accuracy, box regression loss, and classification loss of Faster R-CNN model for hoof 
and gait phase detection. 

 

 

Figure 2-6. Bounding boxes around individual hooves and gait phase classification generated by the trained Faster R-
CNN model. 

2.5.3 Estimating the Phase of a Hoof Using Coordinates 

The following results were computed using different combinations of the proposed modules in 

the previous sections. As shown in Table 2-3, the precision increased from 0.56 using DLC and 

Faster R-CNN models alone to 0.83 by applying the additional ARIMA and median filters. Recall 
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and F1 scores had similar improvements, increasing from 0.58 and 0.55 to 0.95 and 0.78, 

respectively.  

Table 2-3. Precision, recall, and F1 score for different gait phase classification methods. 

Gait Phase Classification Method Precision Recall F1 Score 

DLC + Faster R-CNN 0.56 0.58 0.56 

DLC w/ARIMA Filter + Faster R-CNN  0.61 0.74 0.61 

DLC w/ ARIMA Filter + Faster R-CNN w/ Median Filter 0.83 0.95 0.78 

 

The hoof gait phase detection algorithm had a significant improvement when the filtering 

algorithms were incorporated. Figure 2-7 illustrates the confusion matrices for gait phase detection 

using different combinations of trajectory generation algorithms and filters. Both in "Swing" and 

"Stance", true positive rates were increased from 56.22% to 61.20% in "Stance" and from 18.92% 

to 30.95% in "Swing" detections.  

 

Figure 2-7. Confusion matrices of hoof gait phase prediction using different combinations of algorithms: (a) DLC + 
Faster R-CNN; (b) DLC w/ ARIMA filter + Faster R-CNN; (c) DLC w/ ARIMA filter + Faster R-CNN w/ mode-
based filter. 

2.5.4 3D Reconstruction and Measurements of Head Length 

The RMSE and MAE for head length estimation using manually annotated nostril and poll 

landmarks along with the SGBM algorithm were 0.019 m and 0.017 m, respectively. When the 

manual annotations were changed to the DLC predictions with ARIMA filtering, the system 

performance decreased with an RMSE and an MAE being 0.028 m and 0.022 m, respectively. B-
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A plots for semi- and fully automated head length estimation methods against the ground truth 

method were shown in Figure 2-8. Table 2-4 summarizes the biases, LOAs, and ICCs for the two 

evaluated methods. The fully automated method resulted in a larger standard deviation than the 

semi-automated method. On the other hand, the biases of both methods were similar. As for ICC, 

the semi-automated method was excellently consistent with the ground truth method (ICC = 0.95), 

whereas the fully automated method was moderately consistent (ICC = 0.72) according to the 

guideline by (Koo and Li, 2016). P-values of the slope of the fitted regression lines in Figure 2-8 

(a) semi-automated method and (b) fully automated were 0.939 and 0.059, respectively. Because 

both p-values were greater than 0.05, proportional bias is not statistically significant in the two B-

A plots and thus, the regression lines were not shown. 

Table 2-4. Summary of head length measurement agreement statistics (B-A and ICC) when compared to in-field 
measurements. ICC: intra-class correlation; LoA: limit of agreement. The semi-automated method uses manual 
annotations in conjunction with SGBM, while the fully automated method uses SGBM in conjunction with DLC's 
output. 

 Semi-automated Fully automated  
Upper LoA (m) 0.0020 0.0345 
Lower LoA (m) -0.0360 -0.0641 

Bias (m) -0.0169 -0.0147 
ICC 0.95 0.72 

 

Figure 2-8. Bland-Altman analysis on estimated head length measurements against ground truth manual 
measurements; (a) manual annotation with SGBM, and (b) detected landmarks using DLC with SGBM. 
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2.5.5 Stride Length Stance Duration Evaluation 

The system-derived SD resulted in an RMSE of 0.094 s in comparison to the manual 

measurements from the videos. In 2D image space, RMSE between the system-derived SL and the 

ground truth was 5.73 pixels. The B-A analysis shows a bias of -0.025 s for SD (Figure 2-9a). The 

SL B-A graph (Figure 2-9b) had a bias and a standard deviation of -0.042 m and 0.041 m, 

respectively. SD's upper and lower LOAs were 0.191 s and -0.241 s, respectively. Also, the upper 

and lower LOAs of SL were 0.040 m and -0.124 m. According to Figure 2-9a, the slope of the 

fitted regression line had a p-value of 3.853	× 10-6 for SD graph. The regression line does indicate 

a clear trend and after visual assessment, there is evidence of heteroscedasticity. On the other hand, 

in Figure 9 (b) for SL, the P-value of the slope of the fitted regression line was 0.071, and thus not 

shown in the figure. Table 2-5 summarizes the results of B-A analyses and ICCs for SD and SL 

estimation. ICC for total stance durations was 0.79, while for stride length it was 0.98, showing a 

moderately consistent behavior in measuring SD and an excellent one in computing SL.   

Table 2-5. Summary of SL and SD measurement agreement statistics (B-A and ICC) when compared to manual image-
level annotations measurements. ICC: intra-class correlation; LoA: limit of agreement; RF: right front; LF: left front; 
RR: rear right; LR: left rear. 

 Stance Duration  Stride Length 
Upper LoA  0.191s 0.040m 
Lower LoA  -0.241s -0.124m 

Bias  -0.025s -0.042m 
ICC RF 0.86 0.99 
ICC LF 0.73 0.98 
ICC RR 0.86 0.98 
ICC LR 0.72 0.98 

ICC Total 0.79 0.98 
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Figure 2-9. Bland-Altman analyses for (a) stance time (SD) and (b) stride length (SL) estimations. 

There were 7 horses with stance durations that differed between legs among the 19 horses 

diagnosed as lame. As an example, three horses affected by injuries to the suspensory ligaments, 

deep digital flexor tendons, and tendon sheaths are shown in Figure 2-10 with their stance 

durations. Among the other 12 horses with some degree of difficulty walking, there were no 

noticeable differences in stance duration. 

 

Figure 2-10. The average stance duration in three subjects with lameness in one of the legs based on a veterinarian’s 
diagnosis: (a) injury to the deep digital flexor tendon in a right hind leg, (b) suspensory injury to the right hind leg, 
and (c) issues with a right front tendon sheath. 

SL had a positive correlation with pastern length (R2 = 0.53), demonstrating greater stride length 

with longer pastern length (Figure 2-11). 
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Figure 2-11. Average stride length (m) and pastern length (m) of the forty horses in the dataset with a fitted linear 
regression model to the data points. 

2.6 DISCUSSION  

2.6.1 Performance of the Pipeline 

This study demonstrated that accurate gait classification using Faster R-CNN in conjunction 

with marker-less body landmark detection and stereo videography to determine different 

biomechanical properties of horses can be achieved using a high throughput and cost-effective 

setup and pipeline. Traditionally, the human eye has served as a common method assessing gait. 

However, human subjective assessment proved suboptimal because it could be affected by the 

temporal limitations of the human eye i.e., having a limited frequency response. With the proposed 

system, researchers will be enabled to achieve quantitative results on different biomechanical 

parameters such as SL and SD under field conditions.  

It can be observed that DLC eventually fails to detect hoofs in a single equine locomotion video. 

There are many reasons why this can happen, including when another limb, an object on the track, 

or flying dirt from the horse's foot impacting the ground obscures a hoof. Figure 2-5 shows that 

some of the body landmarks in the middle image, such as the left rear hoof, was occluded by the 

right body part, and thus, the DLC failed to detect it. A further problem is the detection of two 
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hooves when they overlap (e.g., two front hooves). Failures like these usually last for a relatively 

small number of frames compared to the total number of frames taken during a stride. By 

incorporating an ARIMA filter, the RMSE of the landmark detection algorithm was reduced from 

8.24 pixels to 5.14 pixels. Potentially this could be caused by removing the outlier detections and 

replacing them with more reasonable values. Both the training and testing datasets had similar 

mean detection errors for different body landmarks. Meanwhile, right-sided landmarks were 

detected more accurately than left-sided landmarks as shown in Figure 2-4. This is likely caused 

by periodic occlusions from the right-side imaging angle that affected the left-side hooves. 

Capturing and processing a second video from the left side of the horse can improve detection 

accuracy for the left hooves. Out of the seven landmarks evaluated, detection of the poll had the 

second-largest error range. There was high variability in the poll appearance due to head movement 

in the video frames. There is a possibility of alleviating this issue by adding more annotations to 

the training dataset.   

