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Abstract 
 

 

 As aerial and sensing technologies have been developed, so have their applications in 

plant phenotyping and water quality monitoring. This is especially true with respect to the mass 

manufacture of easily portable quadcopters and hexacopters and publicly available satellite 

imagery. These platforms enable researchers to acquire data at a rapid pace, eliminating the need 

for manual and labor-intensive measurements. This paradigm shift constitutes a dramatic 

reduction in the cycle time of hypothesis testing, and ultimately enables us to glean more insights 

into the nature of reality, faster. The research in this thesis exploits these remote sensing 

technologies, coupled with machine learning techniques, to propose new solutions to rapid 

peanut phenotyping for breeding drought tolerance and water quality monitoring for the 

prediction of harmful algal blooms.  

Direct measurement of the agronomical and physiological traits of peanuts is labor-

intensive and time-consuming, and these traits hold invaluable information for breeders who 

need to select peanut genotypes with high-yielding and resilient characteristics. As part of this 

study, UAV-based hyperspectral imaging and machine learning (ML) techniques were used to 

predict three agronomic traits (biomass, pod count, and yield) as well as two physiological traits 

(photosynthesis and stomatal conductance) in peanut plants under drought stress.  

An evaluation of two different approaches was conducted. Using 80 narrow-band vegetation 

indices as input features, the first approach employed an ensemble model of K-nearest neighbors, 

support vector regression, random forest, and multi-layer perceptron (MLP) to predict the 

agronomic and physiological traits. Second, the mean and standard deviation of canopy spectral 

reflectance were calculated per band, resulting in a total of 400 features that were used to train an 



 3 

end-to-end deep learning (DL) model for the prediction of the same traits; biomass, pod count, 

pod yield, photosynthetic rate and stomatal conductance. This model consisted of several one-

dimensional convolutional layers, followed by an MLP regressor. Agronomic traits predicted by 

feature learning and deep learning (R2 = 0.45-0.73; sMAPE = 24-51%) outperformed those 

predicted by traditional machine learning and feature engineering (R2 = 0.44-0.61, sMAPE = 27-

59%). While the ensemble model did not match the DL model's performance in predicting 

agronomic traits, it was slightly better in predicting physiological traits, achieving R2s in the 

range of 0.35-0.57 and sMAPEs in the range of 37-70%, while the DL model achieved R2s 

between 0.36 and 0.52 and sMAPEs between 47 and 64%. It was demonstrated that using 

advanced remote sensing tools such as UAV-based hyperspectral imaging, coupled with machine 

learning, could enable peanut breeders to screen genotypes quickly for improved yield and 

drought tolerance. 

Another problem addressed in this thesis was predicting chlorophyll-a (chl-a) 

concentrations and detecting harmful algal blooms (HABs) as chl-a concentration is often used 

as an indicator of algal blooms. Traditionally, collected water samples are required for lab-based 

cell taxonomy in order to measure chlorophyll-a concentrations. Using satellite images, it is 

possible to monitor inland water bodies extensively and rapidly. MODIS images were used in 

this study to predict chl-a concentrations and HAB events in Lake Okeechobee, the second 

largest freshwater lake in the United States. These images were acquired using Google Earth 

Engine (GEE) and processed in batches automatically for the period of 2011-2020. Ten years of 

time-series reflectance data were extracted from these images and several additional features 

were appended to it including cloud cover, chl-a estimations using the OCx algorithm, 

temperature data, and the sine transform of timestamps. These complex time-series data were 
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trained on a Long-short term memory (LSTM) model, a recurrent neural network (RNN) with 

the ability to learn long-term dependencies. The dataset was structured such that each day with a 

chl-a measurement was linked to same day reflectance data, as well as several days of reflectance 

data preceding the measurement day. Twelve variations of training sets were generated using 

different numbers of days of study before event dates, to study the effect of the time period on 

the result, and also to determine the optimum number of days we need to look back in time to 

detect HABs. The time variations ranged from 3 to 25 days before each chl-a measurement, and 

the results showed that a time period of fifteen days with a resolution of 4 days before each 

event, had the best performance with a root mean square error (RSME) of 11.95 µg/L, mean 

absolute error (MAE) of 8.55 µg/L and coefficient of determination (R2) of 0.43. It was shown 

that satellite imagery and additional environmental features, together with a recurrent neural 

network such as LSTM, have the potential to detect HABs and estimate chl-a concentrations in 

Lake Okeechobee.  
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Chapter 1. Introduction 
 

 

As interest in automation and rapid monitoring grows, time-consuming and labor 

intensive tasks in biological applications–particularly in agriculture–are increasingly utilizing 

remote sensing technologies. Remote sensing platforms offer many advantages over traditional 

methods of monitoring and phenotyping. These advantages include key differences in the 

amount of data that can be obtained over a given amount of time, and also the fact that remote 

sensing is inherently non-destructive to the subject matter.  

One application of remote sensing in agriculture is monitoring crop phenotypes in a non-

destructive and efficient manner (Araus and Cairns, 2014; Araus, Kefauver, Zaman-Allah, Olsen, 

and Cairns, 2018). Satellite imaging is one of the high-throughput plant phenotyping techniques 

that has been used in the past few years (Chawade et al., 2019). This technique has been utilized 

for different phenotyping applications, such as estimating leaf area index (Kaplan et al., 2021; 

Wei et al., 2017), above-ground biomass (Han et al., 2017; Sibanda, Mutanga, Rouget, and 

Kumar, 2017) and yield prediction (Peralta, Assefa, Du, Barden, and Ciampitti, 2016; 

Schwalbert et al., 2018). Despite having the potential to be used for phenotyping agronomic 

traits, satellite images have a limited spatial resolution and cannot be used for assessing 

physiological characteristics at the plot level. 

UAV (unmanned-aerial vehicle)-based images have several advantages over satellite 

images that make them preferable in several agricultural applications. UAVs give researchers the 

flexibility to choose different types of sensors to be mounted on the UAV according to the 

problem, and they can provide significantly better resolution in all aspects; a better temporal 

resolution can be achieved since flight missions can be scheduled based on the needs of the 

project. Additionally, the possibility of mounting different sensors on the platform, gives the 
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users and researchers the flexibility of choosing the sensor of their choice which can provide 

better spatial and spectral resolutions (Araus and Cairns, 2014; Araus et al., 2018). A growing 

number of high-resolution cameras with high-resolution sensors have become available to 

consumers and researchers. These cameras can provide valuable information regarding plant 

phenotypes. RGB, multispectral and hyperspectral cameras are three of the most commonly used 

sensors in this field. By combining two or more bands collected by these sensors, vegetation 

indices (VI) can be calculated, highlighting vegetation properties, plant health, and stress. Thus, 

UAV imagery can therefore provide quick insights into plant health over large areas. The most 

common and low-cost type of sensor on UAVs is RGB cameras that are often used to assess the 

physiological and agronomic traits of plants. For instance, Choudhary, Biswal, Saha, and 

Chatterjee (2021) evaluated the nitrogen status of wheat using aerial RGB images. Similarly, 

barley biomass was estimated with the same type of images in a study conducted by Bendig et al. 

(2014). However, RGB sensors lack the near-infrared (NIR) band which is critical when making 

decisions about plant health and phenotypes. Plants have strong reflectivity in the NIR region, 

since healthy vegetation absorbs light in the blue and red wavelengths for photosynthesis and 

creates chlorophyll which is highly reflective in near infrared. Therefore, most research studies 

take this band into account, by utilizing multi-spectral or hyperspectral sensors. The NIR band is 

often combined with other bands such as red or red-edge, providing metrics for plant health. This 

combination of bands are called vegetation indices and are commonly used for estimating crop 

attributes such as above-ground biomass, leaf area index (LAI), water stress, yield and 

chlorophyll content (Maresma, Ariza, Martínez, Lloveras, and Martínez-Casasnovas, 2016; Qi et 

al., 2021; Romero, Luo, Su, and Fuentes, 2018; Su et al., 2019).  Both multispectral and 

hyperspectral sensors provide images from these wavelengths, and therefore vegetation indices 
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can be created from their output imagery. However, there are several key differences between 

multi and hyperspectral cameras; hyperspectral cameras are more complicated and costly, and 

resulting images from these cameras require large amounts of storage, but they provide the 

reflectance in over two hundred narrowband continuous wavelengths, whereas multispectral 

images are provided in few broadband wavelengths. The continuous reflectance from 

hyperspectral sensors gives us the spectral signature of the crop, which holds determining 

information that allows a deeper analysis of plant characteristics in high-throughput phenotyping 

applications. 

Fenghua et al. (2017) used a hyperspectral camera mounted on a UAV for phenotyping 

LAI (leaf area index), leaf chlorophyll content (Cab), canopy water content (Cw), and dry matter 

content (Cdm) of rice. Yield and biomass prediction are also a common use of these sensors (X. 

Feng et al., 2020; Moghimi, Yang, and Anderson, 2020). Hyperspectral sensors have also been 

used for assessing photosynthetic attributes in several studies. Kanning et al. (2018) estimated 

chlorophyll content and LAI from UAV-based hyperspectral data. To the best of the authors’ 

knowledge, there is no previous work estimating peanut photosynthetic rate and stomatal 

conductance from aerial hyperspectral imagery. A more common method for assessing these 

traits in the available literature is via spectrometers based on leaf contact. Buchaillot et al. (2022) 

estimated peanut and soybean photosynthetic traits such as mid-day photosynthesis, maximum 

rubisco capacity (Vcmax) and maximum RuBP regeneration capacity (Jmax) using leaf spectral 

reflectance obtained by a handheld spectrometer (Field Spec Hi-Res 4, Malven Analytics). Qi et 

al. (2020) employed the same device for measuring peanut leaves chlorophyll content. However, 

handheld spectrometers do not allow high-throughput screening and are time-consuming, as the 
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reflectance of each plant needs to be assessed individually. By contrast, aerial hyperspectral 

imagery can cover a larger area more effectively by looking at several plants simultaneously.  

Choosing the right remote sensing platform, including the sensor (RGB, thermal, 

multispectral or hyperspectral) and the platform (drone or satellite) involves a tradeoff between 

spectral, temporal and spatial resolution. Even though UAV-based hyperspectral images provide 

the highest spectral resolution, and atmospheric conditions do not interfere with the imaging-

unlike satellite imagery- this method is not suitable for monitoring areas larger than a few acres 

due to the battery and flight time limit of these vehicles. Therefore, satellite images are 

preferable for monitoring water quality in large lakes. In the modern era, the entire globe has 

been imaged at a multitude of different wavelengths, and given that much of this data is freely 

accessible, it is easier than ever to leverage when working on research questions that do not 

require a very high degree of resolution.  

Satellite multispectral images can assist water quality monitoring, since similar to plants, 

chlorophyll are found in algae and highly reflective in near infrared and their reflectance in 

different bands can provide insights into chlorophyll concentrations. Chlorophyll-a (chl-a) is 

commonly used as an indicator of harmful algal blooms (HAB), and chl-a concentrations higher 

than 10 μg/L classify as HABs (World Health Organization [WHO] (2022). Numerous studies 

have been done for both estimating chl-a concentrations and detecting/predicting HABs, and 

satellites of different types have been used in their research. Landsat is one of the most 

commonly used satellite products for monitoring in-land algal blooms (Khan et al., 2021).  

However, it is limited by its 16-day temporal resolution. These long revisit intervals limit the 

utility of Landsat for mapping algal blooms' temporal variability. Sentinel-2 is another satellite 

with high spatial resolution which is used for monitoring freshwater regions. This satellite was 
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launched in 2015 and therefore developing a model with a limited time range can be limiting, 

especially since inland water bodies are not sampled as frequently as marine waters and have less 

field observations (Ventura et al., 2022). Choosing the right type of satellite involves a tradeoff 

between the range of availability, temporal and spatial resolution. MODerate resolution imaging 

spectroradiometer (MODIS) is one of the satellites offering an archive of long-term image series 

of daily global coverage. The high temporal resolution of this satellite increases the probability 

of getting cloud-free images in the areas of interest, and its long observation record (since 1999) 

allows a deeper analysis of temporal dynamic blooms in inland waters.  

A number of previous studies have demonstrated that MODIS products can be used to 

estimate chlorophyll-a levels in large inland water bodies. By studying thirteen lakes in Brazil 

with water surface areas ranging from 1.85 to 441 km2, Ventura et al. (2022) explored the 

potential of using MODIS imagery to estimate chl-a on lakes of different sizes. The results 

showed that the three biggest lakes with the highest frequency of field sampling showed the best 

results, with R2 > 0.5. Zhang et al. (2011) used the reflectance from MODIS band 2 (near 

infrared) and an empirical model to make predictions on chl-a in Lake Taihu. Another study by  

Li et al. (2019) also explores chl-a predictions in Lake Taihu using a classification-based 

MODIS land-band algorithm. A study on Lake Okeechobee demonstrated the potential of using 

MODIS imagery for estimating chl-a, using three different models; a genetic programming (GP) 

model, an artificial neural network (ANN) model and a multiple linear regression (MLR) model 

(Chang, Yang, Daranpob, Jin, and James, 2011). 

