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Abstract 

Engineering and statistical analysis is applied to gain insights and information regarding 

liquid and solid missile systems. This dissertation outlines five main key topic areas, physics 

modeling, data generation, model generation, model robustness/sensitivity, and model 

explainability. The Auburn University Liquid Rocket Code (AULRC) is used to generate waypoint 

parameters such as time of flight. Models are then generated to predict time of flight and the 

performance of said model is assessed using various metrics. Data generated from the AULRC is 

used for quantification (regression) purposes throughout this dissertation. Similarly, the Auburn 

University Solid Rocket Code (AUSRC) is used to generate waypoint parameters such as max 

thrust, however, the AUSRC is used to build classes of rockets for classification models. Both 

programs use a Latin Hypercube (LHC) algorithm to randomly generate data between minimum 

and maximum values. 

Regression models developed will be classical linear regression including ridge and lasso 

and will include higher order interaction terms and more complex models developed include neural 

networks (NNETs). Classification models developed will be classical linear/quadratic discriminant 

analysis and NNETs. All the models were built using either Scikit-Learn or TensorFlow with Keras 

generated using Python. The classification models assume that all the data is available while in 

real-life scenarios this is not always true. Therefore, parameters are chosen to be “missing” and 

are replaced using imputation methods. The sensitivity and robustness of the models can be 

assessed by evaluating the classification metrics on the imputed data. To explain models and their 

predictions, the feature contributions can be assessed to see which parameters are most influential 

and how the model makes a prediction. For the classical models, coefficients can be used to assess 

which parameters had the most influence, but for NNETs, the SHapley Additive exPlanation 
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(SHAP) values can be used to determine which parameters were most important in the model and 

assess how model makes predictions. 
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I. Introduction 

 

Data science applied to engineering is a relatively new emerging field in engineering 

analysis. The driving factor for engineering and statistical analysis is to gain new information about 

engineering systems so that either designs can be improved and/or better decisions can be made. 

There are several data analysis fields such as data science, machine learning, statistical analysis, 

and artificial intelligence and from here on, the term data science will be used to assume that any 

of fields could be used interchangeably. Data science is used in this work to derive information 

from missiles using solid or liquid propulsion. This dissertation will outline the data science 

methods used to apply engineering and statistical analysis. Before any data science method can be 

used, data itself is needed and to generate data the Auburn University Liquid/Solid Codes 

(AULRC, AUSRC) are used to generate missile designs. Engrained in the codes are the data 

sampling algorithms which randomly generate designs. Data generation methodology is extremely 

important as sample distributions can affect the performance of data driven models. As part of data 

generation, the summary statistics will be introduced to show various metrics such as standard 

deviation and variance. Various statistical plots will be used to show the summary statistics such 

as scatter matrices and box plots. 

A large portion of this dissertation will be defining the models that can be used for 

regression and classification. Regression referring to a model which generates a continuous output 

such as time of flight as a function of launch angle. Regression methods such as linear, ridge, and 

lasso regression are introduced as baseline metrics followed by the use of NNETs. Performance 

metrics are also introduced to show the validity of model and include the mean squared error, 
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residual error, and mean absolute percentage error. Classification referring to a model which 

generates a discrete output such as class 1 as function of missile design. Classification methods 

such as linear discriminant analysis and quadratic discriminant analysis are introduced as baseline 

metrics, again followed by the use of NNETs. Performance metrics for the classification models 

include accuracy, precision, recall, and confusion matrices. It will be shown that while the baseline 

metrics perform very well, NNETs must be used to gain higher performance at the cost of training 

time. All models introduced in this dissertation are built in Python [1] using Scikit-Learn [2] for 

lower order modeling and TensorFlow with Keras [3-4] for NNETs. 

To address the issue of robustness and sensitivity, data will be assumed to be missing, since 

the data generated is in a controlled environment, meaning all the data needed is always available. 

However, in most real-life scenarios data can be missing for samples. It could have been lost, 

unavailable, or unreliable. Also, when inputting samples into the prediction model, 

programmatically a missing value cannot just be NAN/missing otherwise it will cause errors. 

Therefore, the missing value is replaced or imputed. Several methods exist for imputation models 

such as mean value imputation, which just replaces the missing value with the mean of the feature 

column. Other methods include using linear regression and NNET models to impute data. Missing 

data will be simulated for the classification database and models will be rebuilt to assess 

performance using the missing data. 

Finally, model interpretation is a huge concern in data science. With more traditional 

models like linear regression, the coefficients are used to evaluate which parameters have more 

weight in the model. A positive coefficient would show that the parameter increases the output of 

the model, and a negative coefficient would show that the parameters decrease the output of the 

model. With linear regression this is easier to do since coefficients can be obtained for each term 
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including the higher degree polynomials and even though there may be a large number of 

coefficients, the model is still interpretable. However, when using NNETs, the model becomes a 

black box because there are nonlinear activations of units, and it is challenging to understand how 

both the weights and inputs affect the model. The other issue with NNETs is that multiple networks 

with different parameters including weights can give the same result. So, to interpret NNETs the 

SHapley Additive exPlanation (SHAP) values can be used to determine how the inputs affect the 

model prediction. SHAP values are used like coefficients in a linear model to show how important 

a parameter is globally but can also be used to gain local input feature importance measures. 
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II. Physics Modeling 

 

Both the AUSRC and AULRC contain a suite of subroutines that design and simulate a 

missile launch. Each program contains subroutines which calculate the mass properties, 

aerodynamics, propulsion, and 6-DOF flight with or without guidance/autopilot. If the reader is at 

the Aerospace Department, the reader may obtain the physical copy of Anderson’s dissertation 

which does a thorough description of the AUSRC subroutines [5]. The reader may also reference 

the MSIC reports (Hartfield [6-17]) and notes [18] which outline a majority of the tools and rocket 

propulsion design. For more specifics on liquid propulsion, the readers should refer to [19-26]. For 

more specifics on solid propulsion, the readers should refer to [27-36]. A brief discussion on the 

main subroutines and only certain derivations will be shown. 

 

II.I AULRC: Propulsion Subroutine 

The propulsion subroutine is the first main subroutine in the AULRC. There are various 

liquid rocket engine cycles such as pressure fed, gas generator, and full-flow combustion [23]. The 

engine cycle used in this work is a constant pressure fed system which uses a high-pressure tank 

to force fuel and oxidizer into the thrust chamber. The AULRC currently contains 29 different fuel 

and oxidizer combinations and allow for a variable equivalence ratio. Since equivalence ratio can 

be varied, the specific impulse �𝐼𝐼𝑠𝑠𝑠𝑠� is varied using polynomial fit �𝐼𝐼𝑠𝑠𝑠𝑠� equations. Table 1 shows 

the fuel and oxidizer combinations available in the AULRC and shows which fuels are available 

with each oxidizer denoted by a checkmark (). For example, RP-1 is available with IRFNA. Each 

combination also supplies the ratio of specific heats, chamber temperature, molecular weight, 
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characteristic velocity, optimum oxidizer to fuel ratio, oxidizer density, and fuel density. First, to 

calculate the thrust, the nozzle pressure ratio must be determined using the input nozzle expansion 

ratio and ratio of specific heats as shown in Eq. (2.1), which has to be solved numerically and can 

then be used to solve for exit pressure since the chamber pressure (po) is an input. The thrust (FT) 

in Eq. (2.2) can then be determined and the reader should note that the formulation includes (λ) 

which is a nozzle divergence correction factor and is determined using interpolation based on the 

expansion ratio and fractional nozzle length. Also, the thrust is corrected during the 6-DOF 

simulation to account for altitude varying the atmospheric pressure using Eq. (2.3). 

 

Table 1 AULRC Fuel & Oxidizer Options 

 

From Eq. (2.1), the nozzle pressure ratio is a function of nozzle expansion ratio and the 

fuel and oxidizer specific heat ratio. Equation (2.2) is a function of nozzle divergence correction 

factor, propellant thrust coefficient (CT, Prop), gravity constant (ge), propellant specific impulse 

�𝐼𝐼𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�, chamber pressure (po), propellant thrust coefficient, nozzle throat area (At), nozzle exit 

area (Ae), fuel/oxidizer specific heat ratio (γ), nozzle exit pressure (pe), an assumed nozzle 

        Oxidizer 

Fuel              

IRFNA H2O2-95% N2O4 ClF3 BrF5 LOX LF2 

UDMH        
Hydrazine        
Hydyne        

RP-1        
JP-X        
MMH        

Kerosene        
Ammonia        

LH2        
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propellant exit/chamber pressure ratio �pe,prop/po,prop = 0.0147�, and characteristic exhaust 

velocity (C*) of the propellant. 
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o
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 (2.3) 

Equation (2.4) shows the nozzle divergence correction factor which is a function of the 

conical nozzle half angle. The correction factor is used since one-dimensional isentropic flow does 

not account for nozzle viscous losses and losses due to two/three-dimensional geometry flow. 

Since the AULRC and AUSRC both use bell nozzles, Eq. (2.4) does not accurately define the 

correction factor needed, but the correct bell nozzle performance parameters are shown in 

Appendix A: Bell Nozzle Correction Factor. 

 
1 cos

2
αλ +

≡  (2.4) 
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Thrust in this subroutine is simulated with no varying atmospheric pressure and is saved to 

a database which can be accessed during the 6-DOF and will then include varying atmospheric 

pressure. Since the thrust is developed beforehand, the mass flow through the nozzle can be 

calculated from Eq. (2.5), which is the thrust (FT,SL) and includes the atmospheric pressure at sea 

level. The mass flow through the nozzle can then be determined from Eq. (2.6), which is a function 

of the nozzle throat diameter, chamber pressure, and characteristic exhaust velocity. The mass flow 

will be used in the mass subroutine to determine the mass of fuel and oxidizer components. The 

characteristic exhaust velocity is supplied for each propellant combination. 

 

( )
( )

1
, 1 2
*

, 1
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1 0.0147

e sp prop
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e
T SL e e e
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 
       = − + − −       −  

 (2.5) 

 

* *
,

* * *
T SL o T o

T T

F p A C p Am
C C C C C

= = =  (2.6) 

II.II AULRC: Mass Subroutine 

The mass subroutine is the second main subroutine and develops various properties such 

mass, length, volume, centers of gravity, moments, and inertia. Inertia cross products are all zero 

since the missile geometry is considered axisymmetric. Full derivations of each component are 

shown from Burkhalter [6-13], and many of the derivations were taken from Sutton [23], Huzel 

and Haung [24], and Humble [25]. The only parameters derived here are for the fuel, oxidizer, and 

compressed gas so the reader should refer to Burkhalter [6]. Readers should also refer to [19-27] 

for various liquid propulsion derivations and discussions. Masses are derived from densities of 

components input by the user such as aluminum or steel. Densities can be changed per component 
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so the tail fins can be made of a different material from the body casing. Mass properties such as 

density for the fuel and oxidizer are programmed and only need to be selected by the user in the 

input. The equations to determine the fuel and oxidizer are shown in the subsequent equations, 

since they are determined after the thrust has been developed. Following the fuel and oxidizer 

sizing, the properties of the pressurization system are developed. Equation (2.6) is used to 

determine the mass flow through the nozzle, which is then used to determine propellant mass 

shown in Eq. (2.7) and is mass flow times the burn time (tb). Equation (2.7) can be used since the 

chamber pressure is kept constant. 

 prop bm mt=   (2.7) 

The fuel mass �𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� can then be determined from Eq. (2.8), which relates the propellant 

mass to the optimal oxidizer to fuel mass ratio �𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜�. The oxidizer mass (𝑚𝑚𝑜𝑜𝑜𝑜) can finally be 

determined by subtracting fuel mass from propellant mass using Eq. (2.9). 

 1
1

prop prop
fuel

opt ox

fuel opt

m m
m

r m
m

= =
+  

+  
 

 (2.8) 

 ox prop fuelm m m= −  (2.9) 

The mass of the fuel (𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) and oxidizer tanks (𝑀𝑀𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) can be determined 

empirically from Eq.’s (2.10) and (2.11). 

 

0.6

Fuel Tank 0.6952
2.2

fuelm
M

 
=  

 
 (2.10) 
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0.6

Ox Tank 0.6952
2.2

oxmM  =  
   (2.11) 

The theoretical volumes of the fuel and oxidizer can both be determined from Eq. (2.12) 

which is the oxidizer or fuel mass divided by oxidizer or fuel density. Initially, the oxidizer and 

fuel tanks are assumed to be spherical, and the radius of the tank (rt) is calculated from Eq. (2.12)

. If the tank radius is determined to be greater than the body radius, the spherical tank will not fit 

and will need to be resized to a configuration which includes hemispherical endcaps and a 

cylindrical midsection. 

 ,Theoretical Sphere
mV
ρ

=  (2.12) 

 

1
33

4t
Vr
π

 =  
 

 (2.13) 

Since there are two hemispherical endcaps, the volume is just a sphere using the body 

inside radius �𝑟𝑟𝑏𝑏𝑜𝑜𝑑𝑑𝑑𝑑� , shown on Eq. (2.14). The volume of the cylindrical section is calculated by 

subtracting the endcaps volume from the theoretical sphere volume developed from Eq. (2.12), 

shown in Eq. (2.15). Equation (2.16) shows the length of the spherical endcaps is just twice the 

inside body radius and Eq. (2.17) shows the cylindrical length is the cylindrical volume divided 

by circular area. Therefore, the total tank length is the cylindrical length plus the length of the 

endcaps, shown in Eq. (2.18). 

 
34

3Endcaps bodyV rπ=  (2.14) 
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 ,Cyl Theoretical Sphere EndcapsV V V= −  (2.15) 

 2Endcaps bodyL r=  (2.16) 

 2
Cyl

Cyl
body

V
L

rπ
=  (2.17) 

 T Cyl EndcapsL L L= +  (2.18) 

Next, the amount of gas required to pressurize both the fuel and oxidizer tanks must be 

determined. The mass of compressed gas (MCG) can be calculated individually for fuel and oxidizer 

using Eq.’s (2.19) and (2.20). The fuel/oxidizer pressure (p), fuel/oxidizer volume (𝑉𝑉), 

compressed gas specific heat ratio(γ𝐶𝐶𝐶𝐶), gas constant for compressed gas (RCG), compressed gas 

temperature (TCG), compressed gas pressure (𝑝𝑝𝐶𝐶𝐶𝐶), and compressed gas pressure regulator (Δp𝐶𝐶𝐶𝐶) 

are required to calculate the compressed gas for both the fuel and oxidizer. The total compressed 

gas is then just a sum of the compressed gas of the fuel and oxidizer using Eq. (2.21). The geometry 

and sizing of the compressed gas tank is done using Eq.’s (2.12)–(2.18). Again, if the radius of 

theoretical sphere is too large for the body, then the tank must be resized using a cylindrical body 

with hemispherical endcaps. 

 ,

1

fuel fuel CG
CG fuel

fuel CG
CG CG

CG

p V
M

p p
R T
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=

− ∆ 
− 
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p pR T
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=

 − ∆
− 
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 (2.20) 
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 , ,CG CG fuel CG oxM M M= +  (2.21) 

 

II.III AUSRC: Mass Subroutine 

The AUSRC is programmed slightly different from the AULRC in that the mass properties 

are defined before calculating the thrust properties. Mass properties are calculated for most 

components in an actual missile which include wing/tail fins, body case, nose and warhead, 

actuators, and nozzle. The main difference in the AUSRC is obvious, the propellants are solid 

grain configurations. Right circular perforated solid propellant motors can be constructed using 

multiple types of configurations which include cylindrical, star, short/long spoke wagon wheels, 

dog bone, spherical, tubular, slotted, dendrite, and many others. Currently, the AUSRC can 

develop cylindrical, star, and short/long spoke wagon wheels using specific parameters. The tool 

does not allow users to directly declare the grain to be a star or wagon wheel, so users must 

understand how some of the geometry parameters can develop the specific grain type they desire. 

The MSIC reports and Rocket Propulsion course notes [6-18], Barrere [27], and Hartfield [28-36] 

discuss the derivations with the most detail and will help readers understand the solid motor design 

the best. 

The first analytically programmable grain type is the star grain, shown on Fig. 1. There are 

multiple ways to define the geometry, but the program uses propellant inner radius (RI), propellant 

outer radius (RP), star/spoke angular fraction (ℰ), number of star/spoke points (N), and the 

star/spoke angular opening (θ) to obtain required parameters such as burn perimeter (S) and burn 

area (Ab) which is used to calculate thrust (FT). It is noted that since the user can input the star 

angular opening, which gives star half angle(θ/2), the thrusting first phase can be progressive, 
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neutral, or negative as shown in Eq. (2.22) which is a coefficient calculated for the phase 1 burn 

perimeter. 

 

 

 

0   Progressive
cot 0   Neutral      

2 2 2
0   Regressive 

N
π θ π θ

>
 − + − → = 

  <
 (2.22) 

 

  

Fig. 1 Star Grain Geometry & Burn Area. 
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Wagon wheels are a special case of star configurations, so the program first determines 

whether the inputs make a star or wagon wheel configuration. Figure 2 shows the long and short 

spoke wagon wheels programmable in the AUSRC. Again, the propellant inner radius (RI), 

propellant outer radius (RP), star/spoke angular fraction (E), number of star/spoke points (N), and 

the star/spoke angular opening (θ) are used to develop the wagon wheels. However, there are two 

types of wagon wheels, long or short spoke, and the program will first determine if the grain 

geometry parameters develop a short spoke, if not then it is a star grain.  

The long and short spokes have identically the same geometry as shown on Fig. 3, except 

their spokes are considered long or short. Their phase 1 burns use the same calculations; however, 

they deviate in their phase 2 burn since they have different web thicknesses. Similar to the star 

grain analysis, the perimeter calculation can be used to calculate a coefficient which determines 

Fig. 2 Long Spoke (Left) & Short Spoke (Right) Wagon Wheels. 
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the phase 1 thrust profile. Similar to Eq. (2.22), Eq. (2.23) will determine if the phase 1 thrust is 

progressive, neutral, or regressive.  

 

0   Progressive
2 1 0   Neutral      

2 sin tan 0   Regressive 2 2
N
π π

θ θ

>
+ − + → =

    <       

 (2.23) 

Another calculation is done to check and see if the grain is a long spoke or short spoke. 

First, at a minimum, to be a short spoke, the side spoke length (h) must be greater than zero and is 

shown in Eq. (2.24). If (h) is less than zero, then the grain configuration is over constrained and 

must be reverted to a star configuration. If (h) is positive then it is a spoke configuration, but further 

calculation must be done to determine if it is a long spoke or short spoke. From the derivations of 

long spokes in Barrere [27], for the long spoke to be valid it must follow the constraint defined by 

Eq. (2.25). Physically, Eq. (2.25) represents the radial length for a long spoke and if it is negative, 

it means the spokes are over lapping and the geometry must be reverted to a short spoke, shown 

on Error! Reference source not found..  
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Another design consideration that can get lost in the programming is the calculation of the 

propellant grain length (GL). GL is not a direct input by the user and is calculated after certain 

components have been designed. The starting point of the grain �𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� is determined right after 

the warhead section. Next, the nozzle design is determined by using the expansion ratio and 

fractional nozzle length to determine the nozzle throat circular arc based on bell nozzles. First, the 

nozzle length based on a 15-degree cone is determined by the empirical equation shown on Eq. 

(2.26). The diverging bell nozzle length (𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁) can then be calculated from the fractional nozzle 

length (𝐿𝐿𝐹𝐹) and 15 degree conical nozzle (𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) in Eq. (2.27). The total converging diverging 

nozzle length (𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁) is then the sum of the converging nozzle entrance (𝐿𝐿𝐸𝐸), which is shown in 

Appendix B:, and diverging bell nozzle length.  

Fig. 3 Wagon Wheel Geometry. 



16 
 

 ( )
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( )
0.382 1 cos 15

tan 15 tan 15
e t te Cone
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r r rr rL
σ  − − = −−  = =



 

 (2.26) 

 N F ConeL L L=  (2.27) 

 Noz E NL L L= +  (2.28) 

The grain length GL can then be calculated by subtracting the starting point of the grain 

�𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�, the gap between the grain, nozzle entrance location �0.06𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�, and (𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁) from the 

missile body length (𝐿𝐿𝐵𝐵), shown on Eq. (2.29). 

 0.06B grain Noz BodyGL L x L R= − − −  (2.29) 

II.IV AUSRC: Propulsion Subroutine 

Once the mass properties are determined the propulsion subroutine then calculates chamber 

pressure over time, which then gets used to calculate thrust over time. For the complete derivation, 

refer to [6] in Chapter 3. In general, the first required calculation is chamber pressure (po), shown 

on Eq. (2.30), which is a function of propellant burn area (Ab), nozzle throat area(At), propellant 

burn rate constant (ab), propellant density (ρ𝑏𝑏), propellant characteristic exhaust velocity (C*), and 

the propellant burn rate index (n). 

 

1
1
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b
o b b

t

Ap a C
A

ρ
− 
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 

 (2.30) 

Equation (2.1) is then used to calculate the nozzle exit pressure (pe). Similar to Eq. (2.2), 

the thrust can then be determined by Eq. (2.31) and includes how thrust is corrected during flight 
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to account for the change atmospheric pressure. Again, the reader should note that the bell nozzle 

correction factor can be obtained by using the empirical formulation from Appendix A: Bell 

Nozzle Correction Factor and interpolate for varying values of nozzle expansion ratio. 

 ( )
11

2 12 2 1
1 1

e
T o t e e

o

pF p A A p p atmosphere
p

γγ
γγγλ

γ γ

−+
−
 

    = − + −      − +     

 (2.31) 

II.V Aerodynamics Subroutine 

The aerodynamics subroutine uses a modified version of AERODSN [37][38].[INCLUDE 

NACA 1307] The original AERODSN did not include drag calculations but was updated by 

Burkhalter to include drag calculations. For a given geometry, AERODSN will develop 

aerodynamic loads and moments over a set of Mach numbers and set of angles of attack. The 

missile is assumed to be symmetric, so the yawing moments are determined from the pitching 

moment coefficients and the side forces are determined from the normal force coefficients. The 

aerodynamic database is then saved to a matrix and can be accessed later during the 6-DOF 

simulation. AERODSN is very similar to Missile Datcom [39-41] and use many of the same 

methods to approximate aerodynamic interactions. Readers should also refer to [42-44] for more 

in depth discussions on similar missile aerodynamic prediction methods. Nielsen [45] provides 

many of the aerodynamic derivations and assumptions that many programs attempt to numerically 

solve such as AERODSN. 

 



18 
 

II.VI 6-DOF Subroutine 

The 6-DOF subroutine is the main bulk of the AULRC & AUSRC. This algorithm uses the 

equations of motion to simulate the trajectory motion of a missile. The equations of motion that 

are used in the 6-DOF subroutine, can be taken from Etkin [46][47] or Schmidt [48]. There are 

several major assumptions, which greatly influence the equations and are the following: the missile 

structure is rigid; there are rotating masses such as rotor; and there are no cross products of inertia. 

The cross products of inertia are all zero since the missile is symmetric, which is shown on Eq. 

(2.32), and the principal axis runs through the missile, shown on Eq. (2.33). Therefore, we are left 

with only the moments of inertia.  

 0XY YX ZY YZI I I I= = = =  (2.32) 

 0XZ ZXI I= =  (2.33) 

Fig. 4 Frames for Unsteady Motion [48]. 
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We then use Eulerian definitions of 𝜙𝜙, 𝜃𝜃, and 𝛹𝛹, which are all in degrees. 𝜙𝜙 is the missile 

bank angle which is a measure of the missile roll angle during flight. 𝜃𝜃 is the missile pitch angle 

and is initially the launch angle relative to the launch point. 𝛹𝛹 is the missile heading angle and 

shows what direction the missile is headed and so if it was 90 degrees initially the missile would 

be headed East. Because missiles often launch vertically, there is a sine of 90 degrees that gets 

Fig. 5 Body Orientation [46]. 
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divided in the equations of motion causing an infinite value to appear, which is known as “gimbal-

lock” when 𝜃𝜃 = 90 degrees. To avoid gimbal locking, the Euler angles are converted to quaternions 

before integration. Defining the quaternions on Eq. (2.34) shows how the three-dimensional 

Eulerian angles are converted to a 4-dimensional vector and can then convert the Eulerian angles 

to quaternions using Eq. (2.35).  
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 (2.35) 

If we define the direction cosine matrix “3-2-1” in which we rotate about 𝛹𝛹, then 𝜃𝜃, and 

finally 𝜙𝜙, we get the vehicle rotational frame V with respect to frame L, from Fig. 5, and the matrix 

shown on Eq. (2.36) defines the conversion of frame V to frame L. The L frame is the “local-

vertical-local-horizontal: frame and is vehicle carried rather than vehicle fixed, so it does not rotate 

with the vehicle. The position of frame L is the vehicle’s center of mass. TL-V is then the 

transformation of frame V to frame L and is denoted as “tbod” in the program, shown on Eq. (2.37)

, however is in terms of Eulerian angles. Note that TL-V is a Body 1-2-3 sequence. If converted to 

quaternions then we obtain Eq. (2.38). Since TL-V is orthogonal, the inverse is simply the transpose 

of TL-V, which is shown on Eq. (2.39), and allows for the calculation of TV-L and is denoted as “b2i” 
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in the program. It is noted that the rotation matrix and quaternion transformation is setup such that 

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2(𝑒𝑒0𝑒𝑒2 + 𝑒𝑒1𝑒𝑒3), which gets used in this sequence version, and is due to the use of the 

Hamiltonian version of quaternions [49]. See Cooke [50] and Amoruso [51] for more information 

on conversion of Euler angles to quaternions and adapting quaternions to the equations of motion. 
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 ( )1 T
V L L V L V L VT T T transpose T−
− − − −= = =  (2.39) 

We can now use Eq.’s (2.38) and (2.39) to solve the equations of motion. For example, Eq. 

(2.40) shows how to obtain the velocity of the missile with respect to the Earth frame E using the 

missile velocities u, v, w.  
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 (2.40) 

Next, we can then define the rotational velocity of the Earth using Eq. (2.41) where 

(𝑝𝑝𝐸𝐸 , 𝑞𝑞𝐸𝐸 , 𝑟𝑟𝐸𝐸) are the roll rate, pitch rate, and yaw rate, respectively, and subscript E refers to “respect 

with earth frame.” (ωEarth) is the Earth’s rotational velocity, and λ𝐿𝐿 is latitude in degrees.  

 

cos
0
cos

E Earth L

E L V

E Earth L

p
q T
r

ω λ

ω λ
−

   
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 (2.41) 

We can then determine the accelerations (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑) of the missile with respect to Earth 

using Eq. (2.42), which is Eq. 2.123 in Schmidt [48] and is written the same way in the Auburn 

tools. These are the scalar equations of motion governing the translational velocity of the vehicle 

body relative to the Earth Frame E. It is noted that (Q) is the dynamic pressure �1
2
ρV2�, (𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅) is 

the reference area (ft2), (𝐹𝐹𝑇𝑇) is thrust (lbf), (g) is gravitational acceleration (𝑓𝑓𝑓𝑓/𝑠𝑠𝑠𝑠𝑐𝑐2), (𝑚𝑚) is the 

missile mass (lbm), and (𝑐𝑐𝑋𝑋, 𝑐𝑐𝑌𝑌, 𝑐𝑐𝑍𝑍) are the aerodynamic component force coefficients on the 

missile. 
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Next, the scalar equations of rotational motion are shown on Eq. (2.43) including the cross 

products of inertia. These equations govern the inertial rotational velocity and allow one to solve 

the rates of p, q, and r. Using Eq.’s (2.32) and (2.33), Eq. (2.43) can be greatly reduced to Eq. 

