
Reinforcement Learning with Reasoning for Long-horizon Robotic Tasks

by

Zhitao Yu

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 6, 2023

Keywords: Ground Robot, UAV, Long-horizon tasks, Path planning, Reinforcement learning

Copyright 2023 by Zhitao Yu

Approved by

Shiwen Mao, Professor of Electrical and Computer Engineering
Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Xiaowen Gong, Assistant Professor of Electrical and Computer Engineering
Mark Nelms, Professor and Chair of Electrical and Computer Engineering

Abstract

Recent developments in Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehi-

cles (UGVs) have attracted intensive research interest from both academia and industrial areas.

Although Unmanned Aerial Vehicles (UAV) are usually deployed outdoors, there is increasing

interest in applying UAVs for indoor applications. It is a highly attractive and challenging task

to precisely localize a UAV in an indoor environment where Global Positioning System (GPS)

service is absent. To achieve high accuracy and low cost for localization, a Radio-frequency

Identification (RFID) enhanced UAV system that provides a precise 6 degrees of freedom (6-

DoF) pose for UAVs. Moreover, UGVs are good compliments for UAVs which made them

be widely used for various tasks. Therefore, the control commands communication between

UAVs and UGVs is crucial as well. Furthermore, they are both constrained by some essential

features that make them incapable of completing complicated tasks in many scenarios. For

example, the UGV cannot reach high altitudes, while the UAV is limited by its power sup-

ply and smaller payload capacity. In my dissertation, I want to present a deep reinforcement

learning(DRL)-based network that could generate an optimal strategy to make a UGV and UAV

form a coalition that is complementary and cooperative for the completion of tasks that they are

incapable of achieving alone. At the same time, I also would like to discuss the challenge and

solutions when using DRL methods for solving such long-horizon robotic tasks. DRL methods

usually suffer when the state and action spaces are very large. So the way we handle the obser-

vations during training is essential. In the last section, a reasoning scheme that enables robots

better understand their tasks in the environment is investigated to promote the intelligence and

robustness of the cooperation system.

ii

Acknowledgments

This work is supported in part by the US National Science Foundation under grants CNS-

1702957, CNS-2107190, CNS-2148382, CNS-1822055, ECCS-1923163, ECCS-1923717, Auburn

University RFID Lab, and by the Wireless Engineering Research and Education Center (WEREC)

at Auburn University, Auburn, AL, USA.

I would like to thank my advisor, Dr. Shiwen Mao, for all the help and guidance that

he has given me over the past several years. Additionally, I would like to express my sincere

gratitude to Dr. Jian Zhang for the continuous support of my Ph.D. research, his patience, and

his motivation. Besides my advisor, I am extremely grateful to my committee members, Dr.

Xiaowen Gong, Dr. Thaddus Roppel, Dr.Yang Zhou, and Dr. Mark Nelms, for their insightful

comments and support. My sincere appreciation also goes to my friends, Dr. Xiangyu Wang,

Dr. Yibo Lyu, Dr. Chao Yang, and Junwei, for their advice and inspiration. Finally, I gratefully

acknowledge the assistance of my parents and family, who give me understanding and love

during my study period at Auburn University.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

1 Introduction . 1

1.1 Summary of Contributions . 2

1.1.1 RFUAV: Robust RFID Based 6-DoF Localization for Unmanned Aerial
Vehicles . 2

1.1.2 IADRL: Imitation Augmented Deep Reinforcement Learning Enabled
UGV-UAV Coalition for Tasking in Complex Environments 2

1.1.3 RIRL: A Recurrent Imitation and Reinforcement Learning Method for
Long-Horizon Robotic Tasks . 3

1.1.4 Multi-state-space Reasoning Reinforcement Learning for Long-horizon
RFID-based Robotic Searching and Planning Tasks 4

2 Robust RFID based 6-DoF Localization for Unmanned Aerial Vehicles 6

2.1 Preliminaries . 9

2.1.1 Phase Model for an UHF RFID System 9

2.1.2 Coordinates of the UAV . 10

2.2 The Proposed Approach and Analysis . 12

2.2.1 System Architecture . 13

2.2.2 RFID Tracker . 13

2.2.3 Pose Estimator . 19

2.3 Experimental Study and Discussions . 22

2.3.1 Experiment Setup . 22

iv

2.3.2 Accuracy of RFID Tag Tracking . 26

2.3.3 Accuracy of Pose Estimation . 27

2.4 Conclusions . 35

3 RFHUI:An RFID based Human-Unmanned Aerial Vehicle Interaction System in an
Indoor Environment . 37

3.1 Introduction . 37

3.2 Related Work . 38

3.3 RFHUI Design and Analysis . 40

3.3.1 System Architecture . 40

3.3.2 RFID Localizer . 42

3.3.3 Pose Tracker . 46

3.3.4 Human UAV Interaction Module . 50

3.4 Experimental Validation and Results . 51

3.4.1 Experiment Setup . 51

3.4.2 Accuracy of RFID tracking and Pose Estimation 52

3.4.3 Overall System Performance . 58

3.5 Conclusions . 60

4 IADRL:Imitation Augmented Deep Reinforcement Learning Enabled UGV-UAV Coali-
tion for Tasking in Complex Environments . 62

4.1 Introduction . 62

4.2 Related Works . 64

4.2.1 Imitation Learning . 64

4.2.2 Multi-Agent System Planning and Control 65

4.3 The Proposed Approach . 66

4.3.1 IADRL Enabled UGV-UAV Coalition 67

4.3.2 Multi-Coalition Systems . 75

v

4.4 Experimental Study and Discussions . 76

4.4.1 Experiment Configuration . 76

4.4.2 Experimental Results . 79

4.5 Conclusions . 89

5 RIRL: A Recurrent Imitation and Reinforcement Learning Method for Long-Horizon
Robotic Tasks . 90

5.1 Introduction . 90

5.2 Proposed Approach . 93

5.2.1 Problem Statement and Challenges . 93

5.2.2 RIRL Network Architecture . 94

5.3 Experimental Study . 100

5.3.1 Experiment Setup . 100

5.3.2 Results and Analysis . 101

5.4 Conclusion . 103

6 SRRL: Multi-state-space Reasoning Reinforcement Learning for Long-horizon RFID-
based Robotic Searching and Planning Tasks . 105

6.1 Introduction . 105

6.2 Related Work . 107

6.2.1 Reasoning in Deep Learning . 108

6.2.2 Reasoning in Robotics . 109

6.3 Preliminaries . 110

6.3.1 Multi-state-spaces Feature Extraction and Reasoning 111

6.3.2 Reinforcement Learning . 113

6.4 Overview of the Proposed System . 115

6.4.1 The Multi-state-space Fusion and Reasoning Module 116

6.4.2 The Recurrent IL Module . 116

vi

6.4.3 The Recurrent DRL Module . 118

6.5 Experiment Study . 120

6.5.1 Experiment Setup . 120

6.5.2 Results and Analysis . 122

6.6 Conclusions . 128

7 Summary and Future Work . 131

7.1 Summary . 131

7.2 Future Work . 132

7.2.1 Sim2Real Gap . 132

7.2.2 Virtual Reality and Digital Twins . 132

7.2.3 Privacy Security Issues Related to Robots 132

List of Publications . 134

References . 136

vii

List of Figures

2.1 Phase remainders (θ′ + θnoise) at 6 sampling positions. 10

2.2 The linear relationship between the phase of RFID tag response and tag-antenna
distance on a given channel. 11

2.3 The global coordinate system and the UAV’s built-in local coordinate system. . 13

2.4 The system architecture of RFUAV, including the RFID tracker and pose esti-
mator. 14

2.5 Reading occurrences of 10 tags by 3 antennas in a period of 60 seconds. 16

2.6 Antennas setup for the RFUAV prototype: (a) Side view of the RFID detectable
field; (b) Top view of the RFID detectable field. 22

2.7 Illustration of the Parrot AR. Drone 2.0 schematic. 23

2.8 The Parrot AR Drone2.0 UAV with three attached RFID tags. 25

2.9 (a) UAV carried by a rolling rack in the confined setup, (b) The UAV confined
rolling rack moves in the experimental field, (c) An UWB tag is attached to the
UAV in dynamic setup, the UWB tag is marked by a red rectangle, (d) Two
nodes that are marked in red of the UWB positioning system, there are 6 nodes
are installed in the experimental field. 26

2.10 CDFs of multiple tags’ localization errors for RFUAV and Tagoram. 27

2.11 Average distance error and standard deviation of RFUAV and Tagoram. 28

2.12 Four representative layouts of the attached tags in the UAV’s built-in coordinate
system: (a) Layout 1; (b) Layout 2; (c) Layout 3; (d) Layout 4. 29

2.13 (a) Position errors of different layouts of attached RFID tags; (b) Orientation
errors of different layouts of attached RFID tags. 30

2.14 (a) Position errors of different numbers of attached RFID tags, (b) Orientation
errors of different numbers of attached RFID tags. 31

2.15 Layout 4 is deployed for evaluating the effect of the number of tags on pose
accuracy: (a) three tags, (b) four tags, (c) five tags, and (d) six tags. 32

viii

2.16 Examples of the experimental trajectories. 32

2.17 Comparison of localization accuracy: (a) CDFs of position errors of RFUAV
and PTAM; (b) CDFs of orientation errors of RFUAV and PTAM. 33

2.18 Cumulative positioning error of RFUAV and PTAM while the UAV hovers for
35 seconds. 34

2.19 The UAV Trajectory as estimated by RFUAV (red dashed line) and ground truth
(blue solid line). 35

3.1 The system architecture of RFHUI, where the global coordinates are built in
the real world. 42

3.2 The global coordinates versus the built-in coordinates of the controller. 47

3.3 Side view of the RFID detectable field. 51

3.4 Top view of the RFID detectable field. 52

3.5 A prototype of our RFHUI controller. 53

3.6 A user holds the controller in hand during an experiment. 54

3.7 The ARDrone2.0 Elite Edition drone used in our experiments. 55

3.8 The moving trajectory of the benchmark experiments: the red points are the
sampled locations. 55

3.9 The average error and standard deviation of the localization error of the con-
troller’s tags for different antenna configurations. 56

3.10 The average position error of the controller for different antenna configurations. 56

3.11 The average orientation error of the controller for different antenna configurations. 57

3.12 CDF of RFID tags tracking error with a more complex and longer trajectory. . . 57

3.13 (a) CDF of the controller position estimation error; (b) CDF of the controller
orientation error. 58

3.14 The empty lab environment. 59

3.15 The cluttered lab environment. 60

3.16 Trajectory comparison . 60

ix

4.1 An example of a UGV-UAV complementary coalition for task completion: (a)
the target destination is too far for the UAV to reach, while too high for the
UGV alone, (b) the UGV carries the UAV closer to the destination, and, finally,
(c) the UAV flies to the high-altitude destination. 67

4.2 The architecture of the IADRL model. 70

4.3 Basic simulation experimental setup for five UGV-UAV coalitions performing
tasks cooperatively using the IADRL system. The UGV-UAV coalitions are
marked as orange (UGV) and blue (UAV) block pairs; the tasks are marked as
green balls. 76

4.4 The scenarios that allow for collection of demonstration data τE: (a) a target
(green ball) within reachable height of the UGV, (b) a target reachable only
by the UAV, (c) one target each for the UAV and UGV to reach within the
same sub-zone, (d) one target each for the UAV and UGV to reach, but within
different sub-zones. 79

4.5 Accumulated training rewards values for PPO, GAIL, IADRL, and BC methods. 81

4.6 The number of steps taken before episodes are terminated for the PPO model. . 81

4.7 Training loss values of GAIL, BC, and IADRL methods. 82

4.8 Task completion rate, ℜtask, for GAIL, BC, and IADRL methods. 83

4.9 Number of steps needed to complete each training episode using IADRL, GAIL,
and BC methods. 83

4.10 Total number of agent collisions with GAIL, BC, and IADRL methods. 84

4.11 A composition of the number of collisions by UAVs and UGVs using the
IADRL model, where the UGV collisions are dominant and UAV collisions
are minimal. 85

4.12 Planned paths for the UGV and UAV to reach two objects in five trials as com-
puted by IADRL, GAIL, and BC schemes. 86

4.13 A complex simulation environment representing a high-density warehouse. . . 87

4.14 Number of collisions in the simple and complex environments. 87

4.15 Accumulated rewards in the simple and complex environments. 88

4.16 Number of steps needed to complete one episode in the simple and complex
environments. 88

x

5.1 A brief scenario illustrates the long-range dependency problem of long-horizon
robotic tasks: (a) the robot at state st, while two potential paths 2 and 3 are
available; (b) if it has moved from path 3 to state st, the next actions lead to
path 2 is a better choice; (c) if it has moved from path 2 to state st, the next
actions lead to path 3 is a better choice. 95

5.2 The architecture of the proposed RIRL method. 96

5.3 The LSTM structure. 97

5.4 Architecture of Discriminator D. 97

5.5 Layout of the simulated apparel store. 97

5.6 Accumulated training rewards values . 102

5.7 The number of steps for finishing tag scanning task 102

5.8 CDF of percentage of unscanned tags in total 103

6.1 The environment occupation map after different steps. 111

6.2 The RFID sensing radio map after different steps. 112

6.3 The architecture of the proposed method. 115

6.4 The architecture of the Discriminator. 118

6.5 Basic experimental setup for agent performing long-horizon RFID inventory
tasks. The agent is represented as a blue cube, and the tags are orange strings
attached to the blue cylinder-shaped racks. 121

6.6 Accumulated training reward values for SRRL, RIRL, PPO, and GAIL methods. 124

6.7 Steps for finishing the tag scanning task within one episode during the training
phase. 125

6.8 Training loss of SRRL, RIRL, GAIL, and PPO. 126

6.9 CDF of the percentage of unscanned tags in total in the testing stage. 128

6.10 Average number of steps to complete the task in 100 episodes in the testing
stage in the simple environment. 129

6.11 Average number of collisions of the agent per episode in the simple environment.129

6.12 Average number of the task completion steps in 100 episodes of the testing
stage in the complex environment. 130

xi

6.13 Average collision times that happened in agent per episode in the complex en-
vironment. 130

xii

List of Tables

2.1 Eperiment Configuration and Parameters . 24

3.1 Important notations used in the paper . 41

4.1 Extrinsic Rewards Configuration . 78

6.1 Basic Training Configuration . 123

xiii

Chapter 1

Introduction

The last decade has witnessed significant developments in the unmanned aerial vehicle (UAV)

and unmanned ground vehicle (UGV) technologies, which have enabled their wide deploy-

ment for various applications, such as surveillance, search and rescue, inspection [1], inventory

counting [2, 3], and more [4, 5, 6, 7, 8, 9]. Recently, With the development of wireless commu-

nication technology such as 5G network [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],

researchers have shown a growing interest to deploy them for more complex tasks that require

multiple UAVs or UGVs to work together to improve efficiency [24] cooperatively. Most ex-

isting research focuses on cooperation in a multi-agent (or multi-robot) system that consists of

a group of UAVs or UGVs.The topic of this thesis is to build an intelligent cooperation system

consisting of multiple UAVs and UGVs for understanding and completing long-horizon tasks

efficiently in dynamic indoor environments [25]. Basically, there are three challenges when

we build this system: localization, cooperation, and enabling robots with reasoning abilities.

Thus, deep reinforcement learning(DRL) techniques join the field of robotic policy exploring

methods. Secondly, DRL methods suffer from the huge state and action space. In such cases,

it becomes difficult for the algorithm to explore the entire space and find an optimal policy.

Furthermore, another challenge is how to leverage the reinforcement learning method to enable

robots with rudimentary reasoning abilities, such as understanding tasks in the environment and

selecting reasonable actions. In my dissertation, I would focus on these challenges to improve

the current intelligent multiple UAV-UGV intelligent cooperation system.

1

1.1 Summary of Contributions

1.1.1 RFUAV: Robust RFID Based 6-DoF Localization for Unmanned Aerial Vehicles

In this paper, indoor localization with RFID technology would be investigated because the ac-

curate pose is crucial for UAV landing on the Ground Robot and command control. It is a

highly challenging task to precisely localize a UAV in an indoor environment where Global

Positioning System (GPS) service is absent [26, 27, 28]. Moreover, due to the limited load-

bearing capacity of UAVs, the positioning method used cannot leverage large onboard equip-

ment. Therefore, Three light weighted Passive RFID tags or more ultra-high frequency (UHF)

RFID tags are attached to the UAV and interrogated by a Commercial Off-The-Shelf (COTS)

RFID reader with multiple antennas. The main contributions of this work are summarized as

follows:

1. We developed a real-time RFID tag tracing system that incorporates a Bayesian fil-

ter [29]. Based on the phase measurements of RFID responses from a COTS reader,

the tag tracker can track the motion of multiple UHF RFID tags simultaneously.

2. We propose a real-time UAV pose estimator. Based on the positions of the attached tags,

the pose estimator can compute precise 6-DoF poses for the UAV in a 3D space with a

singular value decomposition method.

3. We tested the RFUAV system with COTS RFID tags and reader and demonstrate its

performance in a representative indoor environment. Experimental results demonstrate

that RFUAV can achieve precise poses with only 0.04m error in position and 2◦ error

in orientation. Such performance enables a UAV to autonomously navigate in an indoor

environment.

1.1.2 IADRL: Imitation Augmented Deep Reinforcement Learning Enabled UGV-UAV Coali-

tion for Tasking in Complex Environments

We propose an Imitation Augmented Deep Reinforcement Learning Network (IADRL) that

enables a UGV and UAV to form a coalition that is complementary and cooperative for the

2

completion of tasks that they are incapable of achieving alone. IADRL learns the underlying

complementary behaviors of UGVs and UAVs from a demonstration dataset that is collected

from some simple scenarios with non-optimized strategies. Based on observations from the

UGVs and UAVs, IADRL provides an optimized policy for the UGV-UAV coalitions to work

in an complementary way while minimizing the cost. We evaluate the IADRL approach in an

visual game-based simulation platform, and conduct experiments that show how it effectively

enables the coalition to cooperatively and cost-effectively accomplish tasks.The main contribu-

tions of this work are summarized as follows:

1. The proposed network enables a UGV and UAV to form a coalition to complement and

enhance each other during complicated tasks that either agent alone could not complete.

It also optimizes the complementary coordination strategy among those agents to accom-

plish various tasks with the lowest cost (e.g. minimum power consumption, optimized

navigational trajectory with shortest steps, etc.).

2. We develop an imitation network to learn the complicated complementary behavior of

UGVs and UAVs in the coalition using demonstration data that was collected from simple

scenarios with non-optimized strategies. This will greatly reduce the effort of modeling

the complementary behaviors of agents in the coalition.

3. We test IADRL in a visual game-based simulated environment, and show that our net-

work enables the complementary behaviors of UGVs and UAVs during searching tasks.

1.1.3 RIRL: A Recurrent Imitation and Reinforcement Learning Method for Long-Horizon

Robotic Tasks

In this paper, we propose Recurrent Imitation and Reinforcement Learning (RIRL) to address

the challenges and enable robots for such tasks. The proposed RIRL incorporates a long short-

term memory (LSTM) network to retain long-term memories, which could be an effective and

efficient method to tackle the long dependency problem raised in long-horizon robotic tasks. To

assess the performance of the RIRL, we test it with an optimized path planning problem for a

robot to perform a Radio-frequency identification (RFID) inventory in dynamic and previously

3

unknown environments. We experimentally validate RIRL’s feasibility and effectiveness in a

visual game-based simulation platform, where the proposed RIRL model outperforms three

baseline schemes with considerable gains. The main contributions of our work are summarized

as follows:

1. To the best of our knowledge, this is the first work to develop an LSTM-embedded imi-

tation and reinforcement learning network to enhance the action prediction ability of the

agent by exploiting historical observations.

2. The proposed model allows the agent to explore the unknown environment in a continu-

ous action space, to deal with the exponentially boosted complexity and uncertainty.

3. We experimentally validate the feasibility of RIRL in a visual game-based simulated

environment and demonstrate that the proposed model enables the robot to perform in-

ventory tasks in a dynamic environment.

1.1.4 Multi-state-space Reasoning Reinforcement Learning for Long-horizon RFID-based

Robotic Searching and Planning Tasks

we propose a novel learning framework, called Multiple State Spaces Reasoning Reinforce-

ment Learning (SRRL), to endow the agent with the primary reasoning capability. First, we

abstract the implicit and latent links between multiple state spaces. Then, we embed historical

observations through an LSTM network to preserve long-term memories and dependencies.

The proposed SSRL’s ability of abstraction and long-term memory enables agents to execute

long-horizon robotic searching and planning tasks more quickly and reasonably by exploiting

the correlation between RFID sensing properties and the environment occupation map. We

experimentally validate the efficacy of SRRL in a visual game-based simulation environment.

Our methodology outperforms three state-of-the-art baseline schemes by significant margins.

The main contributions of our work could be summarized in the following:

1. To the best of our knowledge, this is the first study to integrate a reasoning scheme

abstracted from various state spaces in a DRL network, allowing the agent to comprehend

the latent correlation across state spaces with different dimensions and bases.

4

2. Incorporating the reasoning scheme and recurrent networks, the proposed framework en-

ables the agent to achieve long-term goals despite exponentially increasing complexity

and unpredictability (e.g., exploring a wide area of an unknown environment in a contin-

uous action space).

3. By experimentally validating SRRL’s viability in a visual game-based simulation envi-

ronment, we prove that the proposed model enables the robot to execute long-horizon

inventory management tasks in a dynamic environment.

5

Chapter 2

Robust RFID based 6-DoF Localization for Unmanned Aerial Vehicles

The last decade witnessed a tremendous growth of interest in unmanned aerial vehicles (UAV) [30].

Thanks to its outstanding maneuverability, small size, and low cost, UAVs have been widely

adopted for surveillance, entertainment, search and rescue, inspection, and maintenance ap-

plications. These applications occur mostly in outdoor environments with existing navigation

systems that rely on inertial sensors and Global Positioning System (GPS). Due to the low po-

sitioning resolution and the absence of GPS signal in an indoor environment (i.e.,warehouses,

retail stores, etc.), most existing UAVs are infeasible for operation indoors. Consequently, re-

cent research has investigated the problem of UAV indoor localization. The most popular indoor

UAV localization methods can be categorized by measurement into three groups: vision-/laser-

based, inertial navigation system (INS)-based, and wireless signals-based solutions.

The vision-based solutions are proposed to exploit the visual information provided by

one or two cameras [31, 32, 33, 34, 35] for UAV indoor localization and navigation. Most of

the vision-based solutions are leveraged with simultaneous localization and mapping (SLAM)

technologies and use an Iterative Closest Point (ICP) algorithm to achieve real-time indoor

localization. One of the first real-time, monocular SLAM methods based on nonlinear filtering

was proposed by Chiuso et al. [36]. Most laser-based approaches employ a similar architecture

to tackle the indoor UAV location. Instead of visual signals, they rely on laser beams to estimate

the location of the UAV. Nevertheless, the SLAM technologies are easily challenged with issues

related to the use and collection of feature points and their inability to provide stable and highly

accurate localization in a complex indoor environment.

6

The INS is a navigation system that uses the Inertial Measurement Unit (IMU) to track the

speed, position, and orientation of a device. With the development of Microelectromechanical

systems (MEMS) technology, researchers can equip a small and low-cost IMU on a UAV, while

many modern mini-UAVs have integrated the IMU internally. However, because of unavoid-

able, inherent hardware error and the error accumulated during the drift, accuracy will decrease

after the UAV has been flying for a certain period of time [37].

With the astonishing growth of wireless systems and applications, many researches now

focus on RF-based indoor localization [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. The

basic concepts of indoor wireless localization are suitable for UAVs. Up to now, many systems

based on received signal strength indicator (RSSI) and Ultra-wideband (UWB) were designed

for localizing UAV in GPS-denied indoor environments [51, 52]. RSSI is a cheap and efficient

way to measure distance and position, but its accuracy is unsatisfactory. In [53], the authors

presented an algorithm based on measurements of the distance between a UAV and the exist-

ing infrastructure consisting of Wi-Fi Access Points (APs). With known locations of APs, a

UAV is deployed to collect RSSI from the Wi-Fi APs during flight, transform these measure-

ments into distances, and draw the flight trajectory with 33 points. The ultra-large bandwidth of

UWB technology enables highly precise time measurements using Time Difference of Arrival

(TDOA). Tiemann et al. proposed a cooperative UWB positioning system that enabled au-

tonomous flying of a UAV [54]. This state-of-the-art UAV indoor localization work integrated

UWB and INS technology. For example, Li et al. utilized UWB, INS, and 3D laser scanner

data fusion, which is based on a Kalman filter, to achieve precise UAV indoor localization [55].

Meanwhile, radio-frequency identification (RFID) technology, especially the passive UHF

RFID, has been widely deployed in retail environments [56]. RFID was developed as a cost-

effective wireless technique for item serialization and has been widely recognized as a promis-

ing solution for indoor localization [57, 58, 59, 60, 61, 62, 63, 64]. Due to lightweight and

low-cost RFID tags, RFID technology offers a promising method for UAV indoor localization.

Choi et al. first proposed the concept of using passive RFID tags [65] for indoor UAV local-

ization in [66]. However, they only demonstrated their concept and design of the system but

lacked experimental validation. Recently, RFID technology was used in 3D reconstruction. For

7

example, Bu et al. presented a new theory based on the phase difference of RFID tags for 3D

reconstruction of standard cubes [67]. Most existing RFID-based 3D reconstruction methods

adopt an architecture of finding optimized results among multiple potential poses [67, 68, 69],

which limits their applicability for UAV indoor localization, where six degrees of freedom (6-

DoF) poses are needed in real-time.

In this chapter, we present the RFUAV – a low-cost RFID based system to localize a UAV

and enable it to autonomously navigate in complex indoor environments, such as warehouses,

retail stores, hazmat storage facilities, and factories. Usually, such environments are crowded

with racks, shelves, furniture, and other items of various sizes and layouts. With the increase in

popularity of UAVs, there has come an increased concern with UAVs and public safety, leading

to a compelling need for accurately locate an UAV in such 3-D indoor space [70, 71]. The

proposed RFUAV will be deployed in an indoor environment to maintain the UAV’s precise

positioning, prevent collisions with other objects, and, hence, reduce the safety risks while

flying in target environments. Our idea for RFUAV was motivated by existing RFID-based 3D

reconstruction work [61]. However, the proposed method can provide precise 6-DoF poses,

including both position and orientation in a 3D space, in real-time. In RFUAV, N (N ≥ 3)

UHF passive RFID tags are attached to a UAV, the position of each tag against the built-in

coordinate of the UAV is measured first. This position is denoted as a local position. Then, a

COTS (Commercial Off-The-Shelf) RFID reader with multiple antennas is deployed to collect

observations of the tags. Based on the phase measurement of each RFID tag’s response at

multiple antennas, we can precisely track the position of the tags in the global coordinates of the

3D space. We denote this position as a global position. With the known local position of each

tag and the global position of the N tags, the 6-DoF pose of the UAV is determined. Note that

the reader and antennas are installed on the ground and powered from the target environment,

while only the passive UHF RFID tags are attached to the UAV in the proposed scheme. Thus,

the RFUAV system does not incur any extra power consumption to the UAV. Furthermore, the

RFID infrastructure is already deployed in most of our target environments and the proposed

system can be seamlessly integrated without much extra financial investment. The remainder

of this chapter is organized as follows. The preliminaries are discussed in Section 2.1. We

8

present the proposed approach and the analysis of the RFUAV system in Section 2.2 and our

experimental study in Section 2.3. Section 2.4 concludes this chapter.

2.1 Preliminaries

2.1.1 Phase Model for an UHF RFID System

To interrogate RFID tags, continuous-wave (CW) signals are transmitted by an RFID reader.

The phase value of a tag response measured by the reader describes the phase difference be-

tween the transmitted signal and the corresponding received signal, which ranges from −π to

π. Nowadays phase values can be read by many commercial RFID readers, such as Impinj

R420 and Zebra FX7500. Specifically, the phase value depends on the spatial distance between

the tag and the reader’s antenna. Letting d denote the tag-antenna distance, the measured phase

value θ can be expressed as:

θ =

(
2π

(
2d

λ

)
+ θ′ + θnoise

)
mod 2π, (2.1)

where λ is the wavelength of the channel, mod represents the modulo operation, and θnoise is

the phase offset caused by thermal noise and is a normal random variable. θ′ is the phase offset

caused by the reader’s transmit/receive circuits and the tag circuits, which is expressed as:

θ′ = θT + θR + θTAG, (2.2)

where θT , θR, θTAG are the RF phase rotation caused by the reader’s transmit circuits, the

reader’s receive circuits, and the tag’s reflection characteristics, respectively.

Even though θ′ is unknown, it dependents on the given hardware and is quite stable over

time. We first conducted a benchmark experiment, as follows, to demonstrate that the phase

offset θ′ is stable while the tag moves throughout the environment. As the tag moves within

the detectable range of the antenna, the measurement θ and the associated distance d to the an-

tenna are recorded at several positions. According to (2.1), the theoretical phase is calculated

as θT = 2π
(
2d
λ

)
. The phase remainder is determined by θ′ + θnoise = unwrap(θ)− θT , where

9

1.294 1.301 1.313 1.336 1.364 1.401

Distance (m)

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

P
h
a
se

 r
e
m

a
in

d
e
rs

 (
ra

d
)

Channel-1

Channel-2

Channel-3

Channel-4

Channel-5

Figure 2.1: Phase remainders (θ′ + θnoise) at 6 sampling positions.

unwrap(·) adjusts the radian phases by adding multiple ±2π to remove the phase disconti-

nuities introduced by the round operation, while the distance between the tag and the antenna

continuously increases Fig. 2.1 shows the experimental results of phase remainders that are

measured at 6 positions when the tag moves. It shows that the phase remainders of 5 channels

at the 6 locations are quite stable. The maximum phase remainder change occurs on channel-5,

which is 0.15 rad. Considering that θnoise is about 0.1 rad, θ′ remains quite stable as the tag

moves.

Therefore, θ′ could be easily removed from the phase observation. As shown in Fig. 2.2,

the measured phase value repeats from −π to π with a period of a half wavelength. Within a

half wavelength and for a given channel, the phase value exhibits a linear relationship with the

distance between the tag and the reader’s antenna.

2.1.2 Coordinates of the UAV

In general, the UAV is flying in a three-dimensional environment which has six degrees of

freedom (6-DoF). Three translational degrees of freedom (DoFs) represent the position and

three rotational DoFs represent the orientation. A pose of a UAV is depicted by the combination

of position and orientation. A common means to describe the pose of a UAV is to attach it to a

frame coordinate system. After a frame coordinate system is defined, the pose can be described

by the origin and orientations of the axes of the frame. A pose P referring to given frame

10

0.1 0.2 0.3 0.4 0.5

Distance (m)

-π

0

π

P
h

a
se

 (
ra

d
)

Figure 2.2: The linear relationship between the phase of RFID tag response and tag-antenna
distance on a given channel.

coordinates A can be denoted as:

P = [T,R]T , (2.3)

where T and R are the position and orientation against frame A, respectively, and (·)T is the

transpose operation.

