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Abstract

This dissertation is broadly divided into four primary topics which build upon each other

and represent the main projects I worked on during my PhD. Furthermore, this work resulted in

four peer-reviewed articles published in three different high-impact scientific journals – namely,

Computer Methods in Applied Mechanics and Engineering, Computational Materials Science,

and Computational Mechanics. The references for those papers are as follows: [1, 2, 3, 4]. I

am extremely grateful for being given the opportunity to pursue this research while at Auburn.

In the first part of this dissertation, we develop a long-time moving window framework

using Molecular Dynamics (MD) to model shock wave propagation through a one-dimensional

monatomic chain. The moving window formulation follows the propagating shock front allow-

ing us to model shock wave propagation much longer than conventional non-equilibrium MD

(NEMD) simulations. This formulation also significantly decreases the required domain size

and thus reduces the overall computational expense. The domain is divided into a purely atom-

istic window region containing the shock front flanked by boundary regions on either end which

incorporate continuum shock conditions. Spurious wave reflections are removed by employing

a damping band method using the Langevin thermostat applied locally to the particles in each

boundary region. The moving window effect is achieved by adding/removing atoms to/from

the window and boundary regions, and thus the shock wave front is focused at the center of

the window region indefinitely. We simulate the shock through a one-dimensional monatomic

chain using either the Lennard-Jones, modified Morse, or Embedded Atom Model (EAM) in-

teratomic potential. We first perform verification studies to ensure proper implementation of

the thermostat, potential functions, and damping band method, respectively. Next, we track

the propagating shock and compare the actual shock velocity and average particle velocity to

their corresponding analytical input values. From these comparisons, we optimize the linear

shock Hugoniot relation for the given “lattice” orientation and compare these results to those in

literature. When incorporated into the linear shock equation, these new Hugoniot parameters
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are shown to produce a stationary wave front. Finally, we perform one-dimensional moving

window simulations of an unsteady, structured shock up to a few nanoseconds and characterize

the increase in the shock front’s width.

While atomistic methods have successfully modeled different aspects of shock wave prop-

agation in materials over the past several decades, they nevertheless suffer from limitations

which restrict the total runtime and system size. Multiscale methods have been able to increase

the length and time scales that can be modeled but employing such schemes to simulate wave

propagation and evolution through engineering-scale domains is an active area of research. In

the next part of this dissertation, we develop two distinct moving window approaches within a

Concurrent Atomistic-Continuum (CAC) framework to model shock wave propagation through

a one-dimensional monatomic chain. In the first method, the entire CAC system travels with the

shock in a conveyor fashion and maintains the shock front in the middle of the overall domain.

In the second method, the atomistic region follows the shock by the simultaneous coarsen-

ing and refinement of the continuum regions. The CAC and moving window frameworks are

verified through dispersion relation studies and phonon wave packet tests. We achieve good

agreement between the simulated shock velocities and the values obtained from theory with

the conveyor technique, while the coarsen-refine technique allows us to follow the propagating

wave front through a large-scale domain. This work showcases the ability of the CAC method

to accurately simulate propagating shocks and also demonstrates how a moving window tech-

nique can be used in a multiscale framework to study highly nonlinear, transient phenomena.

The one-dimensional CAC shock wave studies demonstrate how coupled atomistic-con-

tinuum methods can describe large domains and model dynamic material behavior for a much

lower computational cost than traditional atomistic techniques. However, these multiscale

frameworks suffer from wave reflections at the atomistic-continuum interfaces due to the nu-

merical discrepancy between the fine-scaled and coarse-scaled models. Such reflections are

non-physical and may lead to unfavorable outcomes such as artificial heating in the atomistic

region. In the third part of this dissertation, we develop a technique to allow the full spectrum

of phonons to be incorporated into the coarse-scaled regions of a periodic concurrent atomistic-

continuum (CAC) framework. This scheme tracks phonons generated at various time steps and
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thus allows multiple high-frequency wave packets to travel between the atomistic and contin-

uum regions. Simulations performed with this method demonstrate the ability of the technique

to preserve the coherency of waves with a range of wavevectors as they propagate through the

domain. This work has applications for systems with defined boundary conditions and may

be extended to more complex problems involving waves randomly nucleated from an impact

within a multiscale framework.

While the one-dimensional CAC moving window framework produced some very note-

worthy results, the physical applications of this framework are limited because a 1D domain

cannot support dislocations or transverse atomic motion. Thus, in the fourth part of this dis-

sertation, we develop a two-dimensional CAC formulation to model shock wave propagation

through a single-crystal lattice for long simulation times. To achieve this, we develop sophis-

ticated algorithms for the boundary conditions, neighbor lists, governing equation, and paral-

lelization scheme. Additionally, since shearing effects can modify atomic behavior in a two-

dimensional system, we also implement Gaussian integration in order to obtain more accurate

forces. We incorporate moving window methods to track an elastic shock for several nanosec-

onds, and such methods require advanced numerical techniques to dynamically coarsen/refine

atomic planes. We compare our simulation results to analytical models as well as previous

atomistic and CAC data and discuss the apparent effects of lattice orientation on the shock

response of two FCC crystals. We then use the moving window techniques to perform para-

metric studies which analyze the shock front’s structure. Finally, we compare the efficiency of

our model to MD simulations. This two-dimensional work showcases the framework’s capa-

bility for simulating dynamic shock evolution over long runtimes and opens the door to more

complex studies involving shock propagation through composites and alloys.

In the Conclusion of this dissertation, we provide a summary of the aforementioned re-

search endeavors and review their contributions to the broader scientific community. Addition-

ally, we discuss our current work which involves modeling the behavior of medium entropy

alloys using a large-scale, three-dimensional CAC framework.
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Chapter 1

Introduction

1.1 Motivation

The behavior of shock waves in solids is an important scientific phenomenon that has been

extensively studied for many decades; see, for example, [11, 21] and the references therein.

Typically, a propagating shock occurs in a material under high strain rate loading conditions

such as a high speed impact and can be fully characterized by the continuum governing equa-

tions. However, the shock response of a material at any length scale is inextricably linked

to effects at lower length scales. At the macroscale, shock waves can lead to damage, plas-

tic deformation, and fracture of the material. Figure 1.1 gives a schematic representation of

spallation induced from a shock wave impact.

Figure 1.1: Partial melting, subsequent spall fracture, and debris ejection in laser shock-loaded
iron. Pale grey represents molten metal [5]1.

1Reprinted from Metals, vol. 4, no. 4; T. De Rességuier, D. Loison, A. Dragon, and E. Lescoute; “Laser driven
compression to investigate shock-induced melting of metals,” pp. 490-502, 2014. Open access article. Figure
obtained with permission from the terms and conditions of the Creative Commons Attribution license.
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Phenomena such as spall fracture result from processes that occur at the microscale in

which shocks interact with the microstructure and cause complex behavior such as scattering,

grain rotations, pore collapse, phase transformations, dislocations, void generation, and grain

crushing [22, 23, 24]. Fig. 1.2 shows dislocation lines generated during shock deformation in

an atomistic simulation performed with LAMMPS (Large-scale Atomic/Molecular Massively

Parallel Simulator).

Figure 1.2: Image taken during a LAMMPS simulation of a piston-driven shock loaded along
the [100] direction of a single-crystal copper lattice.

Very often, studies which examine shock wave propagation through a solid rely on the con-

tinuum hypothesis. This hypothesis says that materials are “composed of an infinitely divisible

continuous medium, imbued with a constitutive behavior that remains unchanged regardless of

how small the structure of interest may be” [25]. Although it conflicts with the atomic the-

ory of matter, this assumption is valid for most practical engineering applications and greatly

reduces the complexity of a system subjected to a shock wave impact. Additionally, this hy-

pothesis allows one to represent a physical system in terms of continuum field theories such

as the theory of elasticity or plasticity. Therefore, with this premise, shock waves can be de-

scribed completely by the conservation of mass, momentum, and energy – often referred to as

the Rankine-Hugoniot equations [26, 27].

The continuum hypothesis becomes insufficient, however, when a material’s response to

a given load depends on effects at the atomic scale as such effects cannot be incorporated
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into the continuum model. This is especially true for damage and fracture that result from

shock wave propagation as such macroscale phenomena are implicitly governed by microscale

processes. Therefore, in order to fully understand shock waves at the continuum level, one

must also be able to model and characterize them at the atomic level. However, atomistic

shock simulations can suffer from, among other things, wave reflections due to limited domain

sizes which drastically reduce the total runtime. The present work attempts to overcome these

drawbacks by first developing a moving window atomistic framework to follow a propagating

shock wave through a material. Such a framework facilitates very long-time simulations and

thus permits a detailed study of the shock Hugoniot and shock front structure.

While contemporary atomistic methods have been very successful in modeling shock

wave propagation and characterizing how defects influence shock behavior, even the largest

benchmark simulations fall short of capturing continuum-level phenomena such as shock wave

boundary layer interactions and the resulting scattered elastic waves. This is because limited

computational resources restrict the total number of atoms that can realistically be incorporated

into a microscale framework. Although computer processing power increases over time, physi-

cal limitations on computer architecture imply that simulations which model continuum events

using purely atomistic techniques may never be possible.

Therefore, a multiscale scheme is needed which would be able to track a moving shock

wave for a long time over a large domain as well as capture a shock’s interaction with phonons

and microstructural interfaces. Such a framework would locally retain atomistic information

around a small region of interest (i.e. the shock wave front) and transition to continuum length

scales throughout the rest of the domain. An example of such a multiscale framework can

be seen in Fig. 1.3. Typically, the microscale domain is modeled using Density Functional

Theory (quantum mechanics) or Molecular Dynamics (atomistics), and the continuum domain

is modeled using finite element or finite volume techniques. The present work also expands the

initial moving window atomistic scheme into a fully-coupled multiscale framework using the

Concurrent Atomistic-Continuum (CAC) method to model realistic shock wave propagation

through a material.
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Figure 1.3: Non-uniform two-dimensional multiscale grid that is gradually coarsened around
an atomistic core in the bottom left corner [6]2.

1.2 Atomistic framework

1.2.1 A brief history of NEMD shock wave simulations

For an in-depth insider analysis of the history of atomistic shock wave modeling up until 1993,

please see [28]. Here, we provide a terse summary of that history and briefly discuss some of

the advances made in the past three of decades since then.

One of the most powerful computational methods to simulate the motion of an atomistic

system is Molecular Dynamics (MD). First invented in the mid 1950s by Alder and Wainwright

[29, 30], MD uses classical Newtonian mechanics to describe a system of many interacting

particles. In contrast to Monte Carlo, MD is capable of simulating the real-time evolution of an

arrangement of atoms, including arrangements which exhibit non-equilibrium behavior [28].

As a result, MD is very effective at modeling shock wave propagation, and the most ubiquitous

simulation technique for shocks is known as non-equilibrium MD (NEMD). NEMD shock

simulations typically load the material using a flyer plate or moving piston, and they have been

used over the past sixty years to study the mechanisms behind shock wave propagation at the

microscale.
2Reprinted from Journal of the Mechanics and Physics of Solids, vol. 82; J.S. Amelang, G.N. Venturini, and

D.M. Kochmann; “Summation rules for a fully nonlocal energy-based quasicontinuum method,” pp. 378-413,
2015. Obtained with permission from Elsevier.
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In fact, the first NEMD simulation of a shock-like event was performed by George Vine-

yard and his coworkers at Brookhaven National Laboratory in 1960 [31]. In this work, Vineyard

simulated the radiation-damage cascade of 500 particles in a single-crystal copper lattice. All

the computations were performed on an IBM 704 computer as seen in Fig. 1.4. Due to the

limited number of atoms, the magnitude of the shock wave reflection once it reached the lattice

surface had to be reduced. Vineyard accomplished this by applying a critical damping to the

surface atoms, thus developing the first MD simulation to incorporate an “elastic-continuum”

outflow boundary condition. The contributions of Vineyard and his research group in [31] laid

the groundwork for the incorporation of finite central difference integration algorithms into

MD, something which would not be formalized until 1967 by Verlet [32].

Figure 1.4: IBM 704 at the National Museum of Science and Technology, Milan3.

The first study to use a continuous potential in MD to model a planar one-dimensional

shock wave in a semi-infinite cubic lattice was performed in 1966 by Tsai and Beckett [33].

In this work, they constrained every atomic plane to move rigidly in the shock direction and

justified this by saying that an exact balance of the transverse forces from neighboring atoms

followed from lattice symmetry. As a result, their model could not account for transverse plastic

flow or temperature equilibration, and hence their cubic lattice was equivalent to a semi-infinite,

3Open access figure. Museo della Scienza e della Tecnologia “Leonardo da Vinci”, CC BY-SA 4.0,
https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons.
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one-dimensional chain of atoms. They found that although the shock velocity increased linearly

with particle velocity (in qualitative agreement with the linear shock Hugoniot), the thickness

of the shock front was not constant, and thus the shock wave profile was unsteady in time.

These results called into question the validity of the shock Hugoniot equation of state (EOS)

because the Hugoniot relations which use the conservation of mass, momentum, and energy

to relate unshocked and shocked material depend implicitly on the manifestation of a steady

wave.

To study this phenomenon further, George Duvall and his students published a series of

papers in the late 1960s where they used MD to simulate shock propagation through a one-

dimensional chain of particles [34, 35, 36]. In these works, they constrained all lattice points to

move along the direction of shock propagation such that transverse waves could not arise. They

observed that the particle velocities exhibited steady behavior (consistent with the Rankine-

Hugoniot jump conditions for a continuum), but the thickness of the shock continually in-

creased with time. They explained these findings by saying that in a nonlinear lattice which

exhibits both frequency and amplitude dispersion, small changes propagate at different group

speeds, so the region influenced by such changes increases linearly with time. These results

seemed to concur with the findings in [33] thus causing further doubt about the effectiveness

and legitimacy of the linear shock Hugoniot EOS.