(2.44). 
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Equation (2.44) can then be rearranged to solve for rates of inertial rotational velocity or 

the inertial rotational acceleration, shown on Eq. (2.45). (𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑀𝑀, 𝑐𝑐𝑁𝑁) are the lift, moment, and 

normal coefficient, respectively, and 𝐿𝐿𝑅𝑅ef is the reference length (ft).  
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 (2.45) 

Next, we calculate the angular velocity of the vehicle of Frame V with respect to Frame L 

and is shown on Eq. (2.46). The angular velocity of frame L with respect to frame I is similarly 
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defined from Eq. (2.47) and can then obtain the angular velocity of the vehicle, Frame V, with 

respect to frame I, shown on Eq. (2.48).  
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Because [𝑝𝑝, 𝑞𝑞, 𝑟𝑟] and [𝑝𝑝𝐼𝐼 , 𝑞𝑞𝐼𝐼 , 𝑟𝑟𝐼𝐼] are known, Eq. (2.48) can be rearranged to solve for ωV,I 

or [𝑝𝑝𝑉𝑉, 𝑞𝑞𝑉𝑉 , 𝑟𝑟𝑉𝑉], shown on Eq.’s (2.49) & (2.50), respectively. Equation (2.50) is written as “capp”, 

“capq”, and “capr” for [𝑝𝑝𝑉𝑉, 𝑞𝑞𝑉𝑉 , 𝑟𝑟𝑉𝑉] in the Auburn tools. μ𝐿𝐿 is the longitudinal position of the missile, 

so μ𝐿̇𝐿 is the longitudinal position rate of the missile, and λ𝐿̇𝐿 is latitudinal position rate of the missile. 

 , , ,V L V I L Iω ω ω= −  (2.49) 
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Because the Eulerian angles are converted to quaternions, the rates of Eulerian angles must 

be determined in quaternion form and is shown in Eq. (2.51). κ is a constant equal to 0.1. 
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 (2.51) 

Finally, the vehicle’s position relative to the surface of the Earth can be calculated using 

Eq. (2.52). Equation (2.52) is rearranged so that we can explicitly obtain the rates of change of 

longitude, latitude, and altitude, shown on Eq. (2.53) and is written using vector (i, j) notation to 

show components that are multiplied to the velocity terms. Again, readers should note in the 

Auburn tool, 𝑇𝑇𝑉𝑉−𝐿𝐿 is typed as “b2i” and 𝑅𝑅𝐸𝐸 + ℎ is typed as “radi”.  
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 (2.53) 

Equations (2.32) through (2.53) are the main portions of the 6-DOF that get calculated and 

used to track the missile. A 7th-8th order Runge-Kutta (RK7(8)) method is used to numerically 

integrate the equations of motion [52]. The RK7(8) is the same algorithm in both the AUSRC and 

AULRC. This algorithm is able to do variable time stepping to improve speed by halving the time 

step until the relative error is reduced below a tolerance. Similar to a 4th order Runge-Kutta, the 

RK7(8) method essentially calls the function of interest (typed as “deq” in the Auburn tool), i.e., 

Eq.’s (2.32)-(2.53), and records the inputs and outputs. The RK7(8) function is basically a wrapper 

around Eq.’s (2.32)-(2.53), it takes an input vector of 19 parameters and calculates 19 outputs. 

Table 2 shows the inputs to the “RK78” function in the Auburn tools and includes the description 

as well as its typed name in the Auburn tool.  
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Table 2 RK7(8) Inputs and Outputs 

Input Input Description (Program Name) Output Output Description (Program Name) 
u Velocity along XV (u) du Acceleration along XV (du) 
v Velocity along YV (v) dv Acceleration along YV (dv) 
w Velocity along ZV (w) dw Acceleration along ZV (dw) 
p Roll Rate, rad/sec (p) dp Roll Acceleration, 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (dp) 
q Pitch Rate, rad/sec (q) dq Pitch Acceleration, 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (dq) 
r Yaw Rate, rad/sec (r) dr Yaw Acceleration, 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (dr) 
𝑒𝑒0 Quaternion (Scalar) (e0) 𝑒̇𝑒0 Quaternion Rate (de0) 
𝑒𝑒1 Quaternion (i) (e1) 𝑒̇𝑒1 Quaternion Rate (de1) 
𝑒𝑒2 Quaternion (j) (e2) 𝑒̇𝑒2 Quaternion Rate (de2) 
𝑒𝑒3 Quaternion (k) (e3) 𝑒̇𝑒3 Quaternion Rate (de3) 
𝜆𝜆𝐿𝐿 Latitude, degrees (xlamda) 𝜆̇𝜆𝐿𝐿 Latitude Rate, deg/sec (dlamda) 
𝜇𝜇𝐿𝐿 Longitude, degrees (ymu) 𝜇̇𝜇𝐿𝐿 Longitude Rate, deg/sec (dmu) 

𝑅𝑅𝐸𝐸 + ℎ Altitude, ft (radi) �𝑅𝑅𝐸𝐸 + ℎ̇� Altitude Rate, ft/sec (dradi) 
𝑝𝑝𝐺𝐺  Pitch Gyro Rate, rad/sec (pgyro) 𝑝̇𝑝𝐺𝐺 Pitch Gyro Accel., 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (pgryod) 
𝑦𝑦𝐺𝐺  Yaw Gyro Rate, rad/sec (ygro) 𝑦̇𝑦𝐺𝐺 Yaw Gyro Accel., 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (ygryod) 
𝛿̇𝛿𝑒𝑒 Elevator Pitch Rate, Deg/sec (deledot) 𝛿̈𝛿𝑒𝑒 Elevator Pitch Accel., 𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (deleddot) 
𝛿𝛿𝑒𝑒 Elevator Pitch, Degrees (dele) 𝛿̇𝛿𝑒𝑒 Elevator Pitch Rate, Deg/sec (deledot) 
𝛿̇𝛿𝑟𝑟 Rudder Yaw Rate, Deg/sec (delrdot) 𝛿̈𝛿𝑟𝑟 Rudder Yaw Accel., 𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  (delrddot) 
𝛿𝛿𝑟𝑟 Rudder Yaw, Degrees (delr) 𝛿̇𝛿𝑟𝑟 Rudder Yaw Rate, Deg/sec (delrdot) 

 

 From the RK7(8) described in Fehlberg [52] “Part III. Seventh-Order Formula – Section 

XI.”, shows how to setup the differential equations for a seventh order Runge-Kutta with step size 

control. RK7(8) is seventh order but is eighth order for the equations of condition.  
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 (2.54) 

Equation (2.54) describes the equation necessary for integration and we can see that there are 13 

total calls to a function, i.e., Eq.’s (2.32)-(2.53) (“deq”). Fehlberg then describes the process for 
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determining 𝛼𝛼𝑘𝑘, 𝛽𝛽𝑘𝑘𝑘𝑘, 𝑐𝑐𝑘𝑘, and 𝑐̂𝑐𝑘𝑘, which are constants already programmed in the Auburn tools and 

described on “Table X. RK7(8)” [52]. The parameters in Eq. (2.54) are for example 𝛼𝛼𝑘𝑘 are typed 

as “ALPH(1)”, 𝛽𝛽𝑘𝑘𝑘𝑘 is typed as “B2_1” which is 2 27⁄  (the 2 in B2_1 means the second row and 

the 1 means the first column), 𝑐𝑐𝑘𝑘, & 𝑐̂𝑐𝑘𝑘 are typed as “CH(1)”. The 𝑦𝑦� is the actual answer of the 

integration and 𝑦𝑦 is used as an error estimation. 

 

II.VII Guidance & Autopilot Subroutine 

Most of the uses with the AULRC and AUSRC are to simulate ballistic launches. Ballistic 

launches are flyouts where there is no wing or fin or thrust defection influencing the equations of 

motion. Fin deflections influence the equations of motion through pitch/yaw gyro rates and 

elevator/rudder rates, which are shown on Table 2. Fins can be deflected by the use of two elevators 

which cause pitching and two rudders which cause yaw, the elevators and rudders are also known 

as the tail fins. The program does not currently allow forward wing (canard) deflection. There are 

other methods of deflection through the use of thrust vectoring [10]. Thrust can be vectored 

through the use of nozzle vanes and gimbaling. Currently, the AUSRC can use all three models of 

deflection and the AULRC can use nozzle vanes and fin deflection. During the flight, if there is 

no fin or thrust deflection then the aerodynamic and force coefficients are updated based on the 

missile’s current angle of attack. If the fins are allowed to be deflected then the fin aerodynamic 

and force coefficients are updated and added to the total aerodynamic and force coefficients. 
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Equation (2.42) is then updated with an additional thrust to dv and dw. There are two 

different methodologies for determining thrust in X, Y, Z directions for vanes and gimbaling. If 

gimbaling is used then the thrust vector is augmented by the gimbaling angles 𝛾𝛾𝑦𝑦 and 𝛾𝛾𝑧𝑧 and the 

corrected thrust vector can be obtained from Fig. 7 and is shown on Eq. (2.56). 𝐹𝐹𝑇𝑇 is the thrust 

developed during the propulsion subroutine. Because the thrust vector is off set from the center of 

gravity, it causes a moment and is added to right side of Eq. (2.44) but only pitching and yawing 

is considered. 
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Fig. 6 Schematic of Gimbal Forces and Moments, Stability Coordinate System. 
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Equation (2.45) is then updated to include gimbaling thrust, shown on Eq. (2.57), and is 

also the same for vane deflection. 𝑋𝑋𝑔𝑔𝑔𝑔 and 𝑋𝑋𝑐𝑐𝑐𝑐 are the distance to the vane/gimbaling center and 

the distance to center of gravity measured from the nose.  
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The nozzle vanes have a different approach to thrust vectoring. Similar to the fins, there 

are two sets of vanes, which cause pitching or yawing. Thrusting is affected by the sole existence 

Fig. 7 Nozzle Vanes Geometry. 
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of vanes in the direction of thrust, as shown on Fig. 8. The vanes are set in the exhaust plume, 

shown on Fig. 9, and the exhaust plume add aerodynamic forces, which cause pitching and yawing. 

To determine the forces on vanes, AERODSN is used approximate the aerodynamic forces and the 

resulting thrust vector is shown on Eq. (2.58). 
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Notice that the 𝚤𝚤̂ component includes 𝐹𝐹𝑇𝑇,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, which is not just the thrust generated during the 

thrust subroutine. Because the vanes are in the exhaust plume, they decrement the thrust by some 

amount, and unless CFD was used then we cannot directly calculate the thrust decremented. So, 

Fig. 8 Vane Geometry in Nozzle Exhaust Plume. 
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an approximation was made based on the vane profile area 𝐴𝐴𝑃𝑃 and nozzle exit area 𝐴𝐴𝐸𝐸; therefore, 

the effective thrust is shown on Eq. (2.59). Realize that if there are no vanes, then, the thrust is not 

decremented by the vane profile area. Equations (2.55) and (2.57) are the same for nozzle vanes. 
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Next, we will briefly describe the overall guidance and autopilot algorithm. To develop the 

autopilot commands, a guidance law is used to develop the acceleration commands. This work has 

utilized the proportional navigation (PRONAV) guidance law to develop the acceleration 

commands required for pitch and yaw [54]. Because we assume there is no missile rolling, there 

is no third component of commanded acceleration; however, this algorithm still follows a three-

dimensional setup. The PRONAV guidance law is shown on Eq. (2.61) where 𝑛𝑛𝐶𝐶 is the 

acceleration command (𝑓𝑓𝑓𝑓/𝑠𝑠2), 𝑁𝑁′ is the effective navigation ratio, 𝑉𝑉𝐶𝐶 is the target closing velocity 

(𝑓𝑓𝑓𝑓/𝑠𝑠), and λ̇ is the line of sight rate (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠). 

 C Cn N V λ′=   (2.61) 
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We refrain from discussing other guidance laws here, but the user should refer to Zarchan 

[54], Yanushevsky [55], Blakelock [56], Siouris [57], and Gibeau [58] for more guidance and 

autopilot laws. This work will follow the derivation similar to Moran [59] and shows how to 

breakdown the three-dimensional PRONAV algorithm using two-dimensional solutions. First, we 

define (𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇), which is the difference between the target position and the missile’s 

position, shown on Eq. (2.62). 
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We can then define the line of sight angles (LOS) (λ), where λXY is the LOS on the XY 

plane and λXZ is the LOS on the XZ plane and are shown on Eq. (2.63). 
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Similar to Eq. (2.62), the missile to target velocities (𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇,𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇,𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇), which are the 

difference between the target’s velocity and the missile’s velocity are shown on Eq. (2.64). 

 

TMX T M

TMY T M

TMZ T M

V VX VX
V VY VY
V VZ VZ

= −
= −
= −

 (2.64) 
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The LOS plane rates �λ̇� can then be calculated using Eq.’s (2.62) & (2.64) and is shown 

on Eq. (2.65). 
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Equations (2.62) & (2.64) are then used to compute the closing velocities of each plane 

(𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶,𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶) and are shown on Eq. (2.66).  
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Using Eq. (2.66) we can now develop the acceleration commands for the XY and XZ plane 

and is shown on Eq. (2.67). 
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Because (𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶,𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶) are acceleration magnitudes, we can finally develop the acceleration 

vector using the acceleration magnitudes and the LOS. This is shown on Eq. (2.68) and we can see 

that in the XY plane that there is no Z or �𝑘𝑘�� component and we can see that in the XZ plane that 

there is no Y or (𝚥𝚥̂) component. We can convert the acceleration vector into the L frame using Eq. 

(2.69) and notice that (N𝐶𝐶𝐶𝐶𝐶𝐶, N𝐶𝐶𝐶𝐶𝐶𝐶) is simply the dot product between (𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶,𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶) and 
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�𝑇𝑇�𝐿𝐿−𝑉𝑉[2, : ],𝑇𝑇�𝐿𝐿−𝑉𝑉[3, : ]�. (N𝐶𝐶𝐶𝐶𝐶𝐶, N𝐶𝐶𝐶𝐶𝐶𝐶) are finally the required acceleration commands that get used 

in the autopilot algorithm.  
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Now, we define some of the autopilot fundamentals. If it is not clear yet, the commanded 

accelerations are used to update the missile trajectory path. How does the commanded 

accelerations cause the missile to follow a target? Well, by using the tail fins, nozzle vanes, or by 

gimbaling. So, what the autopilot is doing is determining the amount of actuation required. The 

autopilot used in this work follows the derivation from Nesline [60], which is an improvement 

over Zarchan [54], shows the autopilot derivation using aerodynamic derivatives. Anderson [61] 

provides baseline values and basic rule of thumbs that should be followed using the autopilot. The 

main parameters which define the autopilot are the damping ratio (ζ), time constant (τ), crossover 

frequency (ω𝐶𝐶𝐶𝐶), actuator frequency (ω𝐴𝐴𝐴𝐴𝐴𝐴), and actuator damping ratio (ζAct). We refrain from 

going the entire derivation of the autopilot gains, since they are programmed in the Auburn tools 

and are shown by Nesline [60]. We will however show the final derivation of the amount of 

elevator/rudder deflection (δ) (degrees) and the elevator/rudder acceleration �δ̈�. The missile 

actuators (δ) are modeled as a second-order transfer function shown on Eq. (2.70). 
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Converting Eq. (2.70) from Laplace transform back to the time domain gives Eq. (2.71). 

The elevator/rudder acceleration can now be solved for by simply rearranging Eq. (2.71) into Eq. 

(2.72), where ω𝐴𝐴𝐴𝐴𝐴𝐴 is actuator frequency set to �125 𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠
� and ζ𝐴𝐴𝐴𝐴𝐴𝐴 is the actuator damping ratio 

set to (0.7) in this work. 
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The only term left to determine before using Eq. (2.72) is the fin deflection command (δ𝐶𝐶), 

which is the amount of fin deflection to turn the missile. The fin deflection command (δ𝐸𝐸𝐸𝐸) for 

pitching is simply the sum of the missile pitch gyro rate (𝐺𝐺𝐸𝐸) and missile pitch rate (𝑞𝑞) times a 

rate gyro autopilot gain (𝐾𝐾𝑅𝑅). The fin deflection command (δ𝑌𝑌𝑌𝑌) for yawing is similarly the sum 

of the missile yaw gyro rate (𝐺𝐺𝑌𝑌) and missile yaw rate (𝑟𝑟) times a rate gyro autopilot gain (𝐾𝐾𝑅𝑅). 

The rate gyro autopilot is defined by Nesline [60] on equation (26) and is programmed in the 

Auburn tools, and therefore not shown here. It also is a function of multiple functions and would 

require more derivations not required for this work. 
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II.VIII SCUD-B Input Data & AULRC Model Verification 

Now that the overall physics have been discussed, we must define the input parameters for 

the AULRC and AUSRC. In general, most of the inputs are based on the SCUD-B and classes are 

augmented from the baseline SCUD-B class. For the regression case using AULRC, we take the 

SCUD-B baseline and simply add “noise” to the inputs to generate a large database of missiles. 

For the classification task using AUSRC, we take the SCUD-B baseline and augment specific 

parameters and every parameter has a slight amount of noise. These databases will be described in 

chapter III. The SCUD-B parameters are mostly taken from Seyfert [62], the “Rock Nail Report” 

[63], and the wiki page on the scud missile [64]. Table 3 shows the data for the SCUD-B pulled 

from the references [62-64]. 

Table 3 SCUD-B Data 

Parameter Parameter Value 
Body Diameter, ft 2.90026 
Propellant Type 4.0 (IRFNA/RP-1) 
Equivalence Ratio (Ratio of Actual Fuel/Air to Stoichiometric Fuel/Air) 2.0 
Chamber Pressure, Psi 1108.15 
Nose Diameter to Body Diameter Ratio 1.000 
Nose Length to Body Diameter Ratio 3.25 
Nozzle Throat Diameter to Body Diameter Ratio 0.1408147 
Nozzle Expansion Ratio (Nozzle Exit Area to Nozzle Throat Area) 10.32 
Fractional Nozzle Length** 0.66 
Burn Time, Seconds 62.00 
Tail Root Chord to Body Diameter Ratio 1.50905 
Tail Taper Ratio (Tip Chord to Root Chord Ratio) 0.42879 
Tail Semi-Span to Body Diameter Ratio 0.51697 
Tail Leading Angle, Degrees (Measured Normal to Missile Body) 60.00 
Tail Trailing Edge X-Location to Body Length Ratio 1.000 
Initial Launch Angle, Degrees** 90.00 

**Values Approximated from [62-64]. 

The information below is related to SCUD-B. 
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1. Length: 11.2-11.4 meters depending on the warhead. 

2. Diameter: 884 millimeters. 

3. Span: 1.8 meters. 

4. Launch Weight: 5562-5950 kg. 

5. Empty Weight: 2076 kg. 

6. Fuel Weight: 3771 kg (852 kg Fuel & 2919 kg Oxidizer) 

7. Payload Weight: 1016 kg. 

8. Range: 50-300 km 

9. Speed: Maximum of 1.5 km/sec, 1.13 km/sec at Apogee, 1.4 km/sec at Impact.  

10. Accuracy: 450 meters. 

The SCUD-B is shown on Fig. 10 on a transport erector vehicle [64]. This SCUD-B missile 

can be modeled using the AULRC tool and is compared against the OMEGA [65] tool, which is a 

Government-Off-The-Shelf software used to generate liquid propellant missile 6-DOF simulations 

similar to the AULRC. To ensure our model is valid, we can plot the mass, thrust, range, and 

altitude over time for both the AULRC and OMEGA tools. Figure 11 shows how mass changes 

over time and we can see that the OMEGA & AULRC models agree very well. Notice that the 

once the propellant completely finishes, the mass is constant. There is a slight noticeable mismatch 

at the end of the propellant burning and could be due to slight errors in how mass properties were 

defined in the AULRC. Figure 12 shows the thrust over time for both tools and we can see that 

they agree. Notice the only difference is that OMEGA allows the chamber pressure to throttle up, 

whereas the AULRC starts at the prescribed chamber pressure. Figure 13 shows the range over 

time and we can see that both models agree. Finally, on Fig. 14, the altitude over time is plotted 



39 
 

for both models and can see they match very well. Notice that OMEGA flies a bit higher compared 

to the AULRC, but both arrive at the same range since the AULRC will let the missile glide. 

 

  

  

Fig. 9 SCUD-B on Transport Erector [64]. 
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Fig. 10 Omega vs AULRC: Mass Over Time. 

Fig. 11 Omega vs AULRC: Thrust Over Time. 
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Fig. 12 Omega vs AULRC: Range Over Time. 

Fig. 13 Omega vs AULRC: Altitude Over Time. 
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II.IX AULRC Input Data 

Table 4 AULRC SCUD-B Input 

Parameter Parameter Value 
Body Diameter, ft 2.90026 
Propellant Type 4.0 (IRFNA/RP-1) 
Equivalence Ratio (Ratio of Actual Fuel/Air to Stoichiometric Fuel/Air) 2.0 
Chamber Pressure, Psi 1108.15 
Nose Diameter to Body Diameter Ratio 1.000 
Nose Length to Body Diameter Ratio 3.25 
Nozzle Throat Diameter to Body Diameter Ratio 0.1408147 
Nozzle Expansion Ratio (Nozzle Exit Area to Nozzle Throat Area) 10.32 
Fractional Nozzle Length** 0.66 
Burn Time, Seconds 62.00 
Wing Root Chord to Body Diameter Ratio 0.0 
Wing Taper Ratio (Tip Chord to Root Chord Ratio) 0.0 
Wing Semi-Span to Body Diameter Ratio 0.0 
Wing Leading Angle, Degrees (Measured Normal to Missile Body) 0.0 
Wing Leading Edge X-Location to Body Length Ratio 0.0 
Tail Root Chord to Body Diameter Ratio 1.50905 
Tail Taper Ratio (Tip Chord to Root Chord Ratio) 0.42879 
Tail Semi-Span to Body Diameter Ratio 0.51697 
Tail Leading Angle, Degrees (Measured Normal to Missile Body) 60.00 
Tail Trailing Edge X-Location to Body Length Ratio 0.88 
Autopilot Time Delay, Seconds*** 231.80 
Autopilot Time Constant (τ)*** 0.4044 
Autopilot Damping Coefficient (ζ)*** 0.9140 
Autopilot Crossover Frequency, (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠)*** 34.4028 
Autopilot Effective Navigation Ratio*** 3.741 
Initial Launch Angle, Degrees** 86.241 

**Values Approximated 

***Values Generated from Genetic Algorithm 

 

Using the information from Table 3, we can then generate a set of example inputs for the 

AULRC and is shown on Table 4. Notice the addition of the wing parameters but are set to zero 

since the SCUD-B has no wings. The tail trailing edge location has been moved up, because during 

simulations it appeared that missile was more stable when moving the tail closer to the nose. The 
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initial launch angle is set to 86 degrees since the datasets that we focus on in this work do not use 

nozzle vanes to pitch so setting the launch angle at 86 degrees acts as a way to pitch through the 

use of gravity. Next, notice that the autopilot parameters are generated using the genetic algorithm 

(GA), which is available in both Auburn tools. The GA was set to match a range and apogee of 

250 km and 75 km, respectively. 

Figure 15 shows an example rocket using the input data from Table 4. Notice that the nose 

is blunt due to the nose diameter ratio equal to one. The SCUD-B does not actually have a blunt 

nose but was set to be blunt for this study. Figure 16 shows the nozzle that was produced using the 

input data on Table 4. 

 

 
Fig. 14 AULRC Example Rocket. 
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II.X AUSRC Input Data 

Again, the information from Table 3 is also used to generate a baseline set of input for the 

AUSRC database. Note that the SCUD-B is a liquid rocket missile so generating a SRM version 

will require generating geometries for the solid propellant using the GA. The GA was set to match 

a range and apogee of 250 km and 75 km, respectively. 

 

Fig. 15 Nozzle End for AULRC Example. 
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Table 5 AUSRC SCUD-B Input 

Parameter Parameter Value 
Nose Diameter to Body Diameter Ratio*** 0.1936 
Nose Length to Body Diameter Ratio 3.25 
Propellant Type 3 (PVC/AP/AL) 
Outer Propellant Radius Plus Fillet Radius to Body Diameter Ratio*** 0.6095 
Inner Propellant Radius to Outer Propellant Radius Ratio*** 0.2165 
Number of Star/Wagon-Wheel Points*** 7 
Fillet Radius to Outer Propellant Radius Ratio*** 0.089 
Epsilon Width*** 0.91821 
Star/Wagon-Wheel Point Angle, Degrees*** 18.4816 
Fractional Nozzle Length*** 0.7573 
Nozzle Throat Diameter to Body Diameter Ratio 0.1426 
Fineness Ratio 9.119 
Body Diameter, meters 0.8840 
Wing Semi-Span to Body Diameter Ratio 0.0 
Wing Root Chord to Body Diameter Ratio 0.0 
Wing Taper Ratio (Tip Chord to Root Chord Ratio) 0.0 
Wing Leading Angle, Degrees (Measured Normal to Missile Body) 0.0 
Wing Leading Edge X-Location to Body Length Ratio 0.0 
Tail Semi-Span to Body Diameter Ratio 0.51697 
Tail Root Chord to Body Diameter Ratio 1.50905 
Tail Taper Ratio (Tip Chord to Root Chord Ratio) 0.42879 
Tail Leading Angle, Degrees (Measured Normal to Missile Body) 60.00 
Tail Trailing Edge X-Location to Body Length Ratio 0.88 
Autopilot Time Delay, Seconds*** 231.80 
Autopilot Time Constant (τ)*** 0.4044 
Autopilot Damping Coefficient (ζ)*** 0.9140 
Autopilot Crossover Frequency, (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠)*** 34.4028 
Autopilot Effective Navigation Ratio*** 3.741 
Initial Launch Angle, Degrees*** 53.63 

***Values Generated from Genetic Algorithm 
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II.XI Program Errors & Filtering 

Due to settings in the Auburn tools, unsatisfactory conditions can occur during simulation 

time. Some of the conditions are geometrical constraints, thrust constraints, and the majority are 

due to conditions during the 6-DOF subroutine. Below the current errors and filters are listed. 

Errors 1-7 will stop the simulation immediately when detected, errors 8-11 will still output data 

until the error occurs. For the databases, we wish to use missiles which do not experience failure 

of any kind, so when filtering the missiles, errors 1-11 do get reported. Filter 12 shows that there 

can still be thrust when the missile lands, which means the missile did not go far enough so it gets 

filtered. Filter 13 is not an error in the program, it just shows the missile did not go farther than 10 

miles, so they get filtered out of the database. Filter 14 is also not an error, it is an effect due to 

errors 8-11 since the simulation stops tracking the missile, with the database we want full complete 

trajectories, and so if errors 8-11 occur, they get filtered out of the database.  

Fig. 16 AUSRC Input Example. 
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1. Grain Type Unspecified (AUSRC), this parameter is 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 1 and checks many geometric 

constraints for the propellant grain. Examples include: �H1  =  RPsin �πϵ
N
�� <  fillet 

radius; wagon wheel spokes are too long (they are geometrically intersecting, for no spoke 

interference δ < π
𝑁𝑁

 ), grain perimeters are less than zero (cannot be negative geometry 

length).  

2. For AUSRC & AULRC: Expansion ratio should be within 2-50; Fractional nozzle length 

should be greater than 0.6 and less than 1.0. 

3. For AUSRC & AULRC: Chamber pressure exceeded max limit, which is currently set to 

9000 psi.  