In our proposed RFUAV system, two frame coordinates are created to depict the UAV

position. The first one is called the global frame coordinate system, which is denoted by g,

representing the experimental environment coordinates. The second one is the UAV’s built-in

frame coordinate system, which is denoted by c, representing the UAV reference coordinate

system. To translate a position from the UAV’s built-in coordinates to the global coordinates,

a rigid transformation, g
cT, is calculated and consists of a translation matrix, T, and a rotation

matrix, R. Here, T and R are the position and orientation of the UAV against the global

coordinates, which are given in (2.3). When we obtain a position l̄n = (x̄n, ȳn, z̄n)
T in the

UAV’s built-in coordinate system, the corresponding global position ln = (xn, yn, zn)
T can be

11

derived by:

ln = R · l̄n +T. (2.4)

The translation matrix T describes the position shift of the UAV’s built-in frame c with

reference to the global frame g. Let [ogx , ogy, o
g
z] and [ocx, o

c
y, o

c
z] be the origin point positions

of frame g and c, respectively. Then T can be expressed as:

T = [ogx − ocx, o
g
y − ocy, o

g
z − ocz]

T . (2.5)

Rotation matrix R describes the relative relationship of orientations between the two

frames. The orientation of the UAV’s built-in frame c with a reference to the global frame

g is expressed by R as:

R =

X̂c · X̂g Ŷc · X̂g Ẑc · X̂g

X̂c · Ŷg Ŷc · Ŷg Ẑc · Ŷg

X̂c · Ẑg Ŷc · Ẑg Ẑc · Ẑg

 , (2.6)

where X̂c, Ŷc, and Ẑc are the unit vectors of the axes of the UAV’s built-in coordinate frame, and

X̂g, Ŷg, and Ẑg are the unit vectors of the axes of the global coordinate system. The relationship

between the two coordinate systems is illustrated in Fig. 2.3.

2.2 The Proposed Approach and Analysis

The RFUAV system is a low-cost, RFID-based system that enables a UAV to autonomously

navigate in a complex indoor environment. This is achieved by providing precise 6-DoF poses

of the UAV in a 3D space, which includes both position and orientation. Specifically, we attach

N (N ≥ 3) UHF passive RFID tags to a UAV. Through tracking the RFID tags with phase

measurements, we can estimate the 6-DoF pose of the UAV. In this section, we introduce the

system model, architecture, and analysis of RFUAV.

12

Figure 2.3: The global coordinate system and the UAV’s built-in local coordinate system.

2.2.1 System Architecture

The architecture of RFUAV is illustrated in Fig. 2.4. The proposed system consists of two main

components.

• RFID tracker: Based on phase measurements from the reader, a Bayesian filter is used

to track the position of the tags against the global coordinates in a 3D space.

• Pose estimator: After the RFID tracker provides the global position of N (N ≥ 3) tags,

with the known local position of the tags compared to the UAV’s built-in coordinates, the

pose of the UAV can be estimated by an SVD-based algorithm.

2.2.2 RFID Tracker

In the RFUAV system, an RFID reader with M antennas is deployed to obtain phase measure-

ments from responses of the attached tags. The positions of all antennas are already known.

Hereafter, we use hg
m to denote the position of the mth antenna in the global coordinate.

13

Motion Update

Sensor update

…

RFID

tracker

Phase Measurements

Global

position of

Tag 1

Global

position of

Tag 2

Global

position of

Tag N

Find the centroids of all positions

Estimate the UAV orientation by

Singular Value Decomposition (SVD)

Pose

estimator

Tag N’s local position

Tag 2’s local position

Tag 1’s local position

…

Estimate the position of UAV

Global Pose of the UAV

Figure 2.4: The system architecture of RFUAV, including the RFID tracker and pose estimator.

Bayesian Filter Updates for Tag Tracking

The RFID tracker utilizes a Bayesian filter to estimate (or track) tag locations. The Bayesian

filter addresses the problem of estimating belief over the hypothetical posterior state l of a

dynamic system from sensor observations. Here, state l denotes the location of the tag in the

global coordinate system. The Bayesian filter recursively updates the belief bel (lt), which

denotes the probability of the system in state l at time t. The bel (lt) is calculated from control

ut, observation zt, and prior belief bel (lt−1) at time t− 1, which is calculated previously.

There are two essential steps for the updating cycle of a typical Bayesian filter. The first

step is called control update or prediction, which is given by:

bel (lt) =

∫
P (lt|ut, lt−1) bel (lt−1) dlt−1, (2.7)

where P (lt|ut, lt−1) is a motion model and provides the probability for a tag to move from state

lt−1 to lt after control ut is applied, and bel (lt) denotes the state probability distribution of the

tag after control ut is applied. We deploy a constant speed mobility model for the RFID tracker,

14

i.e., we assume that in a very short time interval, the speed of a tag will remain constant. We do

not assume that the tag moves at a constant velocity over all time, but rather that it maintains an

average speed, ut, with an undetermined and negligible amount of acceleration within a short

time frame. Its movement can be described mathematically by a Gaussian distribution as [29]:

P (lt|ut, lt−1) =
1√
2πξ

∫ ∆t

0

e
− (lt−(lt−1+ut·τ))

2

2ξ2 dτ, (2.8)

where ut is the speed of the item at time t (i.e., the control), ∆t is the time interval between t−1

and t, and ξ2 is the variance to model the movement of the item satisfying a typical Gaussian

distribution.

A commercial RFID reader can interrogate tags at a rate of about 500Hz. To demonstrate

this, we provide an experimental setting of a reader connected with 3 antennas to read 10 tags

in an environment where there are hundreds of tags. Fig. 2.5 shows how many times each

of the 10 tags were read by three antennas within 60 seconds. This benchmark experiment

was conducted in a mock apparel store, where hundreds of RFID tags were deployed in the

environment. During the experiment, we enabled the filter function, which is available for

most COTS readers, of the reader to only interrogate the 10 given tags. Each tag was read

for about 3000 times (1000 times per antenna) in a period of 60 seconds. Thus, each tag can

be interrogated by the reader for about 50 times per second. Considering N (10 > N ≥ 3)

tags will be attached to the UAV, the practical reading frequency should be larger than 50Hz.

Thus, the interval of two continuous observations of the tag is about 10 ∼ 20 milliseconds.

In such a short period, our constant speed model in (2.8) should be suitable, since for indoor

deployment of UAVs, the speed is usually lower than that in outdoor applications. Therefore,

for practical applications, we can program the filter function to ensure the assumption of (2.8)

be maintained.

The second step is measurement update, which is given by:

bel (lt) = η · bel (lt) · P (zt|lt) . (2.9)

15

1 2 3 4 5 6 7 8 9 10

Tag Index

0

500

1000

1500

2000

2500

3000

R
ea

d
in

g
 T

im
es

Antenna1

Antenna2

Antenna3

Figure 2.5: Reading occurrences of 10 tags by 3 antennas in a period of 60 seconds.

In (2.9), η is a constant that helps to normalize the sum of all bel (lt) to 1, and P (zt| lt) is

called the observation model. In the RFID tracker, M reader antennas are deployed. Therefore,

P (zt | lt) is given by:

P (zt| lt) =
M∏

m=1

P (zt|lt, hg
m). (2.10)

We can thus rewrite (2.9) as:

bel (lt) =
M∏

m=1

η · bel (lt) · P (zt|lt, hg
m). (2.11)

where P (zt| lt, hg
m) is the observation model for the mth antenna, which provides the proba-

bility for the tag to be located in position lt, and the measurement of zt is observed by the mth

antenna that is in a known position hg
m. More details of the observation model are given in the

next subsection.

16

The Observation Model of RFID Phase Measurement

The relationship of the RF phase shift between the sent and received signals is given by (2.1)

and (2.2). The experimental results in Fig. 2.1 show that θT , θR, θTAG are relatively constant

when the reader antenna, the RFID tag, and the radio frequency are fixed. When we consider

the RF phase for the same antenna, the same RFID tag, and under the same RF frequency, and

ignore θnoise,1 (2.1) can be rewritten as:

θ =

(
2π ·

(
2d

λ

)
+ θ′

)
mod 2π. (2.12)

Assume a reader antenna is set in position hg
m, a tag is in position lt−1, and the RF phase θ1

for the tag is observed. When the tag moves to position lt, it generates an RF phase θ2 under the

same frequency. The differential RF phase between these two positions satisfies the following

relationship.

∆θ12 = (θ1 − θ2) mod 2π

(2.13)

∆θ12 =

((
2π

(
2 |lt−1, h

g
m|

λ

)
+ θ′

)
mod 2π − (2.14)

(
2π

(
2 |lt, hg

m|
λ

)
+ θ′

)
mod 2π

)
mod 2π

∆θ12 =

(
4π

λ
· (|lt−1, h

g
m| − |lt, hg

m|)
)

mod 2π, (2.15)

where |·, ·| measures the Euclidean distance between two positions. Equation (2.15) shows

that the differential RF phase, under the same frequency, the same antenna, and the same RFID

tag, can be determined by the difference of distances when the tag moves from one position

to another. In other words, ∆θ12 is not affected by the constant phase offset θ′ and is only

related to the distance between the two positions. Hereafter, we assume that all the RF phases

are measured by the same reader antenna for the same RFID tag at the same RF frequency.

1The modeling of θnoise will be introduced later.

17

The antenna of the RFID reader is stationary in a known position hg
m. The tag will be located

in a series of positions denoted as {l1, l2, . . . , lt}, and the corresponding phase shifts for these

positions are {θ1, θ2, . . . , θt}. It follows that

 |li, hg
m| − |lj, hg

m| = λ
4π

·∆θij + n · λ
2

∆θij = (θi − θj) mod 2π,
(2.16)

n = {1, 2, ...} , i, j ϵ {1, 2, ..., t} and i ̸= j.

We next update the observation model P (zt| lt, hg
m) by (2.16), which gives the probability

that a tag moves from lt to lt−1 to achieve the differential RF phase shift ∆θt,t−1. The model of

differential RF phase is given by:

P (∆θt,t−1 |lt−1, lt, h
g
m) =

 1, if (2.16) is satisfied

0, otherwise.
(2.17)

The RF phase is measured by the reader antenna, and usually it is distorted by thermal

noise, denoted by θnoise in (2.1). Experiments reveal that θnoise satisfies a typical Gaussian

distribution. Therefore, the RF phase containing this random error can be modeled as θ ∼

N (µ, δ2), where µ is the mean of the RF phase without thermal noise and δ2 is the variance. It

follows that the phase difference, as the difference of two Gaussian random variables, is also

Gaussian as ∆θij ∼ N (µi− µj, 2δ
2). Incorporating the thermal noise to (2.17), we have

P (∆θt,t−1|lt−1, lt, h
g
m)=

1√
2πδ

∫ ∆θt,t−1

0

e−
(y−(µt−µt−1))

2

2δ2 dy, (2.18)

where

µt−µt−1 =

(
2 |lt, hg

m|
λ

− 2 |lt−1, h
g
m|

λ

)
mod 2π. (2.19)

18

To consider thermal noise when estimating the location of RFID tags by (2.11), we can use (2.18)

instead of (2.17).

2.2.3 Pose Estimator

The RFID tracker provides the tag position in the global coordinate system. We use ltn =

(xt
n, y

t
n, z

t
n)

T to denote the global position of tag n at time t. With the UAV be located at Tt,

with orientation Rt in the given global coordinate system, while Tt and Rt together provide

the pose of the UAV at time t. The position of each attached tag in the UAV built-in coordinate

is known and fixed. We indicate this local position for the nth tag as l̄n = (x̄n, ȳn, z̄n)
T . The

relationship between local and global positions is given by (2.4), which can be rewritten as:

ltn = Rt · l̄n +Tt, (2.20)

where Rt and Tt are the orientation and position of the UAV in the global coordinate system

at time t, respectively; and ltn and l̄n are the locations of the nth tag in the global coordinate

system and the UAV built-in coordinate system, respectively.

When the RFID tracker localizes three or more tags simultaneously, we can use (2.20) to

obtain an optimal transformation g
cTt, which consists of Rt and Tt. The method to solve (2.20)

will be introduced later in this section. In practice, the RFID reader cannot query multiple tags

simultaneously. However, we can assume the three consecutive queries happen at the same

time. This assumption is reasonable for most indoor UAV applications. Unlike the scenario

of moving rigid body localization discussed in [72], the UAV usually moves at a much lower

speed (e.g., 1 m/s) in an indoor environment. As discussed previously, the current RFID reader

can conduct 500 queries per second, which is only 2 ms per query. In such a short time period

the displacement of the UAV is only about several millimeters (e.g., 2 mm when a UAV moves

at 1 m/s) and can be ignored. Therefore, when the N tags are located by the RFID tracker, it

19

follows (2.20) that

lt1 = Rt · l̄1 +Tt

lt2 = Rt · l̄2 +Tt

· · ·

ltN = Rt · l̄N +Tt,

(2.21)

where lt1, l
t
2, and lt3 are the global positions for tags 1, 2, and 3, respectively; and l̄1, l̄2, and

l̄3 are the local positions (measured in the built-in coordinate of the UAV) for tags 1, 2, and

3, respectively. The goal is to find the optimal transform g
cTt, which includes rotation Rt and

translation Tt, between two sets of corresponding 3D data points. The task can be formulated

as a least squares minimization problem as:

min
{Rt,Tt}

N∑
i=1

||lti − (Rt · l̄i +Tt)||, (2.22)

where ||·|| is the norm of a vector. Determining the rotation and translation relationship between

two sets of data points at different coordinates is a typical problem in pattern analysis [73, 74].

Based on the method introduced in [73], the proposed pose estimator is developed to find the

optimal g
cTt with the following procedure:

1. Find the centroids of all the positions in both the global coordinate system and the UAV’s

built-in coordinate system.

2. Use the centroids as the new origin of the two coordinate systems, and transforming the

positions into these two coordinates. Then based on these transformed positions to find

the optimal rotation Rt with the singular value decomposition (SVD) method.

3. Solve for the translation Tt using rotation Rt.

In Step 1, the centroids are computed as:

 Og =
1
N

∑N
i=1 l

t
n

Oc =
1
N

∑N
i=1 l̄n,

(2.23)

20

where Og and Oc are the centroids of all the positions in the global and the UAV’s built-in

coordinate systems, respectively.

In Step 2, we use Og and Oc as new origins to shift the global and UAV’s built-in coor-

dinates to create two new coordinate systems, which are called the shifted global and shifted

UAV’s built-in coordinate systems, respectively. The positions in these two coordinates, which

are denoted as P̄i
g and P̄i

c, are given by:

 P̄i
g = lti −Og

P̄i
c = l̄i −Oc,

for i ∈ [1, 2, ..., N]. (2.24)

We then apply the SVD method to find the optimal rotation between the two sets of positions

in the shifted global and shifted UAV built-in coordinate systems. First, we create a matrix H,

which is given by:

H =
N∑
i=1

P̄i
c · (P̄i

g)
T
. (2.25)

Note that the position in each coordinate system is 3-dimensional, and P̄i
g and P̄i

c are each

represented by a 3× 1 vector. Hence, the H given by (2.25) is a 3× 3 matrix. We decompose

or factorize matrix H by the SVD method as:

[U,S,V] = SVD(H). (2.26)

Then the optimal rotation Rt can be derived as:

Rt = V ·UT . (2.27)

A special case must be considered here. When the determinant of V is −1, we must multiply

the third column of Rt by −1 to obtain the correct rotation.

21

100° 100°

4 m

0.4m

3
.2

 m

a

antenna antenna

4 m

b

antenna

antenna

100°

antennaantenna

Figure 2.6: Antennas setup for the RFUAV prototype: (a) Side view of the RFID detectable
field; (b) Top view of the RFID detectable field.

In Step 3, after obtaining the rotation Rt, we can easily derive the translation Tt by the

following equation.

Tt = Og −Rt ·Oc. (2.28)

Thus we derive the orientation Rt and position Tt of the UAV in the given global coordinate

system.

2.3 Experimental Study and Discussions

2.3.1 Experiment Setup

To validate the performance of the RFUAV system, we conduct a set of experiments in a rep-

resentative indoor environment at the RFID Laboratory of Auburn University, Auburn, AL.

To build a prototype of RFUAV, we employ a Zebra FX7500 RFID reader and four Zebra

AN720 Antennas to collect observation of the RFID tags. The entire RFID system operates

in the 902 ∼ 928 MHz band, which is the frequency range allocated by Federal Communi-

cations Commission (FCC) in the USA. The Zebra FX7500 reader is one of the most widely

used RFID products in the market. It is compatible with EPC Gen2 standard, and provides

the Low-Level Reader Protocol (LLRP) through an Ethernet port to report the RFID readings.

The reader interrogates the RFID tags and sends query reports that includes the information

on EPC, RSSI, phase, time stamp and channel index. The Zebra AN720 Antennas provide a

22

AR. Drone 2.0
Hull with guard rings

(for indoor use)

Figure 2.7: Illustration of the Parrot AR. Drone 2.0 schematic.

5.5 ∼ 6 dB gain and a left circular polarization with 100◦ beamwidth. The size of each an-

tenna is 132.8×132.8×18 mm3. Each antenna is mounted on a holder of 0.4 m high. The four

antennas with their holders are deployed at the corners of a square of 4×4 m2. During our

experiment, the reader is operated at the maximum RF transmission power of about 33 dBm.

This allows the reading range of the antenna up to 6 m. Four antennas create a detectable field

and can interrogate an RFID tag simultaneously. The configuration of our experiment is shown

in Fig. 2.6.

The Parrot AR Drone2.0 Elite Edition, a low-cost platform with good maneuverability, is

employed as our indoor UAV platform. It consists of a drone shell, hull, and battery, as shown

in Fig. 2.7. A fully charged battery can support the UAV in continuous flight for 15 minutes.

The AR Drone is equipped with a front and bottom camera, a sonar, and an IMU. With readings

from these sensors, it can localize itself by a sensor fusion method, such as Parallel Tracking

and Mapping (PTAM) [75] that estimates a 3D pose of the UAV in an unknown environment.

Three UHF passive RFID tags are attached to the UAV as illustrated in Fig. 2.8. Our

experimental RFID tag is Smartrac Dogbone - Impinj Monza R6, which is widely used in the

retail market. It is equipped with an Impinj Monza R6 chip that provides up to -22.1 dBm read

wake-up sensitivity and up to -18.8 dBm write wake-up sensitivity. Our proposed RFUAV is

not restricted to any specific tag layout, and a detailed experiment will be presented later to

demonstrate the effect of various tag layouts. In our experiments, the Electronic Product Code

(EPC) of each tag serves as its identity to consistently and accurately distinguish the received

23

Table 2.1: Eperiment Configuration and Parameters

Parameter Value

RFID reader Zebra FX7500 RFID reader

Antenna Zebra AN720 Antennas

Number of antennas 4

Antenna frequency 902 ∼ 928 MHz

Antenna gain 5.5 ∼ 6.0 dB

Antenna beamwidth 100◦

Antenna height 0.4 m

Transmission power 33 dBm

RFID tag Smartrac Dogbone - Impinj Monza R6

Tag read sensitivity -22.1 dBm

Tag write sensitivity -18.8 dBm

UAV Parrot AR Drone2.0 Elite Edition

UAV battery 15 min

Dynamic ground-truth Ultra-Wideband (UWB) positioning system
positioning system from PLUSLocation.LLC

readings from that of other RFID tags. During the experiments, to achieve accurate localization

and orientation estimation, the initial position of tags in the three-dimensional global system

and the UAV’s built-in coordinate system are given. The configuration for the experiments

reported in this section is summarized in Table 2.1.

To precisely collect the ground-truth for the poses and trajectories of the UAV, we design

two experimental settings, a confined and a dynamic setup. In the confined setup, the UAV

was mounted to an adjustable rolling rack, as illustrated in Fig. 2.9(a). The UAV-mounted

rolling rack is easily maneuverable throughout our experimental field, and the height of the

UAV can be adjusted from 0.8m to 1.6m. During the experiments, we manually moved the

rolling rack instead of flying the UAV, as shown in Fig 2.9(b). In this setting, the ground

truth of the moving trajectories can be represented by a set of discrete sample poses, including

positions and orientations, which are precisely and manually measured while the rolling rack

is at a sampling point. Considering the errors usually introduced by taking measurements

24

Figure 2.8: The Parrot AR Drone2.0 UAV with three attached RFID tags.

manually, these ground truth data can provide sub-centimeter accuracy. However, the confined

setup enables us to provide extremely precise ground-truth trajectories and poses in a semi-

static manner. To evaluate our RFUAV in a dynamic manner and obtain ground truth while

it is flying, we designed the dynamic setup. An Ultra-Wideband (UWB) positioning system

from PLUSLocation.LLC was installed to cover the entire space of the RFID Laboratory in the

Auburn University campus. We attached a UWB tag to the UAV, which is shown in Fig 2.9(c),

in such a way that while the UAV is flying, its positions can be read by the system in real-

time. The localization accuracy of the UWB system in the experimental field was 3cm with

a limited area of 4×4 m2. Although we are able to track the UAV in a dynamic way in this

setup, it provides us with position information but no orientation information, so the UAV’s

position accuracy is compromised. Therefore, we utilized the confined setup for quantitative

experiments and the dynamic setup for qualitative experiments or experiments where the UAV

must fly.

25

Figure 2.9: (a) UAV carried by a rolling rack in the confined setup, (b) The UAV confined
rolling rack moves in the experimental field, (c) An UWB tag is attached to the UAV in dynamic
setup, the UWB tag is marked by a red rectangle, (d) Two nodes that are marked in red of the
UWB positioning system, there are 6 nodes are installed in the experimental field.

2.3.2 Accuracy of RFID Tag Tracking

We first launched an experiment to evaluate the performance of the RFID tracker of RFUAV

by comparing its accuracy with that ofthe state-of-art approach Tagoram [61]. To guarantee

the fairness of comparison, the same equipment is utilized for both approaches. The confined

setup was used for this experiment and three UHF-passive RFID tags were attached to the UAV.

These tags were moved around the experimental field by manually pushing the UAV-mounted

rolling rack. The ground-truth positions of each tag were manually measured at the sampling

positions of the trajectories. The moving trajectories were unknown to the proposed RFID

tracker or to Tagoram. Therefore, the Tagoram functioned in uncontrollable mode where the

trajectory function is unknown. Tracker performance was evaluated by assessing the amount

of errors between the estimated and ground-truth positions of the sampled points.

26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Localization Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

RFUAV Tag0

RFUAV Tag1

RFUAV Tag2

Tagoram tag0

Tagoram tag1

Tagoram tag2

Figure 2.10: CDFs of multiple tags’ localization errors for RFUAV and Tagoram.

The experiment results are presented in Fig. 2.10 and Fig. 2.11. As shown in Fig. 2.10,

about 80% of all the localization errors for RFUAV are less than 0.04 m. In addition, the

RFUAV maximum location error is 0.085 m, while the maximum error for Tagoram is 0.33

m. Obviously, the proposed RFID tracker of RFUAV is more suitable for a complex indoor

environment. Fig. 2.11 presents the average localization error and standard deviation (see er-

ror bars) of RFUAV and Tagoram. The average localization errors of RFUAV are much less

than those of Tagoram. Furthermore, the RFUAV’s standard deviations are also much smaller,

indicating more robust performance by our proposed scheme.

2.3.3 Accuracy of Pose Estimation

In this section, we investigate the pose accuracy of the RFUAV system by conducting a set

of experiments to evaluate the impact of two important system configurations: the layout and

number of attached tags on the UAV.

Effect of the Layout of Tags

The design of our proposed pose estimator allows for RFUAV to not be restricted by any spe-

cific tag layout. To demonstrate this advantage, we attached three tags in four representative

27

RFUAV Tagoram
-0.05

0

0.05

0.1

0.15

0.2

0.25

A
v

er
ag

e
L

o
ca

li
za

ti
o

n
 E

rr
o

r(
m

)

tag0

tag1

tag2

Figure 2.11: Average distance error and standard deviation of RFUAV and Tagoram.

layouts, which is illustrated in Fig. 2.12. In Layout 1 in Fig. 2.12(a) shows three tags arranged

in a plane with two identical coordinate values against the UAV’s built-in coordinate system.

In Fig. 2.12(b), Layout 2 shows three tags arranged in a plane, but not on a straight line. For

Layout 3 in Fig. 2.12(c), three tags are arranged in a plane, but on a straight line. As shown in

Fig. 2.12(d), Layout 4 consists of three tags arranged neither in a plane nor on a straight line.

This experiment was conducted in the confined setup, and we moved the UAV-mounted rolling

rack throughout the environment in the same small-scale trajectory (with a length of 0.5 m) for

each representative tag layout. Each trajectory is sampled in every 2cm, that is 25 points for

every trajectory. We compared the pose accuracy for these four layouts, and those results are

presented in Fig. 2.13.

Fig. 2.13 shows that the average position errors for the four layouts are 0.038 m, 0.016

m, 0.019 m, and 0.019 m, respectively. The average orientation errors for the four layouts are

56.4◦, 2.0◦, 2.3◦, and 2.2◦, respectively. Clearly, all layouts achieve a small error (less than

0.04 m) on positioning of the UAV. However, the orientation of Layout 1 yields a relatively

greater error of 56.4◦, due to the arrangement of tags being in an extremely adversarial layout;

two coordinate values in the UAV’s built-in coordinate system are identical. This layout is

vulnerable to small turbulence of estimated global tag locations. It may also cause the estimated

28

Tag 1

Tag 2

Tag 3

(a)

Tag 1

Tag 2

Tag 3

(b)

Tag 1
Tag 2

Tag 3

(c)

Tag 1 Tag 3

(d)

Tag 2

Figure 2.12: Four representative layouts of the attached tags in the UAV’s built-in coordinate
system: (a) Layout 1; (b) Layout 2; (c) Layout 3; (d) Layout 4.

orientation of the UAV to reverse. However, Fig. 2.13 shows that except for this extreme

case, the other layouts of tags have an orientation error of less than 2.5◦ and do not affect the

performance of RFUAV.

Effect of the Number of Tags

The RFUAV requires at least three tags to compute a 6-DoF pose in an indoor environment. We

examined the effect of the number of attached tags on pose accuracy. We attached three, four,

five, and six tags on the UAV in each experiment. According to the previous experiments, the

layout of the tags does not affect the tracking precision (except for the extreme case). Based

on the previous experiment and to guarantee a fair comparison in this experiment, Layout 4 is

used. Fig. 2.15 illustrates the experimental layout. For each trial of the experiment, the same

trajectory (a confined setup with a length of 0.5 m and 25 sampling points) is followed by the

UAV. This experiment’s results are presented in Fig. 2.14.

Fig. 2.14 presents the relationship between pose error and the number of tags that are used

in RFUAV. From Fig. 2.14(a) we can see that the highest position error, 0.019 m, is achieved

29

Layout1 Layout2 Layout3 Layout4
(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
o
si

ti
o
n
 E

rr
o
r(

m
)

Layout1 Layout2 Layout3 Layout4

(b)

-50

0

50

100

150

O
ri

en
ta

ti
o
n
 E

rr
o
r(

d
eg

re
e)

Figure 2.13: (a) Position errors of different layouts of attached RFID tags; (b) Orientation
errors of different layouts of attached RFID tags.

when 3 tags are used in our system, while the lowest position error, 0.016 m, is achieved with

4 tags. The variation of the position errors among different sets of tags is less than 3 mm.

Fig. 2.14(b) shows that the number of tags does not affect the orientation accuracy neither. All

sets of tags provide a similar orientation error around 2◦. Thus, it is safe to say that the RFUAV

system does not exhibit an obvious difference in performance when different numbers of tags

are deployed. For experiments herein, we attached three tags to the bottom of the UAV’s hull,

as shown in Fig. 2.8. Due to the uneven shape of the hull, the deployed layout is Layout 4 in

Fig. 2.12(d), which we have discussed previously.

30

3 tags 4 tags 5 tags 6 tags
(a)

0

0.005

0.01

0.015

0.02

0.025

0.03

P
o

si
ti

o
n

 E
rr

o
r(

m
)

3 tags 4 tags 5 tags 6 tags

(b)

-1

0

1

2

3

4

5

6

O
ri

en
ta

ti
o

n
 E

rr
o

r(
d

eg
re

e)

Figure 2.14: (a) Position errors of different numbers of attached RFID tags, (b) Orientation
errors of different numbers of attached RFID tags.

Comparison with State-of-the-Art Method

Next, we compare our approach to the state-of-the-art UAV indoor localization method. We

implement the recently developed Parallel Tracking and Mapping (PTAM) scheme [75] with

our Parrot ARDrone 2.0 hardware. The PTAM based implementation utilizes data from a 2D

camera, sonar, and an IMU to estimate a 3D pose in an unknown environment. We conducted

this first experiment under the confined setup, and each trial followed the same trajectories in

our experimental filed. We manually moved the UAV-mounted rolling rack back and forth in

4×4 m2 field and adjusted the UAV’s vertical height to make the total length of the trajectories

31

 !

"!

Tag 1 Tag 3

(a)

Tag 2

 !

"!

Tag 1 Tag 3

(b)

Tag 2

Tag 4

 !

"!

Tag 1 Tag 3

(c)

Tag 2

Tag 4

Tag 5

 !

"!

Tag 1 Tag 3

(d)

Tag 2

Tag 4

Tag 5

Tag 6

Figure 2.15: Layout 4 is deployed for evaluating the effect of the number of tags on pose
accuracy: (a) three tags, (b) four tags, (c) five tags, and (d) six tags.

0

4

3

4

y-axis(m)

0.5

2

z-
ax

is
(m

)

3

x-axis(m)

1 2
1

0 0

1

Antennas of

the RFID reader

Trajectory 2

Trajectory 3

Trajectory 1

Figure 2.16: Examples of the experimental trajectories.

more than 10 m. An example of the trajectories is shown in Fig 2.16. The proposed RFUAV

system localizes the UAV using readings from the RFID reader, while the PTAM localizes the

UAV with multi-modal data fusion from the Parrot ARDrone2.0 platform.

The results of comparing the CDFs of position and orientation error are presented in

Fig. 2.17. As shown in Fig. 2.17(a), RFUAV achieves a median position error of about 0.04

32

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Position Error (m)

(a)

C
D

F

RFUAV

PTAM

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Orientation Error (degree)

(b)

C
D

F

RFUAV

PTAM

Figure 2.17: Comparison of localization accuracy: (a) CDFs of position errors of RFUAV and
PTAM; (b) CDFs of orientation errors of RFUAV and PTAM.

m, and the 90th percentile error is about 0.06 m. The PTAM system achieves a median error

about 0.067 m, and the 90th percentile error is slightly lower than 0.1 m. RFUAV outperforms

PTAM with a great reduction of both the median error and 90th percentile error. Fig. 2.17(b)

compares the orientation accuracy of RFUAV and PTAM. It shows that RFUAV can achieve a

median error about 2◦. On the other hand, PTAM has a median error about 2.5◦. Obviously,

RFUAV can provide a more reliable orientation estimation than PTAM, because the maximum

orientation error of RFUAV is less than 5◦ , while the maximum orientation error of PTAM is

up to 21◦.

