
Engineering and Statistical Analysis of Solid and Liquid
Missile Systems

By

Noel Cervantes

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

December 10, 2022

Keywords: Missiles, Data Science, Engineering Analysis, Statistical Analysis, Model
Robustness/Sensitivity, and Model Explainability

Copyright 2022 by Noel Cervantes

Approved by

Roy J. Hartfield, Chair, Walt & Virginia Woltosz Professor Aerospace Engineering

Mark Carpenter, Co-chair, Professor Department of Mathematics & Statistics

Joe Majdalani, Professor and Francis Chair of Excellence Aerospace Engineering

Ehsan Taheri, Assistant Professor Aerospace Engineering

ii

Abstract

Engineering and statistical analysis is applied to gain insights and information regarding

liquid and solid missile systems. This dissertation outlines five main key topic areas, physics

modeling, data generation, model generation, model robustness/sensitivity, and model

explainability. The Auburn University Liquid Rocket Code (AULRC) is used to generate waypoint

parameters such as time of flight. Models are then generated to predict time of flight and the

performance of said model is assessed using various metrics. Data generated from the AULRC is

used for quantification (regression) purposes throughout this dissertation. Similarly, the Auburn

University Solid Rocket Code (AUSRC) is used to generate waypoint parameters such as max

thrust, however, the AUSRC is used to build classes of rockets for classification models. Both

programs use a Latin Hypercube (LHC) algorithm to randomly generate data between minimum

and maximum values.

Regression models developed will be classical linear regression including ridge and lasso

and will include higher order interaction terms and more complex models developed include neural

networks (NNETs). Classification models developed will be classical linear/quadratic discriminant

analysis and NNETs. All the models were built using either Scikit-Learn or TensorFlow with Keras

generated using Python. The classification models assume that all the data is available while in

real-life scenarios this is not always true. Therefore, parameters are chosen to be “missing” and

are replaced using imputation methods. The sensitivity and robustness of the models can be

assessed by evaluating the classification metrics on the imputed data. To explain models and their

predictions, the feature contributions can be assessed to see which parameters are most influential

and how the model makes a prediction. For the classical models, coefficients can be used to assess

which parameters had the most influence, but for NNETs, the SHapley Additive exPlanation

iii

(SHAP) values can be used to determine which parameters were most important in the model and

assess how model makes predictions.

iv

Acknowledgements

I would first like to thank Dr. Roy Hartfield for his extensive guidance through both my

master’s and doctoral research degrees. I greatly appreciate Dr. Hartfield's mentorship and

willingness to guide me when the research times were tough. Secondly, I would also like to thank

Dr. Mark Carpenter very much for his extensive guidance and mentorship throughout my doctoral

research. With his help, I was able to quickly build my statistics, data science, and machine

learning skills. I would also to thank my other committee members Dr. Majdalani and Dr. Taheri

for their recommendations and knowledge background. Also, I would like to thank Dr. John

Burkhalter for his help in understanding the Auburn University Liquid & Solid codes and for

helping me debug many Fortran issues. Lastly, I would like to thank my family and friends for all

their support when I needed it most.

v

Table of Contents

Abstract ... ii

Acknowledgements .. iv

Table of Contents .. v

List of Tables .. x

List of Figures ... xii

List of Abbreviations ... xviii

I. Introduction .. 1

II. Physics Modeling .. 4

II.I AULRC: Propulsion Subroutine ... 4

II.II AULRC: Mass Subroutine... 7

II.III AUSRC: Mass Subroutine ... 11

II.IV AUSRC: Propulsion Subroutine .. 16

II.V Aerodynamics Subroutine ... 17

II.VI 6-DOF Subroutine ... 18

II.VII Guidance & Autopilot Subroutine ... 28

II.VIII SCUD-B Input Data & AULRC Model Verification 37

II.IX AULRC Input Data .. 42

II.X AUSRC Input Data .. 44

II.XI Program Errors & Filtering.. 46

vi

III. Data Generation .. 48

III.I Uniform Distribution Sampling ... 49

III.II Normal Distribution Sampling .. 50

III.III Latin Hypercube Sampling .. 51

III.IV Regression & Classification Data .. 54

III.IV.I AULRC Regression Data .. 55

III.IV.II AUSRC Classification Data ... 67

IV. Model Generation: AULRC Regression ... 76

IV.I Review of Regression in Missiles ... 76

IV.II Linear Regression Methods ... 77

IV.II.I Linear Regression Methodology ... 82

IV.II.II Linear Regression: One-Way Results .. 85

IV.II.III Linear Regression: Two-Way Results .. 90

IV.III Neural Networks: Regression .. 95

IV.III.I Feedforward NNETs & Backpropagation ... 98

IV.III.II Optimizer: Momentum, NAG, RMSProp, Adam, & Nadam 102

IV.III.III Activation Functions: Sigmoid, RELU, and ELU 106

IV.III.IV NNET Script Methodology ... 110

IV.III.V Results: Multi-Layer, Multi-Unit Matrix ... 111

IV.III.VI Results: 10,000 Epochs ... 113

vii

IV.III.VII Results: 50,000 Epochs ... 118

V. Model Generation: AUSRC Classification ... 123

V.I Review of Classification in Missiles ... 123

V.II Linear and Quadratic Discriminant Analysis .. 124

V.II.I Linear Discriminant Analysis Results .. 127

V.II.II Quadratic Discriminant Analysis Results ... 131

V.III Neural Networks: Classification .. 134

V.III.I NNET Script Methodology ... 134

V.III.II NNET Results Trained for 250 Epochs ... 135

V.III.III NNET Results for 500, 1000, & 5000 Epochs 138

V.III.IV NNET Classification: Multi-Layer, Multi-Unit Matrix 139

VI. Model Robustness & Sensitivity ... 140

VI.I Imputation Methodology ... 141

VI.II One-Way Model: Imputation & Classification Results 141

VI.III Two-Way Model: Imputation & Classification Results 145

VI.IV Three-Way Model: Imputation & Classification Results 147

VI.V NNET Trained for 1,000 Epochs: Imputation & Classification Results 150

VI.VI NNET Trained for 5,000 Epochs: Imputation & Classification Results 153

VI.VII NNET Trained for 20,000 Epochs: Imputation & Classification Results 155

VI.VIII Future Work for Robustness & Sensitivity ... 155

viii

VII. Model Explainability ... 157

VII.I Shapley Values .. 157

VII.II Hypothetical Shapley Value Example ... 158

VII.III Shapley Values Related to Linear Regression .. 161

VII.IV Shapley Value Approximation Methods .. 162

VII.V Regression Explanations.. 163

VII.V.I Linear Regression & Shapley Value Global Average 163

VII.V.II Neural Network Regression & Shapley Value Explanations 167

VII.VI Classification Explanations .. 181

VII.VI.I LDA & Shapley Value Global Average ... 181

VII.VI.II Neural Network Classification & Shapley Value Explanations 186

VII.VII Other Methods for Explanation ... 193

VIII. Conclusions & Future Work ... 194

VIII.I Future Work ... 196

References ... 198

Appendix A: Bell Nozzle Correction Factor .. 208

Appendix B: Nozzle Entrance Calculation .. 209

Appendix C: 3-Loop Autopilot .. 210

Appendix D: AULRC No Autopilots LHC Input .. 211

Appendix E: AULRC Dataset Including Fin Autopilot ... 212

ix

Appendix F: AULRC Dataset Including Fin & Vane Autopilot 213

Appendix G: Output vs DBODY Scatter Plots .. 214

Appendix H: Output vs PC Scatter Plots ... 215

Appendix I: Output vs TAILB2 Scatter Plots .. 216

Appendix J: Output vs ILAUNCH Scatter Plots .. 217

Appendix K: Class 10 LHC Input .. 218

Appendix L: 3rd Order Linear Regression Model .. 219

Appendix M: Hypothetical Shapley Value Example ... 221

x

List of Tables

Table 1 AULRC Fuel & Oxidizer Options ... 5

Table 2 RK7(8) Inputs and Outputs .. 27

Table 3 SCUD-B Data .. 37

Table 4 AULRC SCUD-B Input ... 42

Table 5 AUSRC SCUD-B Input ... 45

Table 6 Uniform Data Example for "gannlDIST.dat" .. 49

Table 7 Normal Distribution Example for "gannlDIST.dat" .. 51

Table 8 AULRC Regression Data ... 56

Table 9 Classification Database Summary Statistics .. 68

Table 10 Mean Value Class Differentiation ... 69

Table 11 Overall Model Performance for Degree =1 ... 86

Table 12 𝑹𝑹𝑹𝑹 for Degree = 1 .. 86

Table 13 MSE for Degree = 1 ... 87

Table 14 MAPE for Degree = 1 .. 87

Table 15 MMAPE for Degree = 1 .. 87

Table 16 Overall Model Performance for Degree = 2 .. 92

Table 17 𝑹𝑹𝑹𝑹 for Degree = 2 .. 92

Table 18 MSE for Degree = 2 ... 92

Table 19 MAPE for Degree = 2 .. 92

Table 20 MMAPE for Degree = 2 .. 93

Table 21 NNET MAPE Results .. 113

Table 22 Overall Metrics for 10,000 Epochs Model .. 115

xi

Table 23 Individual Output Metrics .. 115

Table 24 Overall Metrics for 50,000 Epochs Model .. 119

Table 25 Individual Output Metrics .. 119

Table 26 LDA Training & Testing Accuracy ... 128

Table 27 LDA Classification Report: Precision, Recall, & F1-Score .. 129

Table 28 LDA Misclassification and MisRate.. 130

Table 29 QDA Training & Testing Accuracy ... 131

Table 30 QDA Misclassification & MisRate .. 132

Table 31 QDA Classification Report: Precision, Recall, & F1-Score .. 133

Table 32 NNET CCE & Accuracy.. 136

Table 33 NNET Test Data Classification Report ... 138

Table 34 NNET Metric for 500, 1000, & 5000 Epochs.. 139

Table 35 Classification Accuracy: Multi-Layer, Multi Unit Matrix ... 139

Table 36 Metrics for One-Way Imputation Data .. 142

Table 37 Metrics for Two-Way Imputation Data ... 145

Table 38 Metrics for Three-Way Imputation Data ... 148

Table 39 Metrics for NNET Imputation Data ... 151

Table 40 Metrics for NNET Trained for 5000 Epochs Imputation Data 153

Table 41 Metrics for NNET Trained for 20000 Epochs Imputation Data 155

Table 42 Hypothetical Coalitions for TOF ... 159

Table 43 AULRC Dataset Including Fin Autopilot .. 212

Table 44 AULRC Dataset Including Fin & Autopilot .. 213

Table 45 Individual & Overall Linear Model Metrics for Degree = 3 219

xii

List of Figures

Fig. 1 Star Grain Geometry & Burn Area. .. 12

Fig. 2 Long Spoke (Left) & Short Spoke (Right) Wagon Wheels. ... 13

Fig. 3 Wagon Wheel Geometry. ... 15

Fig. 5 Frames for Unsteady Motion [48]. ... 18

Fig. 6 Body Orientation [46]. .. 19

Fig. 7 Schematic of Gimbal Forces and Moments, Stability Coordinate System......................... 29

Fig. 8 Nozzle Vanes Geometry. .. 30

Fig. 9 Vane Geometry in Nozzle Exhaust Plume. .. 31

Fig. 10 SCUD-B on Transport Erector [64].. 39

Fig. 11 Omega vs AULRC: Mass Over Time... 40

Fig. 12 Omega vs AULRC: Thrust Over Time... 40

Fig. 13 Omega vs AULRC: Range Over Time. .. 41

Fig. 14 Omega vs AULRC: Altitude Over Time. ... 41

Fig. 15 AULRC Example Rocket. .. 43

Fig. 16 Nozzle End for AULRC Example. ... 44

Fig. 17 AUSRC Input Example. ... 46

Fig. 18 Box & Whisker Plot for DBODY (Top-Left), PC (Top-Right), TAILB2 (Bottom-Left), &

ILAUNCH (Bottom-Right). .. 57

Fig. 19 DBODY Histogram. ... 58

Fig. 20 PC Histogram. .. 59

Fig. 21 TAILB2 Histogram... 60

Fig. 22 ILAUNCH Histogram. ... 61

xiii

Fig. 23 AULRC Output Data Scatter Matrix. ... 62

Fig. 24 Sample Thrust Curves. ... 64

Fig. 25 Sample Altitude vs. Time Curves. .. 65

Fig. 26 Close-up Sample Altitude vs. Time Curves. .. 65

Fig. 27 Sample Altitude vs. Range Curves. .. 66

Fig. 28 Close-up Sample Altitude vs. Range Curves.. 66

Fig. 29 DBODY Box & Whisker Plots of Each Class. ... 70

Fig. 30 FINENESS Box & Whisker Plot of Each Class. .. 70

Fig. 31 THROAT Box & Whisker Plot of Each Class. .. 71

Fig. 32 BURNTIME Box & Whisker Plot of Each Class... 72

Fig. 33 LGRAIN Box & Whisker Plot of Each Class .. 73

Fig. 34 MAXTHR Box & Whisker Plot of Each Class. ... 74

Fig. 35 MAXPC Box & Whisker Plot of Each Class. .. 74

Fig. 36 MAXPE Box & Whisker Plot of Each Class. .. 75

Fig. 37 Linear One-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). ... 88

Fig. 38 Linear One-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

... 89

Fig. 39 Linear One-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

... 90

Fig. 40 Linear Two-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). ... 94

Fig. 41 Linear Two-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

... 94

xiv

Fig. 42 Linear Two-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

... 95

Fig. 43 Threshold Logic Unit Perceptron. .. 96

Fig. 44 NNET Representation. .. 98

Fig. 45 Sigmoid and its Derivative. .. 106

Fig. 46 RELU and its Derivative. ... 108

Fig. 47 ELU and its Derivative with 𝜶𝜶 = 𝟏𝟏 .. 109

Fig. 48 Training and Validation MAPE History. .. 114

Fig. 49 NNET Model: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 116

Fig. 50 NNET Model: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 117

Fig. 51 NNET Model: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 117

Fig. 52 Training and Validation MAPE History. .. 118

Fig. 53 NNET Model: Predicted vs. Actual for TOF (Left) & MAXTHR (Right). 120

Fig. 54 NNET Model: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right). 121

Fig. 55 NNET Model: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right). 121

Fig. 56 LDA Confusion Matrix for Testing Data. .. 128

Fig. 57 LDA ROC Curve. ... 131

Fig. 58 QDA Confusion Matrix for Testing Data. .. 132

Fig. 59 QDA ROC Curve. .. 134

Fig. 60 Training/Validation Loss & Accuracy. .. 136

Fig. 61 NNET Confusion Matrix. ... 137

Fig. 62 Imputed MAXPE vs. True MAXPE for a Single Missing Parameter. 143

xv

Fig. 63 Imputed vs. Actual for BURNTIME (Top Left), MAXTHRUST (Top Right), & MAXPC

(Bottom). ... 144

Fig. 64 Imputed vs. Actual for MAXPC. .. 146

Fig. 65 One-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom). ... 147

Fig. 66 Two-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Left) &

MAXPE (Right). ... 149

Fig. 67 Three-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom). ... 150

Fig. 68 NNET Trained for 1000 Epochs, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom). ... 152

Fig. 69 NNET Trained for 5000 Epochs, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom). ... 154

Fig. 70 One-Way Parameter Linear Model: Standardized Coefficients. 165

Fig. 71 One-Way Linear Regression Mean(|SHAP|). ... 166

Fig. 72 NNET Regression Mean(|SHAP|). ... 168

Fig. 73 NNET Global Mean (|SHAP|) Values Stacked Bar Chart. ... 169

Fig. 74 TOF Sample SHAP Values using Summary Plot. .. 171

Fig. 75 MAXTHR Sample SHAP Values using Summary Plot. .. 172

Fig. 76 MAXDIST Sample SHAP Values using Summary Plot. ... 173

Fig. 77 APOGEE Sample SHAP Values using Summary Plot. ... 174

Fig. 78 THRSEA Sample SHAP Values using Summary Plot. .. 175

Fig. 79 WEIGHT Sample SHAP Values using Summary Plot. ... 176

xvi

Fig. 80 TOF Single Sample Force Plot. .. 177

Fig. 81 MAXTHR Single Sample Force Plot. .. 178

Fig. 82 MAXDIST Single Sample Force Plot. ... 179

Fig. 83 APOGEE Single Sample Force Plot. .. 179

Fig. 84 THRSEA Single Sample Force Plot. .. 180

Fig. 85 WEIGHT Single Sample Force Plot. .. 181

Fig. 86 LDA 1 vs. LDA 2 Dimensionally Reduced Components. ... 182

Fig. 87 LDA Standardized Coefficients. ... 184

Fig. 88 LDA Mean(|SHAP|) Values. .. 185

Fig. 89 NNET Classification Mean(|SHAP|). ... 187

Fig. 90 NNET Classification Global Mean (|SHAP|) Values Stacked Bar Chart. 188

Fig. 91 Single Sample Class 1 Force Plot. .. 189

Fig. 92 Single Sample Class 5 Force Plot. .. 190

Fig. 93 Single Sample Class 10 Force Plot. .. 191

Fig. 94 Single Sample Class 15 Force Plot. .. 191

Fig. 95 Single Multi-Output Decision Plot. .. 192

Fig. 96 Nozzle Entrance Geometry ... 209

Fig. 97 AULRC LHC Input File for “gannlDIST.dat”. .. 211

Fig. 98 (Top-Left) Apogee vs DBODY, (Top-Right) MAXDIST vs DBODY, (Mid-Left)

MAXTHR vs DBODY, (Mid-Right) THRSEA vs DBODY, (Bottom-Left) TOF vs DBODY,

(Bottom-Right) WEIGHT vs DBODY. .. 214

Fig. 99 (Top-Left) Apogee vs PC, (Top-Right) MAXDIST vs PC, (Mid-Left) MAXTHR vs PC,

(Mid-Right) THRSEA vs PC, (Bottom-Left) TOF vs PC, (Bottom-Right) WEIGHT vs PC. ... 215

xvii

Fig. 100 (Top-Left) Apogee vs TAILB2, (Top-Right) MAXDIST vs TAILB2, (Mid-Left)

MAXTHR vs TAILB2, (Mid-Right) THRSEA vs TAILB2, (Bottom-Left) TOF vs TAILB2,

(Bottom-Right) WEIGHT vs TAILB2.. 216

Fig. 101 (Top-Left) Apogee vs ILAUNCH, (Top-Right) MAXDIST vs ILAUNCH, (Mid-Left)

MAXTHR vs ILAUNCH, (Mid-Right) THRSEA vs ILAUNCH, (Bottom-Left) TOF vs

ILAUNCH, (Bottom-Right) WEIGHT vs ILAUNCH. .. 217

Fig. 102 Input File "gannlDIST.dat" for Class 10. ... 218

Fig. 103 Linear Three-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right).

... 219

Fig. 104 Linear Three-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

... 220

Fig. 105 Linear Three-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE

(Right). .. 220

xviii

List of Abbreviations

Ae = Nozzle Exit Area

Ab = Propellant Burn Area

At = Nozzle Throat Area

a = Minimum Value on Interval

ab = Propellant Burn Rate Constant

AULRC = Auburn University Liquid Rocket Code

AUSRC = Auburn University Solid Rocket Code

b = Maximum Value on Interval

C* = Characteristic Exhaust Velocity of Propellant

CT,Prop = Propellant Thrust Coefficient

d = Number of Inputs to AULRC or AUSRC

FT = Thrust, (Pound-Force)

FT,SL = Sea Level Thrust, (Pound-Force)

GL = Grain Length

h = Star/Spoke Length

Isp = Specific Impulse

Isp,prop = Propellant Specific Impulse

L = Length

Lbm = Pound Mass

Lbf = Pound Force

LB = Missile Body Length

LCone = Conical Nozzle Length

LF = Fractional Nozzle Length

LN = Bell Nozzle Length

LHC = Latin Hypercube Sampling

MCG = Compressed Gas Mass

MFuel,Tank = Fuel Tank Mass

mfuel = Fuel Mass

xix

MOx, Tank = Oxidizer Tank Mass

mox = Oxidizer Mass

N = Number of Star/Spoke Points

NS = Number of Samples

n = Burn Rate Index

Pe = Nozzle Exit Pressure

PCG = Compressed Gas Pressure

pe, prop = Assumed Nozzle Exit Pressure

pdf = Probability Density Function

po = Chamber Pressure

po, prop = Assumed Chamber Pressure

RCG = Gas Constant for Compressed Gas

RI = Inner Propellant Radius

RP = Outer Propellant Radius

rbody = Missile Body Radius

rt = Tank Radius

SHAP = Shapley Additive exPlanation

SLHC = Scaled LHC Values on Interval [a,b]

tb = Burn Time, Seconds

Unif = Random Uniform Values on [0, 1]

V = Fuel or Oxidizer Volume

xgrain = Starting Point of Propellant Grain

ZU = Random Uniform Values

ZN = Random Normal Values

6-DOF = Six Degrees of Freedom

α = Conical Nozzle Half Angle

ΔpCG = Compressed Gas Pressure Regulator

ε = Star/Spoke Angular Fraction

γ = Specific Heat Ratio

λ = Nozzle Divergence Correction Factor

xx

μ = Mean (Average) or Expected Value of X

π = pi, Mathematical Constant

θ = Star/Spoke Angular Opening

ρ = Fuel or Oxidizer Density

ρb = Propellant Density

σ = Standard Deviation

∞ = Infinity

1

I. Introduction

Data science applied to engineering is a relatively new emerging field in engineering

analysis. The driving factor for engineering and statistical analysis is to gain new information about

engineering systems so that either designs can be improved and/or better decisions can be made.

There are several data analysis fields such as data science, machine learning, statistical analysis,

and artificial intelligence and from here on, the term data science will be used to assume that any

of fields could be used interchangeably. Data science is used in this work to derive information

from missiles using solid or liquid propulsion. This dissertation will outline the data science

methods used to apply engineering and statistical analysis. Before any data science method can be

used, data itself is needed and to generate data the Auburn University Liquid/Solid Codes

(AULRC, AUSRC) are used to generate missile designs. Engrained in the codes are the data

sampling algorithms which randomly generate designs. Data generation methodology is extremely

important as sample distributions can affect the performance of data driven models. As part of data

generation, the summary statistics will be introduced to show various metrics such as standard

deviation and variance. Various statistical plots will be used to show the summary statistics such

as scatter matrices and box plots.

A large portion of this dissertation will be defining the models that can be used for

regression and classification. Regression referring to a model which generates a continuous output

such as time of flight as a function of launch angle. Regression methods such as linear, ridge, and

lasso regression are introduced as baseline metrics followed by the use of NNETs. Performance

metrics are also introduced to show the validity of model and include the mean squared error,

2

residual error, and mean absolute percentage error. Classification referring to a model which

generates a discrete output such as class 1 as function of missile design. Classification methods

such as linear discriminant analysis and quadratic discriminant analysis are introduced as baseline

metrics, again followed by the use of NNETs. Performance metrics for the classification models

include accuracy, precision, recall, and confusion matrices. It will be shown that while the baseline

metrics perform very well, NNETs must be used to gain higher performance at the cost of training

time. All models introduced in this dissertation are built in Python [1] using Scikit-Learn [2] for

lower order modeling and TensorFlow with Keras [3-4] for NNETs.

To address the issue of robustness and sensitivity, data will be assumed to be missing, since

the data generated is in a controlled environment, meaning all the data needed is always available.

However, in most real-life scenarios data can be missing for samples. It could have been lost,

unavailable, or unreliable. Also, when inputting samples into the prediction model,

programmatically a missing value cannot just be NAN/missing otherwise it will cause errors.

Therefore, the missing value is replaced or imputed. Several methods exist for imputation models

such as mean value imputation, which just replaces the missing value with the mean of the feature

column. Other methods include using linear regression and NNET models to impute data. Missing

data will be simulated for the classification database and models will be rebuilt to assess

performance using the missing data.

Finally, model interpretation is a huge concern in data science. With more traditional

models like linear regression, the coefficients are used to evaluate which parameters have more

weight in the model. A positive coefficient would show that the parameter increases the output of

the model, and a negative coefficient would show that the parameters decrease the output of the

model. With linear regression this is easier to do since coefficients can be obtained for each term

3

including the higher degree polynomials and even though there may be a large number of

coefficients, the model is still interpretable. However, when using NNETs, the model becomes a

black box because there are nonlinear activations of units, and it is challenging to understand how

both the weights and inputs affect the model. The other issue with NNETs is that multiple networks

with different parameters including weights can give the same result. So, to interpret NNETs the

SHapley Additive exPlanation (SHAP) values can be used to determine how the inputs affect the

model prediction. SHAP values are used like coefficients in a linear model to show how important

a parameter is globally but can also be used to gain local input feature importance measures.

4

II. Physics Modeling

Both the AUSRC and AULRC contain a suite of subroutines that design and simulate a

missile launch. Each program contains subroutines which calculate the mass properties,

aerodynamics, propulsion, and 6-DOF flight with or without guidance/autopilot. If the reader is at

the Aerospace Department, the reader may obtain the physical copy of Anderson’s dissertation

which does a thorough description of the AUSRC subroutines [5]. The reader may also reference

the MSIC reports (Hartfield [6-17]) and notes [18] which outline a majority of the tools and rocket

propulsion design. For more specifics on liquid propulsion, the readers should refer to [19-26]. For

more specifics on solid propulsion, the readers should refer to [27-36]. A brief discussion on the

main subroutines and only certain derivations will be shown.

II.I AULRC: Propulsion Subroutine

The propulsion subroutine is the first main subroutine in the AULRC. There are various

liquid rocket engine cycles such as pressure fed, gas generator, and full-flow combustion [23]. The

engine cycle used in this work is a constant pressure fed system which uses a high-pressure tank

to force fuel and oxidizer into the thrust chamber. The AULRC currently contains 29 different fuel

and oxidizer combinations and allow for a variable equivalence ratio. Since equivalence ratio can

be varied, the specific impulse �𝐼𝐼𝑠𝑠𝑠𝑠� is varied using polynomial fit �𝐼𝐼𝑠𝑠𝑠𝑠� equations. Table 1 shows

the fuel and oxidizer combinations available in the AULRC and shows which fuels are available

with each oxidizer denoted by a checkmark (). For example, RP-1 is available with IRFNA. Each

combination also supplies the ratio of specific heats, chamber temperature, molecular weight,

5

characteristic velocity, optimum oxidizer to fuel ratio, oxidizer density, and fuel density. First, to

calculate the thrust, the nozzle pressure ratio must be determined using the input nozzle expansion

ratio and ratio of specific heats as shown in Eq. (2.1), which has to be solved numerically and can

then be used to solve for exit pressure since the chamber pressure (po) is an input. The thrust (FT)

in Eq. (2.2) can then be determined and the reader should note that the formulation includes (λ)

which is a nozzle divergence correction factor and is determined using interpolation based on the

expansion ratio and fractional nozzle length. Also, the thrust is corrected during the 6-DOF

simulation to account for altitude varying the atmospheric pressure using Eq. (2.3).

Table 1 AULRC Fuel & Oxidizer Options

From Eq. (2.1), the nozzle pressure ratio is a function of nozzle expansion ratio and the

fuel and oxidizer specific heat ratio. Equation (2.2) is a function of nozzle divergence correction

factor, propellant thrust coefficient (CT, Prop), gravity constant (ge), propellant specific impulse

�𝐼𝐼𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�, chamber pressure (po), propellant thrust coefficient, nozzle throat area (At), nozzle exit

area (Ae), fuel/oxidizer specific heat ratio (γ), nozzle exit pressure (pe), an assumed nozzle

 Oxidizer

Fuel

IRFNA H2O2-95% N2O4 ClF3 BrF5 LOX LF2

UDMH     
Hydrazine       
Hydyne     

RP-1  
JP-X 
MMH  

Kerosene   
Ammonia  

LH2  

6

propellant exit/chamber pressure ratio �pe,prop/po,prop = 0.0147�, and characteristic exhaust

velocity (C*) of the propellant.

()
1

2 1

1
1 1 2

0

2
1

2 1
1

e

t

e e

o

A
A

p p
p p

γ
γ

γ
γ γ

γ
γ

γ
γ

+
−

−

 
 + =

 
    −    −     

 (2.1)

 ()

1
1 2

,
1

1 2

,

,

1

1

o t T prop e
T e e e

o

e prop

o prop

p AC pF A p A p altitude
p

p
p

γ
γ

γ
γ

λ

−

−

 
  = − + −         −    

   

 (2.2)

()
()

1
, 1 2
*

1
1 2

1

1 0.0147

e sp prop
o t

e
T e e e

o

g I
p A

C pF A p A p altitude
p

γ
γ

γ
γ

λ

−

−

 
       = − + −       −  

 (2.3)

Equation (2.4) shows the nozzle divergence correction factor which is a function of the

conical nozzle half angle. The correction factor is used since one-dimensional isentropic flow does

not account for nozzle viscous losses and losses due to two/three-dimensional geometry flow.

Since the AULRC and AUSRC both use bell nozzles, Eq. (2.4) does not accurately define the

correction factor needed, but the correct bell nozzle performance parameters are shown in

Appendix A: Bell Nozzle Correction Factor.

1 cos

2
αλ +

≡ (2.4)

7

Thrust in this subroutine is simulated with no varying atmospheric pressure and is saved to

a database which can be accessed during the 6-DOF and will then include varying atmospheric

pressure. Since the thrust is developed beforehand, the mass flow through the nozzle can be

calculated from Eq. (2.5), which is the thrust (FT,SL) and includes the atmospheric pressure at sea

level. The mass flow through the nozzle can then be determined from Eq. (2.6), which is a function

of the nozzle throat diameter, chamber pressure, and characteristic exhaust velocity. The mass flow

will be used in the mass subroutine to determine the mass of fuel and oxidizer components. The

characteristic exhaust velocity is supplied for each propellant combination.

()
()

1
, 1 2
*

, 1
1 2

1

1 0.0147

e sp prop
o t

e
T SL e e e

o

g I
p A

C pF A p A p Sea Level
p

γ
γ

γ
γ

λ

−

−

 
       = − + − −       −  

 (2.5)

* *
,

* * *
T SL o T o

T T

F p A C p Am
C C C C C

= = = (2.6)

II.II AULRC: Mass Subroutine

The mass subroutine is the second main subroutine and develops various properties such

mass, length, volume, centers of gravity, moments, and inertia. Inertia cross products are all zero

since the missile geometry is considered axisymmetric. Full derivations of each component are

shown from Burkhalter [6-13], and many of the derivations were taken from Sutton [23], Huzel

and Haung [24], and Humble [25]. The only parameters derived here are for the fuel, oxidizer, and

compressed gas so the reader should refer to Burkhalter [6]. Readers should also refer to [19-27]

for various liquid propulsion derivations and discussions. Masses are derived from densities of

components input by the user such as aluminum or steel. Densities can be changed per component

8

so the tail fins can be made of a different material from the body casing. Mass properties such as

density for the fuel and oxidizer are programmed and only need to be selected by the user in the

input. The equations to determine the fuel and oxidizer are shown in the subsequent equations,

since they are determined after the thrust has been developed. Following the fuel and oxidizer

sizing, the properties of the pressurization system are developed. Equation (2.6) is used to

determine the mass flow through the nozzle, which is then used to determine propellant mass

shown in Eq. (2.7) and is mass flow times the burn time (tb). Equation (2.7) can be used since the

chamber pressure is kept constant.

 prop bm mt=  (2.7)

The fuel mass �𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� can then be determined from Eq. (2.8), which relates the propellant

mass to the optimal oxidizer to fuel mass ratio �𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜�. The oxidizer mass (𝑚𝑚𝑜𝑜𝑜𝑜) can finally be

determined by subtracting fuel mass from propellant mass using Eq. (2.9).

 1
1

prop prop
fuel

opt ox

fuel opt

m m
m

r m
m

= =
+  

+  
 

 (2.8)

 ox prop fuelm m m= − (2.9)

The mass of the fuel (𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) and oxidizer tanks (𝑀𝑀𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) can be determined

empirically from Eq.’s (2.10) and (2.11).

0.6

Fuel Tank 0.6952
2.2

fuelm
M

 
=  

 
 (2.10)

9

0.6

Ox Tank 0.6952
2.2

oxmM  =  
  (2.11)

The theoretical volumes of the fuel and oxidizer can both be determined from Eq. (2.12)

which is the oxidizer or fuel mass divided by oxidizer or fuel density. Initially, the oxidizer and

fuel tanks are assumed to be spherical, and the radius of the tank (rt) is calculated from Eq. (2.12)

. If the tank radius is determined to be greater than the body radius, the spherical tank will not fit

and will need to be resized to a configuration which includes hemispherical endcaps and a

cylindrical midsection.

 ,Theoretical Sphere
mV
ρ

= (2.12)

1
33

4t
Vr
π

 =  
 

 (2.13)

Since there are two hemispherical endcaps, the volume is just a sphere using the body

inside radius �𝑟𝑟𝑏𝑏𝑜𝑜𝑑𝑑𝑑𝑑� , shown on Eq. (2.14). The volume of the cylindrical section is calculated by

subtracting the endcaps volume from the theoretical sphere volume developed from Eq. (2.12),

shown in Eq. (2.15). Equation (2.16) shows the length of the spherical endcaps is just twice the

inside body radius and Eq. (2.17) shows the cylindrical length is the cylindrical volume divided

by circular area. Therefore, the total tank length is the cylindrical length plus the length of the

endcaps, shown in Eq. (2.18).

34

3Endcaps bodyV rπ= (2.14)

10

 ,Cyl Theoretical Sphere EndcapsV V V= − (2.15)

 2Endcaps bodyL r= (2.16)

 2
Cyl

Cyl
body

V
L

rπ
= (2.17)

 T Cyl EndcapsL L L= + (2.18)

Next, the amount of gas required to pressurize both the fuel and oxidizer tanks must be

determined. The mass of compressed gas (MCG) can be calculated individually for fuel and oxidizer

using Eq.’s (2.19) and (2.20). The fuel/oxidizer pressure (p), fuel/oxidizer volume (𝑉𝑉),

compressed gas specific heat ratio(γ𝐶𝐶𝐶𝐶), gas constant for compressed gas (RCG), compressed gas

temperature (TCG), compressed gas pressure (𝑝𝑝𝐶𝐶𝐶𝐶), and compressed gas pressure regulator (Δp𝐶𝐶𝐶𝐶)

are required to calculate the compressed gas for both the fuel and oxidizer. The total compressed

gas is then just a sum of the compressed gas of the fuel and oxidizer using Eq. (2.21). The geometry

and sizing of the compressed gas tank is done using Eq.’s (2.12)–(2.18). Again, if the radius of

theoretical sphere is too large for the body, then the tank must be resized using a cylindrical body

with hemispherical endcaps.

 ,

1

fuel fuel CG
CG fuel

fuel CG
CG CG

CG

p V
M

p p
R T

p

γ
=

− ∆ 
− 

 

 (2.19)

 ,

1

ox ox CG
CG ox

ox CG
CG CG

CG

p VM
p pR T

p

γ
=

 − ∆
− 

 

 (2.20)

11

 , ,CG CG fuel CG oxM M M= + (2.21)

II.III AUSRC: Mass Subroutine

The AUSRC is programmed slightly different from the AULRC in that the mass properties

are defined before calculating the thrust properties. Mass properties are calculated for most

components in an actual missile which include wing/tail fins, body case, nose and warhead,

actuators, and nozzle. The main difference in the AUSRC is obvious, the propellants are solid

grain configurations. Right circular perforated solid propellant motors can be constructed using

multiple types of configurations which include cylindrical, star, short/long spoke wagon wheels,

dog bone, spherical, tubular, slotted, dendrite, and many others. Currently, the AUSRC can

develop cylindrical, star, and short/long spoke wagon wheels using specific parameters. The tool

does not allow users to directly declare the grain to be a star or wagon wheel, so users must

understand how some of the geometry parameters can develop the specific grain type they desire.