It was found that the proposed Faster R-CNN model for hoof and gait phase detection had an 

average AP value of 36.455. Employing a trained Faster R-CNN model to do the fine-grain 

classification of the hoof phase might be beneficial in two ways. Using this method, researchers 

get more intuitive results by observing the gait classes directly rather than relying on indirect 

measurements like the trajectory of a hoof to calculate the gait stages (Clayton, 2004). It is also 

important to note that extracting phases just by assessing IMU or other physical sensors may be 

extremely dependent on the location of the sensors on the horses, which may differ from study to 

study (Moorman et al., 2012). 

However, due to occluded hooves in some frames, it was difficult to determine if the hoof was 

swinging. In this case, if only DLC coordinates coupled with Faster R-CNN bounding boxes 
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without any post-processing algorithms were used, precision = 0.56 and recall = 0.58. Though, 

when a median-based filter on hoof phase detections and an ARIMA filter for DLC detections 

were applied, the accuracy and recall of the final detections were 0.83 and 0.95, which indicates 

the improvement in performance due to the post-processing algorithm.  

Some methods available in the literature tried to suggest an alternative system to OMC such as 

EquiMoves which incorporates inertial sensors, or GAITRite mat with embedded pressure sensors.  

(Bosch et al., 2018; Cutlip et al., 2000) demonstrated these systems have within mm level accuracy 

when evaluated by the results of OMC. Although these techniques offer accurate readings, they 

are not flexible enough to modify the number of landmarks of interest after data collection or to 

accommodate various data collection settings. Also, in physical sensor-based systems such as 

IMUs, the final measurements are significantly influenced by the sensor placement on the body 

(Moorman et al., 2012). In comparison, our proposed pipeline is not limited by fixed markers, 

arduous placement, and inconsistent results if the markers are not accurately positioned; these 

advantages were explained by (Mathis et al., 2018b; T. Nakamura et al., 2016; Nath et al., 2019) 

when deep learning methods are incorporated. This system could also be potentially easier for 

researchers to use under field conditions and serve as a high-throughput and cost-effective 

solution. Moreover, 2D videography has limitations when it comes to measuring kinematic gait 

parameters. To create metric unit measurements in 2D techniques, the observed gait parameters 

must be normalized by a known length in the collected photos, which might be error-prone (Vinika 

Gupta, 2021). Additionally, a stereo 3D camera does not need to be positioned perpendicular to 

the horse's movement direction, giving end users more flexibility. Our suggested pipeline, similar 

to physical sensor-based techniques that incorporate physical devices, delivers landmark 

trajectories in the 3D space and by metric units. Furthermore, the advantage of using a commercial 
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stereo camera (ZED2) whose views have already been rectified and calibrated means that the 

developed method does not require time-consuming calibration procedures, as opposed to using 

multiple camera systems in markerless 3D pose estimation methods like AniPose and FreiPose 

(Karashchuk, Rupp, et al., 2021; Zimmermann et al., 2020).   

This work's logistical inability to use an optical measurement system (the gold standard) to 

confirm the precision of the proposed pipeline for landmark identification and stride length 

estimation is one of its limitations. An optical measurement system was not used because the actual 

reflecting indicators would conceal the body landmarks and also raised the risk of disclosing actual 

locations to DLC, therefore the model might learn the position of the markers rather than real body 

landmarks. If the two procedures were employed sequentially, placing, and removing the markers 

might potentially change the horse's behavior and, as a result, the final evaluations might not be 

relevant. Given this constraint, head length was measured in this study to indirectly assess the 

ability of the system in 3D measurements and consecutively, stride length estimation. This 

procedure was carefully crafted and resulted in somewhat less accurate findings when DLC's 

outputs were used in the fully automated approach as compared to the semi-automated method. 

One probable reason for this behavior is DLC's decreased accuracy as compared to manual 

annotations in establishing the exact location of body landmarks, as well as occasional 

misdetections of the landmarks. As seen in Figure 2-8, DLC combined with SGBM had a bias of 

0.014 m and a standard deviation of 0.025 m which still could be considered accurate as the range 

of the head length was between 0.45 m and 0.63 m. This step may well illustrate the pipeline's 

potential performance when further 3D kinematic parameter measurements are made. Figure 2-8 

also shows that, while the biases in manually annotated images and DLC outputted images are 

similar, the standard deviation for DLC results are greater. This may be attributed to the erratic 
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behavior of detections in the landmark detector model. For both manually labeled images and DLC 

derived ones, the regression lines in that figure reveal no distinct trend as the p-value of their slopes 

were greater than 0.05 with no visible sign of heteroscedasticity. The greater ICC for the approach 

with manual annotations than the DLC-based method can be explained by the hectic behavior of 

DLC when detecting the landmarks of interest. 

Furthermore, when compared to manual frame annotations for stance duration, an R2 of 0.93 

and an RMSE of 0.094 s were obtained which indicates the system's sensitivity to variations in the 

gait cycle. Running a B-A analysis on the final products of the pipeline (illustrated in Figure 2-9) 

shows that only SL with a p-value of below 0.05 had a negative slope for mean errors. This 

behavior may be explained by the trained Faster R-CNN model's miss detections or occasional 

miss classification of the phases of the hooves when they are occluded. Additionally, the 

combination of the pipeline modules may be to blame for the underestimate in 3D, particularly for 

the body landmarks on the left that are repeatedly covered in the videos. When compared to human 

assessments, ICC values for SL and SD demonstrated notable consistency in measurements. Table 

2-5 shows that using the method to detect right-side landmarks could result in more consistent 

results, possibly due to fewer occlusions and better performance of both models that are 

responsible for detection of landmarks and classification of hoof phases. 

This system can be exploited further to detect musculoskeletal diseases (e.g., lameness). It has 

been demonstrated that a model-based behavioral analysis can be run on horse motion to extract 

and detect lameness in equestrian animals (Li et al., 2021). Additionally, it might assist in breeding 

programs by providing quantitative data on biomechanical traits to select progeny of interest.  

Our evaluation of the outputs of the pipeline will provide insight for future research into 

whether different SDs are detected in horses with lameness. Among the 19 lame horses sampled, 
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there were seven horses with different stance durations between the hooves, indicating there is 

potential for this system to be used in lameness detection. In some instances, the kind of lameness 

a horse exhibited in our dataset was not correlated with the length of stance in the study. The type 

of lameness is vital in the way the pipeline needs to be exploited and will be incorporated in future 

work. Likewise, the average system-derived stride length in 3D space was found to have an R2 of 

0.55 with the manually measured pastern length as illustrated in Figure 2-11, showing a consistent 

result with the available studies in the literature (Baban et al., 2009; Heglund and Taylor, 1988; 

Heglund et al., 1974; Sánchez et al., 2013). However, the scope of this work did not include 

lameness detection; the goal was to develop and evaluate a measurement system.  

The stereo imaging pipeline can be extended to multiple wirelessly synchronized stereo 

cameras. This enables tracking and analysis of landmarks around a horse's body. Also, a more 

precise stereo matching algorithm can be utilized to improve the accuracy of the stereo matching 

and the quality of disparity maps. SGBM was the preferred method due to its high efficiency 

considering the computational system that was used. However, state-of-the-art CNNs (Chen and 

Jung, 2018) can be used to further improve the processes of computing the similarity between 

stereo image patches. Furthermore, since the landmarks' 3D coordinates are what is important in 

this process and their disparity might perhaps be determined directly, dense stereo matching may 

not be required. Besides, the distance of the camera to the horse determines the spatial resolution 

(i.e., detail level) and the accuracy of stereo matching-based depth estimation, therefore another 

area of interest is to study how camera-horse distance impacts the performance of the proposed 

system. 
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2.7 CONCLUSION 

An automated EKGA technology was developed that consists of 3D stereo videography system 

in conjunction with a processing pipeline. This EKGA system was built by combining several 

modules to identify body landmarks (DLC model), to classify of hoof cycle phases (Faster R-CNN 

model), and ultimately to compute 3D coordinates of the detected landmarks (SGBM). SL and SD 

were selected as the pipeline's outputs as a case study for the proposed methodology, and post-

processing techniques were applied to boost the performance of the modules. According to in-field 

head length measurements, the 2D detection algorithm performed satisfactorily and consistently 

when combined with the stereo matching algorithm. The fine grain hooves' classification was 

performed precisely in this pipeline. Following a B-A study, it is evident that the suggested 

combination of modules could potentially be used in evaluating kinematic parameters of horses; 

with a bias of 0.11 s for SD and -0.014 m for SL. 