4. For AUSRC: Port area less than 1.2 times nozzle throat area. 

5. For AUSRC & AULRC: Thrust is too small. 

6. For AUSRC: Propellant grain size too small. 

7. For AUSRC: Exit Mach number less than 1.0 (Should be supersonic nozzle designs). 

8. For AUSRC & AULRC: Missile is tumbling or rolling out of control. 

9. For AUSRC & AULRC: Max G-limit exceeded. 

10. For AUSRC & AULRC:: Max Mach number limit exceeded. 

11. For AUSRC & AULRC: Wing/Tail fin sheared off. 

12. For AUSRC & AULRC: Thrust still occurring, means rocket did not go far enough to finish 

the entire propellant. 

13. For AUSRC & AULRC: Missile did not go further than 10 miles. 

14. For AUSRC & AULRC: Final altitude is not zero, means missile did not land.  
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III. Data Generation 

 

Both regression and classification tasks require extensive databases for training models. 

Databases can be built multiple ways. Unrelated to the AULRC and AUSRC, an example would 

be taking data from the population and digitizing data into large spreadsheets. Data could also be 

gathered from the internet using surveys. This work uses the AULRC and AUSRC to build the 

databases for both regression and classification. Both programs use a subroutine constructed to 

randomly generate inputs that will automatically be simulated in the AULRC or AUSRC. There 

are many ways of randomly generated numbers, and the Auburn tools have several programmed. 

These numbers are generated randomly by sampling from normal or uniform distributions. Since 

the inputs to the Auburn tools are continuous, the distributions are also continuous. A good 

resource for random number generation can be found in Ripley [66]. 

There are five available options in the Auburn tools for sampling: normal distribution, 

uniform distribution, Latin Hypercube (LHC) sampling, LHC with edge sampling, LHC with 

centered sampling. In both Auburn tools, the data is input into a file called “gannlDIST.dat” and 

is used for every variation of the sampling algorithms unless the user changes the source code to 

read in a different file. Data will also be described for the regression and classification tasks and 

the summary statistics will also be shown to introduce the preprocessing tasks that are done to 

ensure data is acceptable for model generation. 
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III.I Uniform Distribution Sampling 

The first and simplest sampling method available is uniform sampling [67-68], and the 

probability distribution function (pdf) is shown on Eq. (3.1), which is constant line between (a) 

and (b). Programmatically, (a) is the minimum value for the design parameter and (b) is the 

maximum value for the design parameter. 

 ( ) 1 ,   a x bf x
b a

= ≤ ≤
−

 (3.1) 

To programmatically obtain uniform random values (𝑍𝑍𝑈𝑈), values are not directly calculated 

from uniform distribution on interval [a,b]; instead, values are calculated from a uniform 

distribution on interval [0,1] and are then scaled on [a,b] shown on Eq. (3.2). The uniform values 

on [0,1] are calculated using the Marsaglia-Zaman subtract with borrow random generator [69]. 

Generally, some form of uniform distribution is preferred in relation to the regression and 

classification tasks to ensure that the models are not biased to regions with higher sampling 

densities. Uniform sampling is more desirable so that models overall are training to entire regions 

of data and are not preferring specific regions. Essentially trying to reduce errors by minimizing 

the number of regions that may have reduced sampling density. Table 6 shows an example of input 

data and how it would look for uniform sampling. 

 ( ) ( )0,1UZ a b a Unif= + −  (3.2) 

Table 6 Uniform Data Example for "gannlDIST.dat" 

Maximum Minimum Parameter 

2.0 0.5 DBODY, (meters) 

15 10 Fineness Ratio 
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III.II Normal Distribution Sampling 

The second sampling method is to sample from the pdf of the normal distribution, shown 

in Eq. (3.3). The main parameters of this function are the mean value (μ) and the variance (σ2). 

The mean value, shown on Eq. (3.4), is just the average value or the expected value of X, where X 

is continuous random variable with a pdf of 𝑓𝑓(𝑥𝑥). The variance or standard deviation squared, 

shown on Eq. (3.5), is the expected value of X minus the mean value squared which shows the 

amount of spread from the average value. For more information on the normal distribution, see 

references [67] & [68]. 

 ( )
( )2

221 ,    
2

x

f x e x
µ

σ

σ π

 − −
 
  = −∞ < < ∞  (3.3) 

 ( ) ( )E X xf x dxµ
∞

−∞

= = ∫  (3.4) 

 ( ) ( ) ( ) ( )2 22 Var X E X x f x dxσ µ µ
∞

−∞

 = = − = −  ∫  (3.5) 

To programmatically sample from the normal distribution, the Box-Muller (BM) algorithm 

is used to efficiently generate random values [67-68]. Other variations of sampling can be done as 

well, for example the central limit theorem can be used to sample for normal distributions. BM 

uses two independent uniform distributions and converts them to polar coordinates (R, Θ), which 

are then multiplied and get used to calculate a random normal value (ZN). This algorithm requires 

the user input the mean and standard deviation, and instead of directly sampling from the normal 
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distribution, the uniform distribution can be used to generate random values. The uniform 

distribution uses the same algorithm mentioned in Eq. (3.2). 

 

( )
( )( )

( )

2 0,1

2ln 0,1

cosBM

N BM

Unif

R Unif

Z R
Z Z

π

µ σ

Θ =

= −

= Θ

= +

 (3.6) 

Typically, in relation to work shown here, the normal distribution sampling is not used 

because normal distribution generates a bell-shaped curve density. Therefore, near the tail regions 

the sampling density decreases. Regions with low sampling density can increase error because 

models may not be able to fit the data near the tails where sampling density is low. Table 7 does 

show an example of what the user would input for the normal distribution. Only the mean and 

standard deviation are required. 

 

Table 7 Normal Distribution Example for "gannlDIST.dat" 

Mean Standard Deviation Parameter 

14.33367 0.1433367 Fineness Ratio 

0.75 0.0075 DBODY, (meters) 

 

III.III  Latin Hypercube Sampling 

Uniform sampling in general does produce a uniform distribution, however it can develop 

regions where there is lower sampling. To better ensure that the dataset will have uniform sampling 

over every region, the Latin Hypercube (LHC) sampling algorithm can be used, which was 



52 
 

developed from McKay [70]. LHC itself is a stratified sampling technique which divides the 

interval (like [a,b] in uniform distribution) into subregions or strata. Uniform distributions are then 

randomly sampled from each stratum, and this significantly improves the overall uniform 

distribution. Stratified sampling is an area of research which attempts to approve space filling 

designs. This work will only focus on LHC sampling for space filling designs and readers are 

encouraged to review [70-74] for more information on space filling designs and sampling methods. 

Other designs have further attempted to improve upon LHC by developing quasi-random (quasi-

Monte Carlo) sequences and include Halton [71], Sobol sequences [76], and Niederreiter [77]. 

Another popular sampling method is based on the maximum entropy, which seeks to use 

probability distribution that has the largest entropy [78]. Future work in data generation will need 

to consider the methods from references [70-78]. 

Derivations of LHC sampling are shown in [70], [71], and [75]. This work will follow the 

derivation from Santner [71]. The inputs to the Auburn tools are 𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑) where (𝑑𝑑) is the 

number of inputs to the Auburn tools, such that 1 ≤ 𝑘𝑘 ≤ 𝑑𝑑. There are a total number of samples 

(𝑁𝑁𝑆𝑆), with individual samples denoted by (𝑗𝑗), such that 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁𝑆𝑆. There are then (N by d) or (j 

by k) LHC values, which is a matrix. The LHC algorithm defined by Eq. (3.7) first calculates a 

matrix of (NS by d) uniform samples on interval [0,1] denoted by �𝑈𝑈𝑗𝑗𝑗𝑗�. Next, a matrix of (NS by 

d) random permutations on interval [1, NS]. Programmatically, the random permutation algorithm 

follows a shuffling algorithm described by Knuth [79] and the algorithm is essentially equivalent 

to sampling without replacement. The shuffling algorithm also uses an in-house pseudo-random 

integer generator developed from Wichmann & Hill [80]. The matrix of (NS x d) LHC values can 

then be calculated and since 𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑) are uniformly sampled over [0,1]d then 𝐹𝐹𝑘𝑘−1(𝑥𝑥) = x. 



53 
 

LHCjk are scaled between 0-1 and need to be rescaled over the interval [ak,bk] for each k input, 

which are denoted by SLHCjk.  
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The algorithm described in Eq. (3.7) is for the original LHC algorithm and is what is mostly 

used in this work. There are many ways that the LHC algorithm has been modified, but only two 

others are included, and they are LHC-Center and LHC-Edge algorithms. Both of these algorithms 

are slight variations with the LHC-Center is more likely to generate random values in the center 

of each stratum as opposed to LHC-Edge which is more likely to generate random values near the 

edges of each stratum. Typically, the edge and center version are not used because as long as N is 

large (greater than 1000, which it usually is) then the sampling is uniform over each stratum 

regardless of which version is used.  
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Special LHC designs include orthogonal arrays, symmetric LHC, cascade/nested/sliced 

LHC, orthogonal LHC (not the same as orthogonal arrays), symmetric LHC, and LHC designs that 

use Euclidean Distance [71]. Programmatically, Eq. (3.7) is the simplest method to follow since it 
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only relies on the user inputting the maximum and minimum values for each input [a, b] similar 

to the inputs on Table 6.  

III.IV Regression & Classification Data 

This section will describe the inputs and outputs for the classification and regression tasks 

for both the AULRC and AUSRC datasets. Readers should understand that the datasets were based 

on the SCUD-B from Table 3. Summary statistics will be introduced and shown for various 

parameters. Summary statistics are extremely useful since it is a part of preprocessing data. 

Looking at the summary statistics is mostly an observation task, and it is important to ensure that 

the summary statistics are what the user expects. The summary statistics are also used to ensure 

that there are no issues in the data that was generated, and these issues could be outliers or problems 

in the code that generated the data. Also, the information shown in the following sections are 

developed in Python [1] using Pandas [81] & [82], Matplotlib [83], seaborn [84], and Plotnine 

based on ‘ggplot2’ in R [85]. 

The first set of summary statistics will describe the count, mean, standard deviation, 

minimum value, 25th Percentile, 50th Percentile, 75th Percentile, and maximum value, like what is 

shown on Table 8 excluding the count. Table 8 can easily be generated in Python using Pandas 

“describe” function. The count is just the number of samples in the dataset. The mean would be 

the average value for the parameter. Standard deviation is the square root of the variance of the 

parameter. Min and Max are just the minimum and maximum values of the parameter, 

respectively. The quartiles for 25%, 50% (Median), and 75% show percentage of where data lies, 

so 25% shows 25 percent of data lies below the value shown. Readers should note that the 

minimum and maximum values are what was input to the Auburn tools and should match relatively 

close when data is output. 
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The “describe” function provides a great set of summary statistics; however, the 

distribution sampling must be confirmed and is best done by using a density histogram [67]. 

Histograms group data into intervals by either defining number of bins or interval range. The 

density of each interval is displayed using a bar and the height is equal to the number of samples 

in each interval. To confirm the LHC or uniform sampling mode is providing a uniform distribution 

then the bars should be of equal density and would show equal height on a figure. Despite all 

efforts that have been introduced to produce uniform distributions, the upcoming sections will 

show some of the histograms not having uniform distribution at all. Mainly this is due to filtering 

from the Auburn tools because not every design configuration gives a conceivable trajectory. 

 

III.IV.I AULRC Regression Data 

For the regression tasks, the output data is to be modeled as a function of the inputs. First, 

the database must be described to show what inputs are used and why other inputs were excluded. 

Table 8 shows the summary statistics of both input and output developed using the LHC sampling 

algorithm from Eq. (3.7). Displayed on Table 8 is the parameter name, the mean, standard 

deviation, minimum value, 25th Percentile, 50th Percentile (median), 75th Percentile, and maximum 

value. The number of samples or count that was generated for this dataset was 500,000 samples 

and takes approximately 75.5 hours to execute. Since the wing parameters were excluded, they are 

all zero. Because the autopilot was turned off for both the vanes and tail fins, they are excluded as 

well. Figure 97 in Appendix D: shows how the input file is setup for the AULRC with no autopilots 

turned. Appendix E: & Appendix F: show datasets using fin autopilot and fin/vane autopilot, 

respectively. The data describes a range of ballistic missiles. 
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Table 8 AULRC Regression Data 

Parameter Mean STD DEV MIN 25% 50% 75% MAX 
DBODY 3.02 0.29 2.50 2.77 3.02 3.27 3.50 

EQRATIO 2.00 0.12 1.80 1.90 2.00 2.10 2.20 
PC 1093.63 247.56 600.00 892.28 1108.03 1306.45 1500.00 

DNOSE 0.85 0.09 0.70 0.77 0.85 0.92 1.00 
LNOSE 3.25 0.19 2.93 3.09 3.25 3.41 3.58 

THROAT 0.15 0.03 0.10 0.13 0.16 0.18 0.20 
EXPR 16.35 4.89 8.00 12.10 16.27 20.56 25.00 
FNL 0.80 0.12 0.60 0.70 0.80 0.90 1.00 

TBURN 61.23 9.82 45.00 52.76 60.69 69.34 80.00 
TRCR 1.26 0.43 0.50 0.89 1.26 1.63 2.00 
TTR 0.66 0.18 0.35 0.50 0.65 0.81 1.00 

TAILB2 0.97 0.29 0.50 0.72 0.95 1.21 1.50 
TLE 18.56 11.07 0.00 9.08 18.16 27.61 40.00 

TXLERATIO 0.88 0.07 0.75 0.81 0.88 0.94 1.00 
ILAUNCH 84.91 2.66 80.00 82.73 85.01 87.15 89.99 
THRSEA 40.31 18.38 7.32 26.37 36.41 50.64 126.91 
MAXTHR 45.58 20.57 7.82 29.85 41.51 57.44 140.75 
MAXDIST 841.19 739.48 52.80 231.87 610.78 1268.77 6713.27 
APOGEE 298.69 318.13 5.44 50.15 187.71 448.04 3573.74 

TOF 280.07 149.47 46.42 151.60 263.21 383.68 1133.21 
WEIGHT 16.56 6.45 5.17 11.65 15.23 20.19 51.05 

 

 

Box and whisker plots (boxplots) show the bottom whisker and top whisker, which are the 

minimum and maximum value, respectively, and the box display the 25th, 50th (median), and 75th 

percentiles (quartiles). Figure 18 shows the box plots for DBODY, PC, TAILB2, and ILAUNCH. 

We can see that DBODY displays the quartiles at relatively uniform distribution and PC shows 

the quartiles shifted up (skewed left). TAILB2 appears to be slightly skewed right and ILAUNCH 

seems very uniform.  
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 The whole reason for using LHC sampling was to get better uniform distribution. To better 

display the sampling distribution, histograms can be used to show the frequency of values using 

bins and show an approximate view of the distribution. So, if the values are approximately constant 

then the distribution can be said to be approximately uniform. Figure 19 displays the histograms 

Fig. 17 Box & Whisker Plot for DBODY (Top-Left), PC (Top-Right), TAILB2 (Bottom-Left), & 

ILAUNCH (Bottom-Right). 
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for DBODY with count being the number of samples with the specified bin width. The count 

increases as DBODY increases from 2.5 to 3.5 but seems uniform overall and it could also be said 

that higher DBODY values are preferred and lower DBODY are less likely to occur. Due to 

filtering, higher DBODY may be more stable during flight. If we plot the max distance 

(MAXDIST) versus DBODY, shown on Fig. 98 in Appendix G:, shows two groupings of data. 

The first group seems to start at MAXDIST equal to 2000 (DBODY=2.5) and increases linearly 

as DBODY goes to 3.5. The second group starts at MAXDIST equal to 2000 (DBODY=2.5) and 

can see that the MAXDIST goes up to 5000 and increases to 6500 as DBODY increases but the 

frequency starts to decrease drastically once DBODY gets to 3.0. This trend is also noticeable on 

APOGEE and TOF versus DBODY. 

 

 
Fig. 18 DBODY Histogram. 
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PC count increases quite drastically as PC increases and is not uniform in sample 

distribution. Higher values of PC are apparently preferred. Since PC directly results thrust, lower 

values of thrust are less likely to launch far and may not launch at all if the weight is too much, 

therefore larger values of PC are more desirable. When plotting the outputs versus PC on Fig. 99 

in Appendix H: can see that there are not multiple groupings due to PC. Instead, we see that the 

outputs and their range increase as PC increases. Notice that as PC increases the minimum value 

is still constant so it shows that missiles with PC can still have low MAXDIST or TOF. Other 

parameters are still affecting the missile causing the minimum value to be constant, even as PC 

increases. 

 

 
Fig. 19 PC Histogram. 
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 Next, looking at Fig. 21, which displays the histograms for TAILB2, the number of missiles 

decreases as TAILB2 increases and smaller TAILB2 values are more likely to occur. Larger values 

of TAILB2 can contribute greatly applied momentum forces on the fins and fin shearing can occur 

at high speeds, so large fins are more likely to break resulting in unstable trajectory and would 

then be filtered out. Larger fins could also be causing more drag to influence the trajectory and 

causing large stability changes. When plotting the outputs versus TAILB2 in Appendix I:, the 

outputs are approximately uniform (constant) for every output, so it is hard to prove exactly why 

larger TAILB2 are less frequent except for hypothesizing that the fins are shearing as they get 

larger. 

 

 

Looking at Fig. 22, ILAUNCH count decreases as ILAUNCH increases. and ILAUNCH 

ranging from 85.00-87.50 degrees seems to be preferred. A huge reason why the frequency drops 

Fig. 20 TAILB2 Histogram. 
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when ILAUNCH approaches 90 degrees is because the missile has no vane autopilot to pitch it 

over and so many vertical launches will fail because they are less likely to go further and may get 

filtered out of the database. The pitching angle should not be set to too low otherwise the missile 

may not go as far. Liquid missiles do not generate the same amount of acceleration as solid 

propellant rockets, which is why they are usually launched vertically and then pitched over. Future 

datasets will pitch vertically, then the vane autopilot will be used to pitch over. 

 

When plotting the outputs versus ILAUNCH on Fig. 101 in Appendix J: shows that 

APOGEE increases as ILAUNCH increases, which makes sense 90-degree vertical launches are 

most likely to go highest. However, MAXDIST drastically decreases as ILAUNCH approaches 90 

degrees because there is no nozzle vane pitching allowing MAXDIST to increase, so instead 

APOGEE increases as ILAUNCH approaches 90 degrees. MAXTHR and THRSEA are uniformly 

distributed as ILAUNCH goes from 80 to 90 degrees. TOF increases as ILAUNCH increases, but 

Fig. 21 ILAUNCH Histogram. 
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we know from Fig. 22 that the frequency decreases greatly as ILAUNCH approaches 90 degrees. 

ILAUNCH has little to no effect on WEIGHT, which makes sense because WEIGHT itself is 

constructed from geometric terms and has such a low range compared to TOF. ILAUNCH only 

practically affects WEIGHT if ILAUNCH becomes too small, then the missiles may not be able 

to launch due to WEIGHT. 

 

Fig. 22 AULRC Output Data Scatter Matrix. 
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 Next, the outputs need to be evaluated using a scatter matrix to compare the histograms of 

the outputs, and also compare the scatter plots of the outputs versus each other using pandas 

“scatter matrix”. Figure 23 shows the scatter matrix of the output and will see that the diagonal are 

the histograms, and the off diagonals show the scatter plots. The histograms appear skewed right, 

meaning that the max values in the range are less frequently to occur. For example, one reason 

why longer TOF is less frequent to occur is that longer flights are more likely to experience an 

error such as tumbling or fin shear. The scatter plots are useful to see if there are any relationships 

between the output variables. These relationships can help understand how separable the data will 

be and can be used to see which parameters will do well in the regression analysis. 

For example, the relationship between MAXTHR versus THRSEA is very linear and 

means that the two are related, which is obvious since they are both thrust terms. We cannot say 

how easy it will be to train models to MAXTHR & THRSEA, but we can hypothesize that they 

will be reproducible. Looking at TOF versus APOGEE shows a curvilinear relationship and 

suggests that as TOF increases, as does APOGEE and so they are directly related to each other for 

rocket propelled lofted ballistic trajectories are subject to the modeling in this dissertation. 

We now put focus on APOGEE & TOF versus MAXDIST and can see that both have a 

wide distribution and can say that APOGEE & TOF may have a more nonlinear relationship; thus, 

may be more difficult to reproduce using regression methods. It can be seen that certain scatter 

plots appear to have multiple distributions such as MAXDIST versus WEIGHT and suggest they 

may be more challenging to reproduce. When looking at MAXTHR, THRSEA, & WEIGHT 

histograms, they are normal with a right skew. Also notice that their range is small compared to 

the other outputs. So, they should be relatively easy to reproduce. TOF histogram is also normal 

with right skew but has a much larger range so it might be more difficult to reproduce. MAXDIST 



64 
 

& APOGEE are very right skewed but appear to be exponentially distributed so they may be more 

challenging to reproduce. 

Some of the sample thrust curves are plotted on Fig. 24 and can see how thrust changes as 

time increases during flight. The reason why thrust increases is because during flight the 

atmospheric pressure decreases as altitude increases. It will also be seen that some of the thrust 

curves decrease because some of the flights are shorter duration. The flights are decreasing in 

altitude causing thrust to be slightly less due in part to increases in atmospheric pressure on 

average, and more prominently scaled. 

 When plotting the sample altitude versus time curves on Fig. 25 can see how the altitude 

varies greatly with time. Can see that the higher altitude trajectories have longer flight times and 

vice versa. If we look at close-up of the sample altitude versus time curves on Fig. 26, can see a 

few of the samples do not travel that long and so the thrust starts to decrease as altitude decreases 

and was shown on Fig. 24. The sample altitude versus range is shown on Fig. 27 and we can see 

the range that the missiles can have and will notice that the samples that go up more vertically are 

less likely to travel further compared to the missiles that are pitched over. A close-up of Fig. 27 

Fig. 23 Sample Thrust Curves. 
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shown on Fig. 28 shows that missiles pitched too low do does not go as far and will notice that 

they have lower burn times and lower thrust. 

 

 

  

Fig. 24 Sample Altitude vs. Time Curves. 

Fig. 25 Close-up Sample Altitude vs. Time Curves. 



66 
 

 

 

  

Fig. 26 Sample Altitude vs. Range Curves. 

Fig. 27 Close-up Sample Altitude vs. Range Curves. 
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III.IV.II AUSRC Classification Data 

For the classification tasks, the output data from the AUSRC is used as the inputs in the 

classification model and outputs a class value, which refers to the group (class) the missile belongs 

to. One reason for using classification models is to reverse engineer parameters. Originally, before 

the Auburn group tried to classify missiles, reverse engineering methods were used to try and 

develop the missile parameters using regression methods. However, NNETs were not able to 

accomplish this goal because there are too many missile parameters to model. For example, using 

output data such as BURNTIME and MAXTHR, could we rebuild the missile geometries such as 

DBODY (Body Diameter) and FINENESS (fineness ratio). So, instead of trying to rebuild the 

geometry parameters, we would give different groups of missiles a unique class value. This class 

value, in a way, tells us what geometry the missile has without actually needing to know what the 

geometry is. 

To rebuild the geometry using output data, a more advanced network called Generative 

Adversarial Networks (GANs) may need to be used but is outside the scope of this work. Instead, 

this work started out with classification models. Again, we begin by describing how the classes 

were developed. For this work, we only utilize 7-star point grains. Originally, during the 2021-

2022 MSIC contract we developed 72 classes by modifying number of star points from 5,7,9, and 

11 points, nozzle throat diameter, fineness ratio, and body diameter. Due to excess amount of 

information, it is not easy to visualize every star grain configuration and so we only focus on a 

subgroup of the database with 7-star points for this work. Table 9 shows the summary statistics 

used to build the database for the classification models. The four outputs utilized for classification 

are BURNTIME, MAXTHR, MAXPC, and MAXPE. 
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Table 9 Classification Database Summary Statistics 

Parameter Mean STD DEV MIN 25% 50% 75% MAX 
BURNRATE 0.040 0.000 0.040 0.040 0.040 0.040 0.041 

PREXP 0.350 0.002 0.347 0.348 0.350 0.352 0.354 
DENSITY 0.064 0.000 0.063 0.064 0.064 0.064 0.065 

CSTAR 5363.98 30.95 5310.36 5337.27 5364.15 5390.78 5417.64 
RPVAR 0.610 0.006 0.600 0.605 0.610 0.615 0.620 
RIVAR 0.216 0.006 0.206 0.211 0.216 0.221 0.226 
FVAR 0.089 0.005 0.081 0.085 0.089 0.093 0.097 
EPS 0.918 0.023 0.878 0.898 0.918 0.938 0.958 

PTANG 18.480 4.040 11.482 14.989 18.477 21.982 25.481 
FNL 0.757 0.006 0.747 0.752 0.757 0.762 0.767 

THROAT 0.163 0.019 0.140 0.144 0.163 0.183 0.189 
LBODY 9.119 0.163 8.909 8.924 9.119 9.314 9.329 
DBODY 0.884 0.033 0.842 0.845 0.884 0.923 0.926 
LGRAIN 2.379 0.170 2.078 2.220 2.379 2.541 2.683 

BURNTIME 16.864 1.422 13.404 15.746 16.812 17.935 21.094 
MAXTHR 108.24 20.26 65.63 92.94 106.47 121.59 176.44 
MAXPC 2499.53 882.79 1196.97 1673.06 2330.49 3290.06 4657.67 
MAXPE 4.636 0.571 3.447 4.175 4.611 5.064 6.377 

 

 Table 10 shows how the classes are differentiated from throat diameter, fineness ration, 

and body diameter. We will see that the first 9 classes have the same throat diameter. Each class 

changes in body diameter and each 3 classes the fineness ratio increases. To generate the complete 

database, the AUSRC is executed 18 times (72 times to include the other star point configurations). 

Appendix K: shows an example input file used to generate data using the AUSRC. Throat diameter 

has a +/- 0.006 for maximum and minimum, respectively. Fineness ratio has a +/- 0.01 for 

maximum and minimum, respectively. Body diameter has a +/- 0.002 for maximum and minimum, 

respectively. The rest of the inputs also have a small amount of noise to add variability to the 

output. Noise is also added because the regression models cannot use constant values. For each 

class, 2500 samples are generated for a total of 45,000 samples (180,000 samples including the 

extra star point configurations).  
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Table 10 Mean Value Class Differentiation 

Class Throat Diameter Fineness Ratio Body Diameter 
1 0.14264 8.91878 0.844 
2 0.14264 8.91878 0.884 
3 0.14264 8.91878 0.924 
4 0.14264 9.11878 0.844 
5 0.14264 9.11878 0.884 
6 0.14264 9.11878 0.924 
7 0.14264 9.31878 0.844 
8 0.14264 9.31878 0.884 
9 0.14264 9.31878 0.924 
10 0.18264 8.91878 0.844 
11 0.18264 8.91878 0.884 
12 0.18264 8.91878 0.924 
13 0.18264 9.11878 0.844 
14 0.18264 9.11878 0.884 
15 0.18264 9.11878 0.924 
16 0.18264 9.31878 0.844 
17 0.18264 9.31878 0.884 
18 0.18264 9.31878 0.924 

 

 Because there are many classes, looking at the histograms is not simply accomplished, 

since the distributions are overlayed. Instead, we utilize the box and whisker plots to see how the 

classes are differentiated by looking at DBODY, FINENESS, THROAT, BURNTIME, 

MAXTHR, MAXPE, and MAXPC. Can see DBODY for each class on Fig. 29 and see the small 

amount of noise that was added (+/- 0.002). FINENESS for each class is shown on Fig. 30 and can 

see the small amount of noise that was added (+/- 0.01). THROAT for each class is shown Fig. 31 

and can see the small amount of noise that was added (+/- 0.006). 
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Fig. 28 DBODY Box & Whisker Plots of Each Class. 