With the advent of UAVs and public availability of satellite data, and their proven 

importance in crop and water quality monitoring, it has become clear for most researchers what 

platforms and sensors are most suitable for the problem that’s being addressed, and their focus 
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has shifted from data collection to different methods of data analysis. As sensor data becomes 

more complex, more sophisticated methods are needed to correlate the underlying patterns 

between sensor data and the observable characteristics of the subject. Machine learning and deep 

learning models have shown their capability of extracting information from complex, high-

dimensional and time series data. Both studies in this thesis utilize data that has been acquired 

using one of the aforementioned platforms and propose new solutions using machine learning 

and deep learning techniques to achieve the best result.  They are individually discussed and 

compared to traditional methods in the following chapters and a summary of their objective is as 

follows. 

Objective 1. Phenotyping Agronomic and Physiological Traits in Peanut Using UAV-Based 

Hyperspectral Imaging and Machine Learning 

This study is provided in the second chapter of this thesis, assesses the feasibility of 

predicting pod yield, pod count, biomass, photosynthetic rate, and stomatal conductance in 

peanuts using UAV-based hyperspectral imaging and machine learning methods. There were two 

approaches compared, each representing a machine learning paradigm (i.e., feature engineering 

and feature learning). The first approach utilized vegetation indices as the input features to an 

ensemble model of conventional machine learning models, while the second approach employed 

a deep one-dimensional (1-D) convolutional neural network (CNN) that took the average and 

standard deviation of peanut canopy reflectance as input features. In addition, the importance of 

the vegetation indices utilized for the ensemble model and the wavelengths in the deep learning 

model were evaluated using permutation importance scores. 
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Objective 2. Detecting harmful algal blooms in Lake Okeechobee using MODIS satellite 

imagery and long-short term memory (LSTM) 

The second study presented in chapter three, investigates the possibility of detecting 

harmful algal blooms and estimating chl-a concentration in Lake Okeechobee using MODIS 

images from 2011 to 2020 and several additional features that were appended to the dataset. A 

recurrent neural network, long-short term memory (LSTM), was employed and trained on this 

time-series data. In addition, three machine learning models were trained on the same dataset and 

their performance was compared to LSTM’s performance. These models were trained on both 

single-time and time-series inputs to assess if temporal features have any effect on predictions. 

Another experiment was testing different ranges of data points, from 3 to 25 days, preceding the 

day events were recorded. The results were compared to find the optimal time period for 

evaluating HABs and chl-a predictions, and finally, a feature importance analysis was conducted 

to find out which features contributed most to the model’s performance.  
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Chapter 2. Phenotyping Agronomic and Physiological Traits in 

Peanut Using UAV-Based Hyperspectral Imaging and Machine 

Learning 

2.1 Abstract  

 

Agronomic and physiological traits in peanut are important to breeders for selecting high-

yielding and resilient genotypes. However, direct measurement of these traits is labor-intensive 

and time-consuming. This study assessed the feasibility of using UAV-based hyperspectral 

imaging and machine learning (ML) techniques to predict three agronomic traits (biomass, pod 

count, and yield) and two physiological traits (photosynthesis and stomatal conductance) in 

peanut under drought stress. Two different approaches were evaluated. The first approach 

employed eighty narrow-band vegetation indices as input features for an ensemble model that 

included K-nearest neighbors, support vector regression, random forest, and multi-layer 

perceptron (MLP). The second approach utilized mean and standard deviation of canopy spectral 

reflectance per band. The resultant 400 features were used to train a deep learning (DL) model 

consisting of one-dimensional convolutional layers followed by a MLP regressor. Predictions of 

the agronomic traits obtained using feature learning and DL (R2 = 0.45-0.73; sMAPE = 24-51%) 

outperformed those obtained using feature engineering and conventional ML models (R2 = 0.44-

0.61, sMAPE = 27-59%). In contrast, the ensemble model had a slightly better performance in 

predicting physiological traits (R2 = 0.35-0.57; sMAPE = 37-70%) compared to the results 

obtained from the DL model (R2 = 0.36-0.52; sMAPE = 47-64%). The results showed that the 

combination of UAV-based hyperspectral imaging and machine learning techniques have the 
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potential to assist breeders in rapid screening of genotypes for improved yield and drought 

tolerance in peanuts. 

2.2 Introduction 

 

Peanut is one of the most important cash crops in the United States, valued at over one 

billion U.S. dollars. Over 3 million tons of peanuts were harvested in 2020 from approximately 

1.6 million acres in the United States (USDA-NASS 2020). Peanuts are grown in many Southern 

states in the U.S. and around the world. For this reason, peanut breeding programs aim to 

develop cultivars that have desirable and improved traits that can be adapted to their respective 

environments. Moreover, as droughts are becoming more frequent, severe, and widespread, 

drought-tolerant cultivars need to be developed for regions affected by drought (NASA, 2021). 

In a breeding program, a breeder may need to measure multiple traits for hundreds to thousands 

of peanut genotypes at multiple field locations every year. Typical agronomic traits in peanut 

include biomass, pod count, and pod yield, which quantify how a peanut plants convert energy 

and nutrients into different yield components. Measuring the three agronomic traits is normally 

done manually, which involves drying, weighing, counting, and shelling. Physiological traits 

such as photosynthesis rate and stomatal conductance can indicate whether a plant is under 

drought stress (Buezo et al., 2019; Zhang et al., 2022). These traits are measured by using a 

portable infrared gas analyzer that detects the plant’s CO2 fixation and the water liberated 

through stomata. Both procedures are labor-intensive and time-consuming, especially at large 

scales (Baslam et al., 2020). 

High-throughput plant phenotyping (HTPP) offers solutions to alleviate the phenotyping 

bottleneck in breeding programs. Remote sensing techniques have made it possible to monitor 

crop phenotypes in a non-destructive and efficient manner and are thus a valuable tool for 
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estimating agronomic traits. The use of unmanned aerial vehicles (UAVs) for precision 

agriculture has recently gained significant attention because of their greater flexibility in mission 

scheduling, and the possibility of mounting different high-resolution sensors on the platform 

(Araus and Cairns, 2014; Araus et al., 2018). High-resolution sensors such as RGB, 

multispectral, and hyperspectral cameras have become available to researchers and consumers 

and can provide valuable information regarding plant phenotypes. The images collected by these 

sensors can be used to calculate vegetation indices (VI), which are mathematical combinations of 

two or more bands to highlight vegetation properties, plant health, or stress. Therefore, UAV 

imagery can rapidly reveal information about the health of plants in a large area. RGB cameras 

are the most accessible and common type of sensor utilized on UAVs. They are often used to 

assess plant physiological and agronomical traits. Examples include a study by Choudhary et al. 

(2021), where vegetation indices obtained from an RGB camera were used to assess the nitrogen 

status of wheat. Bendig et al. (2014) also used UAV-based RGB imagery to estimate the biomass 

of barley. Due to strong reflectivity of plant canopy at near-infrared (NIR) wavelengths, 

multispectral sensors incorporating NIR channels are becoming more popular. NIR gives 

information about the cellular structure within leaves and when combined with a band like red or 

red-edge, it gives VIs such as NDVI (Normalized Difference Vegetation Index) and NDRE 

(Normalized Difference Red Edge Index), which provide measurements for overall plant health. 

These VIs have been applied in numerous studies to estimate above-ground biomass, leaf area 

index (LAI), water stress, and yield prediction (Maresma et al., 2016; Romero et al., 2018; Su et 

al., 2019). Qi et al also used vegetation indices from a multispectral camera to monitor 

chlorophyll content in peanut leaves (Qi et al., 2021). 
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Hyperspectral cameras are more complicated and costly compared to RGB and 

multispectral sensors, and the resulting images from these cameras require large amounts of 

storage. Despite their complexity, they provide invaluable information about crops’ reflectance 

in hundreds of narrow spectral bands. This allows a more advanced analysis of plant 

characteristics in high-throughput phenotyping applications. Fenghua et al. (2017) used a 

hyperspectral camera mounted on a UAV for phenotyping LAI, leaf chlorophyll content (Cab), 

canopy water content (Cw), and dry matter content (Cdm) of rice. Yield and biomass predictions 

are also a common use of these sensors (Feng et al., 2020; Moghimi et al., 2020). Hyperspectral 

sensors have also been used for assessing photosynthetic attributes in several studies. Kanning et 

al. (2018) estimated the chlorophyll content and LAI from UAV-based hyperspectral data. To the 

best of our knowledge, there is no previous work on estimating peanut photosynthetic rate and 

stomatal conductance from aerial hyperspectral imagery. A more common method for assessing 

these traits in the literature is to measure individual leaves using a spectrometer. Buchaillot et al. 

(2022) estimated peanut and soybean photosynthetic traits such as mid-day photosynthesis, 

maximum rubisco capacity (Vcmax) and maximum RuBP regeneration capacity (Jmax) using 

leaf spectral reflectance obtained by a handheld spectrometer (Field Spec Hi-Res 4, Malven 

Analytics). Qi et al. (2020) employed the same device for measuring peanut leaves chlorophyll 

content. However, handheld spectrometers do not allow high-throughput screening and are time 

consuming, as the reflectance of individual plants needs to be assessed manually. Aerial 

hyperspectral imaging on the other hand, can capture a large area of plants in a far more efficient 

and automated manner. 

As UAVs and sophisticated cameras become more viable, compact and affordable, the 

focus of HTPP has shifted from data collection to data analytics. A common approach for 
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analyzing the data is correlating extracted vegetation indices with crop phenotypes or diseases 

using statistical methods. Patrick et al. assessed the correlation of several vegetation indices such 

as NDRE, green difference vegetation index (GDVI) with tomato spot wilt disease in peanut 

using linear regression. Balota and Oakes (2017) compared vegetation indices derived from the 

ground and aerial sensor data with leaf wilting, pod yield, and crop value in peanut based on 

Pearson correlation results. However, as sensor data becomes more complex, such as 

hyperspectral data, more advanced methods are required to determine the underlying patterns 

between sensor data and phenotypes. 

Machine Learning (ML) and Deep Learning (DL) models have been shown to be highly 

capable of extracting information from complex and high-dimensional data and for that reason 

they have become a popular data analytics method for HTPP. A common approach is feeding the 

extracted vegetation indices as the input to a ML model such as K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), Random Forest (RF), etc. (Eugenio et al., 2020; Maimaitijiang 

et al., 2017; Qi et al., 2021; Sankaran et al., 2021; Wang et al., 2021).  Feng et al. (2020) et al. 

showed that ensemble models are more powerful than individual ML models. They developed an 

ensemble model by combining ML models and trained the model on narrow-band vegetation 

indices derived from aerial hyperspectral imagery for alfalfa yield prediction. Instead of using 

predetermined wavelengths for the VIs, Feng et al. (2020) used ANOVA, multilayer perception, 

and reduced sampling to identify the most significant wavelengths, which were then utilized for 

the construction of new VIs that are able to detect bacterial wilt. Another approach is using the 

average spectrum at the plot level with no dimension reduction and training a DL model to learn 

the most significant bands of the spectrum. DeepRWC was developed by Rehman et al. (2020), 

an end-to-end DL model to predict the relative water content (RWC) of plants directly from 
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mean spectral reflectance. Moghimi et al. (2020) implemented a deep neural network consisting 

of fully connected layers for high-throughput yield phenotyping in wheat. Both mean and 

standard deviation in addition to the area of leaves and spikes were used as the input.  

There are numerous studies on assessing remote sensing and ML techniques for 

phenotyping crops such as barley, alfalfa, and rice. However, there is limited research on high-

throughput phenotyping of agronomic and physiological traits in peanut. This study evaluated 

the feasibility of predicting pod yield, pod count, biomass, photosynthetic rate, and stomatal 

conductance in peanut using UAV-based hyperspectral imaging and ML methods. Two 

approaches representing two ML paradigms (i.e., feature engineering and feature learning) were 

compared. The first approach utilized vegetation indices as the input features to an ensemble 

model of conventional ML models, while the second approach employed a deep one-dimensional 

(1-D) convolutional neural network (CNN) that took the average and standard deviation of 

peanut canopy reflectance as input features. Another objective of this study was to find the best 

day for data collection to get the best predictions for the agronomic traits of drought-stressed 

peanuts. There were three data collections between the start of drought and harvest, fourteen, 

eighteen and twenty nine days after drought. Both the deep learning and the ensemble machine 

learning model were trained on the data collected on each day, and their performances were 

evaluated. Finally, the importance of the features utilized in both models were evaluated using 

permutation importance scores.  