Research in gait genetics could benefit from our developed pipeline used in this study. Equine 

genetic studies focusing on locomotion, such as gait or sports performance, require precise 

phenotyping to identify trends in populations or subpopulations. Overall, we think that the 

proposed method can be developed into a low-cost, practical, and rapid analytical tool for animal 

scientists to perform EKGA. Even though this system sometimes might be less precise than 

marker-based optical motion capture systems available in the market, it requires less efforts to use. 

In most of the available studies, gait phenotyping is still done subjectively, making it less accurate 

than desirable. Therefore, we believe that our more accurate methods will make it possible to learn 

more about how genetics shapes gait.  
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In order to improve the accuracy of the kinematic gait parameters, notably SL and SD 

measurements, additional assessment algorithms and data processing methods, such as a 

combination of multiple cameras, must be investigated. 
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CHAPTER 3. PHENOTYPING OF ARCHITECTURE TRAITS OF 

LOBLOLLY PINE TREES USING STEREO MACHINE VISION AND 

DEEP LEARNING: STEM DIAMETER, BRANCH ANGLE, AND 

BRANCH DIAMETER 

Highlights 
• A novel investigation in pine tree architecture analysis by leveraging stereo machine vision and deep learning. 
• An image processing pipeline to measure stem diameter, branch angle, and branch diameter under field conditions. 
• A rapid, cost-effective, and automated tool for loblolly pine breeders to select superior genotypes in progeny tests. 

3.1 ABSTRACT  

Loblolly pine is one of the most planted forest tree species in the Southern United States for 

sawtimber production. The sawtimber yield potential of a pine tree is significantly impacted by its 

stem and branch architecture and are important traits in tree breeding programs. However, 

phenotyping these traits in the upper crown of pine trees is currently based on subjective visual 

assessments. This study investigated the feasibility of quantifying stem diameter, branch angle, 

and branch diameter of six-year-old loblolly pine trees in a progeny test using stereo 3D imaging, 

deep learning-based organ segmentation, and image and point cloud processing techniques. 

Instance segmentation of branches and stems was performed as well as principal component 

analysis (PCA) in 2D images, followed by 3D reconstruction of the segmented organs. The 

resulting 3D point clouds were further processed using random sample consensus (RANSAC) and 

statistical outlier removal to extract stem diameter, branch angle, and branch diameter. When 

compared to the manual measurements, the three system-derived parameters achieved RMSEs of 

0.055 m, 5.0 deg, and 5.6 mm, respectively. In addition, Bland-Altman analyses showed that the 

stem diameter and branch angle estimations were found with limits of agreement of 	±0.098 m 

and ±9.8 deg, respectively, with nonsignificant biases. On the other hand, branch diameter 
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estimation showed -12.1 mm and 9.3 mm for lower and upper limits of agreement with a bias. The 

proposed system demonstrated promising potential as a high-throughput precision phenotyping 

tool for the characterization of loblolly pine tree architecture in field tests, facilitating the selection 

of superior genotypes with improved sawtimber properties. 

Keywords. 3D Reconstruction, Branch Angle, Deep Learning, Loblolly Pine, Stem Diameter, 

Stereo Matching, Tree Architecture. 

3.2 INTRODUCTION 

Due to large-scale plantings and natural regeneration from 1930 through the turn of the century, 

loblolly pine (Pinus taeda) has become the most widely planted timber species in the Southern 

United States (Schultz, 1999). Tree improvement programs commenced at land grant universities 

and at the USDA Forest Service in the 1950s to provide improved genetics for the forest industry 

(Zobel and Talbert, 1984). Initially, superior-looking trees were selected from natural stands that 

in turn produced superior progeny. Repeated rounds of selection over successive breeding cycles 

led to the continued improvement of commercially important growth traits that include stem 

volume and stem form (McKeand et al.,2019). Decades of tree improvement, combined with 

increasingly sophisticated silvicultural practices, led to extensive plantations of improved loblolly 

pine driven by a desire to increase productivity, disease resistance, seedling survival, and shorten 

harvest rotations, leading the Southern U.S. to become the world's most productive timber region 

(Allen et al., 2005; Fox et al., 2007).  

Sawtimber quality is largely determined by lumber volume and grade yield. Lumber volume is 

positively influenced by sawlog diameter (Steele et al., 1984). Lumber grade yield is elevated by 

several desirable log attributes that include a straighter stem with smaller and fewer branch knots 

present (SPIB, 1994). Thus, sawtimber quality is strongly characterized by stem form and by 
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growth and development of the branches. For high quality timber production, a tall straight tree 

with little taper that has thin, flat-angled branches is considered a desirable tree with small knots 

(Ehrenberg et al., 1970). In progeny tests, the accurate assessment of sawtimber quality has proved 

challenging given the informative traits such as branch diameter and branch angle are typically 

measured using a subjective score (Cumbie et., al 2012). The direct measurement of these traits 

using a caliper and protractor is prohibitively expensive and working at heights within the tree 

crown would generate significant safety concerns.  

For the objective assessment of tree architecture traits, there are two non-contact methods that 

have been described in the literature, namely range sensing- and image-based techniques.  Range 

sensing-based methods such as LiDAR (light detection and ranging) and terrestrial laser scanning 

(TLS) are the most popular techniques for digitalizing individual tree architecture (Gorte et al., 

2004; Kankare et al., 2014; Liang et al., 2016; Pfeifer et al., 2004; Srinivasan et al., 2014). 

Although using LiDAR can properly rebuild tree architecture (Tienaho et al., 2022), the collection 

of data with LiDAR is time-consuming, has low spatial resolution, and is expensive (Wilkes et al., 

2017). Additionally, TLS produces large data that requires experts to process, which can be costly. 

Thus, with the existing tools, it remains a challenge to perform a high throughput pine tree 

architecture analysis in a progeny test environment due to their high planting density and occlusion 

by branches and needles. 

As for image-based methods, despite the widespread use of 2D methods in image-based 

phenotyping techniques, they are not able to reflect three-dimensional (3D) quantities accurately 

(Gibbs et al., 2018; Kaminuma et al., 2004). There is evidence that analyzing plants in 3D space 

offers higher accuracy and robustness (Apelt et al., 2015). In order to perform phenotyping studies 

on plants, 3D imaging is essential to tracking the exact geometry of the plant (Ziamtsov and 
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Navlakha, 2020). 3D imaging not only provides quantitative descriptions, but also allows 

measurements of more traits than 2D images (Paulus et al., 2014). However, there is limited 

research that employs image-based approaches to reconstruct 3D models of pine trees under field 

conditions. On the other hand, for a variety of other plant species, recent advancements have been 

made in camera-based multi-view stereo vision (MVS). By combining more than two images, 

stereo machine vision is one of the passive imaging techniques used to reconstruct 3D canopy 

models. Using this method, a plant canopy's 3D reconstruction can be achieved with information 

such as height, width, volume, and leaf cover area (Nguyen et al., 2016). Reconstruction of 3D 

canopy models under field conditions has been successfully carried out using this method (Bao et 

al., 2019; Salas-Fernandez et al., 2017). Klodt and Cremers (2015) used a multiple-view imaging 

system to reconstruct 3D models of plants. Similarly, Li and Tang (2017) developed a low-cost 

3D plant morphological trait analysis system for corn seedlings by combining two webcams and a 

time-of-flight (ToF) camera. This study shows that a high spatial resolution 3D reconstruction of 

the scene can be achieved using a low-cost setup. Inspired by the aforementioned studies in high-

throughput plant phenotyping and with the recent developments in commercial RGB-Depth 

cameras, a 3D reconstruction of a scene can be achieved with a one-time factory calibrated 

commercial binocular camera (Paul et al., 2020).  

It has been shown that deep learning-based object detection approaches can be used in plant 

and fruit segmenting and counting, including apple, orange, and other fruits (Chu et al., 2021; de 

Melo et al., 2020; Ganesh et al., 2019; Yikun Liu et al., 2021). Additionally, plant stems and leaves 

were detected and segmented using convolutional neural networks in some studies for sorghum 

and other canopies (Baweja et al., 2018; Sodhi et al., 2017; Xiang et al., 2021). A successful 

segmentation of forest tree stem and branches can potentially be achieved using deep learning 
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models such as the work by Zhang et al. (2017) in detection of branches in apple trees using an R-

CNN network. 