To provide some clarity about this issue, Paskin and Dienes produced a paper in 1972

where they used MD to study realistic shock waves in a three-dimensional Lennard-Jones sys-

tem [37]. In contrast to the earlier studies, however, Paskin and Dienes used larger piston

velocities and thus produced stronger shock waves. They found that the Hugoniot for a shock

propagating along the [100] direction of an FCC lattice was approximated by a linear relation-

ship between shock velocity (US) and particle velocity (v): US = C0 + Sv. Here, C0 is the

sound velocity in the material at zero stress, and S is the ratio of shock velocity to particle ve-

locity. Additionally, they observed that the shock wave profile was steady. Paskin and Dienes

performed several more MD studies after this initial work which seemed to confirm the steady

nature of shock waves [38, 39, 40], but unfortunately they did not have the computational ca-

pability to study the structures produced by the propagating shock. Therefore, the mechanism
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responsible for this phenomenon was not established, and the explanation as to why their results

differed from those of earlier MD shock simulations was incomplete.

Since the equations of motion used in MD depend explicitly on the conservation equations

of mass, momentum, and energy, the validity of the Hugoniot EOS in MD shock simulations

centered on the steadiness of the shock wave. This controversy was finally resolved by Holian

and Straub at Los Alamos National Lab in the late 1970s [41, 42]. Specifically in [42], they

simulated shock waves in three-dimensional solids and observed that as the shock strength in-

creased, the shock wave thickness transitioned from a regime of linear growth to a finite width

(steady wave) when the initial temperature was nonzero. Therefore, the transition from un-

steady to steady waves in three-dimensional lattices for shocks above a critical strength was

found to be due to the “increase in coupling between vibrational excitations normal and trans-

verse to the direction of shock wave propagation” [42]. Transverse atomic motion, which was

explicitly neglected in the earlier work of Tsai and Beckett, was thus found to be the key to

steady wave behavior in three-dimensional lattices [28]. Holian and Straub concluded that lin-

ear growth in shock thickness occurs for weak shocks in a “1D regime,” and such phenomena

should not be used as a basis for questioning the classical Hugoniot relations.

Straub and Holian expanded upon these findings in 1980 by performing MD simulations

of an intermediate-strength shock wave in a perfect crystalline solid [43]. They discovered that,

for low piston velocities, the propagating shock wave did not induce any plastic deformation in

the material. Furthermore, for shocks produced with higher piston velocities (strong shocks),

the wave train actually had two components: a fast-moving elastic wave which loaded the

material and a slower-moving plastic wave. This “two-wave” phenomenon allowed them to

understand the mechanisms behind shock-induced plastic deformation in great detail. However,

because of limited computational capacity, they could not decipher the relationship between

threshold shock strength and crystal yield strength. After the rapid increase in computing power

during the subsequent decade, more studies were performed in the late 1980s and early 1990s

which further characterized the difference between weak and strong shocks, formalized the

mechanisms behind plastic wave behavior in solids, and investigated the shock Hugoniot and

underlying kinetic relations [12, 44, 45, 46, 47, 48, 49].
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The power of using extremely large-scale NEMD simulations to model plasticity induced

by shock waves in solids was fully exhibited by Holian and Lomdahl in 1998 [19]. In this

work, the group modeled shock wave propagation through an FCC cubic crystal consisting

of 10 million atoms and showed that dislocations were produced throughout all available slip

planes along the nonplanar shock front. These NEMD simulations were some of the first to

showcase the complex nanostructure produced by strong shock waves, and they eliminated the

possibility that slippage was merely an artifact of periodic boundary conditions. Additionally,

their work suggested that defects present in an otherwise undisturbed material could generate

transverse motion and hence plasticity once the shock wave propagated through them. Finally,

this 10 million atom NEMD simulation showed that, in principle, such frameworks could be

used to bridge length scales between the micro and macro world and thus inform continuum

constitutive models.

In the past two decades, NEMD shock simulations have been expanded to very large-scale

domains and used to model increasingly complex events [13, 50, 51, 52, 53, 54, 55, 56, 57, 58].

These simulations typically involve several millions of atoms (∼ O(105 − 109)) subjected

to flyer-plate loading scenarios. Such simulations have been used to study void nucleation

[55, 58, 59], dislocation generation [51, 60, 61, 62], twinning [63, 64, 65], and shock-induced

spallation [53, 56, 66, 67, 68, 69]. However, because of limited domain sizes, NEMD shock

methods still suffer from wave reflections off the domain boundary. Such incidents lead to

transient effects and drastically reduce the total runtime. Additionally, NEMD shock simu-

lations typically result in unrealistic strain rates (1010 − 1012 s−1) [11]. Such strain rates are

rare and orders of magnitude higher than those observed in experiments and practical scenarios

(106 − 108 s−1).

1.2.2 Alternative atomistic techniques for shock wave modeling

To overcome some of the drawbacks with traditional NEMD methods, alternative atomistic

frameworks have been developed since the early 2000s to model shock wave propagation. The

first of these schemes is known as the uniaxial Hugoniostat [70, 71, 72, 73]. Initially proposed

in 2000, the uniaxial Hugoniostat is an equilibrium MD method designed to reproduce the final
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state of a shocked crystal. It achieves this by compressing the crystal instantaneously to its

shocked state which is determined by the continuum governing equations. Then, the material is

coupled to a thermostat which guarantees that the final Hugoniot state is reached. This method

has been shown to replicate the shock Hugoniot curve as well as exhibit the dislocations and

slip planes that are generated by a propagating shock. The uniaxial Hugoniostat is a very

effective method for studying the state of a material in the aftermath of a shock wave, and it

is an order of magnitude less computationally demanding than traditional NEMD simulations.

Unfortunately, because this technique merely reproduces the final shocked state in the domain,

the study of a shock’s steadiness and structure as well as its interaction with defects is limited.

Another atomistic method which actually performs long-time shock wave simulations in

the computational domain is the Multi-Scale Shock Technique (MSST) [74, 75]. Developed in

2003, MSST models shock wave propagation by combining MD with the one-dimensional Eu-

ler equations for compressible flow. As a result, MSST can simulate multiple shock waves that

originate from material instabilities in the atomistic framework. In contradistinction to NEMD

methods, MSST can perform dynamical simulations of propagating shock waves for very long

runtimes (∼ 5 ns). MSST is an extremely useful and robust method for atomistic shock wave

modeling, and it has even been implemented into LAMMPS in recent years. However, while

this technique permits the shock to be controlled based on prescribed continuum constraints,

it does not allow information such as defects and heat to be transferred between atomistic and

continuum regions. Therefore, the scalability of MSST to a fully-coupled atomistic-continuum

scheme is restricted.

The final technique for simulating shock waves at the microscale could be broadly referred

to as the moving window method [76, 77]. First formulated in 1997, this technique shifts the

boundary conditions of the domain such that one is able to study a stationary wave front. To

accomplish the shifting effect, a constant flux of material with a given density and velocity is fed

into the simulation window by inserting a plane of atoms into the right boundary at regular time

intervals. Local atomic energy fluctuations induced near the right boundary of the domain by

the addition of atoms are dampened by a Langevin thermostat which is applied to each particle

in a stadium region near the boundaries. The material flux through the computational domain
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is automatically conserved once a stationary shock front is achieved. This method is able to

examine the complex processes that occur behind the shock wave front indefinitely without

continually inserting new atoms into the simulation cell. However, the scheme developed in

[76] and [77] still initiates the shock wave using a moving piston, and such a method could not

be readily incorporated into a coupled atomistic-continuum formulation.

1.2.3 A new moving window atomistic method for shock propagation

In this work, we first develop a long-time, moving window, atomistic framework using MD to

model shock wave propagation through a one-dimensional monatomic chain. This framework

employs techniques similar to those applied in the uniaxial Hugoniostat method by using the

planar shock jump conditions and Hugoniot EOS to study the classic Riemann problem of a

single propagating discontinuity. The domain is divided into an inner “window” region contain-

ing the shock front flanked by “thermostat” regions on either side. The thermostat regions are

modeled after the damping band method presented in [78] which applies a Langevin thermo-

stat locally to atoms in a stadium fashion and linearly increases the damping coefficient across

the stadium region. Our method differs from [78] because it is purely atomistic and thus does

not further couple the thermostat regions to outer continuum regions. The thermostat regions

absorb and dissipate any impinging waves thus largely eliminating transient wave reflections.

The atoms in the thermostat regions act as boundary conditions for atoms in the window region.

The motion of the domain is achieved by consistently adding and removing atoms to and

from the thermostat and window regions. This moving window technique is similar in principle

to moving boundary conditions used in works such as [79] and [80] to model dynamic crack

propagation. Ordinarily, the simulation time of a shock propagating in an atomistic domain

would be limited due to wave reflections off the boundary. The moving window formulation

allows us to model the propagating shock much longer than conventional NEMD simulations

by focusing the shock front at the center of the window region for the entire simulation. We

emphasize that this first framework is not a true coupled atomistic-continuum scheme in that it

lacks a continuum region with finite element-type mesh points. Therefore, the purely atomistic
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formulation of the moving window technique is limited to ensuring that the small domain can

follow a shock wave for a long time without artificial wave generation and reflection.

Next, we use this method to calculate the shock Hugoniot relation of single-crystal copper

along the close packed lattice direction. Much work has been done on shock kinetic relations

and the linear Hugoniot relationship between shock velocity and particle velocity. This includes

extensive experimental calibration of the linear relation [12, 15] as well as theoretical investi-

gations into the origins of the shock kinetic relation [81]. Additionally, many computational

studies have been performed which use MD to measure the shock Hugoniot along different ori-

entations of an FCC lattice [13, 14, 50, 82]. While the MD work has shown large anisotropic

behavior for shock propagation along different crystal directions, experimental studies have

shown no crystal orientation dependence of the shock velocity vs. particle velocity Hugoniot

curve [83].

We start with the experimentally known shock Hugoniot parameters (C0 and S) for poly-

crystalline bulk copper [12, 21, 15] and perform moving window simulations using particle

velocities obtained from this linear relation. Next, we derive new empirical parameters of this

EOS which produce stationary shock wave fronts in the one-dimensional monatomic chain.

This new relation between shock velocity and particle velocity is defined as the shock Hugo-

niot curve along the close packed direction of a single-crystal copper lattice and compared to

previous MD studies. Finally, we use this optimized Hugoniot data along with the moving

window to follow a structured shock for a few nanoseconds and characterize the shock front’s

width. The shock’s width is observed to increase with time which implies that the shock wave

is unsteady. This is consistent with the findings of other early MD studies which used a one-

dimensional chain of atoms to model shock wave propagation [28, 33, 34, 41, 84].

Although the moving window atomistic framework was presented in my 2020 master’s

thesis [85], this dissertation discusses new data obtained with the atomistic framework since

then and elaborates on the significance of these results. These new data were also published in

[1] in November of 2020.
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1.3 Atomistic-continuum framework

Microscale modeling techniques such as MD clearly possess tremendous capability to simulate

shock waves at lower length scales. Unfortunately, the applicability of MD deteriorates at the

mesocale where the number of atoms required to characterize the system exceeds computa-

tional limitations. At the mesocale, however, the continuum hypothesis still fails, and thus the

system cannot be described exclusively by continuum field theories. Therefore, there exists

a need to develop frameworks which link the atomistic and continuum scales in order to ac-

curately understand, describe, and simulate the motion and behavior of shock waves through

materials. Figure 1.5 shows some of the different length and time scales in material modeling

along with the experimental and computational techniques used at each level of analysis.

Figure 1.5: Multiscale categorization of material behavior [7].

1.3.1 Classification of multiscale techniques

Interest in developing coupled atomistic-continuum (A-C) frameworks for large-scale mate-

rial modeling has been present in the scientific community since the early 1980s when Hardy

derived formulas to relate local continuum properties such as mass density and momentum

density to the masses, positions, and velocities of individual particles [86]. Hardy’s formulas

were similar to those presented in the work of Irving and Kirkwood from the 1950s [87], but
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they had forms which could be easily incorporated into atomistic simulations. The first formal

multiscale framework was developed in 1991 when Kohlhoff and his team used a combined

finite-element and atomistic model to study crack propagation in BCC crystals [88]. In this

work, they created an atomistic core with a surrounding continuum region and described this

coupling in terms of non-local elasticity theory. This formulation became the standard-bearer

for coupled atomistic-continuum models, and since that time, numerous methods have been es-

tablished to connect these seemingly disparate levels of analysis. Such methods can be broadly

divided into two distinct categories: hierarchical and concurrent.

Hierarchical methods presume a separation of spatial scales, and they formulate microscale

information in terms of macroscale constitutive behavior. In other words, the lower-scale infor-

mation is averaged and introduced into pure coarse-grained models in the form of constitutive

equations. Some examples of hierarchical methods include multiple-level FEM [89, 90, 91],

dislocation dynamics (DD) [92, 93, 94, 95], and the second gradient technique [96]. Specifi-

cally, DD simulates the motion of dislocations by treating them as continuum entities traveling

in an elastic field. The interactions between these dislocations are described by constitutive

relations, and the parameters can be derived, theoretically, from MD simulations. Because of

this, the accuracy of DD is determined solely by how well these parameters in the constitutive

relations describe the given system. This is a common limitation for all hierarchical techniques.

On the other hand, concurrent methods have been developed since the mid 1990s to over-

come some of the drawbacks with hierarchical formulations. These concurrent schemes simul-

taneously integrate two different material descriptions into a single computational model. This

is achieved by splitting up the given domain such that a continuum region flanks or surrounds

an inner atomistic region. The atomistic region is very small compared to the continuum re-

gion and only envelops a given “region of interest” such as a dislocation or (as in our case)

a shock wave front. As a result, concurrent schemes can describe very large domains for a

comparatively lower computational cost than pure MD because the vast majority of the compu-

tational expense is associated with the small atomistic region. In this work, we incorporate the

moving window formulation into a concurrent multiscale framework to model long-time shock
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wave propagation through a material. Therefore, we present a brief introduction and analysis

of existing concurrent schemes in the following section.

1.3.2 Existing concurrent multiscale schemes

In this review, we follow the work of Miller and Tadmor [9, 97] while making some reductions

where necessary to avoid repetition and maintain relevancy. As stated in [97], concurrent mul-

tiscale schemes can be divided into two distinct methods: energy-based and force-based. In

general, energy-based methods minimize a given energy functional to characterize the param-

eters of every atom/node in the system. By contrast, force-based methods solve the system by

formulating a set of forces on every degree of freedom and then driving these forces to zero.

Here, we briefly cover some of the most popular energy-based and force-based methods that

exist today.