2.3 Materials and Methods 

2.3.1 Experimental Design 

 

The field experiment was conducted at the U.S. Department of Agriculture - Agricultural 

Research Service National Peanut Research Laboratory in Dawson, Georgia, USA 
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(31.759875793753956, -84.43488756104786). The field was divided into four blocks and each 

block was equipped with an automatic rainout shelter (Blankenship, Mitchell, Layton, Cole, and 

Sanders, 1989). Each metal shelter covers a ground area of 5.5 m ×12.2 m and automatically 

closes when a rain detector (Agrowtek IR Digital Rain Sensor, Agroetek, Brookfield, Wisconsin) 

is triggered. Each shelter was planted as a common garden experiment and was further divided 

into 16 rows and 4 columns, resulting in 64 individual plant plots per shelter. Two of the four 

rainout shelters were employed to impose drought treatments while the others were maintained 

under well irrigated conditions. Each plot is 0.3 m × 0.9 m in dimensions, with a 0.15-m row 

spacing. A single peanut plant was grown in each plot following a generalized randomized block 

design. The plant materials were PI502120, AU-NPL 17, Ga-Green, AP-3, x587, C76-16, 

AT3085RO, Line 8, and TifRunner parent cultivars as well as the F1 population of crossing of 

Tifrunner with the other parent lines. Each parent cultivar and F1 descendant was replicated 3 

times per shelter. PI502120, AU-NPL 17, and Line 8 are of high drought tolerance; C76-16, 

TifRunner, and x587 are of moderate drought tolerance and AP-3, Ga-Green, and AT3085RO 

are drought sensitive (Q. Zhang et al., 2022). A set of Water Mark soil moisture sensors 

(Irrometer, Riverside, CA, USA) were placed in the center of the field under each shelter at 

depths of 0.1 m and 0.2 m. Irrigation was triggered when the soil water potential was under -60 

KPa before the drought was imposed. During the drought, the irrigated shelters followed the 

same regime but the drought shelters did not received any water. The simulated drought was 

imposed on July 26, 2021 and terminated with rewatering after six weeks. The peanuts were 

harvested on September 23, 2021. During this period, UAV-based hyperspectral images were 

collected on August 9th, August 13th, and August 24th, which are 14, 18, and 29 days after 

drought (DAD), respectively. Biomass, pod yield, and pod count were measured after harvest. 
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Photosynthesis and stomatal conductance were measured on the same image collection dates 

using four LI-6400 systems (LI-COR Biosciences, Lincoln, NE, USA) at midday (11:00 to 

13:30). Measurements were performed on fully expanded young leaves corresponding with the 

second/third leaf from the top of the main stem. The LI-6400 chambers were set to display the 

same environmental conditions (i.e., light, relative humidity, temperature) as the atmospheric 

condition varied between measurement days. A summary of the statistics of the measured 

ground-truth data is shown in Table 2.1, and an aerial image of the field, taken on August 5th, is 

presented in Figure 2.1. Moreover, the distribution of spectral reflectance across 256 plots and 

three data collections is shown in Figure 2.2.  

 

Figure 2.1 Aerial image of the experimental field with four rainout shelters open. A grid is overlaid on the 

image to indicate plot boundaries. 
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Table 2.1 Summary of the statistics of the measured agronomic and physiological traits. 

Trait Min Max Mean 
Standard 

Deviation 

Biomass (g/plant) 1.11 409.52 156.14 82.14 

Yield (g/plant) 0.00 326.7 122.00 80.01 

Pod Count 0.00 342.00 120.85 70.37 

Photosynthetic rate – 14 DAD 

(µmol.m-2s-1) 
-0.25 47.63 19.89 11.61 

Photosynthetic rate – 18 DAD -3.71 40.83 14.90 10.80 

Photosynthetic rate – 29 DAD 

(µmol.m-2s-1) 
0.37 42.66 16.45 10.48 

Stomatal conductance – 14 

DAD 
(mmol.m-2s-1) 

-0.05 1.08 0.30 0.25 

Stomatal conductance – 18 

DAD 

(mmol.m-2s-1) 

-0.12 1.02 0.19 0.21 

Stomatal conductance – 29 

DAD 

(mmol.m-2s-1) 

-0.04 2.18 0.29 0.31 

 

 
Figure 2.2 Average spectral reflectance across 256 plots and three data collections ± the standard deviation. 
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2.3.2 UAV-Based Hyperspectral Imaging and Data Preprocessing 

 

The UAV platform used was a Matrice 600 Pro hexcopter (Shenzhen DJI Sciences and 

Technologies Ltd., China). Flight missions were planned using UgCS (SPH Engineering, Latvia) 

with 1% forward overlap and 40% side overlap. The camera was faced nadir during the flight 

and was stabilized using a Ronin-MX gimbal (Shenzhen DJI Sciences and Technologies Ltd., 

China) on the UAV. A push-broom visible-near-infrared (VNIR) hyperspectral camera (Nano-

Hyperspec, Headwall Photonics, Inc., MA, USA) was used for the data collection. This camera 

covers a spectral range of 400-1000nm with a spectral resolution of 2 nm. Each line scanned by 

this sensor contains 640 pixels with a pixel pitch of 7.4 µm. Exposure time was adjusted using a 

white PVC panel so that its reflectance covered about 75% of the maximum reflectance the 

camera can capture. 700 frames were acquired per image cube. After the acquisition of the 

hyperspectral images, the raw files were radiometrically calibrated using the dark reference 

collected on the same day before the flight. The dark reference is a single image cube acquired 

with the lens cap on, with the same exposure settings as the other image cubes. The resulting 

radiance cubes were then calibrated to reflectance using a 3m by 3m calibration tarp with three 

regions of 56%, 32%, and 11% reflectivity, respectively. This panel was placed in the field on a 

flat surface for every data collection. Following the conversion to reflectance, all the images 

were geometrically corrected. The described post-processing steps were performed using 

SpectralView, a software provided by Headwall Photonics, Inc. Subsequently, a hyperspectral 

orthomosaic was created from the orthorectified images, a grid was overlaid on the orthomosaic 

in QGIS 3.18.2 (QGIS.org, 2022), and individual plots were extracted from the map (Figure 2.1). 

Soil pixels were removed from each plot Image using a normalized difference vegetation index 

(NDVI) threshold of 0.2. NDVI is defined in Equation 2.1 where R(x) denotes the reflectance at 
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wavelength x. This threshold was determined empirically, similar to previous studies (Liang et 

al., 2015; Moghimi et al., 2020).  Additionally, noisy spectral bands above 844 nm were 

removed. The general workflow for the procedure of the explained procedure is shown in Figure 

2.3. 

𝑵𝑫𝑽𝑰 =  
𝑹(𝟖𝟎𝟒)−𝑹(𝟔𝟗𝟑) 

𝑹(𝟖𝟎𝟒)+𝑹(𝟔𝟗𝟑)
       (2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3 Hyperspectral imaging and processing workflow. 

 

2.3.3 Machine Learning (ML) Models 

 

Two methods were implemented in this study. The first method employed an Ensemble 

ML model consisting of four ML models including K-nearest neighbors (KNN), support vector 

regression (SVR), random forest (RF), and a multi-layer perceptron (MLP) regressor. The inputs 

to this model were eighty narrow-band VIs. The second method was a DL model with a 1-D 

CNN followed by a MLP regressor. The inputs to this model were the mean and standard 

deviation of spectral reflectance per band for each plot. The ensemble model and the DL model 
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were both trained for 2000 epochs and their hyperparameters were tuned with grid search. Cross 

validation with a total of 10 folds was performed to ensure the robustness of the model. There 

were a total of 256 plants, therefore the initial dataset had 256 data points. After removing 

several data points related to diseased plants, the dataset had 248 data points. Breaking the 

dataset to 10 folds, each fold had 228 data points for model training and 28 for model testing.  

2.3.3.1 Ensemble Model 

 

The hyperspectral orthomosaic has 270 continuous spectral bands and adjacent bands are 

normally correlated. Instead of using all of the original bands, eighty different VIs (Table 2.2) 

were computed at the plot level based on the work by Feng et al. (2020). These vegetation 

indices included twelve narrow-band NDVIs and nineteen simple ratio indices (SRIs). NDVI and 

SRI were examined more precisely due to their capability of characterizing canopy vigor, 

biomass, and photosynthetic rate. 

Table 2.2 The vegetation indices used for the ensemble model. 

Name Index Formula 

Normalized difference vegetation 

index 

NDVI [471, 584] (R584 − R471)/(R584 + R471)  

NDVI [521, 689] (R689 − R521)/(R689 + R521) 

NDVI [550, 760] (R760 − R550)/(R760 + R550) 

NDVI [667, 740] (R740 − R667)/(R740 + R667) 

NDVI[670, 800] (R800 − R670)/(R800 + R670) 

NDVI[705, 750] (R750 − R705)/(R750 + R705) 

NDVI[710, 750] (R750 − R710)/(R750 + R710) 

NDVI[710, 780] (R780 − R710)/(R780 + R710) 

NDVI[717, 732] (R732 − R717)/(R732 + R717) 

NDVI[717, 770] (R770 − R717)/(R770 + R717) 

NDVI[720, 820] (R820 − R720)/(R820 + R720) 

NDVI[734, 750] (R750 − R735)/(R750 + R734) 

Physiological reflectance index 
PRI[528,567] (R528 − R567)/(R528 + R567) 

PRI[531,570] (R570 − R531)/(R531 + R570) 

Normalized difference red edge NDRE (R790 − R720)/(R790 + R720) 

Modified normalized difference 

vegetation index 

mND (R750 − R705)/(R750 + R705 

– 2×R445) 

Green normalized difference 

vegetation index 

GNDVI 
(R750 − R550)/(R750 + R550) 
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Renormalized difference vegetation 

index 

RDVI (R800 − R670)/√(R800 +

R670)  

Normalized difference cloud index NDCI (R762 − R527)/(R762 + R527)  

Curvature index CI R675 ×  R690/R6832 

 

- 

 

Datt1 (R850 − R710)/(R850 − R680)  

Datt2 R850/R710 

Datt3 R754/R704 

Double Difference index 
DD (R749 − R720) − (R701 − 

R672) 

Double peak canopy nitrogen index 
DCNI R720 − R700)/[(R700 − 

R670)(R720 − R670 + 0.03)] 

 

- 

Gitelson1 1/R700 

Gitelson2 (R750-R800/R695-R740) − 1 

 

 

- 

 

Carte1 R695/R760 

Carte2 R605/R760 

Carte3 R710/R760 

Carte4 R695/R670 

Simple ratio index 

SRI[533,565] R565/R533 

SRI[550,750] R750/R550 

SRI[550,760] R760/R550 

SRI[560,810] R810/R560 

SRI[629,734] R734/R629 

SRI[660,810] R810/R660 

SRI[670,700] R700/R670 

SRI[670,800] R800/R670 

SRI[675,700] R675/R700 

SRI[680,800] R800/R680 

SRI[690,752] R752/R690 

SRI[700,750] R750/R700 

SRI[705,750] R750/R705 

SRI[706,755] R706/R755 

SRI[708,747] R747/R708 

SRI[710,750] R750/R710 

SRI[717,741] R741/R717 

SRI[720,735] R735/R720 

SRI[720,738] R738/R720 

Modified simple ratio index 

mSRI[550,780] R780/R550-1 

mSRI[710,780] R780/R710-1 

mSRI[720,750] R750/R720-1 

mSR705 (R750 − R445)/(R705 − R445) 

mSR (R750/R705 − 1)/

 (√R750/R705 + 1)  

New vegetation index 
NVI1 (R777 − R747)/R673 

NVI2 R705/(R717 + R491) 

Enhanced vegetation index EVI 
2.5(R800 − R670)/(R800 − 

6R670 − 7.5R475 + 1) 
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Transformed Chlorophyll 

absorption in reflectance index 

TCARI1 
3[(R700 − R670) − 0.2(R700 − 

R550)(R700/R670)] 

TCARI2 
3[(R750 − R705) − 0.2(R750 − 

R550)(R750/R705)] 

Modified chlorophyll absorption 

ratio index 

MCARI1 
[(R700 − R670) − 0.2(R700 − 

R550)](R700/R670) 

MCARI2 
[(R750 − R705) − 0.2(R750 − 

R550)](R750/R705) 

MCARI3 
[(R750 − R710) − 0.2(R750 − 

R550)](R750/R715) 

Optimized soil-adjusted vegetation 

index 

OSAVI1 
(1 + 0.16)(R800 − 

R670)/(R800 + R670 + 0.16) 

OSAVI2 
(1 + 0.16)(R750 − 

R705)/(R750 + R705 + 0.16) 

Combined TCARI/OSAVI 
TCARI/OSAVI1 TCARI1/OSAVI1 

TCARI/OSAVI2 TCARI2/OSAVI2 

Combined MCARI/OSAVI 
MCARI/OSAVI1 MCARI1/OSAVI1 

MCARI/OSAVI2 MCARI2/OSAVI2 

Triangular greenness index TGI 
−0.5[190(R670-R550) − 

120(R670 − R480)] 