The MSIC reports and Rocket Propulsion course notes [6-18], Barrere [27], and Hartfield [28-36]

discuss the derivations with the most detail and will help readers understand the solid motor design

the best.

The first analytically programmable grain type is the star grain, shown on Fig. 1. There are

multiple ways to define the geometry, but the program uses propellant inner radius (RI), propellant

outer radius (RP), star/spoke angular fraction (ℰ), number of star/spoke points (N), and the

star/spoke angular opening (θ) to obtain required parameters such as burn perimeter (S) and burn

area (Ab) which is used to calculate thrust (FT). It is noted that since the user can input the star

angular opening, which gives star half angle(θ/2), the thrusting first phase can be progressive,

12

neutral, or negative as shown in Eq. (2.22) which is a coefficient calculated for the phase 1 burn

perimeter.

0 Progressive
cot 0 Neutral

2 2 2
0 Regressive

N
π θ π θ

>
 − + − → = 

  <
 (2.22)

Fig. 1 Star Grain Geometry & Burn Area.

13

Wagon wheels are a special case of star configurations, so the program first determines

whether the inputs make a star or wagon wheel configuration. Figure 2 shows the long and short

spoke wagon wheels programmable in the AUSRC. Again, the propellant inner radius (RI),

propellant outer radius (RP), star/spoke angular fraction (E), number of star/spoke points (N), and

the star/spoke angular opening (θ) are used to develop the wagon wheels. However, there are two

types of wagon wheels, long or short spoke, and the program will first determine if the grain

geometry parameters develop a short spoke, if not then it is a star grain.

The long and short spokes have identically the same geometry as shown on Fig. 3, except

their spokes are considered long or short. Their phase 1 burns use the same calculations; however,

they deviate in their phase 2 burn since they have different web thicknesses. Similar to the star

grain analysis, the perimeter calculation can be used to calculate a coefficient which determines

Fig. 2 Long Spoke (Left) & Short Spoke (Right) Wagon Wheels.

14

the phase 1 thrust profile. Similar to Eq. (2.22), Eq. (2.23) will determine if the phase 1 thrust is

progressive, neutral, or regressive.

0 Progressive
2 1 0 Neutral

2 sin tan 0 Regressive 2 2
N
π π

θ θ

>
+ − + → =

    <       

 (2.23)

Another calculation is done to check and see if the grain is a long spoke or short spoke.

First, at a minimum, to be a short spoke, the side spoke length (h) must be greater than zero and is

shown in Eq. (2.24). If (h) is less than zero, then the grain configuration is over constrained and

must be reverted to a star configuration. If (h) is positive then it is a spoke configuration, but further

calculation must be done to determine if it is a long spoke or short spoke. From the derivations of

long spokes in Barrere [27], for the long spoke to be valid it must follow the constraint defined by

Eq. (2.25). Physically, Eq. (2.25) represents the radial length for a long spoke and if it is negative,

it means the spokes are over lapping and the geometry must be reverted to a short spoke, shown

on Error! Reference source not found..

sin

cos sin 0
2tan

2

p

p I

R
Nh R R

N

πε
πε θ

θ

  
       = − − >        
    

 (2.24)

sin

cos 0
sin

2

p

p I

R
NR R

N

πε
πε

θ

 
    − − ≥    
 
 

 (2.25)

15

Another design consideration that can get lost in the programming is the calculation of the

propellant grain length (GL). GL is not a direct input by the user and is calculated after certain

components have been designed. The starting point of the grain �𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� is determined right after

the warhead section. Next, the nozzle design is determined by using the expansion ratio and

fractional nozzle length to determine the nozzle throat circular arc based on bell nozzles. First, the

nozzle length based on a 15-degree cone is determined by the empirical equation shown on Eq.

(2.26). The diverging bell nozzle length (𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁) can then be calculated from the fractional nozzle

length (𝐿𝐿𝐹𝐹) and 15 degree conical nozzle (𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) in Eq. (2.27). The total converging diverging

nozzle length (𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁) is then the sum of the converging nozzle entrance (𝐿𝐿𝐸𝐸), which is shown in

Appendix B:, and diverging bell nozzle length.

Fig. 3 Wagon Wheel Geometry.

16

 ()
() ()

()
0.382 1 cos 15

tan 15 tan 15
e t te Cone

Cone

r r rr rL
σ  − − = −−  = =



 

 (2.26)

 N F ConeL L L= (2.27)

 Noz E NL L L= + (2.28)

The grain length GL can then be calculated by subtracting the starting point of the grain

�𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�, the gap between the grain, nozzle entrance location �0.06𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�, and (𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁) from the

missile body length (𝐿𝐿𝐵𝐵), shown on Eq. (2.29).

 0.06B grain Noz BodyGL L x L R= − − − (2.29)

II.IV AUSRC: Propulsion Subroutine

Once the mass properties are determined the propulsion subroutine then calculates chamber

pressure over time, which then gets used to calculate thrust over time. For the complete derivation,

refer to [6] in Chapter 3. In general, the first required calculation is chamber pressure (po), shown

on Eq. (2.30), which is a function of propellant burn area (Ab), nozzle throat area(At), propellant

burn rate constant (ab), propellant density (ρ𝑏𝑏), propellant characteristic exhaust velocity (C*), and

the propellant burn rate index (n).

1
1

*
n

b
o b b

t

Ap a C
A

ρ
− 

=  
 

 (2.30)

Equation (2.1) is then used to calculate the nozzle exit pressure (pe). Similar to Eq. (2.2),

the thrust can then be determined by Eq. (2.31) and includes how thrust is corrected during flight

17

to account for the change atmospheric pressure. Again, the reader should note that the bell nozzle

correction factor can be obtained by using the empirical formulation from Appendix A: Bell

Nozzle Correction Factor and interpolate for varying values of nozzle expansion ratio.

 ()
11

2 12 2 1
1 1

e
T o t e e

o

pF p A A p p atmosphere
p

γγ
γγγλ

γ γ

−+
−
 

    = − + −      − +     

 (2.31)

II.V Aerodynamics Subroutine

The aerodynamics subroutine uses a modified version of AERODSN [37][38].[INCLUDE

NACA 1307] The original AERODSN did not include drag calculations but was updated by

Burkhalter to include drag calculations. For a given geometry, AERODSN will develop

aerodynamic loads and moments over a set of Mach numbers and set of angles of attack. The

missile is assumed to be symmetric, so the yawing moments are determined from the pitching

moment coefficients and the side forces are determined from the normal force coefficients. The

aerodynamic database is then saved to a matrix and can be accessed later during the 6-DOF

simulation. AERODSN is very similar to Missile Datcom [39-41] and use many of the same

methods to approximate aerodynamic interactions. Readers should also refer to [42-44] for more

in depth discussions on similar missile aerodynamic prediction methods. Nielsen [45] provides

many of the aerodynamic derivations and assumptions that many programs attempt to numerically

solve such as AERODSN.

18

II.VI 6-DOF Subroutine

The 6-DOF subroutine is the main bulk of the AULRC & AUSRC. This algorithm uses the

equations of motion to simulate the trajectory motion of a missile. The equations of motion that

are used in the 6-DOF subroutine, can be taken from Etkin [46][47] or Schmidt [48]. There are

several major assumptions, which greatly influence the equations and are the following: the missile

structure is rigid; there are rotating masses such as rotor; and there are no cross products of inertia.

The cross products of inertia are all zero since the missile is symmetric, which is shown on Eq.

(2.32), and the principal axis runs through the missile, shown on Eq. (2.33). Therefore, we are left

with only the moments of inertia.

 0XY YX ZY YZI I I I= = = = (2.32)

 0XZ ZXI I= = (2.33)

Fig. 4 Frames for Unsteady Motion [48].

19

We then use Eulerian definitions of 𝜙𝜙, 𝜃𝜃, and 𝛹𝛹, which are all in degrees. 𝜙𝜙 is the missile

bank angle which is a measure of the missile roll angle during flight. 𝜃𝜃 is the missile pitch angle

and is initially the launch angle relative to the launch point. 𝛹𝛹 is the missile heading angle and

shows what direction the missile is headed and so if it was 90 degrees initially the missile would

be headed East. Because missiles often launch vertically, there is a sine of 90 degrees that gets

Fig. 5 Body Orientation [46].

20

divided in the equations of motion causing an infinite value to appear, which is known as “gimbal-

lock” when 𝜃𝜃 = 90 degrees. To avoid gimbal locking, the Euler angles are converted to quaternions

before integration. Defining the quaternions on Eq. (2.34) shows how the three-dimensional

Eulerian angles are converted to a 4-dimensional vector and can then convert the Eulerian angles

to quaternions using Eq. (2.35).

()0 1 2 3 0 1 2 3

2 2 2 2
0 1 2 3

ˆˆ ˆ , , ,

1

e e i e j e k e e e e

e e e e

+ + + =

+ + + = (2.34)

0

1

2

cos cos cos sin sin sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2 2

cos sin cos sin cos
2 2 2 2 2

e

e

e

ψ θ φ ψ θ φ

ψ θ φ ψ θ φ

ψ θ φ ψ θ

           = +           
           
           = − +           
           
         = − −        
         

3

sin
2

cos sin sin sin cos cos
2 2 2 2 2 2

e

φ

ψ θ φ ψ θ φ

 
  

 
           = −           
           

 (2.35)

If we define the direction cosine matrix “3-2-1” in which we rotate about 𝛹𝛹, then 𝜃𝜃, and

finally 𝜙𝜙, we get the vehicle rotational frame V with respect to frame L, from Fig. 5, and the matrix

shown on Eq. (2.36) defines the conversion of frame V to frame L. The L frame is the “local-

vertical-local-horizontal: frame and is vehicle carried rather than vehicle fixed, so it does not rotate

with the vehicle. The position of frame L is the vehicle’s center of mass. TL-V is then the

transformation of frame V to frame L and is denoted as “tbod” in the program, shown on Eq. (2.37)

, however is in terms of Eulerian angles. Note that TL-V is a Body 1-2-3 sequence. If converted to

quaternions then we obtain Eq. (2.38). Since TL-V is orthogonal, the inverse is simply the transpose

of TL-V, which is shown on Eq. (2.39), and allows for the calculation of TV-L and is denoted as “b2i”

21

in the program. It is noted that the rotation matrix and quaternion transformation is setup such that

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2(𝑒𝑒0𝑒𝑒2 + 𝑒𝑒1𝑒𝑒3), which gets used in this sequence version, and is due to the use of the

Hamiltonian version of quaternions [49]. See Cooke [50] and Amoruso [51] for more information

on conversion of Euler angles to quaternions and adapting quaternions to the equations of motion.

(), ,

V L

V L V L

V L

i i
j T j
k k

φ θ ψ−

   
   =   
   
   

 (2.36)

()
1 0 0 cos 0 sin cos sin 0

, , 0 cos sin 0 1 0 sin cos 0
0 sin cos sin 0 cos 0 0 1

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin s

L V

L V

T

T

θ θ ψ ψ
φ θ ψ φ φ ψ ψ

φ φ θ θ

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ

−

−

−     
     = −     
     −     

−
= − +

+ in cos sin sin sin cos cos cosψ φ θ ψ φ ψ φ θ

 
 
 
 − 

 (2.37)

() ()
() ()
() ()

2 2 2 2
0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2
0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 0 1 2 3 0 1 2 3

2 2
2 2
2 2

L V

e e e e e e e e e e e e
T e e e e e e e e e e e e

e e e e e e e e e e e e
−

 + − − − +
 = + − + − − 
 − + − − + 

 (2.38)

 ()1 T
V L L V L V L VT T T transpose T−
− − − −= = = (2.39)

We can now use Eq.’s (2.38) and (2.39) to solve the equations of motion. For example, Eq.

(2.40) shows how to obtain the velocity of the missile with respect to the Earth frame E using the

missile velocities u, v, w.

22

X

Y V L

Z

V u
V T v
V w

−

   
   =   
      

 (2.40)

Next, we can then define the rotational velocity of the Earth using Eq. (2.41) where

(𝑝𝑝𝐸𝐸 , 𝑞𝑞𝐸𝐸 , 𝑟𝑟𝐸𝐸) are the roll rate, pitch rate, and yaw rate, respectively, and subscript E refers to “respect

with earth frame.” (ωEarth) is the Earth’s rotational velocity, and λ𝐿𝐿 is latitude in degrees.

cos
0
cos

E Earth L

E L V

E Earth L

p
q T
r

ω λ

ω λ
−

   
   =   
   −   

 (2.41)

We can then determine the accelerations (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑) of the missile with respect to Earth

using Eq. (2.42), which is Eq. 2.123 in Schmidt [48] and is written the same way in the Auburn

tools. These are the scalar equations of motion governing the translational velocity of the vehicle

body relative to the Earth Frame E. It is noted that (Q) is the dynamic pressure �1
2
ρV2�, (𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅) is

the reference area (ft2), (𝐹𝐹𝑇𝑇) is thrust (lbf), (g) is gravitational acceleration (𝑓𝑓𝑓𝑓/𝑠𝑠𝑠𝑠𝑐𝑐2), (𝑚𝑚) is the

missile mass (lbm), and (𝑐𝑐𝑋𝑋, 𝑐𝑐𝑌𝑌, 𝑐𝑐𝑍𝑍) are the aerodynamic component force coefficients on the

missile.

[] () ()

[] () ()

[] () ()

Ref

Ref

Ref

1,3

2,3

3,3

T X L V E E

Y L V E E

Z L V E E

g gdu F c QS gT q q w r r v
m m

gdv c QS gT p p w r r u
m
gdw c QS gT p p v q q u
m

−

−

−

= + + − − + +

= + + − − +

= + − − + +

 (2.42)

23

Next, the scalar equations of rotational motion are shown on Eq. (2.43) including the cross

products of inertia. These equations govern the inertial rotational velocity and allow one to solve

the rates of p, q, and r. Using Eq.’s (2.32) and (2.33), Eq. (2.43) can be greatly reduced to Eq.

(2.44).

() () () ()
() () () ()

() () () ()

2 2

2 2

2 2

XX XZ YZ XY ZZ YY

YY XX ZZ XY YZ XZ

ZZ XZ XY YZ YY XX

I p I r pq I q r I q rp I I rq L

I q I I pr I p qr I r pq I p r M

I r I p qr I p q I q rp I I pq N

− + − − − − + − =

+ − − + − − + − =

− − − − − + + − =

∑
∑
∑

  

  

  

 (2.43)

()
()
()

XX ZZ YY

YY XX ZZ

ZZ YY XX

I p I I rq L

I q I I pr M

I r I I pq N

+ − =

+ − =

+ − =

∑
∑
∑







 (2.44)

Equation (2.44) can then be rearranged to solve for rates of inertial rotational velocity or

the inertial rotational acceleration, shown on Eq. (2.45). (𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑀𝑀, 𝑐𝑐𝑁𝑁) are the lift, moment, and

normal coefficient, respectively, and 𝐿𝐿𝑅𝑅ef is the reference length (ft).

()

()

()

Ref Ref

Ref Ref

Ref Ref

L ZZ YY

XX

M XX ZZ

YY

N YY XX

ZZ

c QS L I I qr
p

I
c QS L I I pr

q
I

c QS L I I pq
r

I

− −
=

− −
=

− −
=







 (2.45)

Next, we calculate the angular velocity of the vehicle of Frame V with respect to Frame L

and is shown on Eq. (2.46). The angular velocity of frame L with respect to frame I is similarly

24

defined from Eq. (2.47) and can then obtain the angular velocity of the vehicle, Frame V, with

respect to frame I, shown on Eq. (2.48).

 [],

V

V L V V V V

V

i
p q r j

k
ω

 
 
 
 
 



 (2.46)

[],

V

L I L L L V

V

i
p q r j

k
ω

 
 
 
 
 



 (2.47)

[], , ,

V

V I V L L I V

V

i
p q r j

k
ω ω ω

 
 = +  
 
 



 (2.48)

Because [𝑝𝑝, 𝑞𝑞, 𝑟𝑟] and [𝑝𝑝𝐼𝐼 , 𝑞𝑞𝐼𝐼 , 𝑟𝑟𝐼𝐼] are known, Eq. (2.48) can be rearranged to solve for ωV,I

or [𝑝𝑝𝑉𝑉, 𝑞𝑞𝑉𝑉 , 𝑟𝑟𝑉𝑉], shown on Eq.’s (2.49) & (2.50), respectively. Equation (2.50) is written as “capp”,

“capq”, and “capr” for [𝑝𝑝𝑉𝑉, 𝑞𝑞𝑉𝑉 , 𝑟𝑟𝑉𝑉] in the Auburn tools. μ𝐿𝐿 is the longitudinal position of the missile,

so μ𝐿̇𝐿 is the longitudinal position rate of the missile, and λ𝐿̇𝐿 is latitudinal position rate of the missile.

 , , ,V L V I L Iω ω ω= − (2.49)

25

[] [] []

()

()

cos

sin

V V V

V V V V V L L L V

V V V

V Earth L L

V L V L

V Earth L L

i i i
p q r j p q r j p q r j

k k k

p p
q q T
r r

ω µ λ
λ

ω µ λ
−

     
     = −     
     
     

+    
    = − −    
     − +     







 (2.50)

Because the Eulerian angles are converted to quaternions, the rates of Eulerian angles must

be determined in quaternion form and is shown in Eq. (2.51). κ is a constant equal to 0.1.

()
()

()

()

()

2 2 2 2
0 1 2 3

0 0 1 2 3

1 1 0 2 3

2 2 0 1 3

3 3 0 1 2

1

1
2
1
2
1
2
1
2

e e e e

e e pe qe re

e e pe qe re

e e qe re pe

e e re qe pe

ε

κε

κε

κε

κε

= − + + +

= + + +

= + − + −

= + − − +

= + − + −









 (2.51)

Finally, the vehicle’s position relative to the surface of the Earth can be calculated using

Eq. (2.52). Equation (2.52) is rearranged so that we can explicitly obtain the rates of change of

longitude, latitude, and altitude, shown on Eq. (2.53) and is written using vector (i, j) notation to

show components that are multiplied to the velocity terms. Again, readers should note in the

Auburn tool, 𝑇𝑇𝑉𝑉−𝐿𝐿 is typed as “b2i” and 𝑅𝑅𝐸𝐸 + ℎ is typed as “radi”.

26

()
()cos

L E
T

L E L L V V L

R h u u
R h T v T v

h w w

λ
µ λ − −

 +    
     + = =     
     −     







 (2.52)

[] [] []

[] [] []
()

[] [] []

1,1 * 1,2 * 1,3 *

2,1 * 2,2 * 2,3 *
cos

3,1 * 3,2 * 3,3 *

V L V L V L
L

E

V L V L V L
L

E L

V L V L V L

T u T v T w
R h

T u T v T w
R h

h T u T v T w

λ

µ
λ

− − −

− − −

− − −

 + + =
+

 + + =
+

 = − + + 







 (2.53)

Equations (2.32) through (2.53) are the main portions of the 6-DOF that get calculated and

used to track the missile. A 7th-8th order Runge-Kutta (RK7(8)) method is used to numerically

integrate the equations of motion [52]. The RK7(8) is the same algorithm in both the AUSRC and

AULRC. This algorithm is able to do variable time stepping to improve speed by halving the time

step until the relative error is reduced below a tolerance. Similar to a 4th order Runge-Kutta, the

RK7(8) method essentially calls the function of interest (typed as “deq” in the Auburn tool), i.e.,

Eq.’s (2.32)-(2.53), and records the inputs and outputs. The RK7(8) function is basically a wrapper

around Eq.’s (2.32)-(2.53), it takes an input vector of 19 parameters and calculates 19 outputs.

Table 2 shows the inputs to the “RK78” function in the Auburn tools and includes the description

as well as its typed name in the Auburn tool.

27

Table 2 RK7(8) Inputs and Outputs

Input Input Description (Program Name) Output Output Description (Program Name)
u Velocity along XV (u) du Acceleration along XV (du)
v Velocity along YV (v) dv Acceleration along YV (dv)
w Velocity along ZV (w) dw Acceleration along ZV (dw)
p Roll Rate, rad/sec (p) dp Roll Acceleration, 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (dp)
q Pitch Rate, rad/sec (q) dq Pitch Acceleration, 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (dq)
r Yaw Rate, rad/sec (r) dr Yaw Acceleration, 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (dr)
𝑒𝑒0 Quaternion (Scalar) (e0) 𝑒̇𝑒0 Quaternion Rate (de0)
𝑒𝑒1 Quaternion (i) (e1) 𝑒̇𝑒1 Quaternion Rate (de1)
𝑒𝑒2 Quaternion (j) (e2) 𝑒̇𝑒2 Quaternion Rate (de2)
𝑒𝑒3 Quaternion (k) (e3) 𝑒̇𝑒3 Quaternion Rate (de3)
𝜆𝜆𝐿𝐿 Latitude, degrees (xlamda) 𝜆̇𝜆𝐿𝐿 Latitude Rate, deg/sec (dlamda)
𝜇𝜇𝐿𝐿 Longitude, degrees (ymu) 𝜇̇𝜇𝐿𝐿 Longitude Rate, deg/sec (dmu)

𝑅𝑅𝐸𝐸 + ℎ Altitude, ft (radi) �𝑅𝑅𝐸𝐸 + ℎ̇� Altitude Rate, ft/sec (dradi)
𝑝𝑝𝐺𝐺 Pitch Gyro Rate, rad/sec (pgyro) 𝑝̇𝑝𝐺𝐺 Pitch Gyro Accel., 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (pgryod)
𝑦𝑦𝐺𝐺 Yaw Gyro Rate, rad/sec (ygro) 𝑦̇𝑦𝐺𝐺 Yaw Gyro Accel., 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (ygryod)
𝛿̇𝛿𝑒𝑒 Elevator Pitch Rate, Deg/sec (deledot) 𝛿̈𝛿𝑒𝑒 Elevator Pitch Accel., 𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (deleddot)
𝛿𝛿𝑒𝑒 Elevator Pitch, Degrees (dele) 𝛿̇𝛿𝑒𝑒 Elevator Pitch Rate, Deg/sec (deledot)
𝛿̇𝛿𝑟𝑟 Rudder Yaw Rate, Deg/sec (delrdot) 𝛿̈𝛿𝑟𝑟 Rudder Yaw Accel., 𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠2⁄ (delrddot)
𝛿𝛿𝑟𝑟 Rudder Yaw, Degrees (delr) 𝛿̇𝛿𝑟𝑟 Rudder Yaw Rate, Deg/sec (delrdot)

 From the RK7(8) described in Fehlberg [52] “Part III. Seventh-Order Formula – Section

XI.”, shows how to setup the differential equations for a seventh order Runge-Kutta with step size

control. RK7(8) is seventh order but is eighth order for the equations of condition.

()

()

()

()

0 0 0

1

0 0
0

10
8

0
0

12
9

0
0

,

, 1, 2, ,12

ˆ ˆ

k

k k k

k k
k

k k
k

f f x y

f f x h y h f k

y y h c f O h

y y h c f O h

λ λ
λ

α β
−

=

=

=

=

 = + + = 
 

= + +

= + +

∑

∑

∑



 (2.54)

Equation (2.54) describes the equation necessary for integration and we can see that there are 13

total calls to a function, i.e., Eq.’s (2.32)-(2.53) (“deq”). Fehlberg then describes the process for

28

determining 𝛼𝛼𝑘𝑘, 𝛽𝛽𝑘𝑘𝑘𝑘, 𝑐𝑐𝑘𝑘, and 𝑐̂𝑐𝑘𝑘, which are constants already programmed in the Auburn tools and

described on “Table X. RK7(8)” [52]. The parameters in Eq. (2.54) are for example 𝛼𝛼𝑘𝑘 are typed

as “ALPH(1)”, 𝛽𝛽𝑘𝑘𝑘𝑘 is typed as “B2_1” which is 2 27⁄ (the 2 in B2_1 means the second row and

the 1 means the first column), 𝑐𝑐𝑘𝑘, & 𝑐̂𝑐𝑘𝑘 are typed as “CH(1)”. The 𝑦𝑦� is the actual answer of the

integration and 𝑦𝑦 is used as an error estimation.

II.VII Guidance & Autopilot Subroutine

Most of the uses with the AULRC and AUSRC are to simulate ballistic launches. Ballistic

launches are flyouts where there is no wing or fin or thrust defection influencing the equations of

motion. Fin deflections influence the equations of motion through pitch/yaw gyro rates and

elevator/rudder rates, which are shown on Table 2. Fins can be deflected by the use of two elevators

which cause pitching and two rudders which cause yaw, the elevators and rudders are also known

as the tail fins. The program does not currently allow forward wing (canard) deflection. There are

other methods of deflection through the use of thrust vectoring [10]. Thrust can be vectored

through the use of nozzle vanes and gimbaling. Currently, the AUSRC can use all three models of

deflection and the AULRC can use nozzle vanes and fin deflection. During the flight, if there is

no fin or thrust deflection then the aerodynamic and force coefficients are updated based on the

missile’s current angle of attack. If the fins are allowed to be deflected then the fin aerodynamic

and force coefficients are updated and added to the total aerodynamic and force coefficients.

29

Equation (2.42) is then updated with an additional thrust to dv and dw. There are two

different methodologies for determining thrust in X, Y, Z directions for vanes and gimbaling. If

gimbaling is used then the thrust vector is augmented by the gimbaling angles 𝛾𝛾𝑦𝑦 and 𝛾𝛾𝑧𝑧 and the

corrected thrust vector can be obtained from Fig. 7 and is shown on Eq. (2.56). 𝐹𝐹𝑇𝑇 is the thrust

developed during the propulsion subroutine. Because the thrust vector is off set from the center of

gravity, it causes a moment and is added to right side of Eq. (2.44) but only pitching and yawing

is considered.

[] () ()

[] () ()

[] () ()

, Ref

, Ref

, Ref

1,3

2,3

3,3

T X X L V E E

T Y Y L V E E

T Z Z L V E E

g gdu F c QS gT q q w r r v
m m
g gdv F c QS gT p p w r r u
m m
g gdw F c QS gT p p v q q u
m m

−

−

−

= + + − − + +

= + + + − − +

= + + − − + +

 (2.55)

Fig. 6 Schematic of Gimbal Forces and Moments, Stability Coordinate System.

30

, , ,

ˆˆ ˆcos cos sin sin
ˆˆ ˆ

T Y Z T Y T Y

T X T Y T Z

F F i F j F k

F F i F j F k

γ γ γ γ= + +

= + +





 (2.56)

Equation (2.45) is then updated to include gimbaling thrust, shown on Eq. (2.57), and is

also the same for vane deflection. 𝑋𝑋𝑔𝑔𝑔𝑔 and 𝑋𝑋𝑐𝑐𝑐𝑐 are the distance to the vane/gimbaling center and

the distance to center of gravity measured from the nose.

()

() ()

() ()

Ref Ref

, Ref Ref

, Ref Ref

L ZZ YY

XX

T Z gc cg M XX ZZ

YY

T Y gc cg N YY XX

ZZ

c QS L I I qr
p

I

F X X c QS L I I pr
q

I

F X X c QS L I I pq
r

I

− −
=

− + − −
=

− + − −
=







 (2.57)

The nozzle vanes have a different approach to thrust vectoring. Similar to the fins, there

are two sets of vanes, which cause pitching or yawing. Thrusting is affected by the sole existence

Fig. 7 Nozzle Vanes Geometry.

31

of vanes in the direction of thrust, as shown on Fig. 8. The vanes are set in the exhaust plume,

shown on Fig. 9, and the exhaust plume add aerodynamic forces, which cause pitching and yawing.

To determine the forces on vanes, AERODSN is used approximate the aerodynamic forces and the

resulting thrust vector is shown on Eq. (2.58).

,Vane ,Vane Exit Ref ,Vane Exit Ref

, , ,

ˆˆ ˆ

ˆˆ ˆ
T Y N

T X T Y T Z

F F i c Q S j c Q S k

F F i F j F k

= + −

= + +



 (2.58)

Notice that the 𝚤𝚤̂ component includes 𝐹𝐹𝑇𝑇,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, which is not just the thrust generated during the

thrust subroutine. Because the vanes are in the exhaust plume, they decrement the thrust by some

amount, and unless CFD was used then we cannot directly calculate the thrust decremented. So,

Fig. 8 Vane Geometry in Nozzle Exhaust Plume.

32

an approximation was made based on the vane profile area 𝐴𝐴𝑃𝑃 and nozzle exit area 𝐴𝐴𝐸𝐸; therefore,

the effective thrust is shown on Eq. (2.59). Realize that if there are no vanes, then, the thrust is not

decremented by the vane profile area. Equations (2.55) and (2.57) are the same for nozzle vanes.

 , 1 P
T Vane T

E

AF F
A

 
= − 

 
 (2.59)

()()()

()()

()

1 2

1

1

2

2

#-Vanes Vane Semi-Span Vane Thickness

4
2

#-Deflected Vanes Vane Planform Area

2 sin sin
2 2

P P P

P

V
P k

P

V R T
P Z Y

A A A
A

bA t

A
b C CA γ γ

= +

=

=

=

+
= +

 (2.60)

Next, we will briefly describe the overall guidance and autopilot algorithm. To develop the

autopilot commands, a guidance law is used to develop the acceleration commands. This work has

utilized the proportional navigation (PRONAV) guidance law to develop the acceleration

commands required for pitch and yaw [54]. Because we assume there is no missile rolling, there

is no third component of commanded acceleration; however, this algorithm still follows a three-

dimensional setup. The PRONAV guidance law is shown on Eq. (2.61) where 𝑛𝑛𝐶𝐶 is the

acceleration command (𝑓𝑓𝑓𝑓/𝑠𝑠2), 𝑁𝑁′ is the effective navigation ratio, 𝑉𝑉𝐶𝐶 is the target closing velocity

(𝑓𝑓𝑓𝑓/𝑠𝑠), and λ̇ is the line of sight rate (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠).

 C Cn N V λ′=  (2.61)

33

We refrain from discussing other guidance laws here, but the user should refer to Zarchan

[54], Yanushevsky [55], Blakelock [56], Siouris [57], and Gibeau [58] for more guidance and

autopilot laws. This work will follow the derivation similar to Moran [59] and shows how to

breakdown the three-dimensional PRONAV algorithm using two-dimensional solutions. First, we

define (𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇), which is the difference between the target position and the missile’s

position, shown on Eq. (2.62).

TMX T M

TMY T M

TMZ T M

R X X
R Y Y
R Z Z

= −
= −
= −

 (2.62)

We can then define the line of sight angles (LOS) (λ), where λXY is the LOS on the XY

plane and λXZ is the LOS on the XZ plane and are shown on Eq. (2.63).

1

1

tan

tan

TMY
XY

TMX

TMZ
XZ

TMX

R
R

R
R

λ

λ

−

−

 
=  

 
 

=  
 

 (2.63)

Similar to Eq. (2.62), the missile to target velocities (𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇,𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇,𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇), which are the

difference between the target’s velocity and the missile’s velocity are shown on Eq. (2.64).

TMX T M

TMY T M

TMZ T M

V VX VX
V VY VY
V VZ VZ

= −
= −
= −

 (2.64)

34

The LOS plane rates �λ̇� can then be calculated using Eq.’s (2.62) & (2.64) and is shown

on Eq. (2.65).

2 2

2 2

TMX TMY TMY TMX
XY

TMX TMY

TMX TMZ TMZ TMX
XZ

TMX TMZ

R V R V
R R

R V R V
R R

λ

λ

−
=

+
−

=
+





 (2.65)

Equations (2.62) & (2.64) are then used to compute the closing velocities of each plane

(𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶,𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶) and are shown on Eq. (2.66).

()

()

2 2

2 2

TMX TMX TMY TMX
CXY TMXY

TMX TMY

TMX TMX TMZ TMZ
CXZ TMXZ

TMX TMZ

R V R V
V R

R R

R V R V
V R

R R

+
= − = −

+

−
= − = −

+





 (2.66)

Using Eq. (2.66) we can now develop the acceleration commands for the XY and XZ plane

and is shown on Eq. (2.67).

CXY CXY XY

CXZ CXZ XZ

n N V

n N V

λ

λ

′=

′=





 (2.67)

Because (𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶,𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶) are acceleration magnitudes, we can finally develop the acceleration

vector using the acceleration magnitudes and the LOS. This is shown on Eq. (2.68) and we can see

that in the XY plane that there is no Z or �𝑘𝑘�� component and we can see that in the XZ plane that

there is no Y or (𝚥𝚥̂) component. We can convert the acceleration vector into the L frame using Eq.

(2.69) and notice that (N𝐶𝐶𝐶𝐶𝐶𝐶, N𝐶𝐶𝐶𝐶𝐶𝐶) is simply the dot product between (𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶,𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶) and

35

�𝑇𝑇�𝐿𝐿−𝑉𝑉[2, :],𝑇𝑇�𝐿𝐿−𝑉𝑉[3, :]�. (N𝐶𝐶𝐶𝐶𝐶𝐶, N𝐶𝐶𝐶𝐶𝐶𝐶) are finally the required acceleration commands that get used

in the autopilot algorithm.

() ()
() ()

ˆˆ ˆsin cos 0
ˆˆ ˆsin 0 cos

CXY CXY XY CXY XY

CXZ CXZ XZ CXZ XZ

n n i n j k

n n i j n k

λ λ

λ λ

= − + +

= − + + (2.68)

[]
() [] () []
[]
() [] () []

2,:

sin 2,1 cos 2,2

3,:

sin 3,1 cos 3,3

CXY CXY L V

CXY CXY XY L V CXY XY L V

CXZ CXZ L V

CXZ CXZ XZ L V CXZ XZ L V

N n T

N n T n T

N n T

N n T n T

λ λ

λ λ

−

− −

−

− −

= ⋅

= − +

= ⋅

= − +

 (2.69)

Now, we define some of the autopilot fundamentals. If it is not clear yet, the commanded

accelerations are used to update the missile trajectory path. How does the commanded

accelerations cause the missile to follow a target? Well, by using the tail fins, nozzle vanes, or by

gimbaling. So, what the autopilot is doing is determining the amount of actuation required. The

autopilot used in this work follows the derivation from Nesline [60], which is an improvement

over Zarchan [54], shows the autopilot derivation using aerodynamic derivatives. Anderson [61]

provides baseline values and basic rule of thumbs that should be followed using the autopilot. The

main parameters which define the autopilot are the damping ratio (ζ), time constant (τ), crossover

frequency (ω𝐶𝐶𝐶𝐶), actuator frequency (ω𝐴𝐴𝐴𝐴𝐴𝐴), and actuator damping ratio (ζAct). We refrain from

going the entire derivation of the autopilot gains, since they are programmed in the Auburn tools

and are shown by Nesline [60]. We will however show the final derivation of the amount of

elevator/rudder deflection (δ) (degrees) and the elevator/rudder acceleration �δ̈�. The missile

actuators (δ) are modeled as a second-order transfer function shown on Eq. (2.70).

36

2

2
21 1 ACT

ACT ACTC

s sδ ζ
ω ωδ

 
= + + 

 
 (2.70)

Converting Eq. (2.70) from Laplace transform back to the time domain gives Eq. (2.71).

The elevator/rudder acceleration can now be solved for by simply rearranging Eq. (2.71) into Eq.

(2.72), where ω𝐴𝐴𝐴𝐴𝐴𝐴 is actuator frequency set to �125 𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠
� and ζ𝐴𝐴𝐴𝐴𝐴𝐴 is the actuator damping ratio

set to (0.7) in this work.