This study aimed to assess the feasibility of using stereo machine vision, deep learning-based 

branch and stem segmentation, and image and point cloud processing techniques to quantify 

branch and stem characteristics of loblolly pine trees in breeding programs. The specific research 

objectives were to 1) develop an image processing pipeline to measure stem diameter, branch 

angle, and branch diameter, and 2) evaluate the performance of the pipeline in measuring the 

aforementioned traits at different tree height levels. 

3.3 MATERIALS AND METHODS 

3.3.1 Acquisition of Ground-Truth Measurements 

Ground truth measurements and stereo image data were collected from 10 randomly selected 

6-year-old loblolly pine trees growing in a North Carolina State University Tree Improvement 

Program progeny test located near Moultrie, Georgia. Flagging tape was used to demarcate 1 m 

intervals along the stem of each tree to a height of 6 m, as shown in Figure 3-1(a). Stem diameter 

was measured at each meter interval using a diameter tape. Three dominant branches were flagged 

within each of five intervals, with the first interval representing 1 - 2 m height above ground level, 

and the fifth interval representing 5 - 6 m above ground level. The diameter at the base of each 

flagged branch was measured using a digital caliper with a resolution of 0.1 mm. As shown in 

Figure 3-1(b) and Figure 3-1(c), branch angle relative to the vertical stem was measured using a 

digital angle finder with a resolution of 0.1 degrees. The flagging tape on each measured branch 

was color-coded so that each branch could be readily identified following the stereo image data 

collection. 
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Figure 3-1. (a) In-field acquisition of ground-truth data: (a) 1 m intervals up to a height of 5m were demarcated on 
the stem using flagging tape, and the stem diameter at each meter interval was measured using a diameter tape, (b) A 
digital angle finder was used to measure branch angle relative to the vertical stem, and (c) a digital caliper was used 
to determine branch diameter adjacent to the stem. 

3.3.2 Stereo Image Data Collection 

Stereo images of individual pine trees were collected using a ZED2 stereo camera (StereoLabs, 

France) mounted on a tripod (Fig. 3-2). Four stereo image pairs were collected every 15 deg, 

stating from horizontal and ending at a 45 deg from the horizontal line as shown in Figure 3-2(a). 

The resolution of the collected images was 2208×1242 pixels. The stereo camera had an angular 

field of view of 110° by 70°. The camera was initially pointed at the breast height level to capture 

the tree base, and then it was tilted upward to capture the entire tree. To train and test an instance 

segmentation model for branch and stem, 13 additional stereo image pairs were collected at 

different angles between the previous 4 angles randomly. These stereo pairs were collected from 

the 10 flagged trees. Four perspectives, 90 degrees apart (i.e., 45 deg, 135 deg, 225 deg, and 315 

deg), around the tree were selected and the procedure of data collection was repeated for all 

perspectives as shown in Figure 3-2(b). In all cases, the stereo camera was kept 1.5 m from the 

tree, while the height of the camera was maintained at 1.30 m above ground level. The weather 

was sunny on the collection day. No artificial lighting was used during the collection of these data.  

(a) (b) (c)
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Figure 3-2. Stereo image acquisition setup. (a) A stereo camera has a 110-deg vertical angular field of view. To capture 
the entire tree architecture in multiple images, the camera was tilted on a tripod from 0 to 45 deg with respect to the 
horizontal plane, shown from side view. (b) The stereo images were also collected from 4 different perspectives that 
were 90 deg apart, shown from top view. 

3.3.3 Data Processing Pipeline 

A data processing pipeline was developed to detect the stem and branches of a tree in the center 

of stereo images, and further measure stem diameter, branch diameter, and branch angle (Fig. 3-

3). Among its components are an instance segmentation model that detects and isolates branches 

and stems in images, and a stereo matching algorithm for generating 3D point clouds of the 

segmented organs. Additionally, a series of point cloud processing algorithms were utilized to 

compute the branch diameters and angles. The details are discussed in the following sections.  

1.5 m

1.3 m

45
 ° 11

0
°

6.
0 

m

1.5 m

(a) (b)
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Figure 3-3. Data processing pipeline consisting of stem diameter, branch angle, and branch diameter estimation 
algorithms. 

3.3.4 Stem and Branch Instance Segmentation 

A polygon was drawn around the objects of interest, i.e., branches and stems using COCO 

Annotator (V0.11.1) (Brooks, 2019), as shown in Figure 3-4. The dataset included two classes: 

branch and stem. The 510 frames were randomly selected from the collected dataset. Since they 

were used for model training and testing of the segmentation model, these images were not part of 

the dataset that was collected for evaluation of the estimation of tree traits. There were 510 

annotated stems and 9755 annotated branches in this dataset. The tree in the center of the image 

was annotated. Annotations were made for each branch based on its nearby stem diameter. 

Specifically, a branch was annotated such that its length was approximately equal to the stem 

diameter measured at the base of the branch. Stems on the other hand were thoroughly annotated. 
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This step was done because the branches were not straight at all times and if their curves were 

detected by the detection algorithm, the angle estimation algorithm may possibly produce subpar 

results. Lastly, the annotations were saved to a JSON file in COCO format.  

 

Figure 3-4. Stem and branch annotations, stem indicated with a blue mask and the branches with orange ones.   

A Mask R-CNN model that was pre-trained on the COCO dataset was fine-tuned from 

Detetctron2 (Wu et al., 2019) using the created dataset. This deep learning model generates high-

quality segmentation masks for each instance in an image while efficiently detecting objects. A 

Resnet-101 C4 3X backbone was used in this model (Lin et al., 2014). 70% of the annotated images 

were randomly selected for model training and the remaining 30% were used for testing. A 

comprehensive specification of the dataset is shown in Table 3-1. Training parameters included a 

learning rate of 0.001 with a decay rate of 0.05, 200 warm-up iterations, and 500 maximum 

iterations. The batch size was 2, and regions of interest (ROI) in images were 128.  

 



 

 82 

Table 3-1. Summary of the datasets and model for instance segmentation of stem and branch. 

Model Backb
one Pre-trained Categories Total Tool Training Testing 

Mask R-CNN 
ResNet

-101 
C4 3X 

COCO Dataset 
Stem 510 COCO 

Annotator 70% of Total 30% of Total 
Branch 9755 

3.3.5 Stereo 3D Reconstruction of Stems and Branches  

ZED software development kit (SDK) was used to acquire the stereo camera parameters. The 

stereo images were rectified during collection procedure by the camera. Semi-global stereo block 

matching (SGBM) in the OpenCV library was then used to generate the disparity map (Bradski, 

2000). SGBM has demonstrated the capacity to manage textureless areas with a smoothness 

constraint in its objective function (Hirschmuller, 2008). The matching block size and the number 

of disparities were chosen to be 19 pixels and 112 pixels, respectively, considering the image 

resolution, camera-to-tree distance, and the 0.12 m baseline of the stereo camera. Finally, the stereo 

camera parameters and disparity map were used to project the 2D pixels back into 3D space using 

Equation 3-1: 
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(3-1) 

 

 

where x, y, and z are the coordinates of a point in 3D space, u and v are the 2D image coordinates 

of a pixel in the left image, W is a dummy variable, d is the disparity value of the pixel, as well as 

the intrinsic parameters of the ZED2 stereo camera including the coordinates of the principal point 

of the left camera of the stereo camera in the image coordinate system (Cx = 1136.7 pixels and Cy 
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= 659.75 pixels), focal length (f = 1058.75 pixels), and baseline between the two cameras (Tx = 

0.12003 m).   

3.3.6 Stem Diameter Estimation  

The following method was developed to estimate stem diameters. For each of the left-view 

images, the stem mask detected by the Mask-R-CNN model was used to segment stem pixels and 

generate a bounding box. Subsequently, a sliding window of 200 pixels tall inside the bounding 

box was examined every 75 pixels along the vertical axis to crop out sections of the stem mask as 

shown in Figure 3-5(a). The window height was chosen as approximately twice the average stem 

diameter. 

 

Figure 3-5. A procedure for estimating stem diameter involves: (a) determining the precise location where the stem’s 
diameter should be computed and their corresponding windows to crop the stem. (b) As a second step, the PCA is run 
on the cropped part of the stem (shown in white) to determine the first and second eigenvectors of the points within 
the section of interest, (c) Identify all the points resulting from the intersection of the second eigenvectors with the 
stem’s contour along the tree, which are 75 pixels apart. 