Our second experiment was conducted under the dynamic setup to compare the perfor-

mance of the two methods, while the UAV is hovering in a position in the air. During the

experiment, we sealed all air vents in the laboratory to create a windless environment for the

UAV. Absolute position oscillations were about 10 cm in each direction of x, y, and z. Usually,

33

0 5 10 15 20 25 30 35

time (s)

0

0.05

0.1

0.15

0.2

0.25

P
o

si
ti

o
n

 E
rr

o
r

(m
)

PTAM

RFUAV

Figure 2.18: Cumulative positioning error of RFUAV and PTAM while the UAV hovers for 35
seconds.

vision-based algorithms, such as PTAM, suffer from significant position error when the UAV

is hovering due to camera data noise and the slight position shift induced by IMU. For vision-

based positioning systems, the current localization result depends on the estimation of its pre-

vious location. So the accumulative error will persistently increase as flight time goes on [76],

especially, while the UAV is hovering. We compared the position error between RFUAV and

PTAM while the UAV hovered in a fixed position for 35 seconds, the results of which are pre-

sented in Fig. 2.18. Results show that the position error of PTAM increases continuously; the

error grows to 0.2 m by the end of the 35-second period. Whereas, RFUAV achieves a stable

position error while the UAV hovers for the same period of time. The maximum position error

of RFUAV is less than 0.08 m. From Fig. 2.18, we conclude that RFUAV is resilient to accu-

mulative error, and it can provide a precise position for a hovering UAV. RFUAV localizes the

UAV at each individual observation from the RFID reader. Even though the measurement noise

in the observation will distort the estimated position, the observation model of the RFID does

not accumulate error over time.

34

1.6
0.4

0.5

1
1.4

0.6

z-
ax

is
(m

)

x-axis(m)

0.8 1.2

y-axis(m)

10.6
0.8

Figure 2.19: The UAV Trajectory as estimated by RFUAV (red dashed line) and ground truth
(blue solid line).

Navigational Trajectory

To evaluate the RFUAV system’s potential for indoor autonomous navigation, we conducted an

experiment under the dynamic setup in our indoor laboratory. During the experiment, the UAV

moved through a set of fixed destination waypoints. The trajectory of the movement is repre-

sented by the positions provided by RFUAV. The experiment’s results are shown in Fig. 2.19,

and illustrate that the estimated trajectory is highly accurate, with only a small disturbance

around the ground-truth. Thus, control of the UAV becomes quite straightforward with RFUAV.

As shown by other works, the pose estimation algorithm plays a critical role in the control strat-

egy of autonomous UAV navigation [77, 78]. Thus, our proposed RFUAV system can greatly

improve the performance of autonomous navigation of UAVs in indoor environments.

2.4 Conclusions

In this paper, we proposed an innovative indoor localization system for UAVs, termed RFUAV,

which provides precise 6-DoF orientation and location estimation with a COTS RFID reader

and tags. A Bayesian filter was leveraged to estimate the location of tags with phase differ-

ence. Then, we estimated pose with an SVD-based algorithm. To evaluate the performance

35

of our RFUAV system, we conducted exhaustive experiments in an indoor environment. The

results demonstrated that our RFUAV system can achieve an accurate location estimation with

a mean error of 0.04 m and an accurate orientation estimation with a mean error of 2.5◦. To

the best of our knowledge, this was the first feasible UHF passive RFID based localization

system for UAVs. RFUAV is a promising method for indoor UAV navigation that is simple,

computationally cost-effective, and not dependent on specific UAV architecture.

36

Chapter 3

RFHUI:An RFID based Human-Unmanned Aerial Vehicle Interaction System in an Indoor
Environment

3.1 Introduction

The application of Unmanned Aerial Vehicle (UAV), which originated in the military arena,

has rapidly expanded to other areas, such as agriculture, research, commerce, and so on. Due

to its prominent maneuverability, small form factor, and low cost, the UAV is widely adopted

for surveillance, entertainment, search and rescue, and inspection for maintenance. In terms of

personal UAV applications, over the past few years, more and more advanced algorithms and

sensors have been introduced, which make their use increasingly powerful and comprehensive.

These personal UAVs are usually used for human entertainment activities, such as taking photos

and videos. The mounting growth of demands makes the interaction between the user and UAV

a research topic attracting considerable interests [5].

In this paper, we propose RFID-based Human UAV Interaction (RFHUI), a low-cost,

RFID-based system which provides an intuitive and easy-to-operate way to control and nav-

igate a UAV in a complex indoor environment. The proposed method provides a means to

precisely control a UAV to navigate it in a 3D space in a real-time manner. Specifically, we

attach N (N ≥ 3) Ultra high frequency (UHF) passive RFID tags to a small board to create

a hand-held controller. We record the position of each tag against the built-in coordinates of

the controller. This position is denoted as a local one. We then deploy a Commercial Off-The-

Shelf (COTS) RFID reader with multiple antennas to gather the observation of the tags. The

global position, which refers to the global coordinates in the 3D space, of an RFID tag can be

precisely tracked by the channel state information (CSI) phase measurements of the RFID tag

37

responses from multiple antennas. A 6-DoF pose of the controller can be obtained from the

known local position and estimated global position of the N attached tags. Finally, following

the movement of the controller, the UAV responds and updates its pose and position in the air.

The remainder of this paper is organized as follows. We review related work in Section 3.2.

We present the design and analysis of the RFHUI system in Section 3.3 and our experimental

study in Section 3.4. Section 3.5 concludes this paper.

3.2 Related Work

With the development of robotics and growing demands for civilian and industrial applica-

tions, the concept of interaction and collaboration between human and robots has received a

lot of attention. The study of Human Robot Interaction (HRI) focuses on how their communi-

cation achieves better real-time performance. It can be approximately divided into three areas

of applications: teleoperation in specific environments [79, 80, 81, 82, 83], human-centric so-

cial interaction [84], and industrial manufacturing [85]. For applications in social interaction,

Santos et al. proposed a tour-guide robot which is capable of recognizing users hand gestures

and providing voice feedback [86]. In the field of HRI teleoperation in a specific environment,

urban search and rescue (USAR) is a high-interest research topic for deploying an HRI tele-

operation in a specific environment. For example, Kohlbrecher et al. presented a human-robot

system for rescue missions [87].

Compared to traditional robotic Unmanned Ground Vehicles (UGV), the UAV has signif-

icant differences, including flying freely, poor carrying capability, and being unsafe to touch.

These demand a different and suitable new interaction method for human and UAV. The appli-

cations of Human Drone Interaction (HDI) are primarily focused on jogging companion UAVs

involved in shooting videos, gesture recognition, and floating display. Muller et al. designed

and built an outside jogging companion quadcopter system with GPS localization [88]. In [89],

Scheible et al. proposed a system that combines a quadrocopter, a video projector, and a mobile

phone for projecting contents onto walls or objects in an open space. Obviously, these UAVs

are large and could only be used outdoors, thus prohibiting close interaction between human

38

and drones. For gesture control applications, Cauchard et al. investigated the problem of mul-

tiple participants and found that natural gesture control leads to a more intimate relationship

between user and UAV [90]. In the current commercial UAV market, DJI announced a state-

of-the-art small gesture control based UAV product, called Spark, in May 2017. This is the

first time that gesture recognition technologies have been introduced for consumer-class UAVs,

enabling the removal of a traditional remote controller.

Since the last decade, RFID technology has been widely recognized as a promising so-

lution for item serialization and tracking. Due to its cost-effective, lightweight, small form

factor, and power-free properties, the RFID has also been widely deployed for indoor localiza-

tion [64, 91, 92, 93, 94, 95, 96, 57, 97, 98, 99]. A considerable number of studies have focused

on accessing the phase measurement of RF signals for localization [58, 59, 100, 101, 102, 103]

and vital sign monitoring [104, 105]. Making use of Angle of Arrival (AOA) is a classic so-

lution, which is driven by measuring the phase difference of the signals received at different

antennas. In [59], Azzouzi presented the new measurement results for an AOA approach to

localize RFID tags. In addition to localization applications, RFID technology has also been

employed for 3-D reconstruction. Bu et al. proposed an approach based on the phase differ-

ences of RF signals for the 3-D reconstruction of cubes [67], which is free of the limitation of

line-of-sight and battery life constraints. Moreover, there are many other interesting scenarios

that access RFID technology [106, 107, 108]. For example, in [109], the reading patterns of

RFID tags are leveraged to detect customers’ behaviors in a physical clothes store. In [110],

RFID tags are attached to the clothes of a patient to measure his/her respiration rate.

Motivated by the research of the aforementioned RFID applications, we go beyond the

above HRI and HDI works to design a practical HDI navigation system based on the RFID

technology and test it in a real-world laboratory environment. Compared to traditional vision-

based HDI systems, the proposed RFHUI does not have the line-of-sight limitation due to the

penetrating characteristics of RF signals.

39

3.3 RFHUI Design and Analysis

RFHUI is a low-cost, RFID-based system aiming to offer flexible human-UAV interaction. It

provides an intuitive and easy-to-operate means for controlling a UAV in a 3D space. The

RFHUI system comprises N (N ≥ 3) UHF passive RFID tags and a COST RFID reader with

M (M ≥ 2) antennas. The tags are attached to the controller, and, when tracking the RFID tags

by querying the phase information of each tag, a 6-DoF pose of the controller can be obtained.

Then, the UAV can be controlled by this pose. In this section, we will introduce the system

model and RFHUI architecture and design. Table 3.1 shows the important notations used in

this paper.

3.3.1 System Architecture

The system architecture of RFHUI is presented in Fig. 3.1. Our proposed RFHUI system

consists of three main components as follows:

• RFID Localizer: We deploy a Bayesian filter to estimate the global location of the tags

by utilizing the phase measurement from each tag, which is obtained by the reader.

• Pose Tracker: After the global location of N (N ≥ 3) tags are obtained by the RFID

localizer and combined with the given local location of each tag, we can track the pose of

the controller with an SVD based method. Here, the local location is given in the built-in

coordinate of the controller.

• Control Module: It converts the pose of the controller into flying control commands,

which are transmitted to the UAV. Thus, the UAV can be navigated following a trajectory

that is guided by the movement of the controller.

We present the design of these three components in the remainder of this section.

40

Table 3.1: Important notations used in the paper

Notation Description

N Amount of implemented RFID tags
M Amount of RFID antennas
lm The position of the mth antenna in the global co-

ordinate
xt The hypothetical posterior state of a dynamic sys-

tem at a given time t. In RFHUI system, it refers
to the position of an RFID tag at time t

ut The received control at time t. In RFHUI system,
it denotes the speed of an RFID tag at time t

zt Observation at time t
B(xt) The belief that denotes the probability of the sys-

tem is in state x at time t. In RFHUI system, it
refers to the probability of a tag in position xt

P (zt | xt, lm) The observation model of the mth antenna
θ RF phase measured from the reader
R The distance between the reader antenna and an

RFID tag
λ Wavelength of the RF radio signal
θT , θR, θTAG The RF phase distortion caused by the reader’s

transmit circuits, the reader’s receiver circuits, and
the tag’s reflection characteristics, respectively

X̂c, Ŷc, Ẑc Unit vectors of the axes of the built-in coordinates
of the controller

X̂g, Ŷg, Ẑg Unit vectors of the axes in the global coordinates
Tt, Rt The position and orientation of the controller at

time t
pt
n The position (xt

n, y
t
n, z

t
n)

Tof the nth tag at time t in
the global coordinates

g
cTt The rigid transform between the controller’s built-

in coordinates and the global coordinates at time t
Ht Pose of the controller at time t
Ut Pose of the UAV at time t

41

RFID Localizer

Based on the phase observations to track

each tag, and output global positions of

the tags.

Pose Tracker

Based on the global positions of tags to

estimate the 6DoF pose of the Controller.

Phase Measurements

Control Model

Based on the pose of the Controller to

navigate the UAV by flying command.

Figure 3.1: The system architecture of RFHUI, where the global coordinates are built in the
real world.

3.3.2 RFID Localizer

In the RFHUI system, phase measurements of the tag responses are collected by an RFID reader

with M antennas. We fix and measure the positions of all the antennas. Hereafter, let lm denote

the position of the mth antenna in the global coordinate.

Bayesian Filter Updates for Tag Localizing

In RFHUI, a Bayesian filter is deployed to localize the tags mounted on the controller. The

Bayesian filter addresses the problem of estimating belief over the hypothetical posterior state

x of a dynamic system by sensor observations. For the RFID localizer, the state x denotes

the position of the tag against the global coordinate. The belief B(xt), which denotes the

42

probability that the system is in state x at time t, is recursively updated by the Bayesian filter.

The update is calculated from control ut, observation zt, and prior belief B(xt−1) at time (t−1),

which is calculated previously.

Usually, one updating cycle of a typical Bayesian filter can be divided into two essential

steps. Control update or prediction is the first step of the process, which is given as:

B (xt) =

∫
P (xt | ut, xt−1)B (xt−1) dxt−1, (3.1)

where P (xt | ut, xt−1) provides the probability of a tag moving from position xt−1 to xt under

the control of ut, referred to as a motion model, and B(xt) represents the probability of the

tag at position xt after control ut is executed. We assume that the speed of tags will remain

constant for a very short time interval, and hence, a constant speed model can be deployed for

the RFID localizer, which is expressed as:

P (xt | ut, xt−1) (3.2)

=
1√
2πδ

∫ ∆t

0

exp

{
−(xt − (xt−1 + ut · y))2

2δ2

}
dy,

where ut denotes the speed of the tag at time t− 1 and ∆t represents the time interval between

t− 1 and t.

Without loss of generality, we assume the movements of the tag satisfy a typical Gaussian

distribution with standard deviation δ. The second step is the measurement update, which is

written as:

B(xt) = η · B(xt) · P (zt | xt). (3.3)

In (3.3), η is a constant to integrate the sum of all B(xt) into 1, and P (zt | xt) represents the

observation model. The RFID localizer is equipped with M reader antennas. Thus (3.3) can be

43

rewritten as:

B (xt) =
M∑

m=1

η · B(xt) · P (zt | xt, lm), (3.4)

where P (zt | xt, lm) denotes the observation model for the mth antenna. It provides the prob-

ability when the mth antenna in position lm observes measurement zt of the tag, which is in

position xt. The detail of the model is presented in the following.

Model of RFID Phase Measurement

The relationship of the RF phase shift between transmitted and received signal is given by the

following equation:

θ =

(
2π ·

(
2R

λ

)
+ θT + θR + θTAG

)
mod 2π, (3.5)

where θ is the RF phase measured by the reader, R is the distance between the reader antenna

and the RFID tag, λ is the wavelength of the RF radio signal, θT , θR, θTAG are the RF phase

distortion caused by the reader’s transmit circuits, by the reader’s receiver circuits, and by the

tag’s reflection characteristics, respectively, and mod is the Modulo operation.

Experiments show that for the same reader antenna, the same RFID tag, and the same radio

frequency, θT , θR, and θTAG are fixed, and can be denoted as θ′ = θT + θR + θTAG. Thus (3.5)

can be rewritten as:

θ =

(
2π ·

(
2R

λ

)
+ θ′

)
mod 2π. (3.6)

We assume that a tag is in position xt−1 and a reader antenna in a position lm observes the RF

phase θ1 from the tag’s response. Under the same RF frequency, the tag moves to position xt

and the RF phase θ2 is observed from the tag. The differential RF phase measurement between

44

the two positions satisfies the following conditions:

∆θ12 = (θ1 − θ2) mod 2π (3.7)

∆θ12 =

((
2π

(
2 |xt−1 · lgm|

λ

)
+ θ′

)
mod 2π (3.8)

−
(
2π

(
2 |xt · lgm|

λ

)
+ θ′

)
mod 2π

)
mod 2π

∆θ12 =

(
4π

λ
· (|xt−1 · lm| − |xt · lm|)

)
mod 2π. (3.9)

Equation (3.9) shows that under the same frequency for the same antenna and the same

RFID tag, the differential RF phase ∆θ12 is only determined by the distance the tag moves

from xt−1 to xt. In (3.9), |xt · lm| denotes the distance between the two positions. Hereafter,

we assume that all the RF phases are measured for the same RFID reader and the same RFID

tag under the same RF frequency. The tag moves in a discrete trajectory that is represented

by a series of locations x1, x2, ..., xt. The antenna, which is stationary in position lm, collects

the phase measurement for each location as θ1, θ2, ..., θm. Then, the discrete trajectory of the

movement of the tag should satisfy:

|xi · lm| − |xj · lm| = λ
4π
·∆θij + n · λ

2

∆θij = (θi − θj) mod 2π

n ∈ {1, 2, 3, ...}

i, j ϵ {1, 2, ..., t} and i ̸= j.

(3.10)

The observation model P (zt | xt, lm) can be updated by (3.10) to provide the probability

that if a tag moves from xt−1 to xt, the differential RF phase ∆θt,t−1 is obtained by the reader.

We model the differential RF phase by the following equation:

P (∆θt,t−1 | xt−1, xt, lm) =

 1, if (10) is satisfied

0, otherwise.
(3.11)

Let’s consider the distortion of the RF phase that is caused by the thermal noise. Ex-

periments reveal that the thermal noises introduces random errors to the phase measurement

45

following a typical Gaussian distribution. Thus, we denote the RF phase as θ ∼ N (µ, δ),

where µ is the RF phase without the distortion of thermal noise and δ denotes the standard de-

viation. Hence, we can update the differential RF phase as ∆θij ∼ N (µi−µj,
√
2δ), and (3.11)

can be updated as:

P (∆θt,t−1 | xt−1, xt, lm)

=
1√
2πδ

∫ ∆θt,t−1

0

exp

{
−
(
y −

(
µt−µt−1

))2
2δ2

}
dy (3.12)

µt−µt−1 =

(
2 |xt · lm|

λ
− 2 |xt−1 · lm|

λ

)
mod 2π. (3.13)

Based on (3.12), (3.13) and (3.4), we can estimate the locations of the RFID tags.

3.3.3 Pose Tracker

The location of a tag, which is denoted as pt
n = (xt

n, y
t
n, z

t
n)

T for the nth tag at time t, can be

estimated by the RFID localizer. When the controller is located at T, with orientation R in

the given global coordinate, T and R together are called the pose of the controller. Here, we

denote the position of the controller at time t as Tt = (xt, yt, zt)
T , and the orientation at time t

as

Rt =

X̂c · X̂g Ŷc · X̂g Ẑc · X̂g

X̂c · Ŷg Ŷc · Ŷg Ẑc · Ŷg

X̂c · Ẑg Ŷc · Ẑg Ẑc · Ẑg

 , (3.14)

where X̂c, Ŷc, and Ẑc represent the unit vectors of the axes of the built-in coordinates of the

controller, and X̂g, Ŷg, and Ẑg denote the unit vectors of the axes in the global coordinates. The

relationship of the two coordinates is illustrated in Fig. 3.2.

We measure the location of each attached tag in the controller’s built-in coordinates, and

the local location for the nth tag is denoted as p̄n = (x̄n, ȳn, z̄n)
T . The transformation between

46

Figure 3.2: The global coordinates versus the built-in coordinates of the controller.

the global location and local location of the same tag is given by:

P̃t

n = g
cTt · P̄n

P̃t
n = (pt

n, 1)
T

P̄n = (p̄n, 1)
T ,

(3.15)

where g
cTt denotes the rigid transform at time t, pt

n and p̄n is the location of the nth tag in

the global coordinates and the controller’s built-in coordinates, respectively. In (3.15), g
cTt

comprises the pose of the controller in the global coordinate:

g
cTt =

 Rt Tt

0 0 0 1

 , (3.16)

where Rt and Tt denote the global orientation and global position of the controller at time t,

respectively. Based on (3.15) and (3.16), we can obtain the pose of controller by searching an

optimal transform g
cTt. When the global locations of all the tags of the controller are provided

47

by proposed RFID localizer, (3.15) can be updated as follows:

pt
1 = Rt · p̄1 +Tt

pt
2 = Rt · p̄2 +Tt

...

pt
n = Rt · p̄n +Tt,

(3.17)

where pt
1, p

t
2, and pt

n are the global locations for tag 1, 2, and n, respectively; and p̄1, p̄2, and

p̄n are the local locations for tag 1, 2, and n, respectively. Therefore, the process of finding an

optimal transform g
cTt can be formulated as a least square minimization problem as:

min
{Rt,Tt}

N∑
i=1

∥ pt
i − (Rt · p̄i +Tt) ∥, (3.18)

where N is the total number of tags and || · || is the norm of a vector. Problem (3.18) is a

typical problem of determining the rotation and translation relationship between two sets of

data points at different coordinates, and a variety of methods have been introduced to solve

such problems [73, 74]. Based on the approach that is introduced in [73], our proposed pose

tracker is developed to find the optimal g
cTt in three steps:

Step 1 . Finding the centroids of all the locations in both the global coordinates and the local

coordinates, which is denoted as C and C̄, respectively. Then, use the centroids as the new

origins of two coordinates and transfer the locations into these two coordinates, as:

 pt
i
′
= pt

i −C, for i ∈ [1, 2, ..., N]

p̄′
i = p̄i − C̄, for i ∈ [1, 2, ..., N],

(3.19)

where N is the total number of tags.

Step 2 . Determining the optimal rotation Rt with the singular value decomposition (SVD)

method. First, cascade all the shifted locations of the tags in both global and local coordinates

48

to form two matrices: A = [pt
1
′
,pt

2
′
, ...,pt

n
′
]

B = [p̄′
1, p̄

′
2, ..., p̄

′
n],

(3.20)

where both A and B are 3 × N matrices. Then, we decompose or factorize the matrix ABT

with the SVD method as:

[U,D,V] = SVD(ABT), (3.21)

where, UUT = VVT = 1, and D = diag(di), d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. Based on the result

in [73], we obtain the optimal rotation Rt as:

Rt = USVT , (3.22)

where

S =

 I, if det(U) det(V) = 1

diag(1, 1, ..., 1,−1), if det(U) det(V) = −1.
(3.23)

In (3.23), I is an identity matrix, and diag(·) is a diagonal matrix.

Step 3 . Obtaining the translation Tt. After obtaining the rotation Rt, Tt can be determined

by the following equation:

Tt = C−Rt · C̄. (3.24)

Therefore, based on the locations of the tags in both global and local coordinates, the proposed

pose tracker can determine the controller’s pose, including the orientation Rt and the position

Tt, referring to the global coordinates.

49

3.3.4 Human UAV Interaction Module

The human UAV interaction module primarily links the change of the controller’s pose with

UAV movement to achieve flexible remote control. We use the estimated pose of the controller

to control the navigation of the UAV. To achieve real-time control, the UAV must react sen-

sitively to the change of the controller’s pose in a manner that follows the trajectory of the

moving controller.

We use Ht to denote the pose of the controller, and Ut to denote the pose of the UAV at

time t. The process of the module can be divided into four steps, which are detailed as follows:

1. Obtaining Ht and Ht+1 from the pose tracker.

2. Calculating ∆H = Ht+1 −Ht, which contains the change of position and orientation in

the three-dimensional space.

3. Amplifying ∆H as ∆H′ = α · ∆H, where α is the parameter of the amplification, and

we usually set α = 5. We can make a slight movement of the controller to activate a

large-scale movement of the UAV.

4. Converting the ∆H′ to flying control commands and send it to the UAV.

Step 4 cooperates with the specific UAV platform, and it usually relies on the API to com-

municate with the UAV. For example, in our experimental platform, an ROS based system is

developed to communicate with the ARDrone2.0 platform. It updates the target position of the

UAV by

Ut+1 = Ut +∆H′, (3.25)

and sends the Ut+1 to the UAV through the ROS message service.

50

Figure 3.3: Side view of the RFID detectable field.

3.4 Experimental Validation and Results

3.4.1 Experiment Setup

We conduct a series of experiments to demonstrate the performance of the RFHUI system.

We establish a prototype of RFHUI using a COTS reader and several UHF passive RFID tags.

A Zebra FX7500 RFID reader with four Zebra AN720 antennas is incorporated to query the

RFID tags. The Zebra FX7500 reader is widely deployed in retail, manufacturing factory, and

warehouse applications, and meets the EPC Gen2 standard requirements.

In our prototype system, we use the Low-Level Reader Protocol (LLRP) through an Ether-

net port to communicate with the reader and report the RFID measurements. The Zebra AN720

Antennas provide a left circular polarization with a 100◦ beam width and a 5.5 ∼ 6 dB gain.

Each antenna is mounted on a holder of 1.4 m in height. The four antennas with their holders

are deployed in front of the user. In all our experiments, we set the reader works at the maxi-

mum RF transmission power, i.e., 33 dBm, to enable each antenna to gain a detectable range

of up to 6 m. Our experimental setting is illustrated in Fig. 3.3 (side view) and Fig. 3.4 (top

view). The configuration of the four antennas created a detectable field, which allows the four

antennas to interrogate an RFID tag simultaneously.

51

Figure 3.4: Top view of the RFID detectable field.

Three UHF passive RFID tags are attached to a foam board working as our prototype

controller, which is shown in Fig. 3.5. Fig. 3.6 shows how the controller is operated by a user

during the tests. Our experimental RFID tag is Smartrac Dogbone Monza R6, which is widely

used in the retail business. We choose The Parrot ARDrone2.0 Elite Edition drone [75] as

our UAV platform, which is shown in Fig. 3.7. It is equipped with a front camera, a bottom

camera, a sonar, and an inertial measurement unit (IMU). Based on the measurements of the

onboard sensors, it can localize itself by using a sensor fusion method. For example, the Parallel

Tracking and Mapping (PTAM) technique can be implemented to estimate the 3D pose of the

ARDrone2.0 drone.

3.4.2 Accuracy of RFID tracking and Pose Estimation

Effect of the Number of Antennas

Before revealing the performance of the proposed RFHUI system, we first conduct a set of

benchmark experiments to discover the effect of the number of RFID antennas on the system

performance. We configure the RFID reader with 1, 2, 3, and 4 antennas in each benchmark

experiment, respectively. During every benchmark experiment, the controller is moved along

the same trajectory, which is given in Fig. 3.8. We first moved the controller 20 centimeters

in the direction of the x-axis, and then moved it for another 20 centimeters along the y-axis

52

Figure 3.5: A prototype of our RFHUI controller.

direction. We sampled the trajectory every 2 centimeters, which is illustrated by the red points

in Fig. 3.8. There was a total of 21 sampled points. At every sampled point we record the

ground truth location and the estimated location that is provided by the RFID localizer for

every tag and collect the ground truth and the estimated pose of the controller.

First, we evaluate the accuracy of the RFID localizer by comparing the estimated location

to the ground truth location of every tag at all sample points. The average location error of

each tag at different antenna configurations is shown in Fig. 3.9. We can see that the more

antennas are deployed, the more accurate the estimated localization. The results are consistent

with the conclusion of (3.4): the more antennas are deployed, the more accurate estimation can

be made.

We also evaluate the accuracy of the controller’s pose, including position and orientation,

which is measured by our RFHUI system. The results in each antenna configuration are given

53

Figure 3.6: A user holds the controller in hand during an experiment.

in Fig. 3.10 and Fig. 3.11. From Fig. 3.10 and Fig. 3.11, the average errors of both position and

orientation are reduced dramatically when the number of deployed antennas is increased. For

the configuration with 4 antennas, the system achieves an average error of 0.021 m in position

and 1.8◦ in orientation. Therefore, all hereafter experiments are executed with the 4-antenna

configuration with the setup shown in Fig. 3.4.

RFID Tags Tracking

To evaluate the performance of the RFID localizer in RFHUI, we launch another experiment

by attaching three UHF passive RFID tags to the controller. A user holds the controller and

moves it following a given trajectory, which is inside the experiment field. In contrast to the

simple trajectory in our benchmark experiments, we move the controller in a more complex and

54

Figure 3.7: The ARDrone2.0 Elite Edition drone used in our experiments.

0.8

0.9

1

1.1

0.8

0.9

1

1.1

0

0.5

1

X−axisY−axis

Z
−

a
x

is

Figure 3.8: The moving trajectory of the benchmark experiments: the red points are the sam-
pled locations.

longer trajectory with more variety in the moving direction, thus mimicking the actual user be-

havior while operating the UAV. During the experiment, the RFID localizer of RFHUI provides

estimated locations for each tag while the controller is moving. We obtain the ground-truth

locations by measuring the sampled points every 5 mm along the trajectory. The accuracy of

55

4 antennas 3 antennas 2 antennas 1 antenna
0

0.2

0.4

0.6

0.8

1

A
v

g
 D

is
ta

n
ce

 E
rr

o
r(

m
)

Tag1

Tag2

Tag3

Figure 3.9: The average error and standard deviation of the localization error of the controller’s
tags for different antenna configurations.

4 antennas 3 antennas 2 antennas 1 antennas
0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
si

ti
o
n
 E

rr
o
r(

m
e
te

r)

Figure 3.10: The average position error of the controller for different antenna configurations.

the proposed method is evaluated by calculating the errors between the ground-truth locations

and the estimated locations of the sampled points.

We repeat the experiment several times, and the experimental results are presented in

Fig. 3.12 in the form of the cumulative distribution function (CDF) of localization errors be-

tween estimated and ground-truth positions. We can see that the maximum error of the RFID

localizer is less than 0.095 m for all the three tags. Moreover, with the RFID localizer of

RFHUI, 80% of the localization errors are less than 0.045 m and 90% of them are under 0.06

m. Therefore, it is safe to state that the RFID localizer achieves very precise localization for

tracking the moving RFID tags. Note that the average error of every tag is a little bit higher

56

4 antennas 3 antennas 2 antennas 1 antennas
0

5

10

15

20

25

30

35

O
ri

e
n
ta

ti
o
n
 E

rr
o
r(

ra
d
)

Figure 3.11: The average orientation error of the controller for different antenna configurations.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

RFHUI Tag0

RFHUI Tag1

RFHUI Tag2

Figure 3.12: CDF of RFID tags tracking error with a more complex and longer trajectory.

than that in the benchmark experiments because we considered much more sample points and

the controller moves along a more complex trajectory in this experiment.

Controller Pose Estimation

We next conduct an experiment to verify the feasibility and accuracy of our proposed pose

tracker, including position and orientation estimation. The controller moves along a trajectory

in our experiment field, held by a user.

The results are presented in Fig. 3.13. Fig. 3.13(a) shows that about 78% of the position

errors of the proposed pose tracker are under 0.05 m, and the maximum error is less than 0.083

57

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

Position Error (m)
(a)

C
D

F

0 1 2 3 4 5
0

0.5

1

Orientation Error (degree)
(b)

C
D

F

Figure 3.13: (a) CDF of the controller position estimation error; (b) CDF of the controller
orientation error.

m. Additionally, as shown in Fig. 3.13(b), we can see that 60% the orientation errors are less

than 2.5◦. Moreover, for the pose tracker, almost 90% of the orientation estimations achieve

an error under 3.5◦. Obviously, regardless of position and orientation estimation, the proposed

pose tracker of RFHUI is sufficiently accurate for most practical human-UAV interaction sce-

narios. Also note that similar to the result in the of RFID tags tracking experiment, due to

the greater number of sample points and increased complexity of the moving trajectory in this

experiment, the average error in both position and orientation are a little bit higher than that in

the benchmark experiments.