Modified triangular vegetation 

index 
MTVI 

1.2[1.2(R800 − R550) − 

2.5(670 − R550)] 

MERIS terrestrial chlorophyll 

index 

MTCI1 (R750 − R710)/(R710 − R680) 

MTCI2 (R754 − R709)/(R709 − R681) 

Spectral polygon vegetation index SPVI 
0.4 × [3.7(R800 − R670) − 

1.2|R550 − R670|] 

Red edge position index 

REP1 
700 + 45[(R670 + R780)/2 − 

R700]/(R740 − R700) 

REP2 
700 + 40[(R670 + R780)/2 − 

R700]/(R740 − R700) 

- 

VOG1 R740/R720 

VOG2 (R734 − R747)/(R715 + R726) 

VOG3 (R734 − R747)/(R715 + R720) 

Optimal vegetation index Viopt 
(1 + 0.45)(R8002 + 1)/(R670 + 

0.45) 

 

It has been shown in several studies that ensemble models outperform individual ML 

models and have more robust results due to their diverse nature and not depending on an 

individual model’s results (L. Feng et al., 2020; Q. Zhang et al., 2022). Our ensemble model 

used a voting regressor to give a final prediction from four models: K-nearest neighbors (KNN), 

support vector regression (SVR), random forest (RF), and a multi-layer perceptron (MLP) 

regressor. All individual models were tuned using grid search and the top performing versions 
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were used in the ensemble model. KNN regression is a non-parametric supervised ML algorithm 

that works based on the assumption that similar samples exist in close proximity to K nearest 

samples in the feature space, where K is a hyperparameter that needs to be tuned for a specific 

dataset. After ranking samples based on their distance to the unknown (testing) sample, it 

estimates the response by taking the average of the responses of K nearest neighbors in the 

training set. K was tuned to 4 for the KNN model. SVR is a supervised ML model that 

transforms input data into another space using a kernel function. A linear kernel function was 

selected in our case. RF regression is a combination of regression trees and the final prediction 

value is the average of all trees. The MLP regressor was configured as one hidden layer with 100 

neurons and was trained for 2000 epochs. Adam (Adaptive Moment Estimation) was chosen as 

the optimizer with a learning rate of 0.1, and exponential decay rates of 0.9 and 0.99 for the first 

and second moment estimates, respectively. The ensemble model and its estimators were 

implemented in Python 3.9.7 using the libraries scikit-learn (Pedregosa et al., 2011) and NumPy 

(Harris et al., 2020). 

2.3.3.2 Deep Learning (DL) Model 

 

With a small dataset with a total of 248 data points, the input data needed to be simplified 

to reduce the model complexity and the number of trainable parameters. Instead of 3-D 

hyperspectral cubes, mean and standard deviation of reflectance were used as the inputs to the 

deep learning model, inspired by the work by Moghimi et al. (2020). 1-D convolution was 

chosen as the convolution method for these 1-D inputs. The architecture of the DL model 

consisted of four 1-D convolution layers and three dense layers, each of which is followed by a 

batch normalization layer and a dropout layer. The activation function of all layers in this model 
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is a Leaky ReLu (rectified linear unit), with α = 0.3 in the Leaky ReLU function (Equation 2.2). 

Unlike ReLU, Leaky ReLU allows a small gradient when the unit is not active. 

𝑓(𝑥) = α ∗  x  if x <  0        (2.2) 

 

Dropout was added after Leaky ReLU, with dropout rates of 0.5 for the convolution 

layers, 0.3 and 0.1 for the fully connected layers, as shown in Figure 2.2. The purpose of dropout 

was to avoid overfitting and Adam was chosen as the optimizer with a learning rate of 0.1, and 

exponential decay rates of 0.9 and 0.99 for the first and second moment estimates, respectively. 

The input to this model was the normalized average and standard deviation of canopy reflectance 

per plot as a 1-D feature vector. The implementation and training of this model was done using 

Python 3.9.7, TensorFlow 2.5.0, and Keras 2.5.0 on an NVIDIA GeForce RTX 2080 Max-Q 

Graphics Processing Unit. The architecture of this model is shown in Figure 2.4. 

  

Figure 2.4 DL model architecture: (a) model schematic, (b) detailed DL model layers and their 

hyperparameters. 
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To evaluate the models, root mean square error (RMSE), coefficient of determination 

(R2) and symmetric mean absolute percentage error (sMAPE) were used, and the equations of 

these metrics are shown in Equations (2.3)–(2.5), respectively. 

𝑅𝑀𝑆𝐸 =  √
𝟏

𝒏
∑ (𝒚𝒊  −  𝒚𝒊̂)

𝟐𝒏
𝒊=𝟏     (2.3) 

    

𝑅2 = 1 −
∑ (𝒚𝒊 − 𝒚𝒊̂)𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒊 − 𝒚̅)𝟐𝒏
𝒊=𝟏

            (2.4) 

𝑠𝑀𝐴𝑃𝐸 =
𝟐

𝒏
∑

|𝒚𝒊−𝒚𝒊̂|

|𝒚𝒊|+ |𝒚𝒊̂|
𝒏
𝒊=𝟏         (2.5) 

 

2.4 Results 

 

K-fold cross validation was used in both methods described in the ML models section, 

and the presented results are the median of the calculated metrics across all folds. The 

performance of the ensemble model and the DL model on testing data are shown in Tables 2.3- 

2.6 for both agronomic and physiological traits. Overall, both models have results close to each 

other, with DL having a slightly higher accuracy for prediction of agronomic traits, and the 

ensemble model performing marginally better on predictions of physiological traits. Averaging 

across the three data points, predictions of biomass had R2 s of 0.60 and 0.51, RMSEs of 49.03 

g·plant-1and 61.09 g·plant-1, and sMAPEs of 26.60% and 29% from the DL and ML model, 

respectively (Table 2.3, 2.4). Pod count estimations using the two models yielded the same 

average R2 at 0.55, and slightly lower RMSE and sMAPE using the DL model, at 47.29 g·plant-

12 and 42% compared to the ML model with RMSE and sMAPE values of 53.27 g·plant-1 and 

53%. Yield predictions achieved an R2 of 0.6, RMSE of 54.23 g·plant-1 and sMAPE of 50.50% 

from the DL approach. The same metrics using the ML method for yield predictions were 0.48 

(R2), 54.04 g·plant-1 (RMSE) and 38% (sMAPE) (Table 2.3, 2.4). ML and DL had close RMSE 

values for photosynthetic rate predictions at 8.33 µmol·m-2·s-1 and 8.54 µmol·m-2·s-1, 

respectively, and the same average sMAPE of 51%. ML yielded a slightly higher R2 of 0.48, 
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compared to the R2 from DL at 0.44. Stomatal conductance predictions produced average R2s of 

0.43 and 0.40, sMAPEs 63% and 79% using the DL and ML method, respectively. Both methods 

had an average RMSE of 0.19 mmol·m-2·s-1 (Table 2.5, 2.6). 

The fold with the closest R2 to the median R2 of all folds was chosen for scatter plots 

shown in Figures 2.5-2.8. These plots present ground truth values versus predicted values for 

each trait. Eighteen days after drought (DAD) has the highest R2 among most dates using DL, 

and the highest R2 across traits corresponds to the predictions of biomass from data collected on 

this day, 18 DAD. 

 

Table 2.3 Performance of the DL model on testing data for each agronomic trait, 14, 18 and 29 days after 

drought (DAD). 

Metric 

Biomass Pod count Yield 

14 

DAD 

18 

DAD 

29 

DAD 

14 

DAD 

18 

DAD 

29 

DAD 

14 

DAD 

18 

DAD 

29 

DAD 

R2 0.60 0.73 0.49 0.56 0.65 0.45 0.60 0.61 0.51 

RMSE 
54.18

(
𝑔

𝑝𝑙𝑎𝑛𝑡
) 

42.74

(
𝑔

𝑝𝑙𝑎𝑛𝑡
) 

50.18

(
𝑔

plant
) 47.60 37.69 56.60 

53.89

(
𝑔

plant
) 

54.57

(
𝑔

plant
) 

57.18

(
𝑔

plant
) 

sMAPE (%) 30 26 24 41 35 50 51 50 39 

 

Table 2.4 Performance of the ensemble ML model on testing data for each agronomic trait, 14, 18 and 29. 

Metric 

Biomass Pod count Yield 

14 

DAD 

18 

DAD 

29 

DAD 

14 

DAD 

18 

DAD 

29 

DAD 

14 

DAD 

18 

DAD 

29 

DAD 

R2 0.48 0.61 0.44 0.60 0.52 0.54 0.59 0.54 0.50 

RMSE 
57.61

(
𝑔

𝑝𝑙𝑎𝑛𝑡
) 

64.29

(
𝑔

plant
) 

61.39

(
𝑔

plant
) 44.06 60.11 55.65 

54.11

(
𝑔

plant
) 

53.98

(
𝑔

plant
) 

58.48

(
𝑔

plant
) 

sMAPE (%) 32 28 27 50 59 50 40 38 54 
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Table 2.5 Performance of the DL model on testing data for each physiological trait, 14, 18, and 29 days after 

drought (DAD). 

Metric 
Photosynthetic rate Stomatal Conductance 

14 DAD 18 DAD 29 DAD 14 DAD 18 DAD 29 DAD 

R2 0.36 0.52 0.44 0.40 0.40 0.50 

RMSE 
9.94 

(
μmol

m2.s
) 

7.55 

(
μmol

m2.s
) 

8.13 

(
μmol

m2.s
) 

0.23 

(
mmol

m2.s
) 

0.16 

(
mmol

m2.s
) 

0.18

(
mmol

m2.s
) 

sMAPE (%) 47 54 54 75 66 64 

 

Table 2.6 Performance of the ensemble ML model on testing data for each physiological trait, 14, 18, and 29 

days after drought (DAD). 

Metric 

Photosynthetic rate Stomatal Conductance 

14 DAD 18 DAD 29 DAD 14 DAD 18 DAD 29 DAD 

R2 0.41 0.56 0.48 0.35 0.52 0.57 

RMSE 
8.91 

(
𝜇𝑚𝑜𝑙

𝑚2.𝑠
) 

7.24

 (
𝜇𝑚𝑜𝑙

𝑚2.𝑠
) 

8.84

 (
𝜇𝑚𝑜𝑙

𝑚2.𝑠
) 

0.21 

(
𝑚𝑚𝑜𝑙

𝑚2.𝑠
) 

0.14 

(
𝑚𝑚𝑜𝑙

𝑚2.𝑠
) 

0.18 

(
𝑚𝑚𝑜𝑙

𝑚2.𝑠
) 

sMAPE 

(%) 
37 55 61 56 70 63 
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Figure 2.5 Performance of the DL model on testing data for predictions of biomass, pod count, and yield, 14, 

18 and 29 days after drought (DAD). The shown data points for these scatter plots are the folds from the test 

dataset with the closest R2 to the median values shown in Table 2.3. 
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Figure 2.6 Performance of the ensemble model on testing data for predictions of biomass, pod count and 

yield, 14, 18 and 29 days after drought (DAD). The shown data points for these scatter plots are the fold from 

the test dataset with the closest R2 to the median values shown in Table 2.4. 
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Figure 2.7 Performance of the DL model on testing data for predictions of photosynthetic rate and stomatal 

conductance, 14, 18 and 29 days after drought (DAD). The shown data points for these scatter plots are the 

fold from the test dataset with the closest R2 to the median values shown in Table 2.5. 

  

 

Figure 2.8 Performance of the ensemble model on testing data for predictions of photosynthetic rate and 

stomatal conductance, 14, 18 and 29 days after drought (DAD). The shown data points for these scatter plots 

are the fold from the test dataset with the closest R2 to the median values shown in Table 2.6. 
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2.4.1 Feature Importance 

2.4.1.1 The Ensemble Machine Learning Model 

 

The importance of the studied eighty VIs on the trained ensemble model was evaluated 

using permutation importance (Altmann, Tolo¸si, Tolo¸si, Sander, and Lengauer, 2010). This 

algorithm provides insight into the importance of each data feature by assessing how much the 

model accuracy decreases when a feature is not available. This would be computationally 

intensive if performed during training, so instead it was performed during testing on the trained 

ensemble model. The model expects all features to be present during training and testing, so 

instead of removing each feature, they were replaced with random noise. This noise was drawn 

from the same distribution as the original values, by shuffling values for a feature and using 

other examples’ feature values. The metric used in this algorithm was R2, and the reported 

permutation importance score is the amount that R2 decreased when a feature was not present. 