 2

2 ACT
C

ACT ACT

ζ δδ δ δ
ω ω

+ + =




 (2.71)

2 2 ACT
ACT C

ACT

ζ δδ ω δ δ
ω

 
= − − 

 





 (2.72)

The only term left to determine before using Eq. (2.72) is the fin deflection command (δ𝐶𝐶),

which is the amount of fin deflection to turn the missile. The fin deflection command (δ𝐸𝐸𝐸𝐸) for

pitching is simply the sum of the missile pitch gyro rate (𝐺𝐺𝐸𝐸) and missile pitch rate (𝑞𝑞) times a

rate gyro autopilot gain (𝐾𝐾𝑅𝑅). The fin deflection command (δ𝑌𝑌𝑌𝑌) for yawing is similarly the sum

of the missile yaw gyro rate (𝐺𝐺𝑌𝑌) and missile yaw rate (𝑟𝑟) times a rate gyro autopilot gain (𝐾𝐾𝑅𝑅).

The rate gyro autopilot is defined by Nesline [60] on equation (26) and is programmed in the

Auburn tools, and therefore not shown here. It also is a function of multiple functions and would

require more derivations not required for this work.

()
()

EC R E

YC R Y

K G q

K G r

δ

δ

= +

= − − (2.73)

37

II.VIII SCUD-B Input Data & AULRC Model Verification

Now that the overall physics have been discussed, we must define the input parameters for

the AULRC and AUSRC. In general, most of the inputs are based on the SCUD-B and classes are

augmented from the baseline SCUD-B class. For the regression case using AULRC, we take the

SCUD-B baseline and simply add “noise” to the inputs to generate a large database of missiles.

For the classification task using AUSRC, we take the SCUD-B baseline and augment specific

parameters and every parameter has a slight amount of noise. These databases will be described in

chapter III. The SCUD-B parameters are mostly taken from Seyfert [62], the “Rock Nail Report”

[63], and the wiki page on the scud missile [64]. Table 3 shows the data for the SCUD-B pulled

from the references [62-64].

Table 3 SCUD-B Data

Parameter Parameter Value
Body Diameter, ft 2.90026
Propellant Type 4.0 (IRFNA/RP-1)
Equivalence Ratio (Ratio of Actual Fuel/Air to Stoichiometric Fuel/Air) 2.0
Chamber Pressure, Psi 1108.15
Nose Diameter to Body Diameter Ratio 1.000
Nose Length to Body Diameter Ratio 3.25
Nozzle Throat Diameter to Body Diameter Ratio 0.1408147
Nozzle Expansion Ratio (Nozzle Exit Area to Nozzle Throat Area) 10.32
Fractional Nozzle Length** 0.66
Burn Time, Seconds 62.00
Tail Root Chord to Body Diameter Ratio 1.50905
Tail Taper Ratio (Tip Chord to Root Chord Ratio) 0.42879
Tail Semi-Span to Body Diameter Ratio 0.51697
Tail Leading Angle, Degrees (Measured Normal to Missile Body) 60.00
Tail Trailing Edge X-Location to Body Length Ratio 1.000
Initial Launch Angle, Degrees** 90.00

**Values Approximated from [62-64].

The information below is related to SCUD-B.

38

1. Length: 11.2-11.4 meters depending on the warhead.

2. Diameter: 884 millimeters.

3. Span: 1.8 meters.

4. Launch Weight: 5562-5950 kg.

5. Empty Weight: 2076 kg.

6. Fuel Weight: 3771 kg (852 kg Fuel & 2919 kg Oxidizer)

7. Payload Weight: 1016 kg.

8. Range: 50-300 km

9. Speed: Maximum of 1.5 km/sec, 1.13 km/sec at Apogee, 1.4 km/sec at Impact.

10. Accuracy: 450 meters.

The SCUD-B is shown on Fig. 10 on a transport erector vehicle [64]. This SCUD-B missile

can be modeled using the AULRC tool and is compared against the OMEGA [65] tool, which is a

Government-Off-The-Shelf software used to generate liquid propellant missile 6-DOF simulations

similar to the AULRC. To ensure our model is valid, we can plot the mass, thrust, range, and

altitude over time for both the AULRC and OMEGA tools. Figure 11 shows how mass changes

over time and we can see that the OMEGA & AULRC models agree very well. Notice that the

once the propellant completely finishes, the mass is constant. There is a slight noticeable mismatch

at the end of the propellant burning and could be due to slight errors in how mass properties were

defined in the AULRC. Figure 12 shows the thrust over time for both tools and we can see that

they agree. Notice the only difference is that OMEGA allows the chamber pressure to throttle up,

whereas the AULRC starts at the prescribed chamber pressure. Figure 13 shows the range over

time and we can see that both models agree. Finally, on Fig. 14, the altitude over time is plotted

39

for both models and can see they match very well. Notice that OMEGA flies a bit higher compared

to the AULRC, but both arrive at the same range since the AULRC will let the missile glide.

Fig. 9 SCUD-B on Transport Erector [64].

40

Fig. 10 Omega vs AULRC: Mass Over Time.

Fig. 11 Omega vs AULRC: Thrust Over Time.

41

Fig. 12 Omega vs AULRC: Range Over Time.

Fig. 13 Omega vs AULRC: Altitude Over Time.

42

II.IX AULRC Input Data

Table 4 AULRC SCUD-B Input

Parameter Parameter Value
Body Diameter, ft 2.90026
Propellant Type 4.0 (IRFNA/RP-1)
Equivalence Ratio (Ratio of Actual Fuel/Air to Stoichiometric Fuel/Air) 2.0
Chamber Pressure, Psi 1108.15
Nose Diameter to Body Diameter Ratio 1.000
Nose Length to Body Diameter Ratio 3.25
Nozzle Throat Diameter to Body Diameter Ratio 0.1408147
Nozzle Expansion Ratio (Nozzle Exit Area to Nozzle Throat Area) 10.32
Fractional Nozzle Length** 0.66
Burn Time, Seconds 62.00
Wing Root Chord to Body Diameter Ratio 0.0
Wing Taper Ratio (Tip Chord to Root Chord Ratio) 0.0
Wing Semi-Span to Body Diameter Ratio 0.0
Wing Leading Angle, Degrees (Measured Normal to Missile Body) 0.0
Wing Leading Edge X-Location to Body Length Ratio 0.0
Tail Root Chord to Body Diameter Ratio 1.50905
Tail Taper Ratio (Tip Chord to Root Chord Ratio) 0.42879
Tail Semi-Span to Body Diameter Ratio 0.51697
Tail Leading Angle, Degrees (Measured Normal to Missile Body) 60.00
Tail Trailing Edge X-Location to Body Length Ratio 0.88
Autopilot Time Delay, Seconds*** 231.80
Autopilot Time Constant (τ)*** 0.4044
Autopilot Damping Coefficient (ζ)*** 0.9140
Autopilot Crossover Frequency, (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠)*** 34.4028
Autopilot Effective Navigation Ratio*** 3.741
Initial Launch Angle, Degrees** 86.241

**Values Approximated

***Values Generated from Genetic Algorithm

Using the information from Table 3, we can then generate a set of example inputs for the

AULRC and is shown on Table 4. Notice the addition of the wing parameters but are set to zero

since the SCUD-B has no wings. The tail trailing edge location has been moved up, because during

simulations it appeared that missile was more stable when moving the tail closer to the nose. The

43

initial launch angle is set to 86 degrees since the datasets that we focus on in this work do not use

nozzle vanes to pitch so setting the launch angle at 86 degrees acts as a way to pitch through the

use of gravity. Next, notice that the autopilot parameters are generated using the genetic algorithm

(GA), which is available in both Auburn tools. The GA was set to match a range and apogee of

250 km and 75 km, respectively.

Figure 15 shows an example rocket using the input data from Table 4. Notice that the nose

is blunt due to the nose diameter ratio equal to one. The SCUD-B does not actually have a blunt

nose but was set to be blunt for this study. Figure 16 shows the nozzle that was produced using the

input data on Table 4.

Fig. 14 AULRC Example Rocket.

44

II.X AUSRC Input Data

Again, the information from Table 3 is also used to generate a baseline set of input for the

AUSRC database. Note that the SCUD-B is a liquid rocket missile so generating a SRM version

will require generating geometries for the solid propellant using the GA. The GA was set to match

a range and apogee of 250 km and 75 km, respectively.

Fig. 15 Nozzle End for AULRC Example.

45

Table 5 AUSRC SCUD-B Input

Parameter Parameter Value
Nose Diameter to Body Diameter Ratio*** 0.1936
Nose Length to Body Diameter Ratio 3.25
Propellant Type 3 (PVC/AP/AL)
Outer Propellant Radius Plus Fillet Radius to Body Diameter Ratio*** 0.6095
Inner Propellant Radius to Outer Propellant Radius Ratio*** 0.2165
Number of Star/Wagon-Wheel Points*** 7
Fillet Radius to Outer Propellant Radius Ratio*** 0.089
Epsilon Width*** 0.91821
Star/Wagon-Wheel Point Angle, Degrees*** 18.4816
Fractional Nozzle Length*** 0.7573
Nozzle Throat Diameter to Body Diameter Ratio 0.1426
Fineness Ratio 9.119
Body Diameter, meters 0.8840
Wing Semi-Span to Body Diameter Ratio 0.0
Wing Root Chord to Body Diameter Ratio 0.0
Wing Taper Ratio (Tip Chord to Root Chord Ratio) 0.0
Wing Leading Angle, Degrees (Measured Normal to Missile Body) 0.0
Wing Leading Edge X-Location to Body Length Ratio 0.0
Tail Semi-Span to Body Diameter Ratio 0.51697
Tail Root Chord to Body Diameter Ratio 1.50905
Tail Taper Ratio (Tip Chord to Root Chord Ratio) 0.42879
Tail Leading Angle, Degrees (Measured Normal to Missile Body) 60.00
Tail Trailing Edge X-Location to Body Length Ratio 0.88
Autopilot Time Delay, Seconds*** 231.80
Autopilot Time Constant (τ)*** 0.4044
Autopilot Damping Coefficient (ζ)*** 0.9140
Autopilot Crossover Frequency, (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠)*** 34.4028
Autopilot Effective Navigation Ratio*** 3.741
Initial Launch Angle, Degrees*** 53.63

***Values Generated from Genetic Algorithm

46

II.XI Program Errors & Filtering

Due to settings in the Auburn tools, unsatisfactory conditions can occur during simulation

time. Some of the conditions are geometrical constraints, thrust constraints, and the majority are

due to conditions during the 6-DOF subroutine. Below the current errors and filters are listed.

Errors 1-7 will stop the simulation immediately when detected, errors 8-11 will still output data

until the error occurs. For the databases, we wish to use missiles which do not experience failure

of any kind, so when filtering the missiles, errors 1-11 do get reported. Filter 12 shows that there

can still be thrust when the missile lands, which means the missile did not go far enough so it gets

filtered. Filter 13 is not an error in the program, it just shows the missile did not go farther than 10

miles, so they get filtered out of the database. Filter 14 is also not an error, it is an effect due to

errors 8-11 since the simulation stops tracking the missile, with the database we want full complete

trajectories, and so if errors 8-11 occur, they get filtered out of the database.

Fig. 16 AUSRC Input Example.

47

1. Grain Type Unspecified (AUSRC), this parameter is 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 1 and checks many geometric

constraints for the propellant grain. Examples include: �H1  =  RPsin �πϵ
N
�� <  fillet

radius; wagon wheel spokes are too long (they are geometrically intersecting, for no spoke

interference δ < π
𝑁𝑁

), grain perimeters are less than zero (cannot be negative geometry

length).

2. For AUSRC & AULRC: Expansion ratio should be within 2-50; Fractional nozzle length

should be greater than 0.6 and less than 1.0.

3. For AUSRC & AULRC: Chamber pressure exceeded max limit, which is currently set to

9000 psi.

4. For AUSRC: Port area less than 1.2 times nozzle throat area.

5. For AUSRC & AULRC: Thrust is too small.

6. For AUSRC: Propellant grain size too small.

7. For AUSRC: Exit Mach number less than 1.0 (Should be supersonic nozzle designs).

8. For AUSRC & AULRC: Missile is tumbling or rolling out of control.

9. For AUSRC & AULRC: Max G-limit exceeded.

10. For AUSRC & AULRC:: Max Mach number limit exceeded.

11. For AUSRC & AULRC: Wing/Tail fin sheared off.

12. For AUSRC & AULRC: Thrust still occurring, means rocket did not go far enough to finish

the entire propellant.

13. For AUSRC & AULRC: Missile did not go further than 10 miles.

14. For AUSRC & AULRC: Final altitude is not zero, means missile did not land.

48

III. Data Generation

Both regression and classification tasks require extensive databases for training models.

Databases can be built multiple ways. Unrelated to the AULRC and AUSRC, an example would

be taking data from the population and digitizing data into large spreadsheets. Data could also be

gathered from the internet using surveys. This work uses the AULRC and AUSRC to build the

databases for both regression and classification. Both programs use a subroutine constructed to

randomly generate inputs that will automatically be simulated in the AULRC or AUSRC. There

are many ways of randomly generated numbers, and the Auburn tools have several programmed.

These numbers are generated randomly by sampling from normal or uniform distributions. Since

the inputs to the Auburn tools are continuous, the distributions are also continuous. A good

resource for random number generation can be found in Ripley [66].

There are five available options in the Auburn tools for sampling: normal distribution,

uniform distribution, Latin Hypercube (LHC) sampling, LHC with edge sampling, LHC with

centered sampling. In both Auburn tools, the data is input into a file called “gannlDIST.dat” and

is used for every variation of the sampling algorithms unless the user changes the source code to

read in a different file. Data will also be described for the regression and classification tasks and

the summary statistics will also be shown to introduce the preprocessing tasks that are done to

ensure data is acceptable for model generation.

49

III.I Uniform Distribution Sampling

The first and simplest sampling method available is uniform sampling [67-68], and the

probability distribution function (pdf) is shown on Eq. (3.1), which is constant line between (a)

and (b). Programmatically, (a) is the minimum value for the design parameter and (b) is the

maximum value for the design parameter.

 () 1 , a x bf x
b a

= ≤ ≤
−

 (3.1)

To programmatically obtain uniform random values (𝑍𝑍𝑈𝑈), values are not directly calculated

from uniform distribution on interval [a,b]; instead, values are calculated from a uniform

distribution on interval [0,1] and are then scaled on [a,b] shown on Eq. (3.2). The uniform values

on [0,1] are calculated using the Marsaglia-Zaman subtract with borrow random generator [69].

Generally, some form of uniform distribution is preferred in relation to the regression and

classification tasks to ensure that the models are not biased to regions with higher sampling

densities. Uniform sampling is more desirable so that models overall are training to entire regions

of data and are not preferring specific regions. Essentially trying to reduce errors by minimizing

the number of regions that may have reduced sampling density. Table 6 shows an example of input

data and how it would look for uniform sampling.

 () ()0,1UZ a b a Unif= + − (3.2)

Table 6 Uniform Data Example for "gannlDIST.dat"

Maximum Minimum Parameter

2.0 0.5 DBODY, (meters)

15 10 Fineness Ratio

50

III.II Normal Distribution Sampling

The second sampling method is to sample from the pdf of the normal distribution, shown

in Eq. (3.3). The main parameters of this function are the mean value (μ) and the variance (σ2).

The mean value, shown on Eq. (3.4), is just the average value or the expected value of X, where X

is continuous random variable with a pdf of 𝑓𝑓(𝑥𝑥). The variance or standard deviation squared,

shown on Eq. (3.5), is the expected value of X minus the mean value squared which shows the

amount of spread from the average value. For more information on the normal distribution, see

references [67] & [68].

 ()
()2

221 ,
2

x

f x e x
µ

σ

σ π

 − −
 
  = −∞ < < ∞ (3.3)

 () ()E X xf x dxµ
∞

−∞

= = ∫ (3.4)

 () () () ()2 22 Var X E X x f x dxσ µ µ
∞

−∞

 = = − = −  ∫ (3.5)

To programmatically sample from the normal distribution, the Box-Muller (BM) algorithm

is used to efficiently generate random values [67-68]. Other variations of sampling can be done as

well, for example the central limit theorem can be used to sample for normal distributions. BM

uses two independent uniform distributions and converts them to polar coordinates (R, Θ), which

are then multiplied and get used to calculate a random normal value (ZN). This algorithm requires

the user input the mean and standard deviation, and instead of directly sampling from the normal

51

distribution, the uniform distribution can be used to generate random values. The uniform

distribution uses the same algorithm mentioned in Eq. (3.2).

()
()()

()

2 0,1

2ln 0,1

cosBM

N BM

Unif

R Unif

Z R
Z Z

π

µ σ

Θ =

= −

= Θ

= +

 (3.6)

Typically, in relation to work shown here, the normal distribution sampling is not used

because normal distribution generates a bell-shaped curve density. Therefore, near the tail regions

the sampling density decreases. Regions with low sampling density can increase error because

models may not be able to fit the data near the tails where sampling density is low. Table 7 does

show an example of what the user would input for the normal distribution. Only the mean and

standard deviation are required.

Table 7 Normal Distribution Example for "gannlDIST.dat"

Mean Standard Deviation Parameter

14.33367 0.1433367 Fineness Ratio

0.75 0.0075 DBODY, (meters)

III.III Latin Hypercube Sampling

Uniform sampling in general does produce a uniform distribution, however it can develop

regions where there is lower sampling. To better ensure that the dataset will have uniform sampling

over every region, the Latin Hypercube (LHC) sampling algorithm can be used, which was

52

developed from McKay [70]. LHC itself is a stratified sampling technique which divides the

interval (like [a,b] in uniform distribution) into subregions or strata. Uniform distributions are then

randomly sampled from each stratum, and this significantly improves the overall uniform

distribution. Stratified sampling is an area of research which attempts to approve space filling

designs. This work will only focus on LHC sampling for space filling designs and readers are

encouraged to review [70-74] for more information on space filling designs and sampling methods.

Other designs have further attempted to improve upon LHC by developing quasi-random (quasi-

Monte Carlo) sequences and include Halton [71], Sobol sequences [76], and Niederreiter [77].

Another popular sampling method is based on the maximum entropy, which seeks to use

probability distribution that has the largest entropy [78]. Future work in data generation will need

to consider the methods from references [70-78].

Derivations of LHC sampling are shown in [70], [71], and [75]. This work will follow the

derivation from Santner [71]. The inputs to the Auburn tools are 𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑) where (𝑑𝑑) is the

number of inputs to the Auburn tools, such that 1 ≤ 𝑘𝑘 ≤ 𝑑𝑑. There are a total number of samples

(𝑁𝑁𝑆𝑆), with individual samples denoted by (𝑗𝑗), such that 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁𝑆𝑆. There are then (N by d) or (j

by k) LHC values, which is a matrix. The LHC algorithm defined by Eq. (3.7) first calculates a

matrix of (NS by d) uniform samples on interval [0,1] denoted by �𝑈𝑈𝑗𝑗𝑗𝑗�. Next, a matrix of (NS by

d) random permutations on interval [1, NS]. Programmatically, the random permutation algorithm

follows a shuffling algorithm described by Knuth [79] and the algorithm is essentially equivalent

to sampling without replacement. The shuffling algorithm also uses an in-house pseudo-random

integer generator developed from Wichmann & Hill [80]. The matrix of (NS x d) LHC values can

then be calculated and since 𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑) are uniformly sampled over [0,1]d then 𝐹𝐹𝑘𝑘−1(𝑥𝑥) = x.

53

LHCjk are scaled between 0-1 and need to be rescaled over the interval [ak,bk] for each k input,

which are denoted by SLHCjk.

()
()

()

1

0,1

1,

1 1

jk

jk S

jk jk jk jk
jk k

S S

jk k k k jk

U Unif

RandPerm N

U U
LHC F

N N

SLHC a b a LHC

−

=

Π =

Π − + Π − + 
= = 

 
= + −

 (3.7)

The algorithm described in Eq. (3.7) is for the original LHC algorithm and is what is mostly

used in this work. There are many ways that the LHC algorithm has been modified, but only two

others are included, and they are LHC-Center and LHC-Edge algorithms. Both of these algorithms

are slight variations with the LHC-Center is more likely to generate random values in the center

of each stratum as opposed to LHC-Edge which is more likely to generate random values near the

edges of each stratum. Typically, the edge and center version are not used because as long as N is

large (greater than 1000, which it usually is) then the sampling is uniform over each stratum

regardless of which version is used.

2 1
2
1

1

jk jk
Center

jk jk
Edge

U
LHC

N
U

LHC
N

Π − +
=

Π − +
=

−

 (3.8)

Special LHC designs include orthogonal arrays, symmetric LHC, cascade/nested/sliced

LHC, orthogonal LHC (not the same as orthogonal arrays), symmetric LHC, and LHC designs that

use Euclidean Distance [71]. Programmatically, Eq. (3.7) is the simplest method to follow since it

54

only relies on the user inputting the maximum and minimum values for each input [a, b] similar

to the inputs on Table 6.

III.IV Regression & Classification Data

This section will describe the inputs and outputs for the classification and regression tasks

for both the AULRC and AUSRC datasets. Readers should understand that the datasets were based

on the SCUD-B from Table 3. Summary statistics will be introduced and shown for various

parameters. Summary statistics are extremely useful since it is a part of preprocessing data.

Looking at the summary statistics is mostly an observation task, and it is important to ensure that

the summary statistics are what the user expects. The summary statistics are also used to ensure

that there are no issues in the data that was generated, and these issues could be outliers or problems

in the code that generated the data. Also, the information shown in the following sections are

developed in Python [1] using Pandas [81] & [82], Matplotlib [83], seaborn [84], and Plotnine

based on ‘ggplot2’ in R [85].

The first set of summary statistics will describe the count, mean, standard deviation,

minimum value, 25th Percentile, 50th Percentile, 75th Percentile, and maximum value, like what is

shown on Table 8 excluding the count. Table 8 can easily be generated in Python using Pandas

“describe” function. The count is just the number of samples in the dataset. The mean would be

the average value for the parameter. Standard deviation is the square root of the variance of the

parameter. Min and Max are just the minimum and maximum values of the parameter,

respectively. The quartiles for 25%, 50% (Median), and 75% show percentage of where data lies,

so 25% shows 25 percent of data lies below the value shown. Readers should note that the

minimum and maximum values are what was input to the Auburn tools and should match relatively

close when data is output.

55

The “describe” function provides a great set of summary statistics; however, the

distribution sampling must be confirmed and is best done by using a density histogram [67].

Histograms group data into intervals by either defining number of bins or interval range. The

density of each interval is displayed using a bar and the height is equal to the number of samples

in each interval. To confirm the LHC or uniform sampling mode is providing a uniform distribution

then the bars should be of equal density and would show equal height on a figure. Despite all

efforts that have been introduced to produce uniform distributions, the upcoming sections will

show some of the histograms not having uniform distribution at all. Mainly this is due to filtering

from the Auburn tools because not every design configuration gives a conceivable trajectory.

III.IV.I AULRC Regression Data

For the regression tasks, the output data is to be modeled as a function of the inputs. First,

the database must be described to show what inputs are used and why other inputs were excluded.

Table 8 shows the summary statistics of both input and output developed using the LHC sampling

algorithm from Eq. (3.7). Displayed on Table 8 is the parameter name, the mean, standard

deviation, minimum value, 25th Percentile, 50th Percentile (median), 75th Percentile, and maximum

value. The number of samples or count that was generated for this dataset was 500,000 samples

and takes approximately 75.5 hours to execute. Since the wing parameters were excluded, they are

all zero. Because the autopilot was turned off for both the vanes and tail fins, they are excluded as

well. Figure 97 in Appendix D: shows how the input file is setup for the AULRC with no autopilots

turned. Appendix E: & Appendix F: show datasets using fin autopilot and fin/vane autopilot,

respectively. The data describes a range of ballistic missiles.

56

Table 8 AULRC Regression Data

Parameter Mean STD DEV MIN 25% 50% 75% MAX
DBODY 3.02 0.29 2.50 2.77 3.02 3.27 3.50

EQRATIO 2.00 0.12 1.80 1.90 2.00 2.10 2.20
PC 1093.63 247.56 600.00 892.28 1108.03 1306.45 1500.00

DNOSE 0.85 0.09 0.70 0.77 0.85 0.92 1.00
LNOSE 3.25 0.19 2.93 3.09 3.25 3.41 3.58

THROAT 0.15 0.03 0.10 0.13 0.16 0.18 0.20
EXPR 16.35 4.89 8.00 12.10 16.27 20.56 25.00
FNL 0.80 0.12 0.60 0.70 0.80 0.90 1.00

TBURN 61.23 9.82 45.00 52.76 60.69 69.34 80.00
TRCR 1.26 0.43 0.50 0.89 1.26 1.63 2.00
TTR 0.66 0.18 0.35 0.50 0.65 0.81 1.00

TAILB2 0.97 0.29 0.50 0.72 0.95 1.21 1.50
TLE 18.56 11.07 0.00 9.08 18.16 27.61 40.00

TXLERATIO 0.88 0.07 0.75 0.81 0.88 0.94 1.00
ILAUNCH 84.91 2.66 80.00 82.73 85.01 87.15 89.99
THRSEA 40.31 18.38 7.32 26.37 36.41 50.64 126.91
MAXTHR 45.58 20.57 7.82 29.85 41.51 57.44 140.75
MAXDIST 841.19 739.48 52.80 231.87 610.78 1268.77 6713.27
APOGEE 298.69 318.13 5.44 50.15 187.71 448.04 3573.74

TOF 280.07 149.47 46.42 151.60 263.21 383.68 1133.21
WEIGHT 16.56 6.45 5.17 11.65 15.23 20.19 51.05

Box and whisker plots (boxplots) show the bottom whisker and top whisker, which are the

minimum and maximum value, respectively, and the box display the 25th, 50th (median), and 75th

percentiles (quartiles). Figure 18 shows the box plots for DBODY, PC, TAILB2, and ILAUNCH.

We can see that DBODY displays the quartiles at relatively uniform distribution and PC shows

the quartiles shifted up (skewed left). TAILB2 appears to be slightly skewed right and ILAUNCH

seems very uniform.

57

 The whole reason for using LHC sampling was to get better uniform distribution. To better

display the sampling distribution, histograms can be used to show the frequency of values using

bins and show an approximate view of the distribution. So, if the values are approximately constant

then the distribution can be said to be approximately uniform. Figure 19 displays the histograms

Fig. 17 Box & Whisker Plot for DBODY (Top-Left), PC (Top-Right), TAILB2 (Bottom-Left), &

ILAUNCH (Bottom-Right).

58

for DBODY with count being the number of samples with the specified bin width. The count

increases as DBODY increases from 2.5 to 3.5 but seems uniform overall and it could also be said

that higher DBODY values are preferred and lower DBODY are less likely to occur. Due to

filtering, higher DBODY may be more stable during flight. If we plot the max distance

(MAXDIST) versus DBODY, shown on Fig. 98 in Appendix G:, shows two groupings of data.

The first group seems to start at MAXDIST equal to 2000 (DBODY=2.5) and increases linearly

as DBODY goes to 3.5. The second group starts at MAXDIST equal to 2000 (DBODY=2.5) and

can see that the MAXDIST goes up to 5000 and increases to 6500 as DBODY increases but the

frequency starts to decrease drastically once DBODY gets to 3.0. This trend is also noticeable on

APOGEE and TOF versus DBODY.

Fig. 18 DBODY Histogram.

59

PC count increases quite drastically as PC increases and is not uniform in sample

distribution. Higher values of PC are apparently preferred. Since PC directly results thrust, lower

values of thrust are less likely to launch far and may not launch at all if the weight is too much,

therefore larger values of PC are more desirable. When plotting the outputs versus PC on Fig. 99

in Appendix H: can see that there are not multiple groupings due to PC. Instead, we see that the

outputs and their range increase as PC increases. Notice that as PC increases the minimum value

is still constant so it shows that missiles with PC can still have low MAXDIST or TOF. Other

parameters are still affecting the missile causing the minimum value to be constant, even as PC

increases.

Fig. 19 PC Histogram.

60

 Next, looking at Fig. 21, which displays the histograms for TAILB2, the number of missiles

decreases as TAILB2 increases and smaller TAILB2 values are more likely to occur. Larger values

of TAILB2 can contribute greatly applied momentum forces on the fins and fin shearing can occur

at high speeds, so large fins are more likely to break resulting in unstable trajectory and would

then be filtered out. Larger fins could also be causing more drag to influence the trajectory and

causing large stability changes. When plotting the outputs versus TAILB2 in Appendix I:, the

outputs are approximately uniform (constant) for every output, so it is hard to prove exactly why

larger TAILB2 are less frequent except for hypothesizing that the fins are shearing as they get

larger.

Looking at Fig. 22, ILAUNCH count decreases as ILAUNCH increases. and ILAUNCH

ranging from 85.00-87.50 degrees seems to be preferred. A huge reason why the frequency drops

Fig. 20 TAILB2 Histogram.

61

when ILAUNCH approaches 90 degrees is because the missile has no vane autopilot to pitch it

over and so many vertical launches will fail because they are less likely to go further and may get

filtered out of the database. The pitching angle should not be set to too low otherwise the missile

may not go as far. Liquid missiles do not generate the same amount of acceleration as solid

propellant rockets, which is why they are usually launched vertically and then pitched over. Future

datasets will pitch vertically, then the vane autopilot will be used to pitch over.

When plotting the outputs versus ILAUNCH on Fig. 101 in Appendix J: shows that

APOGEE increases as ILAUNCH increases, which makes sense 90-degree vertical launches are

most likely to go highest. However, MAXDIST drastically decreases as ILAUNCH approaches 90

degrees because there is no nozzle vane pitching allowing MAXDIST to increase, so instead

APOGEE increases as ILAUNCH approaches 90 degrees. MAXTHR and THRSEA are uniformly

distributed as ILAUNCH goes from 80 to 90 degrees. TOF increases as ILAUNCH increases, but

Fig. 21 ILAUNCH Histogram.

62

we know from Fig. 22 that the frequency decreases greatly as ILAUNCH approaches 90 degrees.

ILAUNCH has little to no effect on WEIGHT, which makes sense because WEIGHT itself is

constructed from geometric terms and has such a low range compared to TOF. ILAUNCH only

practically affects WEIGHT if ILAUNCH becomes too small, then the missiles may not be able

to launch due to WEIGHT.

Fig. 22 AULRC Output Data Scatter Matrix.

63

 Next, the outputs need to be evaluated using a scatter matrix to compare the histograms of

the outputs, and also compare the scatter plots of the outputs versus each other using pandas

“scatter matrix”. Figure 23 shows the scatter matrix of the output and will see that the diagonal are

the histograms, and the off diagonals show the scatter plots. The histograms appear skewed right,

meaning that the max values in the range are less frequently to occur. For example, one reason

why longer TOF is less frequent to occur is that longer flights are more likely to experience an

error such as tumbling or fin shear. The scatter plots are useful to see if there are any relationships

between the output variables. These relationships can help understand how separable the data will

be and can be used to see which parameters will do well in the regression analysis.

For example, the relationship between MAXTHR versus THRSEA is very linear and

means that the two are related, which is obvious since they are both thrust terms. We cannot say

how easy it will be to train models to MAXTHR & THRSEA, but we can hypothesize that they

will be reproducible. Looking at TOF versus APOGEE shows a curvilinear relationship and

suggests that as TOF increases, as does APOGEE and so they are directly related to each other for

rocket propelled lofted ballistic trajectories are subject to the modeling in this dissertation.

We now put focus on APOGEE & TOF versus MAXDIST and can see that both have a

wide distribution and can say that APOGEE & TOF may have a more nonlinear relationship; thus,

may be more difficult to reproduce using regression methods. It can be seen that certain scatter

plots appear to have multiple distributions such as MAXDIST versus WEIGHT and suggest they

may be more challenging to reproduce. When looking at MAXTHR, THRSEA, & WEIGHT

histograms, they are normal with a right skew. Also notice that their range is small compared to

the other outputs. So, they should be relatively easy to reproduce. TOF histogram is also normal

with right skew but has a much larger range so it might be more difficult to reproduce. MAXDIST

64

& APOGEE are very right skewed but appear to be exponentially distributed so they may be more

challenging to reproduce.

Some of the sample thrust curves are plotted on Fig. 24 and can see how thrust changes as

time increases during flight. The reason why thrust increases is because during flight the

atmospheric pressure decreases as altitude increases. It will also be seen that some of the thrust

curves decrease because some of the flights are shorter duration. The flights are decreasing in

altitude causing thrust to be slightly less due in part to increases in atmospheric pressure on

average, and more prominently scaled.

 When plotting the sample altitude versus time curves on Fig. 25 can see how the altitude

varies greatly with time. Can see that the higher altitude trajectories have longer flight times and

vice versa. If we look at close-up of the sample altitude versus time curves on Fig. 26, can see a

few of the samples do not travel that long and so the thrust starts to decrease as altitude decreases

and was shown on Fig. 24. The sample altitude versus range is shown on Fig. 27 and we can see

the range that the missiles can have and will notice that the samples that go up more vertically are

less likely to travel further compared to the missiles that are pitched over. A close-up of Fig. 27

Fig. 23 Sample Thrust Curves.

65

shown on Fig. 28 shows that missiles pitched too low do does not go as far and will notice that

they have lower burn times and lower thrust.

Fig. 24 Sample Altitude vs. Time Curves.

Fig. 25 Close-up Sample Altitude vs. Time Curves.

66

Fig. 26 Sample Altitude vs. Range Curves.

Fig. 27 Close-up Sample Altitude vs. Range Curves.

67

III.IV.II AUSRC Classification Data

For the classification tasks, the output data from the AUSRC is used as the inputs in the

classification model and outputs a class value, which refers to the group (class) the missile belongs

to. One reason for using classification models is to reverse engineer parameters. Originally, before

the Auburn group tried to classify missiles, reverse engineering methods were used to try and

develop the missile parameters using regression methods. However, NNETs were not able to

accomplish this goal because there are too many missile parameters to model. For example, using

output data such as BURNTIME and MAXTHR, could we rebuild the missile geometries such as

DBODY (Body Diameter) and FINENESS (fineness ratio). So, instead of trying to rebuild the

geometry parameters, we would give different groups of missiles a unique class value. This class

value, in a way, tells us what geometry the missile has without actually needing to know what the

geometry is.

To rebuild the geometry using output data, a more advanced network called Generative

Adversarial Networks (GANs) may need to be used but is outside the scope of this work. Instead,

this work started out with classification models. Again, we begin by describing how the classes

were developed. For this work, we only utilize 7-star point grains. Originally, during the 2021-

2022 MSIC contract we developed 72 classes by modifying number of star points from 5,7,9, and

11 points, nozzle throat diameter, fineness ratio, and body diameter. Due to excess amount of

information, it is not easy to visualize every star grain configuration and so we only focus on a

subgroup of the database with 7-star points for this work. Table 9 shows the summary statistics

used to build the database for the classification models. The four outputs utilized for classification

are BURNTIME, MAXTHR, MAXPC, and MAXPE.

68

Table 9 Classification Database Summary Statistics

Parameter Mean STD DEV MIN 25% 50% 75% MAX
BURNRATE 0.040 0.000 0.040 0.040 0.040 0.040 0.041

PREXP 0.350 0.002 0.347 0.348 0.350 0.352 0.354
DENSITY 0.064 0.000 0.063 0.064 0.064 0.064 0.065

CSTAR 5363.98 30.95 5310.36 5337.27 5364.15 5390.78 5417.64
RPVAR 0.610 0.006 0.600 0.605 0.610 0.615 0.620
RIVAR 0.216 0.006 0.206 0.211 0.216 0.221 0.226
FVAR 0.089 0.005 0.081 0.085 0.089 0.093 0.097
EPS 0.918 0.023 0.878 0.898 0.918 0.938 0.958

PTANG 18.480 4.040 11.482 14.989 18.477 21.982 25.481
FNL 0.757 0.006 0.747 0.752 0.757 0.762 0.767

THROAT 0.163 0.019 0.140 0.144 0.163 0.183 0.189
LBODY 9.119 0.163 8.909 8.924 9.119 9.314 9.329
DBODY 0.884 0.033 0.842 0.845 0.884 0.923 0.926
LGRAIN 2.379 0.170 2.078 2.220 2.379 2.541 2.683

BURNTIME 16.864 1.422 13.404 15.746 16.812 17.935 21.094
MAXTHR 108.24 20.26 65.63 92.94 106.47 121.59 176.44
MAXPC 2499.53 882.79 1196.97 1673.06 2330.49 3290.06 4657.67
MAXPE 4.636 0.571 3.447 4.175 4.611 5.064 6.377

 Table 10 shows how the classes are differentiated from throat diameter, fineness ration,

and body diameter. We will see that the first 9 classes have the same throat diameter. Each class

changes in body diameter and each 3 classes the fineness ratio increases. To generate the complete

database, the AUSRC is executed 18 times (72 times to include the other star point configurations).