3.4.3 Overall System Performance

Finally, we conducted an experiment in our indoor lab environment to demonstrate the feasibil-

ity of our system in a real-time manner. The typical experimental environments are shown in

Fig. 3.14 and Fig. 3.15. The complex indoor environment, with intricate features and layouts

58

Figure 3.14: The empty lab environment.

with shelves, clothes stands, and furniture as shown in Fig. 3.15, requires our proposed RFHUI

system to provide an accurate and robust control method to safely operate the UAV indoors.

During this experiment, a user holds the controller, which is attached with 3 RFID tags, to con-

trol the UAV. We compared the ideal movement trajectory of the UAV, which is amplified by the

trajectory of the controller, and the actual movement of the UAV to illustrate the performance

of the proposed RFHUI.

A typical experiment result is presented in Fig. 3.16. The movement of the controller

follows a random trajectory, which is illustrated by the black curve in Fig. 3.16. The blue

curve represents the trajectory of the controller. The red curve denotes the ideal trajectory of

the UAV, which is an amplified version of the trajectory of the controller. Clearly, we can tell

that the UAV precisely follows the ideal trajectory, with only tiny disturbances around the ideal

occurred. This is caused by the inherent errors of the UAV, especially, when the UAV is in

a hovering mode. It is apparent that our RFHUI system achieves high accuracy in real-time

navigation. This experiment validates that our RFID-based controller strategy is robust and

practical. This is mainly due to the fact that our proposed RFHUI system can provide a highly

accurate pose estimation, which plays a critical role in UAV navigation.

59

Figure 3.15: The cluttered lab environment.

0.5

1

1

Z
-a

x
is

1.5

0.5

Y-axis
0

X-axis

10.80.60.40.20

Controller trajectory

UAV ideal Trajectory

UAV real-time Trajectory

Figure 3.16: Trajectory comparison

3.5 Conclusions

In this paper, we proposed the RFHUI, an RFID based system for navigation control of a UAV

using a COTS RFID reader. We experimentally validated the feasibility of utilizing an RFID

localization-based method as the core of the UAV controller. We leveraged a Bayesian filter to

estimate the location of RFID tags using the phase information in RFID tag responses. Then

60

an SVD algorithm was employed for data pre-processing to track the pose of the controller. Fi-

nally, the control module converted the pose data into flying control commands to achieve UAV

navigation control in real-time. The extensive experiments in a representative lab environment

demonstrated the capability of the proposed RFHUI system. To the best of our knowledge,

the proposed RFHUI is the first practicable UHF passive RFID based UAV navigation control

system, which provides a promising method for Human-UAV interaction.

61

Chapter 4

IADRL:Imitation Augmented Deep Reinforcement Learning Enabled UGV-UAV Coalition
for Tasking in Complex Environments

4.1 Introduction

The last decade has witnessed significant developments in unmanned aerial vehicle (UAV) and

unmanned ground vehicle (UGV) technologies, which have enabled their wide deployment for

various applications, such as surveillance, search and rescue, inspection [1], inventory count-

ing [2, 3], and more [4, 5, 111, 8, 9]. Recently, researchers have shown a growing interest

to deploy them for more complex tasks that require multiple UAVs or UGVs to cooperatively

work together to improve efficiency [24]. Most of the existing research focuses on cooperation

in a multi-agent (or multi-robot) system that consists of a group of UAVs or UGVs. For exam-

ple, Koubâ et al. introduced COROS [112], a high-level conceptual architecture for multi-agent

UGV/robotic systems that represents a generic architecture for cooperative multi-agent appli-

cations. A cooperative architecture for the navigation of a swarm of robots based on Dynamic

Fuzzy Cognitive Maps was introduced in [83, 81, 113], which allows for the development of

homogeneous autonomous robot navigation without a global controller. A multi-UAV system

was introduced in [24] to optimize target assignment and path planning. In addition to these

homogeneous systems, some works went further to create a system that consists of heteroge-

neous agents/robots with different capabilities. For example, Das et al. in [114] introduced

a distributed algorithm for task allocation in a system of multiple heterogeneous, autonomous

robots deployed in a healthcare facility.

There are some essential limitations for both UGVs and UAVs. For example, a UGV has

limited vertical detective/access capability, and a UAV is restrained by inadequate operation

62

range and time due to its limited power supply capacity. These limitations impede them in

many applications. For instance, a ground robot proposed in [2] failed to perform inventory

counting of items stored on high racks. Recently, UAVs have been expected to be widely

deployed for disaster relief (e.g., survey, search and rescue, and providing network access).

However, the authors of [115] found that a UAV’s limited fight time (usually 20-30 minutes)

greatly reduces their operating range. Obviously, for the above scenarios, we cannot solve the

problem by simply deploying a swarm of UGVs or a swarm of UAVs alone. Alternatively,

pairing them as a complementary team would help to overcome these constraints for tasks that

UGVs or UAVs would be incapable of completing alone. However, an effective and low-cost

strategy for implementing such a complementary UGV-UAV coalition is lacking.

To remedy these limitations, this paper presents an innovative method, named Imitation

Augmented Deep Reinforcement Learning (IADRL), that enables a UGV and a UAV to form

a coalition that can complement each other for complex tasks. The complementary UGV-UAV

coalition can be deployed for applications that are usually incapable of being completed by a

UGV or UAV alone. Using the disaster relief scenario as an example, an IADRL-enabled coali-

tion can be deployed for autonomous search-and-rescue tasks. In the chaotic and hazardous

environment following a disaster, a powerful UGV can autonomously carry a UAV to remote

destinations usually out of the UAV’s flight range. Additionally, the UGV provides communi-

cation and a power supply that greatly extends the operational range of a resource-constrained

UAV, and the UAV helps the UGV with finding the best route and navigating through complex

terrains that are out of the UGV’s navigational capability (e.g., vertically unreachable or invisi-

ble to the UGV). To ensure that the coalition can successfully and effectively accomplish tasks,

the cooperation of its agents (i.e., the UGV and UAV) must follow an underlying and complex

model that varies depending on the task or operating environment.

The proposed IADRL model can learn the complementary features of UGV-UAV from

a demonstration dataset that is collected from a simple and imperfect scenario. The model

also learns a policy that responds to the environment, such as collision avoidance when around

obstacles and other agents. Based on observations of the UAV and UGV, the IADRL model

provides a series of actions for the UGV and UAV that ensures an optimized and complimentary

63

strategy for a given task. Additionally, we extend the IADRL to support multiple UGV-UAV

coalitions working together within the same space. To the best of our knowledge, this is the first

work to focus on creating such a coalition of robots with complementary capabilities for task

completion, where a single agent in the team alone is incapable of completing. In a complex

scenario, a task is executed by the first agent, and then another agent must continue the task

based on the previous agent’s success. Thus, the actions of all agents in the coalition are

dependent upon each other, and agents must work as a complementary, cooperative team.

In the remainder of this paper, we discuss related work in Section 4.2, introduce and ana-

lyze the proposed IADRL model in Section 4.3, present our experimental study in Section 4.4,

and conclude our work in Section 4.5.

4.2 Related Works

4.2.1 Imitation Learning

Imitation learning methods focus on the problem of learning and perform a task by learning

from demonstration data. These methods can be roughly divided into three categories: Behav-

ior Cloning (BC; or supervised learning) [116, 117], Inverse reinforcement learning (IRL) [118],

and Generative Adversarial Network (GAN) imitation learning [119].

Behavior Cloning (BC)

This type of imitation learning was motivated by humans’ tendency to learn skills by imitating

the behaviors of others and has been widely used in autonomous driving [120, 121], wireless

communication [122, 123, 124, 124, 125], and smart grids [126, 127]. In BC, agents receive

instructions from a hand-crafted demonstrator (which serves as training data) and then replicate

actions from the expert policy. BC is able to imitate the demonstrator immediately without any

interaction with the environment. However, these agents cannot handle situations that are not

included in the demonstrator. Furthermore, when the agents are limited in capacity, wrong or

unnecessary behavior may be replicated. The method is simple but is useful only with large

amounts of high-quality training data. Additionally, because agents merely learn single-step

64

decisions, the compounding error accumulation caused by the covariate shift problem could

lead to a large learning deviation.

Inverse Reinforcement Learning (IRL)

In a classic Reinforcement Learning (RL) setting, the ultimate goal is for an agent to learn

a decision process to generate behaviors that could maximize accumulated rewards by some

predefined reward functions. As demonstrated by Ng et al. in [128], IRL is given the observed

agent’s behaviors and observations of the environment to infer the optimal reward function.

IRL generally has a reward function that is difficult to accurately quantify, and another system

has to be able to complete the tasks well to offer instructions for the model. The difference

between IRL and BC is that IRL generates a reward function to infer an optimal policy instead

of using a fixed replication policy.

GAN for Imitation Learning

Ho and Ermon proposed Generative Adversarial Imitation Learning (GAIL) in 2016 [119].

They introduced the idea of a GAN combined with imitation learning. Unlike GAN, GAIL

does not have an explicit Generator that acts as the policy of agents. Learning in GAIL is

divided into two steps. First, to train the Discriminator adversarially with the data obtained

from the current policy sampling and expert data. Second, the Discriminator serves as the

replaced reward function to train the policy. GAIL is superior for large-planning and high-

dimensional problems as compared to BC and IRL.

4.2.2 Multi-Agent System Planning and Control

This is a hot topic that has attracted considerable research interest in recent years. The existing

studies have mainly focused on operating multiple UGVs/robots and UAVs in the same envi-

ronment. For example, Sariel-Talay et al. proposed a multi-robot cooperation framework to

solve complex tasks in a cost-efficient manner [129]. Swarm intelligence is inspired by social

animals and aims to form the behavior of many decentralized autonomous cooperative agents.

For example, Wang et al. solved the multi-robot task allocation problem using an ant colony

65

algorithm [130]. In recent years, RL has become extremely trendy in the field of multi-agent

systems. In [24], the author presented an innovative artificial intelligence method combined

with a well-known RL method, the Multi-Agent Deep Deterministic Policy Gradient Algo-

rithm, to solve path planning and task allocation problems in dynamic environments. However,

these existing methods have never been applied to a coalition of multiple UGVs/robots and

UAVs before.

Few studies have considered the use of multiple UGVs and UAVs simultaneously to solve

complex tasks in dynamic environments. For example, Ghamry et al. proposed an algorithm

that controls UAV’s autonomous take-off, tracking, and landing with a UGV [131]. They also

presented an interesting study on forming a team of cooperating UAVs-UGVs for forest moni-

toring and fire detection [132]. Khaleghi et al. studied the team formation approach of multiple

UGVs and UAVs [133]. The author in [134] introduced an auction-based approach for applying

an estimated utility to task assignment for heterogeneous, multi-agent teams. But these studies

only focus on one area (i.e., team formation or task allocation) because of the huge computa-

tional cost and the communication difficulties between agents. Meanwhile, some companies

(e.g., Quanser Inc.) provide a variety of mobile robots and UAV swarm systems, but none of

them focus on creating a UGV-UAV coalition for complex tasks. Unlike these existing meth-

ods, our proposed approach creates a coalition that enables a UGV and a UAV to complement

each other during complex tasks that are incapable of being completed by a single UGV or

UAV or by a swarm of UGVs or UAVs alone. This approach not only concerns the optimiza-

tion of path planning, but also learns an underlying complementary model for the agents from

a set of non-optimized demonstration data.

4.3 The Proposed Approach

Our proposed IADRL approach enables a coalition consisting of a UGV and UAV to comple-

ment each other for complex tasks. Additionally, we extend IADRL to include a system of

multiple UGV-UAV coalitions working together.

66

Figure 4.1: An example of a UGV-UAV complementary coalition for task completion: (a) the
target destination is too far for the UAV to reach, while too high for the UGV alone, (b) the
UGV carries the UAV closer to the destination, and, finally, (c) the UAV flies to the high-
altitude destination.

4.3.1 IADRL Enabled UGV-UAV Coalition

Problem Definition and Challenges

There are several essential limitations of UGVs and UAVs that prevent them from being de-

ployed for some tasks. Fig. 4.1 illustrates a motivating scenario where rescue teams must reach

a high-altitude position. The UAV is capable of reaching that position; however, the destination

is too far for it to fly from the starting point with its limited battery capacity. Alternatively, the

UGV can move closer to the destination but is incapable of climbing up the high altitude. An

intuitive idea to reach the destination is to pair the UGV and UAV together as a coalition that

complements each other: the UGV can carry the UAV closer to the destination, and then the

UAV launches from the UGV and flies to the target.

Motivated by the Decentralized Partially Observable Markov Decision Processes (Dec-

POMDPs) [135], this UGV-UAV complementary coalition for task completion with minimum

cost can be described by the tuple < ε,o, a, r, γ,M >, where ε denotes the environment the

coalition will interact with; o = (o1, o2) is the joint observations of the coalition, and consists

67

of the UGV’s observation, o1, and the UAV’s observation, o2; a = (a1, a2) denotes the joint

actions of the UGV, a1, and UAV, a2, in the coalition; r is the reward function of the coalition

while joint actions a impose ε with joint observations o; γ ∈ [0, 1) is a discount factor for

future rewards; and M defines the complementary cooperation model of the UGV and UAV. To

achieve successful task completion, the UGV and UAV must collaborate with and complement

each other; thus, their joint actions satisfy a = (a1, a2) ∼ M.

The goal of IADRL is to learn a joint value-action function Qπ
c (o, a; θ) that enables a com-

plementary UGV and UAV coalition to achieve maximum overall rewards (or minimal overall

costs) while accomplishing various tasks. The equation for this complementary coalition is

formulated as (4.1):

argmax
a∼π

Qπ
c (o, a; θ) (4.1)

s.t. a = (a1, a2) ∼ M, (4.2)

where θ is the parameter of the value-action function Qπ
c . Note that o and a represent the joint

observations and actions in the coalition, and the joint actions follow an underlying model, M,

that complements each action during tasks. To explicitly model the underlying complementary

cooperation model, M, of the UGV-UAV coalition during tasks is difficult and, at least, requires

significant effort and expertise.

We faced several challenges when creating the IADRL model under these requirements.

For our method to successfully complete generic and complex tasks, we have to develop a

straightforward way to represent the coalition’s complementary cooperation model. Equa-

tion (4.1) shows that the proposed network has to learn an optimized policy, π, for UGV-UAV

joint actions. Reference [136] suggests that the joint-action space increases exponentially with

the number of agents. Consequently, it is difficult for deep reinforcement learning (DRL)

methods to reach the optimized policy, π, in such huge searching space. Furthermore, the

trained policy, π, not only needs to provide optimized actions for task execution, but also needs

to follow the underlying model M to enable the UGV-UAV coalition to successfully com-

plete tasks. State-of-the-art methods such as Value-Decomposition Networks (VDN) [137] and

68

QMIX [136] require that the actions of agents at the same time step are independent so they

can be factorized. Obviously, this assumption does not hold true for the UGV-UAV coalition.

Additionally, it is necessary to train the proposed model in a continuous-action space that em-

powers the UGV-UAV coalition’s operation in complex environments. This further increases

the size of the joint-action space and challenges the training of the IADRL model.

The IADRL Model

To tackle the above challenges, first, instead of explicitly modeling the collaboration between

the UGV and UAV, we captured their complementary cooperation using a set of demonstration

data. The dataset was collected by manually controlling the UGV-UAV coalition to complete

several simple tasks. The demonstration data do not need optimization, but only a set of the

most basic and important rules of the collaborative and complementary actions. As such, our

method needs to teach the coalition just as one would teach a new sports skill to a team of kids,

by showing them how to play through imitation.

Therefore, we design IADRL by combining an imitation model with a DRL model. The

architecture of IADRL is presented in Fig. 4.2. The imitation model and the DRL model are

contained in a pink block and green block, respectively. The imitation model learns the co-

operative features, M, of complementary cooperation from the non-optimized demonstration

dataset and augments the DRL model’s training to develop an optimized strategy. As such, we

learn the optimized policy, π, while following the complementary cooperation model. Mean-

while, the DRL model also learns a strategy to respond to dynamic environments, such as

avoiding collisions with obstacles and other UGVs and UAVs.

The Imitation Model The imitation model is inspired by the study of GAIL [119], and it is

based on a GAN [138] architecture that comprises two basic entities: a discriminator, D, and a

generator, G. Discriminator D is created to distinguish between the “expert” data and the data

produced by generator G. Additionally, D and G are simultaneously trained in an adversarial

way: G is updated to produce “counterfeited” data that could pass the detection of D, while D

is improved to distinguish the “counterfeited” data from the true “expert” data. The resulting

69

Figure 4.2: The architecture of the IADRL model.

competition drives both entities to improve their capabilities. Thus, a well-trained imitation

model not only generates data with almost the same distribution of the “expert” data, but also

precisely measures the similarity of any given data with the “expert” data.

Different from the original GAIL model, we replaced the Trust Region Policy Optimization-

based [139] generator with the latest Proximal Policy Optimization (PPO)-based [140] gener-

ator, which also serves as the policy, π, of the DRL model. Thereby, the term generator G

and policy π will be used interchangeably in the rest of this paper. Policy π has two roles in

our IADRL, as it not only generates actions following the distribution of the “expert” data,

but also reacts to the environment with an optimized strategy. The details of policy π will be

introduced when we discuss the DRL model. Here, we focus on the discriminator, D(o, a;ω),

of the imitation model.

In our imitation model, D : O×A 7→ (0, 1) is a discriminator function with weight ω, and

O and A are the observation and action space, respectively, of the UGV-UAV coalition. We

implement the discriminator D with a deep neural network, which is a fully connected neural

network with MD hidden layers. Each hidden layer has the same number of ND units. The size

of the input layer is determined by the size of the concatenated input (o, a). The size of D can

70

be configured using ND and MD. Usually, a larger-sized network is required if the UGV-UAV

coalition is deployed for more complex environments and tasks.

During the training process, we can improve the discriminator D by maximizing the fol-

lowing value function:

V(ω) = Eπ[log(D(o, a;ω))]+

EτE [log(1−D(o, a;ω))]− λH(π),

(4.3)

where H(π) represents the causal entropy [141] of π defined as H(π) ≡ Eπ[− log π(a|o)], and

it severs as a policy regulator to make the distribution of policy as evenly as possible; λ ⩾ 0 is

the discount factor of H; and τE refers to the “expert” policy provided by a demonstrated dataset

with length N , i.e., τE = [η1, η2, ...ηN]. Here ηn = [(o0, a0), (o1, a1), ..., (oT , aT)] is the record

of an episode with T steps. It represents the model of the complementary cooperation between

the UGV and UAV; thus, τE ∼ M. Again, τE is not a perfect policy, but is collected from

a few sample scenarios in controlled settings navigated by manual control and is, therefore,

considered to be the “expert.”

Equation (4.3) is derived from the objective function of GAIL [119]. It shows that during

the training process, as discriminator D is updated to increase V(ω), its ability to detect the

similarity of a policy and the “expert” data is improved. When it produces a lower value for

a given action, a, it indicates that the chance of action a is higher from the “expert” data, and

thus, shows with higher confidence that it is following the underlying complementary model,

a ∼ M.

The DRL Model The proposed IADRL model must not only learn the complementary coop-

eration model, but must also react to the dynamics of an environment and provide an optimized

navigation strategy for the UGV-UAV coalition. To this end, we created the DRL model based

on a PPO network [140] with an actor-critic architecture, which enables the model to produce

continuous actions for the UGV-UAV coalition during task completion in complex environ-

ments. The proposed DRL model consists of two separate components: an actor (i.e., policy π)

and a critic (i.e., value function Qπ
c). Policy π is responsible for generating action a based on

71

the given observation o. Additionally, policy π is learnt by a neural network from the training

and history data. The value function, Qπ
c , processes the received rewards and evaluates the

current action prescribed by policy π.

We implement Qπ
c and π using two deep neural networks that are both fully connected

networks with Mπ hidden layers for π and MQ hidden layers for Qπ
c . Each hidden layer has

the same number of Nπ and NQ units for the π and Qπ
c networks, respectively. The size of the

input layers is determined by the size of the input vectors. The size of the output layer of π is

determined by the size of the joint action, a, of the coalition. As in the case of discriminator

network D, usually larger-sized networks are required for π and Qπ
c if the UGV-UAV coalition

is deployed for more complex environments and tasks.

Ultimately, the goal of training the DRL model is to maximize the UGV-UAV coalition’s

state-value function Qπ
c for a given policy π, given by

Qπ
c (o, a; θ) = E[rau(o, a) + γEa′∼π[Q

π
c (o

′, a′)]], (4.4)

where θ is the parameter of function Qπ
c ; γ ∈ (0, 1] is the discount factor for future rewards;

rau is the augmented reward function, given by

rau(o, a) = β · rim(o, a) + (1− β) · rex(o, a), (4.5)

where β ∈ (0, 1) represents the confidence weight of the “expert” demonstration data, and a

larger β can be deployed if τE is closer to the optimized policy; rex is the reward function that

comes from the environment, which is the same as a traditional Markov Decision Processes

(MDPs) environment; additionally, rim is the reward function of the imitation model and mea-

sures how similar the coalition’s joint actions a are with the “expert policy,” as

rim(o, a) = log(1−D(o, a;ω)). (4.6)

During the training, we aim to increase Qπ
c . Equations (4.3), (6.4), and (4.6) show that as

we increase Qπ
c , we decrease the value of V (ω). Thus, from the results of [119], we increase the

72

similarity of the policy, π, and the “expert” dataset, τE , as we increase Qπ
c . Note that our goal

is not to train the policy, π, to copy τE , but to learn the complementary cooperative model that

underlays τE while maximizing the extrinsic reward. Therefore, we introduced the confidence

parameter β to augment the learning process by trading-off between learning from expert data

and the environment. Alternatively, rex guides the IADRL to learn a strategy that reacts to the

environment. Its configuration is straightforward and lists several rules for the coalition when

interacting with the extrinsic environment. Usually, we can assign a penalty for the coalition

if any agent collides with either an obstacle or other agent. This way, a trained Qπ
c enables the

UGV and UAV to choose the action that does not cause a collision. We can also assign a small

penalty for every step taken by each agent, and this enables Qπ
c to provide the coalition’s best

navigational route for reaching a target. Here, the best route is the one with the lowest sum of

navigational costs of the UGV and UAV. Note that the cost of operating a UAV is usually higher

than that of the UGV. Additionally, an example of rex will be provided in the later experimental

section. The value function Qπ
c of the proposed DRL network can be trained end-to-end by

minimizing the following loss function:

L(θ) = Ea∼π[y −Qπ
c (o, a; θ)]

2, (4.7)

where y = rau+γ·maxa′ [Qπ
c (o

′, a′; θ−)] and θ− are parameters trained by the previous iteration.

During the training, we try to decrease the stochastic gradient of (6.6) with respect to θ. Then,

a trained state-value function Qπ
c precisely evaluates action a of the UGV-UAV coalition.

From (6.4) and (6.5), we know that as long as a policy, π, is found that guides the UGV-

UAV coalition to achieve a higher cumulative Q value, the proposed IDARL network will

enable the complementary cooperation between agents and find the best strategy to accomplish

a given task. To better explain the process of updating the policy in our PPO-based DRL model,

we introduce an additional objective function with respect to the φ weighted policy, πφ, as:

J(φ) = Et

[
min

(
πφ(o)

πφold
(o)

Q
πφold
c , f(ϵ, Q

πφold
c)

)]
, (4.8)

73

Algorithm 1: The Training Procedure of IADRL
1 Input: “Expert” dataset τE , and initial parameters ω0 and θ0 ;
2 for episode i = 1 to M do
3 Sample training dataset πi ;
4 Update discriminator D by ascending the stochastic gradient of (4.3) with respect to ω ;
5 Update value function Qπ

c of the DRL by decreasing the stochastic gradient of (6.6) with
respect to θ;

6 Update policy πφ of the DRL by ascending the stochastic gradient of (4.8) with respect to
φ;

7 end

where ϵ is a hyper-parameter set to 0.1 or 0.2; πφold
and πφ denote the policy before and after

the training update, respectively; and f(·) is a clip function defined as:

 f(ϵ, Q) = (1 + ϵ)Q, if Q > 0

f(ϵ, Q) = (1− ϵ)Q, if Q < 0.
(4.9)

The training process aims to maximize J(φ) by ascending the stochastic gradient of (4.8) with

respect to φ. Thus, policy π tends to provide actions that can impose higher Q values. During

the training, (4.9) limits the updated range of πφ so that it remains close to the last policy, πφold
.

This greatly improves training stability by avoiding too much of a policy update in one step.

We summarize the training process of IADRL in Algorithm 1. During the training process,

we recursively update discriminator D of the imitation model to provide a more accurate eval-

uation of how good the complementary cooperation is between the UGV and UAV. Then, the

value function, Qπ
c , is updated to enable the model to precisely assess the joint-action, o, of the

coalition as compared to the extrinsic environment and the intrinsic complementary coopera-

tion model. Last, IADRL updates policy π that provides a series of actions to accomplish given

tasks and to receive higher cumulative Q values. Thus, a well-trained IADRL model enables

the UGV-UAV coalition to follow the complementary model, M, and provides an optimized

strategy when the coalition is deployed for various tasks.

74

4.3.2 Multi-Coalition Systems

Our IADRL model can be easily extended to support a system with multiple UGV-UAV coali-

tions. This system follows the traditional Dec-POMDPs, and the coordination among the coali-

tions is loose and satisfy the model of VDN [137]. Therefore, the global joint-action value

function, denoted by Qg, of a system with N coalitions can be represented as:

Qg(s,u) =
N∑
i=1

Qπ
c i(oi, ai; θi), (4.10)

where oi = (o1i, o2i) and ai = (a1i, a2i) denote the joint observations and actions, respectively,

of the UGV and UAV in coalition i. Additionally, s = (o1,o2, ...,oN) and u = (a1, a2, ..., aN)

refer to the joint observations and actions, respectively, for all N coalitions in the system. A

joint observation, s, is created by concatenating all observations, oi, from all the coalitions.

Equation (4.10) indicates that based on the current joint observation, s, we find a best joint-

action for the system, u, by decomposing the problem and finding all of the best joint-action,

ai, for each coalition, which is determined by the trained IADRL model based on its observation

oi.

The UGV-UAV coalition requires wireless communications to function well. From (4.1),

the optimized policy, π, of the coalition requires joint observation and joint action data, which

are created by the observations and actions from both the UGV and the UAV. Thus, wireless

communications within the coalition is essential for sharing this information. On the other

hand, communications among UGV-UAV coalitions is not mandatory. In (4.10), it is shown that

the global joint-action value function, Qg, is the sum of individual coalition value functions,

Qπ
c , which is conditional on the coalition’s observations and actions. Therefore, a decentralized

optimized policy for a system with multiple coalitions can be achieved when each coalition

selects its own optimized policy, π, from a trained IADRL model without sharing information

among coalitions.

75

Figure 4.3: Basic simulation experimental setup for five UGV-UAV coalitions performing tasks
cooperatively using the IADRL system. The UGV-UAV coalitions are marked as orange (UGV)
and blue (UAV) block pairs; the tasks are marked as green balls.

4.4 Experimental Study and Discussions

4.4.1 Experiment Configuration

Simulation Platform

We designed a simulation training and evaluation platform for the IADRL system based on

the Unity3D ML-Agents platform [142]. The platform is illustrated in Fig. 6.5. It is designed

to simulate the scenario of deploying UGV-UAV coalitions in a giant, high-bay warehouse

crowded with high racks and shelves. The coalitions are tasked with reaching given targets

to mimic item scanning applications (i.e., RFID or barcode) in indoor spaces. The platform’s

dimension is 50 × 50 × 7 m3, and is divided into 4 sub-zones by cross shaped obstacles. As

Fig. 6.5 depicts, orange agents represent UGVs, blue agents represent UAVs, and the green

spheres suspended in air (they are actually on different levels of racks in this space) represent

given targets.

We implemented our IADRL model using Tensorflow on a computer with an Intel 9900K

CPU and two Nvidia 2080 GPUs. We conducted each experiment with the same IADRL con-

figuration: the discriminator, D, has MD = 2 hidden layers and ND = 128 units per layer; the

76

coalition value function, Qπ
c , has MQ = 3 hidden layers and NQ = 512 units per layer; the pol-

icy, π, has Mπ = 3 hidden layers and Nπ = 512 units per layer. In the following experiments,

we deployed 5 UGV-UAV coalitions. Their initial positions and the positions of all targets were

randomly generated.

The observations (or states of the environment) are collected by each agent’s Ray-cast sen-

sor, which is provided by Unity3D. Similar to a Lidar sensor (e.g., the RPLidar laser scanner),

the Ray-cast sensor casts rays into the surrounding environment, and the feedback is a vector

that provides the position of all detected objects and their distances. A UGV’s Ray-cast sensor

detects only in the horizontal direction (to identify obstacles on the floor), while a UAV casts

rays towards the horizon, and upward and downward within 45 vertical degrees. The maximum

detection range of all Ray-cast sensors is set to 20 meters with a 20-Hz refresh rate. A UGV-

UAV coalition’s observation, o, is created by concatenating all of the observation vectors of its

UGV and UAV agents to form a new vector. The UGV’s action is represented by a1 = [ax, ay],

and the UAV’s action is represented by a2 = [ax, ay, az], where ax, ay, and az are accelerations

in the x, y, and z direction, respectively. The UGV-UAV coalition’s action, a = (a1, a2), is also

created by concatenating a1 and a2 to form a new vector.

Extrinsic Rewards

The extrinsic rewards configuration is summarized in Table 4.1. They are designed to capture

basically every condition that could be experienced when deploying UGV-UAV coalitions for

item scanning tasks. Considering that the average battery life of a UGV is 5 to 10 times that of

a UAV, we set the UAV’s cost of each step to be 6 times that of the UGV. Thus, the UAV tends

to ride on the UGV when transiting between positions, while simultaneously finding the best

trajectory to reach the destination by trading-off from the ride-on to fly state. To encourage

coalitions to complete tasks, we set the reward of reaching each target to 100 times that of the

step cost for UAVs. Our intention is for the UGV to successfully scan all the targets within its

reachable vertical height and define them as bad targets for the UAV. If the UAV mistakenly

reaches a bad target, a penalty as big as the reward (i.e., 60) will be issued. Targets that are too

high and out of the UGV’s reach are considered good targets for the UAV.

77

Table 4.1: Extrinsic Rewards Configuration

Reward Items Reward Value

UGV’s step cost -0.1
UAV’s step cost -0.6
UGV reaches a target +60
UAV reaches a bad target -60
UAV reaches a good target +60
UAV collides with an obstacle -60
UAV collides with another agent -60
UGV collides with an obstacle -30
UGV collides with another agent -30
Final reward +30

To ensure that the UGV and UAV avoid colliding into obstacles and other agents, the

penalty for a collision is equal to the target reward (i.e., 60) for the UAV and half of that for the

UGV. The reason for setting a lower penalty for the UGV is that UGVs are usually protected

with anti-collision sensors or bumpers. When the coalition reaches all targets (or the given

number of targets), it has completed the task and wins a final reward. We set the confidence

weight β in (6.5) to 0.1 for the remaining experiments.