Fig. 29 FINENESS Box & Whisker Plot of Each Class. 
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 When looking at BURNTIME on Fig. 32, can see how BURNTIME increases with each 

DBODY increase, which makes sense because the wider the rocket the more fuel that can be 

carried. Notice BURNTIME drops as DBODY resets to lowest value. Can see that for each 3 class 

groups (first 9 classes) BURNTIME decreases as FINENESS ratio increases. As fineness ratio 

increases the grain length increases slightly and the max pressure increases more significantly. If 

we assume the burn time is steady, which it true for cylindrical grains, then we can approximate 

burn time as 𝑡𝑡𝑏𝑏 = LGRAIN/(a𝑃𝑃𝑂𝑂𝑁𝑁). For demonstration purposes only, if LGRAIN=2.1 with 

MAXPC=3000 psi gives 𝑡𝑡𝑏𝑏 = 2.13 seconds and LGRAIN=2.5 with MAXPC=3750 psi gives 𝑡𝑡𝑏𝑏 =

1.08 seconds. Can directly see that an increase in fineness ratio causes slight increase in grain 

length but a VERY significant increase in chamber pressure and therefore a decrease in burn time. 

 

 

 

Fig. 30 THROAT Box & Whisker Plot of Each Class. 
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An increase the nozzle throat diameter causes the nozzle length to be shorter which then 

causes the propellant grain length to be longer for classes 10-18; therefore, the propellant burn 

time is longer since the grain is longer. If we compare classes 1 & 10 using Eq. (2.29), they have 

the same DBODY and FINENESS, but different THROAT. To see what is causing the difference 

in BURNTIME, we know that 𝐿𝐿𝐵𝐵 is constant for both cases, the starting point of the grain 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

is also constant, and the body radius is constant. The only parameter that changes is the nozzle 

length, if we then analyze Eq.’s (2.29) & (10.1)-(10.4) in Appendix B:, the only parameter causing 

any difference is THROAT. An increase in THROAT reduces the available nozzle length, which 

then increases the grain length (shown on Fig. 33) and vice versa. An increase in grain length then 

increases the BURNTIME, which makes sense because more available propellant the longer it 

takes to burn propellant.  

Fig. 31 BURNTIME Box & Whisker Plot of Each Class. 
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Next, we can look at Fig. 34, which shows MAXTHR box plots for each class. Can see 

that as DBODY increases, MAXTHR increases, and as FINENESS increases, MAXTHR 

increases. Increasing THROAT decreases MAXTHR, analyzing Eq. (2.30) and comparing classes 

1 and 10, which both have the same DBODY and FINENESS, burn area and the propellant 

properties are constant; the only difference is THROAT. Calculating Eq. (2.30) using THROAT 

from classes 1 and 10 will then show that class 10, which has higher THROAT, yields a significant 

decrease in chamber pressure compared to the chamber pressure for class 1. This significant 

decrease in chamber pressure causes a huge decrease in MAXTHR (See Eq. (2.31)). Notice Fig. 

35 and shows that the first 9 classes, which have the same THROAT, have a higher MAXPC, then 

classes 10-18, which have higher THROAT, have lower MAXPC. This trend is also seen on Fig. 

36, which shows MAXPE, and can see that as DBODY & FINENESS increase, MAXPE increases, 

Fig. 32 LGRAIN Box & Whisker Plot of Each Class 
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and when THROAT increases there is a reduction in MAXPE when comparing classes with same 

DBODY & FINENESS. 

 

 

 

Fig. 33 MAXTHR Box & Whisker Plot of Each Class. 

Fig. 34 MAXPC Box & Whisker Plot of Each Class. 
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Fig. 35 MAXPE Box & Whisker Plot of Each Class. 
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IV. Model Generation: AULRC Regression 

 

Now that the data has been introduced and described in Chapter III, we can begin the 

regression analysis. In this work, we first utilize traditional statistical learning methods such as 

linear regression, lasso regression, and ridge regression. We then recognize that linear regression 

cannot fully capture the entire design space and reproduce the performance required to replicate 

the highly nonlinear database. To improve performance, we then utilize NNETs. 

 

IV.I Review of Regression in Missiles 

Before the regression methods and their applications are discussed in detail, it is important 

to mention previous works produced with regards to regression in which we are predicting some 

quantitative response such as time of flight or normal force coefficient. One of the first regression 

projects undertaken was the calculation of missile aerodynamic coefficients using NNETs from 

Ritz [86] who used AEROModeler, which at the time was a prototype software to implement 

NNETs. For the time, these results did well and surprisingly efforts were taken to develop model 

explanations using descriptor sensitivities. Next, NNETs were developed using SAS to predict the 

aerodynamic coefficients of missiles with grid fins [87]. These models use features such as angle 

of attack and grid fin length to predict output features such as drag coefficient and static margin. 

Results shows that each output could be predicted with 𝑅𝑅2 all greater than 0.9999. Next, SAS was 

used again to develop NNETs to extend the work from [86] to include extra output features such 

as pitch-rate pitching-moment effectiveness �𝐶𝐶𝑀𝑀𝑞𝑞� and roll-rate effectiveness �𝐶𝐶𝐿𝐿𝑝𝑝� [88]. Results 

show extremely good fits using SAS. Next, SAS was used to develop linear regression models to 
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develop thrust as a function of time and classification NNETs were used to predict how many stars 

points the grains have and resulted in 95% accuracy [89]. Finally, we arrive at the work done in 

this dissertation from Cervantes [90], which is work based off this dissertation. NNETs were 

developed using TensorFlow to predict time of flight, max thrust during flight, max distance 

travelled, max altitude, and max thrust at sea level. Results showed mean absolute percentage 

errors all than 0.5%. The work in this paper did not include the prediction of max weight, nor did 

it train long enough to further improve results. Results will show in the coming sections as to why 

NNETs are necessary and why enough training time is necessary.  

 

IV.II Linear Regression Methods 

To reiterate the basic idea of regression, a quantitative response is to be modeled using an 

input feature ([67],[68],[91]). Equation (4.1) shows the relationship between the output and the 

input, where �𝑓𝑓(𝑋𝑋)� is an unknown function and (ℰ) is the random error from a normal distribution 

with a mean of zero. If the unknown function �𝑓𝑓(𝑋𝑋)� is assumed to be a linear function, then 

�𝑓𝑓(𝑋𝑋)� can be approximated using coefficients (β0,β1), where (β0) is the intercept term and (𝛽𝛽1) 

is the slope. For example, we may be trying to model time of flight of the missile as function of 

launch angle and this model would be a simple linear regression model [92] shown on Eq. (4.2). 

The only thing we need to identify are the regression model coefficients (β0, β1). To solve for the 

coefficients, we first generalize Eq. (4.2) into Eq. (4.3). β�0 is the estimated intercept and is the bias 

term, and the coefficients are combined into β�, which is vector of size (𝑃𝑃 + 1) to include the bias 

term. The vector of input features, which are DBODY, ILAUNCH, etc., are 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑃𝑃)𝑇𝑇 

(where P equals 15 for this database) used to predict the output responses 𝑌𝑌 like TOF are modeled 
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using Eq. (4.3). However, if we are modeling multiple outputs like TOF, MAXTHR, MAXDIST, 

APOGEE, THRSEA, and WEIGHT, then we can further generalize Eq. (4.3) into Eq. (4.4), which 

includes the K-vector of output responses Y to be modeled using the (𝑃𝑃𝑃𝑃𝑃𝑃) matrix of coefficients 

β�𝐾𝐾. 
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To calculate the regression coefficients, we can fit the model to training data that was 

described in III.IV.I AULRC Regression Data. To train the model, the method of least squares can 

used to minimize the residual sum of squares [93], shown on Eq. (4.5). 𝑅𝑅𝑅𝑅𝑅𝑅(β) is then rewritten 

to matrix notation on Eq. (4.6) where 𝑦𝑦 is a N-vector of training outputs and 𝑋𝑋 is an (𝑁𝑁𝑁𝑁𝑁𝑁) matrix 

of inputs (each row refers to inputs like BDODY, ILAUNCH, etc.). Differentiating Eq. (4.5) with 

respect to β will allow estimating β which minimize Eq. (4.5) by setting Eq. (4.7) to zero gives the 

estimated coefficients β� on Eq. (4.8). Since we are evaluating K=6 features there are again β�𝐾𝐾 

(15𝑥𝑥6) matrix of estimated coefficients.  
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Before implementation and results are shown for the linear regression method, it is 

important to discuss the bias-variance trade-off [92]. Every model is affected by bias, variance, 

and error (ℰ). When evaluating the test mean squared error (MSE) about a single sample (𝑥𝑥0), we 

can measure the variance of 𝑌𝑌�(𝑥𝑥0), the bias of 𝑌𝑌�(𝑥𝑥0), and the variance of the error (ℰ), shown on 

Eq. (4.9). var(ℰ) is the irreducible error, we then try to produce a model with low bias and low 

variance. Variance in a model refers to the amount the prediction of the model would change if it 

were trained using different data. A model with large variance would change drastically with small 

changes in the training data. Imagine one model with a specific set of training data, it produces a 

model with some output. New training samples are then added to the training and the model is 

refit, the model now predicts drastically different results; this is a model with large variance. Bias 

then refers to the error from modeling a highly nonlinear problem with a low order type model, 

such as linear regression. It may be that relationship between the responses and features are highly 

nonlinear, so no amount of training data can be used to produce an accurate model; thus, the model 
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would have large bias. Typically, traditional linear regression methods suffer from large bias and 

low variance (underfitting).  

 ( )( ) ( ) ( )( ) ( )
22

0 0 0 0
ˆ ˆˆ var varE y Y x f x bias f x ε  − = + +     (4.9) 

Another issue we must guard against is overfitting to the training data, which is when the 

model has low bias and high variance. So, this is opposite to the previous statement just made. One 

easy way to generate overfitting is by increasing the number of parameters, which is useful to 

improve model performance. What happens is that certain parameters build a large coefficient 

value but are cancelled out by another parameter with a similar large negative coefficient. To 

reduce variance and ensure low bias, a penalty can be applied to the size of the coefficients. The 

first method is called “Ridge Regression” and works by shrinking the coefficients to be smaller 

and can approach zero. Instead of determining β�𝐾𝐾, we now determine the ridge coefficients 

�β�𝐾𝐾
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� such that they minimize a penalized residual sum of squares, shown on Eq. (4.10) where 

λ is the regularization strength or shrinkage term. Basically, larger λ makes shrinkage greater so 

coefficients are driven towards zero. Due to the scaling of the inputs, the inputs are typically 

standardized. Writing the arg-min portion of Eq. (4.10) in matrix form on Eq. (4.11) and taking 

the derivative with respect to β and setting equal to zero results in the estimated ridge coefficients 

�β�𝐾𝐾
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� on Eq. (4.12) where I is the (𝑃𝑃𝑃𝑃𝑃𝑃) identity matrix. 
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 (4.12) 

Another widely used regularization method used is “Lasso Regression”. Lasso instead 

makes coefficients exactly zero, whereas ridge shrinks towards zero. The penalty function in ridge 

is considered 𝐿𝐿2, however, the penalty applied to lasso is 𝐿𝐿1 which makes the solution nonlinear 

and so there is no general closed form solution. Programmatically, the lasso coefficients �β�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� 

can be found using Eq. (4.13). Similar to ridge, the inputs should also be standardized as well. 

Both ridge and lasso are used to feature selection to reduce the number of parameters in the model. 

Generally, parameters with coefficients near zero are removed and the model is refit using reduced 

data. 
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To implement linear, ridge, and lasso regression models, we use can use the Python 

package called Scikit-Learn [2] to call the regression methods above using “sklearn.linear_model” 
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functions “LinearRegression”, “RidgeCV”,  and “MultiTaskLassoCV”. “LinearRegression” uses 

the ordinary least squares regression to solve for coefficients. “RidgeCV” is a cross-validation 

implementation of ridge to calculate the optimal 𝜆𝜆 and automatically fits using the optimal 𝜆𝜆. 

Similarly, “MultiTaskLassoCV” is also a cross-validation implementation of lasso to calculate and 

fit with the optimal 𝜆𝜆.  

IV.II.I Linear Regression Methodology 

The implementation of the Python script for the linear regression is as follows and a very 

good reference that this initial was based on is from Geron [94], who outlines methodologies for 

using Scikit-Learn in great detail. It is highly recommended that users with little python experience 

start with Geron [94]. An extra reference for developing a lot of the residuals and figures were 

developed from Bruce [95]. 

1. Read in data using Pandas “read_csv” function to read data. 

2. Use Pandas to separate data into input data and output data. 

3. Use Sklearn “train_test_split” to randomly split data into training and testing data. 

4. Develop pipeline to use “PolynomialFeatures” to add higher order terms and 

standardize the data using “StandardScaler”.  

5. Use the pipeline to transform the data. 

6. Train the models using “fit”. 

7. Predict the output data using the test data. 

8. Calculate performance of models such as 𝑅𝑅2, MAPE, MSE, and WAPE.  

The data is first read in and split into the input and output data. It is recommended that data 

is split into training and testing data, so that the model does not overfit to the training data and do 

poorly on the test data or new data. We will also evaluate higher order models of linear regression 
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which utilize higher terms like (DBODY*ILAUNCH, DBODY*THROAT*ILAUNCH, etc.). The 

data is standardized then trained. The performance of each of the models is then obtained. First, 

the 𝑅𝑅2 statistic is shown on Eq. (4.14) and is a proportion of the variance explained by the model 

and is typically between 0-1, however if it is negative then a model which draws a line through the 

mean value of the data would have a better fit ([92], [93]). 𝑅𝑅2 is a measure of the proportion of 

variability in the output that is explained by the inputs. Another way of thinking about 𝑅𝑅2 is by 

saying the amount of variability that is explained by the regression model (𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑅𝑅𝑅𝑅𝑅𝑅). One issue 

with 𝑅𝑅2 is that it can be challenging to assess what value of 𝑅𝑅2 is acceptable. 
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One of the most popular methods for estimating model quality is through the use of mean 

squared error (MSE), shown on Eq. (4.15). The closer the predicted responses �𝑓𝑓(𝑥𝑥𝑖𝑖)� are to the 

true values (𝑦𝑦𝑖𝑖), the lower MSE will be. A lower is MSE is desired in a model output. One issue 

with MSE is that the outputs is in squared units, so if the output measure were TOF then the MSE 

would be (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑2) which is an odd way to measure the error. 

 
( )( )2

1

1 N

i i
i

MSE y f x
N =

= −∑  (4.15) 



84 
 

Often a percentage error is preferred and so the mean absolute percentage error (MAPE) is 

used [96]. It is a proportion of the residual error to the actual value so in a sense is the relative 

error of the model. MAPE is much easier to understand because it is percentage based. A negative 

of MAPE is that when true values are near zero, MAPE will become very large and can approach 

infinity. MAPE is also biased towards negative values and MAPE places higher penalty on 

negative values [97].  
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To deal with the issues of MAPE, a modified version of MAPE called MMAPE (Modified 

Mean Absolute Percentage Error) is also used to calculate performance, which is shown on Eq. 

(4.17), and can see that instead of dividing by the true value (𝑦𝑦𝑖𝑖), the residual error is divided by 

the difference between the maximum and minimum of Y. If values are near zero then the error will 

not approach infinity and errors only grow large when the residual is great. An issue with MMAPE 

is that errors which are significant for a specific sample may get reduced too low. Caution should 

be taken when interpreting MMAPE due to the scaling of the residual error using the range because 

they can vastly differ. For example, the ranges for the outputs are 119.59 Lbf/1000 for THRSEA, 

132.93 Lbf/1000 for MAXTHR, 6660.47 ft/1000 for MAXDIST, 3568.3 ft/1000 for APOGEE, 

1086.79 seconds for TOF, and 45.88 Lbm/1000 for WEIGHT.  
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IV.II.II Linear Regression: One-Way Results 

When splitting the data, the training data contains 400,000 samples and the testing data 

contains 100,000 samples. The models are then fit using degree of one, so there are only one term 

parameters modeled (DBODY, ILAUNCH, etc.), and the overall metrics are calculated and shown 

for all three models on Table 11. Because this model only uses one-way terms in the model there 

are 15 coefficients to model. The regularizations strength for lasso was determined to be 0.1 which 

adds a small amount of error, and ridge allows regularization strength for each output are [0.8, 0.4, 

5.3, 1.1, 0.4, 0.9] for TOF, MAXTHR, MAXDIST, APOGEE, THRSEA, & WEIGHT, 

respectively. Can see that based on 𝑅𝑅2 the models are all equivalent and only differ when 

evaluating MSE and MAPE. Linear model seems to perform best when evaluating MSE, Lasso 

does best when evaluating MAPE and MMAPE. If we assess the individual output metrics, we can 

then learn how well the model is performing for each individual output. Table 12 shows the 𝑅𝑅2 

and see that all models do about the same. However, when assessing the individual outputs, can 

see that none of the models can highly replicate MAXDIST, next is APOGEE, TOF, WEIGHT, 

THRSEA, and finally MAXTHR seems to be the most replicable. To reassure the previous 

statements, MSE is shown for each output on Table 13. Again, each model has approximately the 

same MSE for each output. The model metrics are listed in order from highest MSE to least MSE: 

MAXDIST, APOGEE, TOF, MAXTHR, THRSEA, and WEIGHT. In general, will see that 

MAXTHR, THRSEA, and WEIGHT will have the lowest errors and APOGEE & MAXDIST will 

have the most error. TOF will typically have the mid-range error. With 𝑅𝑅2 and MSE it is hard to 

understand what the error looks like, so we need to look at percentage error. 

Next, we assess MAPE on Table 14 and each model does about the same overall; except 

now we can gauge how bad the model is performing. Note the APOGEE has 183% error, which is 
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eye opening to see how bad the model is reproducing APOGEE; MAXDIST has 88% error and 

suggests that the model is not reproducing MAXDIST at all. TOF also a high pretty high error as 

well with 20% and shows that on average the model will have 20% relative error to the true value. 

MAXTHR, THRSEA, & WEIGHT have about 8-11% relative error and show that they are well 

reproduced. Finally, looking at MMAPE on Table 15, all the models show the same performance. 

However, notice that the percent errors show less than 5% for each output. Caution should be taken 

when using MMAPE because the residual error is scaled by the range, so it is a percentage of the 

range. So MAXDIST has largest error of 4.7% meaning that the residual error is 4.7% relative to 

the range of MAXDIST, which is approximately 6660 ft/1000 meaning MAXDIST could be off 

by about 313,020 feet assuming 4.7% error and would be a very large error. Even the 2.7 % 

MMAPE for WEIGHT suggests that the result could be off by 1240 lbm when making predictions. 

Even for the small error with MMAPE, there is still a very large residual error.  

Table 11 Overall Model Performance for Degree =1  

Model R2 MSE MAPE MMAPE 
Linear 0.8581 35918.4609 53.3316 3.1827 
Ridge 0.8581 35918.975 53.3311 3.1827 
Lasso 0.8581 35918.0508 53.3036 3.1825 

 

Table 12 𝑹𝑹𝟐𝟐 for Degree = 1 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 0.8825 0.9463 0.6454 0.8023 0.9404 0.9319 
Ridge 0.8825 0.9463 0.6454 0.8023 0.9404 0.9319 
Lasso 0.8825 0.9463 0.6454 0.8023 0.9404 0.9319 
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Table 13 MSE for Degree = 1 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 2624.9968 22.673 192767.5625 20072.6484 20.067 2.8277 
Ridge 2625.0365 22.6734 192770.2539 20072.9912 20.0673 2.8277 
Lasso 2624.887 22.6728 192765.5156 20072.332 20.067 2.8277 

 

 

Table 14 MAPE for Degree = 1 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 19.6549 9.8245 88.127 183.4058 10.4442 8.5334 
Ridge 19.655 9.8245 88.1262 183.4037 10.4441 8.5334 
Lasso 19.6599 9.8183 88.1071 183.2694 10.4381 8.5288 

 

Table 15 MMAPE for Degree = 1 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 3.5573 2.6389 4.6893 2.7812 2.7501 2.6795 
Ridge 3.5573 2.6389 4.6893 2.7812 2.7501 2.6795 
Lasso 3.5576 2.6385 4.6892 2.7809 2.7497 2.6791 

 

 Figure 37 shows the predicted versus actual plots to compare the predicted output using 

the linear model to the actual test data. If the model was perfectly replicating the data, the seaborn 

“regplot” would show the predicted versus actual data as a linear line and would follow the black 

line on the figure. However, can see that predicted versus actual data for TOF that the model 

partially fits the data and there is still wide dispersion of error. Can even see that for earlier TOF, 

the model is predicted negative TOF, which is substantially different from actual TOF (over 500 

seconds), then the model is greatly underpredicting and apparently there is a portion of data that is 
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not getting accurately trained by the model. When looking at MAXTHR, can see that the model is 

much more accurately predicting the actual data, at least from 25-75 lbf/1000. The model is having 

trouble predicting near the minimum and is predicting negative value, which is very wrong, and 

the model is underpredicting near the maximum thrust values. Both outputs suggest that a higher 

order model is necessary to improve model error.  

 

 

 Figure 38 shows the predicted versus actual plot for MAXDIST & APOGEE. We see a 

similar trend on both outputs where the model is not accurately predicting the output. The model 

is vastly underpredicting near the minimum values, MAXDIST is also greatly overpredicting near 

the minimum value. Both models seem to have a sub-portion of data that is not being modeled 

correctly as the output value increases. The linear model is obviously capable of replicating the 

data and a higher order model is needed. 

Fig. 36 Linear One-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 
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 Figure 39 shows the predicted versus actual plot for THRSEA & WEIGHT. The models 

are replicating the data similar to that of MAXTHR on Fig. 37, where only the center region is 

being modeled correctly and the minimum and maximum areas are being under predicted. Both of 

these outputs suggest that there is more nonlinear relationship not being captured by the one-way 

parameters and that a higher order model is needed.  

Fig. 37 Linear One-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 
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IV.II.III Linear Regression: Two-Way Results 

To make the model a higher order model using linear regression, the “PolynomialFeatures” 

parameter “degree” is set to two and will includes multiplicative parameters like on Eq. (4.18). We 

include terms of higher degree such as 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌2 to ensure that the model is accurately capturing 

nonlinear relationships in the data. It may be that part of the output in actuality may be linearly 

modeled with a parameter say DBODY, but another portion of the output is actually nonlinearly 

modeled with 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌2. Regardless of including nondistinctive parameters, it will be shown that 

the linear regression models even up to 3rd order are not capable of replicating every output. 

Because the two-way and one-way parameters are included, there are a total of 230 coefficients to 

obtain.  

Fig. 38 Linear One-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 
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 This data used in this model is the same as that was used in the previous model in section 

IV.II.II, which used one-way parameters, so it has 400,000 training samples and 100,000 testing 

samples as well. The regularizations strength for lasso was set to 0.1 because lasso will not 

converge with too many parameters, and ridge allows regularization strength for each output are 

[0.1, 0.1, 0.1, 0.1, 0.1, 0.1] for TOF, MAXTHR, MAXDIST, APOGEE, THRSEA, & WEIGHT, 

respectively. Can immediately see from Table 16 that increasing the polynomial order to two that 

the performance increases and notice that the linear and ridge models are quite similar in metrics 

and are outperforming lasso. See that 𝑅𝑅2 increases from 0.85 to 0.96, so overall the model is 

performing better and is verified by the decrease in MSE from 36k to 13.6k but MSE is still not 

near zero and should be. There is still considerable error with MAPE, even though it is halved, and 

MMAPE is also halved. Table 17 shows the individual 𝑅𝑅2 values for each output and can see the 

model improvements. MAXTHR, THRSEA, and WEIGHT have 𝑅𝑅2 all greater than 0.99 which 

suggests that the model is fitting extremely well. Can see that APOGEE & TOF have greatly 

increased as well but did not increase as high so there is still some error. MAXDIST did increase 

from 0.65 but not as much as the other parameters so there is obviously error in the regression 

model. Table 18 shows the MSE and we can see that MAXTHR, THRSEA, and WEIGHT have 

greatly reduced in error and no need to say there doing well with the other parameter. TOF also 

has very low error but not near zero yet and APOGEE & MAXDIST still have quite large errors. 

Table 19 shows individual output MAPE values and can see TOF has less than 10% relative error 

which is quite good, and MAXDIST & APOGEE are obviously not replicated well. Table 20 

shows the MMAPE and shows low error for every parameter. Nevertheless, it should be 
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recognized that the scaling of the outputs shows that MAXDIST can be off by approximately 

180,000 feet. MAXTHR, THRSEA, and WEIGHT are modeled well using the linear regression 

models, but modeling TOF, MAXDIST, & APOGEE requires a higher order model. 

Table 16 Overall Model Performance for Degree = 2 

Model R2 MSE MAPE MMAPE 
Linear 0.9598 13671.4414 24.0601 1.1556 
Ridge 0.9598 13672.0328 24.0445 1.1554 
Lasso 0.9197 22442.1855 33.4708 2.2206 

 

Table 17 𝑹𝑹𝟐𝟐 for Degree = 2 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 0.9682 0.9982 0.8628 0.934 0.9985 0.997 
Ridge 0.9682 0.9982 0.8628 0.934 0.9985 0.997 
Lasso 0.9415 0.9751 0.7736 0.8988 0.9715 0.9578 

 

Table 18 MSE for Degree = 2 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 709.9409 0.7759 74613.3672 6703.9424 0.4911 0.1264 
Ridge 709.9576 0.7759 74616.8835 6703.9625 0.4911 0.1264 
Lasso 1307.1835 10.5091 123054.3359 10269.7432 9.5782 1.7513 

 

Table 19 MAPE for Degree = 2 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 8.5808 1.7767 53.2036 77.7362 1.5718 1.4915 
Ridge 8.5789 1.7765 53.112 77.7368 1.5714 1.4912 
Lasso 12.6237 6.4154 51.0828 117.4359 6.9218 6.345 
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Table 20 MMAPE for Degree = 2 

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
Linear 1.546 0.4783 2.6869 1.3608 0.3976 0.4638 
Ridge 1.5458 0.4783 2.686 1.3607 0.3976 0.4638 
Lasso 2.3214 1.7738 3.4338 1.8393 1.8849 2.0702 

 

Figures 40-42 show the predicted versus actual and can see how well the model is 

replicating MAXTHR, THRSEA, & WEIGHT. MAXTHR & THRSEA do suffer a bit at the 

maximum end and can see the model slight underpredicting. WEIGHT is slightly underpredicting 

at the maximum end but appears to have another distribution being modeled in the mid-range 

which suggests a higher order model or nonlinear model is required to capture the effects of this 

distribution. It is obvious to see that there are two distributions that cannot be captured by the 

model and is far worse on MAXDIST because there is also a higher density of samples on the 

minimum. A higher order model may improve performance; however, there is apparently a second 

distribution that cannot be accurately modeled using linear regression so increasing the model 

order may improve performance of the other parameters but will still not capture the second 

distribution. See Appendix L: 3rd Order Linear Regression Model for some performance metrics 

and predicted versus actual plots using the linear model only because it proves that the linear 

regression model cannot capture the second distribution.  
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Fig. 39 Linear Two-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 

Fig. 40 Linear Two-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 
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IV.III Neural Networks: Regression 

In the previous section, linear regression methods were developed, and results shown that 

none of the methods were fully capable of replicating the data. A higher degree regression model 

is only going to slightly increase performance, but never fully replicate the data due to the two 

distributions of data. Therefore, to increase performance a nonlinear model is needed to capture 

the two distributions. There are multiple nonlinear methods and include nonlinear regression [91], 

nearest neighbors [93], decision trees [92][93], ensemble methods [92][93], and NNETs [92-

94][98-103]. Before, NNETs are discussed in mathematical terms, a brief timeline of NNETs is 

presented to show how NNETs came to such prominence today. It should be noted that NNETs 

are not new, in fact they first came to light in 1943 from McCulloch and Pitts [104] developing a 

computational framework for biological neurons using logic functions such as AND, OR, and NOT 

Fig. 41 Linear Two-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 
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[94]. These logic functions work on the premise of whether inputs in the neuron are active or not. 