Appendix K: shows an example input file used to generate data using the AUSRC. Throat diameter

has a +/- 0.006 for maximum and minimum, respectively. Fineness ratio has a +/- 0.01 for

maximum and minimum, respectively. Body diameter has a +/- 0.002 for maximum and minimum,

respectively. The rest of the inputs also have a small amount of noise to add variability to the

output. Noise is also added because the regression models cannot use constant values. For each

class, 2500 samples are generated for a total of 45,000 samples (180,000 samples including the

extra star point configurations).

69

Table 10 Mean Value Class Differentiation

Class Throat Diameter Fineness Ratio Body Diameter
1 0.14264 8.91878 0.844
2 0.14264 8.91878 0.884
3 0.14264 8.91878 0.924
4 0.14264 9.11878 0.844
5 0.14264 9.11878 0.884
6 0.14264 9.11878 0.924
7 0.14264 9.31878 0.844
8 0.14264 9.31878 0.884
9 0.14264 9.31878 0.924
10 0.18264 8.91878 0.844
11 0.18264 8.91878 0.884
12 0.18264 8.91878 0.924
13 0.18264 9.11878 0.844
14 0.18264 9.11878 0.884
15 0.18264 9.11878 0.924
16 0.18264 9.31878 0.844
17 0.18264 9.31878 0.884
18 0.18264 9.31878 0.924

 Because there are many classes, looking at the histograms is not simply accomplished,

since the distributions are overlayed. Instead, we utilize the box and whisker plots to see how the

classes are differentiated by looking at DBODY, FINENESS, THROAT, BURNTIME,

MAXTHR, MAXPE, and MAXPC. Can see DBODY for each class on Fig. 29 and see the small

amount of noise that was added (+/- 0.002). FINENESS for each class is shown on Fig. 30 and can

see the small amount of noise that was added (+/- 0.01). THROAT for each class is shown Fig. 31

and can see the small amount of noise that was added (+/- 0.006).

70

Fig. 28 DBODY Box & Whisker Plots of Each Class.

Fig. 29 FINENESS Box & Whisker Plot of Each Class.

71

 When looking at BURNTIME on Fig. 32, can see how BURNTIME increases with each

DBODY increase, which makes sense because the wider the rocket the more fuel that can be

carried. Notice BURNTIME drops as DBODY resets to lowest value. Can see that for each 3 class

groups (first 9 classes) BURNTIME decreases as FINENESS ratio increases. As fineness ratio

increases the grain length increases slightly and the max pressure increases more significantly. If

we assume the burn time is steady, which it true for cylindrical grains, then we can approximate

burn time as 𝑡𝑡𝑏𝑏 = LGRAIN/(a𝑃𝑃𝑂𝑂𝑁𝑁). For demonstration purposes only, if LGRAIN=2.1 with

MAXPC=3000 psi gives 𝑡𝑡𝑏𝑏 = 2.13 seconds and LGRAIN=2.5 with MAXPC=3750 psi gives 𝑡𝑡𝑏𝑏 =

1.08 seconds. Can directly see that an increase in fineness ratio causes slight increase in grain

length but a VERY significant increase in chamber pressure and therefore a decrease in burn time.

Fig. 30 THROAT Box & Whisker Plot of Each Class.

72

An increase the nozzle throat diameter causes the nozzle length to be shorter which then

causes the propellant grain length to be longer for classes 10-18; therefore, the propellant burn

time is longer since the grain is longer. If we compare classes 1 & 10 using Eq. (2.29), they have

the same DBODY and FINENESS, but different THROAT. To see what is causing the difference

in BURNTIME, we know that 𝐿𝐿𝐵𝐵 is constant for both cases, the starting point of the grain 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

is also constant, and the body radius is constant. The only parameter that changes is the nozzle

length, if we then analyze Eq.’s (2.29) & (10.1)-(10.4) in Appendix B:, the only parameter causing

any difference is THROAT. An increase in THROAT reduces the available nozzle length, which

then increases the grain length (shown on Fig. 33) and vice versa. An increase in grain length then

increases the BURNTIME, which makes sense because more available propellant the longer it

takes to burn propellant.

Fig. 31 BURNTIME Box & Whisker Plot of Each Class.

73

Next, we can look at Fig. 34, which shows MAXTHR box plots for each class. Can see

that as DBODY increases, MAXTHR increases, and as FINENESS increases, MAXTHR

increases. Increasing THROAT decreases MAXTHR, analyzing Eq. (2.30) and comparing classes

1 and 10, which both have the same DBODY and FINENESS, burn area and the propellant

properties are constant; the only difference is THROAT. Calculating Eq. (2.30) using THROAT

from classes 1 and 10 will then show that class 10, which has higher THROAT, yields a significant

decrease in chamber pressure compared to the chamber pressure for class 1. This significant

decrease in chamber pressure causes a huge decrease in MAXTHR (See Eq. (2.31)). Notice Fig.

35 and shows that the first 9 classes, which have the same THROAT, have a higher MAXPC, then

classes 10-18, which have higher THROAT, have lower MAXPC. This trend is also seen on Fig.

36, which shows MAXPE, and can see that as DBODY & FINENESS increase, MAXPE increases,

Fig. 32 LGRAIN Box & Whisker Plot of Each Class

74

and when THROAT increases there is a reduction in MAXPE when comparing classes with same

DBODY & FINENESS.

Fig. 33 MAXTHR Box & Whisker Plot of Each Class.

Fig. 34 MAXPC Box & Whisker Plot of Each Class.

75

Fig. 35 MAXPE Box & Whisker Plot of Each Class.

76

IV. Model Generation: AULRC Regression

Now that the data has been introduced and described in Chapter III, we can begin the

regression analysis. In this work, we first utilize traditional statistical learning methods such as

linear regression, lasso regression, and ridge regression. We then recognize that linear regression

cannot fully capture the entire design space and reproduce the performance required to replicate

the highly nonlinear database. To improve performance, we then utilize NNETs.

IV.I Review of Regression in Missiles

Before the regression methods and their applications are discussed in detail, it is important

to mention previous works produced with regards to regression in which we are predicting some

quantitative response such as time of flight or normal force coefficient. One of the first regression

projects undertaken was the calculation of missile aerodynamic coefficients using NNETs from

Ritz [86] who used AEROModeler, which at the time was a prototype software to implement

NNETs. For the time, these results did well and surprisingly efforts were taken to develop model

explanations using descriptor sensitivities. Next, NNETs were developed using SAS to predict the

aerodynamic coefficients of missiles with grid fins [87]. These models use features such as angle

of attack and grid fin length to predict output features such as drag coefficient and static margin.

Results shows that each output could be predicted with 𝑅𝑅2 all greater than 0.9999. Next, SAS was

used again to develop NNETs to extend the work from [86] to include extra output features such

as pitch-rate pitching-moment effectiveness �𝐶𝐶𝑀𝑀𝑞𝑞� and roll-rate effectiveness �𝐶𝐶𝐿𝐿𝑝𝑝� [88]. Results

show extremely good fits using SAS. Next, SAS was used to develop linear regression models to

77

develop thrust as a function of time and classification NNETs were used to predict how many stars

points the grains have and resulted in 95% accuracy [89]. Finally, we arrive at the work done in

this dissertation from Cervantes [90], which is work based off this dissertation. NNETs were

developed using TensorFlow to predict time of flight, max thrust during flight, max distance

travelled, max altitude, and max thrust at sea level. Results showed mean absolute percentage

errors all than 0.5%. The work in this paper did not include the prediction of max weight, nor did

it train long enough to further improve results. Results will show in the coming sections as to why

NNETs are necessary and why enough training time is necessary.

IV.II Linear Regression Methods

To reiterate the basic idea of regression, a quantitative response is to be modeled using an

input feature ([67],[68],[91]). Equation (4.1) shows the relationship between the output and the

input, where �𝑓𝑓(𝑋𝑋)� is an unknown function and (ℰ) is the random error from a normal distribution

with a mean of zero. If the unknown function �𝑓𝑓(𝑋𝑋)� is assumed to be a linear function, then

�𝑓𝑓(𝑋𝑋)� can be approximated using coefficients (β0,β1), where (β0) is the intercept term and (𝛽𝛽1)

is the slope. For example, we may be trying to model time of flight of the missile as function of

launch angle and this model would be a simple linear regression model [92] shown on Eq. (4.2).

The only thing we need to identify are the regression model coefficients (β0, β1). To solve for the

coefficients, we first generalize Eq. (4.2) into Eq. (4.3). β�0 is the estimated intercept and is the bias

term, and the coefficients are combined into β�, which is vector of size (𝑃𝑃 + 1) to include the bias

term. The vector of input features, which are DBODY, ILAUNCH, etc., are 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑃𝑃)𝑇𝑇

(where P equals 15 for this database) used to predict the output responses 𝑌𝑌 like TOF are modeled

78

using Eq. (4.3). However, if we are modeling multiple outputs like TOF, MAXTHR, MAXDIST,

APOGEE, THRSEA, and WEIGHT, then we can further generalize Eq. (4.3) into Eq. (4.4), which

includes the K-vector of output responses Y to be modeled using the (𝑃𝑃𝑃𝑃𝑃𝑃) matrix of coefficients

β�𝐾𝐾.

0 1

()Y f X
Y X

ε
β β ε

= +
= + + (4.1)

 0 1TOF ILAUNCHβ β= + ⋅ (4.2)

 0
1

ˆ ˆ ˆˆ
P

T
j j

j
Y X Xβ β β

=

= + =∑ (4.3)

ˆˆ T

K KY X β= (4.4)

To calculate the regression coefficients, we can fit the model to training data that was

described in III.IV.I AULRC Regression Data. To train the model, the method of least squares can

used to minimize the residual sum of squares [93], shown on Eq. (4.5). 𝑅𝑅𝑅𝑅𝑅𝑅(β) is then rewritten

to matrix notation on Eq. (4.6) where 𝑦𝑦 is a N-vector of training outputs and 𝑋𝑋 is an (𝑁𝑁𝑁𝑁𝑁𝑁) matrix

of inputs (each row refers to inputs like BDODY, ILAUNCH, etc.). Differentiating Eq. (4.5) with

respect to β will allow estimating β which minimize Eq. (4.5) by setting Eq. (4.7) to zero gives the

estimated coefficients β� on Eq. (4.8). Since we are evaluating K=6 features there are again β�𝐾𝐾

(15𝑥𝑥6) matrix of estimated coefficients.

79

 () ()2

1

N

i i
i

RSS y xβ β
=

= −∑ (4.5)

 () () ()TRSS y X y Xβ β β= − − (4.6)

() ()() ()
1

2 0
N

T T
i i i

i

dRSS
x y x X y X

d
β

β β
β =

= − − = − =∑ (4.7)

 () 1ˆ T TX X X yβ
−

= (4.8)

Before implementation and results are shown for the linear regression method, it is

important to discuss the bias-variance trade-off [92]. Every model is affected by bias, variance,

and error (ℰ). When evaluating the test mean squared error (MSE) about a single sample (𝑥𝑥0), we

can measure the variance of 𝑌𝑌�(𝑥𝑥0), the bias of 𝑌𝑌�(𝑥𝑥0), and the variance of the error (ℰ), shown on

Eq. (4.9). var(ℰ) is the irreducible error, we then try to produce a model with low bias and low

variance. Variance in a model refers to the amount the prediction of the model would change if it

were trained using different data. A model with large variance would change drastically with small

changes in the training data. Imagine one model with a specific set of training data, it produces a

model with some output. New training samples are then added to the training and the model is

refit, the model now predicts drastically different results; this is a model with large variance. Bias

then refers to the error from modeling a highly nonlinear problem with a low order type model,

such as linear regression. It may be that relationship between the responses and features are highly

nonlinear, so no amount of training data can be used to produce an accurate model; thus, the model

80

would have large bias. Typically, traditional linear regression methods suffer from large bias and

low variance (underfitting).

 ()() () ()() ()
22

0 0 0 0
ˆ ˆˆ var varE y Y x f x bias f x ε  − = + +    (4.9)

Another issue we must guard against is overfitting to the training data, which is when the

model has low bias and high variance. So, this is opposite to the previous statement just made. One

easy way to generate overfitting is by increasing the number of parameters, which is useful to

improve model performance. What happens is that certain parameters build a large coefficient

value but are cancelled out by another parameter with a similar large negative coefficient. To

reduce variance and ensure low bias, a penalty can be applied to the size of the coefficients. The

first method is called “Ridge Regression” and works by shrinking the coefficients to be smaller

and can approach zero. Instead of determining β�𝐾𝐾, we now determine the ridge coefficients

�β�𝐾𝐾
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� such that they minimize a penalized residual sum of squares, shown on Eq. (4.10) where

λ is the regularization strength or shrinkage term. Basically, larger λ makes shrinkage greater so

coefficients are driven towards zero. Due to the scaling of the inputs, the inputs are typically

standardized. Writing the arg-min portion of Eq. (4.10) in matrix form on Eq. (4.11) and taking

the derivative with respect to β and setting equal to zero results in the estimated ridge coefficients

�β�𝐾𝐾
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� on Eq. (4.12) where I is the (𝑃𝑃𝑃𝑃𝑃𝑃) identity matrix.

2

2
0

1 1 1

ˆ arg min
N P P

Ridge
i ij j j

i j j
y x

β
β β β λ β

= = =

   = − − +  
   

∑ ∑ ∑ (4.10)

81

 () () ()T TRSS y X y Xλ β β λβ β= − − + (4.11)

() ()

() ()

()
()

1 1 1

1

2 2 0

ˆ

N P P

ij i ij j j
i j j

T T T

T T T

Ridge T T

dRSS
x y x

d

dRSS
X y X X y X X

d

X y X X X X I

X X I X y

λ
β λ β

β

λ
β λβ β λβ

β

β λβ λ β

β λ

= = =

−

 
= − − + = 

 

= − − + = − + +

= + = +

= +

∑ ∑ ∑

 (4.12)

Another widely used regularization method used is “Lasso Regression”. Lasso instead

makes coefficients exactly zero, whereas ridge shrinks towards zero. The penalty function in ridge

is considered 𝐿𝐿2, however, the penalty applied to lasso is 𝐿𝐿1 which makes the solution nonlinear

and so there is no general closed form solution. Programmatically, the lasso coefficients �β�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�

can be found using Eq. (4.13). Similar to ridge, the inputs should also be standardized as well.

Both ridge and lasso are used to feature selection to reduce the number of parameters in the model.

Generally, parameters with coefficients near zero are removed and the model is refit using reduced

data.

2

0
1 1 1

1ˆ arg min
2

N P P
Lasso

i ij j j
i j j

y x
β

β β β λ β
= = =

   = − − +  
   

∑ ∑ ∑ (4.13)

To implement linear, ridge, and lasso regression models, we use can use the Python

package called Scikit-Learn [2] to call the regression methods above using “sklearn.linear_model”

82

functions “LinearRegression”, “RidgeCV”, and “MultiTaskLassoCV”. “LinearRegression” uses

the ordinary least squares regression to solve for coefficients. “RidgeCV” is a cross-validation

implementation of ridge to calculate the optimal 𝜆𝜆 and automatically fits using the optimal 𝜆𝜆.

Similarly, “MultiTaskLassoCV” is also a cross-validation implementation of lasso to calculate and

fit with the optimal 𝜆𝜆.

IV.II.I Linear Regression Methodology

The implementation of the Python script for the linear regression is as follows and a very

good reference that this initial was based on is from Geron [94], who outlines methodologies for

using Scikit-Learn in great detail. It is highly recommended that users with little python experience

start with Geron [94]. An extra reference for developing a lot of the residuals and figures were

developed from Bruce [95].

1. Read in data using Pandas “read_csv” function to read data.

2. Use Pandas to separate data into input data and output data.

3. Use Sklearn “train_test_split” to randomly split data into training and testing data.

4. Develop pipeline to use “PolynomialFeatures” to add higher order terms and

standardize the data using “StandardScaler”.

5. Use the pipeline to transform the data.

6. Train the models using “fit”.

7. Predict the output data using the test data.

8. Calculate performance of models such as 𝑅𝑅2, MAPE, MSE, and WAPE.

The data is first read in and split into the input and output data. It is recommended that data

is split into training and testing data, so that the model does not overfit to the training data and do

poorly on the test data or new data. We will also evaluate higher order models of linear regression

83

which utilize higher terms like (DBODY*ILAUNCH, DBODY*THROAT*ILAUNCH, etc.). The

data is standardized then trained. The performance of each of the models is then obtained. First,

the 𝑅𝑅2 statistic is shown on Eq. (4.14) and is a proportion of the variance explained by the model

and is typically between 0-1, however if it is negative then a model which draws a line through the

mean value of the data would have a better fit ([92], [93]). 𝑅𝑅2 is a measure of the proportion of

variability in the output that is explained by the inputs. Another way of thinking about 𝑅𝑅2 is by

saying the amount of variability that is explained by the regression model (𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑅𝑅𝑅𝑅𝑅𝑅). One issue

with 𝑅𝑅2 is that it can be challenging to assess what value of 𝑅𝑅2 is acceptable.

()()

()

1

2

2 1

2

1

1

1 1

N

i
i

N

i i
i

N

i
i

y y
N

y f x
TSS RSS RSSR

TSS TSS y y

=

=

=

=

−
−

= = − = −
−

∑

∑

∑
 (4.14)

One of the most popular methods for estimating model quality is through the use of mean

squared error (MSE), shown on Eq. (4.15). The closer the predicted responses �𝑓𝑓(𝑥𝑥𝑖𝑖)� are to the

true values (𝑦𝑦𝑖𝑖), the lower MSE will be. A lower is MSE is desired in a model output. One issue

with MSE is that the outputs is in squared units, so if the output measure were TOF then the MSE

would be (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑2) which is an odd way to measure the error.

()()2

1

1 N

i i
i

MSE y f x
N =

= −∑ (4.15)

84

Often a percentage error is preferred and so the mean absolute percentage error (MAPE) is

used [96]. It is a proportion of the residual error to the actual value so in a sense is the relative

error of the model. MAPE is much easier to understand because it is percentage based. A negative

of MAPE is that when true values are near zero, MAPE will become very large and can approach

infinity. MAPE is also biased towards negative values and MAPE places higher penalty on

negative values [97].

()
1100

N

i i
i

i

y f x
MAPE

N y
=

−
=

∑
 (4.16)

To deal with the issues of MAPE, a modified version of MAPE called MMAPE (Modified

Mean Absolute Percentage Error) is also used to calculate performance, which is shown on Eq.

(4.17), and can see that instead of dividing by the true value (𝑦𝑦𝑖𝑖), the residual error is divided by

the difference between the maximum and minimum of Y. If values are near zero then the error will

not approach infinity and errors only grow large when the residual is great. An issue with MMAPE

is that errors which are significant for a specific sample may get reduced too low. Caution should

be taken when interpreting MMAPE due to the scaling of the residual error using the range because

they can vastly differ. For example, the ranges for the outputs are 119.59 Lbf/1000 for THRSEA,

132.93 Lbf/1000 for MAXTHR, 6660.47 ft/1000 for MAXDIST, 3568.3 ft/1000 for APOGEE,

1086.79 seconds for TOF, and 45.88 Lbm/1000 for WEIGHT.

()

() ()
1100

max min

N

i i
i

y f x
MMAPE

N Y Y
=

−
=

−

∑
 (4.17)

85

IV.II.II Linear Regression: One-Way Results

When splitting the data, the training data contains 400,000 samples and the testing data

contains 100,000 samples. The models are then fit using degree of one, so there are only one term

parameters modeled (DBODY, ILAUNCH, etc.), and the overall metrics are calculated and shown

for all three models on Table 11. Because this model only uses one-way terms in the model there

are 15 coefficients to model. The regularizations strength for lasso was determined to be 0.1 which

adds a small amount of error, and ridge allows regularization strength for each output are [0.8, 0.4,

5.3, 1.1, 0.4, 0.9] for TOF, MAXTHR, MAXDIST, APOGEE, THRSEA, & WEIGHT,

respectively. Can see that based on 𝑅𝑅2 the models are all equivalent and only differ when

evaluating MSE and MAPE. Linear model seems to perform best when evaluating MSE, Lasso

does best when evaluating MAPE and MMAPE. If we assess the individual output metrics, we can

then learn how well the model is performing for each individual output. Table 12 shows the 𝑅𝑅2

and see that all models do about the same. However, when assessing the individual outputs, can

see that none of the models can highly replicate MAXDIST, next is APOGEE, TOF, WEIGHT,

THRSEA, and finally MAXTHR seems to be the most replicable. To reassure the previous

statements, MSE is shown for each output on Table 13. Again, each model has approximately the

same MSE for each output. The model metrics are listed in order from highest MSE to least MSE:

MAXDIST, APOGEE, TOF, MAXTHR, THRSEA, and WEIGHT. In general, will see that

MAXTHR, THRSEA, and WEIGHT will have the lowest errors and APOGEE & MAXDIST will

have the most error. TOF will typically have the mid-range error. With 𝑅𝑅2 and MSE it is hard to

understand what the error looks like, so we need to look at percentage error.

Next, we assess MAPE on Table 14 and each model does about the same overall; except

now we can gauge how bad the model is performing. Note the APOGEE has 183% error, which is

86

eye opening to see how bad the model is reproducing APOGEE; MAXDIST has 88% error and

suggests that the model is not reproducing MAXDIST at all. TOF also a high pretty high error as

well with 20% and shows that on average the model will have 20% relative error to the true value.

MAXTHR, THRSEA, & WEIGHT have about 8-11% relative error and show that they are well

reproduced. Finally, looking at MMAPE on Table 15, all the models show the same performance.

However, notice that the percent errors show less than 5% for each output. Caution should be taken

when using MMAPE because the residual error is scaled by the range, so it is a percentage of the

range. So MAXDIST has largest error of 4.7% meaning that the residual error is 4.7% relative to

the range of MAXDIST, which is approximately 6660 ft/1000 meaning MAXDIST could be off

by about 313,020 feet assuming 4.7% error and would be a very large error. Even the 2.7 %

MMAPE for WEIGHT suggests that the result could be off by 1240 lbm when making predictions.

Even for the small error with MMAPE, there is still a very large residual error.

Table 11 Overall Model Performance for Degree =1

Model R2 MSE MAPE MMAPE
Linear 0.8581 35918.4609 53.3316 3.1827
Ridge 0.8581 35918.975 53.3311 3.1827
Lasso 0.8581 35918.0508 53.3036 3.1825

Table 12 𝑹𝑹𝟐𝟐 for Degree = 1

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 0.8825 0.9463 0.6454 0.8023 0.9404 0.9319
Ridge 0.8825 0.9463 0.6454 0.8023 0.9404 0.9319
Lasso 0.8825 0.9463 0.6454 0.8023 0.9404 0.9319

87

Table 13 MSE for Degree = 1

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 2624.9968 22.673 192767.5625 20072.6484 20.067 2.8277
Ridge 2625.0365 22.6734 192770.2539 20072.9912 20.0673 2.8277
Lasso 2624.887 22.6728 192765.5156 20072.332 20.067 2.8277

Table 14 MAPE for Degree = 1

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 19.6549 9.8245 88.127 183.4058 10.4442 8.5334
Ridge 19.655 9.8245 88.1262 183.4037 10.4441 8.5334
Lasso 19.6599 9.8183 88.1071 183.2694 10.4381 8.5288

Table 15 MMAPE for Degree = 1

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 3.5573 2.6389 4.6893 2.7812 2.7501 2.6795
Ridge 3.5573 2.6389 4.6893 2.7812 2.7501 2.6795
Lasso 3.5576 2.6385 4.6892 2.7809 2.7497 2.6791

 Figure 37 shows the predicted versus actual plots to compare the predicted output using

the linear model to the actual test data. If the model was perfectly replicating the data, the seaborn

“regplot” would show the predicted versus actual data as a linear line and would follow the black

line on the figure. However, can see that predicted versus actual data for TOF that the model

partially fits the data and there is still wide dispersion of error. Can even see that for earlier TOF,

the model is predicted negative TOF, which is substantially different from actual TOF (over 500

seconds), then the model is greatly underpredicting and apparently there is a portion of data that is

88

not getting accurately trained by the model. When looking at MAXTHR, can see that the model is

much more accurately predicting the actual data, at least from 25-75 lbf/1000. The model is having

trouble predicting near the minimum and is predicting negative value, which is very wrong, and

the model is underpredicting near the maximum thrust values. Both outputs suggest that a higher

order model is necessary to improve model error.

 Figure 38 shows the predicted versus actual plot for MAXDIST & APOGEE. We see a

similar trend on both outputs where the model is not accurately predicting the output. The model

is vastly underpredicting near the minimum values, MAXDIST is also greatly overpredicting near

the minimum value. Both models seem to have a sub-portion of data that is not being modeled

correctly as the output value increases. The linear model is obviously capable of replicating the

data and a higher order model is needed.

Fig. 36 Linear One-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right).

89

 Figure 39 shows the predicted versus actual plot for THRSEA & WEIGHT. The models

are replicating the data similar to that of MAXTHR on Fig. 37, where only the center region is

being modeled correctly and the minimum and maximum areas are being under predicted. Both of

these outputs suggest that there is more nonlinear relationship not being captured by the one-way

parameters and that a higher order model is needed.

Fig. 37 Linear One-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

90

IV.II.III Linear Regression: Two-Way Results

To make the model a higher order model using linear regression, the “PolynomialFeatures”

parameter “degree” is set to two and will includes multiplicative parameters like on Eq. (4.18). We

include terms of higher degree such as 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌2 to ensure that the model is accurately capturing

nonlinear relationships in the data. It may be that part of the output in actuality may be linearly

modeled with a parameter say DBODY, but another portion of the output is actually nonlinearly

modeled with 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌2. Regardless of including nondistinctive parameters, it will be shown that

the linear regression models even up to 3rd order are not capable of replicating every output.

Because the two-way and one-way parameters are included, there are a total of 230 coefficients to

obtain.

Fig. 38 Linear One-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

91

0 1 2

2 2
3 4 5

TOF DBODY ILAUNCH
DBODY DBODY ILAUNCH ILAUNCH

β β β

β β β

= + + +

+ ⋅ +



 (4.18)

 This data used in this model is the same as that was used in the previous model in section

IV.II.II, which used one-way parameters, so it has 400,000 training samples and 100,000 testing

samples as well. The regularizations strength for lasso was set to 0.1 because lasso will not

converge with too many parameters, and ridge allows regularization strength for each output are

[0.1, 0.1, 0.1, 0.1, 0.1, 0.1] for TOF, MAXTHR, MAXDIST, APOGEE, THRSEA, & WEIGHT,

respectively. Can immediately see from Table 16 that increasing the polynomial order to two that

the performance increases and notice that the linear and ridge models are quite similar in metrics

and are outperforming lasso. See that 𝑅𝑅2 increases from 0.85 to 0.96, so overall the model is

performing better and is verified by the decrease in MSE from 36k to 13.6k but MSE is still not

near zero and should be. There is still considerable error with MAPE, even though it is halved, and

MMAPE is also halved. Table 17 shows the individual 𝑅𝑅2 values for each output and can see the

model improvements. MAXTHR, THRSEA, and WEIGHT have 𝑅𝑅2 all greater than 0.99 which

suggests that the model is fitting extremely well. Can see that APOGEE & TOF have greatly

increased as well but did not increase as high so there is still some error. MAXDIST did increase

from 0.65 but not as much as the other parameters so there is obviously error in the regression

model. Table 18 shows the MSE and we can see that MAXTHR, THRSEA, and WEIGHT have

greatly reduced in error and no need to say there doing well with the other parameter. TOF also

has very low error but not near zero yet and APOGEE & MAXDIST still have quite large errors.

Table 19 shows individual output MAPE values and can see TOF has less than 10% relative error

which is quite good, and MAXDIST & APOGEE are obviously not replicated well. Table 20

shows the MMAPE and shows low error for every parameter. Nevertheless, it should be

92

recognized that the scaling of the outputs shows that MAXDIST can be off by approximately

180,000 feet. MAXTHR, THRSEA, and WEIGHT are modeled well using the linear regression

models, but modeling TOF, MAXDIST, & APOGEE requires a higher order model.

Table 16 Overall Model Performance for Degree = 2

Model R2 MSE MAPE MMAPE
Linear 0.9598 13671.4414 24.0601 1.1556
Ridge 0.9598 13672.0328 24.0445 1.1554
Lasso 0.9197 22442.1855 33.4708 2.2206

Table 17 𝑹𝑹𝟐𝟐 for Degree = 2

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 0.9682 0.9982 0.8628 0.934 0.9985 0.997
Ridge 0.9682 0.9982 0.8628 0.934 0.9985 0.997
Lasso 0.9415 0.9751 0.7736 0.8988 0.9715 0.9578

Table 18 MSE for Degree = 2

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 709.9409 0.7759 74613.3672 6703.9424 0.4911 0.1264
Ridge 709.9576 0.7759 74616.8835 6703.9625 0.4911 0.1264
Lasso 1307.1835 10.5091 123054.3359 10269.7432 9.5782 1.7513

Table 19 MAPE for Degree = 2

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 8.5808 1.7767 53.2036 77.7362 1.5718 1.4915
Ridge 8.5789 1.7765 53.112 77.7368 1.5714 1.4912
Lasso 12.6237 6.4154 51.0828 117.4359 6.9218 6.345

93

Table 20 MMAPE for Degree = 2

Model TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
Linear 1.546 0.4783 2.6869 1.3608 0.3976 0.4638
Ridge 1.5458 0.4783 2.686 1.3607 0.3976 0.4638
Lasso 2.3214 1.7738 3.4338 1.8393 1.8849 2.0702

Figures 40-42 show the predicted versus actual and can see how well the model is

replicating MAXTHR, THRSEA, & WEIGHT. MAXTHR & THRSEA do suffer a bit at the

maximum end and can see the model slight underpredicting. WEIGHT is slightly underpredicting

at the maximum end but appears to have another distribution being modeled in the mid-range

which suggests a higher order model or nonlinear model is required to capture the effects of this

distribution. It is obvious to see that there are two distributions that cannot be captured by the

model and is far worse on MAXDIST because there is also a higher density of samples on the

minimum. A higher order model may improve performance; however, there is apparently a second

distribution that cannot be accurately modeled using linear regression so increasing the model

order may improve performance of the other parameters but will still not capture the second

distribution. See Appendix L: 3rd Order Linear Regression Model for some performance metrics

and predicted versus actual plots using the linear model only because it proves that the linear

regression model cannot capture the second distribution.

94

Fig. 39 Linear Two-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right).

Fig. 40 Linear Two-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

95

IV.III Neural Networks: Regression

In the previous section, linear regression methods were developed, and results shown that

none of the methods were fully capable of replicating the data. A higher degree regression model

is only going to slightly increase performance, but never fully replicate the data due to the two

distributions of data. Therefore, to increase performance a nonlinear model is needed to capture

the two distributions. There are multiple nonlinear methods and include nonlinear regression [91],

nearest neighbors [93], decision trees [92][93], ensemble methods [92][93], and NNETs [92-

94][98-103]. Before, NNETs are discussed in mathematical terms, a brief timeline of NNETs is

presented to show how NNETs came to such prominence today. It should be noted that NNETs

are not new, in fact they first came to light in 1943 from McCulloch and Pitts [104] developing a

computational framework for biological neurons using logic functions such as AND, OR, and NOT

Fig. 41 Linear Two-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

96

[94]. These logic functions work on the premise of whether inputs in the neuron are active or not.

Frank Rosenblatt then developed the perceptron in 1958 [105], which takes a sum of the inputs

and weights, and a function is applied that would output zero if the value was less than a threshold

value and would output one if greater than the threshold value. Figure 43 shows the perceptron

and can see the layout of how a perceptron works. The perceptron sum is a linear regression

formula 𝑧𝑧 = 𝑋𝑋1𝑊𝑊1 + 𝑋𝑋2𝑊𝑊2 + ⋯+ 𝑋𝑋𝑃𝑃𝑊𝑊𝑃𝑃 where W are the weights to be determined like the

coefficients in regression, a threshold function (ϕ) is then applied to the perceptron sum to output

zero or one based on a threshold value like on Eq. (4.19) and is essentially a step function.

 ()
0 if
1 if

z threshold
z

z threshold
φ

<
=  ≥

 (4.19)

 If we then combine multiple perceptrons to generate a fully connected layer the output can

be generalized using basic linear algebra on Eq. (4.20). X is a matrix of inputs with each row being

the sample and each column is a feature, say 𝑋𝑋1. W is a matrix of all the weights where each row

refers to weights for input neuron and each column refers to an artificial neuron, say 𝑧𝑧1. The bias

vector b contains all the weights for a bias neuron and has one bias per artificial neuron 𝑧𝑧. Output

Fig. 42 Threshold Logic Unit Perceptron.

97

is then the input matrix multiplied by the weight matrix plus the bias matrix and then the function

(ϕ), which was referred as “threshold”, which is the activation function, and for perceptron

learning was just the step function.

 () ()h X XW bφ= + (4.20)

NNETs are fundamentally similar to regression methods in that an algorithm is required

for obtaining the weights. Rosenblatt adapted the training algorithm from Hebbian learning, which

famously states that weights increase when two neurons fire simultaneously [106]. Perceptrons

use an adaptation of Hebb’s rule and accounts for error in the output. Equation (4.21) is the

perceptron learning rule used to update the weights, where 𝑤𝑤𝑖𝑖,𝑗𝑗 is the weight between the 𝑖𝑖𝑡𝑡ℎ input

neuron and the 𝑗𝑗𝑡𝑡ℎ output neuron, η is the learning rate, 𝑦𝑦𝑗𝑗 is the actual output of the 𝑗𝑗𝑡𝑡ℎ output

neuron for the training sample, 𝑦𝑦�𝑗𝑗 is the predicted output of the 𝑗𝑗𝑡𝑡ℎ output neuron, and 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ

input of the training sample. The Perceptron convergence theorem states that if the training

samples are linearly separable then the solution will converge.

() ()Next Step
, , ˆi j i j i j iw w y y xη= + − (4.21)

There are limitations to perceptron learning, which if the data is too complex then

perceptron learning will not be able to converge. More advanced perceptron’s can be developed

by add more perceptron layers (Multilayer Perceptron – MLP), which can then solve more

complicated problems. A stronger learning algorithm is then needed to update the weights and in

1985 Rumelhart, Hinton, & Williams [107] adapted the backpropagation learning algorithm

(developed in 60’s & 70’s) to train weights in the MLP. Backpropagation is actually just gradient

98

descent which computes the error gradients with respect to the weights �∂E
∂w
� and will be shown to

be similar to Eq. (4.21).

IV.III.I Feedforward NNETs & Backpropagation

If there are multiple layers, the error gradient can be quite deceptive to calculate, ref.’s [92-

94] & [98-103] all provide some discussion on feedforward NNETs and backpropagation. A

Feedforward network from [93] is shown here for the NNET shown on Fig. 44 which uses a single

hidden layer. The neurons in the hidden layer are referred to as hidden units from now on. Let X ∈

ℛ𝓃𝓃 denote a real values random input vector of n independent variables, i.e., the inputs such as

DBODY, and Y ∈ ℛ𝐾𝐾 denote a real valued random output vector of K dependent variables, i.e.,

the outputs such as TOF. The Z terms are the sum of the weight and inputs multiplied, shown on

Eq. (4.22), where 𝑊𝑊1,1
1 refers to weight times 𝑋𝑋1 in the first hidden layer and 𝑊𝑊𝐵𝐵,1

1 is the bias vector

Fig. 43 NNET Representation.