Demonstration Data Collection

The demonstration dataset τE is collected by manually controlling a UGV-UAV coalition through

several simple scenarios that are displayed in Fig. 4.4. The dataset τE consists of 40 total

episodes of completed tasks (10 tasks per scenario) according to the scenarios described in

Fig. 4.4 (10 for each scenario). For the scenario shown in Fig. 4.4(a), a target is created within

the reachable height of the UGV, and we controlled the coalition in a way that allowed the

UGV to reach the target. In Fig. 4.4(b), a target at a higher place is generated for the UAV to

reach. The UAV first rides on the UGV to move closer to the target, and then flies to the target

to scan it. In Fig. 4.4(c), we create two targets, one for the UAV and the other for the UGV,

in the same sub-zone. Again, we navigated the coalition so the UGV and UAV could reach

their targets cooperatively. Fig. 4.4(d) is a scenario similar to the scenario in Fig. 4.4(c), but we

78

Figure 4.4: The scenarios that allow for collection of demonstration data τE: (a) a target (green
ball) within reachable height of the UGV, (b) a target reachable only by the UAV, (c) one target
each for the UAV and UGV to reach within the same sub-zone, (d) one target each for the UAV
and UGV to reach, but within different sub-zones.

place the two targets in different sub-zones. Note that the targets in each scenario are generated

randomly.

During this process, we manually controlled the coalition with some non-optimized strate-

gies. For example, we do not optimize the route when moving towards any target. For the

scenarios in Figs. 4.4(c) and 4.4(d), we do not consider the order of targets for optimizing

the moving trajectory. Thus, τE serves as an instructor that guides all agents to learn compli-

mentary behavior patterns rather than only copying the sample actions provided in the training

stage.

4.4.2 Experimental Results

Training Process Results

In the training process, the maximum number of steps, stmax, for one episode is 1×105, which

includes the steps of the UGV-UAV coalition. If the coalitions reach all of the targets, the

training episode is terminated immediately and the final reward is received. Otherwise, it will

79

keep tasking until stmax is reached. As a baseline scheme for performance comparison, we

implemented three existing models, including:

• the original GAIL model, termed GAIL, introduced in [119];

• the PPO model, termed PPO, presented in [140]; and

• a supervised learning method, termed BC (Behavior Cloning) from [117].

Moreover, to guarantee a fair comparison, we used the same training parameter (i.e., number

of targets achieved, learning rate, maximum number of steps, etc.) for the three approaches.

First, we conducted several experiments with five coalitions using the four models. As

shown in Fig. 6.6, the accumulated rewards of IADRL and PPO are convergent, while the

GAIL and BC curves do not converge. Obviously, compared to the other three algorithms, the

cumulative reward value of the IADRL approach is the highest and it is the most stable given

the same reward settings. This result is consistent with our preliminary theoretical conjecture

that GAIL only replicates the behaviors and policy offered by the demonstration dataset τE ,

rather than by the optimal policy for achieving higher rewards. Although the cumulative re-

ward obtained by the PPO model is high and convergent, it cannot successfully complete all

the cooperative tasks. This is because PPO is incapable of learning the complementary model

between the UGV and UAV. Fig. 4.6 shows that all episodes of the PPO model are termi-

nated when they reach the maximum number of steps, stmax = 105, and, thus, are incapable

of successfully reaching all the targets. The task completion rate for the PPO model is consis-

tently zero, indicating that the model is not able to provide an optimized policy that enables

the UGV-UAV coalition to complete tasks exploiting complementary cooperation. Therefore,

in the following section, we will not discuss the performance of PPO. Furthermore, Fig. 6.8

shows the training loss values during the training process. It is clear that the loss values of

IADRL, GAIL, and BC are significantly minimized after stmax = 105 steps are completed.

Note that every training episode will be terminated if all targets are reached before the

maximum number of steps are taken. Thus, the average steps to complete an episode varies

for each models. To compare the models and better present the training process, the results in

Figs. 6.6 and 6.8 are obtained with different numbers of steps for the models.

80

0 0.5 1 1.5 2 2.5 3

Moving Steps 10
6

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

C
u

m
u

la
ti

v
e

R
ew

ar
d

PPO

GAIL

IADRL

BC

Figure 4.5: Accumulated training rewards values for PPO, GAIL, IADRL, and BC methods.

0 100 200 300 400 500 600

Episodes

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

S
te

p
s

F
o
r

O
n
e

E
p
is

o
d
e

10
5

PPO

Figure 4.6: The number of steps taken before episodes are terminated for the PPO model.

Performance Analysis

To further prove the superiority of IADRL, we evaluate three additional indicators: (i) number

of collisions in one episode, (ii) steps needed for completing one episode, and (iii) the overall

task completion rate. Fig. 4.8 describes the task completion rate, denoted by ℜtask, for IADRL,

81

0 0.5 1 1.5 2 2.5 3

Moving Steps 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

T
ra

in
in

g
 L

o
ss

GAIL

IADRL

BC

Figure 4.7: Training loss values of GAIL, BC, and IADRL methods.

GAIL, and BC. We defined the task completion rate as:

ℜtask =
Nfailed

Ntotal

, (4.11)

where Nfailed is the number of episodes that the UGV-UAV coalitions fail to reach all targets,

and Ntotal is the total number of completed episodes. For our task setting, the key point towards

completing a mission is the complementary cooperation between UGVs and UAVs. Fig. 4.8

shows that the task completion rate ℜtask of IADRL quickly converges to 1, which indicates

that after it fails in the first several episodes, IADRL quickly learns the complementary model

from τE and succeeds in all the subsequent episodes. The three curves close to each other

illustrates that IADRL has a similar capability of learning a model from τE to that of GAIL and

BC, which are designed to directly replicate the policy from demonstration data.

To evaluate the efficiency of tasking, we compare the number of steps taken to reach all the

targets with these three schemes, and the results are presented in Fig. 4.9. Obviously, IADRL

achieves the given tasks within 600 steps for each episode, which is far less than the number of

steps GAIL and BC take given the same mission. Furthermore, the number of steps required

for IADRL training is much more sustainable than that of GAIL and BC, as it reaches the

82

0 200 400 600 800 1000 1200

Episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

le
ti

o
n

 R
at

e

GAIL

IADRL

BC

Figure 4.8: Task completion rate, ℜtask, for GAIL, BC, and IADRL methods.

0 200 400 600 800 1000 1200

Episodes

0

2

4

6

8

10

12

S
te

p
s

F
o

r
C

o
m

p
le

ti
n

g
 O

n
e

E
p

is
o

d
e

10
4

GAIL

IADRL

BC

Figure 4.9: Number of steps needed to complete each training episode using IADRL, GAIL,
and BC methods.

optimized policy within fewer episodes (around 200 training episodes). Furthermore, the BC

method not only uses the most steps to complete tasks, but even at the end of the training, no

convincing task completion strategies have been determined, as shown by the large fluctuations

at the tail end of the BC curve.

83

0 100 200 300 400 500 600

Episodes

0

500

1000

1500

C
o
ll

is
io

n
 T

im
es

GAIL

IADRL

BC

Figure 4.10: Total number of agent collisions with GAIL, BC, and IADRL methods.

Collision avoidance is a key factor when deploying UGV-UAV coalitions for many appli-

cations, and, therefore, the number of collisions for all agents is a critical gauge for measuring

the quality of our work. According to Fig. 4.10, GAIL and BC perform poorly when avoid-

ing collisions. To better present results, we limited the range of the y-axis to [0,1500]. In

the early training stages of GAIL and BC, there are many poor performance results, and some

even exceed 4000 times that of IADRL. After training convergence, the number of collisions of

IADRL for all agents in each episode is reduced to very low levels compared to that of GAIL

and BC.

Additionally, we plotted the total number of collisions, the number of UGV collisions, and

the number of UAV collisions in Fig. 4.11. As shown, UGVs experience the most collisions,

and the more vulnerable UAVs work safely in a majority of cases. This is consistent with our

initial design that the penalty for UGV collision is only half of that of a UAV’s, as established

in Table 4.1. Note that in real deployment scenarios, UGVs are more robust to collisions than

UAVs, as most UGVs are equipped with bumpers and bumper sensors that help them protect

against and avoid collision. Furthermore, UGVs utilize collisions to detect and navigate around

the surrounding environment (e.g., iRobot Roomba Vacuums).

84

0 100 200 300 400 500 600

Episodes

0

10

20

30

40

50

60

70

80

90

100

C
o
ll

is
io

n
 T

im
es

Total

UAV

UGV

Figure 4.11: A composition of the number of collisions by UAVs and UGVs using the IADRL
model, where the UGV collisions are dominant and UAV collisions are minimal.

After a further analysis, we find that the collisions are mainly caused by the sparse ob-

servation of UGV and UAV, as agents in IADRL are not able to detect obstacles and other

agents. Although this result is already acceptable for many real-world robotic applications, we

are confident that the addition of more sensory information to our system would allow for a

much better performance on avoiding collisions.

To illustrate the path planning performance of each scheme, we designed a simple test

with two targets, one located at (-5, -5, 5) and the other at (-5, -5, 1).1 The planned paths for

the three schemes obtained in five trials are plotted in Fig. 4.12. An optimized strategy for the

coalition would have the lowest cost associated with reaching both targets. The UAV should

ride on the UGV as close to the first target as possible, and then fly to reach the first target. The

UGV should then continue on to reach the second target. Due to the physical size differences

of UAVs and UGVs, we ploted their trajectories individually. For the trajectories generated by

IADRL, we can see that the initial parts of the red lines (UAV) are parallel to the blue lines

(UGV) because the UGV carries the UAV during this interval. The five lines for the UAV and

UGV are for each of the five trials. Obviously, the path planning of our proposed algorithm

1Otherwise, the planned paths would be hard to plot and see.

85

10

5

0

2

4

6

-5
-15

-10-10
-5

IADRL UAV

IADRL UGV

Imi UAV

Imi UGV

BC UAV

BC UGV

Task2(-5,-5,1)

Task1(-5,-5,5)

UGV Start

Point (-12,-12,1.5)

UAV Start

Point(-12,-12,3)

Figure 4.12: Planned paths for the UGV and UAV to reach two objects in five trials as computed
by IADRL, GAIL, and BC schemes.

enables the UGV-UAV coalition to reach targets with an optimized route at a greatly reduced

cost than that of GAIL or BC methods. Additionally, each IADRL planned route is almost

identical in every trial, further proof of its stable performance.

Robustness in Different Environments

The proposed IADRL scheme is robust to changes in the environment and can be directly de-

ployed in an environment different from where it was trained. As such, we train the model

in an environment similar to Fig. 6.5 and deploy it in a more complex environment shown in

Fig. 4.13. We add more obstacles, marked in red in Fig. 4.13, to simulate a warehouse with

higher obstacle density. The same UGV-UAV coalitions with the well-trained IADRL model

are deployed in this new environment to complete the same missions. We then compare the pre-

vious results with that in Fig. 6.5 using the three measurements introduced in the section 4.4.2.

To guarantee the credibility of comparison results, all parameters, including reward settings,

materials, and shape of agents, are kept identical in these two environments. In the rest of this

section, we will refer to the results of experiments in Fig. 4.13 as the “Complex Environment,”

whereas the result in Fig. 6.5 will be referred to as the “Simple Environment.”

86

Figure 4.13: A complex simulation environment representing a high-density warehouse.

0 100 200 300 400 500 600 700 800 900 1000

Episodes

0

20

40

60

80

100

120

C
o
ll

is
io

n
 T

im
es

Simple Envinronment

Complex Environment

Figure 4.14: Number of collisions in the simple and complex environments.

Fig. 4.14 depicts the number of collisions during the testing process. Even challenged

by higher environmental complexity, the number of collisions for each episode is only slightly

increased due to the increased complexity of the environment. We also note that there is only

a slight decrease in the accumulated reward values in the complex environment as compared

to the simple environment, as illustrated in Fig. 4.15. Additionally, we investigate the amount

of steps needed to complete the tasks in each episode. The results displayed in Fig. 4.16 show

that it takes about 200 more steps for the coalitions to accomplish all tasks in the complex

87

0 100 200 300 400 500 600 700 800 900 1000

Episodes

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

C
u
m

u
la

ti
v
e

R
ew

ar
d
s

Simple Envinronment

Complex Environment

Figure 4.15: Accumulated rewards in the simple and complex environments.

0 100 200 300 400 500 600 700 800 900 1000

Episodes

0

200

400

600

800

1000

1200

S
te

p
s

fo
r

C
o
m

p
le

ti
n
g
 O

n
e

E
p
is

o
d
e

Simple Envinronment

Complex Environment

Figure 4.16: Number of steps needed to complete one episode in the simple and complex
environments.

environment. These observations meet our expectations, as coalitions require more steps to

bypass extra obstacles in the complex environment, and, thus, have a higher step cost and a

decrease in accumulated rewards.

88

4.5 Conclusions

This paper presented IADRL, a novel method that enables UGVs and UAVs to form a coali-

tion for the complementary accomplishment of tasks that neither the UAV or UGV could not

complete independently. IADRL learns the complementary behavior features of the UGV-

UAV coalition from a demonstration dataset that can be readily collected from some simple

and imperfect settings alike. It also optimizes the strategy to achieve given goals with mini-

mum overall costs required to complete task in dynamic environments. We also extended the

IADRL model to facilitate the cooperation of multiple UGV-UAV coalitions deployed together

for complex tasks. The experimental results proved that the proposed IADRL approach was

effective for solving intricate tasks requiring heterogeneous agents to complement each other

in dynamic environments.

89

Chapter 5

RIRL: A Recurrent Imitation and Reinforcement Learning Method for Long-Horizon Robotic
Tasks

5.1 Introduction

With the considerable developments of deep learning methods in the past few years, reinforce-

ment learning (RL), a method that has been proposed for over 20 years [143], is equipped with

deep learning models and re-attracted the attention of academia and industry. It has been widely

deployed to lead intelligent agents to interact with an environment to maximize the obtained

cumulative rewards. Meanwhile, more and more robots are being deployed in various environ-

ments to accomplish tasks, such as inventory counting in retails and warehouses [2, 57]. In the

past few years, researchers have shown a growing interest in applying deep reinforcement learn-

ing (DRL) methods to enable robotic systems to task in complex environments. For example,

Kober et al. presented an automated meta-parameter acquirement for adjusting robots’ move-

ment by reinforcement learning [144]. The authors in [145] proposed a DRL-based motion

planner that generates linear and angular velocities directly for navigation without an existing

map. A model-based reinforcement learning framework for legged locomotion was introduced

in [146], which allows the learned model to generalize to new tasks without any fine-tuning or

using any extra collected data.

Currently, the RL methods applied to robotics could be roughly divided into two cate-

gories: traditional policy-based reinforcement learning and imitation learning methods. Some

RL-based algorithms only utilize the received rewards to gain an approximated optimal policy,

which makes them heavily rely on the effectiveness of the reward function [147, 148]. In [149],

the author proposed two new dense reward functions to learn robust strategy in path planning

90

tasks. The reward sketching method was proposed in [150] that extracts human preferences to

learn a reward function for a new task. However, manually designed reward functions that grat-

ify the desirable agent actions are extremely complicated and usually not feasible, especially

in the scenarios of dynamic and real environments with only sparse rewards. Moreover, even

an expert cannot accurately quantify the reward of every behavior for various agents. A prac-

tical solution for the problems above is imitation learning (IL). Instead of manually designing

a reward function, a set of well-prepared demonstrations provided by experts are followed and

imitated by agents to learn the optimal policy for given tasks. An imitation learning method

was introduced by Abbeel et al. in [151] to predict the agent’s actions from a set of demonstra-

tions and sequential states for another demonstration with different initial conditions. However,

the agent must consume over 100,000 demonstrations to learn a simple strategy for reacting to

different situations and initializations for the same task. Ho and Ermon proposed Generative

Adversarial Imitation Learning (GAIL) [119], which combined Generative Adversarial Net-

work(GAN) [138] with imitation learning. First, it trains the discriminator with the current

policy’s sampled data and expert data. Then, the discriminator plays the role of reward func-

tion to lead the agent to learn the optimal policy.

Long-horizon task planning is a challenging and open problem in robotics. Its complexity

grows exponentially with increased numbers of acting steps and sub-tasks [152]. In many of

these applications, the robotic agents need to execute a very large number of steps to reach

the goal in unseen environments, considering an autonomous robot patrolling, searching, and

retrieving objects in a giant unexplored building. In [153], the authors simplified the long-

horizon policy learning problem to a hierarchical and goal-conditioned policy, where the low-

level policy only requires a fixed, low number of steps to accomplish. Their simulation scenario

was based on a simple kitchen environment, where tasks can be executed with a short sequence

of discrete actions. Pitis et al. designed a strategy in that the agent pursues the maximization

of the entropy of the historically achieved goal distribution instead of inaccessible goals when

facing sparse extrinsic learning signals [154]. Similarly, in order to solve the sparse extrinsic

reward problem of long-horizon tasks, the authors in [155] incorporated demonstrations into

the RL method that is built on top of Deep Deterministic Policy Gradients (DDPG). They

91

focused on teaching agents to stack blocks with a robot arm by continuous multi-step control

and generalize to varying goal states. However, the multi-step behavior needs far fewer steps

for achieving the goal than in our target scenario, which requires thousands of operational steps

for a robot to accomplish the task.

In addition, the training samples impose one more challenge for deploying RL methods

in robotics. An RL-based method requires a great number of training samples. It may take

millions of steps of experience to learn a strategy for a simple task. It is a great challenge and

even infeasible to collect such a large amount of operational data in many robotic applications.

Although with IL methods, robots are able to learn a robust strategy with a small number of

expert demonstrations in short-term tasks, they still suffer from compounding errors and the

massive growth of expert demonstration demands when facing longer and more complicated

tasks. Some Pioneering works have exploited methods by combining the RL with demonstra-

tions to overcome this challenge. For instance, demonstrations are used to initialize policy and

accelerate training for reinforcement learning [156]. In addition to these challenges mentioned

above, we find an additional difficulty of key interest: the long-term dependency problem,

which some robotic tasks not only depend on the current observation but also rely on previous

observations.

In this paper, we present a novel method called Recurrent Imitation and Reinforcement

Learning (RIRL) to remedy the above limitations, which enables agents to leverage historical

observations as well as environment feedback for more accurate action prediction. Our method

exploits the robustness of Long Short-Term Memory(LSTM) in representing sequential infor-

mation and solving the long-range dependency problem in long-horizon tasks.

The rest of this paper is organized as follows. In Section 5.2, we present the proposed

approach. Our experimental study is discussed in Section 6.5. Section 6.6 concludes this

paper.

92

5.2 Proposed Approach

5.2.1 Problem Statement and Challenges

We are interested in large-scale, long-horizon robotic tasks that require an agent to take thou-

sands of steps to achieve the goal in unseen and dynamic environments. The problem can

be formulated as an Partially Observable Markov Decision Process (POMDP) denoted by

(S,A, R, T,O,Ω), where S and A are the state and action spaces, respectively; T (st+1|st, at)

is the state-transition probability for the agent to state st+1 given it was at state st and takes

action at; R(st, at) is the reward function to provide an instant reward rt = R(st, at); Ω is a

finite set of observations that the agent can experience of its world; O(ot|st) is the probability

for the agent to receive an observation ot while it is at state st.

In a practical robotic application, the state st of the environment is hidden from the agent.

Instead, it can only partially perceive the environment to attain an observation ot by built-in

sensors (e.g., cameras, sonar, LIDAR, etc.). Furthermore, to perform large-scale long-horizon

tasks, the action at at step t not only depends on the current observation ot, but also relies on

the historical observations o0, o1, ..., ot−1. We illustrate this long-range dependency problem in

Fig. 5.1, w here a robot is deployed for a patrolling task. It needs to patrol the area and cycle

around the two objects (A and B) to check the target features, e.g., to inspect the corrosion of

power poles or towers. As shown in Fig. 5.1(a), the robot at state st gains observation ot to

represent the surrounding environment (such as its distance to the objects). However, ot lacks

the information for a fully understanding of the environment, such as which area it has already

scanned. Based on the information from ot, it is difficult to correctly choose the subsequent

actions that could lead to a better navigational path. Fig. 5.1(b) and Fig. 5.1(c) illustrate that if

we know the historical information, the next actions could be easily made to enable the robot

with a better strategy to complete the task. Therefore, in the long-horizon task scenario, his-

torical observations provide valuable information for predicting the action at. However, most

of the existing RL based methods predict action a ∼ π(at|ot) only depending on the current

93

observation, making them perform badly in the above described scenario. Thus, we formu-

late the objective policy as π(at|Ot) to tackle the historical and instant observations, where

Ot = (o0, o1, ..., ot) represents a finite set including the historical and instant observations.

Our goal is to find such a policy π that maximizes the expected future discounted reward

Eπ[
∑T

t=0 γ
trt], where 0 ≤ γ < 1 is a discount factor. We adopt a value-action function

Qπ(at,Ot; θ) = Eπ[
∑T

t=0 γ
trt] to represent the above reward. Therefore, the goal of RIRL

is to learn a policy π and Qπ that empowers the agent to achieve stable maximum overall

rewards while performs various long-horizon tasks in dynamic environments. The objective

function is given by

argmax
a∼π

Qπ(at,Ot; θ), (5.1)

where θ serves as the parameter set of the value function Qπ; at ∼ A ∈ RN denotes an action

in a continuous space for the agent at time t; N is the dimension of the control space (usually,

N = 2 for a ground robotic agent). The complexity of gaining such an optimized policy π

grows exponentially with the increased amount of training data from historical observations.

It is challenging and even infeasible for a traditional DRL method to converge quickly in the

training processes for such tasks.

5.2.2 RIRL Network Architecture

The proposed RIRL is a model-free method that can learn a strategy from demonstrations to

tackle the long-horizon task and subsequently fine-tune this strategy through the interaction

with the environment for handling dynamics. As shown in Fig. 6.3, it deploys an architecture

based on an Imitation Learning (IL) augmented Deep Reinforcement Learning (DRL) net-

work that was introduced in [157]. The IL module adopts a Generative Adversarial Imitation

Learning (GAIL) [119] network enhanced with an LSTM layer to enable it with the recurrent

capability to retrain historical data and effectively learn the strategy from the demonstrations.

The recurrent enabled IL module is the key to overcome the complexity challenge discussed in

Section 5.2.1. The demonstration data provides a seed policy to greatly reduce the searching

94

Figure 5.1: A brief scenario illustrates the long-range dependency problem of long-horizon
robotic tasks: (a) the robot at state st, while two potential paths 2 and 3 are available; (b) if it
has moved from path 3 to state st, the next actions lead to path 2 is a better choice; (c) if it has
moved from path 2 to state st, the next actions lead to path 3 is a better choice.

space in the DRL training process to learn an optimized policy π. The DRL module is based

on the Proximal Policy Optimization (PPO) [140] and is also enhanced by an LSTM layer that

enables it to tackle both historical and instant data.

The IL and the DRL modules are marked in pink and green in Fig. 6.3, respectively. The

IL module helps to learn a seed strategy from demonstration data and subsequently augments

the training of the DRL module to build an optimized policy π to solve the long-dependency

problem in long-horizon tasks.

The LSTM Network

As mentioned before, the key to tackling the long-dependency problem is to incorporating

memory at the agent to exploit historical data for predicting actions. To this end, we adopt an

LSTM network [158] layer to both the IL and DRL module in our proposed RIRL. LSTM is

a popular Recurrent Neural Network (RNN) for effectively solving the long-term dependency

problem. The architecture of its basic cell unit is shown in Fig. 5.3. There are three control

gates: forget gate, input gate, and output gate. The forget gate determines which information

from the last cell state could still continue to pass through the current cell. The input gate con-

trols the new data to flow into the memory and update the cell state. The output gate selects

95

Figure 5.2: The architecture of the proposed RIRL method.

which part of the cell state can be exported as output. This structure helps to avoid the gradient

exploding or vanishing problems of traditional RNN models. It exploits the temporal informa-

tion of the observations by using the recursive hidden LSTM units. Important information over

a long time horizon is stored by non-linear gate units of the built-in memory cell in each LSTM

hidden unit. The last cell in the LSTM network outputs a vector ht, which contains extracted

features that not only include the information from the input data but also contain the important

information from long-term historical observations. The memory built-in features ht will be

treated as the input of the subsequent network units to allow the proposed RIRL to obtain an

optimized policy for tackling the long-dependency problem in long-horizon robotic tasks.

96

x +

Forget

Gate

x

tanh

Input

Gate x

tanh

Output

Gate

.

Figure 5.3: The LSTM struc-
ture.

Figure 5.4: Architecture of
Discriminator D.

Office

4756 sq. ft.

Officceee

4756 sq. ft.

Figure 5.5: Layout of the sim-
ulated apparel store.

The Recurrent IL Module

The backbone of the proposed IL module is based on the GAIL framework [119] that adopts a

network architecture developed from Generative Adversarial Network (GAN) [138]. It is com-

posed of two basic parts, a Discriminator D and a Generator G, which work in an adversarial

and cooperative manner of learning a strategy from a set of demonstration data. Discriminator

D is responsible for distinguishing the data produced by G from demonstration data, while both

D and G are simultaneously trained in an adversarial and competitive way. During the train-

ing process, Discriminator D will be wiser to tell the generated data while Generator G gains

more expertise in counterfeiting data. Eventually, the IL module converges when the generated

“fake” data from G could pretend as demonstration data and pass the detection of D. In our

proposed network architecture, Generator G is shared by the IL and the DRL module. It also

serves as the policy π of the DRL module; the terms Generator G and policy π are interchange-

ably in this paper. To enable the IL module with recurrent capability, we deploy an LSTM layer

to enhance both Discriminator D and Generator G.

The Recurrent Discriminator D

The recurrent enabled Discriminator D(at,Ot;ω) of the IL module evaluates the data based

on instant and historical observations to augment the process of predicting the next action.

The discriminator D : O × A → (0, 1) is a function with weight ω, where O and A are the

observation and action space, respectively. The Discriminator D model is shown in Fig. 5.4,

which is a fully connected LSTM layer followed by m hidden layers. The LSTM and each

hidden layer have the same number of units. The size of the input layer is decided by the

97

number of inputs. The LSTM layer maps the inputs to a feature vector ht, which also carries

the information from longer memories beyond the input vectors. Then the m fully connected

hidden layer will convert the memory built-in features ht to a score to measure the similarity of

input data and “expert” data. By deploying an LSTM layer, any actions at will be evaluated on a

large time scale to consider its performance for the long-horizon task. To train the Discriminator

D, we update and maximize the following value function, which is derived from the objective

function of the GAIL network:

V(ω) = Eπ[log(1−D(at,Ot;ω))] +

Eπe [log(D(at,Ot;ω))]− λH(π), (5.2)

where πe refers to the “expert” policy provided by a demonstration dataset, which provides

seeds for subsequently training of the optimized policy π. Although referred as “expert,” it is

not a perfect policy the agent should take under any circumstance. In (6.3), πe is collected by

manipulating in several sample scenarios by manual settings with primitive strategies, which

can only allow the agent to complete the long-horizon task in a non-optimized manner. H(π)

denotes the causal entropy of π and is defined as H(π)
.
= Eπ[− log π(at|Ot)]. It serves as a

policy regulator. It encourages the exploration behaviors and lets the learned strategy to be as

random as possible while optimizing the objective, instead of quickly greedily converging to a

local optimum. λ ⩾ 0 is the discount weight of H . The Discriminator D is updated to improve

its ability to tell the similarity of a policy with expert data by increasing V(ω). A well-trained

D provides a higher score if the given data is more similar to the demonstrations. Therefore, by

coordinating with Generator G, the actions similar to the one provided in the demonstrations

will get a higher selection rate. This way, the search space for the subsequent training can be

narrowed to close to the seed behaviors and quickly converge to an optimized policy π.

The Recurrent DRL Module

In the proposed RIRL, the IL module could effectively learn a seed policy by imitating the

behaviors from the demonstration dataset. This seed policy requires fine-tuning to allow the

98

agent to engage with a dynamic environment. Therefore, we deployed a DRL module to learn

an optimized policy π by interacting with the dynamic and complex environment.

The DRL module is based on a PPO network and has an actor-critic architecture to exploit

the environment with a continuous action space. It consists of an actor representing policy

π and a critic shown as the value function Qπ. The policy π is responsible for generating the

action, at, based on given observations o. The value function Qπ processes the received rewards

and evaluates the current action prescribed by policy π. As shown in Fig. 6.3, we implement

these two components with two neural networks embedded with an LSTM layer for referencing

historical observations recurrently. The architectures of these two neural networks are similar

to that shown in Fig. 5.4, except for the number of layers. Let Nπ and NQ be the numbers of

hidden layers for the actor and critic network, respectively. Each hidden layer has the same

number of units. The size of the input layer is decided by the input vector dimension. The size

of the generated action at determines the final output layer size of the actor.

The goal of training the DRL network is to maximize the value function Qπ for a given

policy π, i.e.,

Qπ(at,Ot; θ) = E[rcp(ot, at)+γEat+1∼π[Qπ(at+1,Ot+1)]], (5.3)

where θ represents the parameter of the value function Qπ, γ is the discount factor for future

reward, rcp is a compound reward that consists of reward from the IL module and the extrinsic

reward while interacting with the environment, i.e.,

rcp(ot, at) = µ · rex(ot, at) + (1− µ) · rim(ot, at), (5.4)

where µ ∈ (0, 1) is a proportion parameter: a smaller µ will be implemented if the demon-

stration data is closer to the optimal policy. It helps the learning process to trade-off between

demonstration data and engagement of the environment. In (6.5), rim = log(D(at,Ot;ω)) is

the reward that comes from the IL module, measuring how similar the action at is with the

“expert policy” from demonstrations. The extrinsic rewards rex is provided as a sparse function

99

to represent the basic constraints and rules for the agent to interact with the environment and

guide it to the desired goals. For example, we can give a penalty if the agent collides with an

object in the environment and a positive reward if it reaches a goal position.

During the training process, policy π will be updated to choose the actions at to increase

Qπ by gaining a larger rex and rim. From (6.3), (5.3), and (6.5), increasing rim by updating

policy π, which also acts as the generator of the IL module, will decrease the value of V(ω).

Together with the training of the discriminator in the IL module, which tends to maximize

V(ω), the competitive processes end up with a policy π that roots with the strategies provided

in the demonstration data. Furthermore, increasing extrinsic rewards rex will eventually lead the

trained policy π to react to the environment with a better strategy. The built-in LSTM layers

in the components of policy π, value function Qπ, and Discriminator D enhance the agent

with memories for action predicting and evaluation. Therefore, the proposed RIRL provides

an effective means to train an optimized policy π for long-horizon tasks, especially for the

scenarios that require long-term memories.