Frank Rosenblatt then developed the perceptron in 1958 [105], which takes a sum of the inputs 

and weights, and a function is applied that would output zero if the value was less than a threshold 

value and would output one if greater than the threshold value. Figure 43 shows the perceptron 

and can see the layout of how a perceptron works. The perceptron sum is a linear regression 

formula 𝑧𝑧 = 𝑋𝑋1𝑊𝑊1 + 𝑋𝑋2𝑊𝑊2 + ⋯+ 𝑋𝑋𝑃𝑃𝑊𝑊𝑃𝑃 where W are the weights to be determined like the 

coefficients in regression, a threshold function (ϕ) is then applied to the perceptron sum to output 

zero or one based on a threshold value like on Eq. (4.19) and is essentially a step function. 

 

 

 ( )
0   if 
1   if 

z threshold
z

z threshold
φ

<
=  ≥

 (4.19) 

 If we then combine multiple perceptrons to generate a fully connected layer the output can 

be generalized using basic linear algebra on Eq. (4.20). X is a matrix of inputs with each row being 

the sample and each column is a feature, say 𝑋𝑋1. W is a matrix of all the weights where each row 

refers to weights for input neuron and each column refers to an artificial neuron, say 𝑧𝑧1. The bias 

vector b contains all the weights for a bias neuron and has one bias per artificial neuron 𝑧𝑧. Output 

Fig. 42 Threshold Logic Unit Perceptron. 
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is then the input matrix multiplied by the weight matrix plus the bias matrix and then the function 

(ϕ), which was referred as “threshold”, which is the activation function, and for perceptron 

learning was just the step function.  

 ( ) ( )h X XW bφ= +  (4.20) 

NNETs are fundamentally similar to regression methods in that an algorithm is required 

for obtaining the weights. Rosenblatt adapted the training algorithm from Hebbian learning, which 

famously states that weights increase when two neurons fire simultaneously [106]. Perceptrons 

use an adaptation of Hebb’s rule and accounts for error in the output. Equation (4.21) is the 

perceptron learning rule used to update the weights, where 𝑤𝑤𝑖𝑖,𝑗𝑗 is the weight between the 𝑖𝑖𝑡𝑡ℎ input 

neuron and the 𝑗𝑗𝑡𝑡ℎ output neuron, η is the learning rate, 𝑦𝑦𝑗𝑗 is the actual output of the 𝑗𝑗𝑡𝑡ℎ output 

neuron for the training sample, 𝑦𝑦�𝑗𝑗 is the predicted output of the 𝑗𝑗𝑡𝑡ℎ output neuron, and 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ 

input of the training sample. The Perceptron convergence theorem states that if the training 

samples are linearly separable then the solution will converge.  

 
( ) ( )Next Step
, , ˆi j i j i j iw w y y xη= + −  (4.21) 

There are limitations to perceptron learning, which if the data is too complex then 

perceptron learning will not be able to converge. More advanced perceptron’s can be developed 

by add more perceptron layers (Multilayer Perceptron – MLP), which can then solve more 

complicated problems. A stronger learning algorithm is then needed to update the weights and in 

1985 Rumelhart, Hinton, & Williams [107] adapted the backpropagation learning algorithm 

(developed in 60’s & 70’s) to train weights in the MLP. Backpropagation is actually just gradient 
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descent which computes the error gradients with respect to the weights �∂E
∂w
� and will be shown to 

be similar to Eq. (4.21). 

IV.III.I Feedforward NNETs & Backpropagation 

If there are multiple layers, the error gradient can be quite deceptive to calculate, ref.’s [92-

94] & [98-103] all provide some discussion on feedforward NNETs and backpropagation. A 

Feedforward network from [93] is shown here for the NNET shown on Fig. 44 which uses a single 

hidden layer. The neurons in the hidden layer are referred to as hidden units from now on. Let X ∈

ℛ𝓃𝓃 denote a real values random input vector of n independent variables, i.e., the inputs such as 

DBODY, and Y ∈ ℛ𝐾𝐾 denote a real valued random output vector of K dependent variables, i.e., 

the outputs such as TOF. The Z terms are the sum of the weight and inputs multiplied, shown on 

Eq. (4.22), where 𝑊𝑊1,1
1  refers to weight times 𝑋𝑋1 in the first hidden layer and 𝑊𝑊𝐵𝐵,1

1  is the bias vector 

Fig. 43 NNET Representation. 
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for hidden unit 1 in hidden layer 1. Z derived features are then activated using function (σ), e.g., 

sigmoid function, shown on Eq. (4.23) to develop A activations for each hidden unit. The T terms 

are just like the Z terms in that they are the sum of weights in hidden layer 2 times the activations 

values A from hidden layer 1 and is displayed on Eq. (4.24), where 𝑊𝑊1,1
2  refers to weight times 𝐴𝐴1 

in the first hidden layer for output unit 1in the output layer and 𝑊𝑊𝐵𝐵,1
2  is the bias vector for output 

unit 1 in the output layer. Because this NNET is used for regression analysis, 𝑌𝑌𝐾𝐾 = 𝑇𝑇𝐾𝐾 with no 

activation applied to 𝑇𝑇𝐾𝐾.  

 
1 1 1

1, 1 , ,  , 1, 2, ,m m n m n B mZ W X W X W m M= + + + =   (4.22) 

 ( ) 1  ,  
1 mm m mZA Z Z

e
σ −= = −∞ < < ∞

+  (4.23) 

 
2 2 2

1, 1 , ,   , 1, 2, ,k k M k M B kT W A W A W k K= + + =   (4.24) 

To fit the NNET there 𝑀𝑀(𝑛𝑛 + 1) weights (includes bias) to calculate for hidden layer 1 and 

𝐾𝐾(𝑀𝑀 + 1) weights (includes bias) to determine for the output layer; so, there are a total of 

M(𝑛𝑛 + 1) + 𝐾𝐾(𝑀𝑀 + 1) weights to determine for the NNET. A learning algorithm similar to Eq. 

(4.21), called backpropagation is used to determine the error gradient to update the weights instead 

of using just the residual (𝑦𝑦 − 𝑦𝑦�). Equation (4.25) is the sum of squared errors such that the weights 

are minimized, similar to Eq. (4.5), and could be a different function such as mean squared error, 

mean absolute error, or mean absolute percentage error.  

 ( ) ( )( )2

1 1 1

N N K

i ik k i
i i k

R W R y Y x
= = =

= = −∑ ∑∑  (4.25) 
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Equation (4.26) then shows how to use Eq. (4.25) to calculate the error gradient with 

respect to a weight for an output unit. Equation (4.27) shows how the error gradient reduces to 

calculate the bias weight for an output unit.  
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Equation (4.28) then shows how to calculate the weights for the hidden layer and can see 

now that it includes the summation of error gradients of each output unit, significantly making the 

total error gradient more complex. A bias weight for a hidden unit is also shown for brevity on Eq. 

(4.29). 
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The error gradients from Eq.’s (4.26) and (4.28) can now be used in the gradient descent 

to update the (𝑗𝑗 + 1) weights for the both the hidden units and output units, shown on Eq. (4.30) 

where (γ) is the learning rate. This form of the gradient descent calculates the summation of the 

error gradients for the entire training set and is known as batch gradient descent (BGD). The main 

issues with batch gradient descent are that the quadratic error surface may be extremely complex, 

and the algorithm may get stuck in a local minimum [101]. Other concerns have to do with the 

amount of training time, since the training set can be massive it can take long computational times 

to calculate the entire dataset error gradient [94].  
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On the opposite spectrum of gradient descent is stochastic gradient descent (SGD) which 

only uses one sample (𝑁𝑁 = 1) to approximate the error. Issues with SGD are that due to the 

approximation of error, the solution will jump randomly around the solution, but it may never 

reach the global minimum. Despite this randomness, it is usually more likely to find the global 

minimum compared to batch gradient descent. Similar to batch gradient descent, solely due to the 
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amount of randomness the stochastic method can also take a very long time to converge; however, 

the stochastic method uses much less memory compared to batch gradient descent since the 

calculations do not require every training sample [94].  

In the middle of SGD and batch gradient descent is mini-batch gradient descent (MBGD), 

which uses a random subset of training samples. There is less randomness in this algorithm so it 

should not jump around the global minimum too much. Similar to BGD, MBGD could have 

difficulty moving out of the local minimum. Typically, batch gradient descent takes the longest to 

train due to training size, followed by MBGD, and SGD is usually fastest; however, SGD could 

take much longer if there is too much randomness [94]. The NNETs developed in this work all use 

MBGD as it seems to provide the best compromise of SGD and batch gradient descent. For clarity 

with MBGD, each batch is fed through the network then the weights are updated, so if there are 

100 batches in an epoch then there are 100 updates to the weights per epoch. For SGD, if there are 

1000 samples, then there are 1000 weight updates per epoch. For BGD, then there is only one 

weight update per epoch.  

 

IV.III.II Optimizer: Momentum, NAG, RMSProp, Adam, & Nadam 

The backpropagation algorithm was defined using batch gradient descent because it was 

the original algorithm which was used to converge MLPs. NNETs have come a very long way and 

more advanced algorithms have come to fruition. When discussing machine learning, the 

backpropagation using gradient descent is commonly known as an optimizer called “SGD” and 

was modified to include a momentum term for speedup [108] at least in TensorFlow (TF). If we 

generalize the weights from Eq. (4.30) into (θ), we can develop a momentum vector (𝑚𝑚) where 

(η) is the learning rate and �∇θ𝐽𝐽(θ)� is the gradient of the cost function �𝐽𝐽(θ)� with respect to the 
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weights vector (θ). The weights vector (θ) are then updated by adding the momentum vector (𝑚𝑚). 

A commonly used value for the momentum term (β) is 0.9 [108] and the momentum algorithm 

can easily be called in TF from function “TF.keras.optimizers.SGD(lr=0.001, momentum = 0.9)”. 

 
( )m m J

m
θβ η θ

θ θ
= + ∇

= −
 (4.31) 

A variant of the momentum algorithm developed from Eq. (4.31) takes the gradient of the 

cost function in the direction of momentum [94]. This algorithm is known as Nesterov Accelerated 

Gradient Algorithm (NAG) [108], shown on Eq. (4.32), helps the momentum vector point in the 

right direction and usually helps the algorithm converge faster compared to the momentum 

algorithm. The NAG variant of the momentum algorithm can easily be implemented by setting 

“nesterov = true” in the “SGD” function from TF.  
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= + ∇ −

= −
 (4.32) 

Another algorithm called AdaGrad [109] is an algorithm that was developed to correct the 

gradient direction earlier in training. Because it is an adaptive gradient method, AdaGrad runs into 

an issue where it slows down too fast and does not reach the global minimum. To fix this issue, 

RMSProp was developed to only use gradients from recent iterations instead of using every 

gradient from the beginning of training [108]. Equation (4.33) shows RMSProp where (β) is the 

decay rate usually set to 0.9 (similar to momentum), (⊗) refers to element wise multiplication for 

the cost function gradients, (η) is the learning rate (usually set to 0.001), (∅) refers to element 

wise division, and (ℰ) is a small value to protect from dividing by zero. RMSProp can easily be 
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called in TF by “TF.keras.optimizers.RMSprop(lr=0.001, rho = 0.9)”, where “lr” is the learning 

rate and “rho” is the decay rate. 
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A more advanced algorithm Adam [110] (adaptive moment estimation), was developed to 

combine the momentum and RMSProp algorithms. The momentum algorithm is an exponentially 

decaying average of past gradients, which is an estimation of the mean of the gradients; RMSProp 

is an exponentially decaying average of the past squared gradients, which is an estimation of the 

variance of the gradients [94]. So, there is a momentum vector (𝑚𝑚), which uses a momentum term 

(β1), and a variance vector (𝑠𝑠), which uses a decay rate (β2) in Eq. (4.34). (𝑚𝑚) and (𝑠𝑠) are biased 

towards zero, so they are then bias-corrected to give bias-corrected first moment (mean) (𝑚𝑚�) and 

bias-corrected second moment (variance) (𝑠̂𝑠), and are then used to give the weights update rule 

for (θ). Adam optimization can be called in TF using “TF.keras.optimizers.Adam(lr=0.001, 

beta_1=0.9, beta_2=0.999)”, where “lr” is the learning rate, “beta_1” is the momentum term, and 

“beta_2” is the decay rate. An upside to using Adam is that the learning rate (η) does not need to 

be fine-tuned in most cases and can be kept constant in most cases. 
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Similar to Eq. (4.32), the Nesterov Accelerated Gradient (NAG) Algorithm can be applied 

to Adam [111], which is called Nadam, to improve convergence time [94]. Equation (4.35) shows 

Nadam and it is very similar Adam, except that the cost function gradient is bias-corrected using 

the momentum term. Because Nadam is often faster than Adam, it is used for the analysis in this 

work. Nadam optimization can be called in TF using “TF.keras.optimizers.Nadam(lr=0.001, 

beta_1=0.9, beta_2=0.999)”, where “lr” is the learning rate, “beta_1” is the momentum term, and 

“beta_2” is the decay rate. 
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 (4.35) 

These algorithms are not the only optimizers available [94]. There are many others on the 

TF optimizers webpage. TF also allows users to build custom optimizer functions if the user is 

interested in optimization algorithms. Because this work is not an optimization study, we do not 

test multiple optimizers because they are very similar and are only concerned with getting minimal 

error. Nadam was chosen because it typically performs faster than most other optimizers; however, 

we are not concerned about proving that statement. If users are interested in optimizing the 
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optimizer choice, then users should refer to the Keras-Tuner website [112] to see available methods 

for tuning NNETs.  

IV.III.III Activation Functions: Sigmoid, RELU, and ELU 

When backpropagation was developed for NNETs [107], an activation function was used 

which had continuous derivatives and was nonlinear. The first activation function was just a linear 

activation model in perceptron’s, and to achieve qualities of a continuous nonlinear activation 

function, the sigmoid function (a.k.a. logistic function) was used and is shown on Eq. (4.36), 

including its derivative (see Fig. 45). The main issue with the sigmoid function is that when input 

values become large in positive or negative magnitude, the gradients become very small, and 

backpropagation barely changes the weights and as the gradient is backpropagated to the beginning 

layers there is no change. This effect is known as the vanishing gradients problem [94] and is 

referred to as saturation.  

Fig. 44 Sigmoid and its Derivative. 
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 Many activation functions have been developed over the years, but this work will only 

focus on two of the most common ones today and they are the Rectified Linear Unit Function 

(RELU) [113] and Exponential Linear Unit Function (ELU). RELU is heavily used in deep 

learning [114] because it avoids saturation for positive values, and it is simple to calculate. If the 

input is negative then it outputs zero and is linear for positive values. Its derivative is zero or one 

if the input value is negative or positive, respectively, and can see these properties on Fig. 46. Main 

issues with RELU are that it is not continuous at zero so the gradient descent can bounce around. 

Another issue is simply due to the fact that it outputs zero for negative values. RELU can cause 

units to become saturated for negative inputs and during network training, many units can start to 

only output zero. This is known as the dying RELU problem [94]. Other variants of RELU have 

been developed to avoid dying RELUs such as leaky RELU and randomized leaky RELU; most 

variants use 𝑚𝑚𝑚𝑚𝑚𝑚(α𝑥𝑥, 𝑥𝑥) to avoid having zero for negative inputs [115]. 
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RELU x

=

′ =
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Finally, ELU was developed and shown to outperform RELU and all its variants [116]. 

ELU is shown on Eq. (4.38) and can see it avoids the dying RELU and vanishing gradients problem 

by allowing negative values to be output. Figure 47 shows ELU and derivative. An issue with ELU 

is that it can computationally take longer to calculate compared to RELU [94]. A variant of ELU 

called SELU was proposed because it allows self-normalization of the layers which solves the 

vanishing and exploding gradients problem, but there are many restrictions that must be satisfied 

to see performance gains [117]. 

Fig. 45 RELU and its Derivative. 
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To avoid issues with Sigmoid and RELU and constraints of SELU, ELU is used for this 

work with a default alpha of one. It is briefly mentioned from the Universal Approximation 

Theorem that the choice of activation function can lead to specific error bounds based on certain 

conditions. For example, Cybenko [118] derives a theorem which states for any sigmoidal 

function, then finite sums of the following form on Eq. (4.39) are dense in �𝐶𝐶(𝐼𝐼𝑛𝑛)�. Therefore, for 

any f ∈ C(𝐼𝐼𝑛𝑛) and ℰ >  0, there is a sum 𝐺𝐺(𝑥𝑥), i.e., Eq. (4.39), such that the residual error is less 

error is less than ℰ, shown on Eq. (4.39). Issues with this theorem is that it does not state how 

many units are the hidden layer nor does it state how to find the correct approximating function. 

Fig. 46 ELU and its Derivative with 𝜶𝜶 = 𝟏𝟏 
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There are variations of this theorem, but they also have hard constraints and they suffer from not 

being able to tell the user what function is required nor do they state how many layers or units are 

required for convergence [119][120]. 

 ( ) ( )
1

N
T

j j j
j

G x y xα σ θ
=

= +∑  (4.39) 

 ( ) ( )   for all nG x f x x Iε− < ∈  (4.40) 

 

IV.III.IV NNET Script Methodology 

The NNET script methodology is similar to Section: IV.II.I Linear Regression 

Methodology.  

1. Read in data using Pandas “read_csv” function to read data. 

2. Use Pandas to separate data into input data and output data. 

3. Use Sklearn “train_test_split” to randomly split data into training and testing data. 

4. Develop normalization using “tf.keras.layers.Normalization” and use the adapt 

function to fit to the training data. 

5. Develop the NNET model using “tf.keras.Sequential” and use “tf.keras.layers.Dense” 

to develop a dense feed forward network. The “Sequential” model includes an input 

layer, the “Normalization” function defined previously, hidden layers using “Dense”, 

which include the number of hidden units and activation function, and output layer 
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“Dense” function with no activation. The input is the size of the inputs, which is 15 

input units, and there are 6 output units. 

6. Compile the model using “compile” and include a loss function and optimizer such as 

“mse” and “adam”, respectively. 

7. Train the models “fit” and include the training input/output, validation input/output, 

and the number of epochs. 

8. Predict the output data using the test data. 

9. Calculate performance of models such as 𝑅𝑅2, MAPE, MSE, and WAPE.  

 

IV.III.V Results: Multi-Layer, Multi-Unit Matrix 

The main issue with initially setting up NNETs is that there is no standard method which 

tells one how to define the NNET to get a suitable answer. Many databases will have a vastly 

different NNET because it depends on the problem itself. Many NNETs in development today 

boast a model with billions of parameters and one of the largest models developed by Google [121] 

has approximately 1.6 trillion parameters. That would mean a model with equal number of layers 

and equal number of hidden units per layer would have 12,000 layers with 12,000 hidden units per 

layer. This work requires nothing of this scale and complexity. So, we come back to how to define 

the model. There are some methods which attempt to optimize the models, but we have found that 

they are extremely slow due to the optimizer schemes used. Keras-Tuner [122] is a popular method 

that developed some schemes for optimizing NNET models and can be a great starting point if the 

user is not sure how to define parameters. A nice feature provided is that a user can try multiple 
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activation function, weight optimizer, loss function, multiple hidden layers, and multiple hidden 

units per layer, etc. 

Typically, we develop NNETs with a specific mindset, keep it as simple as possible. So, 

we try to keep the model as minimal as possible because a smaller model is easier and quicker to 

train and can make faster predictions at run time. Our somewhat brute force method will generate 

multiple NNETS with multiple hidden layers and multiple hidden units, but each layer has the 

same number of units. A script has been developed which iterate through each combination, so 

every other parameter is constant such as activation (ELU), loss (MAPE) and optimizer (Nadam). 

Each model is trained for 1000 epochs using a batch size of 1024 and includes training (400,000 

samples) and validation (50,000 samples) data. During each training, the model with best 

validation loss is saved and used to prevent overfitting. We set an array of hidden layers to be 

[1,2,3,4,5] and the number of hidden units to be [10,20,30,40,50,60,70,80,90,100] where every 

layer has same number of hidden units (constant width model). 

Table 21 shows the results of each combination of NNETs, where each row refers to a 

specific number of hidden layers and each column refers to number of hidden units per layer. Can 

see that for Layer = 1, increasing the number of hidden units does decrease error, and for layer = 

2, there is a significant improvement over layer=1, with fewer hidden units per layer required. Will 

then notice that for layer = 3, the error is again decreased and notice that the minimum error is 

found at 90 hidden units per layer equal to 0.720 %. Can see that for layers 4 & 5, initially at units 

equal to 10-40, are doing better than layer 3 but start to increase in error at 50 units and never do 

as well at layer 3 at 90 hidden units per layer. So, we will then choose this setup configuration with 

3 hidden layers and 90 hidden units per layer. Because we only trained each model for 1000 
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epochs, it is possible to further increase performance of model by training even longer. The next 

sections will develop model result for 10,000 and 50,000 epochs. 

Table 21 NNET MAPE Results 

Layer 10 20 30 40 50 60 70 80 90 100 
1 9.203 6.579 5.015 4.173 3.790 3.592 3.257 2.991 2.997 2.769 
2 3.864 2.193 1.365 1.096 0.988 0.940 0.827 0.902 0.821 0.821 
3 3.114 1.577 1.077 0.934 0.834 0.775 0.832 0.746 0.720 0.740 
4 2.567 1.282 1.007 0.918 0.900 0.817 0.800 0.822 0.824 1.048 
5 2.352 1.220 0.986 0.937 0.905 1.008 1.038 0.980 1.060 1.060 

 

IV.III.VI Results: 10,000 Epochs 

We then train the model for 10,000 epochs using same model parameters as before. The 

model chosen has 3 hidden layers with 90 hidden units per layer. Each hidden layer uses ELU 

activation. The input layer has 15 inputs, and the output layer has 6 outputs. The model is compiled 

with Nadam optimization using MAPE as the loss function. The model is fit (trained) for 10,000 

epochs using the training (400,000 samples) and validation (50,000 samples) data with a batch size 

of 1,024 samples, which takes approximately 2.2 hours. Because there are 400,000 training 

samples and mini-batch set of 1,024 samples there are a total of 400,000/1,024 = 390.625 batches 

or 391 complete batches. After each single batch the weights are updated, so for each epoch the 

weights are updated 391 times. For 10,000 epochs there will be 3,910,000 million updates to the 

weights. We train longer to ensure that we have reached the global minimum and if we plot the 

training loss and validation loss MAPE values over each epoch we should be able to see if the 

solution has converged. 

Figure 48 shows the training and validation loss over each epoch and can see that the error 

starts to converge but does not plateau like it should. In fact, the best epoch where validation loss 
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is minimum is taken at 9961, which is almost at final 10,000 epochs of training. Based on this 

information, the model may need to be trained longer, which is why the next section trains for 

50,000 epochs. Can see that there is visible noise on the error as well, not so much on the training 

data, but the validation loss jumps around much more, which is expected since we use mini-batch 

training.  

 

 

Can see that the model has improved for overall metrics compared to Table 11, Table 16, 

and Table 45 using the testing data. Can see that the R2 for the NNET has increased above 0.99, 

Fig. 47 Training and Validation MAPE History. 
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which none of the linear regression methods were able to do. Every output metric is lowest for the 

NNET, which is not surprising.  

Table 22 Overall Metrics for 10,000 Epochs Model 

Model Training Validation Testing 
R2 0.9988 0.9983 0.9987 
MSE 287.9464 446.1618 305.5932 

MAPE 0.2749 0.2869 0.2817 
MMAPE 0.0479 0.0513 0.0491 

 

When evaluating the individual output metrics on Table 23 can individually see that NNET 

is doing much better than even the 3rd order regression on Table 45. Can see that APOGEE does 

not have smallest 𝑅𝑅2 but can see from its MSE and MAPE that it is doing much better than any of 

the other linear regression models developed. 𝑅𝑅2 for MAXDIST is greater than 0.99 but its MSE 

is still quite large as we need it be close to zero as possible. The rest of the other parameters are all 

modeled quite well and would be very suitable for real life use. 

Table 23 Individual Output Metrics 

Metric TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 
𝑅𝑅2 0.99923 0.99999 0.99758 0.99532 0.99999 0.99995 
MSE 17.21413 0.00251 1343.25842 473.07996 0.00195 0.00225 

MAPE 0.2757 0.08668 0.57047 0.55055 0.09249 0.11435 
MMAPE 0.06886 0.02618 0.06998 0.05969 0.02692 0.04325 
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Figure 49 shows the predicted versus for TOF & MAXTHR. Can see that TOF mostly 

follows the regression line with some under and over predicted points. MAXTHR is almost a 

perfect fit. Figure 50 shows the predicted versus actual for MAXDIST and APOGEE and can see 

both suffer the most in terms of prediction error. MAXDIST seems to have a constant error 

variance so the model may be able to be trained further to reduce this error. APOGEE still seems 

to have a second distribution which is not learnable but can see the error is reduced greatly with 

the NNET compared to Fig. 41, which had the two-way linear regression. Figure 51 shows 

predicted versus actual THRSEA & WEIGHT and can see they both are almost perfect, except for 

weight, which has a bit of error in the center. 

Fig. 48 NNET Model: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 
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Fig. 49 NNET Model: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 

Fig. 50 NNET Model: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 
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IV.III.VII Results: 50,000 Epochs 

This section uses the previously stated model is now trained for 50,000 epochs because it 

was shown on Fig. 48 that the training and validation loss appeared to be improving still, otherwise 

it would have been asymptotically approaching a minimum error. Can see on Fig. 52 that the 

training and validation loss appears to be asymptotically approaching the minimum error. The 

minimum error occurs at epoch 42,005 and takes approximately 20 hours. Notice that 10,000 

epochs was not enough training and could see that the optimizer jumps out of local minimum. 

 

 

 

Fig. 51 Training and Validation MAPE History. 
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Can see that the model has improved from overall metrics on Table 11, Table 16, Table 45, 

and Table 22 comparing the testing data. Can see that the R2 has for the NNET has increased above 

0.999, which none of the linear regression methods were able to do and the previous NNET only 

achieve above 0.99. Can see the MSE has significantly decreased from the previous NNET.  

Table 24 Overall Metrics for 50,000 Epochs Model 

Model Training Validation Testing 
R2 0.9998 0.9995 0.9995 
MSE 62.8641 126.6180 144.2935 

MAPE 0.2245 0.2302 0.2323 
MMAPE 0.0363 0.0375 0.0380 

 

When evaluating the individual output metrics on Table 25 can individually see that NNET 

is doing better than every parameter from Table 23. 𝑅𝑅2 for MAXDIST is greater than 0.999 but its 

MSE is still the largest. The rest of the other parameters are all modeled well and would be very 

suitable for real life use. 

 

Table 25 Individual Output Metrics 

Metric TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT 

𝑅𝑅2 0.99953 0.99999 0.99866 0.9988 1 0.99997 

MSE 10.52652 0.00226 732.8645 122.36478 0.00136 0.00133 
MAPE 0.21984 0.07198 0.47541 0.45567 0.07523 0.0958 

MMAPE 0.05463 0.02342 0.05457 0.03786 0.02243 0.03506 
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Figure 53 shows the predicted versus actual for TOF and MAXTHR and has greatly 

reduced in error and can see there are approximately 6 points with significant error out of 50,000 

samples. MAXTHR has almost perfect fit. MAXTHR is almost perfect. 