99

for hidden unit 1 in hidden layer 1. Z derived features are then activated using function (σ), e.g.,

sigmoid function, shown on Eq. (4.23) to develop A activations for each hidden unit. The T terms

are just like the Z terms in that they are the sum of weights in hidden layer 2 times the activations

values A from hidden layer 1 and is displayed on Eq. (4.24), where 𝑊𝑊1,1
2 refers to weight times 𝐴𝐴1

in the first hidden layer for output unit 1in the output layer and 𝑊𝑊𝐵𝐵,1
2 is the bias vector for output

unit 1 in the output layer. Because this NNET is used for regression analysis, 𝑌𝑌𝐾𝐾 = 𝑇𝑇𝐾𝐾 with no

activation applied to 𝑇𝑇𝐾𝐾.

1 1 1

1, 1 , , , 1, 2, ,m m n m n B mZ W X W X W m M= + + + =  (4.22)

 () 1 ,
1 mm m mZA Z Z

e
σ −= = −∞ < < ∞

+ (4.23)

2 2 2

1, 1 , , , 1, 2, ,k k M k M B kT W A W A W k K= + + =  (4.24)

To fit the NNET there 𝑀𝑀(𝑛𝑛 + 1) weights (includes bias) to calculate for hidden layer 1 and

𝐾𝐾(𝑀𝑀 + 1) weights (includes bias) to determine for the output layer; so, there are a total of

M(𝑛𝑛 + 1) + 𝐾𝐾(𝑀𝑀 + 1) weights to determine for the NNET. A learning algorithm similar to Eq.

(4.21), called backpropagation is used to determine the error gradient to update the weights instead

of using just the residual (𝑦𝑦 − 𝑦𝑦�). Equation (4.25) is the sum of squared errors such that the weights

are minimized, similar to Eq. (4.5), and could be a different function such as mean squared error,

mean absolute error, or mean absolute percentage error.

 () ()()2

1 1 1

N N K

i ik k i
i i k

R W R y Y x
= = =

= = −∑ ∑∑ (4.25)

100

Equation (4.26) then shows how to use Eq. (4.25) to calculate the error gradient with

respect to a weight for an output unit. Equation (4.27) shows how the error gradient reduces to

calculate the bias weight for an output unit.

()
()

()
()

()()() ()

2 2
, ,

2
,

2 1

k i k ii i k i
m

m k k i k m k k i k

i
ik k i m

m k

Y x Y xR R T R A
W Y x T W Y x T
R y Y x Z

W
σ

∂ ∂∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂

∂
= − −

∂
 (4.26)

()
()

()
() ()

()()()()

2 2
, ,

2
,

1

2 1 1

k i k ii i k i

B k k i k B k k i k

i
ik k i

B k

Y x Y xR R T R
W Y x T W Y x T
R y Y x

W

∂ ∂∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂

∂
= − −

∂
 (4.27)

Equation (4.28) then shows how to calculate the weights for the hidden layer and can see

now that it includes the summation of error gradients of each output unit, significantly making the

total error gradient more complex. A bias weight for a hidden unit is also shown for brevity on Eq.

(4.29).

()
()

()()() ()

1 1
1, ,

2
, ,1

1,

2 1

K
k ii i k m m

kn m k i k m m n m

K
i

ik k i m k m i n
kn m

Y xR R T A Z
W Y x T A Z W

R y Y x W Z X
W

σ

=

=

∂∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂

∂ ′= − −
∂

∑

∑ (4.28)

101

()
()

()()() ()()

1 1
1, ,

2
,1

1,

2 1 1

K
k ii i k m m

kB m k i k m m B m

K
i

ik k i m k m
kB m

Y xR R T A Z
W Y x T A Z W

R y Y x W Z
W

σ

=

=

∂∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂

∂ ′= − −
∂

∑

∑ (4.29)

The error gradients from Eq.’s (4.26) and (4.28) can now be used in the gradient descent

to update the (𝑗𝑗 + 1) weights for the both the hidden units and output units, shown on Eq. (4.30)

where (γ) is the learning rate. This form of the gradient descent calculates the summation of the

error gradients for the entire training set and is known as batch gradient descent (BGD). The main

issues with batch gradient descent are that the quadratic error surface may be extremely complex,

and the algorithm may get stuck in a local minimum [101]. Other concerns have to do with the

amount of training time, since the training set can be massive it can take long computational times

to calculate the entire dataset error gradient [94].

() ()
()

() ()
()

2 1 2
, , 2

1 ,

1 1 1
, , 1

1 ,

N
j j i

m k m k j
i m k

N
j j i

n m n m j
i n m

RW W
W

RW W
W

γ

γ

+

=

+

=

∂
= −

∂

∂
= −

∂

∑

∑ (4.30)

On the opposite spectrum of gradient descent is stochastic gradient descent (SGD) which

only uses one sample (𝑁𝑁 = 1) to approximate the error. Issues with SGD are that due to the

approximation of error, the solution will jump randomly around the solution, but it may never

reach the global minimum. Despite this randomness, it is usually more likely to find the global

minimum compared to batch gradient descent. Similar to batch gradient descent, solely due to the

102

amount of randomness the stochastic method can also take a very long time to converge; however,

the stochastic method uses much less memory compared to batch gradient descent since the

calculations do not require every training sample [94].

In the middle of SGD and batch gradient descent is mini-batch gradient descent (MBGD),

which uses a random subset of training samples. There is less randomness in this algorithm so it

should not jump around the global minimum too much. Similar to BGD, MBGD could have

difficulty moving out of the local minimum. Typically, batch gradient descent takes the longest to

train due to training size, followed by MBGD, and SGD is usually fastest; however, SGD could

take much longer if there is too much randomness [94]. The NNETs developed in this work all use

MBGD as it seems to provide the best compromise of SGD and batch gradient descent. For clarity

with MBGD, each batch is fed through the network then the weights are updated, so if there are

100 batches in an epoch then there are 100 updates to the weights per epoch. For SGD, if there are

1000 samples, then there are 1000 weight updates per epoch. For BGD, then there is only one

weight update per epoch.

IV.III.II Optimizer: Momentum, NAG, RMSProp, Adam, & Nadam

The backpropagation algorithm was defined using batch gradient descent because it was

the original algorithm which was used to converge MLPs. NNETs have come a very long way and

more advanced algorithms have come to fruition. When discussing machine learning, the

backpropagation using gradient descent is commonly known as an optimizer called “SGD” and

was modified to include a momentum term for speedup [108] at least in TensorFlow (TF). If we

generalize the weights from Eq. (4.30) into (θ), we can develop a momentum vector (𝑚𝑚) where

(η) is the learning rate and �∇θ𝐽𝐽(θ)� is the gradient of the cost function �𝐽𝐽(θ)� with respect to the

103

weights vector (θ). The weights vector (θ) are then updated by adding the momentum vector (𝑚𝑚).

A commonly used value for the momentum term (β) is 0.9 [108] and the momentum algorithm

can easily be called in TF from function “TF.keras.optimizers.SGD(lr=0.001, momentum = 0.9)”.

()m m J

m
θβ η θ

θ θ
= + ∇

= −
 (4.31)

A variant of the momentum algorithm developed from Eq. (4.31) takes the gradient of the

cost function in the direction of momentum [94]. This algorithm is known as Nesterov Accelerated

Gradient Algorithm (NAG) [108], shown on Eq. (4.32), helps the momentum vector point in the

right direction and usually helps the algorithm converge faster compared to the momentum

algorithm. The NAG variant of the momentum algorithm can easily be implemented by setting

“nesterov = true” in the “SGD” function from TF.

()m m J m

m
θβ η θ β

θ θ

= + ∇ −

= −
 (4.32)

Another algorithm called AdaGrad [109] is an algorithm that was developed to correct the

gradient direction earlier in training. Because it is an adaptive gradient method, AdaGrad runs into

an issue where it slows down too fast and does not reach the global minimum. To fix this issue,

RMSProp was developed to only use gradients from recent iterations instead of using every

gradient from the beginning of training [108]. Equation (4.33) shows RMSProp where (β) is the

decay rate usually set to 0.9 (similar to momentum), (⊗) refers to element wise multiplication for

the cost function gradients, (η) is the learning rate (usually set to 0.001), (∅) refers to element

wise division, and (ℰ) is a small value to protect from dividing by zero. RMSProp can easily be

104

called in TF by “TF.keras.optimizers.RMSprop(lr=0.001, rho = 0.9)”, where “lr” is the learning

rate and “rho” is the decay rate.

() () ()

()
1s s J J

J s
θ θ

θ

β β θ θ

θ θ η θ ε

= + − ∇ ⊗∇

= − ∇ ∅ + (4.33)

A more advanced algorithm Adam [110] (adaptive moment estimation), was developed to

combine the momentum and RMSProp algorithms. The momentum algorithm is an exponentially

decaying average of past gradients, which is an estimation of the mean of the gradients; RMSProp

is an exponentially decaying average of the past squared gradients, which is an estimation of the

variance of the gradients [94]. So, there is a momentum vector (𝑚𝑚), which uses a momentum term

(β1), and a variance vector (𝑠𝑠), which uses a decay rate (β2) in Eq. (4.34). (𝑚𝑚) and (𝑠𝑠) are biased

towards zero, so they are then bias-corrected to give bias-corrected first moment (mean) (𝑚𝑚�) and

bias-corrected second moment (variance) (𝑠̂𝑠), and are then used to give the weights update rule

for (θ). Adam optimization can be called in TF using “TF.keras.optimizers.Adam(lr=0.001,

beta_1=0.9, beta_2=0.999)”, where “lr” is the learning rate, “beta_1” is the momentum term, and

“beta_2” is the decay rate. An upside to using Adam is that the learning rate (η) does not need to

be fine-tuned in most cases and can be kept constant in most cases.

() ()
() () ()

1 1

2 2

1

2

1

1

ˆ
1

ˆ
1

ˆ ˆ

t

t

m m J

s s J J
mm

ss

m s

θ

θ θ

β β θ

β β θ θ

β

β

θ θ η ε

= + − ∇

= + − ∇ ⊗∇

=
−

=
−

= − ∅ +

 (4.34)

105

Similar to Eq. (4.32), the Nesterov Accelerated Gradient (NAG) Algorithm can be applied

to Adam [111], which is called Nadam, to improve convergence time [94]. Equation (4.35) shows

Nadam and it is very similar Adam, except that the cost function gradient is bias-corrected using

the momentum term. Because Nadam is often faster than Adam, it is used for the analysis in this

work. Nadam optimization can be called in TF using “TF.keras.optimizers.Nadam(lr=0.001,

beta_1=0.9, beta_2=0.999)”, where “lr” is the learning rate, “beta_1” is the momentum term, and

“beta_2” is the decay rate.

()
()

()

()

()()

1

1 1

1

2 2

2

1 1

ˆ
1

1

ˆ
1

1

ˆ
1

ˆ ˆ ˆ1

t

t

t

g J

J
g

m m g
mm

s s g g
ss

m g s

θ

θ

θ

θ
β

β β

β
β β

β

θ θ η β β ε

= ∇

∇
=

−

= + −

=
−

= + − ⊗

=
−

= − + − ∅ +

 (4.35)

These algorithms are not the only optimizers available [94]. There are many others on the

TF optimizers webpage. TF also allows users to build custom optimizer functions if the user is

interested in optimization algorithms. Because this work is not an optimization study, we do not

test multiple optimizers because they are very similar and are only concerned with getting minimal

error. Nadam was chosen because it typically performs faster than most other optimizers; however,

we are not concerned about proving that statement. If users are interested in optimizing the

106

optimizer choice, then users should refer to the Keras-Tuner website [112] to see available methods

for tuning NNETs.

IV.III.III Activation Functions: Sigmoid, RELU, and ELU

When backpropagation was developed for NNETs [107], an activation function was used

which had continuous derivatives and was nonlinear. The first activation function was just a linear

activation model in perceptron’s, and to achieve qualities of a continuous nonlinear activation

function, the sigmoid function (a.k.a. logistic function) was used and is shown on Eq. (4.36),

including its derivative (see Fig. 45). The main issue with the sigmoid function is that when input

values become large in positive or negative magnitude, the gradients become very small, and

backpropagation barely changes the weights and as the gradient is backpropagated to the beginning

layers there is no change. This effect is known as the vanishing gradients problem [94] and is

referred to as saturation.

Fig. 44 Sigmoid and its Derivative.

107

()

() () ()()

1
1

1

xx
e

x x x

σ

σ σ σ

−=
+

′ = −
 (4.36)

 Many activation functions have been developed over the years, but this work will only

focus on two of the most common ones today and they are the Rectified Linear Unit Function

(RELU) [113] and Exponential Linear Unit Function (ELU). RELU is heavily used in deep

learning [114] because it avoids saturation for positive values, and it is simple to calculate. If the

input is negative then it outputs zero and is linear for positive values. Its derivative is zero or one

if the input value is negative or positive, respectively, and can see these properties on Fig. 46. Main

issues with RELU are that it is not continuous at zero so the gradient descent can bounce around.

Another issue is simply due to the fact that it outputs zero for negative values. RELU can cause

units to become saturated for negative inputs and during network training, many units can start to

only output zero. This is known as the dying RELU problem [94]. Other variants of RELU have

been developed to avoid dying RELUs such as leaky RELU and randomized leaky RELU; most

variants use 𝑚𝑚𝑚𝑚𝑚𝑚(α𝑥𝑥, 𝑥𝑥) to avoid having zero for negative inputs [115].

() ()
() ()

max 0,

max 0,1

RELU x x

RELU x

=

′ =
 (4.37)

108

Finally, ELU was developed and shown to outperform RELU and all its variants [116].

ELU is shown on Eq. (4.38) and can see it avoids the dying RELU and vanishing gradients problem

by allowing negative values to be output. Figure 47 shows ELU and derivative. An issue with ELU

is that it can computationally take longer to calculate compared to RELU [94]. A variant of ELU

called SELU was proposed because it allows self-normalization of the layers which solves the

vanishing and exploding gradients problem, but there are many restrictions that must be satisfied

to see performance gains [117].

Fig. 45 RELU and its Derivative.

109

() ()

()

1 if 0

 if 0

 if 0
1 if 0

x

x

e x
ELU x

x x

e x
ELU x

x

α

α

 − <= 
≥

 <
′ = 

≥

 (4.38)

To avoid issues with Sigmoid and RELU and constraints of SELU, ELU is used for this

work with a default alpha of one. It is briefly mentioned from the Universal Approximation

Theorem that the choice of activation function can lead to specific error bounds based on certain

conditions. For example, Cybenko [118] derives a theorem which states for any sigmoidal

function, then finite sums of the following form on Eq. (4.39) are dense in �𝐶𝐶(𝐼𝐼𝑛𝑛)�. Therefore, for

any f ∈ C(𝐼𝐼𝑛𝑛) and ℰ >  0, there is a sum 𝐺𝐺(𝑥𝑥), i.e., Eq. (4.39), such that the residual error is less

error is less than ℰ, shown on Eq. (4.39). Issues with this theorem is that it does not state how

many units are the hidden layer nor does it state how to find the correct approximating function.

Fig. 46 ELU and its Derivative with 𝜶𝜶 = 𝟏𝟏

110

There are variations of this theorem, but they also have hard constraints and they suffer from not

being able to tell the user what function is required nor do they state how many layers or units are

required for convergence [119][120].

 () ()
1

N
T

j j j
j

G x y xα σ θ
=

= +∑ (4.39)

 () () for all nG x f x x Iε− < ∈ (4.40)

IV.III.IV NNET Script Methodology

The NNET script methodology is similar to Section: IV.II.I Linear Regression

Methodology.

1. Read in data using Pandas “read_csv” function to read data.

2. Use Pandas to separate data into input data and output data.

3. Use Sklearn “train_test_split” to randomly split data into training and testing data.

4. Develop normalization using “tf.keras.layers.Normalization” and use the adapt

function to fit to the training data.

5. Develop the NNET model using “tf.keras.Sequential” and use “tf.keras.layers.Dense”

to develop a dense feed forward network. The “Sequential” model includes an input

layer, the “Normalization” function defined previously, hidden layers using “Dense”,

which include the number of hidden units and activation function, and output layer

111

“Dense” function with no activation. The input is the size of the inputs, which is 15

input units, and there are 6 output units.

6. Compile the model using “compile” and include a loss function and optimizer such as

“mse” and “adam”, respectively.

7. Train the models “fit” and include the training input/output, validation input/output,

and the number of epochs.

8. Predict the output data using the test data.

9. Calculate performance of models such as 𝑅𝑅2, MAPE, MSE, and WAPE.

IV.III.V Results: Multi-Layer, Multi-Unit Matrix

The main issue with initially setting up NNETs is that there is no standard method which

tells one how to define the NNET to get a suitable answer. Many databases will have a vastly

different NNET because it depends on the problem itself. Many NNETs in development today

boast a model with billions of parameters and one of the largest models developed by Google [121]

has approximately 1.6 trillion parameters. That would mean a model with equal number of layers

and equal number of hidden units per layer would have 12,000 layers with 12,000 hidden units per

layer. This work requires nothing of this scale and complexity. So, we come back to how to define

the model. There are some methods which attempt to optimize the models, but we have found that

they are extremely slow due to the optimizer schemes used. Keras-Tuner [122] is a popular method

that developed some schemes for optimizing NNET models and can be a great starting point if the

user is not sure how to define parameters. A nice feature provided is that a user can try multiple

112

activation function, weight optimizer, loss function, multiple hidden layers, and multiple hidden

units per layer, etc.

Typically, we develop NNETs with a specific mindset, keep it as simple as possible. So,

we try to keep the model as minimal as possible because a smaller model is easier and quicker to

train and can make faster predictions at run time. Our somewhat brute force method will generate

multiple NNETS with multiple hidden layers and multiple hidden units, but each layer has the

same number of units. A script has been developed which iterate through each combination, so

every other parameter is constant such as activation (ELU), loss (MAPE) and optimizer (Nadam).

Each model is trained for 1000 epochs using a batch size of 1024 and includes training (400,000

samples) and validation (50,000 samples) data. During each training, the model with best

validation loss is saved and used to prevent overfitting. We set an array of hidden layers to be

[1,2,3,4,5] and the number of hidden units to be [10,20,30,40,50,60,70,80,90,100] where every

layer has same number of hidden units (constant width model).

Table 21 shows the results of each combination of NNETs, where each row refers to a

specific number of hidden layers and each column refers to number of hidden units per layer. Can

see that for Layer = 1, increasing the number of hidden units does decrease error, and for layer =

2, there is a significant improvement over layer=1, with fewer hidden units per layer required. Will

then notice that for layer = 3, the error is again decreased and notice that the minimum error is

found at 90 hidden units per layer equal to 0.720 %. Can see that for layers 4 & 5, initially at units

equal to 10-40, are doing better than layer 3 but start to increase in error at 50 units and never do

as well at layer 3 at 90 hidden units per layer. So, we will then choose this setup configuration with

3 hidden layers and 90 hidden units per layer. Because we only trained each model for 1000

113

epochs, it is possible to further increase performance of model by training even longer. The next

sections will develop model result for 10,000 and 50,000 epochs.

Table 21 NNET MAPE Results

Layer 10 20 30 40 50 60 70 80 90 100
1 9.203 6.579 5.015 4.173 3.790 3.592 3.257 2.991 2.997 2.769
2 3.864 2.193 1.365 1.096 0.988 0.940 0.827 0.902 0.821 0.821
3 3.114 1.577 1.077 0.934 0.834 0.775 0.832 0.746 0.720 0.740
4 2.567 1.282 1.007 0.918 0.900 0.817 0.800 0.822 0.824 1.048
5 2.352 1.220 0.986 0.937 0.905 1.008 1.038 0.980 1.060 1.060

IV.III.VI Results: 10,000 Epochs

We then train the model for 10,000 epochs using same model parameters as before. The

model chosen has 3 hidden layers with 90 hidden units per layer. Each hidden layer uses ELU

activation. The input layer has 15 inputs, and the output layer has 6 outputs. The model is compiled

with Nadam optimization using MAPE as the loss function. The model is fit (trained) for 10,000

epochs using the training (400,000 samples) and validation (50,000 samples) data with a batch size

of 1,024 samples, which takes approximately 2.2 hours. Because there are 400,000 training

samples and mini-batch set of 1,024 samples there are a total of 400,000/1,024 = 390.625 batches

or 391 complete batches. After each single batch the weights are updated, so for each epoch the

weights are updated 391 times. For 10,000 epochs there will be 3,910,000 million updates to the

weights. We train longer to ensure that we have reached the global minimum and if we plot the

training loss and validation loss MAPE values over each epoch we should be able to see if the

solution has converged.

Figure 48 shows the training and validation loss over each epoch and can see that the error

starts to converge but does not plateau like it should. In fact, the best epoch where validation loss

114

is minimum is taken at 9961, which is almost at final 10,000 epochs of training. Based on this

information, the model may need to be trained longer, which is why the next section trains for

50,000 epochs. Can see that there is visible noise on the error as well, not so much on the training

data, but the validation loss jumps around much more, which is expected since we use mini-batch

training.

Can see that the model has improved for overall metrics compared to Table 11, Table 16,

and Table 45 using the testing data. Can see that the R2 for the NNET has increased above 0.99,

Fig. 47 Training and Validation MAPE History.

115

which none of the linear regression methods were able to do. Every output metric is lowest for the

NNET, which is not surprising.

Table 22 Overall Metrics for 10,000 Epochs Model

Model Training Validation Testing
R2 0.9988 0.9983 0.9987
MSE 287.9464 446.1618 305.5932

MAPE 0.2749 0.2869 0.2817
MMAPE 0.0479 0.0513 0.0491

When evaluating the individual output metrics on Table 23 can individually see that NNET

is doing much better than even the 3rd order regression on Table 45. Can see that APOGEE does

not have smallest 𝑅𝑅2 but can see from its MSE and MAPE that it is doing much better than any of

the other linear regression models developed. 𝑅𝑅2 for MAXDIST is greater than 0.99 but its MSE

is still quite large as we need it be close to zero as possible. The rest of the other parameters are all

modeled quite well and would be very suitable for real life use.

Table 23 Individual Output Metrics

Metric TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT
𝑅𝑅2 0.99923 0.99999 0.99758 0.99532 0.99999 0.99995
MSE 17.21413 0.00251 1343.25842 473.07996 0.00195 0.00225

MAPE 0.2757 0.08668 0.57047 0.55055 0.09249 0.11435
MMAPE 0.06886 0.02618 0.06998 0.05969 0.02692 0.04325

116

Figure 49 shows the predicted versus for TOF & MAXTHR. Can see that TOF mostly

follows the regression line with some under and over predicted points. MAXTHR is almost a

perfect fit. Figure 50 shows the predicted versus actual for MAXDIST and APOGEE and can see

both suffer the most in terms of prediction error. MAXDIST seems to have a constant error

variance so the model may be able to be trained further to reduce this error. APOGEE still seems

to have a second distribution which is not learnable but can see the error is reduced greatly with

the NNET compared to Fig. 41, which had the two-way linear regression. Figure 51 shows

predicted versus actual THRSEA & WEIGHT and can see they both are almost perfect, except for

weight, which has a bit of error in the center.

Fig. 48 NNET Model: Predicted vs. Actual for TOF (Left) & MAXTHR (Right).

117

Fig. 49 NNET Model: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

Fig. 50 NNET Model: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

118

IV.III.VII Results: 50,000 Epochs

This section uses the previously stated model is now trained for 50,000 epochs because it

was shown on Fig. 48 that the training and validation loss appeared to be improving still, otherwise

it would have been asymptotically approaching a minimum error. Can see on Fig. 52 that the

training and validation loss appears to be asymptotically approaching the minimum error. The

minimum error occurs at epoch 42,005 and takes approximately 20 hours. Notice that 10,000

epochs was not enough training and could see that the optimizer jumps out of local minimum.

Fig. 51 Training and Validation MAPE History.

119

Can see that the model has improved from overall metrics on Table 11, Table 16, Table 45,

and Table 22 comparing the testing data. Can see that the R2 has for the NNET has increased above

0.999, which none of the linear regression methods were able to do and the previous NNET only

achieve above 0.99. Can see the MSE has significantly decreased from the previous NNET.

Table 24 Overall Metrics for 50,000 Epochs Model

Model Training Validation Testing
R2 0.9998 0.9995 0.9995
MSE 62.8641 126.6180 144.2935

MAPE 0.2245 0.2302 0.2323
MMAPE 0.0363 0.0375 0.0380

When evaluating the individual output metrics on Table 25 can individually see that NNET

is doing better than every parameter from Table 23. 𝑅𝑅2 for MAXDIST is greater than 0.999 but its

MSE is still the largest. The rest of the other parameters are all modeled well and would be very

suitable for real life use.

Table 25 Individual Output Metrics

Metric TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT

𝑅𝑅2 0.99953 0.99999 0.99866 0.9988 1 0.99997

MSE 10.52652 0.00226 732.8645 122.36478 0.00136 0.00133
MAPE 0.21984 0.07198 0.47541 0.45567 0.07523 0.0958

MMAPE 0.05463 0.02342 0.05457 0.03786 0.02243 0.03506

120

Figure 53 shows the predicted versus actual for TOF and MAXTHR and has greatly

reduced in error and can see there are approximately 6 points with significant error out of 50,000

samples. MAXTHR has almost perfect fit. MAXTHR is almost perfect.

Figure 54 shows the predicted versus actual for MAXDIST and APOGEE. The error on

MAXDIST is greatly reduced, but there are still points with significant error (about 15 points with

significant error). APOGEE has greatly reduced error and can now see that there is no obvious

second distribution of data not being modeled correctly (about 10 points with significant error).

The NNET trained for 10,000 epochs, shown on Fig. 50, was not even able to reduce the error to

these metrics.

Fig. 52 NNET Model: Predicted vs. Actual for TOF (Left) & MAXTHR (Right).

121

Figure 55 shows the predicted versus actual for THRSEA and WEIGHT. THRSEA and

WEIGHT are almost perfect. WEIGHT does seem to have a bit f error still but it is very minimal

at least compared to the other parameters.

Fig. 53 NNET Model: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

Fig. 54 NNET Model: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

122

The NNET trained for 50,000 epochs was shown to greatly improve error. It does seem

that with enough training the optimizer has learned to improve performance of TOF, MAXDIST,

and APOGEE and could see multiple samples with large error. Despite these samples, the model

is a vast improvement over the NNET trained for 10,000 epochs and over the linear regression

models which were not even capable of producing good models. NNETs are the method required

to model such a large database with a nonlinear distribution.

123

V. Model Generation: AUSRC Classification

The previous chapter developed regression methods to predict outputs of interest. This

chapter will then use the outputs of the Auburn tools as inputs as a way to predict which class the

sample belongs to. Part of the reason why this is done is because originally we were trying to

predict what the inputs would be required to make the outputs using regression. For example, if

one knew TOF of a missile, could we then predict the geometry and launch parameters using a

regression method. However, this was not successful and so, we then decided to model the problem

as a classification problem. Doing this in a way allows us to predict what the inputs are without

needing to know the inputs. For example, if one knew TOF of a missile, could we then predict its

class value, say 1-12.

V.I Review of Classification in Missiles

Before the classification methods and their applications are discussed in detail, it is

important to mention previous works the Hartfield lab has produced with regards to classification

in which we are predicting some discrete response such as class value. Some of the first work was

done by Albarado [123], which attempted to rapidly classify missiles using logistic regression and

NNETs. Results showed that models could quickly classify missiles within 20 seconds of flight

time. Next, NNETs were developed to rapidly classify munitions (artillery round and mortars)

[124] and results showed that for the true data NNETs could 100% classify both the training and

testing data but when noise was added the testing accuracy ranged between 85-99%. Carpenter

[125] then extended from [124] to classify and predict long range missiles using NNETs, which

124

show high accuracy and good predictions. Eckert [126] then applied NNETs to rapidly classify

long range missiles. The classification models were developed on training data which was altered

to simulate radar noise. The radar noise was based on the radar equation and based on the radars’

position the noise could be higher or lower depending on how far the missiles’ location was.

Twelve classes were used for this work and analysis had shown that the even and odd classes could

not be classified together but when separated the models had good classification. When the radar

data included acceleration, the classification results improved to 92% testing accuracy. This work

showed that LDA and NNETs work well, but NNETs came to be more powerful compared to

LDA.

V.II Linear and Quadratic Discriminant Analysis

It is always important to develop a baseline of the results because if we can use a simple

model over a higher order nonlinear method than we can drastically reduce training time and

execution time. Many lower order models like in the linear regression cases provide direct

interpretability of the model. In this work, linear and quadratic discriminant analysis (LDA/QDA)

is used over logistic regression because logistic regression can be unstable to classes which are

extremely different because it fits weights similarly to linear regression and so those weights

become largely erratic [92]. Logistic regression also suffers from overfitting in large dimensional

datasets and obviously is a linear method so it cannot differentiate nonlinear relationships. Despite

these shortcomings of logistic regression, typically in practice logistic regression and LDA/QDA

can give very similar results.

With LDA & QDA, it assumed that the samples are from a normal distribution and can be

a downside to this method [93]. However, with missile classification there is no exact way to

125

determine if a class of missiles follows a normal distribution, but we can make specific arguments

that allow it to be normal. Consider missile A which has been developed for real life use. Missile

A was probably developed to hit some target at some distance D. Designing and analysis of missile

A would have determined the maximum and minimum distance D missile A is capable of traveling.

Now missile A could technically have a zero distance if it was launch on the ground laying down;

however, in real life practice this would be greatly avoided so we discount such scenarios. Most

likely, Missile A would only ever be launched at specific launch angles to avoid failure. So, we

can surmise that missile A has a specific range that is only ever used for max operability.

Therefore, it seems safe to assume that the observations we are using for classification follow a

normal distribution.

The derivation of LDA & QDA is not shown in entirety as there are many conditions,

which can be described for discriminant analysis [127]. The Bayes Theorem is shown on Eq. (5.1)

where 𝑃𝑃(𝑥𝑥|𝑦𝑦 = 𝑘𝑘) = 𝑓𝑓𝑘𝑘(𝑥𝑥) is the density function of X for a sample that belongs to class k out of

K classes. 𝑃𝑃(𝑦𝑦 = 𝑘𝑘) = π𝑘𝑘 is the prior probability that random samples belong to class k.

𝑃𝑃(𝑦𝑦 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥) is then the posterior probability that a sample belongs to class k. The prior

probability is often an assumption about the data and is often the proportion of class k samples out

of the entire set of samples, so π𝑘𝑘 = 𝑁𝑁𝑘𝑘/𝑁𝑁 is used in the scikit-learn implementation. 𝑓𝑓𝑘𝑘(𝑥𝑥) is

usually never available in real life and for LDA/QDA is assumed to be normal, shown on Eq. (5.2)

, where d is the number of inputs.

() () ()
()

() () ()
() ()

()
()1 1

|
|

|
|

|
k k

K K
i ii i

P x y k P y k
P y k X x

P x

P x y k P y k f x
P y k x

P x y i P y i f x

π

π
= =

= =
= = =

= =
= = =

= =∑ ∑
 (5.1)

126

 ()
()

() ()1
1 22

1 1exp
22

T
k k k kd

k

f x x xµ µ
π

− = − − ∑ −  ∑
 (5.2)

If the log of the posterior function is taken and reorganized, then we get Eq. (5.3). This

equation is the log-posterior function for QDA because QDA assumes that the covariance matrices

Σ𝑘𝑘 are different for each class k. When calculating a prediction with a sample, there are then K

predictions and the prediction with the largest value means it belongs to class k. The log-posterior

is often written as δ𝑘𝑘(𝑥𝑥) and can be thought of as a decision plane [92]. As the name suggests,

QDA has a quadratic decision plane and fits to data using a quadratic function.

() () () ()
() () ()

() () ()

() ()

1

1

1

1

log | log | log log

log | log log log

1 1log | log log
2 2

log log 2
2

K
i ii

K
k k i ii

T
k k k k k

K
i ii

P y k x P x y k P y k f x

P y k x f x f x

P y k x x x C

dC f x

π

π π

µ µ π

π π

=

=

−

=

= = = + = −

= = + −

= = − ∑ − − ∑ − + +

= − −

∑
∑

∑

 (5.3)

For LDA, the covariance matrices are all equal (Σ𝑘𝑘 = Σ) for each class. Equation (5.3) can

then be reduced to Eq. (5.4). As the name suggests, LDA is a linear decision plane that fits the data

using a linear function. Equation (5.4) can be rewritten further into Eq. (5.5) and is written similarly

to a linear regression function where 𝑤𝑤𝑘𝑘 refer to the weights and 𝑤𝑤0 refers to the intercept. Scikit-

Learn sets the output coefficients (“coef_”) and output intercept (“intercept_”) from the fit model.

() () ()

() ()

1

1

1log | log
2

1log log 2 log
2 2

T
k k k

K
i ii

P y k x x x C

dC f x

µ µ π

π π

−

=

= = − − ∑ − + +

= − − − ∑∑
 (5.4)

127

() 0

1

1
0

log |

1 log
2

t
k

k k

T
k k k

P y k x w x w C

w

w

µ

µ µ π

−

−

= = + +

= ∑

= − ∑ +
 (5.5)

Unfortunately for QDA, it cannot be written as Eq. (5.5) so the coefficients and intercept

cannot be used for model interpretation like LDA. Another feature of LDA allows linearly

reducing the data to (𝐾𝐾 − 1) features. Reducing the number of dimensions allows for interpretation

of the model visually. It will later be shown that if the data is reduced to 2 components, can visually

observe how well the model is fitting and can see how much variance the reduced parameters

model.

V.II.I Linear Discriminant Analysis Results

The methodology for using LDA and QDA is essentially the same as the linear regression

methodology with exception of using the polynomial features and standardization of the input data.

Everything else is the same such as using fit and predict. The data is split into 36,000 samples for

training and 9,000 samples for testing data. The convenience of using LDA and QDA is that data

does not to be standardized before training. Table 26 the accuracy of the model overall and can

see that it is almost 100%. This data is obviously easily separable using LDA and it is not necessary

to do QDA or even NNETs but is shown in this work because extensions of this classification

database would show the LDA is not capable of separating the classes. For example, the extended

version of this classification database includes 5-point, 9-point, and 11-point star grains for a total

of 72 classes. The accuracy for that dataset is 78.17% for training data and 78.47% for testing data.

We refrain from showing the 72 classes because it is too large of a dataset to fit in this work and

would not be able to observe visuals which are extremely useful for classification.

128

Table 26 LDA Training & Testing Accuracy

Model Train Test
LDA 99.4694 99.3778

The confusion matrix is shown on Fig. 56 and shows the predicted versus actual of the

testing data and is similar to Fig. 37 but for classification models. If the model were perfect then

the diagonal would report constant values of 500 samples per class. For example, can see that for

the actual class 4, 496 samples are correctly predicted as class 4, but 4 samples are incorrectly

predicted as class 7. It appears that incorrect prediction is being under and/or over predicted by 3

classes. Table 27 shows the precision, recall, and F1-score of the model using the testing data.

Fig. 55 LDA Confusion Matrix for Testing Data.

129

Precision is the number of true positives divided by the sum of true positives and false positives.

For example, precision for class 4 is defined as 496/(496 + 4) = 0.992 which is reported on

Table 27. Precision is easily thought of as the accuracy along the predicted class k column on Fig.

56. Recall is the number of true positive divided by the sum of true positive and false negatives.

For examples, recall for class 14 is defined as 495/(495 + 3 + 2) = 0.99 which is report on Table

27. Recall can be thought of as accuracy along the actual class k row. F1-score is the harmonic

mean of recall and precision and considers contribution of both parameters for minimization

purposes. Often sacrifices must be made for either precision and recall and depends on a case by

case purpose. So, to ensure maximization of both parameters, F1-score can be used instead.