The PCACompute2 function from the OpenCV library (Version: 3.14.16) (Bradski, 2000) was 

then used to conduct a principal component analysis (PCA) on each cropped stem section and find 

PC
1

PC2
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the local stem orientation as the first eigen vector in 2D image space. Next, the centroid of the 

cropped stem section and the second eigenvector (PC2) were used to create a line perpendicular to 

the local stem orientation. The two points at which this line intersected with the contour of the 

stem mask were considered as the references for calculating stem diameter along the two edges of 

the stem in 3D space, as shown in Figure 3-5(b). Then, using the remove_statistical_outlier 

function from the Open3D library (Version: 0.15.0), with a manually defined number of neighbors 

(nb_neighbors = 20) and a standard ratio (std_ratio = 2), the outliers of the 3D point cloud were 

filtered out. The first parameter specifies how many neighbors should be considered when 

calculating a point's average distance, and the second determines the threshold level according to 

the standard deviation of the average distance between points in the point cloud. Filtering is more 

aggressive with a lower number of standard ratios. Subsequently, three pixels up and three pixels 

down in the direction of the found PC1 were located around each intersection point. Then, the 

corresponding 3D coordinates of the 14 points were retrieved from the 3D point cloud. The 

centroid of the seven points on each side of the stem was calculated. Lastly, the diameter of that 

section of the stem was then computed using the Euclidean distance between the two found 

centroids in 3D space. 

The algorithm was repeated for the entire stem, from the bottom to the top, as shown in Figure 

3-5(c). As a result, a stem diameter value was associated with every picked height. to find the stem 

diameter at the tags, the 2D locations of the right side of the tags were annotated in a CSV file for 

all the left images in the dataset. The diameter was determined for each tag's coordinate by 

interpolating the two nearby values.  
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3.3.7 Branch Angle Estimation 

 The trained Mask R-CNN model was used to extract branch and truck masks, which were then 

exploited further to estimate branch angle. For each branch mask, a local region of the stem was 

cropped by placing a window as described in the previous section at the same height of the branch 

mask centroid (Fig. 3-6). A line was fitted to the 3D reconstructed points of each branch mask 

using random sample consensus (RANSAC) (Fischler and Bolles, 1981). Furthermore, as shown 

in Figure 3-6, RANSAC was used to fit a line to the adjacent stem points in 3D space. The 

remove_statistical_outlier function in Open3D library was applied to the point clouds of the stem 

and branches before the lines were fitted to them. The results of the preceding procedures were the 

directions of the two extracted lines. It was then necessary to check the direction of the fitted lines. 

If the stem or branch lines were pointing downwards, they were negated. This was done 

considering the fact that the branches in the dataset had an angle between 20 and 80 degrees. The 

branch angle was determined using Equation 3-2. 

 
𝜃 = cos,)

VU��⃗ 	.		V��⃗ Y
^U��⃗ ^^V��⃗ ^

  (3-2) 

where 𝜃 is the angle between the two vectors of 𝑈��⃗  and 𝑉�⃗ , which are the direction vectors of the 

lines fitted to the branch and stem points, respectively. 
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Figure 3-6. Branch angle estimation procedure. The branch angles were calculated using RANSAC by fitting a line to 
the filtered 3D points of the branch mask and another line to its local stem. The directions of the fitted lines were 
assessed and corrected to point to the sky. 

3.3.8 Branch Diameter Estimation 

Using findContours from the OpenCV library, a contour was created for each branch mask. 

Next, a PCA analysis was performed on the contour of each branch mask using the PCACompute2 

function in OpenCV. The second principal component, in this case, reflects the direction 

perpendicular to the branch. The intersection points of the derived PC2 direction and the contour 

of the branch were found. A line from the centroid of the derived branch mask and in the direction 

of the second principal component (PC2) was drawn. Backprojecting 2D points into 3D space was 

achieved by using a disparity at the centroid of the branch contour. Due to the fact that branches 

may not always be frontoparallel to the camera, the base of a branch that appears in an image might 

not always be the actual base of the branch. It is possible that this phenomenon can introduce 

discontinuities into the extracted disparity map and increase the error in branch diameter 

150 
pixels

!
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estimation. Therefore, the contour's centroid was picked instead of the base in the images. In the 

images, it can be assumed that the disparity was the same along the line perpendicular to the 

branches because the branches were thin and there were a few pixels per branch. The found 

intersection points were in the neighborhood of 2 to 5 pixels of the branch centroid and because of 

the previously mentioned reason, the disparity were considered to be the same in these points. This 

property allowed projecting the two 2D points into 3D space using the disparity at the branch 

centroid. As shown in Figure 3-7, the Euclidean distance between two points in 3D space was used 

to determine branch diameter. Furthermore, if some branches were found multiple times by the 

trained Mask R-CNN model, the system could detect them by examining their distance from each 

other. If the centroids of two branch masks were closer than 10 pixels, they were considered the 

same. And the values for branch angle and diameter of those close branches were averaged.  

 

Figure 3-7. The procedure for estimating the diameter of a branch is carried out by finding the intersection points 
between a line drawn from the centroid of the branch mask using second principal component direction (PC2), and 
the contour itself, back projecting these two points into 3D space, and then computing the Euclidean distance between 
the two points. 
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3.4 EVALUATION METHODS 

3.4.1 Instance Segmentation Evaluation  

Average precision (AP) was used to evaluate the accuracy of the Mask R-CNN instance 

segmentation model for stem and branch. AP was calculated by integrating the area under the 

precision-recall curve, with higher values meaning higher accuracy. Two AP values were 

computed for "Stem" and "Branch", respectively. The performance of Mask R-CNN in the instance 

segmentation task was assessed in test datasets. 

3.4.2 Evaluation for Architecture Traits 

Since four sides of each tree were imaged with four imaging angles per side, the same instance 

of stem or branch could be detected from multiple images. For the same stem or branch, a trait of 

interest was estimated for each detected instance and all estimations were averaged to compare 

with the infield measurement. Root mean squared error (RMSE) and mean absolute error (MAE) 

were used to assess the accuracy of stem diameter, branch angle, and branch diameter estimations. 

RMSE was calculated using Equation 3-3. 

 

 
𝑅𝑀𝑆𝐸	 = 	TU

V𝑌X% − 𝑌%Y
&
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 (3-3) 

where 𝑌X  is the computed value for either stem diameter, branch angle, or branch diameter, 𝑌 is 

the in-field measurement for the aforementioned values, 𝑛 is the total number of the measurements, 

and finally, 𝑖 is the present measurement. Similarly, to calculate RMSE, Equation 3-4 was utilized. 

The parameters are the same as Equation 3-3. 
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𝑀𝐴𝐸 =
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%() ^

𝑛  (3-4) 

Bland-Altman (B-A) analysis (Bland and Altman, 1999) was employed to evaluate bias and 

limits of agreement (LoAs) between in-field manual measurement (Y) and system-derived 

measurement (Y ̂). The B-A analysis can be visualized in a scatter plot (i.e., B-A plot), where x-

axis is the mean of the two measurements and y-axis is the difference of the two measurements 

(Eq. 5). The bias is quantified by the mean of the differences between the two measurements (Eq. 

6), and the standard deviation (SD) measures the dispersion of the differences (Eq.7). Then, the 

upper and lower LoAs are quantified as bias plus and minus 1.96 SD, respectively (Eq. 8 and 9) at 

a 95% confidence interval. In comparison with the reference method, the closer the bias is to zero, 

the more accurate the proposed method is. If the LoAs are close to the bias line and the spread of 

differences is very small, the standard deviation is small. A linear regression was also performed 

in each B-A plot and the significance of the slope indicated whether the bias was constant across 

measurements (Bosch et al., 2018; Hatrisse et al., 2022). 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑀𝑒𝑡ℎ𝑜𝑑 − 	𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑	𝑀𝑒𝑡ℎ𝑜𝑑  (3-5) 

 𝐵𝑖𝑎𝑠 = 𝑀𝑒𝑎𝑛	(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)  (3-6) 

 𝑆𝐷 = 	𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (3-7) 

 𝐿𝑖𝑚𝑖𝑡𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐻𝑖𝑔ℎ	(𝑈𝑝𝑝𝑒𝑟	𝐿𝑂𝐴) = 𝐵𝑖𝑎𝑠 + 1.96	 × 	𝑆𝐷 (3-8) 

 𝐿𝑖𝑚𝑖𝑡𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐿𝑜𝑤	(𝐿𝑜𝑤𝑒𝑟	𝐿𝑂𝐴) = 𝐵𝑖𝑎𝑠 − 	1.96	 × 	𝑆𝐷 (3-9) 

3.4.3 Experiment Environment 

A Linux Ubuntu 20.04.4 LTS workstation was used to train and fine-tune the Mask R-CNN 

model for branch and stem segmentation, as well as to analyze data. Furthermore, the system was 
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powered by a Ryzen Threadripper 2970WX 24-core AMD processor, 64 GB of RAM, and two 

NVIDIA Titan RTX GPUs. 