Coupling of Length Scales method

One of the first concurrent multiscale schemes to be developed was the Coupling of Length

Scales (CLS) method [8, 98, 99, 100, 101]. CLS is an energy-based method which incorpo-

rates the MD equations of motion into an atomistic region and the finite-element equations of

motion into a continuum region. As a result, a type of “handshaking” must be implemented

in the interfacial zone between the atomistic and continuum regions as seen in Fig. 1.6. This

handshake region is achieved by deriving the energy functional as the sum of the atomistic and

continuum energies where the weights are modified as necessary in the interfacial zone. The

atoms in the interfacial region are made neighbors with the nodes of the finite-element mesh,

and this mesh is assumed to be a linear elastic material. The bulk elastic moduli correspond to

the atomistic model, so the discrepancy at the atomistic-continuum boundary is minimized.

Bridging Domain method

The Bridging Domain (BD) method is an energy-based formulation developed in 2004 in which

the atomistic and continuum regions overlap at the interfacial zone [102]. The energy functional

is defined as a linear combination of the fine-scaled and coarse-scaled Hamiltonians, and the
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Figure 1.6: Illustration of the MD/FE handshake region for the CLS method [8]4.

constitutive equation in the coarse-scaled region is constructed via the Cauchy-Born rule. As

a result, any atoms in the continuum domain must remain in that domain, so the BD method

cannot be applied to diffusive phenomena in solids. Like CLS, the BD method incorporates a

handshake region, and in the limit where the length of this region goes to zero, the CLS method

is recovered. The BD method employs Lagrange multipliers in the handshake region to force

consistency between the atomic and continuum displacements at the positions of atoms. This

constrains both the atomistic and continuum models in the overlapping domain.

Bridging Scale method

The Bridging Scale Method (BSM) was first developed in 2003 and is an energy-based method

which is distinct from the previous two schemes as it does not incorporate a handshake region

[103, 104]. This is achieved because BSM does not separate the atomistic and continuum re-

gions. Rather, both the atomistic and continuum displacement fields exist everywhere in the

domain, and the displacement of each atom consists of a fine-scaled and coarse-scaled com-

ponent. Figure 1.7 shows the interface region for BSM. The coarse-scaled displacements are

4Reprinted from Computer Simulation of Materials at Atomic Level, Ch. 11; R.E. Rudd and J.Q. Broughton;
“Concurrent coupling of length scales in solid state systems,” pp. 251-291, 2000. Obtained with permission from
John Wiley and Sons, Ltd.
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Figure 1.7: Illustration of the interface region for BSM [9]5. There is not a handshake region
and finite elements are populated throughout the body to store the coarse-grained displace-
ments.

stored in a finite element mesh throughout the domain (all ofBA andBC), while the fine-scaled

displacements are only stored inside the atomistic domain (BA). The fine-scaled displacements

are obtained from MD by subtracting the component of the MD solution projected onto the

coarse-scaled basis. Thus, a two-way information exchange exists where the fine-scaled MD

values contribute to the internal force in the coarse-scaled equation, and the coarse-scaled val-

ues provide boundary information for the MD simulation. Because of this, it should be noted

that using BSM to model complex phenomena like dislocations and deformations near surfaces

can be non-trivial.

Coupled Atomistic Discrete Dislocation method

Developed in 2002 by Curtin and his team [78, 105, 106, 107, 108], the Coupled Atomistic Dis-

crete Dislocation (CADD) method unifies atomistic techniques and continuum defect modeling

schemes (such as DD) into one computational framework. CADD preserves atomistic resolu-

tion around a region of interest while simultaneously allowing continuum entities representing

5Reprinted from Modelling and Simulation in Materials Science and Engineering, vol. 17, no. 5; R.E. Miller
and E.B. Tadmor; “A unified framework and performance benchmark of fourteen multiscale atomistic/continuum
coupling methods,” 2009. Obtained with permission from IOP Publishing, Ltd.
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defects to interact directly with this region. Specifically, the coupling is achieved through su-

perposition techniques consisting of three parts: (i) the atomistic domain, (ii) the DD domain,

and (iii) the technique for detecting and passing dislocations between these two regions. In

CADD, the defects in the coarse-scaled region are approximated as continuum entities with

isotropic linear elastic fields. The total energy of the system is minimized using the conjugate

gradient procedure, and complex strategies are implemented to allow dislocations to smoothly

pass across the interfaces between the atomistic and DD regions. One of the disadvantages

of CADD is that dislocations are curved in 3D, and hence the dislocation passing strategy be-

comes very complex at this dimension [109]. Additionally, CADD does not allow dislocation

interactions nor does it allow heat conduction in the continuum or across the interface [110].

Quasicontinuum method

One of the most popular multiscale schemes is the Quasicontinuum (QC) method. Developed

in 1996 by Tadmor and his coworkers [10, 111, 112, 113], QC does not have a handshake re-

gion and constrains atoms to deform along with the continuum displacement field. Elements in

the coarse-scaled region represent nonlinear elastic crystals which follow the Cauchy-Born rule

whereby the deformation gradient is applied to the undeformed lattice basis to achieve the crys-

tal structure. The constraints introduced by the Cauchy-Born rule in the coarse-scaled regions

eliminate extra atomistic degrees of freedom (DOFs), but such constraints also restrict contin-

uum descriptions of dislocations and phonons unless an adaptive mesh scheme is implemented.

As a result, the computational cost increases with increasing dislocations/phonons in tradi-

tional QC simulations. Many iterations of QC have been developed over the last two decades

including cluster-QC [10], max-ent QC [113], fully non-local QC [6, 114, 115], and adaptive-

mesh QC [116]. Specifically, cluster-QC approximates the force vector using summation rules

which sample the lattice function over neighborhoods, or “clusters,” of the representative atoms

(nodes) in the coarse-scaled region. These clusters can be seen in Fig. 1.8.
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Figure 1.8: Clusters of atoms in triangulation of a crystal [10]6.

1.3.3 Limitations with previous schemes and an introduction to the CAC method

Reviewing these various concurrent multiscale methods shows us that combining atomistic and

continuum models into a single framework significantly decreases the computational overhead

because the continuum subdomain is much coarser than the atomistic subdomain. Hence, con-

current multiscale schemes can simulate very large systems for a much lower computational

cost than pure MD. However, when modeling dynamical problems, concurrent frameworks can

suffer from spurious wave reflections at the A-C interfaces causing an increase in energy in-

side the fine-scaled region. Such non-physical phenomena arise for the following reasons: (i)

a difference in governing equations exists between the atomistic and continuum regions, (ii)

the spectrum of the coarse-scaled model has a much smaller cutoff frequency than that of the

fine-scaled model causing the A-C interface to appear rigid to incoming high-frequency waves,

and (iii) the interface region cannot support thermal vibrations of particles.

Therefore, ensuring compatibility at the A-C interfaces is one of the primary challenges

with developing and implementing concurrent multiscale frameworks. Although the methods

discussed in the previous section have seen a lot of success in this area, many of them involve a

6Reprinted from Journal of the Mechanics and Physics of Solids, vol. 49, no. 9; J. Knap and M. Ortiz; “An
analysis of the quasicontinuum method,” pp. 1899-1923, 2001. Obtained with permission from Elsevier.
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difference in material description across the interface, and most of them do not allow disloca-

tion/phonon interactions or waves to travel into the continuum region [110]. Techniques which

permit such interactions as well as admit dislocations to pass between the atomistic and contin-

uum regions are needed in a concurrent scheme to realistically model shock wave propagation

as well as study phenomena like phase transformations. Additionally, a framework which al-

lows phonons to pass between the two regions would be capable of modeling the elastic waves

generated after a shock wave impact.

The Concurrent Atomistic-Continuum (CAC) method has been developed over the past

decade to overcome limitations inherent in other concurrent formulations [117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128]. See Table 1.1 for a comparison of CAC with some

of the schemes discussed in the previous section. Employing a unified multiscale framework

built upon Atomistic Field Theory [129, 130], CAC extends the Irving-Kirkwood method for

connecting the atomistic and hydrodynamical equations [87] to a two-level description of ma-

terials where the particle DOFs are included within each primitive unit cell. In this way, CAC

follows the solid state physics model of crystals whereby the structure is continuous at the

lattice level but discrete at the atomic level, and a single set of governing equations is used

throughout the entire domain [128]. Hence, CAC not only supports dislocation/phonon inter-

actions [120, 131], but it also allows dislocations and waves to pass from the atomistic region

to the continuum region and vice versa [117, 126]. While CAC has been very successful at

modeling material defects and their motion and is actively being applied to study dislocation

evolution and interactions [132, 133, 134, 135], it has not yet been extended to model shock

wave propagation through a material.

Table 1.1: Comparison of CAC with other multiscale methods.

Method CLS BDM CADD QC CAC
Publication Year 1998 2004 2002 1996 2010

Handshake Region Yes Yes No No No
Statics No Yes Yes Yes Yes

Dynamics Yes Yes Yes Yes Yes
Finite Temp Non-Equilibrium Dynamics No Yes No Yes Yes

Dislocations in Continuum No No Yes No Yes
Dislocations across Interface No No Yes No Yes

Dislocation/Phonon Interactions No No No No Yes
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1.4 Objectives and research significance

The objective of the present work is to develop long-time, moving window, atomistic and multi-

scale frameworks to model shock wave propagation through various materials. Specifically, we

study the classic Riemann problem of a single traveling discontinuity. In the atomistic frame-

work, we characterize the shock wave using the planar shock jump conditions and Hugoniot

EOS and employ the moving window technique established in [1] to follow the wave front for

very long simulation times. In the multiscale CAC framework, we characterize the shock wave

using the nonlinear Eulerian thermoelastic equations for shock compression of single crystals

[136, 137] and employ the moving window in two distinct ways: (i) by tracking the shock

front in a conveyor fashion and (ii) by simultaneously refining the coarse-scaled region and

coarsening the fine-scaled region at the speed at which the shock wave advances. These mov-

ing window techniques allow us to model a propagating shock much longer than conventional

NEMD simulations by focusing the shock front at the center of the fine-scaled region for the

entire simulation. As a result, we can track the shock front and characterize its structure over

time scales that are typically prohibitive.

During impact simulations, a shock wave may interact with a microstructural interface

and produce transient high-frequency waves which travel throughout the domain. In most

concurrent multiscale formulations, these waves would reflect off the A-C interfaces due to the

numerical incompatibility between the atomistic and continuum regions. Such phonons would

then travel back into the fine-scaled region and cause artificial heating which could potentially

undermine the results of the simulation. Therefore, a scheme which could pass multiple high-

frequency waves across the A-C interface in a multiscale setting would be invaluable. In this

dissertation, we also develop a Lattice Dynamics (LD) technique based upon the work in [126]

to update the particle displacements in the continuum region given multiple short-wavelength

phonons nucleated in the atomistic region. This is achieved by taking two sets of Fourier

transforms during the time integration algorithm and storing the amplitude coefficients in a

“master” array. Such a technique serves as a strong foundation towards solving the complex

problem of incompatibility at the A-C interfaces of a concurrent framework.
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Finally, in this work, we have also expanded the one-dimensional CAC framework to two

dimensions. While the one-dimensional monatomic CAC framework is very useful for studying

simple shocks and testing new numerical methods, its physical applications are limited because

it cannot support dislocations and transverse atomic motion. Scaling the framework up to 2D

was a big undertaking as it required updating the boundary conditions, neighbor lists, unit cells,

and CAC governing equation. Additionally, since shearing effects could influence the particle

behavior, the integration technique required updating. As a result of all these modifications, the

computational expense significantly increased, so we also revised the parallelization scheme.

Despite its complexity, this higher-dimensional CAC framework will be very valuable to the

multiscale modeling community for its potential to simulate nonlinear events, and we show the

results from our simulations in this work.

1.5 Outline of dissertation

This dissertation is organized as follows:

• Chapter 2

1. Derives the shock wave jump equations, Hugoniot relationship, and thermodynamic

expression for temperature in the shocked material.

2. Discusses the nonlinear Eulerian thermoelastic equations for shock wave propaga-

tion through anisotropic single crystals derived in [136].

3. Outlines the problem statement.

4. Describes the framework’s geometry and boundary conditions.

5. Presents the potentials and thermostats used in the simulations.

• Chapter 3

1. Outlines the atomistic moving window and discusses how the shock is initialized in

the fine-scaled domain.

2. Presents results from verification studies performed with the atomistic framework.
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3. Discusses atomistic shock wave propagation and structure results [1].

• Chapter 4

1. Reviews the governing equations and finite element implementation of CAC.

2. Outlines the CAC moving window method and discusses how the shock is initial-

ized in the multiscale domain.

• Chapter 5

1. Presents results from dispersion relation and phonon wave packet studies performed

with the one-dimensional CAC framework.

2. Presents shock wave and structure results obtained with the one-dimensional CAC

moving window framework.

• Chapter 6

1. Derives the Lattice Dynamics formulation for passing high-frequency phonon waves

across length scales within the CAC framework.

2. Enhances this technique to be used with multiple waves in a periodic domain.

3. Presents results from one-dimensional wave packet simulations performed with the

wave passing method.

• Chapter 7

1. Discusses the formulation of the two-dimensional CAC framework.

2. Presents shock wave results obtained with the two-dimensional CAC moving win-

dow framework.

• Chapter 8

1. Provides a conclusion and summary of the dissertation.

2. Discusses the scientific contributions of this work.

3. Considers current and future research on this topic.
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• Appendix

1. Presents further verification results for both the atomistic and CAC frameworks.

2. Gives unsolicited advice to future engineering students by elaborating on the lessons

I learned while pursuing my PhD.
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Chapter 2

Mathematical Background and Domain Formulation

Before discussing the details of the various projects, we first provide a mathematical overview

of our framework.

In Chs. 3 - 5, we consider an elastic monatomic chain with no defects under compression

by an ideal one-dimensional (i.e. longitudinal) shock wave (the two-dimensional formulation

will be analyzed separately in Ch. 7). Mathematically, we represent the shock as a propagating

discontinuity across which there exists a jump in particle velocity (v), stress (σ), strain (ε), and

temperature (θ). Material quantities ahead of the shock front have the superscript −, and quan-

tities behind the shock front have the superscript +. In each simulation, particles ahead of the

shock front are assumed to be at zero mean particle velocity, unstressed, unstrained, and at room

temperature (295 K), and the shock propagates at a natural velocityUS . The notation J·K denotes

the change in a given quantity (·) across the shock front. Some of the analysis in this chapter

can also be found in [11, 21, 85], but we reiterate pertinent derivations/equations/explanations

as well as add more details where necessary for the sake of completeness and clarity.