Table 27 LDA Classification Report: Precision, Recall, & F1-Score

Class Precision Recall F1-Score Support
1 1 1 1 500
2 1 1 1 500
3 1 1 1 500
4 0.992 0.992 0.992 500
5 0.998 0.998 0.998 500
6 0.99004 0.994 0.99202 500
7 0.992 0.992 0.992 500
8 0.998 0.998 0.998 500
9 0.99398 0.99 0.99198 500
10 0.99399 0.992 0.99299 500
11 0.99398 0.99 0.99198 500
12 1 1 1 500
13 0.97065 0.992 0.98121 500
14 0.9841 0.99 0.98704 500
15 0.994 0.994 0.994 500
16 0.99796 0.978 0.98788 500
17 0.99599 0.994 0.99499 500
18 0.994 0.994 0.994 500

Because the model does extremely well, all three metrics are extremely close to one, which

they should be. If we count the number of misclassified, can see that there are 191 misclassified

130

training samples and 56 misclassified testing samples. Can see that the misclassification rates are

less than 1 percent, which is in excellent agreement for this model. In general, such high fidelity

results do not always occur and varies across different datasets.

Table 28 LDA Misclassification and MisRate

Metric Train Test
Misclassification 191 56

MisRate (%) 0.5306 0.6222

Traditionally for classification, the receiver operating characteristic (ROC) curve is used

to assess a model at different classification thresholds. Each class true positive rate is plotted

against the false positive rate. Can see from Fig. 57, ROC curve is plotted for LDA and can see

that as the false positive rate increases (decreased threshold) increases the number of true positive

for model. The primary function of this figure is to have each curve be on the left of the black

dashed line and want the curve to go vertical at early false positive rate. The earlier the curve goes

vertical shows that there will be less false positives and more true positives. In the next section,

QDA is used and can see an improvement.

131

V.II.II Quadratic Discriminant Analysis Results

The same set of training and testing samples is used for QDA and follows same

methodology as LDA, which are both similar to linear regression method in Scikit-Learn. Can see

the training and testing accuracy for QDA on Table 29. Can see that QDA has achieved an increase

in accuracy compared to LDA and both are still very good models.

Table 29 QDA Training & Testing Accuracy

Model Train Test
QDA 99.9444 99.9111

Fig. 56 LDA ROC Curve.

132

The confusion matrix for the model is shown on Fig. 58 and can see that there are only 8

misclassified test samples. Table 30 shows that the number of misclassified is only 20 for the

training set and the misclassification rates are almost zero. Its obvious QDA improves accuracy.

Table 30 QDA Misclassification & MisRate

Metric Train Test
Misclassification 20 8

MisRate (%) 0.0556 0.0889

Fig. 57 QDA Confusion Matrix for Testing Data.

133

Table 31 shows the QDA classification report and can see that many of the classes have

perfect precision, recall, and F1-score.

Table 31 QDA Classification Report: Precision, Recall, & F1-Score

Class Precision Recall F1-Score Support
1 1 1 1 500
2 1 1 1 500
3 1 1 1 500
4 1 1 1 500
5 1 1 1 500
6 0.998 0.998 0.998 500
7 1 1 1 500
8 1 1 1 500
9 0.998 0.998 0.998 500
10 1 0.998 0.999 500
11 0.998 1 0.999 500
12 1 0.998 0.999 500
13 0.996 1 0.998 500
14 0.998 0.998 0.998 500
15 0.996 1 0.998 500
16 1 0.998 0.999 500
17 1 0.998 0.999 500
18 1 0.998 0.999 500

We can see from Fig. 59 that the ROC curve shows that each class is being perfectly

predicted and so it is obvious that this model performs extremely well. There are still false

positives, but they are so few. This model and LDA could be used for deployment purposes.

Deploying Scikit-Learn models is very easy using the Python package called Pickle, which allows

exporting and importing of multiple data formats such as integers, floats, dictionaries/list, and even

user defined function/built-in functions. This is useful because LDA/QDA from Scikit-Learn can

export the function along with the coefficients (or other parameters) of the model to a file and can

easily be imported along with any of the models’ parameters.

134

V.III Neural Networks: Classification

If the LDA and QDA models were classifying poorly, then a NNET would be required to

improve performance. Instead, we showed that LDA and QDA were doing quite well and a NNET

would not be required to fit the data. However, this work is a development of classical and modern

methods, so the NNET formulation is developed and shown here.

V.III.I NNET Script Methodology

The methodology is about the same as the NNET regression model, except for a few slight

changes. First major change here is that a one-hot encoder is used to convert the output class value

Fig. 58 QDA ROC Curve.

135

to a binary vector of 0’s and 1’s. For example, if there are 3 classes the first class would be

converted to [1,0,0], second class would be [0,1,0], and finally the third class would be [0,0,1].

Since there are 18 classes, each class output would be converted to a binary vector of 18 elements.

Finally, the last main difference is that the output layer uses a SoftMax activation to convert output

to a probability between 0 and 1. Each output unit in the output layer gets converted using the

SoftMax function on Eq. (5.6). Each output unit ranges between 0-1 and every output unit will

sum to 1. The output unit with the maximum value is considered to be the class. For example, if

output unit 4 (i.e., class 4) has the largest value for the input sample, then it is predicted as class 4.

()

1

i

j

z

i K z

j

ez
e

σ
=

=
∑ (5.6)

The model is then compiled with different parameters. The optimizer used is still Nadam,

but Nadam requires a different function to minimize. The NNET regression model used MAPE,

but for the classification model, the output is a SoftMax activation, so the categorical cross entropy

(CCE) function is used. Equation (5.7) shows the CCE function and can see it’s just the summation

of each class and each multiple is a value in the true one-hot encoded vector output unit j times the

log of predicted SoftMax output unit j.

 ()True, Predicted,
1

log
K

j j
j

CCE Y Y
=

= −∑ (5.7)

V.III.II NNET Results Trained for 250 Epochs

Because LDA & QDA can easily replicate the data, the NNET will also be able to easily

replicate the data. The first model shown uses 9,000 samples for testing, 4,500 samples for

136

validation, and 31,500 samples for training. It uses a single layer with 50 hidden units and was

trained for 250 epochs. Can see that the accuracy increases to 1.00 quickly within 100 epochs and

the CCE goes to zero around 200 epochs. Even the error seems to be near zero, the best epoch is

calculated at epoch 250. Can see the testing CCE is 0.0023 on Table 32 and the accuracy is 99.97%.

Can see that there are only 3 samples misclassified out of 9,000 testing samples.

Table 32 NNET CCE & Accuracy

Metric Training Validation Testing
CCE 0.0025 0.0025 0.0023

Accuracy 0.9996 0.9996 0.9997
MisRate 0.0381 0.0444 0.0333

Misclassified 12 2 3

Fig. 59 Training/Validation Loss & Accuracy.

137

We can see the confusion matrix on Fig. 61 and we can see that there are only 3 samples

not predicted correctly. It appears that the misclassified samples are under or over predicting by 3

classes. Table 33 shows the precision, recall, and F1-score of the testing data and shows most

classes have value of 1.00 and the rest of the other metrics are almost perfect.

Fig. 60 NNET Confusion Matrix.

138

Table 33 NNET Test Data Classification Report

Class Precision Recall F1-Score Support
1 1 1 1 500
2 1 1 1 500
3 1 1 1 500
4 0.998 1 0.999 500
5 1 1 1 500
6 1 0.998 0.999 500
7 1 0.998 0.999 500
8 1 1 1 500
9 0.998 1 0.999 500
10 0.998 1 0.999 500
11 1 1 1 500
12 1 1 1 500
13 1 0.998 0.999 500
14 1 1 1 500
15 1 1 1 500
16 1 1 1 500
17 1 1 1 500
18 1 1 1 500

V.III.III NNET Results for 500, 1000, & 5000 Epochs

If the NNET is trained for 500, 1000, and 5000 epochs can see how the metrics improve

on Table 34. Can eventually see the number of misclassified samples decrease to zero for the

training and validation data if the model is trained for 5000 epochs. However, the number of

misclassified increases for the testing data but it is still very small. It may be worth having some

training error to have minimal testing error.

139

Table 34 NNET Metric for 500, 1000, & 5000 Epochs

Epoch Metric Training Validation Testing
500 CCE 0.0008 0.0009 0.0007
500 Accuracy 0.9999 0.9998 0.9999
500 MisRate 0.0127 0.0222 0.0111
500 Misclassified 4 1 1
1000 CCE 0.0004 0.0003 0.0004
1000 Accuracy 0.9999 1 0.9998
1000 MisRate 0.0063 0 0.0222
1000 Misclassified 2 0 2
5000 CCE 0.0001 0 0.0005
5000 Accuracy 1 1 0.9997
5000 MisRate 0 0 0.0333
5000 Misclassified 0 0 3

V.III.IV NNET Classification: Multi-Layer, Multi-Unit Matrix

The classification model is trained using 1-5 layers and 5-50 hidden units per layer and

Table 35 shows the testing accuracy per each model. Each model was trained for 1000 epochs. It

is however not useful for this case because the classification model does so well with very few

units. The author chose to use 50 units for a single layer to ensure adequate accuracy.

Table 35 Classification Accuracy: Multi-Layer, Multi Unit Matrix

Layer 1 2 3 4 5
5 0.999556 0.999556 0.999333 0.999444 0.999778
10 0.999667 0.999778 0.999778 0.999778 0.999556
15 0.999778 0.999778 0.999778 0.999778 0.999667
20 0.999778 0.999778 0.999667 0.999778 0.999778
25 0.999778 0.999667 0.999556 0.999667 0.999667
30 0.999667 0.999889 0.999889 0.999778 0.999667
35 0.999778 0.999778 0.999778 0.999778 0.999778
40 0.999778 0.999778 0.999889 0.999667 0.999889
45 0.999222 0.999556 0.999889 0.999444 0.999556
50 0.999667 0.999889 0.999778 0.999444 0.999778

140

VI. Model Robustness & Sensitivity

The models developed in the previous two chapters both used data that was simulated from

Fortran codes which provided all the necessary data. Samples which caused errors during

simulation were removed so the dataset was not corrupted with bad samples. When data is

collected during real life scenarios such as a health survey or U.S. census, often times when this

type of data is collected information is missing. Each sample taken can randomly have multiple

missing parameters. If it is possible, then imputation can be done to replace the missing data [100].

There are multiple ways of imputation proposed and reference [128] explains most of the proposed

methods. Scikit-Learn learns multiple methods for easily implementing imputation such as

multivariate imputation with MICE [129][130], and K-Nearest Neighbors imputation [131].

Recently, more advanced methods using generative adversarial nets (GANs) have been used for

imputation but were not used for this work [132]. Future works will consider using GANs.

For the imputation methods used in this work, we use a combination of the linear regression

methods and the NNETs. The imputation models here will be used for the classification data only

and simulate a combination of parameters missing. For example, BURNTIME could be missing

or MAXPC & MAXTHRUST could be missing. However, at least one parameter is required for

imputation, a model in general requires at least one parameter. The number of combinations is 4

choose 1 plus 4 choose 2 plus 4 choose 3 equals (4 + 6 + 4 = 14) and so there are 14 models

developed per imputation method. There are 4 attempted imputation methods using linear

regression with one-way terms, two-way terms, three-way terms, and NNETs. Therefore, there are

56 models in total developed to attempt imputation.

141

VI.I Imputation Methodology

Implementing missing data is relatively simple. First, the data is read in and is split into

training, validation, and testing sets. We assume all the sets of data are complete. To test missing

data, another variable is set to the testing data but excludes one of the missing data combinations.

The training and validation data excluding the missing data is used to fit an imputation model to

predict the missing data. A classification model is already pretrained using the model that was

trained for 5000 epochs and is used to predict classifications on the true test data and the imputed

test data. The number of misclassifications, MisRate, and accuracy is recorded for each missing

set of data. The test sets had 9,000 samples, validation set had 4,500 samples, and training set had

31,500 samples. The model classification predictions on the true test data are the following: 3

misclassifications, 0.03% MisRate, and 99.97% accuracy.

VI.II One-Way Model: Imputation & Classification Results

The model classification predictions on the imputed test data are shown on Table 36. Can

see the metrics for each imputed parameter, the first row means that BURNTIME was the

simulated missing parameter that needed to be imputed. The metrics then show how the classifier

works when having to impute for the missing parameter. So, when we are in fact missing

BURNTIME from the dataset, then the number of misclassified samples increases from 3 samples

to 2,186 samples, therefore reducing the accuracy of the classifier to 75.71% from 99.97%. When

MAXTHRUST is missing, the number of misclassified samples are 2185 and the accuracy

142

decreases to 75.72%. When MAXPC is missing, the number of misclassified samples are 1237

and the accuracy is 86.26% which is fairly good.

When MAXPE is missing, the number of misclassified samples increases greatly to 3597

samples and the accuracy reduces to 60.03%. It important to note that when we are missing

MAXPE, the imputation of MAXPE causes the classification accuracy to reduce significantly.

This suggests that MAXPE is a very important parameter to include in the model and because a

one-way linear regression is used, the imputation itself is not very accurate and will cause the

classification to be worse. When the number of missing parameters increases to two, the number

of misclassified samples increase drastically, and the classification accuracy drops below 51%.

Finally, when missing three parameters out of four, the classification accuracy completely drops

below 22%. Due to the requirements of imputation of the missing parameters, it could be

introducing large amounts of noise to the classifier which is causing the classifier to break down.

The only way this method will work is if the imputation error can be reduced.

Table 36 Metrics for One-Way Imputation Data

Missing Data Misclassified MisRate Accuracy
BURNTIME 2186 24.29 75.71

MAXTHRUST 2185 24.28 75.72
MAXPC 1237 13.74 86.26
MAXPE 3597 39.97 60.03

BURNTIME, MAXTHRUST 6520 72.44 27.56
BURNTIME, MAXPC 5603 62.26 37.74
BURNTIME, MAXPE 4741 52.68 47.32

MAXTHRUST, MAXPC 4891 54.34 45.66
MAXTHRUST, MAXPE 6782 75.36 24.64

MAXPC, MAXPE 4408 48.98 51.02
BURNTIME, MAXTHRUST, MAXPC 7802 86.69 13.31
BURNTIME, MAXTHRUST, MAXPE 7745 86.06 13.94

BURNTIME, MAXPC, MAXPE 7025 78.06 21.94
MAXTHRUST, MAXPC, MAXPE 7777 86.41 13.59

143

If the predicted imputation test data is plotted versus the true test data on Fig. 62, can see

that there is significant error in the imputation model. Can see that there are obvious distributions

of data that are not being modeled correctly and this is due to discontinuities between the 18

different classes. The classes each have a different output distribution, so it would make sense that

the linear regression model is not capable of replicating the discontinuities of the output

distributions.

If we assess three missing parameters: BURNTIME, MAXTHRUST, & MAXPC, on

predicted versus actual plots can see how bad the models are replicating the true data. Figure 63

shows the imputed versus actual for BURNTIME & MAXTHRUST and can see that linear

regression model is not capable of replicating the output. MAXPC can be seen to be predicted as

two very different distributions compared to the true data. This is because only one single

Fig. 61 Imputed MAXPE vs. True MAXPE for a Single Missing

Parameter.

144

parameter is used to fit the output. It is obvious that there are multiple distributions that cannot be

modeled by a linear regression model.

Fig. 62 Imputed vs. Actual for BURNTIME (Top Left), MAXTHRUST (Top Right), & MAXPC

(Bottom).

145

VI.III Two-Way Model: Imputation & Classification Results

It is then obvious that the imputation model order should be increased to include two-way

interactions and squared terms. Table 37 shows the metrics for using the two-way imputation

model and can see that for single missing parameters that the accuracy does increase by

approximately 5% for BURNTIME & MAXTHRUST, 4% for MAXPC, and 10% for MAXPE.

However, when increasing the number of missing parameters to two, the accuracy gained is only

about 0-5%. When increasing the number of missing parameters to three, there is zero gain in

performance. It is obvious to see that when missing three of the four parameters is extremely

detrimental to the imputation and classification accuracy.

Table 37 Metrics for Two-Way Imputation Data

Missing Data Misclassified MisRate Accuracy
BURNTIME 1731 19.23 80.77

MAXTHRUST 1742 19.36 80.64
MAXPC 898 9.98 90.02
MAXPE 2758 30.64 69.36

BURNTIME, MAXTHRUST 6517 72.41 27.59
BURNTIME, MAXPC 5506 61.18 38.82
BURNTIME, MAXPE 4414 49.04 50.96

MAXTHRUST, MAXPC 4441 49.34 50.66
MAXTHRUST, MAXPE 6381 70.90 29.10

MAXPC, MAXPE 4324 48.04 51.96
BURNTIME, MAXTHRUST, MAXPC 7888 87.64 12.36
BURNTIME, MAXTHRUST, MAXPE 7764 86.27 13.73

BURNTIME, MAXPC, MAXPE 6935 77.06 22.94
MAXTHRUST, MAXPC, MAXPE 7781 86.46 13.54

If only missing a single parameter such as MAXPC on Fig. 64, then can see that imputation

model does fairly well bringing the accuracy up to 90%. The imputed versus actual shows that the

imputation model fits well and there is error, but the model is at least fitting the data to an extent.

146

When the number of missing parameters is increased to three, can see that the classification

model is extremely inaccurate. The only explanation is that the building an imputation with only

one input variable cannot fully replicate the other three parameters of interest. For example, when

looking at Fig. 65 can see that the imputation model is not replicating the data correctly and is very

similar to the results on Fig. 63. The only difference from increasing the order is that the imputed

results look more curvilinear on MAXTHRUST & MAXPC.

Fig. 63 Imputed vs. Actual for MAXPC.

147

VI.IV Three-Way Model: Imputation & Classification Results

Finally for linear regression imputation, the order of polynomials is increased to three so

there are three-way interactions and includes squared and cubic terms such as 𝑥𝑥13 and 𝑥𝑥22. Table 38

shows the metrics of the third order imputation classification model and can see that there is no

Fig. 64 One-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom).

148

improvement in accuracy for BURNTIME, MAXTHRUST, and MAXPC. MAXPE does actually

increase by 3% in accuracy. There is some accuracy improvement when increasing the number of

missing parameters to two. For example, BURNTIME & MAXPE accuracy increases to 58% from

50% in the two-way model; MAXTHRUST & MAXPE accuracy increases to 37% from 29% in

the two-way model. There is barely any increase in accuracy when increasing the number of

missing parameters to three, which is not surprising. Now it is proven that the linear regression

methods can decently replicate the true data if only one parameter is missing, however, when

increasing the number of parameters to two the accuracy drops significantly. Finally, when there

is only one input to impute three missing parameters the classification accuracy is terrible and

should not be used in production.

Table 38 Metrics for Three-Way Imputation Data

Missing Data Misclassified MisRate Accuracy
BURNTIME 1706 18.96 81.04

MAXTHRUST 1711 19.01 80.99
MAXPC 834 9.27 90.73
MAXPE 2514 27.93 72.07

BURNTIME, MAXTHRUST 6503 72.26 27.74
BURNTIME, MAXPC 5455 60.61 39.39
BURNTIME, MAXPE 3747 41.63 58.37

MAXTHRUST, MAXPC 4262 47.36 52.64
MAXTHRUST, MAXPE 5661 62.90 37.10

MAXPC, MAXPE 4114 45.71 54.29
BURNTIME, MAXTHRUST, MAXPC 7882 87.58 12.42
BURNTIME, MAXTHRUST, MAXPE 7588 84.31 15.69

BURNTIME, MAXPC, MAXPE 6906 76.73 23.27
MAXTHRUST, MAXPC, MAXPE 7786 86.51 13.49

The imputed versus actual test data is shown for BURNTIME and MAXPE on Fig. 66 and

can see a fairly decent model fit using only two of the four parameters. With BURNTIME there is

149

obviously two distributions of data that must be modeled but is quite erroneous. With MAXPE

there is a much better fit overall and can see the model fitting through the true test data. Obviously

with both parameters there is error, but the classification model was still able to achieve 58%

accuracy, which is better than expected for most real life scenarios.

Figure 67 shows the imputed versus actual for BURTIME, MAXTHRUST, and MAXPC

and can see these predictions are basically the same from Fig. 65. Again, the linear regression

methods are NOT capable of replicating the data when only one parameter is available. Therefore,

we then attempt to impute the data with higher order nonlinear model using NNETs.

Fig. 65 Two-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Left) & MAXPE

(Right).

150

VI.V NNET Trained for 1,000 Epochs: Imputation & Classification Results

Instead of using a linear regression for imputation a NNET is developed for imputation.

The NNET trained here is a single layer with 60 hidden units with “ELU” and are trained for 1000

epochs using Nadam and MAPE as the loss function. The model with the best validation loss is

Fig. 66 Three-Way Linear Regression Model, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom).

151

saved to ensure that the best model is used for imputation. Can see on Table 39 that BURNTIME,

MAXTHRUST, & MAXPC do not improve with using the NNET, however, MAXPE does

increase by 10%. When increasing to two parameters, some parameters do not increase in

accuracy; however, some combinations such as BURNTIME & MAXPC, BURNTIME &

MAXPE, MAXTHRUST & MAXPC, MAXTHRUST & MAXPE, and MAXPC & MAXPE

increase by about 10% in accuracy. It is then shown that when increasing to three missing

parameters, BURNTIME, MAXTHRUST, & MAXPC reduces in accuracy; BURNTIME,

MAXTHRUST, & MAXPC increases by about 10%; BURNTIME, MAXPC, & MAXPE does not

improve; MAXTHRUST, MAXPC, & MAXPE only improves by about 4%.

Table 39 Metrics for NNET Imputation Data

Missing Data Misclassified MisRate Accuracy
BURNTIME 1712 19.02 80.98

MAXTHRUST 1695 18.83 81.17
MAXPC 1042 11.58 88.42
MAXPE 1466 16.29 83.71

BURNTIME, MAXTHRUST 6471 71.90 28.10
BURNTIME, MAXPC 4760 52.89 47.11
BURNTIME, MAXPE 2743 30.48 69.52

MAXTHRUST, MAXPC 3144 34.93 65.07
MAXTHRUST, MAXPE 3787 42.08 57.92

MAXPC, MAXPE 3090 34.33 65.67
BURNTIME, MAXTHRUST, MAXPC 8367 92.97 7.03
BURNTIME, MAXTHRUST, MAXPE 6846 76.07 23.93

BURNTIME, MAXPC, MAXPE 7001 77.79 22.21
MAXTHRUST, MAXPC, MAXPE 7455 82.83 17.17

Figure 68 shows the imputed versus actual for BURNTIME, MAXTHRUST, & MAXPC

and can see the results do not improve with using a NNET. It is now obvious that not even a NNET

may be able to impute the full data. The next set of results will then use a larger network similar

to the model developed in IV.III.VI Results: 10,000 Epochs.

152

Fig. 67 NNET Trained for 1000 Epochs, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom).

153

VI.VI NNET Trained for 5,000 Epochs: Imputation & Classification Results

The model developed here uses three hidden layers with 90 hidden units per layer with

ELU activation, Nadam optimization with MAPE as the loss function. Again, the best model with

the lowest validation loss is saved during training to ensure the best model is taken. Each

imputation network is trained for 5000 epochs. For a single missing parameter, BURNTIME and

MAXTHRUST have barely increased in accuracy, but MAXPC and MAXPE have both increased

greatly over 96%. When increasing the missing parameters to two, BURNTIME & MAXTHRUST

does not increase in accuracy, but the other sets increase quite significantly. MAXPC & MAXPE

even increases to almost 90%, which increased from 51% in the one-way linear regression model.

When increasing the number of missing parameters to three, the accuracy does not increase at all.

Table 40 Metrics for NNET Trained for 5000 Epochs Imputation Data

Missing Data Misclassified MisRate Accuracy
BURNTIME 1672 18.58 81.42

MAXTHRUST 1511 16.79 83.21
MAXPC 4 0.04 99.96
MAXPE 290 3.22 96.78

BURNTIME, MAXTHRUST 6365 70.72 29.28
BURNTIME, MAXPC 2983 33.14 66.86
BURNTIME, MAXPE 2455 27.28 72.72

MAXTHRUST, MAXPC 2198 24.42 75.58
MAXTHRUST, MAXPE 3488 38.76 61.24

MAXPC, MAXPE 1166 12.96 87.04
BURNTIME, MAXTHRUST, MAXPC 8188 90.98 9.02
BURNTIME, MAXTHRUST, MAXPE 6820 75.78 24.22

BURNTIME, MAXPC, MAXPE 7055 78.39 21.61
MAXTHRUST, MAXPC, MAXPE 7604 84.49 15.51

Figure 69 shows the imputed versus actual for missing BURNTIME, MAXTHRUST, &

MAXPC. Can see how the NNET is attempting to model the data and can see how predicted data

154

appears to be making a step. It seems the predicted data increases and then plateaus and it seems

that the model is attempting to make the prediction better.

Fig. 68 NNET Trained for 5000 Epochs, Imputed vs. Actual for BURNTIME (Top Left),

MAXTHRUST (Top Right), & MAXPC (Bottom).

155

VI.VII NNET Trained for 20,000 Epochs: Imputation & Classification Results

The imputation models were then trained for 20,000 epochs using the same network

configuration from the previous section. Table 41shows the metrics for the NNET trained for

20,000 epochs and can see that the accuracy does not increase. From these results can realize that

maybe certain models will improve performance. It was shown that increasing the number of

hidden units and hidden layers improves performance. However, this might not ever improve

accuracy if only one single parameter is known.

Table 41 Metrics for NNET Trained for 20000 Epochs Imputation Data

Missing Data Misclassified MisRate Accuracy
BURNTIME 1679 18.66 81.34

MAXTHRUST 1502 16.69 83.31
MAXPC 4 0.04 99.96
MAXPE 250 2.78 97.22

BURNTIME, MAXTHRUST 6368 70.76 29.24
BURNTIME, MAXPC 2986 33.18 66.82
BURNTIME, MAXPE 2491 27.68 72.32

MAXTHRUST, MAXPC 2180 24.22 75.78
MAXTHRUST, MAXPE 3534 39.27 60.73

MAXPC, MAXPE 1072 11.91 88.09
BURNTIME, MAXTHRUST, MAXPC 8161 90.68 9.32
BURNTIME, MAXTHRUST, MAXPE 6778 75.31 24.69

BURNTIME, MAXPC, MAXPE 7113 79.03 20.97
MAXTHRUST, MAXPC, MAXPE 7576 84.18 15.82

VI.VIII Future Work for Robustness & Sensitivity

One of the first approaches that can be done is to focus on improving the imputation models

by increasing the number of hidden units and hidden layers. It is hypothesized that adding more

hidden units may allow the NNET to develop relationships between the known data and simulated

missing parameters. Another method, not shown in this work, would be to utilize adversarial

learning methods to improve the robustness of the classification models [133]. Currently, there are

156

multiple Python packages for implementing adversarial learning such as CleverHans [134] and

Adversarial-Robustness-Toolbox [135]. Both tools allow for training NNETs using adversarial

samples to improve the overall robustness to noise.

157

VII. Model Explainability

As the models were generated in the past several chapters, there was no detail on how the

models generate a prediction. For typical linear regression models, such as those in section IV.II

Linear Regression Methods and section V.II Linear and Quadratic Discriminant Analysis, the

coefficients can be used to assess which parameters have more influence on the model. The

downside to just using coefficients is that it only explains globally how parameters affect the

output. When the linear regression model is fit, a coefficient will be either positive, zero, or

negative and will only show which direction the output goes regardless of what the input is. The

coefficients do not say how important a local sample input is to the model prediction. With linear

regression and linear discriminant analysis there is least some type of global model explainability;

however, with NNETs the weights and biases cannot be directly used to assess which parameters

are most influential due to the fact that there are nonlinear activations of the linear combinations

of weights and biases. A new method has been developed for evaluating regression methods

including linear regression, decision trees & ensemble methods, NNETs, and even agnostic models

and it uses an old method of calculating Shapley Values.

VII.I Shapley Values

The concept of Shapley values was first introduced by Lloyd Shapley [136] to measure the

contribution of players to a game. This concept was very foundational to game theory as it allows

for direct computations of a player’s contribution. The overall concept is simple to understand, if

there are n players, then a player i’s contribution can be evaluated by the difference between a

158

game’s output including player i and a games output excluding i. To compute player i’s overall

contribution, multiple games or coalitions M are evaluated using a combination of the N players

which will either include or exclude player i. The classical Shapley value estimation [137] is shown

on Eq. (7.1), where ϕ𝑖𝑖 is the estimated Shapley value for player (input feature) i, 𝑣𝑣(𝑀𝑀 ∪ {𝑖𝑖}) is the

prediction of the model using coalition M including feature i, 𝑣𝑣(𝑀𝑀) is the prediction of the model

using coalition M excluding feature i, and γ𝑛𝑛(𝑀𝑀) is the weight of proportions to enter coalition M

[138]. Little m is the number of participants excluding i and n is the total number of players.

[v(𝑀𝑀 ∪ {𝑖𝑖}) − v(𝑀𝑀)] is the main portion of calculating the Shapley value and is known as the

marginal contribution. The Shapley value can be thought of as the marginal contribution ratioed

by the number of coalitions, which is shown on Eq. (7.2), and can see the marginal contribution is

just the difference between the sets of coalitions which include and exclude feature i [139].

() { }() ()

() ()
All

! 1 !
!

i n
M

n

M v M i v M

m n m
M

n

φ γ

γ

 = ∪ − 

− −
=

∑
 (7.1)

All

1 Marginal Contribution of
Number of Coalitions excluding i

M

i
n i

φ = ∑ (7.2)

VII.II Hypothetical Shapley Value Example

The Shapley value concept is best understood by looking at a hypothetical example case.

For example, the time of flight (TOF) is modeled using DBODY, PC, and BURNTIME and we

wish to obtain the contributions (Shapley Values) that DBODY has on the model. To do this, TOF

159

must be modeled using each coalition available, and since there 3 input features there are 𝑀𝑀 =

2𝑛𝑛 = 23 = 8 coalitions required.

Table 42 Hypothetical Coalitions for TOF

Coalitions Players 𝑣𝑣(𝑀𝑀) TOF Prediction, Seconds
1 None (∅) (No Input or Zero) 0
2 DBODY 15
3 PC 25
4 BURNTIME 30
5 DBODY, PC 45
6 DBODY, BURNTIME 35
7 PC, BURNTIME 55
8 DBODY, PC, BURNTIME 95

Table 42 shows the hypothetical results of TOF being modeled by each coalition. For

example , can see on coalition 1 that if TOF has no input then there is no predicted TOF; cannot

make a model prediction with no input. If TOF is modeled using coalition 2, then there is a TOF

prediction of 15 seconds using just DBODY. To calculate the Shapley value for DBODY, there

are then 𝑀𝑀/2 = 8/2 = 4 sets in the summation of Eq. (7.1). Equation (7.3) shows the summation

of the sets to calculate the Shapley value for DBODY.

 () () { }() ()
4 ! 1 !

!M i

m n m
DBODY v M i v M

n
φ

∪

− −
 = ∪ − ∑ (7.3)

Equation (7.3) is expanded to show the four sets required to calculate the Shapley Value

on Eq. (7.4). The first set is the model using DBODY subtracting the model with no inputs (∅).

The second set is the coalitions with the first part using DBODY & PC and second part just using

PC (excludes DBODY). The third set is the coalition with the first part using DBODY &

BURNTIME and second part using just BURNTIME (excludes DBODY). The fourth final set is

160

the coalition of DBODY, PC, & BURNTIME and the second part using PC & BURNTIME

(excludes DBODY).

() () () ()
() () ()
() () ()
() () ()

 ,

 ,

 , , , ,

DBODY v DBODY v

PC v DBODY PC v PC

BURNTIME v DBODY BURNTIME v BURNTIME

PC BURNTIME v DBODY PC BURNTIME v PC BURNTIME

φ γ

γ

γ

γ

= ∅ − ∅ +  
− +  

− +  
−  

 (7.4)

The values on Table 42 can then be plugged into Eq. (7.4) to give Eq. (7.5). For this

example, n is three for DBODY, PC, & BURNTIME. m is zero for the first set, m is one for both

the second and third set, which refer to PC and BURNTIME, and the fourth set m is two for PC &

BURNTIME.

() () [] () []

() [] () []

0! 3 0 1 ! 1! 3 1 1 !
15 0 45 25

3! 3!
1! 3 1 1 ! 2! 3 2 1 !

 35 30 95 55
3! 3!

DBODYφ
− − − −

= − + − +

− − − −
− + −

 (7.5)

Simplifying Eq. (7.5) into Eq. (7.6) finally shows the Shapley value for DBODY. Notice

the Shapley value is in units of the output feature, so it is in units of seconds for TOF. This shows

that DBODY has an average contribution of 22.50 seconds to TOF.

() [] [] [] []

() [] [] [] []

()

1*2! 1*1! 1*1! 2!*0!15 20 5 40
3*2! 3! 3! 3*2!
1 1 1 115 20 5 40
3 6 6 3
5 3.3333 0.8333 13.3333 22.50 Seconds

DBODY

DBODY

DBODY

φ

φ

φ

= + + +

= + + +

= + + + =

 (7.6)

The calculations of the Shapley values for PC and BURNTIME are shown in Appendix M:

Hypothetical Shapley Value Example. In the upcoming sections, the Shapley value concept is

161

extended to linear regression and a few methods for approximating the Shapley Values are

introduced.

VII.III Shapley Values Related to Linear Regression

Shapley values can be utilized for multiple statistical and machine learning models. The

Shapley values were applied to linear regression modeling functions to compare against the model

standardized coefficients [140][141]. Can see that the Shapley value for the ith input is simply the

standardized coefficient times the difference between the input and the input average, which is

shown on Eq. (7.7).

 ()() [] []()ˆ
i i i i i i i if x x E x x E xφ β β β= − = − (7.7)

If the Shapley values are summed for each standardized coefficients, then the right hand

side of Eq. (7.7) can also be summed and reduced to the difference between the model prediction

and the average of the output feature, which is shown on Eq. (7.8).

() []()

() []

() () ()

1 1

0 0
1 1 1

1

ˆ

ˆ

ˆ ˆ ˆ

n n

i i i i i
i i

n n n

i i i i i
i i i

n

i
i

f x E x

f x E x

f f x E f x

φ β β

φ β β β β

φ

= =

= = =

=

= −

   = + − +   
   

 = −  

∑ ∑

∑ ∑ ∑

∑
 (7.8)

162

VII.IV Shapley Value Approximation Methods

The classical Shapley calculation shown on Eq. (7.1) and its implementation in the

hypothetical example on section VII.II Hypothetical Shapley Value Example are not actually

practical for computational reasons. Since there are M = 2𝑛𝑛 coalitions required, for the regression

database with 15 features, then there are M = 2𝑛𝑛 = 215 = 32,768 coalitions required. For the

dataset including fin autopilot parameters, there are n=26 inputs, so there M = 2𝑛𝑛 = 226 =

67,108,864 coalitions required. It is obvious to see that number of coalitions explodes as more

input features are added. This also does not include evaluating multiple samples, which would then

be multiplied by the number of coalitions required. So, the classical Shapley analysis is very

impractical for determining the contributions computationally.

A powerful python package has been developed which includes many approximation

methods for linear regression models using Linear SHAP [137][140][141], decision trees &

ensemble models using Tree SHAP [142][143], NNETs using Deep Lift SHAP [137][144][145],

and model agnostic functions using Kernel SHAP [137]. This package is called SHAP [137]

(Shapley Additive Explanation), is available for free from Anaconda. The algorithms are explained

in details in the references listed, but if the model is a linear regression function then SHAP

identifies that it is a Scikit-Learn model and then a variation of Eq. (7.7) can be used to calculate

the SHAP values, shown on Eq. (7.9) where j refers to the sample number and i is still the feature

input. Can then see how a local sample SHAP value �ϕ𝑖𝑖𝑖𝑖� is determined and can see how the

global SHAP value (ϕ𝑖𝑖) is derived.