This algorithm was applied on the models used to report the results in Table 2.3-2.6, from the 

same fold, on the data collected 18 days after drought. This dataset (18 DAD) was chosen since 

it had a higher correlation with the ground truth data, and therefore the model is more capable of 

identifying the most significant VIs. The results of this analysis, the top 10 VIs for each model 

are shown in Figure 2.9. Gitelson1, SRI [710,750], and Gitelson2 were found to be the most 

important VIs for photosynthesis, stomatal conductance, and biomass, respectively, and Carte4 

was the common most important VI for pod count and pod yield. There are several mutual top 

VIs across the traits; for example Gitelson2 and NVI1 were both among top 10 VIs in the 

photosynthesis and stomatal conductance models. Overall, Gitelson2, variations of NVI, 

MCARI, TCARI, and REP were among the most common top features across all models. 
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Figure 2.9 Top 10 vegetation indices used in the ensemble model trained for a) photosynthesis, b) stomatal 

conductance, c) biomass, d) pod count, and e) pod yield. 

 

2.4.1.2 The Deep Learning (DL) Model 

 

To identify the most important wavelengths in the DL model, the same approach applied 

for the ensemble model, permutation importance, was used. Overall, there were 200 features 

(wavelengths) from the average reflectance of each plot, and 200 features from the standard 
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deviation of reflectance per band per plot (400 features total). Since many features are adjacent 

to each other, the top 20 features for each model were selected, and among the adjacent bands 

within a ± 2 nm range, if there were any, the band with the highest permutation importance score 

was chosen. For example, in case of having 407, 409, 411 (nm) in top features, the one with the 

highest score was chosen as a representative in these charts. Therefore, the number of top 

features for each model is not the same. The model trained on the data from August 13th was 

chosen for this analysis, since the highest R2 was achieved from training the model on this 

dataset. The retrieved top wavelengths are shown in Figure 2.10. There were top wavelengths for 

biomass in blue, green, red, red edge, and NIR, but the highest concentration is seen in the green 

region. Pod count and pod yield had relatively similar results, with top wavelengths in the blue 

and red-edge region. The top wavelengths in the photosynthesis model were mostly in green and 

red-edge, similar to stomatal conductance. Stomatal conductance also had some top features in 

the blue region. As discussed before, these features were chosen from plot-level average 

reflectance and the standard deviation (SD) of reflectance per plot. To explore the variation of 

plot-level mean and SD of reflectance across all data points, the mean and standard deviation of 

the reflectance profiles across 256 plots were calculated and are shown in Figure 2.11. As it can 

be seen in this figure, SD has a higher variation within plots. 
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Figure 2.10 Top wavelengths used in the DL model trained for a) photosynthesis, b) stomatal conductance, c) 

biomass, d) pod count and e) pod yield. 
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Figure 2.11 a) Mean of plot-level standard deviation across 256 plots ± the standard deviation (std) of plot-

level standard deviation (STD) across 256 plots, b) Mean of plot-level average reflectance across 256 plots ± 

the standard deviation (std) of plot-level average reflectance across 256 plots. 

2.5 Discussion 

2.5.1 Ensemble ML Model vs DL Model 

 

Both models performed well on our dataset; the highest R2 achieved for above-ground 

biomass was 0.73 using the DL model (Table 2.3). Most of our results fall into the same range 

(0.64 to 0.89) achieved by Masjedi et al.  (2020), where hyperspectral camera and LiDAR were 

used to estimate Sorghum biomass.  

Pod count and yield predictions obtained via both methods estimated these complex traits 

with R2 > 0.5, with the highest R2 being 0.65 for pod count and 0.61 for pod yield. This R2 value 

for pod yield is comparable to the highest R2 achieved by Patrick et al. (2017) using NDRE (R = 

0.79, R2 = 0.62) even though this paper provides yield estimations for whole plots, whereas in 

this work the predictions correspond to individual plants. Averaging over a plot helps model 

estimations as it helps attenuate the signal to noise ratio. Using NDRE and correlating it with 

single-plant pod yield from this study, the R2 dropped to 0.32, 0.44, and 0.34 for 14, 18, and 24 

DAD respectively. This decrease in accuracy signifies the importance of using ML/DL models in 

predictions of complex traits.  
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The attained R2 for yield in our study is also greater than the one reached by Balota and  

Oakes (2016) where the highest R2 using color and RGB-derived indices were 0.39 and 0.26 

respectively. Using a different approach, Bidese et al (2021) estimated the peanut yield of 

breeding lines with an R2 of 0.59 by directly imaging infield pods with three RGB cameras after 

digging and before harvest and then using statistical models to predict yield based on image-

derived pod counts. The R2 in this study is slightly higher than the one obtained in the mentioned 

article, despite not directly observing the peanut pods.  

Several studies have used hyperspectral imagery for yield predictions of other crops and 

shown the remote sensing method to be highly effective. An R2 of 0.87 was obtained using an 

ensemble machine learning model and hyperspectral imaging for alfalfa yield predictions (L. 

Feng et al., 2020). Moghimi et al. (2020) used a deep neural network to predict yield in wheat 

using the same type of sensor and achieved R2 in the range of 0.64-0.81. These studies have 

higher R2 compared to those achieved in this study, which can be due to the nature of the crops. 

Peanuts are below-ground nuts and it is more challenging to predict their yield values, whereas 

yield properties of alfalfa and wheat are above-ground and can be directly seen from the sensor. 

In this study, the top R2 for estimations of photosynthetic rate and stomatal conductance 

were 0.56 and 0.57 respectively, using the ML model. The work by Buchaillot et al. (2022) 

showed a higher R2 (0.62) for estimations of photosynthetic rate, using a handheld spectrometer 

and advanced regression models. This higher R2 can be due to twofold. First, the same leaves 

were measured for physiological traits and reflectance in that study, whereas in this paper, the 

reflectance of the canopy of each plant was measured. Secondly, the plants grown in the 

mentioned paper are grown in a controlled environment, and the trained model might not 

perform well in the field due to variations in environmental conditions. 
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El-Hendawy et al. (2019) also used a portable spectroradiometer with a spectrum range of 

m 350 to 2500 nm to predict photosynthesis, transpiration and stomatal conductance properties 

of wheat. Using PLSR models, results showed moderate to high R2 for predictions of 

photosynthesis (0.58 – 0.98) and stomatal conductance (0.44 – 0.92).  In that paper, the 

measurements are also the reflectance of leaves (same as the work by Buchailot et al. (2022)), 

whereas in this paper the reflectance of whole plants were measured and averaged. This can be a 

possible reason behind greater R2 achieved in that study. Another reason for better results could 

be the wider spectrum of the spectroradiometer, as the importance of SWIR bands was shown in 

the same study. 

On average the DL model had a better performance for predicting biomass, pod yield, 

and pod count (the agronomic traits) and the ensemble ML model had a superior performance in 

predicting the physiological traits, photosynthesis rate and stomatal conductance. The reason for 

better performance of the two models for different traits could be in the choice and existence of 

relevant vegetation indices, and their capability of explaining the studied traits (Abdu, Mokji, 

and Sheikh, 2020). It is possible that the VIs included in this model, were better indicators of the 

physiological traits and not able to fully explain the variability in the agronomic traits. Therefore, 

the physiological phenotyping models had less input features and less trainable parameters, and 

therefore the training gave better results. Assuming the studied vegetation indices were not great 

indicators of pod count, biomass, and pod yield, the DL model was a more adaptive solution as 

the 1-D CNN could capture the detailed shape of the canopy reflectance of each plot, and learn 

which wavelengths are more important during training, unlike the ensemble model where the 

wavelengths chosen for the VIs were predetermined. Moreover, the standard deviation (SD) of 

canopy reflectance within each plot provided the model with information regarding the 
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distribution of pixels’ reflectance per band per plot. When an additional DL model was trained 

without the SD in the input, R2 decreased by 9% on average. 

2.5.2 Interpretation of the Most Important Features 

 

As shown in Figure 2.7, Gitelson2, variations of NVI, MCARI, TCARI and REP were 

among the most common top features across all the models. Most of these vegetation indices 

include the spectral response in a wavelength in each of the NIR, red-edge, green, and red 

regions, which was expected. Gitelson2 includes wavelengths from the NIR, red, and red-edge 

regions, and NVI includes wavelengths in the blue, red-edge and NIR region. MCARI and 

TCARI look at reflectance in the green and NIR region, which normally are used to estimate 

chlorophyll absorption. REP also includes wavelengths from red and NIR regions. These results 

confirmed the importance of reflectance in the mentioned regions of the electromagnetic 

spectrum for rapid plant phenotyping.  

Despite the black-box nature of DL models, top features in the DL models were also 

found using permutation importance. Results from both analysis, show that green and red-edge 

(RE) are the most important regions of the spectrum for predicting biomass. The top VIs from 

the ML model including Gitelson2, NDVI [471,584], NVI2 and REP2 contain wavelengths from 

these ranges too, confirming the importance of these wavelengths. The range of 410-430 nm 

(blue) and 710-740 nm (RE) held the most important wavelengths for prediction of pod count 

and pod yield. The top VIs for these models also include wavelengths from the RE region (such 

as Carte4, SRI [675,700], NVI1 and NVI2) but there are not any indices including blue 

wavelengths. The green and RE ranges were shown to contain the most significant wavelengths 

for the prediction of photosynthesis and stomatal conductance. Most top VIs for these models 

also include RE in their formulas, such as NVI, Gitelson, NDVI [734,750], and VOG. 
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Considering all top wavelengths assessed in Section 2.3.1., plot-based SD delivered most 

of the important features. This could be due to the fact that SD has a higher variation between all 

plots, according to Figure 2.11. 

2.5.3 Effect of Drought on Peanut Canopy Spectral Response 

 

Hyperspectral data collected 18 DAD resulted in the best overall prediction accuracy. 

This could be due to the fact that this date was when the effect of drought was most severe. Since 

there were drought tolerant varieties among the peanut genotypes, some experienced wilting and 

recovered by August 24 (i.e., 29 DAD), therefore the effect of drought is not seen thoroughly in 

the plants’ spectral response. Below are examples of the spectral responses of a drought tolerant 

genotype (Line-8) and a drought sensitive genotype (AP-3), 14, 18, and 29 DAD. As can be seen 

in Figure 2.12, the drought sensitive variety’s reflectance in the NIR region decreased 18 DAD 

and stayed about the same until 29 DAD. However, the drought tolerant variety’s reflectance in 

NIR was lowest 18 DAD, and surged after about 11 days. Since high reflectance in NIR is an 

indication of high plant vigor, the rise of spectral response in this region suggests the recovery of 

the drought tolerant genotype. The temporal changes of VNIR spectral response of peanut 

canopy may assist peanut breeders in quantifying recoverability from water stress in peanut. 
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Figure 2.12 The spectral responses of a drought tolerant genotype, Line-8 (a), and a drought sensitive 

genotype, AP-3 (b). 

2.6 Conclusions 

 

In this study, the feasibility of using UAV-based hyperspectral imaging and ML for 

prediction of biomass, pod count, pod yield, photosynthesis rate, and stomatal conductance in 

peanut was evaluated. Two common approaches in this domain were compared: ML and feature 

engineering versus DL and feature learning. Both methods showed promising results; the DL 

model outperformed the ensemble ML model in predicting the agronomic traits and the ensemble 

ML model had a better performance in estimating the physiological traits. Moreover, data 

collected on 14, 18, and 29 days after the start of drought were tested on both models, and 18 

days after drought was found to provide the most valuable information to achieve the highest 

accuracy. Additionally, the most important input features of both the ML and DL model were 

investigated, and the most effective detection wavelengths were in the visible, near infrared and 

red-edge region. This paper demonstrated the ability of both DL and ML models to extract 

valuable information from hyperspectral imagery for phenotyping the agronomic traits in peanuts 

30 to 45 days before harvest, and estimate the physiological traits for same-day measurements. 

For future work, we will explore Recurrent Neural Networks (RNNs) such as long short-term 

memory (LSTM) and combine data from multiple dates to capture temporal features and 
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improve prediction accuracy. Another possible future direction can be training the deep learning 

model with a reduced number of features (the top wavelengths) and comparing the results.    
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Chapter 3. Detecting harmful algal blooms in Lake Okeechobee 

using MODIS satellite imagery and long-short term memory 

(LSTM) 
 

3.1 Abstract 

 

Harmful algal blooms (HABs) in inland water bodies are a global concern due to their 

negative impact on human and animal health. It is possible to detect HABs by monitoring 

chlorophyll-a (chl-a) concentration as an indicator of these events. Such monitoring requires 

extensive observations in terms of space and time, which can be achieved via remotely-sensed 

satellite images with high temporal resolution. To accomplish this, MODIS images from 2011 to 

2020 were used to extract 10 years of time-series reflectance data. The dataset was expanded by 

adding several environmental features and derived products from the MODIS images, and a 

long-short term memory (LSTM) model was employed to examine and learn the complex data. 