 

 

Figure 54 shows the predicted versus actual for MAXDIST and APOGEE. The error on 

MAXDIST is greatly reduced, but there are still points with significant error (about 15 points with 

significant error). APOGEE has greatly reduced error and can now see that there is no obvious 

second distribution of data not being modeled correctly (about 10 points with significant error). 

The NNET trained for 10,000 epochs, shown on Fig. 50, was not even able to reduce the error to 

these metrics. 

Fig. 52 NNET Model: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 
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Figure 55 shows the predicted versus actual for THRSEA and WEIGHT. THRSEA and 

WEIGHT are almost perfect. WEIGHT does seem to have a bit f error still but it is very minimal 

at least compared to the other parameters.  

Fig. 53 NNET Model: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 

Fig. 54 NNET Model: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 
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The NNET trained for 50,000 epochs was shown to greatly improve error. It does seem 

that with enough training the optimizer has learned to improve performance of TOF, MAXDIST, 

and APOGEE and could see multiple samples with large error. Despite these samples, the model 

is a vast improvement over the NNET trained for 10,000 epochs and over the linear regression 

models which were not even capable of producing good models. NNETs are the method required 

to model such a large database with a nonlinear distribution. 
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V. Model Generation: AUSRC Classification 

 

The previous chapter developed regression methods to predict outputs of interest. This 

chapter will then use the outputs of the Auburn tools as inputs as a way to predict which class the 

sample belongs to. Part of the reason why this is done is because originally we were trying to 

predict what the inputs would be required to make the outputs using regression. For example, if 

one knew TOF of a missile, could we then predict the geometry and launch parameters using a 

regression method. However, this was not successful and so, we then decided to model the problem 

as a classification problem. Doing this in a way allows us to predict what the inputs are without 

needing to know the inputs. For example, if one knew TOF of a missile, could we then predict its 

class value, say 1-12. 

 

V.I Review of Classification in Missiles 

Before the classification methods and their applications are discussed in detail, it is 

important to mention previous works the Hartfield lab has produced with regards to classification 

in which we are predicting some discrete response such as class value. Some of the first work was 

done by Albarado [123], which attempted to rapidly classify missiles using logistic regression and 

NNETs. Results showed that models could quickly classify missiles within 20 seconds of flight 

time. Next, NNETs were developed to rapidly classify munitions (artillery round and mortars) 

[124] and results showed that for the true data NNETs could 100% classify both the training and 

testing data but when noise was added the testing accuracy ranged between 85-99%. Carpenter 

[125] then extended from [124] to classify and predict long range missiles using NNETs, which 
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show high accuracy and good predictions. Eckert [126] then applied NNETs to rapidly classify 

long range missiles. The classification models were developed on training data which was altered 

to simulate radar noise. The radar noise was based on the radar equation and based on the radars’ 

position the noise could be higher or lower depending on how far the missiles’ location was. 

Twelve classes were used for this work and analysis had shown that the even and odd classes could 

not be classified together but when separated the models had good classification. When the radar 

data included acceleration, the classification results improved to 92% testing accuracy. This work 

showed that LDA and NNETs work well, but NNETs came to be more powerful compared to 

LDA.  

 

V.II Linear and Quadratic Discriminant Analysis 

It is always important to develop a baseline of the results because if we can use a simple 

model over a higher order nonlinear method than we can drastically reduce training time and 

execution time. Many lower order models like in the linear regression cases provide direct 

interpretability of the model. In this work, linear and quadratic discriminant analysis (LDA/QDA) 

is used over logistic regression because logistic regression can be unstable to classes which are 

extremely different because it fits weights similarly to linear regression and so those weights 

become largely erratic [92]. Logistic regression also suffers from overfitting in large dimensional 

datasets and obviously is a linear method so it cannot differentiate nonlinear relationships. Despite 

these shortcomings of logistic regression, typically in practice logistic regression and LDA/QDA 

can give very similar results.  

With LDA & QDA, it assumed that the samples are from a normal distribution and can be 

a downside to this method [93]. However, with missile classification there is no exact way to 
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determine if a class of missiles follows a normal distribution, but we can make specific arguments 

that allow it to be normal. Consider missile A which has been developed for real life use. Missile 

A was probably developed to hit some target at some distance D. Designing and analysis of missile 

A would have determined the maximum and minimum distance D missile A is capable of traveling. 

Now missile A could technically have a zero distance if it was launch on the ground laying down; 

however, in real life practice this would be greatly avoided so we discount such scenarios. Most 

likely, Missile A would only ever be launched at specific launch angles to avoid failure. So, we 

can surmise that missile A has a specific range that is only ever used for max operability. 

Therefore, it seems safe to assume that the observations we are using for classification follow a 

normal distribution. 

The derivation of LDA & QDA is not shown in entirety as there are many conditions, 

which can be described for discriminant analysis [127]. The Bayes Theorem is shown on Eq. (5.1) 

where 𝑃𝑃(𝑥𝑥|𝑦𝑦 = 𝑘𝑘) = 𝑓𝑓𝑘𝑘(𝑥𝑥) is the density function of X for a sample that belongs to class k out of 

K classes. 𝑃𝑃(𝑦𝑦 = 𝑘𝑘) = π𝑘𝑘 is the prior probability that random samples belong to class k. 

𝑃𝑃(𝑦𝑦 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥) is then the posterior probability that a sample belongs to class k. The prior 

probability is often an assumption about the data and is often the proportion of class k samples out 

of the entire set of samples, so π𝑘𝑘 = 𝑁𝑁𝑘𝑘/𝑁𝑁 is used in the scikit-learn implementation. 𝑓𝑓𝑘𝑘(𝑥𝑥) is 

usually never available in real life and for LDA/QDA is assumed to be normal, shown on Eq. (5.2)

, where d is the number of inputs.  
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If the log of the posterior function is taken and reorganized, then we get Eq. (5.3). This 

equation is the log-posterior function for QDA because QDA assumes that the covariance matrices 

Σ𝑘𝑘 are different for each class k. When calculating a prediction with a sample, there are then K 

predictions and the prediction with the largest value means it belongs to class k. The log-posterior 

is often written as δ𝑘𝑘(𝑥𝑥) and can be thought of as a decision plane [92]. As the name suggests, 

QDA has a quadratic decision plane and fits to data using a quadratic function.  
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For LDA, the covariance matrices are all equal (Σ𝑘𝑘 = Σ) for each class. Equation (5.3) can 

then be reduced to Eq. (5.4). As the name suggests, LDA is a linear decision plane that fits the data 

using a linear function. Equation (5.4) can be rewritten further into Eq. (5.5) and is written similarly 

to a linear regression function where 𝑤𝑤𝑘𝑘 refer to the weights and 𝑤𝑤0 refers to the intercept. Scikit-

Learn sets the output coefficients (“coef_”) and output intercept (“intercept_”) from the fit model.  
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Unfortunately for QDA, it cannot be written as Eq. (5.5) so the coefficients and intercept 

cannot be used for model interpretation like LDA. Another feature of LDA allows linearly 

reducing the data to (𝐾𝐾 − 1) features. Reducing the number of dimensions allows for interpretation 

of the model visually. It will later be shown that if the data is reduced to 2 components, can visually 

observe how well the model is fitting and can see how much variance the reduced parameters 

model. 

V.II.I Linear Discriminant Analysis Results 

The methodology for using LDA and QDA is essentially the same as the linear regression 

methodology with exception of using the polynomial features and standardization of the input data. 

Everything else is the same such as using fit and predict. The data is split into 36,000 samples for 

training and 9,000 samples for testing data. The convenience of using LDA and QDA is that data 

does not to be standardized before training. Table 26 the accuracy of the model overall and can 

see that it is almost 100%. This data is obviously easily separable using LDA and it is not necessary 

to do QDA or even NNETs but is shown in this work because extensions of this classification 

database would show the LDA is not capable of separating the classes. For example, the extended 

version of this classification database includes 5-point, 9-point, and 11-point star grains for a total 

of 72 classes. The accuracy for that dataset is 78.17% for training data and 78.47% for testing data. 

We refrain from showing the 72 classes because it is too large of a dataset to fit in this work and 

would not be able to observe visuals which are extremely useful for classification. 
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Table 26 LDA Training & Testing Accuracy 

Model Train Test 
LDA 99.4694 99.3778 

 

The confusion matrix is shown on Fig. 56 and shows the predicted versus actual of the 

testing data and is similar to Fig. 37 but for classification models. If the model were perfect then 

the diagonal would report constant values of 500 samples per class. For example, can see that for 

the actual class 4, 496 samples are correctly predicted as class 4, but 4 samples are incorrectly 

predicted as class 7. It appears that incorrect prediction is being under and/or over predicted by 3 

classes. Table 27 shows the precision, recall, and F1-score of the model using the testing data. 

Fig. 55 LDA Confusion Matrix for Testing Data. 
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Precision is the number of true positives divided by the sum of true positives and false positives. 

For example, precision for class 4 is defined as 496/(496 + 4) = 0.992 which is reported on 

Table 27. Precision is easily thought of as the accuracy along the predicted class k column on Fig. 

56. Recall is the number of true positive divided by the sum of true positive and false negatives. 

For examples, recall for class 14 is defined as 495/(495 + 3 + 2) = 0.99 which is report on Table 

27. Recall can be thought of as accuracy along the actual class k row. F1-score is the harmonic 

mean of recall and precision and considers contribution of both parameters for minimization 

purposes. Often sacrifices must be made for either precision and recall and depends on a case by 

case purpose. So, to ensure maximization of both parameters, F1-score can be used instead. 

Table 27 LDA Classification Report: Precision, Recall, & F1-Score 

Class Precision Recall F1-Score Support 
1 1 1 1 500 
2 1 1 1 500 
3 1 1 1 500 
4 0.992 0.992 0.992 500 
5 0.998 0.998 0.998 500 
6 0.99004 0.994 0.99202 500 
7 0.992 0.992 0.992 500 
8 0.998 0.998 0.998 500 
9 0.99398 0.99 0.99198 500 
10 0.99399 0.992 0.99299 500 
11 0.99398 0.99 0.99198 500 
12 1 1 1 500 
13 0.97065 0.992 0.98121 500 
14 0.9841 0.99 0.98704 500 
15 0.994 0.994 0.994 500 
16 0.99796 0.978 0.98788 500 
17 0.99599 0.994 0.99499 500 
18 0.994 0.994 0.994 500 

 

Because the model does extremely well, all three metrics are extremely close to one, which 

they should be. If we count the number of misclassified, can see that there are 191 misclassified 
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training samples and 56 misclassified testing samples. Can see that the misclassification rates are 

less than 1 percent, which is in excellent agreement for this model. In general, such high fidelity 

results do not always occur and varies across different datasets. 

Table 28 LDA Misclassification and MisRate 

Metric Train Test 
Misclassification 191 56 

MisRate (%) 0.5306 0.6222 
 

Traditionally for classification, the receiver operating characteristic (ROC) curve is used 

to assess a model at different classification thresholds. Each class true positive rate is plotted 

against the false positive rate. Can see from Fig. 57, ROC curve is plotted for LDA and can see 

that as the false positive rate increases (decreased threshold) increases the number of true positive 

for model. The primary function of this figure is to have each curve be on the left of the black 

dashed line and want the curve to go vertical at early false positive rate. The earlier the curve goes 

vertical shows that there will be less false positives and more true positives. In the next section, 

QDA is used and can see an improvement. 
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V.II.II Quadratic Discriminant Analysis Results 

The same set of training and testing samples is used for QDA and follows same 

methodology as LDA, which are both similar to linear regression method in Scikit-Learn. Can see 

the training and testing accuracy for QDA on Table 29. Can see that QDA has achieved an increase 

in accuracy compared to LDA and both are still very good models. 

Table 29 QDA Training & Testing Accuracy 

Model Train Test 
QDA 99.9444 99.9111 

 

Fig. 56 LDA ROC Curve. 
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The confusion matrix for the model is shown on Fig. 58 and can see that there are only 8 

misclassified test samples. Table 30 shows that the number of misclassified is only 20 for the 

training set and the misclassification rates are almost zero. Its obvious QDA improves accuracy. 

 

 

Table 30 QDA Misclassification & MisRate 

Metric Train Test 
Misclassification 20 8 

MisRate (%) 0.0556 0.0889 
 

Fig. 57 QDA Confusion Matrix for Testing Data. 
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Table 31 shows the QDA classification report and can see that many of the classes have 

perfect precision, recall, and F1-score.  

Table 31 QDA Classification Report: Precision, Recall, & F1-Score 

Class Precision Recall F1-Score Support 
1 1 1 1 500 
2 1 1 1 500 
3 1 1 1 500 
4 1 1 1 500 
5 1 1 1 500 
6 0.998 0.998 0.998 500 
7 1 1 1 500 
8 1 1 1 500 
9 0.998 0.998 0.998 500 
10 1 0.998 0.999 500 
11 0.998 1 0.999 500 
12 1 0.998 0.999 500 
13 0.996 1 0.998 500 
14 0.998 0.998 0.998 500 
15 0.996 1 0.998 500 
16 1 0.998 0.999 500 
17 1 0.998 0.999 500 
18 1 0.998 0.999 500 

 

We can see from Fig. 59 that the ROC curve shows that each class is being perfectly 

predicted and so it is obvious that this model performs extremely well. There are still false 

positives, but they are so few. This model and LDA could be used for deployment purposes. 

Deploying Scikit-Learn models is very easy using the Python package called Pickle, which allows 

exporting and importing of multiple data formats such as integers, floats, dictionaries/list, and even 

user defined function/built-in functions. This is useful because LDA/QDA from Scikit-Learn can 

export the function along with the coefficients (or other parameters) of the model to a file and can 

easily be imported along with any of the models’ parameters.  
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V.III Neural Networks: Classification 

If the LDA and QDA models were classifying poorly, then a NNET would be required to 

improve performance. Instead, we showed that LDA and QDA were doing quite well and a NNET 

would not be required to fit the data. However, this work is a development of classical and modern 

methods, so the NNET formulation is developed and shown here. 

 

V.III.I NNET Script Methodology 

The methodology is about the same as the NNET regression model, except for a few slight 

changes. First major change here is that a one-hot encoder is used to convert the output class value 

Fig. 58 QDA ROC Curve. 
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to a binary vector of 0’s and 1’s. For example, if there are 3 classes the first class would be 

converted to [1,0,0], second class would be [0,1,0], and finally the third class would be [0,0,1]. 

Since there are 18 classes, each class output would be converted to a binary vector of 18 elements. 

Finally, the last main difference is that the output layer uses a SoftMax activation to convert output 

to a probability between 0 and 1. Each output unit in the output layer gets converted using the 

SoftMax function on Eq. (5.6). Each output unit ranges between 0-1 and every output unit will 

sum to 1. The output unit with the maximum value is considered to be the class. For example, if 

output unit 4 (i.e., class 4) has the largest value for the input sample, then it is predicted as class 4. 
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The model is then compiled with different parameters. The optimizer used is still Nadam, 

but Nadam requires a different function to minimize. The NNET regression model used MAPE, 

but for the classification model, the output is a SoftMax activation, so the categorical cross entropy 

(CCE) function is used. Equation (5.7) shows the CCE function and can see it’s just the summation 

of each class and each multiple is a value in the true one-hot encoded vector output unit j times the 

log of predicted SoftMax output unit j. 
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V.III.II NNET Results Trained for 250 Epochs 

Because LDA & QDA can easily replicate the data, the NNET will also be able to easily 

replicate the data. The first model shown uses 9,000 samples for testing, 4,500 samples for 
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validation, and 31,500 samples for training. It uses a single layer with 50 hidden units and was 

trained for 250 epochs. Can see that the accuracy increases to 1.00 quickly within 100 epochs and 

the CCE goes to zero around 200 epochs. Even the error seems to be near zero, the best epoch is 

calculated at epoch 250. Can see the testing CCE is 0.0023 on Table 32 and the accuracy is 99.97%. 

Can see that there are only 3 samples misclassified out of 9,000 testing samples.  

Table 32 NNET CCE & Accuracy 

Metric Training Validation Testing 
CCE 0.0025 0.0025 0.0023 

Accuracy 0.9996 0.9996 0.9997 
MisRate 0.0381 0.0444 0.0333 

Misclassified 12 2 3 
 

Fig. 59 Training/Validation Loss & Accuracy. 
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We can see the confusion matrix on Fig. 61 and we can see that there are only 3 samples 

not predicted correctly. It appears that the misclassified samples are under or over predicting by 3 

classes. Table 33 shows the precision, recall, and F1-score of the testing data and shows most 

classes have value of 1.00 and the rest of the other metrics are almost perfect.  

 

 

 

 

 

Fig. 60 NNET Confusion Matrix. 
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Table 33 NNET Test Data Classification Report 

Class Precision Recall F1-Score Support 
1 1 1 1 500 
2 1 1 1 500 
3 1 1 1 500 
4 0.998 1 0.999 500 
5 1 1 1 500 
6 1 0.998 0.999 500 
7 1 0.998 0.999 500 
8 1 1 1 500 
9 0.998 1 0.999 500 
10 0.998 1 0.999 500 
11 1 1 1 500 
12 1 1 1 500 
13 1 0.998 0.999 500 
14 1 1 1 500 
15 1 1 1 500 
16 1 1 1 500 
17 1 1 1 500 
18 1 1 1 500 

 

 

V.III.III NNET Results for 500, 1000, & 5000 Epochs 

If the NNET is trained for 500, 1000, and 5000 epochs can see how the metrics improve 

on Table 34. Can eventually see the number of misclassified samples decrease to zero for the 

training and validation data if the model is trained for 5000 epochs. However, the number of 

misclassified increases for the testing data but it is still very small. It may be worth having some 

training error to have minimal testing error. 
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Table 34 NNET Metric for 500, 1000, & 5000 Epochs 

Epoch Metric Training Validation Testing 
500 CCE 0.0008 0.0009 0.0007 
500 Accuracy 0.9999 0.9998 0.9999 
500 MisRate 0.0127 0.0222 0.0111 
500 Misclassified 4 1 1 
1000 CCE 0.0004 0.0003 0.0004 
1000 Accuracy 0.9999 1 0.9998 
1000 MisRate 0.0063 0 0.0222 
1000 Misclassified 2 0 2 
5000 CCE 0.0001 0 0.0005 
5000 Accuracy 1 1 0.9997 
5000 MisRate 0 0 0.0333 
5000 Misclassified 0 0 3 

 

V.III.IV NNET Classification: Multi-Layer, Multi-Unit Matrix 

The classification model is trained using 1-5 layers and 5-50 hidden units per layer and 

Table 35 shows the testing accuracy per each model. Each model was trained for 1000 epochs. It 

is however not useful for this case because the classification model does so well with very few 

units. The author chose to use 50 units for a single layer to ensure adequate accuracy.  

Table 35 Classification Accuracy: Multi-Layer, Multi Unit Matrix 

Layer 1 2 3 4 5 
5 0.999556 0.999556 0.999333 0.999444 0.999778 
10 0.999667 0.999778 0.999778 0.999778 0.999556 
15 0.999778 0.999778 0.999778 0.999778 0.999667 
20 0.999778 0.999778 0.999667 0.999778 0.999778 
25 0.999778 0.999667 0.999556 0.999667 0.999667 
30 0.999667 0.999889 0.999889 0.999778 0.999667 
35 0.999778 0.999778 0.999778 0.999778 0.999778 
40 0.999778 0.999778 0.999889 0.999667 0.999889 
45 0.999222 0.999556 0.999889 0.999444 0.999556 
50 0.999667 0.999889 0.999778 0.999444 0.999778 
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VI. Model Robustness & Sensitivity 

 

The models developed in the previous two chapters both used data that was simulated from 

Fortran codes which provided all the necessary data. Samples which caused errors during 

simulation were removed so the dataset was not corrupted with bad samples. When data is 

collected during real life scenarios such as a health survey or U.S. census, often times when this 

type of data is collected information is missing. Each sample taken can randomly have multiple 

missing parameters. If it is possible, then imputation can be done to replace the missing data [100]. 

There are multiple ways of imputation proposed and reference [128] explains most of the proposed 

methods. Scikit-Learn learns multiple methods for easily implementing imputation such as 

multivariate imputation with MICE [129][130], and K-Nearest Neighbors imputation [131]. 

Recently, more advanced methods using generative adversarial nets (GANs) have been used for 

imputation but were not used for this work [132]. Future works will consider using GANs.  

For the imputation methods used in this work, we use a combination of the linear regression 

methods and the NNETs. The imputation models here will be used for the classification data only 

and simulate a combination of parameters missing. For example, BURNTIME could be missing 

or MAXPC & MAXTHRUST could be missing. However, at least one parameter is required for 

imputation, a model in general requires at least one parameter. The number of combinations is 4 

choose 1 plus 4 choose 2 plus 4 choose 3 equals (4 + 6 + 4 = 14) and so there are 14 models 

developed per imputation method. There are 4 attempted imputation methods using linear 

regression with one-way terms, two-way terms, three-way terms, and NNETs. Therefore, there are 

56 models in total developed to attempt imputation.  
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VI.I Imputation Methodology 

Implementing missing data is relatively simple. First, the data is read in and is split into 

training, validation, and testing sets. We assume all the sets of data are complete. To test missing 

data, another variable is set to the testing data but excludes one of the missing data combinations. 

The training and validation data excluding the missing data is used to fit an imputation model to 

predict the missing data. A classification model is already pretrained using the model that was 

trained for 5000 epochs and is used to predict classifications on the true test data and the imputed 

test data. The number of misclassifications, MisRate, and accuracy is recorded for each missing 

set of data. The test sets had 9,000 samples, validation set had 4,500 samples, and training set had 

31,500 samples. The model classification predictions on the true test data are the following: 3 

misclassifications, 0.03% MisRate, and 99.97% accuracy.  

 

VI.II One-Way Model: Imputation & Classification Results 

The model classification predictions on the imputed test data are shown on Table 36. Can 

see the metrics for each imputed parameter, the first row means that BURNTIME was the 

simulated missing parameter that needed to be imputed. The metrics then show how the classifier 

works when having to impute for the missing parameter. So, when we are in fact missing 

BURNTIME from the dataset, then the number of misclassified samples increases from 3 samples 

to 2,186 samples, therefore reducing the accuracy of the classifier to 75.71% from 99.97%. When 

MAXTHRUST is missing, the number of misclassified samples are 2185 and the accuracy 
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decreases to 75.72%. When MAXPC is missing, the number of misclassified samples are 1237 

and the accuracy is 86.26% which is fairly good. 

When MAXPE is missing, the number of misclassified samples increases greatly to 3597 

samples and the accuracy reduces to 60.03%. It important to note that when we are missing 

MAXPE, the imputation of MAXPE causes the classification accuracy to reduce significantly. 

This suggests that MAXPE is a very important parameter to include in the model and because a 

one-way linear regression is used, the imputation itself is not very accurate and will cause the 

classification to be worse. When the number of missing parameters increases to two, the number 

of misclassified samples increase drastically, and the classification accuracy drops below 51%. 

Finally, when missing three parameters out of four, the classification accuracy completely drops 

below 22%. Due to the requirements of imputation of the missing parameters, it could be 

introducing large amounts of noise to the classifier which is causing the classifier to break down. 

The only way this method will work is if the imputation error can be reduced. 

Table 36 Metrics for One-Way Imputation Data 

Missing Data Misclassified MisRate Accuracy 
BURNTIME 2186 24.29 75.71 

MAXTHRUST 2185 24.28 75.72 
MAXPC 1237 13.74 86.26 
MAXPE 3597 39.97 60.03 

BURNTIME, MAXTHRUST 6520 72.44 27.56 
BURNTIME, MAXPC 5603 62.26 37.74 
BURNTIME, MAXPE 4741 52.68 47.32 

MAXTHRUST, MAXPC 4891 54.34 45.66 
MAXTHRUST, MAXPE 6782 75.36 24.64 

MAXPC, MAXPE 4408 48.98 51.02 
BURNTIME, MAXTHRUST, MAXPC 7802 86.69 13.31 
BURNTIME, MAXTHRUST, MAXPE 7745 86.06 13.94 

BURNTIME, MAXPC, MAXPE 7025 78.06 21.94 
MAXTHRUST, MAXPC, MAXPE 7777 86.41 13.59 
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If the predicted imputation test data is plotted versus the true test data on Fig. 62, can see 

that there is significant error in the imputation model. Can see that there are obvious distributions 

of data that are not being modeled correctly and this is due to discontinuities between the 18 

different classes. The classes each have a different output distribution, so it would make sense that 

the linear regression model is not capable of replicating the discontinuities of the output 

distributions.  

If we assess three missing parameters: BURNTIME, MAXTHRUST, & MAXPC, on 

predicted versus actual plots can see how bad the models are replicating the true data. Figure 63 

shows the imputed versus actual for BURNTIME & MAXTHRUST and can see that linear 

regression model is not capable of replicating the output. MAXPC can be seen to be predicted as 

two very different distributions compared to the true data. This is because only one single 

Fig. 61 Imputed MAXPE vs. True MAXPE for a Single Missing 

Parameter. 
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parameter is used to fit the output. It is obvious that there are multiple distributions that cannot be 

modeled by a linear regression model.  

 

 

 

Fig. 62 Imputed vs. Actual for BURNTIME (Top Left), MAXTHRUST (Top Right), & MAXPC 

(Bottom). 
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VI.III Two-Way Model: Imputation & Classification Results 

It is then obvious that the imputation model order should be increased to include two-way 

interactions and squared terms. Table 37 shows the metrics for using the two-way imputation 

model and can see that for single missing parameters that the accuracy does increase by 

approximately 5% for BURNTIME & MAXTHRUST, 4% for MAXPC, and 10% for MAXPE. 

However, when increasing the number of missing parameters to two, the accuracy gained is only 

about 0-5%. When increasing the number of missing parameters to three, there is zero gain in 

performance. It is obvious to see that when missing three of the four parameters is extremely 

detrimental to the imputation and classification accuracy.  

 

Table 37 Metrics for Two-Way Imputation Data 

Missing Data Misclassified MisRate Accuracy 
BURNTIME 1731 19.23 80.77 

MAXTHRUST 1742 19.36 80.64 
MAXPC 898 9.98 90.02 
MAXPE 2758 30.64 69.36 

BURNTIME, MAXTHRUST 6517 72.41 27.59 
BURNTIME, MAXPC 5506 61.18 38.82 
BURNTIME, MAXPE 4414 49.04 50.96 

MAXTHRUST, MAXPC 4441 49.34 50.66 
MAXTHRUST, MAXPE 6381 70.90 29.10 

MAXPC, MAXPE 4324 48.04 51.96 
BURNTIME, MAXTHRUST, MAXPC 7888 87.64 12.36 
BURNTIME, MAXTHRUST, MAXPE 7764 86.27 13.73 

BURNTIME, MAXPC, MAXPE 6935 77.06 22.94 
MAXTHRUST, MAXPC, MAXPE 7781 86.46 13.54 

 

If only missing a single parameter such as MAXPC on Fig. 64, then can see that imputation 

model does fairly well bringing the accuracy up to 90%. The imputed versus actual shows that the 

imputation model fits well and there is error, but the model is at least fitting the data to an extent.  
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When the number of missing parameters is increased to three, can see that the classification 

model is extremely inaccurate. The only explanation is that the building an imputation with only 

one input variable cannot fully replicate the other three parameters of interest. For example, when 

looking at Fig. 65 can see that the imputation model is not replicating the data correctly and is very 

similar to the results on Fig. 63. The only difference from increasing the order is that the imputed 

results look more curvilinear on MAXTHRUST & MAXPC.  