163

[]()

1, 1

1
ij i ij i

n

i ij
i j

x E x

n

φ β

φ φ
= =

= −

= ∑ (7.9)

VII.V Regression Explanations

To explain these the SHAP package is used for linear regression (excluding Ridge & Lasso)

and regression NNETs. SHAP allows using Scikit-Learn and TensorFlow to easily calculate the

SHAP values necessary. Word of caution, the NNET version can be very slow if a lot of samples

are used. For this data, if more than 5000 samples are used it gets very slow and a warning will

mostly appear. Although not used here, the Kernel SHAP version can also be very slow as well.

The Linear SHAP is extremely Fast and there should be no issues when executing this version.

VII.V.I Linear Regression & Shapley Value Global Average

First, we look at the linear regression model standardized coefficients and compare them

to the global average SHAP values. Can see that the standardized coefficients are easily calculated

by multiplying the coefficient to the ratio of the input feature standard deviation and the target

feature standard deviation, which is shown on Eq. (7.10) First, the standardized coefficients of the

linear regression model using one-way terms are plotted on a heatmap on Fig. 70. The standardized

coefficients are shown for each input feature along the output feature columns. When evaluating

the TOF, can see that THROAT has the highest positive contribution to TOF, followed by

ILAUNCH, PC, and DBODY, but TBURN has the highest negative contribution followed by

164

TAILB2 and EQRATIO. Parameters which are positive increase the value of TOF and parameters

which are negative decrease TOF. So, it can be said DBODY is positively contributing to TOF

and TBURN is negatively contributing to TOF.

()
()

1*
i i

X
y

σ
β β

σ
= (7.10)

When looking at MAXTHR, can see that THROAT has the largest positive contribution,

followed by PC and DBODY. Will then notice that the other parameters do not really contribute

to MAXTHR, which makes sense because the tail fin parameters would not contribute to thrust in

any way. For MAXDIST, THROAT has the largest positive contribution, followed by PC,

DBODY, and ILAUNCH. EQRATIO has the largest negative contribution, followed by TAILB2,

DNOSE, and TRCR. For APOGEE, THROAT has the largest positive contribution followed by

PC, ILAUNCH, and DBODY; TBURN has the largest negative contribution followed by TAILB2,

EQRATIO, TRCR, and DNOSE. For THRSEA, THROAT has the largest positive contribution,

followed by PC and DBODY, and notice that this follows the same trend as MAXTHR. For

WEIGHT, THROAT has the largest positive contribution, followed by PC, DBODY, and TBURN.

THROAT can be hard parameter to understand as to why it has such a large contribution to

WEIGHT. When looking at Eq. (2.6), can see that the mass flow rate is function of PC, THROAT,

and the propellant characteristic velocity. The total propellant mass is then calculated from Eq.

(2.7), which is a function of mass flow rate and BURNTIME. Therefore, propellant mass is a

function of BURNTIME, PC, and THROAT, which will account for 60-70% of the total mass.

165

Figure 71 shows the one-way linear regression global SHAP values. The global SHAP

values are just the mean absolute SHAP values and shows the average contribution for an input

feature. For TOF, can see that THROAT has the large average contribution, so on average

Fig. 69 One-Way Parameter Linear Model: Standardized Coefficients.

166

THROAT contribute 104.21497 seconds to TOF. ILAUNCH, PC, TBURN, DBODY, TAILB2,

and EQRATIO are on average the largest contributors for TOF. Notice that SHAP values are

similar in magnitude ordering, so ILAUNCH was the second most contributing on Fig. 70 and on

Fig. 71. PC & TBURN are the third and fourth, respectively, most contributing parameters on both

Fig. 70 One-Way Linear Regression Mean(|SHAP|).

167

Fig. 70 and Fig. 71. So, can see that the SHAP values for a linear model are just scaled values of

the standardized coefficients. For MAXTHR, can see that THROAT is the most contributing (also

on Fig. 70), followed by PC (as it is on Fig. 70), and DBODY (as it is on Fig. 70). For MAXDIST,

THROAT, ILAUNCH, PC, DBODY, EQRATIO, and TAILB2 are the most contributing

parameters. For APOGEE, THROAT, ILAUNCH, PC, TBURN, and DBODY are the most

contributing parameters. For THRSEA, THROAT ,PC, and DBODY are the most contributing.

For WEIGHT, THROAT, PC, TBURN, and DBODY are the most contributing parameters. For

WEIGHT, THROAT, PC, TBURN, and DBODY are the most contributing parameters.

VII.V.II Neural Network Regression & Shapley Value Explanations

Next, we can apply the SHAP package using the “DeepExplainer” function to obtain the

SHAP values for NNET using TensorFlow. Figure 72 shows the mean absolute global

contributions (SHAP values) for the NNET that was trained for 50,000 epochs in Sect. IV.III.VII.

Notice that global SHAP values are almost one to one the same as the SHAP values for the linear

regression model on Fig. 71. Will notice that sense the NNET was able to get improved metrics,

the SHAP values are slightly different and much greater for ILAUNCH. For TOF & MAXDIST,

will notice that ILAUNCH has a larger contribution, and for the rest of the outputs they are a bit

smaller. For MAXDIST, can see that TBURN has a much larger contribution than it did for the

linear regression model on Fig. 71 and in fact, many of the parameters for MAXDIST have increase

with few parameters decreasing. There is some change on TOF & APOGEE and very small

changes on MAXTHR, THRSEA, and WEIGHT.

168

Next, the model global SHAP values can be plotted using the SHAP “Summary Plot”

function, which plots the SHAP values from Fig. 72 for each output (the values on along the row)

as a stacked bar chart. Figure 73 shows the global mean(|SHAP|) values plotted, where each bar is

the summed mean(|SHAP|) values from each row on Fig. 72. For the NNET regression model, can

Fig. 71 NNET Regression Mean(|SHAP|).

169

see that THROAT is globally the largest contributor to the model. Will notice that MAXTHR,

THRSEA, and WEIGHT are small in magnitude compared to MAXDIST ,APOGEE, and TOF,

but is not an issue. Part of the reason the magnitude is small for MAXTHR, THRSEA, and

Fig. 72 NNET Global Mean (|SHAP|) Values Stacked Bar Chart.

170

WEIGHT is just due to the fact that the ranges are also smaller compared to MAXDIST ,APOGEE,

and TOF. Will then notice that PC is the second most contributing, followed by ILAUNCH,

DBODY, TBURN, TAILB2, EQRATIO, TRCR, DNOSE, EXPR, FNL, TTR, LNOSE,

TXLERATIO, and TLE. The only issues with utilizing figures 72-73, is that both figures display

the mean absolute SHAP values and so there is loss of effect for single samples, which can cause

one to misconstrue the model input feature contributions. One must take caution in interpreting

the SHAP values and for figures 72-73, one must remember that the values refer to the mean

absolute SHAP values. For example, for TOF, THROAT has an AVERAGE SHAP (contribution)

value of 106.7 seconds to the NNET model. So, not every sample will have 106.7 seconds of

contribution. Therefore, it is important to display sample input SHAP available from using the

“DeepExplainer.shap_values(X)” function call.

Figure 74 shows the individual sample SHAP values for the output parameter TOF. The

samples are colored blue to red, which displays its magnitude from low (blue) to high (red),

respectively. THROAT for example, shows the lower inputs are blue and the higher inputs are red.

Can then see SHAP value on the x-axis and will see if it is negative or positive. This plot is

extremely useful because we can see the sample SHAP value and determine how its input value is

scaled. Looking back at THROAT, we can see that lower values of THROAT have a negative

contribution to the output and higher values of THROAT have a positive contribution to the output.

ILAUNCH, PC, DBODY, and FNL all show that their lower respective values have negative

contributions, and their higher respective values have positive contributions. Looking at TBURN,

the opposite effect occurs and can see that LOWER values of TBURN have a POSITIVE

contribution and HIGHER values of TBURN have a NEGATIVE contribution. TAILB2,

EQRATIO, TRCR, EXPR, DNOSE, and TTR show that their lower respective values have a

171

positive contribution, whereas their higher respective values have a negative contribution. Notice

that TXLERATIO, TLR, and LNOSE have an extremely low contribution.

Figure 75 shows the individual sample SHAP values for the output parameter MAXTHR.

Will see that for THROAT, PC, DBODY, EXPR, and ILAUNCH show that their lower respective

Fig. 73 TOF Sample SHAP Values using Summary Plot.

172

values have a negative contribution, and their higher respective values have a positive contribution.

For EQRATIO and TBURN, their higher respective values have a negative contribution and their

lower respective values have a positive contribution. The parameters below and including FNL,

all have extremely low contributions to the model.

Fig. 74 MAXTHR Sample SHAP Values using Summary Plot.

173

Figure 76 shows the individual sample SHAP values for the output parameter MAXDIST.

Can see that for THROAT, PC, and DBODY that their higher respective values have a positive

contribution, and their lower respective values have a negative contribution. EQRATIO, TAILB2,

DNOSE, and TRCR show that their lower respective values have a positive contribution, and their

higher respective values have a negative contribution. Will notice that ILAUNCH and TBURN

were not initially mentioned and that is because we can see that there is a mixture of contributions.

Fig. 75 MAXDIST Sample SHAP Values using Summary Plot.

174

So, for example, on TBURN can see that low and higher values can have both positive and negative

contribution to the output.

Figure 77 shows the individual sample SHAP values for the output parameter APOGEE.

THROAT, ILAUNCH, PC, and DBODY show that their higher respective values have a positive

contribution, and their lower respective values have a negative contribution. TBURN, TAILB2,

EQRATIO, TRCR, and DNOSE show that their lower respective values have a positive

Fig. 76 APOGEE Sample SHAP Values using Summary Plot.

175

contribution, and their higher respective values have a negative contribution. The parameters

below and including EXPR have very little contribution to the output.

Figure 78 shows the individual sample SHAP values for the output parameter THRSEA.

THROAT, PC, and DBODY show that their higher respective values have a positive contribution,

and their lower respective values have a negative contribution. EQRATIO and EXPR show that

their lower respective values have a positive contribution, and their higher respective values have

Fig. 77 THRSEA Sample SHAP Values using Summary Plot.

176

a negative contribution. The parameters below and including FNL have very little contribution to

model output.

Figure 79 shows the individual sample SHAP values for the output parameter WEIGHT.

THROAT, PC, DBODY, and TBURN show that their higher respective values have a positive

contribution, and their lower respective values have a negative contribution. The parameters below

and including TRCR have very little contribution to the model output.

Fig. 78 WEIGHT Sample SHAP Values using Summary Plot.

177

With the summary plots, it is important to note that the plots do not tell what the magnitude

of the output is, so just because an input feature has positive contribution will not necessarily mean

that the output will have a large value. So, we can now examine single samples to see how the

local SHAP values adjust the output. The next six plots will show the same sample for each output

parameter. The sample is plotted using the SHAP package function called “force_plot”. Figure 80

shows the single sample force plotted for TOF. The values which have a positive contribution, i.e.,

increase the output, are colored red on the left. The values which have a negative contribution, i.e.,

decrease the output, are colored blue on the right. The input feature which are most important are

displayed on the force and their respective input values are displayed as well. The base value shows

what the average output value is and can see it is about 280 seconds. Can see that the output for

the sample is 382.14 seconds. For this sample, can see that TAILB2, TBURN, PC, and THROAT

have positive contributions and most important; ILAUNCH and DBODY have negative

contributions and are also most important.

Fig. 79 TOF Single Sample Force Plot.

178

Next, looking at Fig. 81 shows the single sample force plot for MAXTHR. Can see that PC

and THROAT are the most important positive contributors and DBODY is the most important

negative contributor. The average (base value) for MAXTHR is approximately 46 Lbf/1000 and

the sample output is 59.80 Lbf/1000.

Next, looking at Fig. 82 shows the single sample force plot for MAXDIST. Can see that

DBODY is the most important negative contributor, and TRCR, TAILB2, TBURN, DNOSE, PC,

& THROAT are the most important positive contributors. The average value for MAXDIST is

approximately 841 ft/1000 and the sample output is 1772.17 ft/1000.

Fig. 80 MAXTHR Single Sample Force Plot.

179

 Next, looking at Fig. 83 shows the single sample force plot for APOGEE. Can see that

DBODY & ILAUNCH are the most important negative contributor, and TAILB2, TBURN, PC,

& THROAT are the most important positive contributors. The average value for APOGEE is

approximately 298.69 ft/1000 and the sample output is 458.71 ft/1000.

Fig. 81 MAXDIST Single Sample Force Plot.

Fig. 82 APOGEE Single Sample Force Plot.

180

Next, looking at Fig. 84 shows the single sample force plot for THRSEA. Can see that

DBODY is the most important negative contributor, and PC & THROAT are the most important

positive contributors. The average value for THRSEA is approximately 40.31 Lbf/1000 and the

sample output is 55.48 Lbf/1000.

Next, looking at Fig. 85 shows the single sample force plot for WEIGHT. Can see that

DBODY is the most important negative contributor, and PC & THROAT are the most important

positive contributors. The average value for WEIGHT is approximately 16.56 Lbm/1000 and the

sample output is 19.30 Lbm/1000.

Fig. 83 THRSEA Single Sample Force Plot.

181

VII.VI Classification Explanations

To explain the classification model the SHAP package can be used for LDA (we will

exclude QDA) and the classification NNET. For this data, remember that a class value is being

predicted. So, take caution when interpreting the SHAP values for classification.

VII.VI.I LDA & Shapley Value Global Average

First, LDA is evaluated and is shown to be very useful as an interpretable model. So, LDA

can be used to directly interpret how the model is making predictions by evaluating the

dimensionally reduced components. Fortunately, when using LDA in Scikit-Learn, the number of

dimensionally reduced terms (“n_components”) can be set. Here, this parameter is set two so that

the parameters can be easily visualized on a two-dimensional plot. Figure 86 shows the

Fig. 84 WEIGHT Single Sample Force Plot.

182

dimensionally reduced parameters LDA 1 versus LDA 2 for the entire set of 18 classes, which

each class number of plotted on its corresponding class group. Can see that the classifier is able to

separate the classes. On LDA 2, can see that the classes a split vertically and can see that the

classifier was able to split the classes based on THROAT, which the first 9 classes have THROAT

equal to 0.14264 and classes 10-18 have THROAT equal to 0.18264. On LDA 1 can see that the

classifier is able split the classes based on DBODY. Classes 1, 4, 7, 10, 13, & 16 have the same

DBODY equal to 0.844. Classes 2, 5, 8, 11, 14, & 17 have the same DBODY equal to 0.884.

Classes 3, 6, 9, 12, 15, & 18 have the same DBODY equal to 0.924. Can see that classes 1, 4, & 7

have the same DBODY, but are not separated as much and is an effect of the reduction method.

Fig. 85 LDA 1 vs. LDA 2 Dimensionally Reduced Components.

183

These classes have different FINENESS and only separated by small subregions. So, can see that

the LDA reduction method is having a harder time of separating the classes due to FINENESS.

This reduction method would have been more appropriate if it would have been reduced to three

components and shown on a three dimensional plot.

Next, the standardized coefficients of the LDA model are plotted on a heatmap to show

which parameters are most influential. These standardized coefficients are transposed on Fig. 87,

so that they can fit on the document. Standardized coefficients for LDA may not make sense, but

utilizing Eq. (5.5) we can write the LDA equation in a form similar to linear regression and make

use of the “standardized coefficients”. The coefficients must be carefully translated compared to

the regression. For the output Class 1 (top row), BURNTIME & MAXTHRUST have a negative

weight or contribution, and MAXPC & MAXPE have a positive contribution. Can see that

MAXTHRUST has the largest contribution. Overall BURNTIME seems to have a very small

contribution. Interestingly enough, MAXTHRUST appears to have cyclical importance across the

output features (along the MAXTHRUST column). Notice that its starts largely negative on class

1, gets very small in magnitude on class 2, then gets largely positive on class 3. Can see that this

repeats for every 3 classes. On MAXPC column, notice that class 1 starts out largely positive, class

2 starts positively smaller, and class 3 is largely negative. The cycle repeats for the first 9 classes

and when class reaches 11 (different value of THROAT but corresponds to same DBODY as class

2) the small positive value changes to small negative. This new cycle repeats for class 10-18.

Finally, on MAXPE, notice that class 1 starts positive, class 2 starts negative, and class 3 starts out

larger negatively, and this cycle repeats for the first 9 classes as well. Similarly, to MAXPC, when

reaching class 11, the would be negative value changes to positive contribution and the new cycle

184

repeats for classes 10-18. Overall, it does seem that MAXTHRUST is the most contributing and

BURNTIME seems to be the least contributing.

Fig. 86 LDA Standardized Coefficients.

185

Fig. 87 LDA Mean(|SHAP|) Values.

186

Next, the mean absolute SHAP values are plotted on Fig. 88 and notice that there are no

negative values like on Fig. 87. We will notice very similar trends as those on Fig. 87. BURNTIME

does not seem follow a trend. For MAXTHRUST, class 1 shows a large contribution, class 2 shows

a small contribution, and class 3 shows a large contribution. This cycle repeats for every 3 classes

for all the classes. For MAXPC, class 1 shows a large contribution, class 2 shows a small

contribution, and class 3 shows a large contribution and this cycle repeats for every 3 classes for

all classes. For MAXPE, class 1 shows a large contribution, class 2 shows a small contribution,

and class 3 shows a large contribution and this cycle repeats for every 3 classes for all classes.

When looking at the rows, can see that MAXTHRUST seems to be the most contributing. MAXPC

and MAXPE seems to be second most contributing, and they seem to alternate for the classes.

BURNTIME is the least contributing.

VII.VI.II Neural Network Classification & Shapley Value Explanations

Next, we can apply the SHAP package again using the “DeepExplainer” function to obtain

the SHAP values for NNET using TensorFlow. Figure 89 shows the mean absolute global

contributions (SHAP values) for the NNET that was trained for 5,000 epochs in Sect. V.III.III.

Because the model uses the categorical cross entropy as the loss function, the SHAP values are

scaled much smaller. So, it is much harder to observe any characteristics and relate how the SHAP

values are predicting the output. Instead, it may be useful to utilize other SHAP plots to generalize

about the model predictions. The complexity in the classification problem, is that the NNET has

18 output units so there are 18 multidimensional arrays of SHAP values that can be used for

visualization. Interpreting the NNET classification models are not easy as the NNET regression

model.

187

The mean absolute SHAP are then plotted on a stacked bar chart on Fig. 90. Can see that

the overall contributor to the model is MAXPC, followed by MAXTHRUST, MAXPE, and finally

BURNTIME. It is obvious to see that looking at the global values on Fig. 89 & Fig. 90 is not very

Fig. 88 NNET Classification Mean(|SHAP|).

188

useful and there is not much information to be gained. So, instead it will be more useful to look at

specific samples case.

The force plots can be utilized to see how single samples are being predicted. For example,

a single sample is plotted on Fig. 91 and can see how the NNET makes a prediction. Because the

output value was plotted for Class 1, can see how the NNET predicts the output value. Notice that

the sample predicts an output of 0.00, so the sample does not belong to Class 1. Can see that

Fig. 89 NNET Classification Global Mean (|SHAP|) Values Stacked Bar Chart.

189

BURNTIME & MAXTHRUST were positively contributing and MAXPE & MAXPC were

negatively contributing.

Next, the same sample SHAP values are plotted for Class 5 predictions on Fig. 92. Can see

that this sample predicts a value of 1.00, which means that this sample belongs to Class 5. Can see

that MAXTHRUST, MAXPE, and BURNTIME were positively contributing and MAXPC was

negatively contributing to the output. Because the single sample predicts a value of 1.00 for Class

5, this sample will obviously predict zero for the other SHAP force plots. When calculating the

SHAP values, a multidimensional list of [number of classes]=[18] two-dimensional arrays are

created. These arrays refer to SHAP values per sample and are of size [number of samples, number

of inputs]=[1000, 4]. Therefore, the multidimensional list is of size [18][1000, 4], therefore each

Fig. 90 Single Sample Class 1 Force Plot.

190

list refers to the output class value. For example [0][0, :] refers to the output for class 1 using the

sample 1 inputs. So, only one of the lists for a single sample will predict a value of 1.00.

So, if the rest of the class output lists are force plotted for the single sample, they will all

just predict a value of zero and will be repetitive, therefore most of the class predictions are not

shown. Instead for example purposes, only classes 10 and 15 will be shown. Figure 93 shows the

single sample prediction and obviously it is zero. Can see that BURNTIME has a positive

contribution to the output and MAXPC & MAXPE have a negative contribution to the output. Can

see that MAXTHRUST has no visible contribution. Next on Fig. 94, can see the single sample

predict zero. Can see that MAXTHRUST has a positive contribution, and MAXPC, BURNTIME,

& MAXPE have a negative contribution.

Fig. 91 Single Sample Class 5 Force Plot.

191

Fig. 92 Single Sample Class 10 Force Plot.

Fig. 93 Single Sample Class 15 Force Plot.

192

Although the force plots are extremely useful for visualizing individual case by case

outputs, it can be visually useful to see how each prediction arrives at the final solution. The

“multioutput_decision_plot” from SHAP can be used to plot a single sample and see how the

NNET makes the predictions. Because this is a classification NNET, the outputs will either arrive

at zero or one. Figure 95 shows the NNET take the input sample and predicts which class the

sample belongs to and can see from the legend that the sample belongs to class 5, which is the

same sample used for figures 91-94. The input features are sorted based on importance and can

see that for this specific sample that BURNTIME is the most contributing parameter and

MAXTHRUST is the least contributing parameter. So, it is important to understand that the global

SHAP values need to be used with caution when generalizing the input features.

Fig. 94 Single Multi-Output Decision Plot.

193

VII.VII Other Methods for Explanation

There are other methods for explaining but not all of them are available for TF NNETs and

not all of them are generalizable to all models. Using the SHAP package allows for a generalization

of all model types built in Python. Refer to Molnar [140] for an in-depth discussion and

implementations of model interpretation functions such as global model agnostic methods, which

include partial dependence plots and accumulated local effect plots, and local model agnostic

methods, which include individual conditional expectation and local surrogate (LIME). Although

these plots can be very useful, SHAP seems to be the most useful because of its ability to do global

and local explanations. The main issues with SHAP arise mostly from interpretation and one must

be careful in how the results are interpreted. However, these issues are also possible with other

methods so in general caution must be taken when interpreting the explanation results.

194

VIII. Conclusions & Future Work

This dissertation described the process for generating simulated experimental data so that

statistical analysis and machine learning could be applied. Two datasets were generated and the

first was developed for regression purposes and the other dataset was developed for classification.

The regression dataset was developed from the Auburn University Liquid Rocket Code and the

classification dataset was developed from the Auburn University Solid Rocket Code. For

regression, the models were generated so that output features such as TOF and MAXDIST could

be predicted from geometric parameters such as DBODY and launch parameters such as

ILAUNCH. For classification, the missiles are differentiated by generated 3 different DBODY

values, 3 different FINENESS values, and 2 different THROAT values.

For regression, traditional linear regression methods (linear, ridge, and lasso) were

developed and shown to be only accurate predicting MAXTHR, THRSEA, and WEIGHT.

Therefore, a NNET was implemented in TensorFlow and from the multi-layer multi-unit analysis

a network with 3 hidden layers and 90 units per layer was chosen and trained for 50,000 epochs.

The overall testing MSE was 144.2935 and predicted versus actual plots show minimal error even

for MAXDIST. With the regression database, it was shown that predicting TOF, APOGEE, and

MAXDIST were the hardest parameters to model even using a NNET.

For classification, the inputs DBODY, FINENESS, and THROAT are not the inputs for

classification, instead the output parameters MAXTHRUST, BURNTIME, MAXPE, and MAXPC

are used as inputs and the outputs are the class values 1-18. To classify these missiles, the classical

linear and quadratic discriminant analysis functions were used to achieve a 99.3778% and

195

99.9111% testing accuracy, respectively. In many datasets, LDA and QDA typically would not be

able to differentiate between classes, but for this specific database they both work perfectly. A

classification NNET was developed using a single layer with 50 hidden units and only needed

5000 epochs to achieve a 99.97% testing accuracy.

Data is not always available and so sample inputs were randomly selected and assumed to

be missing. This missing data needs to be replaced and so imputation models were developed to

try to replace the missing parameters using linear regression and NNETs. Linear regression was

shown not to be able to impute the data and so NNETs were implemented to try and improve

results. Results showed that for single missing parameter, the testing accuracy could reduce to 80%

and when missing two parameters, the accuracy could drop to 30% testing accuracy but testing

accuracy could achieve 87% testing accuracy. When missing three of the four parameters, the

testing accuracy drops below 25% testing accuracy. Some of the main reasons the accuracy was

reduced so much was that not even NNETs could not accurately reproduce the data when missing

three parameters.

Methods for model explainability were produced for both the regression and classification

models. If using linear models which can be modeled as linear regression function such as ridge

regression and LDA, the standardized coefficients can be directly used for model interpretation.

However, the standardized coefficients only allow for global model interpretation. Global model

interpretation cannot say how influential individual samples are for prediction. So, the Shapley

Additive Explanation (SHAP) methodology was used to develop interpretations for the linear &

NNET regression models and the LDA & classification models. The usefulness of SHAP is that it

allows for both global and local interpretations and there are extensive visualizations methods to

analyze the global and local SHAP values.

196

VIII.I Future Work

For the regression database, new work is currently being done to develop pitching to a

specific angle of attack instead of pitching based on a target. Pitching based on a target causes the

missile to pitch over too quickly and drastically and causes the missile to tumble out of control.

Despite the performance gains of the NNETs, they require long training times compared to

traditional linear regression and are more complex to understand. One method for regression not

used in this work was ensemble methods such as random forests or XGBoost and there are works

which have shown that given the right database, these ensemble methods can perform similarly to

NNETs but are extremely faster compared to NNETs. Ensemble methods are also glass-box

methods, so they are directly interpretable. Of course, SHAP can also be used on ensemble

methods as well.

For classification, this work only used thrust components, but in real life situations this

information may not actually be known but was a very good test case. Future datasets will include

other parameters more likely to be known such as TOF and MAXDIST. Of course, other methods

such as ensemble methods should be utilized to see if they are capable of performance that NNETs

can achieve.

For model imputation, generative adversarial networks (GANs) need to be utilized to try

and impute missing data. There are experiments which suggest that GANs are more capable of

imputing missing data because GANs essentially build two networks, one which generates samples

and another which tries to see if the generate sample is real or fake. Another method which

improves performance is adversarial learning, which is similar to GANs, but adversarial learning

takes the batch data and adds noise based on the previous error gradient. Since the data is being

imputed and is therefore noisier than the true data, then adversarial learning could possibly

197

improve the accuracy. Exploration of more complex NNETs may also be the key for imputation;

the networks which were developed in the imputation section may not have been sufficient, so

wider and deeper network may be necessary for improving the results.

Further applications of SHAP are still needed to derive more information about model

explainability. Other methods which were mentioned in Sect. VII.VII may also be useful for model

interpretation. For future datasets, especially classification, missiles with autopilot need to be

developed because in most modern missile applications, there is some autopilot which is

influencing the missile’s trajectory and will cause the dataset to be more nonlinear than it already

is. Other regression and classification should also utilize the trajectory time information. Although

this adds significant amount of data, more information could be extracted from the trajectory to

develop new insights to missile technology. Physic informed neural network (PINNs) could also

be utilized to directly learn from the equations of motions to reverse engineer features of the

missile. In relation to PINNs, the reverse engineering process should be revisited to predict the

missile parameters and launch configurations using output information such as TOF & MAXTHR

or use the entire set of trajectory time data.

198

References

[1] Van Rossum, G., & Drake, F. L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009. https://www.python.org/

[2] Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011. https://scikit-
learn.org/stable/index.html#

[3] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,
K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., "TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems," tensorflow.org, TensorFlow 2015
Whitepaper, 2015. doi: 10.48550/arXiv.1603.04467

[4] Abadi, M., Barham, P., Chen, J., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker,
P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., "TensorFlow: A System
for Large-Scale Machine Learning," tensorflow.org, 12th USENIX Symposium on Operating
Systems Design and Implementation, Savannah, GA, 2016. doi: 10.48550/arXiv.1605.08695

[5] Anderson, M., Design of a Missile Interceptor Using Genetic Algorithms, Ph. D. Dissertation,
Auburn University, Auburn, AL, 1998.

[6] Burkhalter, J.E., Jenkins, R., and Hartfield, R., "Genetic Algorithms for Missile Analysis,"
MSIC Final Report, 2003.

[7] Hartfield, R., Burkhalter, J.E., Jenkins, R., and Metts, J., "Genetic Algorithm Upgrade," MSIC
Final Report, 2005.

[8] Hartfield, R.J., Burkhalter, J.E., Jenkins, R.M., Metts, J., Riddell, D., and Dyer, J., "Genetic
Algorithm Developments for Liquid Missile Analysis," MSIC Final Report, 2006.

[9] Hartfield, R.J., Burkhalter, J.E., Jenkins, R.M., Dyer, J., and McDavid, B., "Genetic
Algorithm Developments for Multiple Stage Missile Analysis," MSIC Final Report, 2007.

[10] Hartfield, R., Burkhalter, J.E., Hurston, W., Badyrka, J., Johnson, C., and Druckemiller, J.,
"Genetic Algorithm Guidance & Control Goal Definitions Upgrade," MSIC Final Report,
2009.

[11] Hartfield, R., Burkhalter, J.E., Jenkins, R., Carpenter, M., Albarado, K., Badyrka, J., Ritz, S.,
Hurston, B., and Ahuja, V., "Optimization Techniques for Advanced Missile Analysis," MSIC
Final Report, 2011.

[12] Hartfield, R., Burkhalter, J.E., Jenkins, R., Carpenter, M., Albarado, K., Ritz, S., Ledlow, T.,
and Walsh, T., "Missile Design Optimization Methods," MSIC Final Report, 2012.

[13] Hartfield, R., Burkhalter, J.E., Carpenter, M., and Kiyak, Z., "Optimization & Search
Algorithms for Missile Analysis," MSIC Final Report, 2013.

199

[14] Hartfield, R.J., "Missile System Design Using a Hybrid Evolving Swarm Algorithm," MSIC
Final Report, 2014.

[15] Hartfield, R.J., Carpenter, M., Cervantes, N., Eckert, J., and Sheils, T., "Emerging Threat
Analysis," MSIC Final Report, 2020.

[16] Hartfield, R.J., Carpenter, M., Yilmaz, L., Cervantes, N., Belvin, N., and DiMaggio, G.,
"Quantification of Confidence Level of Missile Models," MSIC Final Report, 2021.

[17] Hartfield, R.J., Carpenter, M., Yilmaz, L., Cervantes, N., Pastor, G., and Moore, N.,
"Engineering and Statistical Analysis of Liquid Missile Systems, Genetic Algorithms, &
Augmented Intelligence with Exploratory Modeling and Analysis," MSIC Final Report, 2022.

[18] Hartfield, R., Rocket Propulsion Course Notes, Vol. 1-15.

[19] Bayley, D., Hartfield, R., Burkhalter, J.E., and Jenkins, R., "Design Optimization of a Space
Launch Vehicle Using a Genetic Algorithm," Journal of Spacecraft and Rockets, Vol. 45, No.
4, 2008, pp. 733-740. doi: 10.2514/1.35318

[20] Riddle, D., Hartfield, R., Burkhalter, J. E., and Jenkins, R., "Genetic Algorithm Optimization
of Liquid Propellant Missile Systems," 45th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, 2007. doi: 10.2514/6.2007-362

[21] Riddle, D., Hartfield, R., Burkhalter, J.E., and Jenkins, R., "Genetic-Algorithm Optimization
of Liquid-Propellant Missile Systems," Journal of Spacecraft and Rockets, Vol. 46, No. 1,
2009, pp. 151-159. doi: 10.2514/1.30891

[22] Carpenter, M., and Hartfield, R., "Similitude for Dry Liquid Rocket Engines," AIAA, 2018
Joint Propulsion Conference, Cincinnati, OH, June 2018. doi: 10.2514/6.2018-4548

[23] Sutton, G. P., and Biblarz, O., Rocket Propulsion Elements, 6th ed., Vol. Wiley-Interscience,
New York, 2001.

[24] Huzel, D., and Huang, D. H., Modern Engineering for Design of Liquid-Propellant Rocket
Engines, 1st ed., Vol. 147, AIAA, Washington, D.C., 1992.

[25] Humble, R. W., Henry, G. N., and Larson, W. J., Space Propulsion Analysis and Design, 2nd
ed., The McGraw-Hill Companies, Inc., New York, 1995.

[26] Sutton, G. P., History of Liquid Propellant Rocket Engines, AIAA, 2006.

[27] Barrere, M., and Jaumotte, A., Rocket Propulsion, Revised ed., Elsevier Publishing Company,
Amsterdam, 1960.

[28] Hartfield, R., Jenkins, R., Burkhalter, J. E., and Foster, W., "A Review of Analytical Methods
for Solid Rocket Motor Grain Analysis," 39th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference, Huntsville, AL, 2003. doi: 10.2514/6.2003-4506

[29] Hartfield, R., Jenkins, R., Burkhalter, J.E., and Foster, W., "Analytical Methods for Predicting
Grain Regression in Tactical Solid-Rocket Motors " Journal of Spacecraft and Rockets, Vol.
41, No. 4, 2004, pp. 689-693. doi: 10.2514/1.3177

200

[30] Anderson, M., Burkhalter, J. E., and Jenkins, R., "Multi-Disciplinary Intelligent Systems
Approach to Solid Rocket Motor Design Part I: Single and Dual Goal Optimization," 37th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, UT,
2001. doi: 10.2514/6.2001-3599

[31] Anderson, M., Burkhalter, J. E., and Jenkins, R., "Multi-Disciplinary Intelligent Systems
Approach to Solid Rocket Motor Design Part II: Multiple Goal Optimization," 37th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, UT,
2001. doi: 10.2514/6.2001-3600

[32] Hartfield, R., Jenkins, R., and Burkhalter, J. E., "Optimizing a Solid Rocket Motor Boosted
Ramjet Powered Missile Using a Genetic Algorithm," 41st AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, Tucson, AZ, 2005. doi: 10.2514/6.2005-3507

[33] Metts, J., Hartfield, R., Burkhalter, J. E., and Jenkins, R., "Reverse Engineering of Solid
Rocket Missiles with a Genetic Algorithm," 45th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV, 2007. doi: 10.2514/6.2007-363

[34] Albarado, K., Hartfield, R., Hurston, B., and Jenkins, R., "Solid Rocket Motor Performance
Matching Using Pattern Search/Particle Swarm Optimization," 47th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, 2011. doi:
10.2514/6.2011-5798

[35] Hartfield, R., Burkhalter, J. E., Jenkins, R., Anderson, M., and Witt, J., "Analytical
Development of a Slotted Grain Solid Rocket Motor," 38th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, Indianapolis, IN, 2002. doi: 10.2514/6.2002-4298

[36] Hartfield, R., Burkhalter, J.E., Jenkins, R., and Witt, J., "Analytical Development of a Slotted-
Grain Solid Rocket Motor," Journal of Propulsion and Power, Vol. 20, No. 4, 2004, pp. 690-
694. doi: 10.2514/1.11378

[37] Washington, W. D., Computer Program for Estimating Stability Derivatives of Missile
Configurations, Army Missile Research Development and Engineering Lab Aeroballistics
Directorate, Redstone Arsenal, AL, 1976.

[38] Washington, W. D., Computer Program for Estimating Stability Derivatives of Missile
Configurations - User's Manual, Army Missile Research Development and Engineering Lab
Aeroballistics Directorate, Redstone Arsenal, AL, 1976.