In the structured dataset, each chl-a measurement was associated with reflectance data for the 

same day, as well as reflectance data for several days preceding the measurement. Different 

temporal windows were evaluated in this study to investigate the effect of window size on chl-a 

estimations. This method was evaluated on Lake Okeechobee in Florida and the results showed 

that fifteen days before HAB events with a temporal resolution of four days gives the highest 

prediction accuracy, with a root mean square error (RSME) of 11.95 µg/L, mean absolute error 

(MAE) of 8.55 µg/L and coefficient of determination (R2) of 0.43. A recurrent neural network, 

such as an LSTM, together with satellite imagery was proven effective in capturing the temporal 

features of the spectral reflectance and environmental attributes preceding HAB events, to 

estimate the concentrations of chlorophyll-a and detect HABs in Lake Okeechobee. 
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3.2 Introduction 

 

An algal bloom is a phenomenon in which the population of phytoplankton (algae) 

increases rapidly in a water body, such as a river, lake, or sea. Harmful algal bloom (HAB) is a 

type of algal bloom with the potential to harm human health or aquatic ecosystems. These HABs 

can be produced by microorganisms called cyanobacteria, also known as blue-green algae. Some 

cyanobacterial HABs (cHABS) can produce toxins, which pose threats to people, animals, 

aquatic ecosystems, the economy, drinking water supplies, and recreational activities. The death 

of marine organisms, human health risks due to the consumption of contaminated seafood and 

water, and the decline in watersports and tourism are examples of these threats. In the US alone, 

an annual economic loss of at least $82 million is estimated as a result of HABs (Hoagland and 

Scatasta, 2006). For all these reasons, cHABs are a global concern and need to be monitored.  

Lake Okeechobee, the case study in this paper, is the second largest freshwater lake in the 

United States, with a surface area of about 1890 km2 and despite its remarkable size, it’s very 

shallow with an average depth of only 9 feet (SFWMD, 2022). This lake is a key source of water 

supply and is home to fish, wading birds, and other wildlife. The surrounding watersheds around 

Lake Okeechobee result in extensive amounts of nutrients from agricultural and urban activities, 

and the occurrence of HABs as a result of these nutrients can pose a threat to human and animal 

health.  

Traditionally, water samples are collected for lab-based cell taxonomy in order to 

measure algae concentrations and evaluate HAB events. These manual measurements are labor-

intensive, and extremely time-consuming, which makes this type of measurement limited 

spatially and temporally (Craig et al., 2006). In contrast, remote sensing methods, which have 

been used in the past decades, allow a much higher coverage of the regions of interest in less 
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time. Remote sensing-based HAB detection methods use Chlorophyll-a as an indicator of HABs; 

Landsat is one of the most commonly used satellite products for monitoring in-land algal blooms 

(Khan et al., 2021).  However, it is limited by its 16-day temporal resolution. These long revisit 

intervals limit the utility of Landsat for mapping algal blooms' temporal variability. Sentinel-2 is 

another satellite with a high spatial resolution which is used for monitoring freshwater regions. 

This satellite was launched in 2015 and therefore developing a model with a limited time range 

can be limiting, especially since inland water bodies are not sampled as frequently as marine 

waters and have fewer field observations. Choosing the right type of satellite involves a tradeoff 

between the range of availability, temporal and spatial resolution. Moderate resolution imaging 

spectroradiometer (MODIS) is one of the satellites offering an archive of long-term image series 

of daily global coverage. The high temporal resolution of this satellite increases the probability 

of getting cloud-free images in the areas of interest, and its long observation record (since 1999) 

allows a deeper analysis of temporal dynamic blooms in inland waters. 

Previous studies have shown the capability of MODIS products for estimating 

chlorophyll-a in large inland water bodies. Ventura et al. (2022) explored the potential of using 

MODIS imagery to estimate chl-a concentrations of lakes in different sizes by studying thirteen 

lakes in Brazil, with water surface areas ranging from 1.85 to 441 km2. The results showed that 

the three biggest lakes with the highest frequency of field sampling showed the best results, with 

R2 > 0.5.  Zhang et al. (2011) used the reflectance from MODIS band 2 (near infrared) and an 

empirical model to make predictions on chl-a in Lake Taihu. Another study by Li et al. (2019) 

explored chl-a predictions in Lake Taihu using a classification-based MODIS land-band 

algorithm. A study on Lake Okeechobee demonstrated the potential of using MODIS imagery for 

estimating chl-a, using three different models; a genetic programming (GP) model, an artificial 
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neural network (ANN) model, and a multiple linear regression (MLR) model (Chang et al., 

2011). 

Common methods of estimating chl-a concentrations and detection of HABs are based on 

water-leaving reflectance and regression models (Liu, Ling, Wu, Su, and Cao, 2021; Ventura et 

al., 2022; Xu, Pu, Zhu, Luan, and Shi, 2021). However, a common problem with these models is 

that they cannot be used in other locations and often have to be calibrated in order to ensure 

cross-sensor and temporal consistency (Xu et al., 2021). Moreover, it is not possible to trace the 

pattern of algal bloom growth using regression models.  

MODIS’s high temporal resolution allows studying long and short term dependencies in 

temporal information. Therefore, choosing a model capable of effectively capturing time 

dependencies can be beneficial. Therefore, LSTM (Long Short-Term Memory) (Hochreiter and 

Schmidhuber, 1997) was selected as the model for this study. LSTM is a type of Recurrent 

Neural Network (RNN) capable of characterization of time-varying signals. Several studies have 

shown the capability of LSTMs for chl-a estimations/predictions in marine waters but there is 

limited work on using this powerful model for inland water bodies. Yussof et al. (2021) used 

LSTM on MODIS and GEBCO images to predict chl-a concentrations in the west coast of 

Sabah. In this study, the convolution neural network (CNN) and LSTM were employed and the 

results revealed that the LSTM model outperformed the CNN model in terms of accuracy (R2 and 

root mean square error (RMSE). HABnet also showed that an LSTM-based network achieved the 

highest accuracy in predicting HABs in a classification problem (Hill, Kumar, Temimi, and Bull, 

2020).  

A possible explanation for the limited use of LSTM or more generally, machine learning 

models, on lakes might be that HABs are more prevalent in coastal regions, so there are more 
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ground-truth measurements of chl-a and therefore more resources are available to study and 

monitor them. The higher frequency of ground-truth measurements allows for a larger training 

dataset, which is essential for deep learning and machine learning models. In this chapter, the 

first main goal is to address this gap by making use of feature engineering, and simplifying the 

input data to the LSTM model so that the model trains more easily and therefore can be used for 

smaller lakes with fewer field measurements. The dataset was further enhanced with the addition 

of cloud cover, chl-a estimations based on the OCx algorithm, temperature data, and the sine 

transform of timestamps. LSTM was trained on the time-series data and its performance was 

compared to three traditional machine learning models; K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM) and Random Forest (RF). These models were tested on single and time-

series inputs and the effect of adding temporal features was evaluated. Furthermore, twelve 

window sizes before event days, which were the day chl-a values were measured, were assessed 

to investigate the number of days of data that are needed to make the most accurate chl-a 

estimations. 

3.3 Materials and Methods  

 

3.3.1 Study site 

The areas of study at Lake Okeechobee were six stations across the lake with an average 

of 105 data points from each station. These stations are shown in Figure 3.1 and their 

coordinates, min, max, and average chl-a concentration between 2011 and 2020 are shown in 

Table 3.1. All stations combined for the same time period, the chl-a concentration has an average 

chl-a concentration of 20.56 µg/L. With a threshold of 10 µg/L for categorizing HAB/No HAB 

events, there were 357 HAB events and 191 No HAB events. The distribution of chl-a 

concentrations is shown in a histogram in Figure 3.2. 
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Table 3.1 Stations in Lake Okeechobee and their characteristics. 

Station Data points 

Coordinates 

(Latitude, 

Longitude) 

Min, Max Chl-a 

(µg/L) 
Average chl-a (µg/L) 

CLV10A 112 
26.916078, -
80.624663 

0.0, 60.0 12.62 

KISSR0.0 106 27.141301, -80.846 0.025, 49.6 14.42 

L005 105 26.95673, -80.972385 2.61, 142.0 30.30 

LZ2 104 27.189756 -80.82804 1.51, 117.0 20.75 

LZ30 102 
26.796971, -
80.860095 

1, 278.0 15.24 

POLESOUT 104 
27.038198, -
80.918541 

5.7, 110.0 30.54 

 

 

Figure 3.1 Study stations in Lake Okeechobee. 

 

 
Figure 3.2 Histogram of chl-a concentrations across all stations between 2011 and 2020. 
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3.3.2 MODIS Images 

 

The satellite images were acquired from version 6 of MODIS products, the MCD43A4 

Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) 

dataset. This dataset is produced daily using both Terra and Aqua MODIS with a resolution of 

500 meters, and all images are atmospherically corrected and consistent in seven bands that are 

shown in Table 3.2. 

Table 3.2 Corresponding wavelengths of MODIS bands 1–7. 

Name Wavelength 

Band 1 620-670nm 

Band 2 841-876nm 

Band 3 459-479nm 

Band 4 545-565nm 

Band 5 1230-1250nm 

Band 6 1628-1652nm 

Band 7 2105-2155nm 

 

The MCD43A4 dataset is publicly available on Google Earth Engine (GEE) for 

noncommercial purposes (Gorelick et al., 2017). A pipeline was developed in Python 3.9.0 to 

automate the image acquisition workflow using GEE. In the first step of the workflow, requests 

were sent using GEE’s Python API, each image was clipped to the boundary of the lake and the 

correct scale (0.0001) was applied to the bands and they were saved to the hard drive. These 

images had a time range of 2011 through 2020, which matched the time period of ground truth 

measurements.  

Saving the images and extracting the pixel values in a second step allowed more flexibility and 

repeatability for evaluating different approaches. Therefore, once a complete dataset was ready, 
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reflectance values were extracted from 6 by 6 windows surrounding each station. The maximum 

value from each band was selected as suggested by Yussof et al. (2021), since we’re interested in 

extreme values and detecting HABs. This workflow is shown in Figure 3.3. 

 

 
Figure 3.3 The overall MODIS image acquisition and processing workflow. 

 

3.3.3 Additional features  

 

Several additional features were calculated using the seven bands of MODIS images, and 

they were added to the features for training. The extracted features were mostly derived from the 

satellite images so that this methodology can also be applied to other lakes in future studies, and 

not rely on field measurements or data that might not be accessible for every lake. The first 

added feature was chl-a estimation using the OCx algorithm, which is a fourth-order polynomial 

equation between chl-a and a ratio of reflectance values of bands green and blue. This method 

was introduced by Hu, Lee, and Franz (2012), and it was recommended for chl-a retrievals above 

0.2 µg/L. Since 99.8% of the chl-a data in the dataset used in this study is above 0.2 µg/L, OCx 

was selected as the preferred method. This algorithm is shown in Equations (3.1) and (3.2). 

𝑙𝑜𝑔10(𝑐ℎ𝑙 − 𝑎)  =  𝑎0  +  ∑ 𝑎𝑖  (𝑙𝑜𝑔10(
𝑅𝑟𝑠(𝜆𝑏𝑙𝑢𝑒)

𝑅𝑟𝑠(𝜆𝑔𝑟𝑒𝑒𝑛)
)𝑖4

𝑖 =1    (3.1) 

𝑎 =  [𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4]                (3.2) 
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Where λblue and λgreen are the instrument-specific wavelengths closest to 443, and 555 nm 

respectively. These wavelengths correspond to bands 3 and 4 in MODIS images, and Rrs is the 

reflectance value from these bands. Values a0 to a4 are 0.1464, -1.7953, 0.9718, -0.8319 and -

0.8073 respectively.  

The second added feature was the cloud cover derived from the satellite images. Light is 

one of the factors affecting the growth of algae and resulting algal blooms, and to account for the 

amount of light on each day, cloud cover was derived from the quality band provided by 

MODIS. Pixel values in the quality bands are either 0 or 1, where 0 means the pixel has good 

quality and is cloud-free and 1 means covered by clouds. With this information, the number of 

cloud-free pixels was calculated and the cloud percent cover was added to the model.  

The third additional feature was the date, which in its original format as a string, is not a 

useful input to the model and doesn’t carry any information. Therefore, each date was converted 

to seconds and its sine transform was calculated. This conversion provides signals of the time of 

the year and takes the seasonal changes of HABs into account. For this calculation, dates were 

converted to timestamps (seconds) and the sine wave was derived using the following equation. 

𝑌𝑒𝑎𝑟 𝑠𝑖𝑛 =  𝑠𝑖𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∗  2 ∗  𝛱/ 𝑠𝑒𝑐𝑜𝑛𝑑𝑠𝑦𝑒𝑎𝑟)  (3.3) 

 

       𝑠𝑒𝑐𝑜𝑛𝑑𝑠𝑦𝑒𝑎𝑟  =  365.2425 ∗  24 ∗  60 ∗  60              (3.4) 

 

Last, the dataset was expanded to include air temperature. It was decided to use air 

temperature over water temperature because water temperature depends on the depth and also the 

time of the day the sample was collected. By using air temperature, this complexity is eliminated 

and it is standardized across different stations of the lake and also can be applied to other lakes 

for future studies. Air temperature is directly correlated to water temperature, and therefore can 

be used as a proxy (O’Reilly et al., 2015). Minimum and maximum air temperatures in each day 
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were retrieved from NOAA Climate Data Database (NOAA, 2022) from the “Okeechobee 27.1 

Nnw '' meteorological station. This dataset is publicly available and is free to use. 