3.5 RESULTS 

3.5.1 Stem and Branch Instance Segmentation  

Figure 3-8 shows losses for object classification, bounding box regression, and mask 

segmentation tasks during training of the Mask R-CNN model. The classification accuracy started 

from ~0.25 and approached ~0.9. For the test dataset, the Mask R-CNN model yielded AP values 

of 28.25 and 39.54 for the detected branch and stem instances, respectively. The mask 

segmentation loss decreased from 2.0 to approximately 0.25 at the 250th iterations and became 

relatively stable. As expected, the same is true for classification loss. The classification accuracy 

on the contrary had an increasing trend, approaching 0.9. 

  

 

Figure 3-8. Training losses and classification accuracy for training of Mask R-CNN model for stem and branch 
instance segmentation. Regression loss of bounding box is shown by loss_box_reg, total loss by total_loss, 
classification loss by loss_cls, accuracy of classification by cls_accuracy, and loss of mask detections by mask_loss. 
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Qualitative examples of stem and branch instance segmentation from the test dataset are shown 

in Figure 3-9. In this figure, the trained model is illustrated with common success and failure cases. 

Each image contained a fully detected stem. And only trees in the front of the scene and in the 

center of the image were detected by the model. The model failed to detect some branches in some 

cases, while it detected others multiple times.  

 

Figure 3-9. Masks and bounding boxes of detected stem and branch instances by a Mask R-CNN model. (a) Almost 
all the branches and the whole stem are detected and segmented. (b) Some branches are detected more than once. (c) 
Some are not detected due to being occluded by dense needles. No background trees were detected. The background 
was separated from the detections for better illustration. 

3.5.2 Stem Diameter Estimation  

Average RMSE and MAE for the stem diameter calculations were 0.055 m and 0.004 m, 

respectively, with 45 successful computations out of 50 measurements in the field. Figure 3-10(a) 

shows the linear regression model between ground truth measurements and system-derived stem 

diameters, with a slope of 0.89, an intercept of 0.009 m, and an R2 of 0.96. An error box plot in 

Figure 3-10(b) reveals that the first section of the tree had the smallest range of error, while the 
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third sections had the largest range of error. The range of error in the fifth section (5 to 6 m) appears 

to be smaller than that of the first section but this is due to the lower number of samples.   

 

Figure 3-10. Stem diameter estimation results. (a) System-derived stem diameter estimation against in-field 
measurement at different heights up the stem with a linear regression model fitted. (b) Boxplots for stem diameter 
estimation errors at different height levels. The lower and upper sides of a box show the 25th and 75th percentiles, 
respectively. The horizontal line inside a box represents the median. The two whiskers on either side of the middle 
50% line representing scores outside the middle, including the min and max and excluding the outliers. 

According to Table 3-2, the standard deviation of error increased from 0.004 m in the lowest 

height to 0.006 m in the highest. At different height levels, the stem diameter estimation algorithm 

had an RMSE of 0.004 m and a MAE of 0.003 m for height level of 1 m and an RMSE of 0.006 

m and a MAE of 0.004 m for height level of 4 m as minimum and maximum errors. In all ten trees, 

successful system-derived measurements were consistently 100% except for the highest section, 

where 5 out of 10 cases could not be calculated because the pipeline, specifically the stereo 

matching algorithm, would fail generating results for this height. 

Table 3-2. RMSE, MAE, the ratio of successful stem diameter estimations, and error standard deviation at different 
stem heights in the dataset. 

Height Range 
(m) 

The Ratio of Successful 
Measurements 

RMSE (m) MAE (m) Error Standard 
Deviation (m) 

1 – 2 10 / 10 (100%) 0.004 0.003 0.004 
2 – 3 10 / 10 (100%) 0.004 0.003 0.003 
3 – 4 10 / 10 (100%) 0.006 0.004 0.006 
4 – 5 10 / 10 (100%) 0.006 0.004 0.006 
5 – 6 5 / 10 (50%) 0.005 0.004 0.006 
Total 45 / 50 (90%) 0.005 0.004 0.005 

 

(a) (b)
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In Figure 3-11, the Bland-Altman analysis of stem diameter estimation shows a lower LoA of 

-0.009m and an upper LoA of 0.011m. Although the bias was 0.001 m, a t-test was performed to 

test whether the mean difference between the two measurements was different from zero and the 

resulting p-value of 0.2442 suggested that there was no statistically significant bias. According to 

Figure 3-11, the slope of the fitted regression line was 0.007 and statistically significant with a p-

value of 0.032 for stem diameter. According to the nonzero slope, the greater the average stem 

diameter was, the greater the difference between the two measurements was. Also, from the 

positive slope it can be understood that the system-derived measurements went from 

overestimation in stem diameter computation to underestimation as the diameter increased. 

Furthermore, the positive slope can be explained by the fact that stem diameter computations were 

overestimated for below 90 mm average diameter and above that, the stem diameter was 

underestimated. 

 

Figure 3-11. Bland-Altman analysis on system-derived stem diameter against ground truth (GT) measurements (i.e., 
in-field manual measurements). Upper and lower LoAs are shown as the dotted red lines, and bias shown as black 
line. A regression line was fit to the difference between the measurements and their average. 
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3.5.3 Branch Angle Estimation 

The system-derived branch angles were evaluated against in-field measurements, and a linear 

regression model was fitted to the scatter plot shown in Figure 3-12(a), with a slope of 0.93, an 

intercept of 4.0 deg, and an R2 of 0.78. The 4 - 5 m section of the trees had the largest error range, 

as illustrated in Figure 3-12(b), with only 8 out of 30 branch angle measurements being successful, 

as opposed to the 1 - 2 m section with 27 successful branch angle measurements. The results of 

the last segment were removed since the Mask R-CNN model was unable to detect the branches 

in the tallest section (i.e., 5 - 6 m) in any of the ten trees.  

 

Figure 3-12. Branch angle estimation results. (a) System-derived branch angle against in-field measurements at 
multiple height levels with a linear regression model fitted. (b) Boxplots for branch angle estimation errors at different 
height levels. The lower and upper sides of a box show the 25th and 75th percentiles, respectively. The horizontal line 
inside a box represents the median. The two whiskers on either side of the middle 50% line representing scores outside 
the middle, including the min and max and excluding the outliers. 

The ratio of successful detection decreased when the branch instances were intended to be 

retrieved from a higher section on the trees, from 90% in the first section to 26.66% in the fourth. 

This fashion is congruent with the trends of RMSE and MAE for each section. The 4 - 5 m section 

had an RMSE of 7.9 deg and a MAE of 7.2 deg, and the first section had an RMSE of 3.5 deg and 

a MAE of 2.8 deg as described in Table 3-3. Total RMSE and MAE for branch angle estimation 

were 5.0 deg and 3.9 deg, respectively. Also, the standard deviation of error was 3.4 deg in the 

(a) (b)
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range height of 1 - 2 m and it increased to 9.0 deg at the highest level. The mean of standard 

deviation of branch angle estimation error was 5.0 deg. 

Table 3-3. RMSE, MAE, the ratio of successful branch angle estimations, and error standard deviation at different 
stem heights in the dataset. 

Height Range 
(m) 

The Ratio of Successful 
Measurements 

RMSE 
(deg) 

MAE (deg) Error Standard Deviation 
(deg) 

1 – 2 27 / 30 (90%) 3.5 2.8 3.4 
2 – 3 26 / 30 (86.66%) 5.1 3.9 5.3 
3 – 4 18 / 30 (60%) 4.5 4.0 4.8 
4 – 5 8 / 30 (26.66%) 7.9 7.2 9.0 
Total 79 / 120 (65.83%) 5.0 3.9 5.0 

 

The Bland-Altman analysis of the in-field and system-derived branch angle measurements 

shows a lower LoA of -10.3 deg, a bias of -0.4 deg, and an upper LoA of 9.4 deg, as shown in 

Figure 13. The p-value of the slope in this scatter plot (between difference and average of 

measurements) was 0.326, which indicates that the slope is zero. Furthermore, the mean of the 

difference between the measurements was tested with t-test and resulted in a p-value of 0.437, 

suggesting that bias is statistically 0. 