2.1 Hugoniot shock wave equations

To obtain the results presented in Ch. 3 as well as some of the results in Ch. 7, we simulate a

propagating shock wave using the conservation of momentum, continuity equation, Hugoniot

EOS, and a thermodynamic relationship derived from the shock Hugoniot and release isentrope.

Figure 2.1 provides an illustration of a shock passing through a body Ω. We assume that the

boundary of the shock wave front is contained within the boundary of the material. This creates
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Figure 2.1: Discontinuous wave propagating through a three-dimensional material.

a partitioning Ω = Ω1∩Ω2 of the body into two regions on either side of the discontinuity where

the displacements are continuous.

2.1.1 Continuity jump equation

Consider a point s on the discontinuity which moves with the discontinuity in time. Here,

ṡ is the velocity of the discontinuity at the point s. The material neither creates a void nor

Figure 2.2: Point s on the discontinuity propagating through the material with velocity ṡ.

interpenetrates itself, so the displacement is continuous at s(t) for all time:

u1(s, t) = u2(s, t). (2.1)

Taking the total derivative of each side with respect to time and using index notation, we get

the following:

d

dt
u1
i (s(t), t) =

d

dt
u2
i (s(t), t)

∂u1
i

∂sj

dsj
dt

+
∂u1

i

∂t
=
∂u2

i

∂sj

dsj
dt

+
∂u2

i

∂t

ε1ij ṡj + v1
i = ε2ij ṡj + v2

i (2.2)
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where ε and v denote strain and particle velocity respectively. Then, we can write Eq. (2.2) as

JεijKṡj + JviK = 0. (2.3)

2.1.2 Momentum jump equation

The integral of the total force (t = σn) over the boundary of the body equals the time derivative

of the total momentum of the body as shown below:

∫
∂Ω

σijnjdA =
d

dt

∫
Ω

ρvidV (2.4)

where σ and ρ represent stress and density respectively. For the left-hand side of the Eq. (2.4),

we apply the divergence theorem to the two sub-bodies on either side of the discontinuity.

Using index notation, we get the following:

∫
Ω

σij,jdV =

∫
Ω1

σij,jdV +

∫
Ω2

σij,jdV

=

∫
∂Ω

σijnjdA+

∫
∂Ω1∩∂Ω2

σ1
ij,jn

1
jdA+

∫
∂Ω1∩∂Ω2

σ2
ij,jn

2
jdA

=

∫
∂Ω

σijnjdA+

∫
∂Ω1∩∂Ω2

Jσij,jKnjdA (2.5)

where σij,j = div(σ). Hence, the left-hand side of Eq. (2.4) can be rewritten as

∫
∂Ω

σijnjdA =

∫
Ω

σij,jdV −
∫
∂Ω1∩∂Ω2

Jσij,jKnjdA. (2.6)

Next, we apply Reynold’s transport theorem to the right-hand side of Eq. (2.4) to get

d

dt

∫
Ω1

ρvidV =

∫
Ω1

∂

∂t
ρvidV +

∫
∂Ω1

ρviṡjnjdA (2.7)
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where ṡj is the boundary velocity. Thus, we can write

d

dt

∫
Ω

ρvidV =

∫
Ω

∂

∂t
ρvidV +

∫
∂Ω1

ρ1v1
i ṡjn

1
jdA+

∫
∂Ω2

ρ2v2
i ṡjn

2
jdA

=

∫
Ω

∂

∂t
ρvidV +

∫
∂Ω1∩∂Ω2

JρviKṡjnjdA. (2.8)

Combining Eqs. (2.6) and (2.8), we get the following:

∫
Ω

σij,jdV −
∫
∂Ω1∩∂Ω2

Jσij,jKnjdA =

∫
Ω

∂

∂t
ρvidV +

∫
∂Ω1∩∂Ω2

JρviKṡjnjdA (2.9)

which we can rewrite as

∫
Ω

[
σij,j −

∂

∂t
ρvi

]
dV =

∫
∂Ω1∩∂Ω2

(Jσij,jK + JρviKṡj)njdA. (2.10)

Eq. (2.10) is true for all subregions of Ω, and it must hold true for all Ω ⊂ (Ω1 ∪ Ω2). This

only occurs if the integrand is zero. Then, the right hand side must hold for all subsets of the

boundary. By the fundamental lemma, we have the following jump condition:

JσijKnj + JρviKṡjnj = 0. (2.11)

2.1.3 Reduction to 1D and the linear shock Hugoniot

Consider the propagation of a discontinuity in a plane-strain or plane-stress material as shown

in Fig. 2.3. In this case, we let the velocity of the discontinuity ṡ = US be in the positive

Figure 2.3: Discontinuous wave propagating through a one-dimensional material.

x direction only. Substituting the velocity US into Eq. (2.3), we get the one-dimensional

continuity jump condition:

JεKUS + JvK = 0 (2.12)
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where ε is the longitudinal strain, and v is the particle velocity. Next, substituting US into Eq.

(2.11), we get the one-dimensional momentum jump condition:

JσK + ρUSJvK = 0 (2.13)

where σ is the longitudinal stress. We assume that the wave does not significantly affect the

material properties, so ρ+ = ρ− = ρ.

The shock jump equations are supplemented by an empirically observed linear relation

between shock velocity and particle velocity [11]:

Us = C0 + SJvK. (2.14)

Here, S is a dimensionless, empirical parameter representing the slope of the shock veloc-

ity vs. particle velocity Hugoniot curve, and C0 is the sound velocity in the material at zero

stress. Equation (2.14) was first presented in [138] and used to fit data for twenty-three metals.

However, [15] tabulated Hugoniot data which offered linear fits for many different types of

materials. In some cases – for example, materials with phase transitions, porosity, or molecular

bonding – the linear relation can break down [139]. However, even in those instances, the linear

relation is still used, at least for representing the data over part of the range.

Equations (2.12), (2.13), and (2.14) lead to the standard Hugoniot stress-strain relationship

given by

σ =
ρC2

0JεK
(1 + SJεK)2

(2.15)

where compression strain is considered positive. The Hugoniot stress-strain relationship forms

the basis of modern equations of state. In this work, we use the Hugoniot EOS (Eq. 2.15) for

the sake of simplicity and to quickly compute shocked states.

2.1.4 Temperature

In this subsection, we summarize the analysis from [11]. As a shock wave moves through a

solid, the material behind the wave front gets compressed, and this causes the temperature in
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the shocked material to rise. We assume the thermodynamic process at the shock front to be

adiabatic and the release from the shocked state to the initial state to be isentropic. For solid

materials, the release isentrope and shock Hugoniot are nearly the same. Fig. 2.4 shows a

material shocked from an initial state at atmospheric pressure to pressure P1. Points P1 and V1

Figure 2.4: Shock Hugoniot and release isentrope leading to temperatures T1 and T2 [11]7.

are on the shock Hugoniot, and unloading follows the release isentrope to point 2. It is apparent

that T2 is higher than T0, and thus V2 is higher than V0. This irreversibility produces a loss of

energy as shown by the grey area. We can calculate the rise in temperature behind the shock

using the Grüneisen EOS and thermodynamic relationships.

Using the first law of thermodynamics:

dE = δQ− δW (2.16)

where

δW = PdV (2.17)

and

δQ = TdS, (2.18)
7Reprinted from Dynamic Behavior of Materials, Ch. 5; M.A. Meyers, 1994. Obtained with permission from

John Wiley and Sons, Ltd.
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we obtain the following expression:

dE = TdS − PdV. (2.19)

We can use this to calculate a thermodynamic expression for TdS:

S = f(T, V )

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV, (2.20)

where we know that

CV =

(
∂E

∂T

)
V

= T

(
∂S

∂T

)
V

(2.21)

is the volumetric specific heat capacity. Then, from the second Maxwell relation

dA = −PdV − SdT, (2.22)

we get the following: (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

. (2.23)

Substituting Eqs. (2.21) and (2.23) into Eq. (2.20) gives

TdS = CV dT + T

(
∂P

∂T

)
V

dV. (2.24)

We now apply the Grüneisen equation

Γ1

V
=

(
∂P

∂E

)
V

(2.25)

to get the following identity:

(
∂P

∂T

)
V

=

(
∂P

∂E

)
V

(
∂E

∂T

)
V

=
Γ1

V
CV (2.26)

30



where Γ1 is the first-order Grüneisen parameter for the material. Next, we substitute Eqs. (2.24)

and (2.26) into Eq. (2.19),

dE = CV dT + T
Γ1

V
CV dV − PdV. (2.27)

For a Hugoniot shock process, we know that

∆E = (E1 − E0) =
1

2
(P1 + P0)(V0 − V ). (2.28)

Expressing the change in internal energy with volume along the Hugoniot, we can rewrite Eqs.

(2.27) and (2.28) as follows:

(
dE

dV

)
H

= CV

(
dT

dV

)
H

+
Γ1TCV
V

− P (2.29)(
dE

dV

)
H

=
1

2

(
dP

dV

)
H

(V0 − V )− P

2
. (2.30)

Substituting Eq. (2.30) into Eq. (2.29), we get an expression for the temperature T ,

CV

(
dT

dV

)
H

+
Γ1TCV
V

=
1

2

(
dP

dV

)
H

(V0 − V ) +
P

2
(2.31)

which is a differential equation of the form Ay′ + By = F (V ). Writing Eq. (2.31) in terms of

ε and σ and letting θ = T , we arrive at the shock heat equation:

CV

(
dθ

dε

)
H

− Γ1θCV
1− ε

=
ε

2

(
dσ

dε

)
H

− σ

2
. (2.32)

We use this equation to solve for the jump in temperature across the shock wave front.

2.2 Nonlinear Eulerian thermoelastic theory for shock waves in anisotropic crystals

To characterize the shock wave in the 1D and 2D CAC frameworks, we use the nonlinear Eu-

lerian thermoelastic shock equations derived in [136, 137] for anisotropic crystals. Nonlinear

elastic constitutive models of material behavior which do not account for slippage and plasticity
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are generally idealizations because even small uniaxial compressive strains can cause ductile

materials to reach the experimental Hugoniot elastic limit (HEL). However, such elastic formu-

lations can be practically applied to defect-free atomistic and multiscale simulations of ductile

solids since these domains may be shocked to finite strains over relatively short time scales and

small volumes [137, 140]. Furthermore, we note that nonlinear elastic models may be used to

describe the finite compression of some strong crystals like diamond since the HEL of such

materials is very large. To see an extensive derivation of the Eulerian formulation for shock

waves, we refer the reader to [136] as we merely provide an overview here.

For uniaxial loading, the ‘11’ component of the deformation gradient behind the shock

front is given as follows:

F11 =
∂x

∂X
= 1 +

∂u

∂X
= 1 + ε = J (2.33)

where u is the displacement, ε is the strain, and J is the Jacobian determinant. We simulate

compressive shocks, for which 0 < F ≤ 1 and −1 < ε ≤ 0, propagating with a positive

velocity US > 0. Then, the only nonzero component of the Eulerian strain is

D = D11 =
1

2

(
1− F−2

11

)
=

1

2

[
1− 1

(1 + ε)2

]
. (2.34)

Also, for uniaxial strain along the positive x-direction, we have the following:

P = −σ11

J = F11 = (1− 2D)−1/2 (2.35)

where P is the axial shock stress. In this case, the term Eulerian refers to a strain that is a

function of the inverse deformation gradient and not necessarily one in spatial coordinates.

Therefore, the strain tensor D is Eulerian but refers to material coordinates, so it can be used in

simulations of anisotropic materials [136]. As stated in [141], the choice between Lagrangian

and Eulerian is a matter of convenience, but the Eulerian formulation gives simpler expressions

when modeling large compressions.
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It is well known that a planar shock wave propagating through an unstressed solid with

velocity US can be described by the Rankine-Hugoniot equations [21, 27, 142]

JP K− ρ0UsJvK = 0

JvK− UsJ1− JK = 0

JUK− 1

2
ρ0Jv2K = 0 (2.36)

where ρ0, v, and U denote density, particle velocity, and energy respectively. As shown in

[136], analytical solutions to the planar shock problem can be derived when the material’s

internal energy is a linear function of entropy. Assuming uniaxial strain, the Eulerian fourth-

order internal energy function and conjugate thermodynamic stress are given by [137]

Û =
1

2
C11D

2 +
1

6
Ĉ111D

3 +
1

24
Ĉ1111D

4 − θ0

(
Γ1D +

1

2
Γ̂11D

2 − 1

)
η (2.37)

Ŝ = −J3P =
∂Û

∂D
. (2.38)

Here, θ0 > 0 and η = 0 are the respective temperature and entropy ahead of the shock front, C11

is the second-order elastic constant, and Γ1 is the first-order Grüneisen parameter. The Eulerian

third-order elastic constant, Eulerian fourth-order elastic constant, and Eulerian second-order

Grüneisen parameter are obtained by the relations [136, 143, 144]

Ĉ111 = C111 + 12C11 (2.39)

Ĉ1111 = C1111 − 18C111 − 318C11 (2.40)

Γ̂11 = Γ11 + 4Γ1 (2.41)

where Γ11 = Γ1 assuming that ρΓβ = ρ0Γ0β = constant [136, 145].
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Solving Eqs. (2.35), (2.36), (2.37), and (2.38) simultaneously gives the following fifth-

order polynomials for entropy η generated across the shock front [136]:

η(D) =
5∑

k=0

bkD
k (2.42)

b0 = b1 = b2 = 0 (2.43)

b3 =
1

12θ0

(
Ĉ111 − 9C11

)
(2.44)

b4 =
1

24θ0

[
Ĉ1111 − 9Ĉ111 − 6C11 + Γ1

(
Ĉ111 − 9C11

)]
(2.45)

b5 =
1

48θ0

[
−6Ĉ1111 − 6Ĉ111 − 9C11 + Γ1

(
Ĉ1111 − 6Ĉ111 − 33C11

)
+ Γ2

1

(
Ĉ111 − 9C11

)]
.