3.3.4 In-situ Chl-a measurements  

 

Chlorophyll-a data were collected from DBHYDRO, South Florida Water Management 

District’s corporate environmental database (www.sfwmd.gov/science-data/dbhydro, 2021) and 

the National Water Quality Council’s Water Quality Portal (www.waterqualitydata.us, 2022). 

Only discrete surface samples collected between 01/01/2011-12/31/2020 and analyzed via high 

performance liquid chromatography or via solvent extraction followed by fluorometry were 

considered. In-situ chl-a measurements were acquired for all station in Lake Okeechobee, as well 

as features such as date, depth, latitude and longitude. These additional parameters were later 

used for matching and merging with the satellite data.  

3.3.5 LSTM model and training 

3.3.5.1 Model development 

 

Long-short term memory is a recurrent neural network (RNN) capable of handling long-

term dependencies, hence a good choice for analyzing the behavior of algal blooms which have 

temporal patterns (Gianella, Burrows, Swan, Turner, and Davidson, 2021). LSTMs are able to 

remember information for long periods of time due to their special architecture. These networks 

are composed of a forget gate, a keep gate, and an output gate. The forget gate decides whether a 

current input (xt) should be remembered and added to the cell state or discarded (Ct-1). This 

process, shown in Equation 3.5, is done by concatenating the current input by the previous 

hidden state (ht-1), calculating the sigmoid of the concatenation, and multiplying it by the 

previous cell state (Ct-1). This, in practice, means that the model is deciding what features of day 

file:///C:/Users/kzb0086/AppData/Local/Packages/microsoft.windowscommunicationsapps_8wekyb3d8bbwe/LocalState/Files/S0/3/Attachments/www.sfwmd.gov/science-data/dbhydro
file:///C:/Users/kzb0086/AppData/Local/Packages/microsoft.windowscommunicationsapps_8wekyb3d8bbwe/LocalState/Files/S0/3/Attachments/www.waterqualitydata.us
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t-1 have valuable information and which hidden units from that input should be ignored. The 

keep gate decides which values will be updated and what values need to be added to the final 

state using a hyperbolic tangent and a sigmoid layer (Equations (3.6), (3.7)). Finally, the old state 

is multiplied by the forget gate discarding the information it decided to forget using Equation 5, 

and added to the output of the keep gate to create the new cell state, Ct (Equation (3.8)). What 

the model outputs is a filtered version of the cell state shown in Equation (3.10). 

𝑓𝑡  =  𝜎 (𝑊𝑓  ×  𝑥𝑡  + 𝑈ℎ  ×  ℎ𝑡−1  +  𝑏𝑓)    Forget gate    (3.5) 

𝑖𝑡  =  𝜎 (𝑊𝑖  ×  𝑥𝑡  + 𝑈𝑖  ×  ℎ𝑡−1  +  𝑏𝑖)    Input gate    (3.6) 

𝐶̂𝑡  =  𝑡𝑎𝑛ℎ (𝑊𝑐  ×  𝑥𝑡  + 𝑈𝑐  ×  ℎ𝑡−1  +  𝑏𝑐)   Cell entrance    (3.7) 

𝐶𝑡  = 𝑓𝑡 × 𝐶𝑡−1  + 𝑖𝑡 × 𝐶̂𝑡       New cell state    (3.8) 

𝑜𝑡  =  𝜎 (𝑊𝑜  ×  𝑥𝑡  + 𝑈𝑜  ×  ℎ𝑡−1  +  𝑏𝑜)     Output gate    (3.9) 

ℎ𝑡  = 𝑜𝑡  ×  𝑡𝑎𝑛ℎ( 𝐶𝑡−1 )                          (3.10) 

𝜎 (𝑥) =
1

1+𝑒𝑥       Sigmoid function                      (3.11) 

𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥      Tanh function                (3.12) 

 

 

Where Wf, Wi, Wo, and Wc are the weights connecting the input, xt to the forget, input, output 

gates and the cell entrance respectively. Similarly, Hf, Hi, Ho, and Hc the weights connecting ht-1 

to the same gates. bf, bi, bo, and bc are the bias terms for the mentioned gates and cell entrance.  

The LSTM model implemented for this study is a bidirectional LSTM that consists of 

two LSTM networks as described above. The second LSTM reverses the flow of information 

flow. In this case, it means that if we’re looking at a period of 5 days, in the first LSTM day 1 is 

the first time step to the model, and in the second LSTM, day 5 is the first time step. This means 

that the output layer can get information from past and future states simultaneously. Each LSTM 

model was chosen to have 60 units, resulting in a total of 120 units. Drop out with a rate of 0.5 

was added to the layer to avoid overfitting and it was followed by a dense layer with one unit for 

the final prediction of chlorophyll estimation. This architecture was modified to a classification 

model by adding one unit and a sigmoid activation layer to the dense layer to get the probability 



 68 

of HAB/No HAB events. A threshold of 10 µg/L was applied to chl-a values in the output for the 

classification model. The implementation and training of this model were done using Python 

3.9.0, Tensor-Flow 2.7.0, and Keras 2.7.0 on an NVIDIA GeForce RTX 2080 Max-Q Graphics 

Processing Unit. Each dataset was split with a 90:10 train-to-test ratio and was trained for 150 

epochs on regression models and 80 epochs on classification models. The number of epochs was 

chosen based on the performance of the models to achieve the best performance and avoid 

overfitting. Adam was chosen as the optimizer with a learning rate of 0.001, and exponential 

decay rates of 0.9 and 0.99 for the first and second moment estimates, respectively.  

Finally, three commonly used machine learning models were employed to compare the 

performance of LSTM to non-recurrent models; K-Nearest Neighbor (KNN), Support Vector 

Machine (SVM), and Random Forest. Since these models can’t be trained on three-dimensional 

data, the feature and time step dimensions were flattened into a 1-D vector. This experiment is 

referred to as “time-series input”. Another issue is whether temporal features would improve 

predictions or not. To answer this question, the time step corresponding to the event day was 

chosen as a single input. For regression models, a KNN regressor, Support Vector Regression 

(SVR), and Random Forest (RF) regressor were trained, and a KNN classifier, SVM, and RF 

classifier were deployed for classification tasks. The same test-to-train ratio was applied to the 

datasets of all models, and hyperparameters were tuned for each of them using grid searches; 

K=3 was chosen as the number of neighbors for the KNN models and Manhattan distance was 

selected as the distance metric. Radial basis function (RBF) and ε = 0.7 were selected as the 

kernel and epsilon for SVM models, respectively, and the RF model had 3 estimators, a 

maximum depth of 6, and the ideal number of maximum features were picked by log2 
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(n_features) where n_features is the total number of features; that means the RF model takes a 

subset of log2 (n_features) features to find the best split during training.  

3.3.5.2 Dataset Structure 

 

The extracted reflectance from each band, including all the additional features, were 

produced from the beginning of 2011 until the end of 2020. This data was merged with the chl-a 

data on the basis of date and station using the Pandas library in Python (McKinney, 2010). 

Therefore, the final dataset had twelve features including the maximum reflectance values from 

the seven bands of MODIS shown in Table 3.2, OCx, cloud cover, minimum temperature, 

maximum temperature, and date, for every day of the mentioned time period. Event days were 

retrieved for the days that the output values, chl-a (or HAB/No HAB), were available. Several 

variations of training sets were generated using different numbers of days of study before event 

days, to study the effect of the time period on the result, and also to determine the optimum 

number of days we need to look back in time to detect HABs. Increasing the number of time 

steps in the training sets adds to the complexity of the model and the number of training 

parameters. To have a fair comparison, the step (temporal resolution) was increased according to 

the time period so as to keep the length of the sequences below 7 days. These time variations and 

an example of the time sampling are shown in Figure 3.4.  
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Figure 3.4 Variations in temporal window structure. These sequences vary the number of days in the past for 

both training and testing sets. An illustration of D7S2 is provided as an example. 

 

3.3.6 Evaluation criteria and metrics 

 

To evaluate the performance of each regression model, root mean square error (RMSE), 

mean absolute error (MAE), and coefficient of determination (R2) were used, and the equations 

of these metrics are shown in Equations (3.13)–(3.15), respectively.  The performance of 

classification models were evaluated using the metrics accuracy and F1 score (Equations (3.16) 

and (3.17)). The final F1 score is the average for both classes, HAB and No HAB. In these 

equations, TP, TN, FP, and FN are the number of true positives, true negatives, false positives 

and false negatives. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖  −  𝑦𝑖̂)

2𝑛
𝑖=1    (3.13) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |(𝑦

𝑖
 − 𝑦

𝑖
̂)|𝑛

𝑖=1     (3.14) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

                   (3.15) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP + TN

TP + TN + FP + FN
     (3.16) 

       

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙

Precision  + Recal
       (3.17) 

Precision =  
𝑇𝑃

𝑇𝑃 +𝐹𝑃
      (3.18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

𝑇𝑃 +𝐹𝑁
       (3.19) 
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3.4 Results  

 

Two LSTM models, one for the estimation of chl-a concentration, and another for the 

classification of HAB or No HAB events, were trained on training sets with different time 

periods and steps shown in Figure 3.4. They were evaluated on both training and testing sets and 

the results are represented in Tables 3.3 to 3.6. Table 3.3 shows the evaluation metrics for the 

twelve time periods for the testing dataset. RMSE values on this table vary from 11.95 to 14.67 

for different time periods, with D15S4 showing the lowest RMSE and D3S1 having the highest. 

As the period increases up to 15 days (D15S4), RMSE tends to decrease, before increasing 

afterward, reaching its lowest point at D15S4. This trend is also true for MAE, with D15S4 

having the lowest MAE at 8.53 µg/L. A range of R2 values was observed between 0.15 and 0.43, 

with the lowest at D3S1 and the highest at D15S4, following the same pattern as RMSE. 

Likewise, D15S4's classification accuracy and F1 scores were the highest, at 0.76 and 0.82, 

respectively (Table 3.5). Observed accuracy scores ranged from 0.66 to 0.76, and F1 scores 

ranged from 0.75 to 0.82.  

Figures 3.5 (a) and 3.5 (b) illustrate the loss function plots of the classification and 

regression models, respectively. These models were trained in the D15S4 period. Figure 3.5 (b) 

shows that test loss was always lower than training loss, which was due to the fact that 

regularization (dropout) is only applied in training and not testing, and regularization loss is not 

included in the training loss. The model is neither underfitting nor overfitting, as both loss curves 

decrease gradually after about 10 epochs. To investigate this further, each model was also tested 

on its training set and the result are provided in Table 3.4, for comparison to Table 3.3. Mostly, 

RMSE, MAE and R2 on training data are either roughly the same or better the mentioned metrics 

on the testing set; it is reasonable for the metrics to be higher when evaluated on the training data 
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because they have been previously seen by the model, and the small gap between these metrics 

on each time period demonstrates that the models are not overfitted and properly trained.  

The loss curves of the classification model also show that the model is not overfitted 

since the testing and training loss curves stay in the same range during training, and testing 

accuracy is slightly lower than training accuracy most of the time. Classification accuracy on 

both testing and training datasets can also be compared on Tables 3.5 and 3.6, respectively, and 

the accuracy and F1 scores on training are higher than the evaluation metrics on the testing data 

with a reasonable difference between them, showing that these models were also neither 

underfitted nor overfitted.  

The performance of the machine learning models are shown in Table 3.7. For time-series 

inputs, D15S4 was selected as the best input since it had the best performance in the previous 

experiment. Among KNN, SVM and RF, the R2 of RF was found to be the highest, values at 

0.23, which was lower than the R2  achieved using LSTM (0.43). RMSE and MAE were in the 

range of 13.43 to 14.42 and 9.34 to 10.69, respectively. Overall, R2 of each model was higher 

when trained on the time-series input than single-input and the two other error metrics were 

lower. The classification accuracy of these models were comparable with the accuracy of the 

LSTM model (F1: 0.82, accuracy: 0.76), with a range of 0.61 to 0.81 for accuracy and 0.70-0.80 

for accuracy and F1, respectively. Similar to the LSTM models, training results are shown in 

Table 3.7, to demonstrate how well the models are trained and whether the models are overfitted 

or underfitted to the data.  

The scatter plots of predictions on training and testing from the D15S4 period are shown 

in Figure 3.6. Figure 3.7 depicts the scatter plots of true vs predicted chl-a values for each model 

and input type, single time and time-series.  
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Table 3.3 The performance of the LSTM model for chl-a predictions using twelve time window variations, on testing 

data. 