5.3 Experimental Study

5.3.1 Experiment Setup

We deploy the proposed RIRL system in a simulated environment using the Unity3D platform

to simulate an application of deploying a mobile robot for RFID-based inventory in an apparel

store, which is the same scenario as in [2]. As shown in Fig. 5.5, we create a four-wall enclosed

environment to simulate an apparel store of dimension 50×50m2, which is crowded with racks

(represented by blue circles) and obstacles (e.g., furniture). RFID tagged items are hosted

on the racks. A simulated robotic agent is deployed to patrol the area to scan all the RFID

tags. The positions of racks and the agent are randomly generated inside the room at the

beginning of each episode. The agent simulates an RFID-enabled mobile robot controlled by

action at = (vt, ϕt), where vt ∈ [−vmax, vmax] represents the linear speed, while vmax is the

maximum linear velocity, and ϕt ∈ [−ϕmax, ϕmax] denotes the rotation speed, while ϕmax is

the maximum rotation velocity.

100

The task of the agent is to scan all the RFID tags in the room with the shortest trajectory.

The number of agent collisions is also considered as one of the criteria for measuring the

quality of training results. The robotic agent is equipped with two sensors, a ray-cast sensor

and a simulated RFID reader to collect observations. Unity3D provides the ray-cast sensor to

simulate a widely deployed Lidar sensor. It detects the surrounding environment by casting rays

and outputs a vector with the detected objects and the corresponding distances. We design a

simulated RFID reader for the agent to mimic the characteristics of practical RFID applications.

For example, it can only scan the tags within a detectable range, and the probability of reading

a tag decreases as the distance between the reader and a tag increases.

The RIRL network is implemented with Tensorflow on a computer with an Intel 9900K

CPU and two Nvidia 2080 GPUs. We conducted all our experiments with the same network:

Discriminator D is implemented with one LSTM layer and two fully connected hidden layers,

where each layer has 128 units. For the DRL network module, both the value function Qπ and

policy π consist of an LSTM layer with 128 units and three hidden layers each with 512 units.

In the experiments, the robotic agent will be deployed in the simulated apparel store, while its

initial position is randomly generated at each episode.

5.3.2 Results and Analysis

We compare the proposed RIRL with three existing methods: the PPO network introduced

in [140], the GAIL proposed by [119], and the IADRL scheme [157] that is an RL and IL com-

bined method without the LSTM layers. We use the same basic reward settings and training

parameters in the same environment set for these four approaches to guarantee a fair com-

parison. Fig. 5.6 plots the cumulative rewards acquired by the agent when it interacts with the

environment. We only set several basic and sparse reward configurations: scanning a new RFID

tag gains +10 rewards, collision results in a -1 punishment, and moving costs -0.001 for each

step. Obviously, our approach, shown as the red solid line in Fig. 5.6, achieves the best reward

in the training process, which is higher and more stable compared to the other three methods.

Fig. 5.7 presents the number of steps for finishing the tag scanning task in each episode.

We set a maximum number of 20,000 steps for each training episode that aims to decrease the

101

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Training Steps 10

6

-20

-10

0

10

20

30

40

50

C
u

m
u

la
ti

v
e

R
ew

ar
d

IADRL

RIRL

GAIL

PPO

Figure 5.6: Accumulated training rewards values

0 50 100 150 200 250
Episodes

0

0.5

1

1.5

2

S
te

p
s

fo
r

C
o

m
p

le
ti

n
g

 O
n

e
E

p
is

o
d

e

10
4

IADRL

RIRL

GAIL

PPO

Figure 5.7: The number of steps for finishing tag scanning task

unnecessarily long training time. The red solid line depicts that our method result stabilizes

after around 200 episodes. The agent implemented with RIRL could stably and consistently

handle the given tasks within 2,000 steps. Apparently, as shown in Fig. 5.7, the other three

methods cannot even converge with the same training process, indicating that the agent is un-

able to find a reliable strategy to accomplish the given task.

Fig. 6.9 presents the cumulative distribution function (CDF) of the percentage of un-

scanned tags in the testing stage. We test all the four trained models in 200 episodes within

102

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentage of Unscanned Tags

0

0.2

0.4

0.6

0.8

1

C
D

F

IADRL

RIRL

GAIL

PPO

Figure 5.8: CDF of percentage of unscanned tags in total

the required 20,000 steps. Fig. 6.9 shows that in about 96% of the episodes, the proposed RIRL

model scans all the tags, while the IADRL scans all the tags in about 55% of the episodes. Ob-

viously, the GAIL and PPO model cannot even scan all the tags in an episode. Moreover, RIRL

attains a maximum unscanned tag percentage of 28.2%, which is much lower than the almost

90% missing rate achieved by the other three methods. Apparently, the proposed RIRL ex-

hibits considerably higher effectiveness and robustness for such long-horizon tasks in dynamic

environments.

The experiments validate that our proposed RIRL outperforms the three benchmark ap-

proaches. It help the agent to accomplish the long-horizon tag scanning task with high effi-

ciency and robustness. Moreover, it proves the feasibility of utilizing the LSTM network to

enhance the agent performance by leveraging historical observations.

5.4 Conclusion

In this paper, we proposed RIRL, a deep recurrent imitation and reinforcement learning-based

system, which enables agents to accomplish long-horizon tasks in dynamic and complicated

environments. We also experimentally validated the feasibility of embedding an LSTM layer

in the traditional IL and DRL methods. The outstanding result achieved by our method proved

103

the effectiveness of leveraging history observations for enhancing RIRL to solve the long-range

dependency problem in various long-horizon robotic tasks.

104

Chapter 6

SRRL: Multi-state-space Reasoning Reinforcement Learning for Long-horizon RFID-based
Robotic Searching and Planning Tasks

6.1 Introduction

Robotic task planning over long-time horizons, including navigation, path planning, tasks allo-

cation, etc., has been a challenging, relevant, and hot topic in robotics since the last century. As

the numbers of acting steps and subtasks are increased, so does the complexity. Many of these

applications require robotic agents to complete a huge number of steps in unknown surround-

ings, such as an autonomous robot patrolling, searching, and recovering things in a massive

uncharted structure. Robots are being used increasingly in various environments to perform

activities, such as inventory counting in retail stores and warehouses [2, 57, 159]. In [153], the

authors reduced the long-horizon policy learning problem to finding a hierarchical and goal-

conditioned policy, in which the low-level policy takes only a fixed, small number of steps to

complete. They used a kitchen as a simulation environment consisting of short sequences of

discrete actions for completing tasks.

Meanwhile, Simultaneously Localization and Mapping (SLAM), first proposed by Durrant-

Whyte in [160], is a method commonly used in numerous map-based path planning algo-

rithms [161, 162]. SLAM allows the robot to start from an unknown position in an unknown

environment, determine its own position and posture by repeatedly observing the character-

istics of the environment during movement, and then draw an incremental surrounding envi-

ronment map based on the position of the surrounding environment. The authors introduced a

path planning algorithm paired with active SLAM in [162] that may continually increase the

localization accuracy without disrupting the main task. The goal is to deal with the dynamic

105

changes in the environment, such as shifting obstacles and localizations that may arise while

the robot is moving. However, once the environment has been altered significantly, map-based

algorithms usually require to rebuild the map in the testing stage, which is unquestionably a

time-consuming and difficult process.

Reinforcement learning (RL), a method that has been proposed for more than two decades,

is now equipped with deep learning models and has re-attracted the attention of academia and

industry [143, 163]. It has been frequently utilized to direct intelligent agents to interact with

an environment so as to optimize their accumulated benefits. In recent years, academics have

shown an increasing interest in adopting deep reinforcement learning (DRL) to enable robotic

systems to function in complicated situations. In contrast to the map-based methods, the opti-

mal policy trained by RL methods does not need a pre-built obstacle map or intensive environ-

ment features. For instance, an automated meta-parameter acquisition for altering robot move-

ment via reinforcement learning was proposed in [144]. Kim and Pineau in [164] described a

framework for socially adaptable path planning in dynamic environments that includes a feature

extraction module, inverse reinforcement learning, and path planning module.

In terms of the application of DRL in long-horizon robotic tasks, when confronted with

scarce extrinsic learning inputs, Pitis et al. [154] proposed a method in which the agent aims to

maximize the entropy of the historically attained goal distribution rather than inaccessible ob-

jectives. Likewise, the authors of [155] included examples in the RL approach that is based on

Deep Deterministic Policy Gradients in order to overcome the sparse extrinsic reward problem

of long-horizon tasks (DDPG). The focus was placed on instructing agents to stack blocks with

a robot arm using continuous multi-step control and generalization of goal states. Nevertheless,

in comparison to our target scenario, this introduced multi-step behavior requires considerably

less steps to achieve the goal. Many RL-based algorithms rely solely on the received exter-

nal rewards to arrive at an approximated optimal policy, making them particularly reliant on

the effectiveness of the reward function. Meanwhile, hand-crafted reward functions that ful-

fill the desired agent behaviors are exceedingly complex and typically infeasible, especially in

dynamic, real-world contexts with sparse rewards. Furthermore, even an expert cannot pre-

cisely measure the payoff for each and every agent’s behavior. For some tasks, the robots are

106

required to handle observations from multiple types of sensors and fuse the different observa-

tions to find optimized actions. The relations among the multiple observed spaces are usually

intangible and implicit. It imposes additional challenges to DRL-based methods because the

complexity to explore multiple spaces will be increased exponentially.

To address these issues, this paper proposes an approach of Multiple State Spaces Fusion

and Reasoning Reinforcement Learning (SRRL), a novel method that allows the agent to ab-

stract features and infer policy from multiple state spaces. Basically, we consider the robotic

applications where a robot is used to scan the RFID tags in an unknown area (e.g., an apparel

store or inventory area). Two state spaces are considered in SRRL: one for environment oc-

cupancy observations and the other for RFID sensing. An RFID reader, carried by the robot,

transmits radio signals to interrogate RFID tags, and the surrounding radio intensity map de-

termines the probability of tags being scanned. Generally speaking, the chance of tags being

scanned diminishes steadily as the distance to the reader is increased. We record the approx-

imated radio map while the agent moves and convert it into an image. Additionally, through

the observations from a spinning Light Detection and Ranging (Lidar) sensor, we also built a

gray-scale 2-D environment occupation map of the physical world. These two maps serve as

the foundation of our multiple state spaces. We aim to let the agent learn abstract reasoning

by continuously fed with multiple states during the process of solving long-horizon tasks in a

dynamic and previously unknown environment.

The remainder of this paper is organized as follows. In Section 6.2, we introduce the

related works. We then present the preliminaries and motivation in Section 6.3. The SRRL

system design is described in Section 6.4. Our experimental study is presented in Section 6.5.

Section 6.6 concludes this paper.

6.2 Related Work

Artificial General Intelligence (AGI) refers to the capacity of models or agents to behave like

humans with cognitive abilities to comprehend and learn any intellectual job. With the rapid

advances in deep learning, AGI has attracted increasing interest in the community. Briefly

speaking, it is to solve tasks as human thinking, called the reasoning ability. This is a fairly

107

broad idea, but it is essential to people’s daily life. For example, image recognition is a form

of reasoning, although being one that is quite straightforward and more like prediction. Deep

Learning has basically solved this type of prediction problems, and thus the next step is to

handle more complex and more challenging reasoning problems. Here is a simple analogy to

illustrate why reasoning is more complicated than prediction. Given all the necessary ingre-

dients, including flour, sugar, eggs, yeast, utensils, cookware, and a set of instructions, then,

baking a cake is just a matter of determining the correct proportions of each component by

trial and error. This is identical to what conventional deep learning accomplishes, after several

rounds of forward pass and backward weight updates, to identify the optimal parameter set to

ensure high prediction accuracy. But imagine the case that one is merely provided with the raw

materials and cooking utensils. In such a circumstance, one cannot bake bread by just placing

flour in the oven, but also need to follow a series of correct procedures and use exact amounts

of material, which is of an entirely different level of complexity.

6.2.1 Reasoning in Deep Learning

Deep learning has been highly effective in extracting useful representations from vast amounts

of data. It creates possibilities to query and consciously reason about the extracted represen-

tations to develop understanding. Through a sequence of mathematical manipulations of the

available information, reasoning machines may arrive at a conclusion about a new set of factors

in response to a query. In recent years, an increasing body of research has focused on incorpo-

rating new types of inductive biases into deep neural networks in order to facilitate deliberative

reasoning [165, 166, 167, 168], hence pushing deep learning systems towards the thinking

mode. In [169], the authors illustrated a learning-to-reason framework, where reasoning is

framed as a classification job in which it is necessary to assess if the knowledge base contains

a conclusion. It leverages neural networks to execute a number of essential functions, such as

abstraction, concept binding, attention [170], causal interplay estimation, and composition.

Moreover, some researchers have shown that the reasoning process is intricately tied to

efforts on neural memories [171, 172], which is an intellectual capacity for memorizing, re-

covering, altering information, and simulating unobserved situations. Grave et al. [173], for

108

instance, developed a model consisting of a neural network that can read and write to an ex-

ternal memory matrix, akin to the random-access memory of a conventional computer. The

model can utilize its memory to represent and manipulate complicated data structures like a

conventional computer, while memory is a collection of slots connected to a neural network

for storing intermediate outcomes or data. The authors in [172] utilized a unique memory to

store controller weights, similar to the stored-program memory in contemporary computer ar-

chitectures, where sub-programs are collected and stored, and to be leveraged to generate new

programs on-the-fly based on a query. Despite the recent enormous advances in reasoning in

deep learning, there are still many challenges, such as weak generalization. In addition, discov-

ering and understanding the association between data pattern and query is crucial to its success.

Therefore, reasoning tends to be particular to data patterns, resulting in inadequate systematic

generalization ability.

6.2.2 Reasoning in Robotics

In addition to the above mentioned transition from deep learning to deep reasoning, the de-

mands and applications of reasoning in the area of robotics are also becoming research hot

spots, which is called cognitive robotics. This is the study of knowledge representation and

reasoning posed by an autonomous robot (or, agent) in a dynamic and partially observable

environment. For instance, combining robotic tasks with visual reasoning is quite prevalent.

In [174], the authors showed that the Convolutional Neural Networks (CNNs) are unable to

identify complicated attribute patterns within or across rows/columns of Raven’s Progressive

Matrices (RPM), since they rely solely on relation extraction at the matrix level. Therefore,

inspired by human induction strategies, the introduced method extracts several coarse rules

embedding at different levels, including cell-wise, individual-wise, and ecological embedding,

from the two rows/columns provided. It deploys different levels of reasoning on different net-

work components. The authors in [175] proposed a graph framework called Continuous Scene

Representations (CSR), consisting of sets of nodes and edges, for capturing feature relation-

ships among items. Nodes and edges in the form of continuous vectors of a graph are all

109

represented by a learnt feature. It firstly uses a Faster Region Based Convolutional Neural Net-

works (R-CNN) model to detect and segment nodes. A match function will provide a score for

all features between the global and local scene graphs for updating purposes, including object

nodes and related features. Edges are averaged into the representation if a new relationship is

observed; otherwise, they are added to the representation.

With the rise in popularity of DRL in recent years, the combination of reasoning and DRL

has also produced several innovative works [176, 177, 178]. An end-to-end DRL framework

that combines the feature abstraction ability and Q-learning was presented in [177] to iden-

tify features in natural scenes that represent a particular event or interaction and then discover

the relationship among the features in the form of generalized rules. This was motivated by

the fact that humans can closely approximate rules, which are set by social norms or the goal

of interaction, simply by observing several instances of the interaction. The proposed method,

termed as Staged Social Behavior Learning (SBBL) in [178], is focused on using DRL in social

human-robot interaction. This study employs a technique for learning a mapping between input

pictures and reduced low-dimensional state representations. In this study, the authors focused

on the first two steps required for a robot to acquire behaviors for approaching small groups.

Additionally, several recent studies concentrate on merging knowledge graph reasoning with

DRL in order to infer the required entity from the entities and relations currently present in the

knowledge graph. The authors in [179] built a relational module that may be considered as a

universal plug-in for a reasoning framework, with a self-attention mechanism that repeatedly

infers the relations between things to steer a model-free strategy. The proposed model was

shown to increase the efficiency and comprehensibility of conventional approaches through

structure perception and relational reasoning. However, these prior studies rely solely on ob-

servations as the state space. In contrast, our proposed method decodes characteristic features

from reasoning across a large number of independent state spaces.

6.3 Preliminaries

In this paper, we focus on large-scale, long-horizontal robot tasking in unknown and dynamic

environments. We enable the robot with the reasoning ability by learning the correlation across

110

(a) Step 0 (b) Step 500 (c) Step 2000 (d) Step 4000

Figure 6.1: The environment occupation map after different steps.

multiple state spaces. In this paper, we consider the application scenario where an agent carries

an RFID reader to swiftly and safely scan the RFID tags on all the racks in a retail store or

warehouse. There are two particular goals for this agent. The first is to identify the racks

as target points from the environment occupation map created by Lidar sensors quickly and

efficiently. The second is to employ RFID radio signals to cover the target points as rapidly as

possible. The key point for solving such long-horizontal robotic tasks is the agent’s ability to

fuse and reason with multiple state spaces.

6.3.1 Multi-state-spaces Feature Extraction and Reasoning

Environment Occupation State Space SL

In our project, we use occupation maps to represent the objects in a physical environment. An

occupation map can be incrementally created from the observations of a robot. As depicted in

Fig. 6.1, a Lidar sensor is deployed to continuously scan the surrounding space, aligned with

the agent’s motion, in order to construct a map including information on the environmental

layout. Each subplot in Fig. 6.1 describes the environment that the agent partially observed

at the moment, where the white area represents the observed free zone and the black area

represents the occupied or unknown portion of the space. We build this occupation map at each

step and use a set of maps to represent the environment occupation state space, denoted as SL.

111

(a) Step 0 (b) Step 500 (c) Step 2000 (d) Step 4000

Figure 6.2: The RFID sensing radio map after different steps.

RFID Sensing State Space SR

The proposed system also requires tackling a secondary state space that is created by the wire-

less signals from the robot’s built-in RFID reader. To more precisely define the state space, we

resort to the RFID model of fixed radio frequency (RF) transmit power, P (ot|x, dt), proposed

in [57]. The model calculates the probability that an RFID reader’s antenna is located at dt,

and measures an observation ot of a tag that is located at x. Fig. 6.2 illustrates the expansion

of the RFID radio map while the agent explores the unknown space. As shown in Fig. 6.2a,

RFID sensing has a limited range. The smaller the range, the greater the possibility of reading

an RFID tag close by (as indicated by the brighter point in the figure). Obviously, if the agent

has remained stationary for an extended period of time, the coverage of RF sensing will not

vary, and the likelihood of reading tags within the range will be close to one hundred percent.

Consequently, our objective is to enable the agent to gradually learn the environment, so that

the areas around the target can be more efficiently covered by RF sensing. This is obviously

a long-horizon robotic task. Similar to the environment occupancy state space SL, the RFID

sensing state space SR is defined by a series of RFID radio maps with the same size.

Feature Decoding By Deep Convolutional Neural Networks (DCNN)

The DCNN model consists of multiple convolutional and sub-sampling layers and one or more

fully linked layers. It makes use of local correlations by sharing the same weights among

neurons in adjacent layers, hence saving training time. DCNN is also capable of extracting

local dependency and scale-invariant characteristics from input data. Importantly, it can derive

112

richer abstract representations of the input image data from the lower layers to the upper layers

of the hierarchical design.

Following is a description of DCNN’s primary components. Using linear convolutional

filters followed by nonlinear activation functions, the convolutional layer can extract local fea-

ture maps from the previous layer’s feature maps. Let µi
n be the nth feature decoding in layer

i, defined as

µi
n = σ

 ∑
m∈Li−1

wi
nm ∗ µi−1

m + bin

 , (6.1)

where σ(t) = 1
1+exp(−t)

represents the sigmoid function; Si−1 is the set of feature maps in layer

(i− 1) connected to the current feature map; wi
nm denotes the convolutional kernel to generate

the nth feature decoding in layer i; µi−1
m represents the feature decoding of the last layer; and

bin is the bias of the nth feature decoding in layer i.

Since the input contains two maps per step, following the convolutional layer is typi-

cally a pooling layer, which decreases the size of the activation map and reduces the com-

putational cost. From a small region termed a pooling window, the pooling layer picks the

maximum of a representative feature. Furthermore, as previously stated, all state spaces have a

fixed-length observation, leading to the adoption of two LSTM layers after the DCNN output.

The goal is to improve the agent’s ability to utilize historical data derived from extracted fea-

tures. In summary, the reasoning ability derived from multiple state spaces could be written as

Rt(µsL , µsR ;ϕ), where ϕ represents the parameter set of the network of multiple state spaces

feature decoding and reasoning; µsL and µsR denote the encoded features of the state spaces SL

and SR, respectively.

6.3.2 Reinforcement Learning

Motivated by the Partially Observable Markov Decision Process (POMDP), this problem could

be described by (ε,S, A, T,R), where ε represents the environment the agent interacts with;

S = (SL, SR) is the joint partially observed state space that consists of two state spaces with

different dimensions and meanings: the real-time obstacle map SM created by Lidar sensors,

113

and the RFID sensing signal state space SR; A = (a1, a2, ..., at) denotes the set of all available

actions; T (st+1|st, at) is the state-transition probability from state st to state st+1 if the agent

is in state st and performs action at. The reward function R(st, at) provides a present reward

given by rt = R(st, at).

The purpose of our method is to discover a policy π(at|Rt) that maximizes the predicted

future discounted reward Eπ[
∑T

t=0 γ
trt], where 0 ≤ γ < 1 is a discount factor. This reward

is formulated as the value-action function: Qπ(Rt, at; θ, ϕ). Accordingly, the objective of our

method is to identify a policy π and Qπ that enables the agent to attain reliable maximum

overall rewards while carrying out a variety of long-horizon robotic searching and planning

tasks in dynamic environments, which is defined as

argmax
a∼π

Qπ(Rt, at; θ, ϕ), (6.2)

where θ and ϕ serve as the parameter sets of the value function Qπ and the reasoning module,

respectively. Note that Rt is the output of the reasoning module described above. Rt extracts

the latent relations from multiple state spaces; it also provides an abstracted presentation of ob-

servations, which are sampled from multiple state spaces. Thus, Rt will be deployed to reduce

the searching space of the subsequent training processing and retain the latent information in

and among all state spaces. Developing such an optimal policy becomes exponentially more

difficult as the quantity of training data derived from past observations increases.1 A stan-

dard DRL technique may or may not be capable of achieving rapid convergence in the training

stages. Still, it cannot even accomplish such long-term tasks without the reasoning ability.

1The complexity of a DRL-based method is determined by the size of its state space and action space. In our
work, the number of fetches will increase exponentially with the precision, and the number of actions will grow
exponentially with the increase in degrees of freedom. Moreover, in long horizon tasks, historical information
is needed for better motion planning, which also increases the size of the state space. Finally, the computational
complexity in dynamic environments is hard to quantify but does exist for DRL-based algorithms. The changing
environment makes it impossible for the agent to use the successful experience of the previous round directly but
requires it to be able to reason and generalize.

114

Figure 6.3: The architecture of the proposed method.

6.4 Overview of the Proposed System

Our proposed model can infer the optimal policy for long-horizon robotic searching and plan-

ning tasks from the latent interconnections of many distinct dimensional state spaces. Sub-

sequently, this policy is optimized through interactions with the environment and data from

manually provided demonstration data. As depicted in Fig. 6.3, the model consists of three

parts: (i) the Relational Reasoning module, (ii) the Imitation Learning (IL) module, and (iii)

the DRL module [157]. Additionally, all the networks are reinforced with an LSTM layer to

retain historical data in a recurrent manner. In Fig. 6.3, the IL module and DRL module are

marked by the red and blue dotted boxes, respectively.

The basic IL module utilizes Generative Adversarial Imitation Learning (GAIL) [119], so

that agents can successfully adapt their strategies based on demonstrations. The recurrently

enabled IL module is utilized to address the barrier of complexity by giving a seed policy

115

through the demonstration data to considerably reduce the searching space for the DRL to learn

an optimal policy. The DRL module is based on Proximal Policy Optimization (PPO) [140]

and is augmented with an LSTM layer that enables it to deal with both historical and present

data.

6.4.1 The Multi-state-space Fusion and Reasoning Module

The reasoning module, discussed in Section 6.3.1, including the construction of multiple state

spaces and feature decoding and reasoning, is the key to explore the environment for scanning

RFID tags. In our case, there are two state spaces: one reflects the observation of the actual real

world, and the other represents the property of the RF signal space, which varies in response to

the agent’s motion. Their underlying link is difficult to quantify or establish directly, yet it is

crucial for efficiently completing long-horizon robotic searching and planning tasks. The output

of the reasoning module is not only the extracted features containing historical information, but

also the reasoning ability generalized from these implicit connections, which can help the agent

choose actions more quickly and rationally, so as to be as close as possible to the capacity of

humans to record expert demonstrations under fully observed conditions.

6.4.2 The Recurrent IL Module

The proposed IL module incorporates the GAIL framework [119], which employs a network

design derived from the Generative Adversarial Network (GAN) [138]. It comes with two fun-

damental components, a Discriminator D and a Generator G, which learns a strategy from a

set of demonstration data in an adversarial and cooperative way, respectively. The Discrimi-

nator D is capable of identifying G’s data from demonstration data, while both D and G are

concurrently taught in a competitive and adversarial manner. During the training stage, Dis-

criminator D will become more adept at identifying created data, while Generator G will be

much more proficient at forging data. The IL module eventually converges when the gener-

ated “fake” data from G can masquerade as demonstration data and survive D’s verification.

Generator G is shared by the IL and DRL modules in our network design. It also functions

as the DRL module’s policy. Note that the concept Generator G and policy π are thought to

116

be interchangeable in this work. In other words, the policy π serves two functions: it not only

creates actions based on the distribution of “expert” data, but also is responsible to react to

the environment with an improved approach. The policy π will be thoroughly discussed in

Section 6.4.3 when we present the DRL network. In this section, we just look at the imitation

network’s discriminator D(at,Rt;ω, ϕ).

As previously stated, we employ an LSTM layer to augment both Discriminator D and

Generator G in order to supply recurrent capabilities to the IL module. The recurrence-enabled

Discriminator D(at,Rt;ω, ϕ) assesses data based on real-time and historical data to improve

the process of forecasting the next action. D : R × A 7→ (0, 1) is a function with weights,

where R and A represent the combination of the extracted correlations of multiple state spaces

and action spaces, accordingly. Fig. 6.4 illustrates the structure of the Discriminator, which is

composed of a fully connected LSTM layer followed by m hidden layers with same amount

of units. During the training stage, the discriminator D can be enhanced by optimizing the

following value function:

V(ω) = Eπ[log(1−D(at,Rt;ω, ϕ))] +

EπE
[log(D(at,Rt;ω, ϕ))]− λH(π), (6.3)

where τ represents the “expert” policy given by a demonstration dataset, which serves as a seed

for later training of the optimized policy. It is not a perfect policy, but based on a few sample

instances in controlled circumstances navigated by manual control and is thus regarded as “ex-

pert.” In (6.3), πE is gathered by handling multiple sample scenarios with manual settings and

basic methods, which can only allow the agent to execute long-horizon robotic searching and

planning tasks in a sub-optimal approach. H(π) is defined as H(π) ≡ Eπ[− log π(at|Rt)] and

indicates the causal entropy of policy and work as policy regulator. It also fosters exploratory

behavior and allows the learned approach to remain as random as feasible while achieving the

goal, rather than fast mindlessly converging to a local optimal. λ ⩾ 0 denotes the discount

weight of H . V(ω) is increased to improve the Discriminator’s capacity to compare a policy’s

resemblance to the “expert” data. When it generates a lower value for a particular action at, it

117

Figure 6.4: The architecture of the Discriminator.

suggests that the probability of action at is greater based on “expert” data, hence exhibiting a

greater capacity for reasoning across various state spaces.

6.4.3 The Recurrent DRL Module

In our framework, the IL module could successfully acquire a seed policy by emulating the

behaviors from demonstration datasets. To allow the agent to interact with a dynamic environ-

ment, this seed policy must be fine-tuned. To this end, we set up a DRL module to interact

with the dynamic and complicated environment to develop an optimal policy π. This module is

based on a PPO network [140] and is composed of two different components: actor π and critic

as value function Qπ. The actor π is responsible for generating action at based on the relational

observations Rt. The above-mentioned relational reasoning module learns this by extracting

correlations of a finite set of multiple state spaces data. The value function Qπ assesses the

current action generated from the actor by processing the received rewards and evaluates.

Ultimately, the goal of training the DRL network is to maximize the value function Qπ

defined in (6.2) for a given policy π, as

Qπ(Rt, at; θ, ϕ) = E[ren(Rt, at) + γEat+1∼π[Qπ(Rt+1, at+1)]], (6.4)

where θ and ϕ are the parameters of the value function Qπ and the relational reasoning module,

respectively, γ represents the discount factor for future reward, ren denotes an enhanced reward

that combines the reward from IL module with the gained extrinsic reward when interacting

118

with the environment, as

ren(ot, at) = α · rim(Rt, at) + (1− α) · rex(Rt, at), (6.5)

where α is a confidence weight parameter of the “expert” demonstration data, and a larger

α means it is closer to the optimal policy; rim and rex denote the reward comes from the IL

module and external environment, respectively. The rim evaluates how similar the action at is

to the “expert policy” from demonstrations. The extrinsic rewards rex are provided as a sparse

function to describe the fundamental limitations and rules that allow the agent to interact with

the environment and steer it to the desired goals. The policy will be updated during the training

process to choose the actions to raise Qπ by obtaining a larger rim and rex.

As previously stated, the Discriminator training in the IL module aims to maximize the

value V(ω) in (6.3), but the updating policy π, which also serves as the generator of the IL

module, tends to reduce it. This type of adversarial training results in a policy π that is rooted in

the strategies offered in the demonstration data. Increasing extrinsic rewards rex will eventually

lead to the trained policy π reacting to the environment with a better policy. The value functions

Qπ of the proposed DRL network could be trained end-to-end by minimizing the following loss

function:

L(θ, ϕ) = LActor − c1LCritic + c2H, (6.6)

where c1 and c2 are the discount factor for critic loss and entropy bonus, respectively. To better

explain the process of updating policy, we introduce the above loss function more specifically

as the objective function with respect to the φ = (θ, ϕ) weighted policy πφ:

J (φ) = − (Et

[
min

(
ft(φ)Āt,Clip (ft(φ), 1− ϵ, 1 + ϵ) Āt

)]
+ c1Et

[
(Vπϕ

t −Qπ(R, at;φ))
2
]
− c2H), (6.7)

119

where ϵ denotes the amplitude of policy update, which is usually set to 0.1 or 0.2; Vπϕ

t represents

the reward returned by the current policy πϕ; ft(φ) is defined as

ft(φ) =
πφ(R)

πφold
(R)

, (6.8)

where πφold
and πφ represent the policy prior to and after the training update, correspondingly;

and Āt is the generalized advantage, which is an estimation that tells the agent whether the last

decision is worth insisting on, which could be simply expressed as:

Ât = δt + γλÂt+1 (6.9)

δt = rt + γQ (Rt+1)−Q (Rt) , (6.10)

where γ is the discount factor for future reward; λ is a smoothing parameter used to lower train-

ing variance, hence making it more stable. For (6.7), the training process seeks to maximize

J (φ) by ascending the stochastic gradient with regard to φ. As a result, based on the real-time

multiple state spaces relational reasoning output, policy πϕ would tend to offer actions with the

potential to impose greater Q values. The Clip function in (6.7) restricts the update range of

πϕ, so that it would not update too greedy to fall into the local optimal trap, thus considerably

improving the training stability.