 

Figure 3-13. Bland-Altman analysis on system-derived branch angle against ground truth (GT) measurements (i.e., 
in-field manual measurements). Upper and lower LoAs are shown as the dotted red lines, and bias shown as black 
line. 
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3.5.4 Branch Diameter Estimation  

Figure 3-14(a) displays the results of computing the branch diameters at each segment of the 

loblolly pine trees against manual measurements taken in the field. A linear regression model was 

fitted between the in-field measurements and the algorithm-derived estimations. The line's slope 

and intercept were 0.7 mm and 5.9 mm, respectively. As shown in Figure 3-14(b), the range of 

error increases with height, with smallest at the lowest section and the widest at the 4 m to 5 m 

section. Also, for the first two sections the system-derived values showed an overestimation of the 

measurements as well as the final section. On the contrary, the for the third section the system had 

an underestimation of values.  

 

Figure 3-14. Branch diameter estimation results. (a) show the system-derived branch angle versus in-field 
measurements for different tree sections with a linear regression model fitted, and (b) illustrates a series of boxplots 
for branch diameter estimation errors at different height levels. The lower and upper sides of a box show the 25th and 
75th percentiles, respectively. The horizontal line inside a box represents the median. The two whiskers on either side 
of the middle 50% line representing scores outside the middle, including the min and max and excluding the outliers. 

According to Table 3-4, the first section from the bottom of the tree had an RMSE of 2.6 mm 

and a MAE of 1.8 mm calculated with a 96.6% success rate, whereas the highest section had an 

RMSE and a MAE of 14.2 mm and 8.8 mm, respectively, with a success rate of 26.66%. In total, 

82 out of 120 branches were detected to compute diameter. The RMSE and MAE of the total 

measurements were 5.6 mm and 2.9 mm, respectively. In line with previous results, the error 

standard deviation for the estimation of branch diameter increased from 2.2 mm at the lowest 

(a) (b)
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section to 15.5 mm at the highest section. The mean error standard deviation was 5.4 mm for all 

branch diameters.  

Table 3-4. RMSE, MAE, the ratio of successful branch diameter estimations, and error standard deviation at 
different stem heights in the dataset. 

Height Range 
(m) 

The Ratio of Successful 
Measurements 

RMSE (mm) MAE 
(mm) 

Error Standard Deviation 
(mm) 

1 – 2 29 / 30 (96.66%) 2.6 1.8 2.2 
2 – 3 27 / 30 (90%) 3.3 2.2 3.0 
3 – 4 18 / 30 (60%) 3.6 3.0 3.8 
4 – 5 8 / 30 (26.66%) 14.2 8.8 15.5 
Total 82 / 120 (68.33%) 5.6 2.9 5.4 

 

Figure 3-15 depicts a Bland-Altman analysis on the branch diameter measurements, showing 

lower and upper LoAs of -12.1 mm and 9.3 mm, respectively. The system-derived measurements 

showed a bias of -1.4 mm compared to manual measurements. The fitted regression line has 

statistically significant non-zero slope (slope = -0.302 with p-value = 0.007). The bias of the 

measurements was further analyzed by a t-test and the result with the p-value being 0.0224 

suggested that there was a non-zero bias in the system-derived measurement when compared to 

the ground truth. In Figure 3-15, it can be seen that the measurements in the last section were 

highly deviated by the fact that the stereo matching algorithm failed to generate the correct 

disparity since the objects in the imagery were too small and far away. 
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Figure 3-15. Bland-Altman analysis on system-derived branch diameter against ground truth (GT) measurements (i.e., 
in-field manual measurements). Upper and lower LoAs are shown as the dotted red lines, and bias shown as black 
line. A regression line was fit to the difference between the measurements and their average. 

3.6 DISCUSSION  

Overall, Mask R-CNN performed reasonably well for instance segmentation of stem and branch 

given that the images were acquired under challenging infield lighting conditions (i.e., low light 

and backlight). Between the two tree organs, stem instance segmentation achieved a far higher AP 

value than branch counterpart. This is mostly likely due to the large difference in size between 

stem and branch. It is well known that detection of small objects is challenging due to the lack of 

sufficient features for CNNs to extract (Nguyen et al., 2020). According to the “small object 

dataset” developed by Chen et al. (2017), an object is considered small when it has a mean relative 

overlap between the bounding box area and the image area between 0.08% and 0.58%. Branch 

masks in the dataset occupied between 0.1% and 0.3% of the whole image area. In addition, since 

each branch was annotated from the base to a somewhat arbitrary length, the Mask R-CNN model 

might detect the location of the branch accurately but predicted a mask of a different length. This 

could reduce the IoU value for each branch and thus overall AP. In contrast, each stem contour 

was completely annotated in each image. Stem instance segmentation typically did not fail. 



 

 99 

However, branch instance segmentation could fail when occlusions by other branches and needles 

occurred or when branch in higher section of the stem became smaller in the image.  

To the best of our knowledge, for the first time, a stereo machine vision system was used to 

measure a pine tree's stem diameter in an outdoor setting. Our method produced comparable results 

to existing remote sensing-based methods that have been used to measure stem diameter. Sun et 

al. (2022) combined a Kinect depth camera with deep learning and achieved a mean squared error 

of 0.0038 m for stem diameter estimation of apple trees (stem diameters ranging between 30 mm 

and 70 mm) at a certain height from an average distance of 2 m. Our proposed method for 

estimating the stem diameter has similar RMSE to the previously mentioned method and can be 

used to get measurements rapidly and accurately from different heights. Another study utilized a 

LiDAR-based method for stem segmentation and stem diameter estimation of boreal forests of 

Scot pines with an RMSE of 0.0039 cm for DBH (diameter range: 10 cm to 60 cm) (Kukkonen et 

al., 2022). Additionally, in the aforementioned work measurements were taken at a specific 

distance, angle, and location. Furthermore, LiDAR is widely considered one of the most expensive 

components in remote sensing. As opposed to 64 or 128 sparse rotating laser beams that LiDAR 

signals are inherently limited to, stereo cameras provide dense depth maps at much lower costs 

(Wang et al., 2019). Stereo matching and image processing algorithms allow the camera to 

function at a variety of angles and distances. As a result, users are no longer limited to modeling 

the morphological values of trees based on specific tree parameters such as height. Instead, they 

can obtain in-field measurements of different tree architecture traits. Prior studies only evaluated 

stem diameter at breast height, and extensive mathematical procedures were used to perform stem 

diameter estimation. The main issue in those studies is that they do not have diameter 

measurements along the tree stem. This could lead to an inaccurate estimation of stem volume 
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because stem diameters of different genotypes could taper differently as a function of height (Gorte 

et al., 2004).  

Traditionally, branch characteristics are visually assigned ordinal scores based on their 

appearance, which is subjective and inaccurate (Schomaker, 2007). It is not practical to measure 

the branch and stem traits at multiple heights using a protractor and caliper as there are typically 

hundreds of trees to be measured in a progeny test. Additionally, the scorer would need to be 

elevated to reach the branches thereby raising safety concerns. Using the method presented in this 

study, multiple branches are characterized in a high-throughput and safet manner by capturing one 

stereo image pair. This system mitigates safety risks and avoids cumbersome data collection 

procedures. The rapid stereo machine vision-based system is more accurate than subjective visual 

grading of branches by offering objective, quantitative results. Despite the branch angle estimation 

algorithm having lower and upper levels of agreement of -10.3 deg and 9.4 deg with branch angles 

ranging between 20 deg and 80 deg, the algorithm can be effectively used to categorize branch 

angles into two or three levels that are expected to have good correlation with knot size that impacts 

wood quality (Trincado and Burkhart, 2008). Outdoor phenotyping of individual tree branches has 

rarely been studied in the literature. Analyzing tree architecture and specifically branch 

morphological traits with 3D terrestrial laser scanning system in conjunction with model fitting 

methods was performed in some studies (Malhi et al., 2018; Raumonen et al., 2013). Although 

TLS provides a dense point cloud, in terms of technology, it is extremely expensive. As raw 

scanned models contain many small mistakes, they must be manually corrected to achieve high 

levels of detail (Radosevic and Rizvić, 2012). To the best of our knowledge, this study represents 

the first instance that stereo machine vision has been used for analyzing forest tree branch 

architecture. Using a turn table and a single camera a 3D point cloud was reconstructed by Lou et 
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al. (2015) of various plant species (Arabidopsis, oat, wheat, maize, forage grass (lolium), clover, 

physalis, brassica, etc.) in an indoor setting. This approach had an RMSE of 1.88 deg for branch 

angle estimation. If the camera is moved around the trees in an outdoor setting, this method could 

potentially be used. However, it adds complexity to the process as multiple images need to be 

processed. As for our branch diameter estimation, the LoAs were large when compared to the 

range of measurements. The large errors were likely caused by the limitations of the stereo 

matching accuracy for small objects and thin structures (Ranftl et al., 2012). Additionally, because 

branches were not always parallel to the image sensor, the branch bases visible in the images may 

not be the actual branch bases. This creates a discontinuity at the branch bases and thus the branch 

diameter was measured distal from the branch base. This can potentially deteriorate the 

performance of the proposed pipeline in measuring branch diameter. 