 D3S1 D5S1 D7S2 D9S2 D11S2 D13S2 D15S4 D17S4 D19S4 D21S4 D23S4 D25S4 

RMSE 

(µg/L) 
14.67 13.15 12.65 12.99 12.08 12.45 11.95 12.45 12.77 12.71 13.43 12.64 

MAE 

(µg/L) 
10.76 9.42 9.17 9.78 9.26 9.11 8.55 9.00 9.06 9.31 9.48 8.86 

R2 0.15 0.25 0.35 0.27 0.33 0.41 0.43 0.35 0.28 0.37 0.30 0.34 

 

Table 3.4 The performance of the LSTM model for chl-a predictions using twelve time window variations, on training 

data. 

 D3S1 D5S1 D7S2 D9S2 D11S2 D13S2 D15S4 D17S4 D19S4 D21S4 D23S4 D25S4 

RMSE 

(µg/L) 

14.77 12.69 13.27 12.46 12.13 11.10 13.21 12.68 12.48 11.64 11.99 10.99 

MAE 

(µg/L) 

10.23 8.49 9.14 8.49 8.33 7.56 9.12 8.82 8.69 8.13 8.12 7.60 

R2 0.32 0.48 0.44 0.50 0.53 0.61 0.50 0.48 0.50 0.57 0.54 0.61 

 

Table 3.5 The performance of the LSTM model for HAB/ No HAB classification using twelve time window variations, on 

testing data. 

 D3S1 D5S1 D7S2 D9S2 D11S2 D13S2 D15S4 D17S4 D19S4 D21S4 D23S4 D25S4 

Accuracy 0.66 0.68 0.71 0.73 0.73 0.73 0.76 0.73 0.67 0.66 0.67 0.70 

F1 score 0.76 0.76 0.79 0.79 0.80 0.82 0.82 0.76 0.75 0.76 0.73 0.78 

 

Table 3.6 The performance of the LSTM model for HAB/ No HAB classification using twelve time window variations, on 

training data. 

 D3S1 D5S1 D7S2 D9S2 D11S2 D13S2 D15S4 D17S4 D19S4 D21S4 D23S4 D25S4 

Accuracy 0.76 0.82 0.80 0.81 0.84 0.84 0.79 0.81 0.82 0.83 0.86 0.86 

F1 score 0.85 0.88 0.86 0.87 0.89 0.89 0.86 0.87 0.88 0.89 0.90 0.90 

 

Table 3.7 The performance of KNN, SVM, and RF on both chl-a estimations and classifications of HAB/No 

HAB, using single and time-series inputs on both training and testing data. 

Testing 
RMSE 

(µg/L) 

MAE 

(µg/L) 
R2 Accuracy F1 score 

Training 

KNN - 
single-time 

input 

14.38 10.69 0.15 0.61 0.70 

15.00 10.30 0.27 0.82 0.87 

KNN – time-
series  input 

14.45 10.34 0.12 0.82 0.77 

14.78 10.08 0.29 0.81 0.86 



 74 

SVM - 
single-time 

input 

14.15 9.34 0.09 0.68 0.77 

14.81 9.47 0.17 0.76 0.84 

SVM– time-
series  input 

14.12 9.15 0.10 0.69 0.78 

14.86 9.41 0.17 0.77 0.85 

RF - single-
time input 

14.42 10.15 0.14 0.68 0.77 

13.98 8.96 0.41 0.85 0.90 

RF– time-
series input 

13.43 9.87 0.23 0.74 0.80 

12.36 8.42 0.48 0.88 0.91 

 

 

 
Figure 3.5 The loss curves of the a) classification LSTM model, and b) regression LSTM model. The metric 

during training for classification is accuracy and it is mean absolute error (MAE) for regression. 

 

 
 

Figure 3.6 Scatter plots of measured vs predicted chl-a values using the LSTM model and time period D14S4 

on a) train data, and b) test data. 
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Figure 3.7 Scatter plots of measured vs predicted chl-a values using the KNN, SVR, and RF models with 

single and time-series inputs. The time-series input was a 1-D conversion of time period D15S4. 

3.4.1 Feature importance analysis  

 

Permutation importance was used to evaluate the importance of the studied features 

(Altmann et al., 2010). By assessing how much the model accuracy decreases when a data 

feature is absent, this algorithm provides insight into the importance of each data feature. 

Training models by eliminating features and assessing their performance is computationally 

intensive. So instead of performing the analysis during training, features were shuffled one at a 

time during testing, and their MAE is compared to the MAE of unshuffled test data. The model 

trained on the D15S4 period was selected for this analysis since it had the best performance 

compared to the other periods and it is more likely to provide insight into the most significant 

features. The result of this analysis is shown in Figure 3.8. The permutation importance score in 

this chart is the difference between the original MAE (8.55 µg/L based on Table 3.3) and the 

MAE obtained by testing the model on the test data with the shown feature randomly shuffled. 
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According to this chart, OCx, cloud cover, minimum temperature (TMIN), date, and B7 (2105 – 

2155 nm) were the top five features, and B1 had the lowest importance score. 

 

 
Figure 3.8 Permutation importance scores of the twelve features used as inputs in the training and testing 

datasets. 

 

3.5 Discussion 

 

All of the results for the twelve periods shown in Table 3.3, with the exception of D3S1, 

gave significantly better results than the machine learning models shown in Table 3.7. It is 

assumed that due to the capability of LSTM models in learning long-term dependencies and 

characterizing discriminating temporal features in data, they were able to make predictions much 

more effectively. We assume that in the first time periods, the interval was not long enough for 

there to be sufficient temporal variations for the LSTMs to effectively characterize the change in 

temporal features, and in the last time periods, the interval is so long that it did no carry relevant 

information to cause or not to cause a HAB. Therefore, a period of about two weeks (D13S2 and 

D15S4) seems to be the optimal interval to observe for making predictions.  
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Among the machine learning models, random forest had the best performance with an R2 

of 0.23 on the time-series input. This model’s performance was improved by 70% by training it 

on the time-series input rather than a single-time input, signifying the importance of the temporal 

features. Looking at the scatter plots of RF predictions in Figure 3.7, there are several outliers in 

the predictions which reduced the R2, but the RMSE and MAE from these predictions were in 

the same range as the RMSE and MAE from LSTM predictions. These outliers explain why 

classification accuracy from the ML and LSTM models are comparable but the regression results 

from LSTM are much better. The fact that LSTM’s performance in classification is not 

significantly different from ML models was also shown in Hill et al. (2020)’s work, however, 

chl-a predictions (regression results) were not provided in this study.  

SVM witnessed a small performance improvement after switching to the time-series 

input and KNN’s performance was worsened. KNN’s inferior performance on time-series input 

can be because of the known curse of dimensionality in KNN models (Cover & Hart, 1967). 

These models tend to face difficulty with high-dimensional data.   

It is difficult to compare studies on chl-a estimations based on their results since different 

lakes have dissimilar behaviors. Factors such as water inflow/outflow, chl-a concentration levels, 

water depth, and surface area, can affect how a model performs. For instance,  Kutser (2009) 

showed how complicated or in some cases impossible it is to monitor cyanobacterial blooms in 

shallow-water areas, and Vidot and Santer (2005) showed how atmospheric correction can 

become more difficult for larger water bodies.  

Therefore, even though it’s hard to compare directly, we can compare our work to the 

study by Chang et al. (2011) on chl-a predictions in Lake Okeechobee. Three models were 

developed for chl-a predictions in Lake Okeechobee using MODIS images from 2003 to 2004. 
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They compared Genetic Programming (GP), Artificial Neural Network (ANN), and Multiple 

Linear Regression (MLR) models and showed the best predictions were obtained by the GP 

model with an R2 = 0.57. This R2 is higher than the highest achieved on a validation dataset in 

this work (0.43). According to the histogram of chl-a values in this study in the period of 2003-

2004, which is different from the period of our study (2011-2020), chl-a values were below 30 

µg/L at all times and that lowers the probability of having a saturated model that performs worse 

on larger values. That also means having a balanced dataset that is equally trained on different 

ranges of data, but in our study, about 6% of chl-a values exceeded 50 µg/L, making it an  

unbalanced dataset and harder for the model to predict extreme values. In addition, the chl-a 

measurements in this paper were collected by the authors directly, which could have positively 

affected the quality of the data, whereas in this research the chl-a data sourced from a third party 

online database. Therefore the integrity of our data could not be as substantially and directly 

ensured. 

3.6 Conclusions 

 

In this study, chlorophyll-a concentrations in Lake Okeechobee were estimated using 

daily satellite imagery from MODIS, a satellite-based sensor that provides multispectral images 

in seven bands. The dataset was expanded by additional features; cloud cover, chl-a estimations 

using the OCx algorithm, temperature data, and the sine transform of timestamps. Long-short 

term memory, a recurrent neural network capable of learning temporal features, was trained on 

the dataset. Two important questions were answered, whether temporal features improve 

prediction accuracy, and if yes, how many days of data are required for the best predictions. To 

answer the first question, three machine learning models were trained on single time step and 

time-series inputs. The results showed that time-series data have invaluable information that 
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helps prediction accuracy, and it is noteworthy that LSTM outperformed the traditional machine 

learning models trained on both single inputs and time-series inputs, attesting to its ability to 

learn long-term dependencies in data. To answer the second question, LSTM models were 

trained on twelve different periods of time-series data, ranging from 3 to 25 days before chl-a 

measurements and their performances were compared; the results showed that fifteen days of 

data with a resolution of 4 days had the best performance. Additionally, a feature importance 

analysis was conducted to assess the value of each feature, and it was discovered that OCx, cloud 

cover, minimum temperature, date (sine transform of timestamp), and the seventh band of 

MODIS (2105 – 2155 nm) were the top five features. It was demonstrated that chl-a 

concentrations can be estimated using ML methods and satellite images and HABs can be 

detected with a reasonable accuracy even when a large dataset of chlorophyll measurements is 

not available, and that there is potential for the monitoring of other lakes with few field 

measurements. A possible future study would be leveraging the pre-trained model in this work to 

develop a transfer leaning method for the use of other lakes.  
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Conclusion  
 

In this thesis, the feasibility of utilizing remote sensing and deep learning technologies 

for peanut phenotyping and water quality monitoring were assessed. Each of those problems 

necessitate the right choice of remote sensing platform and deep learning model; for rapid peanut 

phenotyping UAV-based hyperspectral images were used and the performance of an ensemble 

model was compared with the performance of an end-to-end deep learning model. In both cases, 

promising results were obtained; deep learning showed better results for the prediction of 

agronomic traits, and physiological traits were predicted more accurately with the ensemble 

model. It was also found that in case of a drought, eighteen days after the start of drought is the 

best day for hyperspectral data collection, as the model trained on the data from this day showed 

the most accurate predictions. It was shown and discussed that some drought tolerant genotypes 

such as Line-8 recover from drought after 29 days, and therefore 18 days after drought is when 

the highest effect of drought was seen on some plants, and that information helped the model 

achieve more accurate predictions for peanut traits. Additionally, a feature importance analysis 

was performed on both models, and the most important wavelengths were in the visible, red-edge 

and NIR regions. This study showed that it is possible to provide insight to breeders regarding 

yield, biomass and pod count 30-45 days before harvest, and it is also feasible to estimate 

photosynthesis and stomatal conductance for same-day measurement using hyperspectral images 

and machine learning, which makes getting estimates for peanut phenotypes a lot faster 

compared to traditional in-situ measurements. This research can be improved by acquiring more 

data in different locations and for multiple years. Another way it can be improved is to lower the 

temporal resolution by increasing the number of days the peanuts are imaged, and train a 
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recurrent neural network and evaluate weather temporal features would improve the prediction 

accuracy. 

 In a second study, satellite images from the MODIS dataset were used for monitoring 

Lake Okeechobee, estimating chl-a concentrations and determining whether there was an algal 

bloom or not. Satellite images are preferable for monitoring larger areas such as Lake 

Okeechobee, and also allow us to leverage pre-existing historic data. A research question being 

addressed in this chapter was discovering whether temporal features can help with the prediction 

of HABs. In other words, is studying same-day water reflectance enough for estimating chl-a 

concentrations and the predictions of HABs, or would it be beneficial to include the reflectance 

information, as well as the additional discussed features, from several days before. By training 

three machine learning models with both same-day and time-series inputs, it was demonstrated 

that temporal features improve prediction accuracy. However, using machine learning models to 

analyze time-series data is not the best approach, therefore, an LSTM model was trained on the 

time-series data and it was revealed that it outperforms ML models. In addition, twelve window 

frames were tested and it was shown that fifteen days of data preceding the event day is the ideal 

time frame. Since this time frame had a resolution of four days, satellite-based imaging platforms 

with a lower temporal resolution than MODIS, but higher spatial resolution can be employed 

using the same method for future studies, to evaluate the importance of spatial resolution in 

water quality monitoring and whether it affects the prediction accuracy. Moreover, a transfer 

learning method to use the pre-trained model developed in this study to the use of other lakes 

could be a valuable follow-up project. 

 

 