 

 

 

Fig. 63 Imputed vs. Actual for MAXPC. 
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VI.IV Three-Way Model: Imputation & Classification Results 

Finally for linear regression imputation, the order of polynomials is increased to three so 

there are three-way interactions and includes squared and cubic terms such as 𝑥𝑥13 and 𝑥𝑥22. Table 38 

shows the metrics of the third order imputation classification model and can see that there is no 

Fig. 64 One-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Top Left), 

MAXTHRUST (Top Right), & MAXPC (Bottom). 
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improvement in accuracy for BURNTIME, MAXTHRUST, and MAXPC. MAXPE does actually 

increase by 3% in accuracy. There is some accuracy improvement when increasing the number of 

missing parameters to two. For example, BURNTIME & MAXPE accuracy increases to 58% from 

50% in the two-way model; MAXTHRUST & MAXPE accuracy increases to 37% from 29% in 

the two-way model. There is barely any increase in accuracy when increasing the number of 

missing parameters to three, which is not surprising. Now it is proven that the linear regression 

methods can decently replicate the true data if only one parameter is missing, however, when 

increasing the number of parameters to two the accuracy drops significantly. Finally, when there 

is only one input to impute three missing parameters the classification accuracy is terrible and 

should not be used in production. 

 

Table 38 Metrics for Three-Way Imputation Data 

Missing Data Misclassified MisRate Accuracy 
BURNTIME 1706 18.96 81.04 

MAXTHRUST 1711 19.01 80.99 
MAXPC 834 9.27 90.73 
MAXPE 2514 27.93 72.07 

BURNTIME, MAXTHRUST 6503 72.26 27.74 
BURNTIME, MAXPC 5455 60.61 39.39 
BURNTIME, MAXPE 3747 41.63 58.37 

MAXTHRUST, MAXPC 4262 47.36 52.64 
MAXTHRUST, MAXPE 5661 62.90 37.10 

MAXPC, MAXPE 4114 45.71 54.29 
BURNTIME, MAXTHRUST, MAXPC 7882 87.58 12.42 
BURNTIME, MAXTHRUST, MAXPE 7588 84.31 15.69 

BURNTIME, MAXPC, MAXPE 6906 76.73 23.27 
MAXTHRUST, MAXPC, MAXPE 7786 86.51 13.49 

 

The imputed versus actual test data is shown for BURNTIME and MAXPE on Fig. 66 and 

can see a fairly decent model fit using only two of the four parameters. With BURNTIME there is 
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obviously two distributions of data that must be modeled but is quite erroneous. With MAXPE 

there is a much better fit overall and can see the model fitting through the true test data. Obviously 

with both parameters there is error, but the classification model was still able to achieve 58% 

accuracy, which is better than expected for most real life scenarios. 

 

 

Figure 67 shows the imputed versus actual for BURTIME, MAXTHRUST, and MAXPC 

and can see these predictions are basically the same from Fig. 65. Again, the linear regression 

methods are NOT capable of replicating the data when only one parameter is available. Therefore, 

we then attempt to impute the data with higher order nonlinear model using NNETs. 

Fig. 65 Two-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Left) & MAXPE 

(Right). 
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VI.V NNET Trained for 1,000 Epochs: Imputation & Classification Results 

Instead of using a linear regression for imputation a NNET is developed for imputation. 

The NNET trained here is a single layer with 60 hidden units with “ELU” and are trained for 1000 

epochs using Nadam and MAPE as the loss function. The model with the best validation loss is 

Fig. 66 Three-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Top Left), 

MAXTHRUST (Top Right), & MAXPC (Bottom). 
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saved to ensure that the best model is used for imputation. Can see on Table 39 that BURNTIME, 

MAXTHRUST, & MAXPC do not improve with using the NNET, however, MAXPE does 

increase by 10%. When increasing to two parameters, some parameters do not increase in 

accuracy; however, some combinations such as BURNTIME & MAXPC, BURNTIME & 

MAXPE, MAXTHRUST & MAXPC, MAXTHRUST & MAXPE, and MAXPC & MAXPE 

increase by about 10% in accuracy. It is then shown that when increasing to three missing 

parameters, BURNTIME, MAXTHRUST, & MAXPC reduces in accuracy; BURNTIME, 

MAXTHRUST, & MAXPC increases by about 10%; BURNTIME, MAXPC, & MAXPE does not 

improve; MAXTHRUST, MAXPC, & MAXPE only improves by about 4%.  

Table 39 Metrics for NNET Imputation Data 

Missing Data Misclassified MisRate Accuracy 
BURNTIME 1712 19.02 80.98 

MAXTHRUST 1695 18.83 81.17 
MAXPC 1042 11.58 88.42 
MAXPE 1466 16.29 83.71 

BURNTIME, MAXTHRUST 6471 71.90 28.10 
BURNTIME, MAXPC 4760 52.89 47.11 
BURNTIME, MAXPE 2743 30.48 69.52 

MAXTHRUST, MAXPC 3144 34.93 65.07 
MAXTHRUST, MAXPE 3787 42.08 57.92 

MAXPC, MAXPE 3090 34.33 65.67 
BURNTIME, MAXTHRUST, MAXPC 8367 92.97 7.03 
BURNTIME, MAXTHRUST, MAXPE 6846 76.07 23.93 

BURNTIME, MAXPC, MAXPE 7001 77.79 22.21 
MAXTHRUST, MAXPC, MAXPE 7455 82.83 17.17 

 

Figure 68 shows the imputed versus actual for BURNTIME, MAXTHRUST, & MAXPC 

and can see the results do not improve with using a NNET. It is now obvious that not even a NNET 

may be able to impute the full data. The next set of results will then use a larger network similar 

to the model developed in IV.III.VI Results: 10,000 Epochs.  
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Fig. 67 NNET Trained for 1000 Epochs, Imputed vs. Actual for BURNTIME (Top Left), 

MAXTHRUST (Top Right), & MAXPC (Bottom). 
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VI.VI NNET Trained for 5,000 Epochs: Imputation & Classification Results 

The model developed here uses three hidden layers with 90 hidden units per layer with 

ELU activation, Nadam optimization with MAPE as the loss function. Again, the best model with 

the lowest validation loss is saved during training to ensure the best model is taken. Each 

imputation network is trained for 5000 epochs. For a single missing parameter, BURNTIME and 

MAXTHRUST have barely increased in accuracy, but MAXPC and MAXPE have both increased 

greatly over 96%. When increasing the missing parameters to two, BURNTIME & MAXTHRUST 

does not increase in accuracy, but the other sets increase quite significantly. MAXPC & MAXPE 

even increases to almost 90%, which increased from 51% in the one-way linear regression model. 

When increasing the number of missing parameters to three, the accuracy does not increase at all.  

Table 40 Metrics for NNET Trained for 5000 Epochs Imputation Data 

Missing Data Misclassified MisRate Accuracy 
BURNTIME 1672 18.58 81.42 

MAXTHRUST 1511 16.79 83.21 
MAXPC 4 0.04 99.96 
MAXPE 290 3.22 96.78 

BURNTIME, MAXTHRUST 6365 70.72 29.28 
BURNTIME, MAXPC 2983 33.14 66.86 
BURNTIME, MAXPE 2455 27.28 72.72 

MAXTHRUST, MAXPC 2198 24.42 75.58 
MAXTHRUST, MAXPE 3488 38.76 61.24 

MAXPC, MAXPE 1166 12.96 87.04 
BURNTIME, MAXTHRUST, MAXPC 8188 90.98 9.02 
BURNTIME, MAXTHRUST, MAXPE 6820 75.78 24.22 

BURNTIME, MAXPC, MAXPE 7055 78.39 21.61 
MAXTHRUST, MAXPC, MAXPE 7604 84.49 15.51 

 

Figure 69 shows the imputed versus actual for missing BURNTIME, MAXTHRUST, & 

MAXPC. Can see how the NNET is attempting to model the data and can see how predicted data 
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appears to be making a step. It seems the predicted data increases and then plateaus and it seems 

that the model is attempting to make the prediction better.  

 

 

Fig. 68 NNET Trained for 5000 Epochs, Imputed vs. Actual for BURNTIME (Top Left), 

MAXTHRUST (Top Right), & MAXPC (Bottom). 
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VI.VII NNET Trained for 20,000 Epochs: Imputation & Classification Results 

The imputation models were then trained for 20,000 epochs using the same network 

configuration from the previous section. Table 41shows the metrics for the NNET trained for 

20,000 epochs and can see that the accuracy does not increase. From these results can realize that 

maybe certain models will improve performance. It was shown that increasing the number of 

hidden units and hidden layers improves performance. However, this might not ever improve 

accuracy if only one single parameter is known. 

Table 41 Metrics for NNET Trained for 20000 Epochs Imputation Data 

Missing Data Misclassified MisRate Accuracy 
BURNTIME 1679 18.66 81.34 

MAXTHRUST 1502 16.69 83.31 
MAXPC 4 0.04 99.96 
MAXPE 250 2.78 97.22 

BURNTIME, MAXTHRUST 6368 70.76 29.24 
BURNTIME, MAXPC 2986 33.18 66.82 
BURNTIME, MAXPE 2491 27.68 72.32 

MAXTHRUST, MAXPC 2180 24.22 75.78 
MAXTHRUST, MAXPE 3534 39.27 60.73 

MAXPC, MAXPE 1072 11.91 88.09 
BURNTIME, MAXTHRUST, MAXPC 8161 90.68 9.32 
BURNTIME, MAXTHRUST, MAXPE 6778 75.31 24.69 

BURNTIME, MAXPC, MAXPE 7113 79.03 20.97 
MAXTHRUST, MAXPC, MAXPE 7576 84.18 15.82 

 

VI.VIII Future Work for Robustness & Sensitivity 

One of the first approaches that can be done is to focus on improving the imputation models 

by increasing the number of hidden units and hidden layers. It is hypothesized that adding more 

hidden units may allow the NNET to develop relationships between the known data and simulated 

missing parameters. Another method, not shown in this work, would be to utilize adversarial 

learning methods to improve the robustness of the classification models [133]. Currently, there are 
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multiple Python packages for implementing adversarial learning such as CleverHans [134] and 

Adversarial-Robustness-Toolbox [135]. Both tools allow for training NNETs using adversarial 

samples to improve the overall robustness to noise.  
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VII. Model Explainability 

 

As the models were generated in the past several chapters, there was no detail on how the 

models generate a prediction. For typical linear regression models, such as those in section IV.II 

Linear Regression Methods and section V.II Linear and Quadratic Discriminant Analysis, the 

coefficients can be used to assess which parameters have more influence on the model. The 

downside to just using coefficients is that it only explains globally how parameters affect the 

output. When the linear regression model is fit, a coefficient will be either positive, zero, or 

negative and will only show which direction the output goes regardless of what the input is. The 

coefficients do not say how important a local sample input is to the model prediction. With linear 

regression and linear discriminant analysis there is least some type of global model explainability; 

however, with NNETs the weights and biases cannot be directly used to assess which parameters 

are most influential due to the fact that there are nonlinear activations of the linear combinations 

of weights and biases. A new method has been developed for evaluating regression methods 

including linear regression, decision trees & ensemble methods, NNETs, and even agnostic models 

and it uses an old method of calculating Shapley Values.  

 

VII.I Shapley Values 

The concept of Shapley values was first introduced by Lloyd Shapley [136] to measure the 

contribution of players to a game. This concept was very foundational to game theory as it allows 

for direct computations of a player’s contribution. The overall concept is simple to understand, if 

there are n players, then a player i’s contribution can be evaluated by the difference between a 
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game’s output including player i and a games output excluding i. To compute player i’s overall 

contribution, multiple games or coalitions M are evaluated using a combination of the N players 

which will either include or exclude player i. The classical Shapley value estimation [137] is shown 

on Eq. (7.1), where ϕ𝑖𝑖 is the estimated Shapley value for player (input feature) i, 𝑣𝑣(𝑀𝑀 ∪ {𝑖𝑖}) is the 

prediction of the model using coalition M including feature i, 𝑣𝑣(𝑀𝑀) is the prediction of the model 

using coalition M excluding feature i, and γ𝑛𝑛(𝑀𝑀) is the weight of proportions to enter coalition M 

[138]. Little m is the number of participants excluding i and n is the total number of players. 

[v(𝑀𝑀 ∪ {𝑖𝑖}) − v(𝑀𝑀)] is the main portion of calculating the Shapley value and is known as the 

marginal contribution. The Shapley value can be thought of as the marginal contribution ratioed 

by the number of coalitions, which is shown on Eq. (7.2), and can see the marginal contribution is 

just the difference between the sets of coalitions which include and exclude feature i [139].  
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VII.II Hypothetical Shapley Value Example 

The Shapley value concept is best understood by looking at a hypothetical example case. 

For example, the time of flight (TOF) is modeled using DBODY, PC, and BURNTIME and we 

wish to obtain the contributions (Shapley Values) that DBODY has on the model. To do this, TOF 
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must be modeled using each coalition available, and since there 3 input features there are 𝑀𝑀 =

2𝑛𝑛 = 23 = 8 coalitions required.  

Table 42 Hypothetical Coalitions for TOF 

Coalitions Players 𝑣𝑣(𝑀𝑀) TOF Prediction, Seconds 
1 None (∅) (No Input or Zero) 0 
2 DBODY 15 
3 PC 25 
4 BURNTIME 30 
5 DBODY, PC 45 
6 DBODY, BURNTIME 35 
7 PC, BURNTIME 55 
8 DBODY, PC, BURNTIME 95 

 

Table 42 shows the hypothetical results of TOF being modeled by each coalition. For 

example , can see on coalition 1 that if TOF has no input then there is no predicted TOF; cannot 

make a model prediction with no input. If TOF is modeled using coalition 2, then there is a TOF 

prediction of 15 seconds using just DBODY. To calculate the Shapley value for DBODY, there 

are then 𝑀𝑀/2 = 8/2 = 4 sets in the summation of Eq. (7.1). Equation (7.3) shows the summation 

of the sets to calculate the Shapley value for DBODY.  
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Equation (7.3) is expanded to show the four sets required to calculate the Shapley Value 

on Eq. (7.4). The first set is the model using DBODY subtracting the model with no inputs (∅). 

The second set is the coalitions with the first part using DBODY & PC and second part just using 

PC (excludes DBODY). The third set is the coalition with the first part using DBODY & 

BURNTIME and second part using just BURNTIME (excludes DBODY). The fourth final set is 
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the coalition of DBODY, PC, & BURNTIME and the second part using PC & BURNTIME 

(excludes DBODY). 
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The values on Table 42 can then be plugged into Eq. (7.4) to give Eq. (7.5). For this 

example, n is three for DBODY, PC, & BURNTIME. m is zero for the first set, m is one for both 

the second and third set, which refer to PC and BURNTIME, and the fourth set m is two for PC & 

BURNTIME. 
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Simplifying Eq. (7.5) into Eq. (7.6) finally shows the Shapley value for DBODY. Notice 

the Shapley value is in units of the output feature, so it is in units of seconds for TOF. This shows 

that DBODY has an average contribution of 22.50 seconds to TOF.  
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The calculations of the Shapley values for PC and BURNTIME are shown in Appendix M: 

Hypothetical Shapley Value Example. In the upcoming sections, the Shapley value concept is 
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extended to linear regression and a few methods for approximating the Shapley Values are 

introduced.  

 

VII.III Shapley Values Related to Linear Regression 

Shapley values can be utilized for multiple statistical and machine learning models. The 

Shapley values were applied to linear regression modeling functions to compare against the model 

standardized coefficients [140][141]. Can see that the Shapley value for the ith input is simply the 

standardized coefficient times the difference between the input and the input average, which is 

shown on Eq. (7.7).  

 ( )( ) [ ] [ ]( )ˆ
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If the Shapley values are summed for each standardized coefficients, then the right hand 

side of Eq. (7.7) can also be summed and reduced to the difference between the model prediction 

and the average of the output feature, which is shown on Eq. (7.8).  
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VII.IV Shapley Value Approximation Methods 

The classical Shapley calculation shown on Eq. (7.1) and its implementation in the 

hypothetical example on section VII.II Hypothetical Shapley Value Example are not actually 

practical for computational reasons. Since there are M = 2𝑛𝑛 coalitions required, for the regression 

database with 15 features, then there are M = 2𝑛𝑛 = 215 = 32,768 coalitions required. For the 

dataset including fin autopilot parameters, there are n=26 inputs, so there M = 2𝑛𝑛 = 226 =

67,108,864 coalitions required. It is obvious to see that number of coalitions explodes as more 

input features are added. This also does not include evaluating multiple samples, which would then 

be multiplied by the number of coalitions required. So, the classical Shapley analysis is very 

impractical for determining the contributions computationally.  

A powerful python package has been developed which includes many approximation 

methods for linear regression models using Linear SHAP [137][140][141], decision trees & 

ensemble models using Tree SHAP [142][143], NNETs using Deep Lift SHAP [137][144][145], 

and model agnostic functions using Kernel SHAP [137]. This package is called SHAP [137] 

(Shapley Additive Explanation), is available for free from Anaconda. The algorithms are explained 

in details in the references listed, but if the model is a linear regression function then SHAP 

identifies that it is a Scikit-Learn model and then a variation of Eq. (7.7) can be used to calculate 

the SHAP values, shown on Eq. (7.9) where j refers to the sample number and i is still the feature 

input. Can then see how a local sample SHAP value �ϕ𝑖𝑖𝑖𝑖� is determined and can see how the 

global SHAP value (ϕ𝑖𝑖) is derived. 
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VII.V Regression Explanations 

To explain these the SHAP package is used for linear regression (excluding Ridge & Lasso) 

and regression NNETs. SHAP allows using Scikit-Learn and TensorFlow to easily calculate the 

SHAP values necessary. Word of caution, the NNET version can be very slow if a lot of samples 

are used. For this data, if more than 5000 samples are used it gets very slow and a warning will 

mostly appear. Although not used here, the Kernel SHAP version can also be very slow as well. 

The Linear SHAP is extremely Fast and there should be no issues when executing this version. 

 

VII.V.I Linear Regression & Shapley Value Global Average 

First, we look at the linear regression model standardized coefficients and compare them 

to the global average SHAP values. Can see that the standardized coefficients are easily calculated 

by multiplying the coefficient to the ratio of the input feature standard deviation and the target 

feature standard deviation, which is shown on Eq. (7.10) First, the standardized coefficients of the 

linear regression model using one-way terms are plotted on a heatmap on Fig. 70. The standardized 

coefficients are shown for each input feature along the output feature columns. When evaluating 

the TOF, can see that THROAT has the highest positive contribution to TOF, followed by 

ILAUNCH, PC, and DBODY, but TBURN has the highest negative contribution followed by 
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TAILB2 and EQRATIO. Parameters which are positive increase the value of TOF and parameters 

which are negative decrease TOF. So, it can be said DBODY is positively contributing to TOF 

and TBURN is negatively contributing to TOF.  
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When looking at MAXTHR, can see that THROAT has the largest positive contribution, 

followed by PC and DBODY. Will then notice that the other parameters do not really contribute 

to MAXTHR, which makes sense because the tail fin parameters would not contribute to thrust in 

any way. For MAXDIST, THROAT has the largest positive contribution, followed by PC, 

DBODY, and ILAUNCH. EQRATIO has the largest negative contribution, followed by TAILB2, 

DNOSE, and TRCR. For APOGEE, THROAT has the largest positive contribution followed by 

PC, ILAUNCH, and DBODY; TBURN has the largest negative contribution followed by TAILB2, 

EQRATIO, TRCR, and DNOSE. For THRSEA, THROAT has the largest positive contribution, 

followed by PC and DBODY, and notice that this follows the same trend as MAXTHR. For 

WEIGHT, THROAT has the largest positive contribution, followed by PC, DBODY, and TBURN. 

THROAT can be hard parameter to understand as to why it has such a large contribution to 

WEIGHT. When looking at Eq. (2.6), can see that the mass flow rate is function of PC, THROAT, 

and the propellant characteristic velocity. The total propellant mass is then calculated from Eq. 

(2.7), which is a function of mass flow rate and BURNTIME. Therefore, propellant mass is a 

function of BURNTIME, PC, and THROAT, which will account for 60-70% of the total mass. 
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Figure 71 shows the one-way linear regression global SHAP values. The global SHAP 

values are just the mean absolute SHAP values and shows the average contribution for an input 

feature. For TOF, can see that THROAT has the large average contribution, so on average 

Fig. 69 One-Way Parameter Linear Model: Standardized Coefficients. 



166 
 

THROAT contribute 104.21497 seconds to TOF. ILAUNCH, PC, TBURN, DBODY, TAILB2, 

and EQRATIO are on average the largest contributors for TOF. Notice that SHAP values are 

similar in magnitude ordering, so ILAUNCH was the second most contributing on Fig. 70 and on 

Fig. 71. PC & TBURN are the third and fourth, respectively, most contributing parameters on both 

Fig. 70 One-Way Linear Regression Mean(|SHAP|). 
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Fig. 70 and Fig. 71. So, can see that the SHAP values for a linear model are just scaled values of 

the standardized coefficients. For MAXTHR, can see that THROAT is the most contributing (also 

on Fig. 70), followed by PC (as it is on Fig. 70), and DBODY (as it is on Fig. 70). For MAXDIST, 

THROAT, ILAUNCH, PC, DBODY, EQRATIO, and TAILB2 are the most contributing 

parameters. For APOGEE, THROAT, ILAUNCH, PC, TBURN, and DBODY are the most 

contributing parameters. For THRSEA, THROAT ,PC, and DBODY are the most contributing. 

For WEIGHT, THROAT, PC, TBURN, and DBODY  are the most contributing parameters. For 

WEIGHT, THROAT, PC, TBURN, and DBODY are the most contributing parameters. 

 

VII.V.II Neural Network Regression & Shapley Value Explanations 

Next, we can apply the SHAP package using the “DeepExplainer” function to obtain the 

SHAP values for NNET using TensorFlow. Figure 72 shows the mean absolute global 

contributions (SHAP values) for the NNET that was trained for 50,000 epochs in Sect. IV.III.VII. 

Notice that global SHAP values are almost one to one the same as the SHAP values for the linear 

regression model on Fig. 71. Will notice that sense the NNET was able to get improved metrics, 

the SHAP values are slightly different and much greater for ILAUNCH. For TOF & MAXDIST, 

will notice that ILAUNCH has a larger contribution, and for the rest of the outputs they are a bit 

smaller. For MAXDIST, can see that TBURN has a much larger contribution than it did for the 

linear regression model on Fig. 71 and in fact, many of the parameters for MAXDIST have increase 

with few parameters decreasing. There is some change on TOF & APOGEE and very small 

changes on MAXTHR, THRSEA, and WEIGHT.  
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Next, the model global SHAP values can be plotted using the SHAP “Summary Plot” 

function, which plots the SHAP values from Fig. 72 for each output (the values on along the row) 

as a stacked bar chart. Figure 73 shows the global mean(|SHAP|) values plotted, where each bar is 

the summed mean(|SHAP|) values from each row on Fig. 72. For the NNET regression model, can 

Fig. 71 NNET Regression Mean(|SHAP|). 
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see that THROAT is globally the largest contributor to the model. Will notice that MAXTHR, 

THRSEA, and WEIGHT are small in magnitude compared to MAXDIST ,APOGEE, and TOF, 

but is not an issue. Part of the reason the magnitude is small for MAXTHR, THRSEA, and 

Fig. 72 NNET Global Mean (|SHAP|) Values Stacked Bar Chart. 
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WEIGHT is just due to the fact that the ranges are also smaller compared to MAXDIST ,APOGEE, 

and TOF. Will then notice that PC is the second most contributing, followed by ILAUNCH, 

DBODY, TBURN, TAILB2, EQRATIO, TRCR, DNOSE, EXPR, FNL, TTR, LNOSE, 

TXLERATIO, and TLE. The only issues with utilizing figures 72-73, is that both figures display 

the mean absolute SHAP values and so there is loss of effect for single samples, which can cause 

one to misconstrue the model input feature contributions. One must take caution in interpreting 

the SHAP values and for figures 72-73, one must remember that the values refer to the mean 

absolute SHAP values. For example, for TOF, THROAT has an AVERAGE SHAP (contribution) 

value of 106.7 seconds to the NNET model. So, not every sample will have 106.7 seconds of 

contribution. Therefore, it is important to display sample input SHAP available from using the 

“DeepExplainer.shap_values(X)” function call.  

Figure 74 shows the individual sample SHAP values for the output parameter TOF. The 

samples are colored blue to red, which displays its magnitude from low (blue) to high (red), 

respectively. THROAT for example, shows the lower inputs are blue and the higher inputs are red. 

Can then see SHAP value on the x-axis and will see if it is negative or positive. This plot is 

extremely useful because we can see the sample SHAP value and determine how its input value is 

scaled. Looking back at THROAT, we can see that lower values of THROAT have a negative 

contribution to the output and higher values of THROAT have a positive contribution to the output. 

ILAUNCH, PC, DBODY, and FNL all show that their lower respective values have negative 

contributions, and their higher respective values have positive contributions. Looking at TBURN, 

the opposite effect occurs and can see that LOWER values of TBURN have a POSITIVE 

contribution and HIGHER values of TBURN have a NEGATIVE contribution. TAILB2, 

EQRATIO, TRCR, EXPR, DNOSE, and TTR show that their lower respective values have a 
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positive contribution, whereas their higher respective values have a negative contribution. Notice 

that TXLERATIO, TLR, and LNOSE have an extremely low contribution.  

 

Figure 75 shows the individual sample SHAP values for the output parameter MAXTHR. 

Will see that for THROAT, PC, DBODY, EXPR, and ILAUNCH show that their lower respective 

Fig. 73 TOF Sample SHAP Values using Summary Plot. 
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values have a negative contribution, and their higher respective values have a positive contribution. 

For EQRATIO and TBURN, their higher respective values have a negative contribution and their 

lower respective values have a positive contribution. The parameters below and including FNL, 

all have extremely low contributions to the model. 

 

Fig. 74 MAXTHR Sample SHAP Values using Summary Plot. 
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Figure 76 shows the individual sample SHAP values for the output parameter MAXDIST. 

Can see that for THROAT, PC, and DBODY that their higher respective values have a positive 

contribution, and their lower respective values have a negative contribution. EQRATIO, TAILB2, 

DNOSE, and TRCR show that their lower respective values have a positive contribution, and their 

higher respective values have a negative contribution. Will notice that ILAUNCH and TBURN 

were not initially mentioned and that is because we can see that there is a mixture of contributions. 

Fig. 75 MAXDIST Sample SHAP Values using Summary Plot. 
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So, for example, on TBURN can see that low and higher values can have both positive and negative 

contribution to the output.  

Figure 77 shows the individual sample SHAP values for the output parameter APOGEE. 

THROAT, ILAUNCH, PC, and DBODY show that their higher respective values have a positive 

contribution, and their lower respective values have a negative contribution. TBURN, TAILB2, 

EQRATIO, TRCR, and DNOSE show that their lower respective values have a positive 

Fig. 76 APOGEE Sample SHAP Values using Summary Plot. 
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contribution, and their higher respective values have a negative contribution. The parameters 

below and including EXPR have very little contribution to the output.  

Figure 78 shows the individual sample SHAP values for the output parameter THRSEA. 

THROAT, PC, and DBODY show that their higher respective values have a positive contribution, 

and their lower respective values have a negative contribution. EQRATIO and EXPR show that 

their lower respective values have a positive contribution, and their higher respective values have 

Fig. 77 THRSEA Sample SHAP Values using Summary Plot. 
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a negative contribution. The parameters below and including FNL have very little contribution to 

model output.  

Figure 79 shows the individual sample SHAP values for the output parameter WEIGHT. 

THROAT, PC, DBODY, and TBURN show that their higher respective values have a positive 

contribution, and their lower respective values have a negative contribution. The parameters below 

and including TRCR have very little contribution to the model output. 