[39] Vukelich, S. R., Stoy, S. L., Burns, K. A., Castillo, J. A., and Moore, M. E., Missile Datcom
- Final Report, AFWAL-TR-86-3091, Vol. 1, 1988.

[40] Vukelich, S. R., Stoy, S. L., and Moore, M. E., Missile Datcom - User's Manual, AFWAL-
TR-86-3091, Vol. 2, 1988.

[41] Rosemo, C., Doyle, J., and Blake, W.B., "Missile Data Compendium (DATCOM)," Final
Report - AFRL-RQ-WP-TR-2014-0281, 2014.

[42] McDaniel, M. H., Dynamic Stability and Control: Methods and Developments, Ph. D.
Dissertation, Auburn University, Auburn, AL, 2016.

201

[43] Paul, J.L., Vasile, J.D., and DeSpirito, J., "Comparison of Aeroprediction Methods for Guided
Munitions," ARL-TR-9287, 2021.

[44] Mason, L., Devan, L., Moore, F.G., and McMillan, D., "Aerodynamic Design Manual for
Tactical Weapons," NSWC TR 81-156, 1981.

[45] Nielsen, J., Missile Aerodynamics, 1st ed., McGraw Hill Series in Missile and Space
Technology, New York, NY, 1960.

[46] Etkin, B., and Reid, L. D., Dynamics of Flight: Stability and Control, 3rd ed., John Wiley &
Sons, Inc., USA, 1996.

[47] Etkin, B., Dynamics of Atmospheric Flight, 3rd ed., Dover Publications, Inc., Mineola, New
York, 2000.

[48] Schmidt, D. K., Modern Flight Dynamics, 1st ed., McGraw Hill New York, NY, 2012.

[49] Henderson, D.M., "Euler Angles, Quaternions, and Transformation Matrices," NASA
Technical Report, 1977.

[50] Cooke, J.M., Zyda, M., Pratt, D.R., and McGhee, R.B., "NPSNET: Flight Simulation
Dynamic Modeling Using Quaternions," Presence Teleoperators & Virtual Environments,
Vol. 1, No. 4, 1994, pp. 404-420. doi: 10.1162/pres.1992.1.4.404

[51] Amoruso, M.J., "Euler Angles and Quaternions in Six Degree of Freedom Simulations of
Projectiles," ADA417259, 1996, pp. 75. doi:

[52] Fehlberg, E., Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with
Stepsize Control, NASA Technical Report R-287, NASA, Washington, D. C., 1968.

[53] Butcher, J.C., "Coefficients for the Study of Runge-Kutta Integration Processes," Journal of
the Australian Mathematical Society, Vol. 3, No. 2, 1962, pp. 185-201. doi:
10.1017/S1446788700027932

[54] Zarchan, P., Tactical and Strategic Missile Guidance, Progress in Astronautics and
Aeronautics, 7th ed., Vol. 239, American Institute of Aeronautics and Astronautics, Inc.,
Reston, VA, 2019.

[55] Yanushevsky, R., Modern Missile Guidance, 2nd ed., CRC Press, Boca Raton, FL, 2019.

[56] Blakelock, J. H., Automatic Control of Aircraft and Missiles, 2nd ed., Wiley-Interscience
Publication, New York, NY, 1991.

[57] Siouris, G. M., Missile Guidance and Control Systems, 1st ed., Springer-Verlag, New York,
NY, 2004.

[58] Gibeau, D. G., Missile Design PC TRAP: An Improved PC TRAP for Tactical Missile Design,
Dissertation, Calhoun: The NPS Institutional Archive, Monterey, CA, 1993.

[59] Moran, I., and Altilar, T., "Three Plane Approach for 3D True Proportional Navigation,"
AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, 2005.
doi: 10.2514/6.2005-6457

202

[60] Nesline, W., and Nesline, M., "How Autopilot Requirements Constrain the Aerodynamic
Design of Homing Missiles," 1984 American Control Conference, San Diego, CA, 1984. doi:
10.23919/ACC.1984.4788471

[61] Anderson, M., Burkhalter, J. E., and Jenkins, R., "Intelligent Systems Approach to Designing
an Interceptor to Defeat Highly Maneuverable Targets," 39th Aerospace Sciences Meeting
and Exhibit, Reno, NV, 2001. doi: 10.2514/6.2001-1123

[62] Seyfert, B. E., The Motion Control System of the Legendary SCUD-B Missile: Description
and Mathematical Analysis, RoseDog Books, Pittsburgh, PA, 2019.

[63] Project Rock Nail/Rose Nail, Vol. 1-6, U.S. Army Missile Intelligence Agency, Redstone
Arsenal, AL, 1980.

[64] Scud Missile, https://en.wikipedia.org/wiki/Scud_missile

[65] OMEGA, U.S. Government-Off-The-Shelf Software.

[66] Ripley, B.D., "Computer Generation of Random Variables: A Tutorial," International
Statistic Review, Vol. 51, No. 3, 1983, pp. 301-319. doi: 10.2307/1402590

[67] Hogg, R. V., Tanis, E. A., and Zimmerman, D. L., Probability and Statistical Inference, 9th
ed., Pearson Education, Inc., 2015.

[68] Casella, G., and Berger, R. L., Statistical Inference, 2nd ed., Duxbury Thomson Learning,
2002.

[69] Marsaglia, G., and Zaman, A., "A New Class of Random Number Generators," The Annals of
Applied Probability, Vol. 1, No. 3, 1991, pp. 462-480.

[70] McKay, M.D., Beckmen, R.J., and Conover, W.J., "A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer Code,"
Technometrics, Vol. 21, No. 2, 1979, pp. 239-245. doi: 10.2307/1268522

[71] Santner, T. J., Williams, B. J., and Notz, W. I., The Design and Analysis of Computer
Experiments, 2nd ed., Springer Series in Statistics, 2018.

[72] Fang, K. T., Li, R., and Sudijianto, A., Design and Modeling for Computer Experiments,
Computer Science and Data Analysis Series, Chapman & Hall/CRC, 2006.

[73] Anderson, V. L., and McLean, R. A., Design of Experiments: A Realistic Approach, Marcel
Dekker Inc., 1974.

[74] Pitard, F. F., Theory of Sampling and Sampling Practice, 3rd ed., CRC Press, 2019.

[75] Stein, M., "Large Sample Properties of Simulations Using Latin Hypercube Sampling,"
Technometrics, Vol. 29, No. 2, 1987, pp. 143-151.

[76] Sobol, I.M., "On the Distribution of Points in a Cube and the Approximate Evaluation of
Integrals," USSR Computational Mathematics and Mathematical Physics, Vol. 7, No. 4, 1967,
pp. 86-112. doi: 10.1016/0041-5553(67)90144-9

203

[77] Bratley, P., Fox, B.L., and Niederreiter, H., "Programs to Generate Niederreiter's Low-
Discrepancy Sequences," ACM Transactions on Mathematical Software, Vol. 20, No. 4, 1994,
pp. 494-495. doi: 10.1145/198429.198436

[78] Wu, N., The Maximum Entropy Method, Springer Series in Information Sciences, 1997.

[79] Knuth, D. E., The Art of Computer Programming, 3rd ed., Vol. 2, Addison-Wesley, 1998.

[80] Wichmann, B.A., and Hill, I.D., "Algorithm AS 183: An Efficient and Portable Pseudo-
Random Number Generator," Journal of the Royal Statistical Society, Series C (Applied
Statistics), Vol. 31, No. 2, 1982, pp. 188-190. doi: 10.2307/2347988

[81] The Pandas Development Team, Pandas, Zenodo, Ver. 1.4.3, 2020. doi:
10.5281/zenodo.3509134

[82] McKinney, W., "Data Structures for Statistical Computing in Python," Proceedings of the 9th
Python in Science Conference, 2010. doi: 10.25080/Majora-92bf1922-00a

[83] Hunter, J.D., "Matplotlib: A 2D Graphics Environment," Computing in Science &
Engineering, Vol. 9, No. 3, 2007, pp. 90-95. doi: 10.1109/MCSE.2007.55

[84] Waskom, M.L., "seaborn: Statistical Data Visualization," The Journal of Open Source
Software, Vol. 6, No. 60, 2021, pp. 3021. doi: 10.21105/joss.03021

[85] Wickham, H., ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York,
2016.

[86] Ritz, S., Hartfield, R., Dahlen, J., Burkhalter, J. E., and Woltosz, W. S., "Rapid Calculation of
Missile Aerodynamic Coefficients Using Artificial Neural Networks," IEEE Aerospace
Conference, Big Sky, MT, 2015. doi: 10.1109/AERO.2015.7119031

[87] Carpenter, M., Hartfield, R., Cervantes, N., and Thacker, J., "High Speed Modeling for Grid
Fins Using a DNN Approach," 2020 IEEE Aerospace Conference, Big Sky, MT, 2020. doi:
10.1109/AERO47225.2020.9172259

[88] Carpenter, M., Hartfield, R., Thacker, J., and Cervantes, N., "A Deep Learning Approach to
Surrogate Modelling of Missile Aerodynamic Performance," Asia Pacific International
Symposium on Aerospace Technology, Gold Coast, Australia, 2019.

[89] Hartfield, R., Carpenter, M., and Cervantes, N., "Statistical Learning for Solid Propellant
Performance," AIAA Propulsion and Energy 2021 Forum, 2021. doi: 10.2514/6.2021-3704

[90] Cervantes, N., and Carpenter, M., and Hartfield, R., "A Deep Learning Approach Neural
Network Approach to Missile Systems using Liquid Propulsion," IEEE Aerospace
Conference, Big Sky, Montana, 2022. doi: 10.1109/AERO53065.2022.9843826

[91] Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression
Analysis, 5th ed., Vol. John Wiley & Sons, Inc., Hoboken, NJ, 2012.

[92] James, G., Witten, D., Hastie, T., and Tibshirani, R., An Introduction to Statistical Learning
with Application in R, 2nd ed., Springer, New York, 2021.

204

[93] Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed., Vol. 1, Springer, 2016.

[94] Géron, A., Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems, 2nd ed., Vol. 1, O'Reilly Media, Inc.,
Sebastopol, CA, 2019.

[95] Bruce, P., Bruce, A., and Gedeck, P., Practical Statistics for Data Scientists: 50+ Essential
Concepts Using R and Python, 2nd ed., O'Reilly Media, Inc., Sebastopol, CA, 2020.

[96] Myttenaere, A.D., Golden, B., Le Grand, B., and Rossi, F., "Mean Absolute Percentage Error
for Regression Models," ARXIV, 2016, doi: arXiv.1605.02541

[97] Tofallis, C., "A Better Measure of Relative Prediction Accuracy for Model Selection and
Model Estimation," Journal of the Operational Research Society, Vol. 66, 2015, pp. 1352-
1362. doi: 10.1057/jors.2014.103

[98] Chollet, F., Deep Learning with Python, 2nd ed., Manning Publications Co., Shelter Island,
NY, 2021.

[99] Aggarwal, C. C., Neural Networks and Deep Learning, 1st ed., Springer International
Publishing, Yorktown Heights, NY, 2018.

[100] Murphy, K. P., Probabilistic Machine Learning: An Introduction, 1st ed., The MIT Press,
Cambridge, MA, 2022.

[101] Buduma, N., Buduma, N., and Papa, J., Fundamentals of Deep Learning, 2nd ed., O'Reilly
Media, Inc., Sebastopol, CA, 2022.

[102] Durr, O., Sick, B., and Murina, E., Probabilistic Deep Learning: With Python, Keras, and
TensorFlow Probability, 1st ed., Manning Publications, Co., Shelter Island, NY, 2020.

[103] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, ed., Vol. MIT Press, 2016.

[104] McCulloch, W.S., and Pitts, W., "A Logical Calculus of the Ideas Immanent in Nervous
Activity," Bulletin of Mathematical Biophysics, Vol. 5, 1943, pp. 115-133. doi:
10.1007/BF02478259

[105] Rosenblatt, F., "The Design of an Intelligent Automaton," Research Trends, Cornell
Aeronautical Laboratory, Inc., Vol. 6, No. 2, 1958.

[106] Hebb, D. O., The Organization of Behavior: A Neuropsychological Theory, 1st ed.,
Psychology Press, 1949.

[107] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., "Learning Internal Representations by
Error Propagation," Cognitive Science, DTIC-ICS Report 8506, 1985.

[108] Ruder, S., "An Overview of Gradient Descent Optimization Algorithms," ARXIV, 2016.
doi: 10.48550/arXiv.1609.04747

[109] Duchi, J., Hazan, E., and Singer, Y., "Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization," Journal of Machine Learning, Vol. 12, No. 61, 2011, pp. 2121-
2159. doi: 10.5555/1953048.2021068

205

[110] Kingma, D.P., and Ba, J.L., "ADAM: A Method for Stochastic Optimization," ARXIV,
2014. doi: 10.48550/arXiv.1412.6980

[111] Dozat, T., "Incorporating Nesterov Momentum into Adam," 2016.

[112] O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., and Invernizzi, L., KerasTuner,
Keras, https://github.com/keras-team/keras-tuner, 2019.

[113] Hahnloser, R., Sarpeshkar, R., Mahowald, M., Douglas, R., and Seung, S., "Digital
Selection and Analogue Amplification Coexist in a Cortex-Inspired Silicon Circuit," Nature,
Vol. 405, 2000, pp. 947-951. doi: 10.1038/35016072

[114] Agarap, A.F., "Deep Learning using Rectified Linear Units (ReLU)," ARXIV, 2019. doi:
10.48550/arXiv.1803.08375

[115] Xu, B., Wang, N., Chen, T., and Li, M., "Empirical Evaluation of Rectified Activations in
Convolution Network," ARXIV, 2015. doi: 10.48550/arXiv.1505.00853

[116] Clevert, D.A., Unterthiner, T., and Hochreiter, S., "Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs)," ARXIV, 2016. doi:
10.48550/arXiv.1511.07289

[117] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S., "Self-Normalizing Neural
Networks," ARXIV, 2017. doi: 10.48550/arXiv.1706.02515

[118] Cybenko, G., "Approximation by Superpositions of a Sigmoidal Function," Mathematics
of Control, Signals, and Systems, Vol. 2, 1989, pp. 303-314. doi: 10.1007/BF02551274

[119] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L., "The Expressive Power of Neural
Networks: A View from the Width," ARXIV, 2017. doi: 10.48550/arXiv.1709.02540

[120] Kidger, P., and Lyons, T., "Universal Approximation with Deep Narrow Networks,"
ARXIV, 2019. doi: 10.48550/arXiv.1905.08539

[121] Fedus, W., Zoph, B., and Shazeer, N., "Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity," Journal of Machine Learning Research &
ARXIV,, Vol. 23, 2022, pp. 1-40. doi: 10.48550/arXiv.2101.03961

[122] O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., and Invernizzi, L., KerasTuner,
Keras, https://github.com/keras-team/keras-tuner, 2019.

[123] Albarado, K., Hartfield, R., Carpenter, M., Burkhalter, J. E., and Ritz, S., "Rapid Missile
Classification for Early Launch Using Neural Networks," 10th annual U. S. Missile Defense
Conference and Exhibit, Washington, DC, 2012.

[124] Carpenter, M., Speakman, N., and Hartfield, R., "Rapid Characterization of Munitions
Using Neural Networks," AIAA Atmospheric Flight Mechanics Conference, San Diego,
California, January 2016. doi: 10.2514/6.2016-0787

[125] Carpenter, M., Hartfield, R., and Zhou, L., "Statistical Learning for Trajectory Prediction,"
AIAA SCITECH FORUM, 2019. doi: 10.2514/6.2019-0429

206

[126] Eckert, J., Carpenter, M., Hartfield, R., and Cervantes, N., "Classification of Intermediate
Range Missiles After Launch," AIAA SciTech 2020 Forum, Orlando, FL, 2020. doi:
10.2514/6.2020-1852

[127] Ghojough, B., and Crowley, M., "Linear and Quadratic Discriminant Analysis: Tutorial,"
ARXIV, 2019. doi: 10.48550/arXiv.1906.02590

[128] Little, R., and Rubin, D., Statistical Analysis with Missing Data, 3rd ed., Wiley & Sons,
Inc., Hoboken, NJ, 2020.

[129] Schmitt, P., Mandel, J., and Guedj, M., "A Comparison of Six Methods for Missing Data
Imputation," Journal of Biometrics & Biostatistics, Vol. 6, No. 1, 2015, pp. 1-6. doi:
10.472/2155-6180.1000224

[130] Azur, M., Stuart, E., Frangakis, C., and Leaf, P.J., "Multiple Imputation by Chained
Equations: What Is It and How Does It Work?," International Journal of Methods in
Psychiatric Research, Vol. 20, No. 1, 2011, pp. 40-49. doi: 10.1002/mpr.329

[131] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein,
D., and Altman, R., "Missing Value Estimation Methods for DNA Microarrays,"
Bioinformatics, Vol. 17, No. 6, 2001, pp. 520-525. doi: 10.1093/bioinformatics/17.6.520

[132] Yoon, J., Jordon, J., and Schaar, M.V.D., "GAIN: Missing Data Imputation using
Generative Adversarial Nets," ARXIV, 2018. doi: 10.48550/arXiv.1806.02920

[133] Joseph, A. D., Nelson, B., Rubinstein, B. I. P., and Tygar, J. D., Adversarial Machine
Learning, 1st ed., Cambridge University Press, New York, NY, 2019.

[134] Papernot , N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C.,
Sharma, Y., Brown, T., Roy, A., Matyasko, A., Behzadan, V., Hambardzumyan, K., Zhang,
Z., Juang, Y.-L., Li, Z., Sheatsley, R., Garg, A., Uesato, J., Gierke, W., Dong, Y., Berthelot,
D., Hendricks, P., Rauber, J., and Long, R., "Technical Report on the CleverHans v2.1.0
Adversarial Examples Library," ARXIV, 2018. doi: 10.48550/arXiv.1610.00768

[135] Nicolae, M.I., Sinn, M., Tran, M.N., Beuesser, B., Rawat, A., Wistube, M., Zantedeschi,
V., Baracaldo, N., Chen, B., Ludwig, H., Molloy, I.M., and Edwards, B., "Adversarial
Robustness Toolbox v1.0.0," ARXIV, 2019. doi: 10.48550/arXiv.1807.01069

[136] Shapley, L.S., "A Value for N-Person Games," RAND Corporation Series, Vol. No. P-295,
1952, pp. doi: 10.7249/P0295

[137] Lundberg, S.M., and Lee, S.-I., "A Unified Approach to Interpreting Model Predictions,"
ARXIV, Vol. No. 2017, pp. doi: 10.48550/ARXIV.1705.07874

[138] Lipovetsky, S., and Conklin, M., "Analysis of regression in game theory approach,"
Applied Stochastic Models in Business and Industry, Vol. 17, No. 4, 2001, pp. 319-330. doi:
10.1002/asmb.446

[139] Catav, A., Fu, B., Zoabi, Y., Meilik, A., Shomron, N., Ernst, J., Sankararaman, S., and
Bachrach, R., "Marginal Contribution Feature Importance - An Axiomatic Approach for
Explaining Data," Proceedings for Machine Learning Research, Vol. 139, 2021, pp. 1324-
1335. doi: PMC8460841

207

[140] Molnar, C., Interpretable Machine Learning: A Guide for Making Black Box Models
Explainable, 2nd ed., 2022.

[141] Strumbelj, E., and Kononenko, I., "Explaining Prediction Models and Individual
Predictions with Feature Contributions," Knowledge and Information Systems, Vol. 41, 2014,
pp. 647-665. doi: 10.1007/s10115-013-0679-x

[142] Lundberg, S.M., Erion, G.G., and Lee, S.-I., "Consistent Individualized Feature Attribution
for Tree Ensembles," ARXIV, Vol. No. 2019, pp. doi: 10.48550/ARXIV.1802.03888

[143] Mitchell, R., Frank, E., and Holmes, G., "GPUTreeShap: Massively Parallel Exact
Calculation of SHAP Scores for Tree Ensembles," ARXIV, 2022, doi:
10.48550/arXiv.2010.13972

[144] Shrikumar, A., Greenside, P., and Kundaje, A., "Learning Important Features Through
Propagating Activation Differences," ARXIV, Vol. 70, No. 2017, pp. 3145-3153. doi:
10.48550/arXiv.1704.02685

[145] Galinkin, E., "Robustness in AI Explanation Methods," ARXIV, 2022. doi:
10.48550/arXiv.2203.03729

[146] Cooper, A., "Explaining Machine Learning Models: A Non-Technical Guide to
Interpreting SHAP Analyses," 2021. https://www.aidancooper.co.uk/a-non-technical-guide-
to-interpreting-shap-analyses/

208

Appendix A: Bell Nozzle Correction Factor

The empirical curves for the bell nozzle performance correction factor are shown from

Huzel and Huang [24] in Eq. (9.1) and are only a function of the nozzle expansion ratio and

fractional nozzle length. Both the AUSRC and AULRC can obtain the correction factors and

interpolate for varying values of expansion ratio.

3 2

3 2

3 2

3

40 0.163 0.5425 0.5956 0.7753

30 0.1791 0.5922 0.6464 0.758

20 0.2189 0.7168 0.7781 0.7114

10 0.0081 0.2283

e
f f f

t

e
f f f

t

e
f f f

t

e
f

t

A L L L
A
A L L L
A
A L L L
A
A L L
A

λ

λ

λ

λ

= = − + +

= = − + +

= = − + +

= = − 2

3 2

3 2

0.4219 0.7897

5 0.0902 0.0082 0.2713 0.8184

2 0.1744 0.1864 0.1304 0.8489

f f

e
f f f

t

e
f f f

t

L

A L L L
A
A L L L
A

λ

λ

+ +

= = − − + +

= = − + + +

 (9.1)

209

Appendix B: Nozzle Entrance Calculation

To calculate the nozzle entrance length (𝐿𝐿𝐸𝐸), a series of geometric calculations are required

from Fig. 96. First the distance to center of nozzle entrance (𝑦𝑦𝑂𝑂) is calculated on Eq. (10.1). The

radius of the upstream nozzle is circular and is set equal to the body radius (𝑟𝑟𝐶𝐶 = 𝑟𝑟𝐵𝐵). Next, we

need the cosine of θ𝑖𝑖, shown on Eq. (10.2). The tangent of θ𝑖𝑖 is then calculated on Eq. (10.3).

 O t ty r rσ= + (10.1)

 ()cos i B O
i

C C t

y r y
r r r r

θ
σ σ

−
= =

− − (10.2)

 () ()
()

21 cos
tan

cos
ii

i
i i

X
y

θ
θ

θ
−

= = (10.3)

 ()tanE C i C i iL r X r y θ= − = − (10.4)

Fig. 95 Nozzle Entrance Geometry

210

Appendix C: 3-Loop Autopilot

211

Appendix D: AULRC No Autopilots LHC Input

Fig. 96 AULRC LHC Input File for “gannlDIST.dat”.

212

Appendix E: AULRC Dataset Including Fin Autopilot

Table 43 AULRC Dataset Including Fin Autopilot

Parameter Mean STD DEV MIN 25% 50% 75% MAX
DBODY 3.02 0.29 2.50 2.78 3.03 3.27 3.50
KFUEL 2.00 0.12 1.80 1.90 2.00 2.10 2.20

PC 1107.13 245.44 600.00 911.48 1126.43 1318.45 1500.00
DNOSE 0.85 0.09 0.70 0.78 0.85 0.93 1.00
LNOSE 3.25 0.19 2.93 3.09 3.25 3.41 3.57

THROAT 0.16 0.03 0.10 0.14 0.16 0.18 0.20
EXPR 16.32 4.89 8.00 12.07 16.23 20.51 25.00
FNL 0.80 0.12 0.60 0.70 0.80 0.90 1.00

TBURN 60.16 9.67 45.00 51.83 59.18 67.88 80.00
TRCR 1.27 0.42 0.50 0.92 1.28 1.64 2.00
TTR 0.66 0.18 0.35 0.50 0.65 0.81 1.00

TAILB2 0.95 0.28 0.50 0.71 0.93 1.19 1.50
TLE 18.71 11.12 0.00 9.16 18.32 27.84 40.00

TXLERATIO 0.88 0.07 0.75 0.81 0.88 0.94 1.00
TDELAY 227 43 150 190 227 264 300

TAU 0.40 0.12 0.20 0.30 0.40 0.50 0.60
ZETA 0.85 0.09 0.70 0.77 0.85 0.92 1.00
COHZ 34.98 8.66 20.00 27.46 34.96 42.48 50.00

PRONVG 3.55 0.32 3.00 3.28 3.55 3.82 4.10
ILAUNCH 82.98 3.93 75.00 79.86 83.35 86.25 89.99
THRSEA 41.90 18.69 7.59 27.66 38.25 52.67 126.82
MAXTHR 46.92 20.84 8.35 30.93 43.06 59.10 142.69
MAXDIST 731.68 719.80 52.81 184.84 414.93 1115.86 6582.19
APOGEE 231.38 288.81 5.20 28.25 89.38 358.77 3287.15

TOF 241.57 148.95 45.21 116.48 193.24 354.50 1078.81
WEIGHT 16.81 6.47 5.19 11.89 15.53 20.49 51.18

213

Appendix F: AULRC Dataset Including Fin & Vane Autopilot

Table 44 AULRC Dataset Including Fin & Autopilot

Parameter Mean STD DEV MIN 25% 50% 75% MAX
DBODY 3.01 0.29 2.50 2.76 3.01 3.25 3.50
KFUEL 4.00 0.00 4.00 4.00 4.00 4.00 4.00

EQRATIO 2.00 0.12 1.80 1.90 2.00 2.10 2.20
PC 1072.66 247.22 600.00 869.93 1077.89 1282.46 1500.00

DNOSE 0.53 0.26 0.10 0.30 0.52 0.76 1.00
LNOSE 3.25 0.19 2.93 3.09 3.25 3.41 3.58

THROAT 0.15 0.03 0.10 0.13 0.15 0.17 0.20
EXPR 16.23 4.89 8.00 11.97 16.09 20.41 25.00
FNL 0.80 0.12 0.60 0.70 0.80 0.90 1.00

TBURN 57.02 11.06 40.00 47.41 55.84 65.78 80.00
TRCR 1.35 0.42 0.50 1.02 1.39 1.71 2.00
TTR 0.60 0.17 0.35 0.46 0.58 0.73 1.00

TAILB2 0.88 0.27 0.50 0.65 0.84 1.08 1.50
TLE 37.26 9.11 25.00 29.80 35.42 43.05 73.26

TXLERATIO 0.81 0.07 0.70 0.76 0.81 0.87 0.93
TDELAY 400.31 86.56 250.00 325.52 400.39 475.18 550.00

TAU 0.50 0.29 0.01 0.26 0.50 0.75 1.00
ZETA 0.90 0.35 0.30 0.60 0.90 1.20 1.50
COHZ 89.99 23.07 50.00 70.01 89.99 109.92 130.00

PRONVG 4.05 0.61 3.00 3.52 4.05 4.58 5.10
ILAUNCH 80.92 3.70 75.00 77.77 80.59 83.78 89.94

NOZDELAY 0.54 0.23 0.15 0.34 0.54 0.74 0.95
XK1 20.00 5.77 10.00 15.00 20.00 24.99 30.00
XK2 70.00 5.78 60.00 65.00 70.01 75.00 80.00

B2VAR 0.09 0.06 0.01 0.04 0.07 0.12 0.25
DELE0 0.25 0.14 0.00 0.13 0.25 0.37 0.50
DELR0 0.60 0.43 0.00 0.22 0.52 0.94 1.50

DTCHEK 0.80 0.40 0.10 0.45 0.80 1.15 1.50
DELTXZ 4499 867 3000 3748 4499 5249 6000
DELTXY 99993 11549 80000 89977 99986 110000 120000
THRSEA 36.80 16.00 7.85 25.02 33.45 45.15 127.42
MAXTHR 41.47 17.87 8.81 28.21 37.95 51.11 141.24
MAXDIST 578.12 571.31 52.80 165.28 357.02 818.19 6084.59
APOGEE 170.43 183.01 1.87 35.92 105.32 252.16 2857.22

TOF 218.63 109.24 41.84 126.22 204.71 295.51 987.64
WEIGHT 14.46 5.61 4.81 10.38 13.18 17.20 50.23

214

Appendix G: Output vs DBODY Scatter Plots

Fig. 97 (Top-Left) Apogee vs DBODY, (Top-Right) MAXDIST vs DBODY, (Mid-Left) MAXTHR vs

DBODY, (Mid-Right) THRSEA vs DBODY, (Bottom-Left) TOF vs DBODY, (Bottom-Right) WEIGHT vs

DBODY.

215

Appendix H: Output vs PC Scatter Plots

Fig. 98 (Top-Left) Apogee vs PC, (Top-Right) MAXDIST vs PC, (Mid-Left) MAXTHR vs PC, (Mid-

Right) THRSEA vs PC, (Bottom-Left) TOF vs PC, (Bottom-Right) WEIGHT vs PC.

216

Appendix I: Output vs TAILB2 Scatter Plots

Fig. 99 (Top-Left) Apogee vs TAILB2, (Top-Right) MAXDIST vs TAILB2, (Mid-Left) MAXTHR vs

TAILB2, (Mid-Right) THRSEA vs TAILB2, (Bottom-Left) TOF vs TAILB2, (Bottom-Right) WEIGHT vs

TAILB2.

217

Appendix J: Output vs ILAUNCH Scatter Plots

Fig. 100 (Top-Left) Apogee vs ILAUNCH, (Top-Right) MAXDIST vs ILAUNCH, (Mid-Left)

MAXTHR vs ILAUNCH, (Mid-Right) THRSEA vs ILAUNCH, (Bottom-Left) TOF vs ILAUNCH, (Bottom-

Right) WEIGHT vs ILAUNCH.

218

Appendix K: Class 10 LHC Input

Fig. 101 Input File "gannlDIST.dat" for Class 10.

219

Appendix L: 3rd Order Linear Regression Model

There are 1770 coefficients required for this model and include non-distinct parameters.

Can see that the 3rd order model still cannot capture the second distribution of data.

Table 45 Individual & Overall Linear Model Metrics for Degree = 3

Metric TOF MAXTHR MAXDIST APOGEE THRSEA WEIGHT Overall

𝑅𝑅2 0.98033 0.99974 0.91911 0.95961 0.99998 0.99930 0.97635
MSE 438.635 0.11007 44485.97 4087.39 0.00480 0.02936 8168.69

MAPE 5.77355 0.54726 36.43451 44.53611 0.15105 0.45511 14.6496
MMAPE 1.11014 0.16178 2.02188 0.89445 0.03869 0.15974 0.73111

Fig. 102 Linear Three-Way Models: Predicted vs. Actual for TOF (Left) & MAXTHR (Right).

220

Fig. 104 Linear Three-Way Models: Predicted vs. Actual for MAXDIST (Left) & APOGEE (Right).

Fig. 103 Linear Three-Way Models: Predicted vs. Actual for THRSEA (Left) & WEIGHT (Right).

221

Appendix M: Hypothetical Shapley Value Example

Equation (21.1) shows the expanded summation calculation of the Shapley value for PC.

() () () ()
() () ()
() () ()
() ()

()

,

,

, , ,

 ,

PC v PC v

DBODY v PC DBODY v DBODY

BURNTIME v PC BURNTIME v BURNTIME

DBODY BURNTIME v DBODY PC BURNTIME

v DBODY BURNTIME

φ γ

γ

γ

γ

= ∅ − ∅ +  
− +  

− +  
−



 (21.1)

Equation (21.2) shows the expanded summation calculation of the Shapley value for

BURNTIME.

() () () ()
() () ()
() () ()
() ()

()

,

,

, , ,

 ,

BURNTIME v BURNTIME v

DBODY v BURNTIME DBODY v DBODY

PC v BURNTIME PC v PC

DBODY PC v DBODY PC BURNTIME

v DBODY PC

φ γ

γ

γ

γ

= ∅ − ∅ +  
− +  

− +  
−



 (21.2)

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	I. Introduction
	II. Physics Modeling
	II.I AULRC: Propulsion Subroutine
	II.II AULRC: Mass Subroutine
	II.III AUSRC: Mass Subroutine
	II.IV AUSRC: Propulsion Subroutine
	II.V Aerodynamics Subroutine
	II.VI 6-DOF Subroutine
	II.VII Guidance & Autopilot Subroutine
	II.VIII SCUD-B Input Data & AULRC Model Verification
	II.IX AULRC Input Data
	II.X AUSRC Input Data
	II.XI Program Errors & Filtering

	III. Data Generation
	III.I Uniform Distribution Sampling
	III.II Normal Distribution Sampling
	III.III Latin Hypercube Sampling
	III.IV Regression & Classification Data
	III.IV.I AULRC Regression Data
	III.IV.II AUSRC Classification Data

	IV. Model Generation: AULRC Regression
	IV.I Review of Regression in Missiles
	IV.II Linear Regression Methods
	IV.II.I Linear Regression Methodology
	IV.II.II Linear Regression: One-Way Results
	IV.II.III Linear Regression: Two-Way Results

	IV.III Neural Networks: Regression
	IV.III.I Feedforward NNETs & Backpropagation
	IV.III.II Optimizer: Momentum, NAG, RMSProp, Adam, & Nadam
	IV.III.III Activation Functions: Sigmoid, RELU, and ELU
	IV.III.IV NNET Script Methodology
	IV.III.V Results: Multi-Layer, Multi-Unit Matrix
	IV.III.VI Results: 10,000 Epochs
	IV.III.VII Results: 50,000 Epochs

	V. Model Generation: AUSRC Classification
	V.I Review of Classification in Missiles
	V.II Linear and Quadratic Discriminant Analysis
	V.II.I Linear Discriminant Analysis Results
	V.II.II Quadratic Discriminant Analysis Results

	V.III Neural Networks: Classification
	V.III.I NNET Script Methodology
	V.III.II NNET Results Trained for 250 Epochs
	V.III.III NNET Results for 500, 1000, & 5000 Epochs
	V.III.IV NNET Classification: Multi-Layer, Multi-Unit Matrix

	VI. Model Robustness & Sensitivity
	VI.I Imputation Methodology
	VI.II One-Way Model: Imputation & Classification Results
	VI.III Two-Way Model: Imputation & Classification Results
	VI.IV Three-Way Model: Imputation & Classification Results
	VI.V NNET Trained for 1,000 Epochs: Imputation & Classification Results
	VI.VI NNET Trained for 5,000 Epochs: Imputation & Classification Results
	VI.VII NNET Trained for 20,000 Epochs: Imputation & Classification Results
	VI.VIII Future Work for Robustness & Sensitivity

	VII. Model Explainability
	VII.I Shapley Values
	VII.II Hypothetical Shapley Value Example
	VII.III Shapley Values Related to Linear Regression
	VII.IV Shapley Value Approximation Methods
	VII.V Regression Explanations
	VII.V.I Linear Regression & Shapley Value Global Average
	VII.V.II Neural Network Regression & Shapley Value Explanations

	VII.VI Classification Explanations
	VII.VI.I LDA & Shapley Value Global Average
	VII.VI.II Neural Network Classification & Shapley Value Explanations

	VII.VII Other Methods for Explanation

	VIII. Conclusions & Future Work
	VIII.I Future Work

	References
	Appendix A: Bell Nozzle Correction Factor
	Appendix B: Nozzle Entrance Calculation
	Appendix C: 3-Loop Autopilot
	Appendix D: AULRC No Autopilots LHC Input
	Appendix E: AULRC Dataset Including Fin Autopilot
	Appendix F: AULRC Dataset Including Fin & Vane Autopilot
	Appendix G: Output vs DBODY Scatter Plots
	Appendix H: Output vs PC Scatter Plots
	Appendix I: Output vs TAILB2 Scatter Plots
	Appendix J: Output vs ILAUNCH Scatter Plots
	Appendix K: Class 10 LHC Input
	Appendix L: 3rd Order Linear Regression Model
	Appendix M: Hypothetical Shapley Value Example