(2.46)

Substituting these polynomials into Eq. (2.37), we can obtain the following expression for the

fifth-order conjugate stress (Eq. 2.38) [136]:

Ŝ =
∂Û

∂D
= C11D +

1

2
Ĉ111D

2 +

(
1

6
Ĉ1111 − θ0Γ1b3

)
D3−

θ0D
4
[(

Γ1b4 + Γ̂11b3

)
+
(

Γ1b5 + Γ̂11b4

)
D
]
. (2.47)

From this conjugate stress, we can then use Eqs. (2.35b) and (2.38) to get an expression for the

shock stress P :

P = − (1− 2D)3/2 Ŝ. (2.48)

Finally, the particle velocity v and temperature θ behind the shock front as well as the shock

velocity US can be obtained from Eqs. (2.36a), (2.36b), (2.37), and (2.48):

v =

{(
Ŝ

ρ0

)[
(1− 2D)− (1− 2D)3/2

]}1/2

(2.49)

US = v
[
1− (1− 2D)−1/2

]−1

(2.50)
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θ =
∂Û

∂η
= θ0

(
1− Γ1D −

1

2
Γ̂11D

2

)
. (2.51)

For every shock simulation in Ch. 5, we use the third-order expressions of Eqs. (2.49), (2.50),

and (2.51). However, for the simulations in Ch. 7, we use the fourth-order expressions.

2.3 Riemann problem statement

The material is described by the state variables v, ε, and θ on either side of the shock front as

well as the shock velocity US . Given an initial strain ε−, a final strain ε+, and state (v−, θ−)

of the unshocked material, either the Hugoniot equations [Eqs. (2.12), (2.14), and (2.32)]

or the Eulerian equations [Eqs. (2.49), (2.50), and (2.51)] can be used to compute US and

state (v+, θ+) of the shocked material. We incorporate these parameters into moving window

atomistic and CAC frameworks to simulate long-time shock wave propagation given continuum

shock states ahead of and behind the shock front. Specifically, we study the classic Riemann

problem of a single propagating discontinuity with constant states on either side as shown in

Fig. 2.5.

Figure 2.5: Riemann problem of a shock wave with constant states ahead of and behind the
shock front.

Section 1.2.1 discussed some of the NEMD simulations performed in the 1960s and 70s

which modeled shock waves in 1D. It should be emphasized that all of these works exam-

ined shock propagation along the [100] lattice direction. More recent studies have measured
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the shock Hugoniot along different orientations of a monatomic lattice and discovered large

anisotropic behavior along the various crystal directions [13, 14, 50, 82]. Specifically, [50]

found that shocks propagating along the [110] direction exhibited a leading solitary wave train,

spreading out as time progressed, which was not observed in the other cases. Along this ori-

entation, the atoms displaced primarily in the shock direction and very little, if at all, in the

transverse directions. The article concluded that shocks along the [110] direction exhibited

effectively 1D behavior comparable to what had been observed in cases of a one-dimensional

chain of hard rods [41].

Building upon this, in Chs. 3 and 5, we relate a shock wave propagating through a one-

dimensional chain of close-packed particles to a planar elastic shock propagating along the

[110] direction of a single-crystal lattice. We maintain low particle velocities as well as tem-

peratures below the melting temperature of the material to study weak shocks. This mini-

mizes plastic behavior such as void nucleation and subsequent dislocation generation in the

shocked region. We note, however, that some plasticity and slippage may still occur. Since the

one-dimensional framework is fundamentally incapable of capturing plastic effects (and the

associated transverse atomic displacements), we should still expect to observe the shock front

increase in thickness over time.

2.4 Computational setup

2.4.1 Geometry and boundary conditions

The one-dimensional framework is implemented using an in-house C++ code. The monatomic

chain consists of N particles which are split into three regions as seen in Fig. 2.6. The particles

in each coarse-scaled (continuum) region are separated by a distance of nr0 and are referred to

as nodes in the present work. Here, n is some positive integer, and r0 is the equilibrium spacing

determined by the potential function. These two coarse-scaled regions flank the inner fine-

scaled (atomistic) region on either side. The particles in the fine-scaled region are separated

by a distance of r0 and are referred to as atoms in the present work. Because CAC produces

a unified atomistic-continuum framework using a single set of governing equations, the atoms
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and nodes have identical properties with the only difference being their inter-particle spacing

and mass. Hence, all force calculations are fully nonlocal, and the interatomic potential is the

only constitutive relation [123]. As a result, the particles at the atomistic-continuum interfaces

(xA,0 and xA,F ) interact with each other directly without generating ghost forces [127, 146].

Figure 2.6: Schematic of the one-dimensional CAC domain.

For verification tests and non-shock simulations, we employ either standard fixed or peri-

odic boundary conditions. However, when modeling a propagating shock wave, the two coarse-

scaled regions have distinct particle velocities, strains, and temperatures. Therefore, to avoid

introducing non-physical forces into the domain, a semi-periodic boundary condition method is

employed during shock simulations. Specifically, the nodes at the ends of the chain (x0 and xF )

are made neighbors with the nodes at the interfaces (xA,0 and xA,F respectively). The atoms

and nodes at the A-C interfaces interact with each other directly as in non-shock simulations.

We note that for purely atomistic simulations, only the fine-scaled region is used. In

these simulations, the equilibrium spacing between each particle in the domain is r0, and the

classic MD equations of motion are employed. As with the CAC framework, standard boundary

conditions are used for non-shock simulations while semi-periodic boundary conditions are

used for shock simulations.
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2.4.2 Integration algorithm

The CAC governing equation (Eq. 4.18) is a second-order ordinary differential equation in

time, and we solve it using the velocity Verlet algorithm [147] as seen below:

xi (t+ ∆t) = xi (t) + vi (t) ∆t+
fi (t)
2m

∆t2

vi
(
t+

∆t

2

)
= vi (t) +

∆t

2

fi (t)
m

fi (t+ ∆t) = fi [xi (t+ ∆t)]

vi (t+ ∆t) = vi
(
t+

∆t

2

)
+

∆t

2

fi (t+ ∆t)

m
. (2.52)

Here, xi, vi, and fi denote the position of the ith particle, its velocity, and the net force acting on

it respectively. The time step used in the integration algorithm is chosen to be ∆t = 0.001 ps

in order to minimize numerical error. The velocity Verlet algorithm is adapted in the presence

of the Langevin thermostat as explained in Sec. 2.4.4.

2.4.3 Interatomic potentials

We use the Lennard-Jones, modified Morse, and Embedded Atom Model (EAM) interatomic

potential functions for pure MD force calculations and the modified Morse potential to calculate

the integrand of the internal force density (Eq. 4.14) in CAC simulations. Without loss of

generality, all atomistic simulations as well as the CAC verification studies in Sec. 5.1 and the

Appendix are performed using only the parameters for Cu.

The Lennard-Jones potential only considers first nearest-neighbor interactions and is rep-

resented most commonly as follows [32, 148]:

Π(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

= ε

[(
r0

rij

)12

− 2

(
r0

rij

)6
]

(2.53)

where ε is the depth of the potential well, σ is the finite distance at which the inter-particle

potential is zero, rij = |xi − xj| is the absolute distance between particle i and j, and r0 is
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the distance at which the potential reaches the minimum. The parameters for Cu are given as

follows: ε = 0.415 eV and σ = 2.277 Å [149].

Like Lennard-Jones, the modified Morse potential [20] only considers first nearest neigh-

bor interactions. The expression is given by

Π(rij) =
D0

2B − 1

[
e−2A

√
B(rij−r0) − 2Be−A(rij−r0)/

√
B
]
. (2.54)

MacDonald and MacDonald [20] modified the standard Morse potential to improve the agree-

ment with experimental values for the thermal expansion of materials. Atomistic shock sim-

ulations are only performed with Cu while CAC shock simulations are performed with the

following FCC metals: Cu, Al, Ag, and Ni. Additionally, we use Cu and Al for the two-

dimensional CAC shock simulations discussed in Sec. 7. The parameters for these materials

are given in Table 2.1 where we note that each r0 is equivalent to the equilibrium spacing along

the [110] lattice direction of that particular element.

Table 2.1: Material constants and Morse parameters of four different FCC metals [20].

Element mass (u) ρ0 (g/cm3) Γ1 r0 (Å) α (Å−1) D0 (eV) B
Cu 63.55 8.96 5.5486 2.5471 1.1857 0.5869 2.265
Al 26.98 2.70 6.2753 2.8485 1.1611 0.3976 2.5
Ag 107.87 10.49 5.9773 2.8765 1.1255 0.4915 2.3
Ni 58.69 8.90 6.4699 2.4849 1.3909 0.6144 2.4

The expression for the Grüneisen constant Γ1 of a perfect crystal with pair interactions in

d-dimensional space is given as follows [150]:

Γ1 = − 1

2d

Π′′′(r0)r2
0 + (d− 1) [Π′′(r0)r0 − Π′(r0)]

Π′′(r0)r0 + (d− 1)Π′(r0)
(2.55)

where Π is the interatomic potential. For a one-dimensional chain, this equation reduces to

Γ1 = −1

2

Π′′′(r0)r2
0

Π′′(r0)r0

. (2.56)

We use Eq. (2.56) to obtain the Grüneisen constants given in Table 2.1. As seen, the Γ1 values

for a 1D chain are about 3x the experimental constants of a three-dimensional crystal.
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Finally, the EAM potential is given by the following equation [151]:

Π(rij) = F

(∑
i 6=j

ρ (rij)

)
+

1

2

∑
i 6=j

V (rij) (2.57)

where the net force on a given particle is now a function of all the atoms/nodes/lattice points

within a cutoff radius rc. In Eq. (2.57), V is a pair-wise potential function, ρ is the contribution

to the electron charge density from particle j at the location of particle i, and F is an embedding

function that represents the energy required to place particle i into the electron cloud [152]. We

use the EAM potential file produced by Mishin for atomistic simulations [153].

2.4.4 Thermostat

We impose and maintain temperature in the domain using the Langevin thermostat. The

Langevin thermostat is stochastic and thus adds a random force to the particle motion along

with a damping term ζ . The one-dimensional equations of motion of this thermostat for a

particle i are as follows:

ftoti (t) = fi (t)− ζmvi (t) +

√
2kBθζm

∆t
h̃i (t)〈

h̃i (t)
〉

= 0〈
h̃i,αh̃i,β (t)

〉
= δαβ (2.58)

where α and β denote Cartesian components, kB is Boltzmann’s constant, and h̃i is a Gaussian

random variable with a mean of zero and a variance of one. Since Langevin is local in nature,

the target temperatures θ+ and θ− are specified for each particle. We modify the velocity Verlet

algorithm in the presence of the Langevin thermostat by performing the discretization used in
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LAMMPS [154]:

vi
(
t+

∆t

2

)
= vi(t)−

∆t

2

[
∇iΠ(t)

m
+ ζvi(t)

]
+

√
∆tkBθζ

m
h̃i

xi(t+ ∆t) = xi(t) + vi
(
t+

∆t

2

)
∆t

vi (t+ ∆t) = vi
(
t+

∆t

2

)
− ∆t

2

[
∇iΠ(t+ ∆t)

m
+ ζvi

(
t+

∆t

2

)]
+

√
∆tkBθζ

m
h̃i.

(2.59)

We note that because of the Verlet scheme, the time step in each velocity update is now ∆t
2

rather than ∆t. As per Langevin’s requirements, we generate a different random variable for

each particle during each velocity update.
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Chapter 3

Results with the 1D Atomistic Framework

In this chapter, we present verification studies and shock wave propagation results obtained with

the one-dimensional atomistic framework. These results have also been published in Computer

Methods in Applied Mechanics and Engineering [1].

3.1 1D atomistic moving window

In traditional NEMD shock wave simulations, the shock front cannot travel far before encoun-

tering a boundary, and this vastly limits the overall simulation time. In the present work, we

address this problem by implementing a moving window method which is similar in principle

to moving boundary conditions used in [79] and [80] to model dynamic crack propagation.

Both of these works use a finite number of particles to model a crack in an infinite strip so that

the crack reaches steady state. The infinite strip is achieved by pasting crystals ahead of the

crack tip and cutting broken crystals away from the other end as the crack advances through

the medium. As a result, the crack always remains at the center of the simulation cell without

reaching the boundary. Additionally, energy absorption regions are created on the leading and

trailing edges of the grid to dissipate any elastic waves emanating from the crack.

Incorporation of a shock wave into the moving window framework is inspired from [76]

and [77] where a constant flux of material with a given density and velocity is fed into the

simulation window by inserting a plane of atoms into the right boundary at regular time inter-

vals. Unlike our framework, this moving window technique utilizes piston-driven simulations

to generate a shock wave. Like our framework, however, this method imposes self-consistently
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obtained boundary conditions laterally to the direction of shock front propagation and thus

brings the shock wave to rest within a finite-length simulation domain. Therefore, the moving

window method of [76] and [77] is able to treat the complex processes occurring behind the

shock wave front indefinitely without the number of atoms included in the simulation cell con-

tinually increasing. We introduce a modified version of this moving window technique into our

formulation to eliminate wave reflections and thus follow the propagating shock front for long

simulation times.

3.1.1 Atomistic geometry

When performing shock wave simulations with the moving window in a purely atomistic set-

ting, only the fine-scaled region of Fig. 2.6 is used, and we divide it into three sections as

shown in Fig. 3.1. The outer atoms (orange circles) constitute the thermostat regions (TRs)

while the inner atoms (blue circles) constitute the window region (WR). The WR is governed

by the classic MD equations of motion, and the Langevin thermostat is applied exclusively to

the two TRs in order for the entire domain to reach the desired temperature [78]. Semi-periodic

boundary conditions are employed as detailed in Sec. 2.4.1. In this case, however, the ther-

mostat atoms at the ends of the fine-scaled chain (xA,0 and xA,F ) are made neighbors with the

thermostat atoms at the TR/WR interfaces (xWR,0 and xWR,F respectively). The atoms at the

TR/WR interfaces interact with each other normally.

Figure 3.1: Domain geometry for atomistic shock simulations.