As for potential future direction of our developed system, quantification of stem morphology 

can potentially be made with the 3D point cloud of the stem. A conifer stem tilted from its normal 

vertical orientation inhibits the growth of the terminal shoot and induces compression wood to 

form on its lower side. Downgrading occurs due to compression wood, which is a severe sawtimber 

defect (Warensjö and Rune, 2004). Thus, stem straightness is of significant importance as a 

breeding objective. To increase the precision and the accuracy of the proposed pipeline, further 

improvements may be incorporated. A few modern stereo matching algorithms have recently been 

developed for thin objects. Several studies have attempted to more accurately handle stereo 

matching of thin objects (Dai et al., 2022; J. Li et al., 2022). Also, for improving binocular stereo 

vision system matching accuracy, some studies implemented stereo matching algorithms on 

images stored as RAW format (Liu et al., 2018). Furthermore, Chen and Jung (2018) used 

convolutional neural networks (CNNs) for improved stereo matching performance compared to 
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the traditional methods. Hence, the expectation is that the aforementioned algorithms will increase 

the accuracy of the estimations of pine crown architecture traits. It may also be beneficial to use 

artificial lighting to capture images with more details that are vital for stereo 

matching. Furthermore, the camera could be raised vertically using a telescopic tripod, which 

would allow consistently high-resolution images to be captured at different tree heights at the 

expense of data collection time. One limitation of our system was that the stem and branches 

detected from the four viewing points around a tree were not registered in 3D space. The same 

branches may be visible in more than one stereo image pair. Future research could explore instance 

segmentation-assisted 3D reconstruction of pine tree architecture. 

3.7 CONCLUSION  

Our study developed and evaluated a high-throughput, non-contact method for measuring stem 

diameter, branch angle, and branch diameter of individual 6-year-old loblolly pine trees. The 

pipeline included the use of a stereo machine vision system in conjunction with a fine-tuned 

instance segmentation model and image-point-cloud processing techniques. The algorithm 

developed in this study yielded accurate and precise results regarding stem diameter estimation. 

The branch angle estimation achieved reasonable accuracy for objective classification into 

categories such as small, medium, and large branch angle. Occlusion, imaging angle, and limited 

spatial image resolution prevented accurate estimation of branch diameters for practical 

applications. In loblolly pine tree breeding trials, the proposed method may become a low-cost, 

objective, high-throughput tool for phenotyping tree architecture traits. 
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CHAPTER 4. GENERAL CONCLUSION 

4.1 CONCLUSIONS 

Using 3D stereo videography and a processing pipeline, automated EKGA technology was 

developed. A combination of several modules was used to build this EKGA system, including a 

DLC model to identify body landmarks, a Faster R-CNN model to classify hoof cycle phases, and 

a SGBM model to compute 3D coordinates of the detected landmarks. To demonstrate the 

proposed methodology's effectiveness, we used the pipeline's outputs SL and SD as case studies, 

and we applied post-processing techniques to enhance their performance. Head length 

measurements in the field confirmed that the 2D detection algorithm combined with stereo 

matching performed satisfactorily and consistently. This pipeline did a precise job of classifying 

the hooves. It is evident from a B-A study that the combination of modules suggested in this paper 

could potentially be used for evaluating horse kinematic parameters, with a bias of 0.11 s for SD 

and -0.014 m for SL. 

Our pipeline developed for this study can be useful for research in gait genetics. Identifying 

trends in populations or subpopulations requires precise phenotyping in equine genetic studies that 

examine locomotion, such as gait. Ultimately, the proposed method is a low-cost, practical, and 

rapid tool that animal scientists can use to conduct EKGAs. In spite of the fact that this system 

might sometimes be less precise than marker-based optical motion capture systems available on 

the market, it requires less effort to use. Gait phenotyping is still mostly subjective in most studies, 

making it less accurate than desired. In this way, we believe we will be able to gain greater insight 

into how genetics relates to gait with our more accurate methods. 
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Using a high-throughput approach, we developed and evaluated a non-contact way to measure 

the stem diameter, branch angle, and branch diameter of an individual 4-year-old loblolly pine 

tree. Using stereo machine vision, a fine-tuned instance segmentation model, and image/point 

cloud processing tools were used as part of this pipeline. In terms of stem diameter estimation, our 

proposed algorithm produced accurate and precise results. For the classification of branches into 

low, medium, and high levels, the branch angle estimation achieved reasonable accuracy. 

Occlusion, imaging angle, and limited spatial image resolution prevented the accurate estimation 

of branch diameters for practical applications. Loblolly pine tree breeding trials could benefit from 

a low-cost, high-throughput phenotyping tool for tree architecture traits based on the proposed 

method. Using this system in progeny trials will make it easier to select genotypes exhibiting 

desirable tree architectures because the system provides safe, rapid, and quantitative information. 

  

4.2 RECOMMENDATIONS 

Additional assessment algorithms and data processing methods, including a combination of 

multiple cameras, are needed to improve the accuracy of kinematic gait parameters, notably SL 

and SD measurements. Multiple wirelessly synchronized stereo cameras can be added to the stereo 

imaging pipeline. It is possible to track and analyze landmarks around a horse's body using this 

method. To improve stereo matching accuracy and disparity maps quality, a more precise stereo 

matching algorithm can also be utilized. Based on the computational system used, SGBM was 

preferred due to its high efficiency. To improve the accuracy of stereo image similarity 

computation, state-of-the-art CNNs can be used. It may also not be necessary to use dense stereo 

matching as landmarks' 3D coordinates are the key to the process, and their disparity might be 
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determined directly. Aside from this, the distance between the camera and the horse determines 

the spatial resolution (i.e., the level of detail) and the accuracy of stereo matching-based depth 

estimation, so a study of the camera-horse distance in relation to the proposed system is of interest 

as well. 

The development of our developed system could lead to an observation of the stem's structure 

using a derived 3D point cloud, thus allowing the stem's straightness to be determined. As a conifer 

stem is tilted from its normal vertical orientation, compression wood forms on the lower side, 

inhibiting the growth of the terminal shoot. Warensjö and Rune (2004) state that a serious defect 

called compression wood causes downgrading. It is therefore crucial to evaluate stem straightness. 

There may be some further improvements that can be made to the proposed pipeline in order to 

increase its precision and accuracy. Recent research has developed a few thin object stereo 

matching algorithms. A typical stereo algorithm (SGBM) contains 18.4% of bad pixels in scenes 

with reflective objects, compared to 9.27% in Zhou et al. (2017). The stereo matching algorithms 

have also been implemented on RAW images to improve binocular stereo vision system accuracy 

(Yan Liu et al., 2018). The performance of stereo matching was also enhanced by Chen and Jung 

(2018) using convolutional neural networks (CNNs). It is speculated that integrating the 

aforementioned algorithms can improve the accuracy of estimations of pine tree traits. The use of 

artificial lighting may also help capture images with more details, which are essential for stereo 

matching. A telescopic tripod could also be used to transport the camera vertically, allowing high-

resolution images to be captured at different tree heights at the expense of data collection time. 

Due to the fact that our system collected images 90 degrees apart around the trees, we were unable 

to track the branches. An adequate overlap between images is required if a data collection system 

is to track branches. As more images are incorporated into the measurement pipeline, structure 
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from motion and instance segmentation can be combined to improve accuracy in estimating branch 

angles. 
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