6.5 Experiment Study

6.5.1 Experiment Setup

Using the Unity3D platform, we develop the proposed SRRL system in a simulated environ-

ment to mimic an application of deploying a mobile robot for RFID-based inventory manage-

ment in an apparel store, which is the same scenario as in [2]. Unity3D is a robust game engine

capable of rendering large, intricate 3D worlds. It also creates aesthetically realistic worlds

with advanced mechanics and complicated interactions between agents of differing abilities.

These features allow it to be frequently utilized as a simulation tool for study of various intelli-

gent agents [142]. As depicted in Fig. 6.5, we construct two environments of four-walled area

120

(a) Simple inventory environment (b) Complex inventory environment

Figure 6.5: Basic experimental setup for agent performing long-horizon RFID inventory tasks.
The agent is represented as a blue cube, and the tags are orange strings attached to the blue
cylinder-shaped racks.

of different complexity to imitate a 50 × 50m2 apparel store: one with only racks represented

by blue cylinders, and the other with more fixed-position obstacles (marked by the white lines

and dot). Note that these obstacles do not impede the Lidar sensor’s scanning but complicate

the agent’s action policy and path planning (i.e., they block the movement of the agent). Items

with RFID tags are attached to the racks. A simulated robotic agent is sent out to scan all of the

RFID tags in the region. At the start of each episode, the placements of the racks and the agent

are created at random inside the enclosed area. Moreover, there will be a certain safety distance

between the randomly generated racks and the obstacle in the complex environment scenario

to ensure that the agent can pass smoothly and the task does not get. Indeed, the distances be-

tween racks also follow this requirement. Based on action at = (vt,∆t), the agent simulates an

RFID-equipped wheeled robot moving at a speed of vt ∈ [−vmax, vmax], while vmax represents

the maximum velocity; ∆t ∈ [−∆max,∆max] is the rotational velocity, where ∆max denotes

the maximum rotational velocity.

The agent’s mission is to scan all the RFID tags in the the apparel store using the shortest

possible path. Each scanning session terminates when all RFID tags are read or when the

maximum number of steps is achieved. As one of the criteria for determining the quality

of training results, the number of collisions and the step count for completing the given task

121

are also assessed. To collect observations, the robotic agent carries two sensors: a ray-cast

sensor and a simulated RFID reader. Ray-casting is an optional sensor that Unity3D provides

to simulate a common Lidar sensor. It detects the surrounding environment by projecting rays

and returns a vector containing the observed items and their distances. We develop a virtual

RFID reader for the agent to imitate the properties of real-world RFID applications. It can only

scan tags within a detectable range and the probability of reading a tag reduces as the distance

between the reader and the tag grows.

Pytorch is used to build the SRRL network on a computer with an Intel 9900K CPU and

two Nvidia 2080 GPUs. Two CNNS with three convolutional layers and a stride of one make

up the feature encoder. The Discriminator D is implemented with one LSTM layer and two

fully connected hidden layers, each with 128 units. Both the value function Qπ and policy π

in the DRL module have an LSTM layer with 128 units and three hidden layers, each with 256

units. The basic training configuration has been summarized in Table 6.1. For the remaining

experiments, We set the proportion parameter µ in (6.5) to 0.1. This robotic agent will be put

in the simulated apparel store during the experiments, with its starting location being randomly

generated at each episode.

6.5.2 Results and Analysis

Training Results

In the training process, we train the agent in the simple environment with two racks, as shown

in Fig. 6.5a, to quickly converge with the ability of reasoning the latent relationship among

multiple state spaces. We will then test this well-trained model in the complex environment

presented in Fig. 6.5b during the testing stage, which includes additional randomly created

racks and certain obstacles that hinder Lidar scanning. The number of steps in each training

episode is capped at 2 × 104 to avoid the unnecessarily long training time. In addition, once

the number of collisions of the agent in an episode reaches 20, this episode will be instantly

terminated and marked as a failure, and the amount of steps cost will be recorded as the max-

imum number of 2 × 104. Each training episode also ends immediately if the agent scans all

122

Table 6.1: Basic Training Configuration

RL Parameter Value

learning rate 2.0e-4
gamma(discount
factor)

0.99

hidden layer units 256
sequence length 64
batch size 1024
memory size 256
max steps 5e6

CNN Parameter Value

convolutional layer
num

3

stride 1
kernel size [4×4];[3×3];[3×3]
FC layer num 2
hidden units 128

the RFID tags on the racks, and the agent will earn the “find” reward. Otherwise, it performs

tasks until the maximum number of allowed steps is achieved. Our method is compared with

the three state-of-the-art models: (i) the GAIL model proposed in [119], (ii) the PPO network

proposed in [140], and (iii) the RIRL model proposed in our recent work [180], which is an RL

and IL combined method but without a relational reasoning module. GAIL and PPO, two ap-

proaches without memory mechanisms, are used in our comparison study to show the influence

of the recurrent network in solving long-horizon robotic tasks. To provide a fair comparison,

we employ the same basic reward levels and training parameters (i.e., learning rate, number of

targets achieved, the maximum number of steps, etc.) in the same environment for all the four

approaches.

Cumulative rewards for each training episode are depicted in Fig. 6.6 as the agent interacts

with the environment. We basically specified a few simple and sparse reward configurations:

reading a new RFID tag earns +0.01 point, colliding is punished by −0.1 point, moving costs

−0.0001 point for each step, and completing the task gets +1 point. The SRRL, represented by

the red solid line in Fig. 6.6, achieves the best reward results after about 60 training episodes,

123

0 50 100 150 200 250
Episodes

-1

-0.5

0

0.5

1

1.5

2

C
u

m
u

la
ti

v
e

R
ew

ar
d

SRRL

RIRL

GAIL

PPO

Figure 6.6: Accumulated training reward values for SRRL, RIRL, PPO, and GAIL methods.

which is both greater and more consistent than the other three methods. Although the RIRL ap-

proach also generates significantly superior results than GAIL and PPO, its convergence speed

and stability are inferior to our proposed method. After the SRRL and RIRL model converges,

there are still a certain degree of small-scale fluctuation since the environment generated each

time is unique. These results validate that our proposed method and RIRL model with LSTM

embedding can achieve higher cumulative reward faster and more consistently than GAIL and

PPO, two networks without using the recurrent network.

Additionally, as described in Fig. 6.7, our method SRRL performs better than RIRL be-

cause it takes fewer steps to complete a task in one episode. As mentioned before, each training

episode will be terminated if all the targets are reached prior to the maximum number of steps.

We can tell that our proposed method’s results stabilize much faster than that of the RIRL

model, which almost takes about 160 training episodes to converge. The agent implemented

with SRRL could stably and consistently handle the given tasks within 1,500 steps. This result

indicates that the reasoning mechanism in our proposed approach, which has the abstraction

ability within long-term memory, is well suited to help the robot understand the nature of the

task in advance and perform the task consistently and efficiently. The other two methods with-

out LSTM embedding cannot even complete the assigned task and usually takes the maximum

124

0 50 100 150 200 250
Episodes

0

0.5

1

1.5

2

S
te

p
s

fo
r

C
o

m
p

le
ti

n
g

 O
n

e
E

p
is

o
d

e

10
4

SRRL

RIRL

GAIL

PPO

Figure 6.7: Steps for finishing the tag scanning task within one episode during the training
phase.

number of steps. To further compare the models’ performance during the training process, we

plot the training loss values for each method in Fig. 6.8. Obviously, the loss values of SRRL

and RIRL are convergent, whereas the loss curves for PPO and GAIL do not. This is because

that PPO and GAIL are incapable of finding a reliable strategy to accomplish the long-horizon

robotic searching and planning tasks reliably and efficiently.

Training these methods usually takes days. And even if our method SRRL leverages Im-

itation Learning to reduce some of the search time, it often takes more than 12 hours to make

the agent understand and complete the task perfectly. In the testing stage, we usually do not

change the configuration except for the environment, keeping it consistent with that in training.

Typically, if the state space and action space are not too big, it takes an agent with our method

about 1 ms to choose an action. This is also true for the other methods. But if the size of

the map and the number of degrees of freedom of the action are very large, it will take about

10ms longer to make an action with our method, and about 1.5 seconds for the other methods

to choose the next action.

125

0 50 100 150 200 250
Episodes

0

1

2

3

4

5

T
ra

in
in

g
 L

o
ss

SRRL

RIRL

GAIL

PPO

Figure 6.8: Training loss of SRRL, RIRL, GAIL, and PPO.

RFID Tag Scanning Results

The cumulative distribution function (CDF) of the percentage of unscanned tags in the testing

stage is shown in Fig. 6.9. We test all four trained models in 100 episodes within the required

20,000 steps. The figure shows that the proposed SRRL model scans all tags in approximately

95% of episodes, while the RIRL without reasoning scheme scans all tags in about 84% of

episodes. On the contrary, the GAIL and PPO models cannot consistently scan all the tags in

an episode. In addition, SRRL achieves a maximum unscanned tag percentage of 20%, which

is significantly lower than the 38% of RIRL, as well as the almost 90% attained by the other

two approaches. Apparently, our proposed method is significantly more effective and robust

for long-term search tasks in dynamic environments.

To further illustrate the superiority of our method, we evaluate the well-trained model of

the four approaches mentioned above in both simple and complex environments using two in-

dicators: (i) the average number of collisions in an episode, (ii) the average number of steps

required to complete the given task in an episode. Moreover, in order to demonstrate the ver-

satility and robustness of our model, we first train it in a simple environment as the one shown

126

in Fig. 6.5a and then deploy the well-trained model to both simple and complex environments

shown in Fig. 6.5 with a varied number of racks in one hundred testing episodes.

Fig. 6.10 presents the average number of steps for completing the given tasks in a sim-

ple environment within 100 testing episodes. We can see that the SRRL method could cost-

efficiently accomplish the tasks, as it only needs about 5,500 steps for the four-rack scenario,

whereas the other three approaches struggle to do so. Note that the average step cost for PPO

and GAIL almost nearly surpasses 2×104, which indicates they failed to complete the tasks af-

ter reaching the maximum number of steps in almost all episodes. Second, avoiding collisions

is crucial when deploying a robot for various purposes. Hence, the frequency of collisions for

the agent is an essential metric for evaluating the quality of our work. According to Fig. 6.11,

when there are more racks in the simple environment, the average collision times rise as the

number of racks is increased. It is obvious that GAIL and PPO perform poorly regardless of

the number of racks while avoiding accidents. Although RIRL is relatively better at avoiding

obstacles than GAIL and PPO, its average number of collisions increases by around eight times

as the number of racks grows from two to four. While our method exhibits robust performance

across all four cases, with a variance of the four average collision times less than 0.5. We also

provide the error bars in the figures to show the robustness of each method during testing. A

smaller error bar generally means that the method is more stable, while the opposite means

that the method does not generalize well to dynamically changing unknown environments. For

example, our proposed method in Fig. 6.10 and Fig. 6.11 is significantly better and more stable

than the other methods in terms of the average step collision number. RIRL maintains high

stability for a small number of racks but is not robust for scenarios with more than two racks

that are not covered in training. Certainly, we can also observe that the results obtained by the

two methods, PPO and GAIL, are less volatile because they have been completing their tasks

very consistently poorly.

Similarly, the complete number of steps and collision times per testing episode for the

complex environment are presented in Fig. 6.12 and Fig. 6.13, respectively. Although the

quantity of these two measures for our method increases when confronted with a more complex

environment, they remain within a respectable range and demonstrate that our SRRL model

127

0 0.2 0.4 0.6 0.8 1

Percentage of unscanned tags

0

0.2

0.4

0.6

0.8

1

C
D

F

SRRL

RIRL

GAIL

PPO

Figure 6.9: CDF of the percentage of unscanned tags in total in the testing stage.

has high transferability and robustness to dynamic, unknown environments. Note that in these

two figures, the error bars of PPO and GAIL are zero in complex environments with multi-

rack scenarios, which means that all the attempts of these two methods end in failure, i.e., the

number of steps and collisions have all reached the error tolerance limit (thus no variance).

From these two figures, we can draw the same conclusion for scenarios of both the simple

environment and the complex environment that our method could tackle long-horizon robotic

planning tasks much more effectively and efficiently with the incorporation of the relational

reasoning module.

6.6 Conclusions

In this paper, we proposed SRRL, a deep recurrent imitation and reinforcement learning-based

system augmented with a relational reasoning module that allows the agent to accomplish long-

horizon robotic searching and planning tasks in dynamic, complex situations. To the best of

our knowledge, this is the first work in the field of DRL that teaches agents how to reason from

various state spaces to learn the optimal policy. Furthermore, using historical observations to

create state spaces can improve the model and alleviate the long-range dependency problem.

We experimentally validated the feasibility of incorporating a relational reasoning module in

128

1 2 3 4

Number of Racks

0

0.5

1

1.5

2

2.5

A
v

er
ag

e
S

te
p

s
fo

r
C

o
m

p
le

ti
n

g
 O

n
e

E
p

is
o

d
e 10

4

SRRL

RIRL

PPO

GAIL

Figure 6.10: Average number of steps to complete the task in 100 episodes in the testing stage
in the simple environment.

1 2 3 4

Number of Racks

0

5

10

15

20

25

A
v
er

ag
e

C
o
ll

is
io

n
 T

im
es

 P
er

 E
p
is

o
d
e

SRRL

RIRL

PPO

GAIL

Figure 6.11: Average number of collisions of the agent per episode in the simple environment.

traditional DRL methods by performing in a visual game-based simulation environment. The

excellent results demonstrated the effectiveness of encouraging agents to learn strategies from

extracted latent correlations across multiple state spaces to complete such long-horizon tasks.

129

1 2 3 4
Number of Racks

0

0.5

1

1.5

2

2.5

3

A
v

er
ag

e
S

te
p
s

fo
r

C
o

m
p
le

ti
n

g
 O

n
e

E
p
is

o
d

e 10
4

SRRL

RIRL

PPO

GAIL

Figure 6.12: Average number of the task completion steps in 100 episodes of the testing stage
in the complex environment.

1 2 3 4
Number of Racks

0

5

10

15

20

25

A
v
er

ag
e

C
o
ll

is
io

n
 T

im
es

 P
er

 E
p
is

o
d
e

SRRL

RIRL

PPO

GAIL

Figure 6.13: Average collision times that happened in agent per episode in the complex envi-
ronment.

130

Chapter 7

Summary and Future Work

7.1 Summary

During my doctoral studies, I concentrated on creating workable solutions to the inherent is-

sues with RL-based robotic systems. The main goal of this system is to empower ground

robots and unmanned aerial vehicles (UAVs) to assign and accomplish tasks using reasoning,

particularly when dealing with long-horizon tasks and dynamic environments. It not only fo-

cuses on robots but also RFID technology applications. To begin, RFUAV creates an indoor

localization system for UAVs by combining precise 6-DoF orientation and location estimation

with a commercially available RFID reader and tags. To estimate the location of tags with

phase differences, a Bayesian filter is used. The pose of the UAV is then estimated using an

SVD-based algorithm. In the work of RFHUI, we extended the work of RFUAV to leverage

precise RFID tag positioning to assist in controlling the aerial pose of UAVs in 6-DOF. With

the UAV localization system, we investigated the cooperation system that enables UGVs and

UAVs to form coalitions for the complementary accomplishment of tasks that neither the UAVs

or UGVs could not complete independently. IADRL learns the UGV-UAV coalition’s com-

plementing behavior traits from a demonstration dataset that can be easily obtained from both

simple and problematic circumstances. It also optimizes the method for achieving given goals

while experiencing the lowest overall costs to finish tasks in dynamic environments. Finally, we

proposed the SRRL, a deep recurrent imitation and reinforcement learning-based system aug-

mented with a relational reasoning module, to further investigate and improve the performance

131

of long-horizon robotic searching and planning tasks in dynamic and complicated environ-

ments. SRRL teaches agents how to reason from different state spaces in order to discover the

best policy. Additionally, creating state spaces from previous observations helps strengthen the

model and relieve the long-term dependency issue.

7.2 Future Work

Although we have investigated a lot of reinforcement learning-based methods, many interesting

research topics are still open in the field of developing intelligent robotic systems.

7.2.1 Sim2Real Gap

The name ”Sim2Real” is an acronym of the phrase ”simulation to reality”. The majority of

research on RL-based robotic applications is still in the simulation environment. The wide

gap between simulation and reality makes it difficult to implement the reinforcement learn-

ing model. We are focusing on implementing well-trained RL models to guide real robots in

solving long-horizon tasks in dynamic environments. Deploying these robots in continuous

observation and action settings is quite difficult, especially when it comes to training an ideal

RL model and realistic robotic mechanical manipulation.

7.2.2 Virtual Reality and Digital Twins

Virtual reality technology could simulate highly realistic scenarios, such as interior inventory

warehouses, by utilizing computer modeling and some graphical software. We intend to imitate

the observations that the robot can make in reality by creating a virtual scene that is more

refinedly similar to the actual scene. This will narrow the gap of sim2real to a certain extent

and help the robot to complete tasks according to the trained model in different real-world

environments faster and smoother.

7.2.3 Privacy Security Issues Related to Robots

As robots become highly common in human daily life and manufacturing, privacy concerns

relating to robot use have gained increasing attention. Since the robots need to observe its

132

surrounding and collect information for better decisions, sensors such as cameras,radars, and

even microphones are required. These sensors are typically access the most sensitive privacy

information of users, such as photos of private rooms, voice recordings among family members,

etc.

133

List of Publications

1. Zhitao Yu, Jian Zhang, Shiwen Mao, Senthilkumar CG Periaswamy, and Justin Pat-

ton, “Multi-state-space reasoning reinforcement learning for long-horizon RFID-based

robotic searching and planning tasks,” Journal of Communications and Information Net-

works, vol.7, no.3, pp.239-251, Sept. 2022. DOI: 10.23919/JCIN.2022.9906938.

2. Zhitao Yu, Jian Zhang, Shiwen Mao, Senthilkumar CG Periaswamy, and Justin Pat-

ton, “RIRL: A recurrent imitation and reinforcement learning method for long-horizon

robotic tasks,” in Proc. IEEE CCNC 2022, Las Vegas, NV, Jan. 2022, pp.230-235. (The

IEEE CCNC 2022 Runner-up of the Best Paper Award)

3. Xiangyu Wang, Zhitao Yu, Shiwen Mao, Jian Zhang, Senthilkumar CG Periaswamy

and Justin Patton, ”MapLoc: LSTM-based Location Estimation using Uncertainty Ra-

dio Maps,” in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2023.3262619.

4. Jian Zhang, Zhitao Yu(co-first author), Shiwen Mao, Senthilkumar CG Periaswamy,

Justin Patton, and Xue Xia, “IADRL: An imitation augmented deep reinforcement learn-

ing network enabled UGV-UAV complementary coalitions,” IEEE Access Journal, Spe-

cial Section on Advanced Communications and Networking Techniques for Wireless

Connected Intelligent Robot Swarms, vol.8, no.1, pp.102335-102347, June 2020. DOI:

10.1109/ACCESS.2020.2997304.

5. Jian Zhang, Zhitao Yu, Xiangyu Wang, Yibo Lyu, Shiwen Mao, Senthilkumar C.G. Pe-

riaswamy, Justin Patton, and Xuyu Wang, “RFHUI: An intuitive and easy-to-operate

human-UAV interaction system for controlling a UAV in a 3D space,” in Proc. EAI Mo-

biQuitous 2018, New York City, NY, Nov. 2018, pp.69-76.

134

6. Jian Zhang, Zhitao Yu, Xiangyu Wang, Yibo Lyu, Shiwen Mao, Senthilkumar CG Pe-

riaswamy, Justin Patton, and Xuyu Wang, “RFHUI: An RFID based human-unmanned

aerial vehicle interaction system in an indoor environment,” Elsevier Digital Communica-

tions and Networks Journal, vol.6, no.1, pp.14-22, Feb. 2020. DOI: 10.1016/j.dcan.2019.05.001.

(included in DCN’s High-influence Article Collection, Nov. 2020)

7. Xuyu Wang, Zhitao Yu, and Shiwen Mao, “DeepML: Deep LSTM for indoor localization

with smartphone magnetic and light sensors,” in Proc. IEEE ICC 2018, Kansas City, MO,

May 2018.

8. Xuyu Wang, Zhitao Yu, and Shiwen Mao, “Indoor localization using magnetic and light

sensors with smartphones: A deep LSTM approach,” Springer Mobile Networks and Ap-

plications (MONET) Journal, Special Issue on Towards Future Ad Hoc Networks: Tech-

nologies and Applications, vol.25, no.2, pp.819-832, Apr. 2020. DOI: 10.1007/s11036-

019-01302-x.

9. Jian Zhang, Xiangyu Wang, Zhitao Yu, Yibo Lyu, Shiwen Mao, Senthilkumar CG Pe-

riaswamy, Justin Patton, and Xuyu Wang, “Robust RFID based 6-DoF localization for

unmanned aerial vehicles,” IEEE Access Journal, Special Section on Network Resource

Management in Flying Ad Hoc Networks: Challenges, Potentials, Future Applications,

and Wayforward, vol.7, no.1, pp. 77348-77361, June 2019. DOI: 10.1109/ACCESS.2019.2922211.

10. Xiangyu Wang, Jian Zhang, Zhitao Yu, Shiwen Mao, Senthilkumar C.G. Periaswamy,

and Justin Patton, “On remote temperature sensing using commercial UHF RFID tags,”

IEEE Internet of Things Journal, vol.6, no.6, pp. 10715-10727, Dec. 2019. DOI:

10.1109/JIOT.2019.2941023.

135

References

[1] T. Roppel, Y. Lyu, J. Zhang, X. Xia et al., “Corrosion detection using robotic vehicles in

challenging environments,” in CORROSION 2017, Louisiana, USA, March 2017.

[2] J. Zhang, Y. Lyu, T. Roppel, J. Patton, and C. Senthilkumar, “Mobile robot for retail

inventory using rfid,” in 2016 IEEE international conference on Industrial technology

(ICIT), Taipei, Taiwan, March 2016, pp. 101–106.

[3] X. Xia, T. Roppel, J. Zhang, Y. Lyu, S. Mao, S. C. Periaswamy, and J. Patton, “Enabling

a mobile robot for autonomous rfid-based inventory by multilayer mapping and aco-

enhanced path planning,” Online Journal of Robotics & Automation Technology, Sept.

2019.

[4] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-uav

enabled wireless networks,” IEEE Transactions on Wireless Communications, vol. 17,

no. 3, pp. 2109–2121, Jan. 2018.

[5] J. Zhang, Z. Yu, X. Wang, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,

“Rfhui: An intuitive and easy-to-operate human-uav interaction system for controlling a

uav in a 3d space,” in Proceedings of the 15th EAI International Conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services, New York, USA, Nov.

2018, pp. 69–76.

[6] X. Wang, S. Mao, and M. Gong, “A survey of lte wi-fi coexistence in unlicensed bands,”

ACM GetMobile: Mobile Computing and Communications Review, vol. 20, no. 3, pp.

17–23, July 2016.

136

[7] Y. Xu, G. Yue, and S. Mao, “User grouping for massive MIMO in FDD systems: New

design methods and analysis,” IEEE Access Journal, vol. 2, no. 1, pp. 947–959, Sept.

2014.

[8] J. Zhang, Z. Yu, X. Wang, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,

“Rfhui: An rfid based human-unmanned aerial vehicle interaction system in an indoor

environment,” Digital Communications and Networks, vol. 6, no. 1, pp. 14–22, May

2019.

[9] J. Zhang, X. Wang, Z. Yu, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,

“Robust rfid based 6-dof localization for unmanned aerial vehicles,” IEEE Access, vol. 7,

pp. 77 348–77 361, June 2019.

[10] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Distributed artificial

intelligence empowered by end-edge-cloud computing: A survey,” IEEE Communica-

tions Surveys & Tutorials, vol. 25, no. 1, pp. 591–624, 2023.

[11] S. Duan, F. Lyu, H. Wu, W. Chen, H. Lu, Z. Dong, and X. Shen, “Moto: Mobility-aware

online task offloading with adaptive load balancing in small-cell mec,” IEEE Transac-

tions on Mobile Computing, pp. 1–16, 2022.

[12] N. Tang, S. Mao, and R. M. Nelms, “Adversarial attacks to solar power forecast,” in

Proc. IEEE GLOBECOM 2021, Madrid, Spain, Dec. 2021, pp. 1–6.

[13] Z. Bao, Y. Lin, S. Zhang, Z. Li, and S. Mao, “Threat of adversarial attacks on DL-based

IoT device identification,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 9012–

9024, June 2022.

[14] K. Xiao, S. Mao, and J. Tugnait, “Hierarchical radio resource allocation for network slic-

ing in fog radio access networks,” IEEE Transactions on Vehicular Technology, vol. 68,

no. 4, pp. 3866–3881, Apr. 2019.

137

[15] M. Feng, S. Mao, and T. Jiang, “Dealing with link blockage in mmwave networks: A

combination of d2d relaying, multi-beam reflection, and handover,” IEEE Transactions

on Wireless Communications.

[16] T. Zhang and S. Mao, “Energy-efficient federated learning with intelligent reflecting

surface,” IEEE Transactions on Green Communications and Networking, vol. 6, no. 2,

pp. 845–858, June 2022.

[17] N. Tang, S. Mao, Y. Wang, and R. Nelms, “Solar power generation forecasting with a

LASSO-based approach,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1090–1099,

Apr. 2018.

[18] L. Wang, S. Mao, B. Wilamowski, and R. Nelms, “Pre-trained models for non-intrusive

appliance load monitoring,” IEEE Transactions on Green Communications and Net-

working, vol. 6, no. 1, pp. 56–68, Mar. 2022.

[19] M. Feng, S. Mao, and T. Jiang, “Boost: Base station on-off switching strategy for energy

efficient massive mimo hetnets,” in Proc. IEEE INFOCOM 2016, San Francisco, CA,

Apr. 2016, pp. 1395–1403.

[20] T. Zhang and S. Mao, “Machine learning for end-to-end congestion control,” IEEE Com-

munications Magazine, vol. 58, no. 6, pp. 52–57, June 2020.

[21] Z. He, S. Mao, S. Kompella, and A. Swami, “On link scheduling in dual-hop 60 ghz

mmwave networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp.

11 180–11 192, Dec. 2017.

[22] K. Xiao, S. Mao, and J. Tugnait, “MAQ: A multiple model predictive congestion control

scheme for cognitive radio networks,” IEEE Transactions on Wireless Communications,

vol. 16, no. 4, pp. 2614–2626, Apr. 2017.

[23] S. Mao, Y. T. Hou, X. Cheng, H. D. Sherali, S. F. Midkiff, and Y.-Q. Zhang, “On routing

for multiple description video over wireless ad hoc networks,” IEEE Transactions on

Multimedia, vol. 8, no. 5, pp. 1063–1074, Oct. 2006.

138

[24] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint optimization of multi-uav

target assignment and path planning based on multi-agent reinforcement learning,” IEEE

Access, vol. 7, pp. 146 264–146 272, Sept. 2019.

[25] Z. Yu, J. Zhang, S. Mao, S. C. Periaswamy, and J. Patton, “Multi-state-space reason-

ing reinforcement learning for long-horizon RFID-based robotic searching and planning

tasks,” Journal of Communications and Information Networks, vol. 7, no. 3, pp. 239–

251, Sept. 2022.

[26] X. Wang, J. Zhang, S. Mao, S. C. Periaswamy, and J. Patton, “Locating multiple RFID

tags with Swin Transformer-based RF hologram tensor filtering,” in Proc. IEEE VTC-

Fall 2022, London, UK, Sept. 2022.

[27] X. Wang, X. Wang, S. Mao, J. Zhang, S. Periaswamy, and J. Patton, “Adversarial deep

learning for indoor localization with channel state information tensors,” IEEE Internet

of Things Journal, vol. 9, no. 19, pp. 18 182–18 194, Oct. 2022.

[28] X. Wang, J. Zhang, S. Mao, S. Periaswamy, and J. Patton, “MulTLoc: RF hologram

tensor filteing and upscaling for indoor localization using multiple UHF passive RFID

tags,” in Proc. ICCCN 2021, Athens, Greece, July 2021.

[29] S. Thrun, “Probabilistic algorithms in robotics,” Ai Magazine, vol. 21, no. 4, pp. 93–93,

Dec. 2000.

[30] K. P. Valavanis, “Advances in unmanned aerial vehicles: state of the art and the road to

autonomy,” Design and Control of a Miniature Quadrotor, vol. 33, pp. 171–210, 2007.

[31] J. Courbon, Y. Mezouar, N. Guénard, and P. Martinet, “Vision-based navigation of un-

manned aerial vehicles,” Control Engineering Practice, vol. 18, no. 7, pp. 789–799, July

2010.

[32] B. Hérissé, T. Hamel, R. Mahony, and F.-X. Russotto, “A terrain-following control

approach for a vtol unmanned aerial vehicle using average optical flow,” Autonomous

robots, vol. 29, no. 3, pp. 381–399, Sept. 2010.

139

[33] S. Klose, J. Wang, M. Achtelik, G. Panin, F. Holzapfel, and A. Knoll, “Markerless,

vision-assisted flight control of a quadrocopter,” in 2010 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 2010, pp. 5712–5717.

[34] K. Celik, S.-J. Chung, M. Clausman, and A. K. Somani, “Monocular vision slam for in-

door aerial vehicles,” in 2009 IEEE/RSJ International Conference on Intelligent Robots

and Systems, St. Louis, MO, USA, Oct. 2009, pp. 1566–1573.

[35] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost quadro-

copter,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,

Vilamoura-Algarve, Portugal, Oct. 2012, pp. 2815–2821.

[36] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “Structure from motion causally integrated

over time,” IEEE transactions on pattern analysis and machine intelligence, vol. 24,

no. 4, pp. 523–535, Aug 2002.

[37] A. Noureldin, T. B. Karamat, M. D. Eberts, and A. El-Shafie, “Performance enhance-

ment of mems-based ins/gps integration for low-cost navigation applications,” IEEE

Transactions on vehicular technology, vol. 58, no. 3, pp. 1077–1096, May 2008.

[38] K. Pahlavan, X. Li, and J.-P. Makela, “Indoor geolocation science and technology,” IEEE

communications magazine, vol. 40, no. 2, pp. 112–118, Aug. 2002.

[39] X. Wang, L. Gao, S. Mao, and S. Pandey, “DeepFi: Deep learning for indoor fingerprint-

ing using channel state information,” in Proc. WCNC’15, New Orleans, LA, Mar. 2015,

pp. 1666–1671.

[40] J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni, “A survey on wireless indoor localization from

the device perspective,” ACM Computing Surveys (CSUR), vol. 49, no. 2, pp. 1–31, June

2016.

[41] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level localization

using wifi,” in Proceedings of the 2015 ACM Conference on Special Interest Group on

Data Communication, vol. 14, New York, NY, USA, Aug. 2015, pp. 269–282.

140

[42] X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor localization with a

deep learning approach,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1113–1123,

Dec. 2016.