Fig. 78 WEIGHT Sample SHAP Values using Summary Plot. 
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With the summary plots, it is important to note that the plots do not tell what the magnitude 

of the output is, so just because an input feature has positive contribution will not necessarily mean 

that the output will have a large value. So, we can now examine single samples to see how the 

local SHAP values adjust the output. The next six plots will show the same sample for each output 

parameter. The sample is plotted using the SHAP package function called “force_plot”. Figure 80 

shows the single sample force plotted for TOF. The values which have a positive contribution, i.e., 

increase the output, are colored red on the left. The values which have a negative contribution, i.e., 

decrease the output, are colored blue on the right. The input feature which are most important are 

displayed on the force and their respective input values are displayed as well. The base value shows 

what the average output value is and can see it is about 280 seconds. Can see that the output for 

the sample is 382.14 seconds. For this sample, can see that TAILB2, TBURN, PC, and THROAT 

have positive contributions and most important; ILAUNCH and DBODY have negative 

contributions and are also most important.  

 

 

Fig. 79 TOF Single Sample Force Plot. 
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Next, looking at Fig. 81 shows the single sample force plot for MAXTHR. Can see that PC 

and THROAT are the most important positive contributors and DBODY is the most important 

negative contributor. The average (base value) for MAXTHR is approximately 46 Lbf/1000 and 

the sample output is 59.80 Lbf/1000.  

 

Next, looking at Fig. 82 shows the single sample force plot for MAXDIST. Can see that 

DBODY is the most important negative contributor, and TRCR, TAILB2, TBURN, DNOSE, PC, 

& THROAT are the most important positive contributors. The average value for MAXDIST is 

approximately 841 ft/1000 and the sample output is 1772.17 ft/1000.  

 

 

Fig. 80 MAXTHR Single Sample Force Plot. 
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 Next, looking at Fig. 83 shows the single sample force plot for APOGEE. Can see that 

DBODY & ILAUNCH are the most important negative contributor, and TAILB2, TBURN, PC, 

& THROAT are the most important positive contributors. The average value for APOGEE is 

approximately 298.69 ft/1000 and the sample output is 458.71 ft/1000.  

 

Fig. 81 MAXDIST Single Sample Force Plot. 

Fig. 82 APOGEE Single Sample Force Plot. 
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Next, looking at Fig. 84 shows the single sample force plot for THRSEA. Can see that 

DBODY is the most important negative contributor, and PC & THROAT are the most important 

positive contributors. The average value for THRSEA is approximately 40.31 Lbf/1000 and the 

sample output is 55.48 Lbf/1000.  

 

 

Next, looking at Fig. 85 shows the single sample force plot for WEIGHT. Can see that 

DBODY is the most important negative contributor, and PC & THROAT are the most important 

positive contributors. The average value for WEIGHT is approximately 16.56 Lbm/1000 and the 

sample output is 19.30 Lbm/1000. 

Fig. 83 THRSEA Single Sample Force Plot. 
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VII.VI Classification Explanations 

To explain the classification model the SHAP package can be used for LDA (we will 

exclude QDA) and the classification NNET. For this data, remember that a class value is being 

predicted. So, take caution when interpreting the SHAP values for classification.  

 

VII.VI.I LDA & Shapley Value Global Average 

First, LDA is evaluated and is shown to be very useful as an interpretable model. So, LDA 

can be used to directly interpret how the model is making predictions by evaluating the 

dimensionally reduced components. Fortunately, when using LDA in Scikit-Learn, the number of 

dimensionally reduced terms (“n_components”) can be set. Here, this parameter is set two so that 

the parameters can be easily visualized on a two-dimensional plot. Figure 86 shows the 

Fig. 84 WEIGHT Single Sample Force Plot. 
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dimensionally reduced parameters LDA 1 versus LDA 2 for the entire set of 18 classes, which 

each class number of plotted on its corresponding class group. Can see that the classifier is able to 

separate the classes. On LDA 2, can see that the classes a split vertically and can see that the 

classifier was able to split the classes based on THROAT, which the first 9 classes have THROAT 

equal to 0.14264 and classes 10-18 have THROAT equal to 0.18264. On LDA 1 can see that the 

classifier is able split the classes based on DBODY. Classes 1, 4, 7, 10, 13, & 16 have the same 

DBODY equal to 0.844. Classes 2, 5, 8, 11, 14, & 17 have the same DBODY equal to 0.884. 

Classes 3, 6, 9, 12, 15, & 18 have the same DBODY equal to 0.924. Can see that classes 1, 4, & 7 

have the same DBODY, but are not separated as much and is an effect of the reduction method. 

Fig. 85 LDA 1 vs. LDA 2 Dimensionally Reduced Components. 
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These classes have different FINENESS and only separated by small subregions. So, can see that 

the LDA reduction method is having a harder time of separating the classes due to FINENESS. 

This reduction method would have been more appropriate if it would have been reduced to three 

components and shown on a three dimensional plot.  

Next, the standardized coefficients of the LDA model are plotted on a heatmap to show 

which parameters are most influential. These standardized coefficients are transposed on Fig. 87, 

so that they can fit on the document. Standardized coefficients for LDA may not make sense, but 

utilizing Eq. (5.5) we can write the LDA equation in a form similar to linear regression and make 

use of the “standardized coefficients”. The coefficients must be carefully translated compared to 

the regression. For the output Class 1 (top row), BURNTIME & MAXTHRUST have a negative 

weight or contribution, and MAXPC & MAXPE have a positive contribution. Can see that 

MAXTHRUST has the largest contribution. Overall BURNTIME seems to have a very small 

contribution. Interestingly enough, MAXTHRUST appears to have cyclical importance across the 

output features (along the MAXTHRUST column). Notice that its starts largely negative on class 

1, gets very small in magnitude on class 2, then gets largely positive on class 3. Can see that this 

repeats for every 3 classes. On MAXPC column, notice that class 1 starts out largely positive, class 

2 starts positively smaller, and class 3 is largely negative. The cycle repeats for the first 9 classes 

and when class reaches 11 (different value of THROAT but corresponds to same DBODY as class 

2) the small positive value changes to small negative. This new cycle repeats for class 10-18. 

Finally, on MAXPE, notice that class 1 starts positive, class 2 starts negative, and class 3 starts out 

larger negatively, and this cycle repeats for the first 9 classes as well. Similarly, to MAXPC, when 

reaching class 11, the would be negative value changes to positive contribution and the new cycle 
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repeats for classes 10-18. Overall, it does seem that MAXTHRUST is the most contributing and 

BURNTIME seems to be the least contributing. 

Fig. 86 LDA Standardized Coefficients. 
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Fig. 87 LDA Mean(|SHAP|) Values. 
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Next, the mean absolute SHAP values are plotted on Fig. 88 and notice that there are no 

negative values like on Fig. 87. We will notice very similar trends as those on Fig. 87. BURNTIME 

does not seem follow a trend. For MAXTHRUST, class 1 shows a large contribution, class 2 shows 

a small contribution, and class 3 shows a large contribution. This cycle repeats for every 3 classes 

for all the classes. For MAXPC, class 1 shows a large contribution, class 2 shows a small 

contribution, and class 3 shows a large contribution and this cycle repeats for every 3 classes for 

all classes. For MAXPE, class 1 shows a large contribution, class 2 shows a small contribution, 

and class 3 shows a large contribution and this cycle repeats for every 3 classes for all classes. 

When looking at the rows, can see that MAXTHRUST seems to be the most contributing. MAXPC 

and MAXPE seems to be second most contributing, and they seem to alternate for the classes. 

BURNTIME is the least contributing.  

 

VII.VI.II Neural Network Classification & Shapley Value Explanations 

Next, we can apply the SHAP package again using the “DeepExplainer” function to obtain 

the SHAP values for NNET using TensorFlow. Figure 89 shows the mean absolute global 

contributions (SHAP values) for the NNET that was trained for 5,000 epochs in Sect. V.III.III. 

Because the model uses the categorical cross entropy as the loss function, the SHAP values are 

scaled much smaller. So, it is much harder to observe any characteristics and relate how the SHAP 

values are predicting the output. Instead, it may be useful to utilize other SHAP plots to generalize 

about the model predictions. The complexity in the classification problem, is that the NNET has 

18 output units so there are 18 multidimensional arrays of SHAP values that can be used for 

visualization. Interpreting the NNET classification models are not easy as the NNET regression 

model. 
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The mean absolute SHAP are then plotted on a stacked bar chart on Fig. 90. Can see that 

the overall contributor to the model is MAXPC, followed by MAXTHRUST, MAXPE, and finally 

BURNTIME. It is obvious to see that looking at the global values on Fig. 89 & Fig. 90 is not very 

Fig. 88 NNET Classification Mean(|SHAP|). 
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useful and there is not much information to be gained. So, instead it will be more useful to look at 

specific samples case.  

 

The force plots can be utilized to see how single samples are being predicted. For example, 

a single sample is plotted on Fig. 91 and can see how the NNET makes a prediction. Because the 

output value was plotted for Class 1, can see how the NNET predicts the output value. Notice that 

the sample predicts an output of 0.00, so the sample does not belong to Class 1. Can see that 

Fig. 89 NNET Classification Global Mean (|SHAP|) Values Stacked Bar Chart. 
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BURNTIME & MAXTHRUST were positively contributing and MAXPE & MAXPC were 

negatively contributing.  

 

 

Next, the same sample SHAP values are plotted for Class 5 predictions on Fig. 92. Can see 

that this sample predicts a value of 1.00, which means that this sample belongs to Class 5. Can see 

that MAXTHRUST, MAXPE, and BURNTIME were positively contributing and MAXPC was 

negatively contributing to the output. Because the single sample predicts a value of 1.00 for Class 

5, this sample will obviously predict zero for the other SHAP force plots. When calculating the 

SHAP values, a multidimensional list of [number of classes]=[18] two-dimensional arrays are 

created. These arrays refer to SHAP values per sample and are of size [number of samples, number 

of inputs]=[1000, 4]. Therefore, the multidimensional list is of size [18][1000, 4], therefore each 

Fig. 90 Single Sample Class 1 Force Plot. 
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list refers to the output class value. For example [0][0, :] refers to the output for class 1 using the 

sample 1 inputs. So, only one of the lists for a single sample will predict a value of 1.00. 

 

 

So, if the rest of the class output lists are force plotted for the single sample, they will all 

just predict a value of zero and will be repetitive, therefore most of the class predictions are not 

shown. Instead for example purposes, only classes 10 and 15 will be shown. Figure 93 shows the 

single sample prediction and obviously it is zero. Can see that BURNTIME has a positive 

contribution to the output and MAXPC & MAXPE have a negative contribution to the output. Can 

see that MAXTHRUST has no visible contribution. Next on Fig. 94, can see the single sample 

predict zero. Can see that MAXTHRUST has a positive contribution, and MAXPC, BURNTIME, 

& MAXPE have a negative contribution.   

Fig. 91 Single Sample Class 5 Force Plot. 
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Fig. 92 Single Sample Class 10 Force Plot. 

Fig. 93 Single Sample Class 15 Force Plot. 
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Although the force plots are extremely useful for visualizing individual case by case 

outputs, it can be visually useful to see how each prediction arrives at the final solution. The 

“multioutput_decision_plot” from SHAP can be used to plot a single sample and see how the 

NNET makes the predictions. Because this is a classification NNET, the outputs will either arrive 

at zero or one. Figure 95 shows the NNET take the input sample and predicts which class the 

sample belongs to and can see from the legend that the sample belongs to class 5, which is the 

same sample used for figures 91-94. The input features are sorted based on importance and can 

see that for this specific sample that BURNTIME is the most contributing parameter and 

MAXTHRUST is the least contributing parameter. So, it is important to understand that the global 

SHAP values need to be used with caution when generalizing the input features.  

Fig. 94 Single Multi-Output Decision Plot. 
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VII.VII Other Methods for Explanation 

There are other methods for explaining but not all of them are available for TF NNETs and 

not all of them are generalizable to all models. Using the SHAP package allows for a generalization 

of all model types built in Python. Refer to Molnar [140] for an in-depth discussion and 

implementations of model interpretation functions such as global model agnostic methods, which 

include partial dependence plots and accumulated local effect plots, and local model agnostic 

methods, which include individual conditional expectation and local surrogate (LIME). Although 

these plots can be very useful, SHAP seems to be the most useful because of its ability to do global 

and local explanations. The main issues with SHAP arise mostly from interpretation and one must 

be careful in how the results are interpreted. However, these issues are also possible with other 

methods so in general caution must be taken when interpreting the explanation results.  
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VIII. Conclusions & Future Work 

 

This dissertation described the process for generating simulated experimental data so that 

statistical analysis and machine learning could be applied. Two datasets were generated and the 

first was developed for regression purposes and the other dataset was developed for classification. 

The regression dataset was developed from the Auburn University Liquid Rocket Code and the 

classification dataset was developed from the Auburn University Solid Rocket Code. For 

regression, the models were generated so that output features such as TOF and MAXDIST could 

be predicted from geometric parameters such as DBODY and launch parameters such as 

ILAUNCH. For classification, the missiles are differentiated by generated 3 different DBODY 

values, 3 different FINENESS values, and 2 different THROAT values. 

For regression, traditional linear regression methods (linear, ridge, and lasso) were 

developed and shown to be only accurate predicting MAXTHR, THRSEA, and WEIGHT. 

Therefore, a NNET was implemented in TensorFlow and from the multi-layer multi-unit analysis 

a network with 3 hidden layers and 90 units per layer was chosen and trained for 50,000 epochs. 

The overall testing MSE was 144.2935 and predicted versus actual plots show minimal error even 

for MAXDIST. With the regression database, it was shown that predicting TOF, APOGEE, and 

MAXDIST were the hardest parameters to model even using a NNET.  

For classification, the inputs DBODY, FINENESS, and THROAT are not the inputs for 

classification, instead the output parameters MAXTHRUST, BURNTIME, MAXPE, and MAXPC 

are used as inputs and the outputs are the class values 1-18. To classify these missiles, the classical 

linear and quadratic discriminant analysis functions were used to achieve a 99.3778% and 
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99.9111% testing accuracy, respectively. In many datasets, LDA and QDA typically would not be 

able to differentiate between classes, but for this specific database they both work perfectly. A 

classification NNET was developed using a single layer with 50 hidden units and only needed 

5000 epochs to achieve a 99.97% testing accuracy. 

Data is not always available and so sample inputs were randomly selected and assumed to 

be missing. This missing data needs to be replaced and so imputation models were developed to 

try to replace the missing parameters using linear regression and NNETs. Linear regression was 

shown not to be able to impute the data and so NNETs were implemented to try and improve 

results. Results showed that for single missing parameter, the testing accuracy could reduce to 80% 

and when missing two parameters, the accuracy could drop to 30% testing accuracy but testing 

accuracy could achieve 87% testing accuracy. When missing three of the four parameters, the 

testing accuracy drops below 25% testing accuracy. Some of the main reasons the accuracy was 

reduced so much was that not even NNETs could not accurately reproduce the data when missing 

three parameters.  

Methods for model explainability were produced for both the regression and classification 

models. If using linear models which can be modeled as linear regression function such as ridge 

regression and LDA, the standardized coefficients can be directly used for model interpretation. 

However, the standardized coefficients only allow for global model interpretation. Global model 

interpretation cannot say how influential individual samples are for prediction. So, the Shapley 

Additive Explanation (SHAP) methodology was used to develop interpretations for the linear & 

NNET regression models and the LDA & classification models. The usefulness of SHAP is that it 

allows for both global and local interpretations and there are extensive visualizations methods to 

analyze the global and local SHAP values. 
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VIII.I Future Work 

For the regression database, new work is currently being done to develop pitching to a 

specific angle of attack instead of pitching based on a target. Pitching based on a target causes the 

missile to pitch over too quickly and drastically and causes the missile to tumble out of control. 

Despite the performance gains of the NNETs, they require long training times compared to 

traditional linear regression and are more complex to understand. One method for regression not 

used in this work was ensemble methods such as random forests or XGBoost and there are works 

which have shown that given the right database, these ensemble methods can perform similarly to 

NNETs but are extremely faster compared to NNETs. Ensemble methods are also glass-box 

methods, so they are directly interpretable. Of course, SHAP can also be used on ensemble 

methods as well. 

For classification, this work only used thrust components, but in real life situations this 

information may not actually be known but was a very good test case. Future datasets will include 

other parameters more likely to be known such as TOF and MAXDIST. Of course, other methods 

such as ensemble methods should be utilized to see if they are capable of performance that NNETs 

can achieve.  

For model imputation, generative adversarial networks (GANs) need to be utilized to try 

and impute missing data. There are experiments which suggest that GANs are more capable of 

imputing missing data because GANs essentially build two networks, one which generates samples 

and another which tries to see if the generate sample is real or fake. Another method which 

improves performance is adversarial learning, which is similar to GANs, but adversarial learning 

takes the batch data and adds noise based on the previous error gradient. Since the data is being 

imputed and is therefore noisier than the true data, then adversarial learning could possibly 
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improve the accuracy. Exploration of more complex NNETs may also be the key for imputation; 

the networks which were developed in the imputation section may not have been sufficient, so 

wider and deeper network may be necessary for improving the results.  

Further applications of SHAP are still needed to derive more information about model 

explainability. Other methods which were mentioned in Sect. VII.VII may also be useful for model 

interpretation. For future datasets, especially classification, missiles with autopilot need to be 

developed because in most modern missile applications, there is some autopilot which is 

influencing the missile’s trajectory and will cause the dataset to be more nonlinear than it already 

is. Other regression and classification should also utilize the trajectory time information. Although 

this adds significant amount of data, more information could be extracted from the trajectory to 

develop new insights to missile technology. Physic informed neural network (PINNs) could also 

be utilized to directly learn from the equations of motions to reverse engineer features of the 

missile. In relation to PINNs, the reverse engineering process should be revisited to predict the 

missile parameters and launch configurations using output information such as TOF & MAXTHR 

or use the entire set of trajectory time data.  
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Appendix A: Bell Nozzle Correction Factor 

 

The empirical curves for the bell nozzle performance correction factor are shown from 

Huzel and Huang [24] in Eq. (9.1) and are only a function of the nozzle expansion ratio and 

fractional nozzle length. Both the AUSRC and AULRC can obtain the correction factors and 

interpolate for varying values of expansion ratio. 
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Appendix B: Nozzle Entrance Calculation 

 

To calculate the nozzle entrance length (𝐿𝐿𝐸𝐸), a series of geometric calculations are required 

from Fig. 96. First the distance to center of nozzle entrance (𝑦𝑦𝑂𝑂) is calculated on Eq. (10.1). The 

radius of the upstream nozzle is circular and is set equal to the body radius (𝑟𝑟𝐶𝐶 = 𝑟𝑟𝐵𝐵). Next, we 

need the cosine of θ𝑖𝑖, shown on Eq. (10.2). The tangent of θ𝑖𝑖 is then calculated on Eq. (10.3).  
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Fig. 95 Nozzle Entrance Geometry 
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Appendix C: 3-Loop Autopilot 
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Appendix D: AULRC No Autopilots LHC Input 

 

 

  

Fig. 96 AULRC LHC Input File for “gannlDIST.dat”. 
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Appendix E: AULRC Dataset Including Fin Autopilot 
 

 

Table 43 AULRC Dataset Including Fin Autopilot 

 

  

Parameter Mean STD DEV MIN 25% 50% 75% MAX 
DBODY 3.02 0.29 2.50 2.78 3.03 3.27 3.50 
KFUEL 2.00 0.12 1.80 1.90 2.00 2.10 2.20 

PC 1107.13 245.44 600.00 911.48 1126.43 1318.45 1500.00 
DNOSE 0.85 0.09 0.70 0.78 0.85 0.93 1.00 
LNOSE 3.25 0.19 2.93 3.09 3.25 3.41 3.57 

THROAT 0.16 0.03 0.10 0.14 0.16 0.18 0.20 
EXPR 16.32 4.89 8.00 12.07 16.23 20.51 25.00 
FNL 0.80 0.12 0.60 0.70 0.80 0.90 1.00 

TBURN 60.16 9.67 45.00 51.83 59.18 67.88 80.00 
TRCR 1.27 0.42 0.50 0.92 1.28 1.64 2.00 
TTR 0.66 0.18 0.35 0.50 0.65 0.81 1.00 

TAILB2 0.95 0.28 0.50 0.71 0.93 1.19 1.50 
TLE 18.71 11.12 0.00 9.16 18.32 27.84 40.00 

TXLERATIO 0.88 0.07 0.75 0.81 0.88 0.94 1.00 
TDELAY 227 43 150 190 227 264 300 

TAU 0.40 0.12 0.20 0.30 0.40 0.50 0.60 
ZETA 0.85 0.09 0.70 0.77 0.85 0.92 1.00 
COHZ 34.98 8.66 20.00 27.46 34.96 42.48 50.00 

PRONVG 3.55 0.32 3.00 3.28 3.55 3.82 4.10 
ILAUNCH 82.98 3.93 75.00 79.86 83.35 86.25 89.99 
THRSEA 41.90 18.69 7.59 27.66 38.25 52.67 126.82 
MAXTHR 46.92 20.84 8.35 30.93 43.06 59.10 142.69 
MAXDIST 731.68 719.80 52.81 184.84 414.93 1115.86 6582.19 
APOGEE 231.38 288.81 5.20 28.25 89.38 358.77 3287.15 

TOF 241.57 148.95 45.21 116.48 193.24 354.50 1078.81 
WEIGHT 16.81 6.47 5.19 11.89 15.53 20.49 51.18 
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Appendix F: AULRC Dataset Including Fin & Vane Autopilot 
 

 

Table 44 AULRC Dataset Including Fin & Autopilot 

Parameter Mean STD DEV MIN 25% 50% 75% MAX 
DBODY 3.01 0.29 2.50 2.76 3.01 3.25 3.50 
KFUEL 4.00 0.00 4.00 4.00 4.00 4.00 4.00 

EQRATIO 2.00 0.12 1.80 1.90 2.00 2.10 2.20 
PC 1072.66 247.22 600.00 869.93 1077.89 1282.46 1500.00 

DNOSE 0.53 0.26 0.10 0.30 0.52 0.76 1.00 
LNOSE 3.25 0.19 2.93 3.09 3.25 3.41 3.58 

THROAT 0.15 0.03 0.10 0.13 0.15 0.17 0.20 
EXPR 16.23 4.89 8.00 11.97 16.09 20.41 25.00 
FNL 0.80 0.12 0.60 0.70 0.80 0.90 1.00 

TBURN 57.02 11.06 40.00 47.41 55.84 65.78 80.00 
TRCR 1.35 0.42 0.50 1.02 1.39 1.71 2.00 
TTR 0.60 0.17 0.35 0.46 0.58 0.73 1.00 

TAILB2 0.88 0.27 0.50 0.65 0.84 1.08 1.50 
TLE 37.26 9.11 25.00 29.80 35.42 43.05 73.26 

TXLERATIO 0.81 0.07 0.70 0.76 0.81 0.87 0.93 
TDELAY 400.31 86.56 250.00 325.52 400.39 475.18 550.00 

TAU 0.50 0.29 0.01 0.26 0.50 0.75 1.00 
ZETA 0.90 0.35 0.30 0.60 0.90 1.20 1.50 
COHZ 89.99 23.07 50.00 70.01 89.99 109.92 130.00 

PRONVG 4.05 0.61 3.00 3.52 4.05 4.58 5.10 
ILAUNCH 80.92 3.70 75.00 77.77 80.59 83.78 89.94 

NOZDELAY 0.54 0.23 0.15 0.34 0.54 0.74 0.95 
XK1 20.00 5.77 10.00 15.00 20.00 24.99 30.00 
XK2 70.00 5.78 60.00 65.00 70.01 75.00 80.00 

B2VAR 0.09 0.06 0.01 0.04 0.07 0.12 0.25 
DELE0 0.25 0.14 0.00 0.13 0.25 0.37 0.50 
DELR0 0.60 0.43 0.00 0.22 0.52 0.94 1.50 

DTCHEK 0.80 0.40 0.10 0.45 0.80 1.15 1.50 
DELTXZ 4499 867 3000 3748 4499 5249 6000 
DELTXY 99993 11549 80000 89977 99986 110000 120000 
THRSEA 36.80 16.00 7.85 25.02 33.45 45.15 127.42 
MAXTHR 41.47 17.87 8.81 28.21 37.95 51.11 141.24 
MAXDIST 578.12 571.31 52.80 165.28 357.02 818.19 6084.59 
APOGEE 170.43 183.01 1.87 35.92 105.32 252.16 2857.22 

TOF 218.63 109.24 41.84 126.22 204.71 295.51 987.64 
WEIGHT 14.46 5.61 4.81 10.38 13.18 17.20 50.23 
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Appendix G: Output vs DBODY Scatter Plots 

 

  

Fig. 97 (Top-Left) Apogee vs DBODY, (Top-Right) MAXDIST vs DBODY, (Mid-Left) MAXTHR vs 

DBODY, (Mid-Right) THRSEA vs DBODY, (Bottom-Left) TOF vs DBODY, (Bottom-Right) WEIGHT vs 

DBODY. 
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Appendix H: Output vs PC Scatter Plots 

 

  

Fig. 98 (Top-Left) Apogee vs PC, (Top-Right) MAXDIST vs PC, (Mid-Left) MAXTHR vs PC, (Mid-

Right) THRSEA vs PC, (Bottom-Left) TOF vs PC, (Bottom-Right) WEIGHT vs PC. 
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Appendix I: Output vs TAILB2 Scatter Plots 

 

  

Fig. 99 (Top-Left) Apogee vs TAILB2, (Top-Right) MAXDIST vs TAILB2, (Mid-Left) MAXTHR vs 

TAILB2, (Mid-Right) THRSEA vs TAILB2, (Bottom-Left) TOF vs TAILB2, (Bottom-Right) WEIGHT vs 

TAILB2. 
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Appendix J: Output vs ILAUNCH Scatter Plots 

 

  

Fig. 100 (Top-Left) Apogee vs ILAUNCH, (Top-Right) MAXDIST vs ILAUNCH, (Mid-Left) 

MAXTHR vs ILAUNCH, (Mid-Right) THRSEA vs ILAUNCH, (Bottom-Left) TOF vs ILAUNCH, (Bottom-

Right) WEIGHT vs ILAUNCH. 
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Appendix K: Class 10 LHC Input 

 

 

  

Fig. 101 Input File "gannlDIST.dat" for Class 10. 



219 
 

Appendix L: 3rd Order Linear Regression Model 

There are 1770 coefficients required for this model and include non-distinct parameters. 

Can see that the 3rd order model still cannot capture the second distribution of data.  

Table 45 Individual & Overall Linear Model Metrics for Degree = 3 

Metric TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT Overall 

𝑅𝑅2 0.98033 0.99974 0.91911 0.95961 0.99998 0.99930 0.97635 
MSE 438.635 0.11007 44485.97 4087.39 0.00480 0.02936 8168.69 

MAPE 5.77355 0.54726 36.43451 44.53611 0.15105 0.45511 14.6496 
MMAPE 1.11014 0.16178 2.02188 0.89445 0.03869 0.15974 0.73111 

 

 

 

 

 

Fig. 102 Linear Three-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 
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Fig. 104 Linear Three-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 

Fig. 103 Linear Three-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 
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Appendix M: Hypothetical Shapley Value Example 

 

Equation (21.1) shows the expanded summation calculation of the Shapley value for PC. 
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Equation (21.2) shows the expanded summation calculation of the Shapley value for 

BURNTIME. 
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v DBODY PC

φ γ

γ

γ

γ

= ∅ − ∅ +  
− +  

− +  
−
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 (21.2) 
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