To minimize artificial kapitza resistance across the TR boundaries as well as efficiently

absorb impinging transient waves, we specify the damping factor ζ in the Langevin thermostat

43



to be a function of position relative to each TR/WR interface. Specifically, we utilize the equa-

tion developed in [78] to linearly ramp damping in each TR as the distance from the TR/WR

interface increases. This equation is given as follows:

ζ = ζ0

[
1− d (xi)

l

]
(3.1)

where ζ0 equals the maximum damping (one-half the Debye frequency), and l is the length of

the given TR. Additionally, d(xi) is the minimum absolute distance from atom i at position x

to the end of the fine-scaled chain (either point xA,0 or xA,F ). Thus, for atoms in the TRs, the

damping coefficient varies linearly from zero at the TR/WR interfaces to ζ0 at the ends of the

chain. This allows transient waves to enter the TRs and slowly be absorbed as they propagate

to the ends of the chain. Such a technique reduces spurious wave reflections and thus prevents

artificial heating in the WR [78, 155].

3.1.2 Atomistic moving window mechanism

A schematic of the atomistic moving window technique is shown in Fig. 3.2. The shock wave

originates at the center of the WR as detailed in Sec. 3.1.3 and immediately begins propagating

forward into the unshocked material. After the shock has traveled a distance of one equilibrium

lattice spacing r0, atom N1 is set equal to atom N2, atom N2 is set equal to atom N3, and

so on down the chain up to and including atom NTotal − 1. This process effectively removes

the thermostat atom at xA,0 and simultaneously shifts every atom to the position of its nearest

right neighbor. During this shifting mechanism, the window atom at the left TR/WR boundary

becomes a thermostat atom, and the thermostat atom at the right TR/WR boundary becomes a

window atom.

As a result of this process, atom NTotal is effectively removed, and hence the atomic

position at xA,F is vacant. Therefore, we insert a new NTotal atom into the chain with position

xTotal = xTotal−1 + r0 (unstrained system), velocity v− = 0 km/s, and acceleration a− = 0

km/s2. Local atomic energy fluctuations induced near xA,F by the insertion of atom NTotal are

dampened by the Langevin thermostat as in [77]. This shifting/insertion method constitutes the
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moving window formulation for a one-dimensional purely atomistic framework, and it occurs

iteratively with a frequency of τ−1 = US/r0 as the simulation progresses. The moving window

maintains the shock front at the center of the WR indefinitely instead of the shock propagating

forward to the right boundary and dissipating.

Figure 3.2: Mechanism of the atomistic moving window technique.

3.1.3 Initialization of the atomistic shock wave

Typically, shock waves are generated by subjecting the computational domain to flyer-plate

loading scenarios leading to very high strain rates in the shocked material. The atomistic for-

mulation, by contrast, initializes the shock wave using techniques inspired from the uniaxial

Hugoniostat method [70, 71, 72, 73]. Specifically, we employ the Hugoniot jump conditions

to characterize the shock wave and then couple a thermostat to a portion of the domain, so the

correct temperature is obtained. Our framework differs from the Hugoniostat method, however,

because the thermostat is only applied to the prescribed TRs which allows us to simulate the

evolution of the shock front over time and evaluate its structure.

To maintain consistency, we always define the shock wave front (SWF) to originate at the

center of the WR. All the particles to the right of the SWF constitute the unshocked material,

while all the particles to the left of the SWF constitute the shocked material. For every shock

wave simulation, the unshocked state of the material is specified as follows: (v− = 0 km/s,

ε− = 0, θ− = 298 K). We note that the Hugoniot parameters are typically reported for a material

with this initial state [21]. Nonetheless, the framework would still be valid for other unshocked
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states, provided that suitable Hugoniot parameters of Eq. (2.14) could be obtained. The initial

temperature is imposed inside the right TR ensuring that all of the unshocked material maintains

a mean temperature of 298 K [78].

We choose an initial shock wave velocity and use Eqs. (2.12) and (2.14) to obtain the strain

and mean particle velocity for the shocked material. This mean particle velocity represents a

new equilibrium velocity for atoms in the shocked region, and the integration algorithm is

updated accordingly. The imposed strain causes the shocked region to compress uniaxially,

and the atoms obey the Cauchy-Born rule such that their new positions follow the overall strain

of the shocked region [156]. The non-zero particle velocity and compressive strain cause the

shocked region to reach the final Hugoniot state and produce a forward-propagating shock

wave beginning at the center of the WR. The temperature rise is calculated from Eq. (2.32) and

imposed in the left TR, so the entire shocked region achieves this temperature. The parameters

(v+, ε+, θ+) represent the entire state of the shocked material.

We note that the size and position of the TRs are chosen such that they are far away from

the SWF (the non-equilibrium region). As discussed in [19], the shock velocity vs. particle ve-

locity Hugoniot relation links a given initial equilibrium state to all possible final equilibrium

states for planar shock waves. Hence, the thermostat bands are in regions of “local” equilib-

rium. As shown in [70], a thermostat coupled to a strained system in the shocked state will

cause the system to reach an equilibrium temperature appropriate to the final state of the Hugo-

niot. Therefore, we can validly apply a thermostat to a strained section in a local equilibrium

region far from the SWF to achieve the desired temperature in the shocked material.

3.2 1D atomistic verification studies

In the remaining sections of this chapter, we present verification studies and shock propagation

results for the one-dimensional atomistic framework. As discussed in Sec. 1.2.3, I have ob-

tained new results with the atomistic framework since presenting it for my master’s thesis [85].

In each chapter after this, we focus on the CAC framework exclusively.

We perform three sets of verifications with the atomistic framework to ensure that (i) the

Langevin thermostat maintains the desired equilibrium temperature, (ii) the potential functions
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accurately represent mechanical properties, and (iii) there are no spurious reflections or artifact

waves at the TR/WR interfaces. For the sake of brevity, details on (i) and (ii) are presented

in Appxs. A.1 and A.2 respectively. In Appx. A.1, we found that the Langevin thermostat

maintained a canonical ensemble for a range of different input temperatures. This effect was

observed regardless of the potential function used. In Appx. A.2, we found that the Lennard-

Jones and modified Morse potentials gave accurate tangent moduli values for a range of input

temperatures, and the EAM potential accurately represented both the cohesive energy and bulk

modulus of Cu at 0 K.

We conduct the third steady state verification using the atomistic framework from Fig.

3.1. To do this, we first explored how changing the length of the TRs as well as the damping

factor ζ influenced the system’s ability to achieve steady state and obtain canonical temperature

fluctuations. We varied the length of each TR from 3 to 500 atoms and the damping factor from

0.1 to 1.0 times the Debye frequency (ωD) of Cu. First, we found that each TR needed to

be at least the range of the forces as a shorter length failed to dampen energetic pulses and

resulted in wave reflections into the WR. Hence, we perform all atomistic simulations with

100 atoms in each TR to ensure that transient phenomena are properly dissipated during long-

time simulations. Additionally, we found that the optimal value for ζ0 was one-half the Debye

frequency. A smaller ζ0 (weak damping) failed to achieve a canonical ensemble in the WR,

while a larger ζ0 (hyper damping) resulted in large fluctuations in the WR [157]. These findings

are consistent with results previously obtained for the CADD framework [78]. Therefore, we

always use a maximum damping of 1
2
ωD with the Langevin thermostat.

To ensure that the TR/WR interfaces are not introducing spurious waves into the WR, we

prescribe the same continuum states to both TRs. In other words, the problem has now moved

either to the left or the right of the shock front in Fig. 2.5. The average particle velocity of

the system should remain equal to the initial input value with little to no increase in the aver-

age amplitude. A change in the average particle velocity would indicate that the system is not

reaching equilibrium, while a large increase in amplitude would mean that energy is being ar-

tificially added to the WR. Additionally, after a reasonable interval of time, no traveling waves
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should appear in the WR. Such artifacts would mean that waves are not being smoothly ab-

sorbed into the TRs and are instead reflecting off the TR/WR interfaces. The presence of these

waves could also mean that the periodic boundary conditions are improperly implemented.

We conduct steady state simulations for a one-dimensional monatomic chain of 10,000 Cu

atoms using the Lennard-Jones, modified Morse, and EAM potential functions. The Langevin

thermostat is applied in each TR with ζ = 1
2
ωD. We test the ability of the TRs to equilibrate the

system to the average input particle velocity and properly absorb energetic pulses. Specifically,

we perform these studies for the following mean input particle velocities: 0, 3, 6, 9, and 12

Å/ps. The first set of results can be seen in Fig. 3.3, where we plot the average particle velocity

of the domain vs. time. The total runtime for each simulation was 3,000 ps. We observe that

the system maintains the initial mean particle velocity for the duration of the simulation for

every interatomic potential. From these results, we conclude that the WR achieves steady state

for long-time simulations.

Figure 3.3: Average particle velocity vs. time for 1D atomistic domains with various potentials
and input velocities.

Finally, we confirm that the average amplitude of the particle velocities remains relatively

constant and no large traveling waves appear throughout the duration of the simulation. Figure

3.4 shows three different particle velocity vs. particle number plots for all three potentials.

In each of these graphs, we plot the velocity of each particle at 0 ps and overlay that with
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the velocity of each particle at 3,000 ps for each input velocity (0, 3, 6, 9, and 12 Å/ps).

We observe that in each case, the amplitude of the particle velocities does not increase as the

simulation evolves in time. In fact, the two sets of data overlap each other almost identically

indicating that no artificial energy is being introduced into the WR. (We also note that no large

traveling waves were observed in the WR over the entire runtime). These results confirm that

any waves or pulses encountering the TR/WR interfaces are traveling smoothly into the TRs

and eventually being dampened out. Additionally, the data establish that the periodic boundary

conditions used in the TRs are implemented correctly.

(a) (b)

(c)

Figure 3.4: One-dimensional atomistic steady state plots using the Langevin thermostat in each
TR with the (a) Lennard-Jones, (b) modified Morse, and (c) EAM potentials.
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3.3 Shock Hugoniot results

3.3.1 Moving window shock simulations using the experimental Hugoniot parameters

We perform long-time moving window shock wave simulations through an idealized, one-

dimensional, “close-packed” chain of Cu particles. The fine-scaled domain contains a total of

10,000 atoms with 9,800 atoms in the WR and 100 atoms in each TR to ensure smooth damping

for long-time simulations. Semi-periodic boundary conditions are enforced as described in Sec.

2.4.1, the moving window is applied as detailed in Sec. 3.1.2, and the shock is initialized using

the technique described in Sec. 3.1.3. Each simulation is performed for 3 ns in order to track the

motion and evolution of the fully-developed wave front. We conduct the first set of simulations

with several different shock wave velocities using the experimental Hugoniot parameters for

polycrystalline Cu (C0 = 3.94 km/s and S = 1.49 [12]). These values serve as an initial guess,

and we will derive parameters which produce stationary shocks in Sec. 3.3.2. Fig. 3.5 shows

the velocity profile of a moving window shock simulation for an input velocity of US = 50 Å/ps

(5.0 km/s). In this case, we overlay the initial shock wave with its successive positions in 100

ps increments, so we see the evolution of the wave front over a period of 1,000 ps.

Figure 3.5: Propagation of a shock wave using the EAM potential for an input shock velocity
of 50 Å/ps (5.0 km/s). This simulation was performed using the experimental shock Hugoniot
parameters for bulk Cu [12].

50



The moving window method should maintain the shock front at the center of the WR

throughout the entire simulation. However, this is not observed in Fig. 3.5 because the experi-

mental Hugoniot parameters of Eq. (2.14) used in our initial guess are derived for a shock trav-

eling through polycrystalline bulk Cu. Several MD studies have measured the shock Hugoniot

along the different orientations of a single-crystal Cu lattice and discovered large anisotropic

behavior along the different crystal directions [13, 14, 50, 82]. Since the interatomic poten-

tials used in this work have an equilibrium spacing equal to the spacing along the [110] (close

packed) direction of a Cu crystal, our initial Hugoniot is not suitable for the current frame-

work. Such anisotropic behavior exists because plane-plane collisions propagate the shock

faster along the close packed direction than along the other two directions [13, 14]. There-

fore, the moving window update frequency is too slow, and this causes the shock wave to drift

forward towards the right boundary.

This drifting effect is also observed by plotting the shock front position vs. time for the

following input shock velocities: 47, 50, 54, 58 and 60 Å/ps. In Fig. 3.6 we observe that, in

each case, the shock wave travels to the right, and the speed of this forward motion increases

with increasing input shock velocity. (The figure terminates at 500 ps because the 60 Å/ps

shock encountered the boundary around this time). These results imply that the WR is “falling

behind” the forward propagating shock. This lack of agreement between the shock wave ve-

locity and moving window frequency becomes more pronounced as the input shock velocity

increases. Therefore, we must calculate a new shock Hugoniot suitable for our framework by

plotting the observed shock velocity vs. particle velocity directly behind the shock front. We

refer to this new Hugoniot as the ‘[110]’ Hugoniot. These results are presented in Sec. 3.3.2.

3.3.2 [110] shock Hugoniot calculations

To derive new Hugoniot EOS parameters for our close-packed framework, we analyze moving

window shock simulations using all three potentials for the following input shock velocities:

47, 50, 54, 58, and 60 Å/ps. We track the position of the SWF as well as the mean particle

velocity behind the SWF until the shock impinges upon the right TR/WR interface (analysis

after this point is invalid because the shock gets absorbed). To accomplish this, we fit the
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Figure 3.6: Position vs. time of the shock front for various input shock velocities using the
EAM potential. Here, we use the experimental shock Hugoniot parameters for bulk Cu [12].

shock’s particle velocity profile to a hyperbolic tangent function in MATLAB (using the Curve

Fitting tool) for different time steps.

Fig. 3.7 shows a snapshot at 35 ps of a propagating shock with an input velocity of

60 Å/ps (6.0 km/s). We observe four main components in this shock profile: (i) the mean

particle velocity in the shocked material (v+) derived from Eq. (2.14), (ii) the actual mean

particle velocity behind the SWF obtained from MD, (iii) the position of the SWF (which

is drifting forward), and (iv) the mean particle velocity input by the user in the unshocked

material (v− = 0 km/s). We notice that the actual v+ has a mean value which is slightly higher

than that of the analytical v+. This causes the actual ε+ in the shocked material to be higher

than the analytical ε+ which results in a forward propagating shock wave. Therefore, because

we used the experimental Hugoniot parameters for polycrystalline Cu in our moving window

simulations, the shock values (v+, ε+, and US) obtained from MD with our one-dimensional

framework are different from those calculated using the jump conditions. We use these new

MD parameters to derive the shock Hugoniot for the close packed monatomic chain.