[43] ——, “BiLoc: Bi-modality deep learning for indoor localization with 5GHz commodity

Wi-Fi,” IEEE Access Journal, vol. 5, no. 1, pp. 4209–4220, Mar. 2017.

[44] X. Wang, X. Wang, and S. Mao, “ResLoc: Deep residual sharing learning for indoor

localization with CSI tensors,” in Proc. IEEE PIMRC 2017, Montreal, Canada, Oct.

2017.

[45] X. Wang, Z. Yu, S. Mao, J. Zhang, S. C. Periaswamy, and J. Patton, “Maploc: Lstm-

based location estimation using uncertainty radio maps,” IEEE Internet of Things Jour-

nal, pp. 1–1, Mar. 2023.

[46] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for indoor localiza-

tion: A deep learning approach,” IEEE Transactions on Vehicular Technology, vol. 66,

no. 1, pp. 763–776, Jan. 2017.

[47] J. Xiong and K. Jamieson, “Arraytrack: A fine-grained indoor location system,” in 10th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 13),

LomBard,IL,USA, Apr. 2013, pp. 71–84.

[48] J. Wang, D. Vasisht, and D. Katabi, “Rf-idraw: Virtual touch screen in the air using rf

signals,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 235–

246, Aug. 2014.

[49] S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and S. Rangarajan,

“Rio: A pervasive rfid-based touch gesture interface,” in Proceedings of the 23rd Annual

International Conference on Mobile Computing and Networking, Snowbird, Utah, USA,

Oct. 2017, pp. 261–274.

[50] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu, “Relative localization of

{RFID} tags using spatial-temporal phase profiling,” in 12th {USENIX} Symposium on

141

Networked Systems Design and Implementation ({NSDI} 15), Oakland,CA,USA, May

2015, pp. 251–263.

[51] X. Wang, Z. Yu, and S. Mao, “Deepml: Deep lstm for indoor localization with smart-

phone magnetic and light sensors,” in Proc. ICC’18), Kansas City, MO, July 2018, pp.

1–6.

[52] X. Wang, X. Wang, S. Mao, J. Zhang, S. Periaswamy, and J. Patton, “Indoor radio map

construction and localization with deep Gaussian Processes,” IEEE Internet of Things

Journal, vol. 7, no. 11, pp. 11 238–11 249, Nov. 2020.

[53] B. R. Stojkoska, J. Palikrushev, K. Trivodaliev, and S. Kalajdziski, “Indoor localization

of unmanned aerial vehicles based on rssi,” in IEEE EUROCON 2017-17th International

Conference on Smart Technologies, Ohrid, Macedonia, July 2017, pp. 120–125.

[54] J. Tiemann, F. Schweikowski, and C. Wietfeld, “Design of an uwb indoor-positioning

system for uav navigation in gnss-denied environments,” in 2015 International Con-

ference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, Oct.

2015, pp. 1–7.

[55] K. Li, C. Wang, S. Huang, G. Liang, X. Wu, and Y. Liao, “Self-positioning for uav

indoor navigation based on 3d laser scanner, uwb and ins,” in 2016 IEEE International

Conference on Information and Automation (ICIA), Ningbo, China, Aug. 2016, pp. 498–

503.

[56] B. Hardgrave, “Try it you’ll like it!-the rfid lab’s annual state-of-adoption report of us

retailers,” RFID Journal, Aug. 2015.

[57] J. Zhang, Y. Lyu, J. Patton, S. C. Periaswamy, and T. Roppel, “Bfvp: A probabilistic

uhf rfid tag localization algorithm using bayesian filter and a variable power rfid model,”

IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 8250–8259, Feb. 2018.

142

[58] Y. Zuo, “Survivable rfid systems: Issues, challenges, and techniques,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40,

no. 4, pp. 406–418, Apr. 2010.

[59] S. Azzouzi, M. Cremer, U. Dettmar, R. Kronberger, and T. Knie, “New measurement

results for the localization of uhf rfid transponders using an angle of arrival (aoa) ap-

proach,” in 2011 IEEE International Conference on RFID, Orlando, FL, USA, May

2011, pp. 91–97.

[60] X. Wang, S. Mao, S. Pandey, and P. Agrawal, “CA2T: Cooperative antenna arrays tech-

nique for pinpoint indoor localization,” in Proc. MobiSPC 2014, Niagara Falls, Canada,

Aug. 2014, pp. 392–399.

[61] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-time tracking of

mobile rfid tags to high precision using cots devices,” in Proceedings of the 20th annual

international conference on Mobile computing and networking, Maui, Hawaii, USA,

Sept. 2014, pp. 237–248.

[62] X. Wang, C. Yang, and S. Mao, “TensorBeat: Tensor decomposition for monitoring

multi-person breathing beats with commodity WiFi,” ACM Transactions on Intelligent

Systems and Technology, vol. 9, no. 1, pp. 8:1–8:27, Sept. 2017.

[63] X. Wang, X. Wang, S. Mao, J. Zhang, S. Periaswamy, and J. Patton, “DeepMap: Deep

Gaussian Process for indoor radio map construction and location estimation,” in Proc.

IEEE GLOBECOM 2018, Abu Dhabi, United Arab Emirates, Dec. 2018.

[64] F. Gandino, B. Montrucchio, M. Rebaudengo, and E. R. Sanchez, “On improving au-

tomation by integrating rfid in the traceability management of the agri-food sector,” IEEE

Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2357–2365, Apr. 2009.

[65] J. Zhang, S. C. Periaswamy, S. Mao, and J. Patton, “Standards for passive uhf rfid,”

GetMobile: Mobile Comp. and Comm., vol. 23, no. 3, pp. 10–15, Jan 2020.

143

[66] J. S. Choi, B. R. Son, H. K. Kang, and D. H. Lee, “Indoor localization of unmanned

aerial vehicle based on passive uhf rfid systems,” in 2012 9th international conference

on ubiquitous robots and ambient intelligence (URAI), Daejeon, Korea (South), Nov.

2012, pp. 188–189.

[67] Y. Bu, L. Xie, J. Liu, B. He, Y. Gong, and S. Lu, “3-dimensional reconstruction on

tagged packages via rfid systems,” in 2017 14th Annual IEEE International Conference

on Sensing, Communication, and Networking (SECON), San Diego, CA, USA, June

2017, pp. 1–9.

[68] T. Wei and X. Zhang, “Gyro in the air: tracking 3d orientation of batteryless internet-of-

things,” in Proceedings of the 22nd Annual International Conference on Mobile Com-

puting and Networking, New York City, New York, Oct. 2016, pp. 55–68.

[69] Q. Lin, L. Yang, Y. Sun, T. Liu, X.-Y. Li, and Y. Liu, “Beyond one-dollar mouse: A

battery-free device for 3d human-computer interaction via rfid tags,” in 2015 IEEE Con-

ference on Computer Communications (INFOCOM), Hong Kong, China, Apr. 2015, pp.

1661–1669.

[70] M. Z. Anwar, Z. Kaleem, and A. Jamalipour, “Machine learning inspired sound-based

amateur drone detection for public safety applications,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 3, pp. 2526–2534, Jan. 2019.

[71] Z. Kaleem and M. H. Rehmani, “Amateur drone monitoring: State-of-the-art architec-

tures, key enabling technologies, and future research directions,” IEEE Wireless Com-

munications, vol. 25, no. 2, pp. 150–159, May 2018.

[72] S. Chen and K. Ho, “Accurate localization of a rigid body using multiple sensors and

landmarks,” IEEE Transactions on Signal Processing, vol. 63, no. 24, pp. 6459–6472,

Dec. 2015.

[73] S. Umeyama, “Least-squares estimation of transformation parameters between two point

patterns,” IEEE Computer Architecture Letters, vol. 13, no. 04, pp. 376–380, Apr. 1991.

144

[74] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-d rigid body transformations:

a comparison of four major algorithms,” Machine vision and applications, vol. 9, no. 5,

pp. 272–290, Mar. 1997.

[75] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in

2007 6th IEEE and ACM international symposium on mixed and augmented reality,

Nara, Japan, Nov. 2007, pp. 225–234.

[76] Y. Chen, R. Huang, and Y. Zhu, “A cumulative error suppression method for uav vi-

sual positioning system based on historical visiting information.” Engineering Letters,

vol. 25, no. 4, pp. 1–7, Nov. 2017.

[77] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy, “Vi-

sual odometry and mapping for autonomous flight using an rgb-d camera,” in Robotics

Research, 2017, pp. 235–252.

[78] C. Teulière, L. Eck, E. Marchand, and N. Guenard, “3d model-based tracking for uav

position control,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Taipei, Taiwan, Oct. 2010, pp. 1084–1089.

[79] J. L. Casper and R. R. Murphy, “Workflow study on human-robot interaction in usar,”

in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat.

No. 02CH37292), Washington, DC, May 2002, pp. 1997–2003.

[80] H. L. Jones, S. M. Rock, D. Burns, and S. Morris, “Autonomous robots in swat applica-

tions: Research, design, and operations challenges,” AUVSI’02, pp. 1–15, July 2002.

[81] M. Li, K. Lu, H. Zhu, M. Chen, S. Mao, and B. Prabhakaran, “Robot swarm communi-

cation networks: architectures, protocols, and applications,” in 2008 Third International

Conference on Communications and Networking in China, Hangzhou, P.R. China, Aug.

2008, pp. 162–166.

145

[82] M. Feng, S. Mao, and T. Jiang, “Joint frame design, resource allocation and user associ-

ation for massive mimo heterogeneous networks with wireless backhaul,” IEEE Trans-

actions on Wireless Communications, vol. 17, no. 3, pp. 1937–1950, Mar. 2018.

[83] M. Li, J. Harris, M. Chen, S. Mao, Y. Xiao, W. Read, and B. Prabhakaran, “Architecture

and protocol design for a pervasive robot swarm communication networks,” Wireless

Communications and Mobile Computing, vol. 11, no. 8, pp. 1092–1106, Aug. 2011.

[84] C. Bartneck and J. Forlizzi, “A design-centred framework for social human-robot inter-

action,” in RO-MAN 2004. 13th IEEE international workshop on robot and human in-

teractive communication (IEEE Catalog No. 04TH8759), Kurashiki, Japan, Sept. 2004,

pp. 591–594.

[85] O. Ogorodnikova, “Safe and reliable human-robot interaction in manufactory, within

and beyond the workcell,” in 19th International Workshop on Robotics in Alpe-Adria-

Danube Region (RAAD 2010), Budapest, Hungary, June 2010, pp. 65–70.

[86] V. Alvarez-Santos, R. Iglesias, X. M. Pardo, C. V. Regueiro, and A. Canedo-Rodriguez,

“Gesture-based interaction with voice feedback for a tour-guide robot,” Journal of Visual

Communication and Image Representation, vol. 25, no. 2, pp. 499–509, Feb. 2014.

[87] S. Kohlbrecher, A. Romay, A. Stumpf, A. Gupta, O. Von Stryk, F. Bacim, D. A. Bow-

man, A. Goins, R. Balasubramanian, and D. C. Conner, “Human-robot teaming for res-

cue missions: Team vigir’s approach to the 2013 darpa robotics challenge trials,” Journal

of Field Robotics, vol. 32, no. 3, pp. 352–377, May 2015.

[88] F. Mueller and M. Muirhead, “Jogging with a quadcopter,” in Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of

Korea, Apr. 2015, pp. 2023–2032.

[89] J. Scheible, A. Hoth, J. Saal, and H. Su, “Displaydrone: a flying robot based interac-

tive display,” in Proceedings of the 2nd ACM International Symposium on Pervasive

Displays, Mountain View, CA, June 2013, pp. 49–54.

146

[90] J. R. Cauchard, J. L. E, K. Y. Zhai, and J. A. Landay, “Drone & me: an exploration

into natural human-drone interaction,” in Proceedings of the 2015 ACM international

joint conference on pervasive and ubiquitous computing, Osaka, Japan, Sept. 2015, pp.

361–365.

[91] L. Jing and P. Yang, “A localization algorithm for mobile robots in rfid system,” in

2007 International Conference on Wireless Communications, Networking and Mobile

Computing, Wuhan, China, Sept. 2007, pp. 2109–2112.

[92] P. Yang, W. Wu, M. Moniri, and C. C. Chibelushi, “Slam algorithm for 2d object tra-

jectory tracking based on rfid passive tags,” in 2008 IEEE International Conference on

RFID, Las Vegas, NV, Apr. 2008, pp. 165–172.

[93] A. Bekkali, H. Sanson, and M. Matsumoto, “Rfid indoor positioning based on probabilis-

tic rfid map and kalman filtering,” in Third IEEE International Conference on Wireless

and Mobile Computing, Networking and Communications (WiMob 2007), White Plains,

NY, Oct. 2007, pp. 21–21.

[94] W. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks for indoor lo-

calization with CSI images,” IEEE Transactions on Network Science and Engineering,

vol. 7, no. 1, pp. 316–327, Jan./Mar. 2020.

[95] X. Wang, X. Wang, and S. Mao, “Cifi: Deep convolutional neural networks for indoor

localization with 5 ghz wi-fi,” in Proc. IEEE ICC 2017, Paris, France, May 2017, pp.

1–6.

[96] P. V. Nikitin, R. Martinez, S. Ramamurthy, H. Leland, G. Spiess, and K. Rao, “Phase

based spatial identification of uhf rfid tags,” in 2010 IEEE International Conference on

RFID (IEEE RFID 2010), Orlando, FL, Apr. 2010, pp. 102–109.

[97] T.-M. Choi, “Coordination and risk analysis of vmi supply chains with rfid technology,”

IEEE Transactions on Industrial Informatics, vol. 7, no. 3, pp. 497–504, Aug. 2011.

147

[98] C. Yang, X. Wang, and S. Mao, “Sparsetag: High-precision backscatter indoor localiza-

tion with sparse rfid tag arrays,” in 2019 16th Annual IEEE International Conference on

Sensing, Communication, and Networking (SECON), Boston, MA, USA, June 2019, pp.

1–9.

[99] C. Yang, S. Mao, and X. Wang, “An overview of 3GPP positioning standards,” ACM

GetMobile, vol. 26, no. 1, pp. 9–13, Mar. 2022.

[100] X. Wang, L. Gao, and S. Mao, “Csi phase fingerprinting for indoor localization with a

deep learning approach,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1113–1123,

Dec. 2016.

[101] ——, “Phasefi: Phase fingerprinting for indoor localization with a deep learning ap-

proach,” in 2015 IEEE Global Communications Conference (GLOBECOM), San Diego,

CA, Dec. 2015, pp. 1–6.

[102] X. Wang, X. Wang, and S. Mao, “Indoor fingerprinting with bimodal CSI tensors: A

deep residual sharing learning approach,” IEEE Internet of Things Journal, vol. 8, no. 6,

pp. 4498–4513, Mar. 2021.

[103] X. Wang, L. Gao, and S. Mao, “Biloc: Bi-modal deep learning for indoor localization

with commodity 5ghz wifi,” IEEE access, vol. 5, no. 1, pp. 4209–4220, Mar. 2017.

[104] X. Wang, R. Huang, and S. Mao, “Sonarbeat: Sonar phase for breathing beat monitoring

with smartphones,” in 2017 26th International Conference on Computer Communication

and Networks (ICCCN), Vancouver, Canada, July/Aug. 2017, pp. 1–8.

[105] X. Wang, C. Yang, and S. Mao, “Phasebeat: Exploiting csi phase data for vital sign

monitoring with commodity wifi devices,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), Atlanta, GA, June 2017, pp. 1230–1239.

[106] C. Yang, X. Wang, and S. Mao, “Respiration monitoring with RFID in driving environ-

ments,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 2, pp. 500–512,

Feb. 2021.

148

[107] ——, “Subject-adaptive skeleton tracking with RFID,” in Proc. The 16th IEEE Inter-

national Conference on Mobility, Sensing and Networking (MSN 2020), Tokyo, Japan,

Dec. 2020.

[108] ——, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” IEEE Trans-

actions on Reliability, vol. 70, no. 3, pp. 1218–1231, Sept. 2021.

[109] Z. Zhou, L. Shangguan, X. Zheng, L. Yang, and Y. Liu, “Design and implementation of

an rfid-based customer shopping behavior mining system,” IEEE/ACM transactions on

networking, vol. 25, no. 4, pp. 2405–2418, Aug. 2017.

[110] C. Yang, X. Wang, and S. Mao, “Autotag: Recurrent variational autoencoder for unsu-

pervised apnea detection with rfid tags,” in 2018 IEEE Global Communications Confer-

ence (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–7.

[111] X. Wang, J. Zhang, Z. Yu, S. Mao, S. Periaswamy, and J. Patton, “On remote temperature

sensing using commercial UHF RFID tags,” IEEE Internet of Things Journal, vol. 6,

no. 6, pp. 10 715–10 727, Dec. 2019.

[112] A. Koubâa, M.-F. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Alajlan, N. Al-Elaiwi,

M. Tounsi, and E. Shakshuki, “Coros: a multi-agent software architecture for coopera-

tive and autonomous service robots,” in Cooperative Robots and Sensor Networks 2015.

Springer, 2015, pp. 3–30.

[113] M. Mendonça, I. R. Chrun, F. Neves Jr, and L. V. Arruda, “A cooperative architecture

for swarm robotic based on dynamic fuzzy cognitive maps,” Engineering Applications

of Artificial Intelligence, vol. 59, pp. 122–132, Jan. 2017.

[114] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A distributed task alloca-

tion algorithm for a multi-robot system in healthcare facilities,” Journal of Intelligent &

Robotic Systems, vol. 80, no. 1, pp. 33–58, Nov 2014.

149

[115] M. Erdelj and E. Natalizio, “Uav-assisted disaster management: Applications and open

issues,” in 2016 international conference on computing, networking and communica-

tions (ICNC), Kauai, HI, USA, Feb. 2016, pp. 1–5.

[116] M. Bain and C. Sammut, “A framework for behavioural cloning.” in Machine Intelli-

gence 15, 1995, pp. 103–129.

[117] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” arXiv

preprint arXiv:1805.01954, Aug. 2018.

[118] S. Arora and P. Doshi, “A survey of inverse reinforcement learning: Challenges, methods

and progress,” arXiv preprint arXiv:1806.06877, Aug. 2019.

[119] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in neural

information processing systems, Barcelona, SPAIN, Dec. 2016, pp. 4565–4573.

[120] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,

M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving cars,” arXiv

preprint arXiv:1604.07316, Apr. 2016.

[121] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the limitations of

behavior cloning for autonomous driving,” in Proceedings of the IEEE International

Conference on Computer Vision, Seoul,Korea, Oct. 2019, pp. 9329–9338.

[122] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in

wireless networks: Key techniques and open issues,” IEEE Communications Surveys &

Tutorials, vol. 21, no. 4, pp. 3072–3108, Fourth Quarter 2019.

[123] Y. Li, H. Ma, L. Wang, and S. Mao, “Optimized content caching and user association

for edge computing in densely deployed heterogeneous networks,” IEEE Transactions

on Mobile Computing, vol. 21, no. 6, pp. 2130–2142, June 2022.

[124] M. Chen, V. C. M. Leung, S. Mao, and M. Li, “Energy-efficient itinerary planning for

mobile agents in wireless sensor networks,” in Proc. IEEE ICC 2009, Dresden, Germany,

June 2009, pp. 1–5.

150

[125] X. Wang, Z. Yu, and S. Mao, “Indoor localization using magnetic and light sensors

with smartphones: A deep lstm approach,” Springer Mobile Networks and Applications

(MONET) Journal, vol. 25, no. 2, pp. 819–832, Apr. 2020.

[126] L. Wang, S. Mao, B. M. Wilamowski, and R. Nelms, “Ensemble learning for load fore-

casting,” IEEE Transactions on Green Communications and Networking, vol. 4, no. 2,

pp. 616–628, Apr. 2020.

[127] Y. Wang, Y. Shen, S. Mao, X. Chen, and H. Zou, “Lasso and lstm integrated temporal

model for short-term solar intensity forecasting,” IEEE Internet of Things Journal, vol. 6,

no. 2, pp. 2933–2944, Apr. 2018.

[128] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement learning.” in Icml,

vol. 1, Stanford,CA,USA, June 2000, pp. 663–670.

[129] S. Sariel-Talay, T. R. Balch, and N. Erdogan, “A generic framework for distributed multi-

robot cooperation,” Journal of Intelligent & Robotic Systems, vol. 63, no. 2, pp. 323–358,

May 2011.

[130] J. Wang, Y. Gu, and X. Li, “Multi-robot task allocation based on ant colony algorithm,”

Journal of Computers, vol. 7, no. 9, pp. 2160–2167, Sept. 2012.

[131] K. A. Ghamry, Y. Dong, M. A. Kamel, and Y. Zhang, “Real-time autonomous take-off,

tracking and landing of uav on a moving ugv platform,” in 2016 24th Mediterranean

conference on control and automation (MED), Athens, Greece, June 2016, pp. 1236–

1241.

[132] K. A. Ghamry, M. A. Kamel, and Y. Zhang, “Cooperative forest monitoring and fire

detection using a team of uavs-ugvs,” in 2016 International Conference on Unmanned

Aircraft Systems (ICUAS), Arlington, VA, USA, June 2016, pp. 1206–1211.

[133] A. M. Khaleghi, D. Xu, S. Minaeian, M. Li, Y. Yuan, J. Liu, Y.-J. Son, C. Vo, and J.-

M. Lien, “A dddams-based uav and ugv team formation approach for surveillance and

151

crowd control,” in Proceedings of the Winter Simulation Conference 2014, Savanah, GA,

USA, 2014, pp. 2907–2918.

[134] C. E. Pippin and H. Christensen, “A bayesian formulation for auction-based task allo-

cation in heterogeneous multi-agent teams,” in Ground/Air Multisensor Interoperability,

Integration, and Networking for Persistent ISR II, vol. 8047, Orlando,Florida,USA, May

2011, p. 804710.

[135] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate q-value func-

tions for decentralized pomdps,” Journal of Artificial Intelligence Research, vol. 32,

no. 1, pp. 289–353, May 2008.

[136] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. White-

son, “Qmix: monotonic value function factorisation for deep multi-agent reinforcement

learning,” arXiv preprint arXiv:1803.11485, Mar. 2018.

[137] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,

M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and et al., “Value-decomposition net-

works for cooperative multi-agent learning based on team reward,” in Proceedings of the

17th International Conference on Autonomous Agents and MultiAgent Systems, Rich-

land, SC, July 2018, p. 2085–2087.

[138] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural in-

formation processing systems, Montreal, Canada, Dec. 2014, pp. 2672–2680.

[139] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy op-

timization,” in International conference on machine learning, Lille, France, July 2015,

pp. 1889–1897.

[140] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-

mization algorithms,” arXiv preprint arXiv:1707.06347, July 2017.

152

[141] M. Bloem and N. Bambos, “Infinite time horizon maximum causal entropy inverse re-

inforcement learning,” in 53rd IEEE Conference on Decision and Control, Los Angeles,

CA, USA, Feb. 2015, pp. 4911–4916.

[142] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity:

A general platform for intelligent agents,” CoRR, vol. abs/1809.02627, Sept. 2018.

[143] C. J. Watkins and P. Dayan, “Q-learning,” Springer Machine Learning J., vol. 8, no. 3-4,

pp. 279–292, May 1992.

[144] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust robot movements to

new situations,” in Robotics: Science and Systems, Y. Matsuoka, H. Durrant-Whyte, and

J. Neira, Eds. Cambridge, MA: The MIT Press, 2011, pp. 33–40.

[145] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continuous

control of mobile robots for mapless navigation,” in Proc. IEEE IROS’17, Vancouver,

Canada, Sept. 2017, pp. 31–36.

[146] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani, “Data efficient

reinforcement learning for legged robots,” in Proc. 3rd Conf. Robot Learning, Osaka,

Japan, Nov. 2020, pp. 1–10.

[147] X. Xia, T. Roppel, J. Y. Hung, J. Zhang, S. C. Periaswamy, and J. Patton, “Balanced

map coverage using reinforcement learning in repeated obstacle environments,” in Proc.

IEEE ISIE’20, Delft, The Netherlands, June 2020, pp. 41–48.

[148] M. Feng and S. Mao, “Dealing with limited backhaul capacity in millimeter wave sys-

tems: A deep reinforcement learning approach,” IEEE Communications, vol. 57, no. 3,

pp. 50–55, Mar. 2019.

[149] J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan, “Deep reinforcement learning with optimized

reward functions for robotic trajectory planning,” IEEE Access, vol. 7, pp. 105 669–

105 679, July 2019.

153

[150] S. Cabi et al., “Scaling data-driven robotics with reward sketching and batch

reinforcement learning,” arXiv preprint arXiv:1909.12200, Sept. 2019. [Online].

Available: https://arxiv.org/abs/1909.12200

[151] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel,

and W. Zaremba, “One-shot imitation learning,” arXiv preprint arXiv:1703.07326, Mar.

2017. [Online]. Available: https://arxiv.org/abs/1703.07326

[152] X. Xia, T. Roppel, J. Y. Hung, J. Zhang, S. C. Periaswamy, and J. Patton, “Environmental

complexity measurement using shannon entropy,” Raleigh, NC, USA, Mar. 2020, pp. 1–

6.

[153] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay policy learning:

Solving long-horizon tasks via imitation and reinforcement learning,” in Proc. CORL’19,

Osaka, Japan, Oct. 2020, pp. 1025–1037.

[154] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba, “Maximum entropy gain exploration

for long horizon multi-goal reinforcement learning,” in Proc. PMLR ICML’20, Virtual

Conference, July 2020, pp. 7750–7761.

[155] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming

exploration in reinforcement learning with demonstrations,” in Proc. IEEE ICRL’18,

Vancouver, Canada, Apr.-May 2018, pp. 6292–6299.

[156] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradients,”

Elsevier Neural Networks, vol. 21, no. 4, pp. 682–697, May 2008.

[157] J. Zhang, Z. Yu, S. Mao, S. Periaswamy, J. Patton, and X. Xia, “IADRL: Imitation aug-

mented deep reinforcement learning enabled UGV-UAV coalition for tasking in complex

environments,” IEEE Access, vol. 8, no. 1, pp. 102 335–102 347, June 2020.

[158] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

154

[159] C. Yang, X. Wang, and S. Mao, “AutoTag: Recurrent vibrational autoencoder for un-

supervised apnea detection with RFID tags,” in Proc. IEEE GLOBECOM 2018, Abu

Dhabi, United Arab Emirates, Dec. 2018, pp. 1–7.

[160] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,” IEEE

Robotics & Automation Mmagazine, vol. 13, no. 2, pp. 99–110, June 2006.

[161] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based exploration using

Rao-Blackwellized particle filters,” in Robotics: Science and Systems, S. Thrun, G. S.

Sukhatme, and S. Schaal, Eds. Cambridge, MA: The MIT Press, 2005, pp. 65–72.

[162] I. Maurović, M. Seder, K. Lenac, and I. Petrović, “Path planning for active slam based

on the d* algorithm with negative edge weights,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 48, no. 8, pp. 1321–1331, Aug. 2017.

[163] K. Xiao, S. Mao, and J. Tugnait, “TCP-Drinc: Smart congestion control based on deep

reinforcement learning,” IEEE Access Journal, vol. 7, no. 1, pp. 11 892–11 904, Jan.

2019.

[164] B. Kim and J. Pineau, “Socially adaptive path planning in human environments using

inverse reinforcement learning,” International Journal of Social Robotics, vol. 8, no. 1,

pp. 51–66, Oct. 2016.

[165] T. M. Le, V. Le, S. Venkatesh, and T. Tran, “Dynamic language binding in relational

visual reasoning,” arXiv preprint arXiv:2004.14603, Apr. 2020. [Online]. Available:

https://arxiv.org/abs/2004.14603

[166] P. Hohenecker and T. Lukasiewicz, “Deep learning for ontology reasoning,” arXiv

preprint arXiv:1705.10342, May 2017. [Online]. Available: https://arxiv.org/abs/1705.

10342

[167] D. Hudson and C. D. Manning, “Learning by abstraction: The neural state

machine,” arXiv preprint arXiv:1907.03950v4, Nov. 2019. [Online]. Available:

https://arxiv.org/abs/1907.03950

155

[168] S. Aditya, Y. Yang, and C. Baral, “Integrating knowledge and reasoning in image

understanding,” arXiv preprint arXiv:1906.09954, June 2019. [Online]. Available:

https://arxiv.org/abs/1906.09954

[169] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learning to reason: End-

to-end module networks for visual question answering,” in Proc. IEEE ICCV’17, Venice,

Italy, Oct. 2017, pp. 804–813.

[170] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Proc. NIPS’17, Long Beach, CA, June

2017, pp. 1–11.

[171] H. Le, T. Tran, and S. Venkatesh, “Self-attentive associative memory,” in Proc. ICML’20,

Vienna, Austria, July 2020, pp. 5682–5691.

[172] T. H. Le, T. Tran, and S. Venkatesh, “Neural stored-program memory,” in Proc. ICLR’20,

Virtual Conference, Apr. 2020, pp. 1–28.

[173] A. Graves et al., “Hybrid computing using a neural network with dynamic external mem-

ory,” Nature, vol. 538, no. 7626, pp. 471–476, Oct. 2016.

[174] S. Hu, Y. Ma, X. Liu, Y. Wei, and S. Bai, “Stratified rule-aware network for abstract

visual reasoning,” arXiv preprint arXiv:2002.06838, Dec. 2020. [Online]. Available:

https://arxiv.org/abs/2002.06838

[175] S. Y. Gadre, K. Ehsani, S. Song, and R. Mottaghi, “Continuous scene representations

for embodied AI,” arXiv preprint arXiv:2203.17251, Mar. 2022. [Online]. Available:

https://arxiv.org/abs/2203.17251

[176] P. Tiwari, H. Zhu, and H. M. Pandey, “DAPath: Distance-aware knowledge graph rea-

soning based on deep reinforcement learning,” Elsevier Neural Networks, vol. 135, pp.

1–12, Mar. 2021.

156

[177] M. Clark-Turner and M. Begum, “Deep reinforcement learning of abstract reasoning

from demonstrations,” in Proc. ACM/IEEE HRI’18, Chicago, IL, Mar. 2018, pp. 160–

168.

[178] Y. Gao, F. Yang, M. Frisk, D. Hemandez, C. Peters, and G. Castellano, “Learning so-

cially appropriate robot approaching behavior toward groups using deep reinforcement

learning,” in Proc. 28th IEEE Int. Conf. Robot Human Interactive Commun., New Delhi,

India, Oct. 2019, pp. 1–8.

[179] Q. Wang, Y. Hao, and J. Cao, “ADRL: An attention-based deep reinforcement learning

framework for knowledge graph reasoning,” Elsevier Knowledge-Based Systems, vol.

197, p. 105910, June 2020.

[180] Z. Yu, J. Zhang, S. Mao, S. C. Periaswamy, and J. Patton, “RIRL: A recurrent imita-

tion and reinforcement learning method for long-horizon robotic tasks,” in Proc. IEEE

CCNC’22, Virtual Conference, Jan. 2022, pp. 230–235.

157