Fig. 3.8 presents Hugoniot curves of the average shock velocity vs. particle velocity

along the close packed, or [110], lattice direction for all three potentials. These Hugoniots

were obtained from the five shock wave trials mentioned previously, but we emphasize that
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Figure 3.7: Snapshot at 35 ps of a propagating shock with a velocity of 60 Å/ps (6.0 km/s).

the results in Fig. 3.8 are the calculated mean shock/particle velocities from MD and not their

input values. As a comparison, the linear fits to the experimental data of bulk Cu by [12]

(US = 3.94 + 1.49v) as well as NEMD shock simulation results for the [110] direction of

perfect single-crystal Cu by [13] and [14] are also plotted in Fig. 3.8. For each potential, the

slope of the linear fit is the new S value while the y-intercept is the new C0 value.

The results from Fig. 3.8 imply that single-crystal Cu is a highly anisotropic material as

the shock velocity vs. particle velocity [110] shock Hugoniots for all three potentials deviate

significantly from the experimental Hugoniot data. Our findings corroborate the anisotropic

nature of shock Hugoniots along different lattice orientations of Cu observed in NEMD simu-

lations [13, 14, 50] as well as MSST simulations [82]. The higher shock wave speeds along the

[110] direction are due to plane-plane collisions that propagate the shock faster than along the

[100] direction as mentioned previously.

Our simulation results using the Morse and EAM potentials are in good agreement with

both Bringa’s [13] and Lin’s [14] NEMD results for the low particle velocities studied with

the atomistic moving window method (v < 1.6 km/s). The slopes of the Hugoniots (S values)

obtained from these two potentials are very similar to the Hugoniot slopes from the two NEMD

studies, but we do observe slight deviations from Bringa’s results in the higher velocity region.
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(a)

(b)

Figure 3.8: Shock velocity (US) vs. particle velocity (v) along the [110] crystal direction of Cu
using the (a) Lennard-Jones potential and (b) EAM and Morse potentials. These are compared
to other NEMD simulation results for a shock along the [110] direction of a Cu lattice found in
[13] and [14]. Additionally, we plot experimental Hugoniot data of bulk Cu from [12].
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This is attributed to the higher temperature in the unshocked region (298 K) employed in the

current simulations. Lin used an initial temperature of 300 K which is why our moving window

results agree more with the results in [14] over the full range of particle velocities studied. The

shock wave velocities (and thus C0 values) obtained with the Morse and EAM potentials are

slightly lower than the shock velocities from the NEMD studies, and this could be attributed

to small transverse effects in a bulk crystal which are unaccounted for in our one-dimensional

monatomic chain.

The same correlation is not observed when using the Lennard-Jones potential which pro-

duced shock velocities and particle velocities much higher than those in the NEMD simula-

tions. These high shock velocities would result in plastic behavior which cannot be captured

in a one-dimensional chain. Additionally, the slope of the Hugoniot curve obtained from the

Lennard-Jones potential is much higher than the slopes from any of the other data sets. Finally

we note that Lennard-Jones is, in general, a poor model for Cu. Therefore, we perform all

further atomistic moving window simulations using only the Morse and EAM potentials.

The modified Morse and EAM [110] shock Hugoniot results in Fig. 3.8 are in good agree-

ment with the [110] NEMD Hugoniot results, and this provides further confirmation that a

shock propagating through a one-dimensional chain of “closed packed” Cu atoms is compara-

ble to a planar shock moving along the [110] direction of a single-crystal Cu lattice. Addition-

ally, these results show that the atomistic moving window formulation presented in this work

can be used with multiple interatomic potential functions. We observe that EAM produces C0

and S values of approximately 3.577 km/s and 2.84 respectively while Morse produces values

of 4.356 km/s and 2.57 respectively. We define these as the new empirical parameters of our

linear shock Hugoniot and use them to produce a stationary wave front in Sec. 3.3.3.

3.3.3 Moving window shock simulations with the new [110] Hugoniot

In Fig. 3.9a, we present the time evolution of a 50 Å/ps (5.0 km/s) shock wave over 1,000

ps in increments of 100 ps (the total runtime was 3,000 ps). This simulation uses the EAM

potential and introduces the new [110] Hugoniot parameters for EAM into Eq. (2.14). We

performed the same MD simulations using the modified Morse potential with its new Hugoniot
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parameters and saw similar results, so we only present and discuss data for the EAM potential

here. In Fig. 3.9a, we achieve much better agreement between the input shock velocity and

MD shock velocity than attained in Sec. 3.3.1. The shock front is now remaining stationary in

the atomistic domain and not drifting towards the right TR/WR interface.

It is apparent that when using the new [110] shock Hugoniot parameters, the midpoint of

the shock front maintains its position at the center of the WR much longer than when using

the experimental Hugoniot parameters which assume that the shock propagates along the [100]

lattice direction of a bulk crystal. This effect is even more noticeable in Fig. 3.9b where we

plot the shock front position vs. time from the new Hugoniot simulations and compare these

results to Fig. 3.6. Whereas the shock fronts were all drifting forward before, they are now

remaining stationary (as evidenced by the horizontal data points) throughout the duration of

each simulation. Therefore, the moving window update frequency now matches the shock

velocity, so the atomistic domain is properly following the propagating shock front.

For all of the shock simulations with the new [110] Hugoniot parameters, we do observe

an increase in the shock thickness over time. This effect is evident in Fig. 3.9a. Although the

midpoint of the shock front remains relatively stationary, the shock “spreads out” across the WR

at higher time steps. This is a consequence of the shock developing a structure as it propagates.

A structured shock wave is a well-established and characterized phenomenon [158], and it

has been observed in many other one-dimensional MD shock simulations [28, 33, 34, 41, 84].

As such, care must be taken to ensure that the WR is sufficiently large to account for the

entire structured shock. Otherwise, the shock wave could potentially “leak” out of the WR and

impinge on the TR/WR interfaces which could result in shock absorption and energy dissipation

at higher time steps. Typically, 1D shock simulations result in a linear increase in the shock

thickness (unsteady wave) while 3D shock simulations produce a constant shock thickness

(steady wave) [42]. To understand this phenomenon further, we increase the size of the WR

and perform additional shock simulations using the new [110] Hugoniot parameters. These

results are presented in Sec. 3.4.
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(a)

(b)

Figure 3.9: (a) Propagation of a shock wave using the EAM potential and incorporating the
new [110] Hugoniot EOS parameters for EAM (US = 50 Å/ps). (b) Shock position vs. time
when using the new [110] Hugoniot compared to the results from Fig. 3.6.
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3.4 Atomistic shock wave structure results

As we saw in Sec. 3.3.3, the shock wave was remaining stationary but was also developing a

structure and exhibiting a length scale. In [158], Chhabildas and Assay calculate an upper limit

of 3.0 ns and a lower limit of 0.03 ns for the shock rise time (RS) in Cu. Using the new shock

Hugoniot for EAM, we perform long-time moving window simulations using the following

input shock velocities: 47, 50, 54, 58, and 60 Å/ps. Assuming the upper limit of 3.0 ns for

the shock rise time as well as the highest shock wave velocity of 60 Å/ps, we can obtain a

maximum value for the shock thickness (TS) as follows:

TS = US ×RS = 60 Å/ps× 3, 000 ps = 180, 000 Å. (3.2)

Hence, we increase the atomistic domain size to 80,000 atoms (∼ 204, 500 Å) and perform

shock simulations with the new [110] Hugoniot EOS. (Again, we only show results for the

EAM potential as the Morse potential produced similar results.) Velocity profiles for input

shock velocities of 50 Å/ps and 60 Å/ps can be seen in Figs. 3.10a and 3.10b respectively.

For both shock wave trials, we clearly observe the shock wave maintaining its position

at the center of the WR over time. Additionally, the entire structured shock is well-contained

within the WR and thus not being absorbed and dampened by the TRs. However, as seen in

Fig. 3.11, the shock wave thickness still increases throughout the entire runtime. For all five

shock wave trials, the width increases linearly from 0 to 500 ps and then continues to gradually

increase from 500 ps to the end of the simulation at 3,000 ps. Therefore, we conclude that the

one-dimensional moving window atomistic framework produces unsteady waves in agreement

with other one-dimensional NEMD shock simulations [28, 33, 34, 35, 36, 41, 42, 84]. Our

results confirm that such unsteady behavior also occurs in a “close packed” atomistic chain

assuming optimized [110] Hugoniot parameters (as opposed to experimental parameters) are

incorporated into the linear shock Hugoniot.

We note that most of the NEMD “piston-based” shock studies which utilize a one-dimensional

chain of atoms are limited to simulation times of ≤ 100 ps because the number of atoms that
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(a)

(b)

Figure 3.10: Propagation of the shock wave front using the EAM potential for input shock
velocities of 50 and 60 Å/ ps (5.0 and 6.0 km/s). The atomistic domain now contains 80,000
total atoms.
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Figure 3.11: Spatial shock width vs. time for five different shock wave trials with the new [110]
Hugoniot.

must be included grows as the shock front recedes from the piston face [77]. In such simula-

tions, a linear increase in the spatial width of the shock front is observed, and we also observe

this linear growth of the shock thickness up to 500 ps in the current moving window framework.

However, as seen in Fig. 3.11, the shock width growth of the five trials begins to diverge after

this point. This change in growth rate was not observed in previous one-dimensional NEMD

simulations due to limited computational times, and such a phenomenon could be attributed

to the minimal transverse motion which occurs for a shock propagating along the [110] lattice

direction [50]. Nonetheless, such a change in the rate of increase of the shock width is an

interesting result of long-time simulations and could be a topic of future study.
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Chapter 4

Concurrent Atomistic-Continuum Method

In this chapter, we discuss the finite element implementation of Atomistic Field Theory and

relate this formulation to our one-dimensional framework. Additionally, we present the moving

window techniques for a multiscale domain.

4.1 Atomistic Field Theory

The preceding chapter presented results from the purely atomistic moving window framework.

At the microscale, the behavior of matter is discrete and governed by the dynamics of individual

particles. Hence, an atomistic system can be fully characterized in terms of the masses, posi-

tions, accelerations, and velocities of every particle in its domain. However, when attempting

to simulate macroscopic phenomena, coarse-grained models are traditionally required because

the number of particles that can realistically be incorporated into a given domain is restricted

by limited computing power and memory.

Continuum mechanics is one of the earliest coarse-grained field theories and, in contradis-

tinction to atomistics, treats matter as a homogeneous and continuous medium [159]. In con-

tinuum mechanics, the smallest structural unit is approximated as a point mass, and the system

is described by local properties such as mass density, momentum density, energy density, local

velocity, stress, and heat flux. These density functions are related to each other through consti-

tutive relations (i.e. Hooke’s Law and Fourier’s Law) which serve as the governing equations

in the given continuum model. Since atomistic information is ignored in continuum mechan-

ics, the macroscopic material properties cannot be linked to particle motion at the nanoscale.
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Rather, these material properties are obtained through macroscale experiments, and, as a result,

continuum mechanics is not predictive.

Therefore, there exists a difference in material description between discrete particle dy-

namics at the microscale and averaged continuum behavior at the macroscale, and the goal of

statistical mechanics is to connect these two levels of analysis. At the beginning of the 20th

century, Josiah Gibbs developed equilibrium statistical mechanics to successfully link atomic

motion to static macroscopic variables [160]. Irving and Kirkwood extended this formalism

in the 1950s to a non-equilibrium setting by expressing the continuity equation, motion equa-

tion, and energy transport equation in terms of microscopic molecular variables using ensemble

averages [87]:

ā (x, t) ≡

〈
N∑
k=1

A(rk, vk)δ(rk − x)

〉
. (4.1)

Here, ā (x, t) is an ensemble-averaged point function, A(rk, vk) is a dynamic phase function,

and rk and vk are the respective position and velocity of the kth particle. In 1982, Hardy

modified the Irving-Kirkwood (IK) methodology for use in MD simulations by implementing

a general localization function for spatial averaging [86].

While the IK formalism is critically important for coarse-grained MD simulations, it does

not consider the internal deformation of a primitive unit cell. Such internal deformation is a

fundamental concept in solid state physics where the displacement of each atom in a poly-

atomic crystal is a function of both the continuous lattice motion and the discrete sub-lattice

motion. Kirkwood, however, did foresee the IK formalism one day being expanded to support

the internal degrees of freedom within molecules [161]. This development finally came in the

2000s when Youping Chen used ideas in solid state physics as well as Hardy’s methodology

to extend the IK formalism into a new framework for multiscale material modeling known as

Atomistic Field Theory (AFT) [130]. AFT describes a crystalline system as a continuous col-

lection of material points that each represent a unit cell. These material points are connected to

the microscale directly by embedding a group of discrete atoms within each unit cell. Hence,

the DOF for every unit cell is a function of the number of atoms inside of it.
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Since AFT treats the various length scales of a material concurrently, one of the primary

issues in this formulation is the decomposition strategy of atomic variables. AFT addresses this

by decomposing the position of a given atom into its bulk lattice position and relative internal

position:

Rkξ = Rk + ∆rkξ. (4.2)

In Eq. (4.2), Rkξ is the position of the ξth atom in the kth unit cell, Rk is the position of the kth

unit cell, and ∆rkξ is the relative position between the ξth atom and the center of the kth unit

cell. In physical space, this decomposition is written as follows:

z = x + y (4.3)

where z, x, and y represent Rkξ, Rk, and ∆rkξ respectively. Using this decomposition tech-

nique, a new link can be established between the local density function a(x, y, t) in physical

space and any dynamic function A(r,p) in phase space [130]:

a(x, y, t) =

Nl∑
k=1

Na∑
ξ=1

A(r,p)δ(Rkξ − z)

=

Nl∑
k=1

Na∑
ξ=1

A(r,p)δ(Rk − x)δ̄(∆rkξ − y). (4.4)

In Eq. (4.4), Nl is the total number of unit cells, Na is the total number of atoms within each

unit cell, and r and p are the atomic position and momenta respectively. Additionally, δ(·) is

the localization function which provides a link between phase space and physical space and

can be either a Dirac delta function or a distribution of weighting functions.

AFT thus defines local properties of a material which are continuously distributed at the

level of a unit cell but which are discrete within each unit cell. Taking the time derivative of the

local density function in Eq. (4.4), one can derive field equations for the conservation of mass,

the balance of linear momentum, and the conservation of energy [129]:

∂ρα

∂t
= −∇x · (ραv)−∇yα · (ρα∆vα) (4.5)
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∂ρα (v + ∆vα)

∂t
= ∇x · [tα − ραv⊗ (v + ∆vα)]

+∇yα · [τα − ρα∆vα ⊗ (v + ∆vα)] + fα (4.6)

∂ραeα

∂t
= ∇x · [qα + tα · (v + ∆vα)− vραeα]

+∇yα · [jα + τα · (v + ∆vα)−∆vαραeα] + fα · (v + ∆vα) . (4.7)

In the three previous governing equations, ρα is the local mass density, ρα(v+∆vα) is the local

density of linear momentum, and ραeα is the local energy density. Additionally, v is the macro-

scopic velocity field, ∆vα is the atomistic velocity associated with the internal deformation of

a unit cell, fα is the external force field, and tα and qα are the respective momentum and heat

flux caused by the homogeneous distortion of unit cells. Also, τα and jα are the respective

momentum and heat flux caused by the restructuring of atoms within the unit cells, and they

represent the stress and heat flux due to inhomogeneous behavior at the microscale.

For monatomic crystals, which we study in this work, yα = 0 and Nα = 1 (one atom per

unit cell). Then, Eqs. (4.5), (4.6), and (4.7) reduce to the following [127]:

∂ρ

∂t
= −ρ∇x · v (4.8)

ρ
∂v
∂t

= ∇x · t + fext (4.9)

ρ
∂e

∂t
= ∇x · q + t : ∇xv. (4.10)

For conservative systems, the AFT energy equation is equivalent to the AFT linear momentum

equation. The AFT formalism facilitates discrete internal deformation within each unit cell and

thus provides a mathematical foundation for the CAC method.

4.2 Finite element implementation of AFT

Equations (4.5), (4.6), and (4.7) represent the governing equations of AFT and are similar in

form to the balance laws of classical continuum mechanics. As in continuum mechanics, the

64



analytical solution to these partial differential equations is not readily obtainable, and thus we

utilize numerical schemes such as the finite element method (FEM) to solve them. Using the

standard definitions of internal force density and kinetic temperature as derived in [162] and

[163], we can rewrite the instantaneous balance equation of linear momentum as follows [164]:

ρα
d

dt
(v + ∆vα) = fαint(x) + fαext(x)− mαkB

M∆V
∇xT

α (4.11)

where ρα is a volumetric mass density such that

ρα(x, t) =
mα

∆V
. (4.12)

In Eq. (4.11), fαint(x) is the internal force density, fαext(x) is the external force density, mα

is the mass of the αth atom, M is the total mass of the atoms within a unit cell, ∆V is the

volume of the unit cell, Tα is the kinetic temperature, and kB is the Boltzmann constant. If

we let fαtemp(x) = −mαkB
M∆V

∇xT
α and fα(x) = fαext(x) + fαtemp(x), then Eq. (4.11) becomes the

following:

ραüα(x) = fαint(x) + fα(x) (4.13)

where uα(x) is the displacement of the αth atom in the unit cell, and fα(x) is the external force

density which now includes the effects of temperature. The most complex component of Eq.

(4.13) is the internal force density which is generally defined as follows:

fαint(x) =

∫
Ω(x′)

Na∑
β=1

f
[
uα(x)− uβ(x′)

]
dx′. (4.14)

Hence, the internal force density is a nonlinear, nonlocal function of relative displacements

between neighboring particles within a given cutoff radius, and it can be obtained exclusively

from the interatomic potential function [165].

We calculate the numerical solution of the governing equation (Eq. 4.13) by discretizing

the material with finite elements such that each element contains a collection of primitive unit

cells. Furthermore, each finite element node represents a unit cell which is itself populated by
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a group of atoms. At the lattice level, we use interpolation within an element to approximate

the displacement field as follows [117]:

ûα(x) = Φξ(x)Uα
ξ . (4.15)

Here, ûα(x) is the displacement field for the αth atom within a given element, Φξ(x) is the

shape function (linear in this work), and Uα
ξ is the displacement of the αth atom within the ξth

element node. We let ξ = 1, 2, ..., n where n is the total number of nodes in the element.

Using the method of weighted residuals, we obtain the weak form of the governing equa-

tion by multiplying Eq. (4.13) with a weight function Φη(x) and integrating over the entire

domain:

∫
Ω(x)

[ραΦη(x)üα(x)] dx =

∫
Ω(x)

[Φη(x)fαint(x)] dx +

∫
Ω(x)

[Φη(x)fα(x)] dx. (4.16)

Specifically, the Galerkin method is used to obtain Eq. (4.16), so the weight function Φη(x)

equals the shape function Φξ(x) in this work. Substituting Eqs. (4.14) and (4.15) into Eq.

(4.16), we get the following expression:

∫
Ω(x)

[ραΦη(x)Φξ(x)] dxÜα

ξ =∫
Ω(x)

Φη(x)

∫
Ω(x′)

Na∑
β=1

f
[
Φξ(x)Uα

ξ −Φξ(x′)Uβ
ξ

]
dx′dx +

∫
Ω(x)

[Φη(x)fα(x)] dx. (4.17)

Eq. (4.17) is the weak form of the governing equation and can be represented in matrix form as

MαÜα

ξ = Fαint + Fα (4.18)

where

Mα =

∫
Ω(x)

[ραΦη(x)Φξ(x)] dx (4.19)

Fαint =

∫
Ω(x)

Φη(x)

∫
Ω(x′)

Na∑
β=1

f
[
Φξ(x)Uα

ξ −Φξ(x′)Uβ
ξ

]
dx′dx (4.20)

66



Fα =

∫
Ω(x)

[Φη(x)fα(x)] dx =

∫
Ω(x)

Φη(x)
[
fαext(x) + fαtemp(x)

]
dx. (4.21)

In the present formulation, we approximate the inertial term using the lumped mass matrix

(LMM) [166]. Additionally, no external forces are applied and temperature is incorporated

through the use of a thermostat as in [121] and [126]. The internal force density Fαint is the

most computationally demanding term, and we evaluate it using either nodal (1D) or Gaussian

(2D and 3D) integration techniques. Finally, the second order differential equation (Eq. 4.18)

is solved through the velocity Verlet integration algorithm presented in Sec. 2.4.2.

By using this finite element implementation of AFT in conjunction with numerical inte-

gration, a majority of the degrees of freedom in the continuum regions are eliminated. For

critical regions where atomistic behavior is important (i.e. a shock wave front), the finest mesh

is used such that the element length is equal to the atomic equilibrium spacing r0. In this way,

CAC uses AFT to produce a unified theoretical framework between the atomistic and contin-

uum regions. CAC frameworks are defined as AFT domains which contain both fine-scaled

and coarse-scaled regions.

4.3 AFT finite element method in 1D

The governing equation derived in Sec. 4.2 describes a polyatomic crystalline lattice composed

of three-dimensional elements. However, the framework in Ch. 5 simulates shock wave prop-

agation through a one-dimensional monatomic chain. Therefore, in this section, we show how

the AFT finite element equations are applied to a 1D linear element in the coarse-scaled region.

Such an element can be seen in Fig. 4.1.

Figure 4.1: CAC coarse-scaled element for a one-dimensional monatomic chain.
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This element has a length of 6r0 where r0 is the close-packed lattice spacing. For monatomic

crystalline materials, the CAC unit cell only contains one atom. Hence, the “unit cells” at po-

sitions x1 and x2 consist exclusively of nodes 1 and 2 respectively. Additionally, the element

edge contains five lattice points whose positions are interpolated using Eq. (4.15) and which

are excluded from the Verlet algorithm. We do not apply any external forces and tempera-

ture is incorporated through the Langevin thermostat, so the governing equation reduces to the

following in 1D:

MÜ− Fint = 0 (4.22)

where

M =

∫
Ω(x)

[ρΦ(x)Φ(x)] dx (4.23)

Fint =

∫
Ω(x)

Φ(x)

∫
Ω(x′)

nα∑
j=1

f [Φ(x)Ui −Φ(x′)Uj] dx
′dx. (4.24)

In Eq. (4.22), M is the complete mass matrix which is assembled from the LMM of each

element in the domain. The standard LMM of a singular, two-node, one-dimensional element

is defined as follows:

Me
LMM =

∫ Le

0

[ρeΦe(x)Φe(x)] dx ≈ mne

2

1 0

0 1

 . (4.25)

Here, m is the atomic mass, ne is the total number of particles and lattice points in the given

element (where each particle gives one-half contribution), ρe is the atomic density of the ele-

ment, Le is the element length, and Φe(x) is the standard linear shape function in 1D. For the

coarse-scaled element in Fig. 4.1, the shape function at any position x along the length of the

element would be as follows:

Φ(x) = [φ1(x) φ2(x)] =

[
x2 − x
x2 − x1

x− x1

x2 − x1

]
=

[
1− ξ

2

1 + ξ

2

]
(4.26)

where

ξ = 2
x− xC
Le

, (4.27)
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and xC is the central coordinate of the element. We note that in the natural coordinate system,

ξ = −1 at node 1, ξ = 0 at the central point of the element, and ξ = 1 at node 2. The coarse-

scaled element in Fig. 4.1 has a length of 6r0 with two nodes and five lattice points, so its LMM

is given as follows:

Me
LMM ≈

6m

2

1 0

0 1

 =

3m 0

0 3m

 . (4.28)

The terms Ü and Fint are vectors of the respective accelerations and net internal forces for

each particle in the chain. In Eq. (4.24), nα is the number of neighbors of particle i within

a given cutoff radius, and f is the force as a function of relative displacements acting on the

particle. If we let

f int(x) =

∫
Ω(x′)

nα∑
j=1

f [Φ(x)Ui −Φ(x′)Uj] dx
′ (4.29)

then we can rewrite Eq. (4.24) as follows:

Fint =

∫
Ω(x)

Φ(x)f int(x)dx. (4.30)

The force f int(x) on particle i at position x is obtained exclusively from the interatomic poten-

tial function, and the corresponding net force is obtained through numerical integration. When

finding the force f int(x) for a node in the coarse-scaled region, the surrounding lattice points

are taken as neighbors and used to calculate relative displacements.

The internal force density in Eq. (4.30) is calculated using numerical integration tech-

niques, and two of the most popular methods are nodal integration and Gaussian integration.

In nodal integration, the forces in the elements are approximated by the forces at the nodes.
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Thus, for the element in Fig. 4.1, Eq. (4.30) would be evaluated as follows:

Fint = w1Φ(x1)f int(x1) + w2Φ(x2)f int(x2)

= (1)

1−(−1)
2

1+(−1)
2

 f int(x1) + (1)

1−1
2

1+1
2

 f int(x2)

=

1

0

 f int(x1) +

0

1

 f int(x2)

=

f int(x1)

f int(x2)

 (4.31)

where Φ(x1) and Φ(x2) are the shape functions at x1 and x2, and w1 and w2 are the weights

associated with nodes 1 and 2 respectively. Although nodal integration is less robust than other

integration schemes, it can still produce accurate forces when using simple geometries.

In Gaussian integration, the force Fint is first split into two terms:

Fint = FNint + FEint (4.32)

where FNint is the internal force density associated with the element nodes, and FEint is the

internal force density associated with the element edge. Gaussian quadratures are then taken in

the physical space for each element. Thus, for the element in Fig. 4.1, each term in Eq. (4.32)

would be evaluated as follows:

FNint = Φ(x1)f int(x1) + Φ(x2)f int(x2)

=

1

0

 f int(x1) +

0

1

 f int(x2)

=

f int(x1)

f int(x2)

 (4.33)
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FEint = wIP1Φ(IP1)f int(IP1) + wIP2Φ(IP2)f int(IP2)

= (1)

1+0.57735
2

1−0.57735
2

 f int (IP1) + (1)

1−0.57735
2

1+0.57735
2

 f int (IP2)

=

0.78868

0.21133

 f int(IP1) +

0.21133

0.78868

 f int(IP2)

=

0.78868 · f int(IP1) + 0.21133 · f int(IP2)

0.21133 · f int(IP1) + 0.78868 · f int(IP2)

 . (4.34)

In Eq. (4.34), IP1 and IP2 are the two Gaussian integration points in the element selected

as IP1 = − 1√
3

and IP2 = + 1√
3

in the natural coordinate system with corresponding weights

wIP1 = wIP2 = 1. We let these two integration points be equal to the nearest lattice points

in the element and update the shape functions and weights accordingly. The forces f int(IP1)

and f int(IP2) are obtained from relative displacements with the surrounding lattice points and

nodes. We note that the linear shape functions will result in simple compression or extension in

the coarse-scaled element causing the integration point forces to sum to zero. Hence, Gaussian

integration reduces to nodal integration in the current one-dimensional framework, but this will

not generally be the case for higher-dimensional systems (see Ch. 7).

For a one-dimensional monatomic chain with many elements, the internal force vector

would be assembled from the individual force vectors of each element. In a CAC framework,

this internal force vector would contain net forces for both atoms and nodes. The only differ-

ence in the atomistic force calculations would be the element length Le (and thus ne), as well

as the fact that the neighbors of atoms are others atoms rather than lattice points. As a result,

lattice point positions would not have to be interpolated during the calculation of f int(x) for

particles in the fine-scaled region. Since Gaussian integration reduces to nodal integration in

1D, we use nodal integration when performing simulations with the 1D CAC framework.
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4.4 CAC moving window in 1D

4.4.1 Geometry for a shock wave

When performing shock wave simulations with the moving window in a multiscale setting, we

utilize the entire CAC framework from Fig. 2.6 and divide it into different regions as shown

in Fig. 4.2. The outer particles (black and orange circles) constitute the thermostat regions

(TRs), and these particles flank the interior atoms (blue circles) which constitute the window

region (WR). We note that the two TRs encompass every continuum node as well as a small

“band” of fine-scaled atoms at each A-C interface in order for the WR to achieve the correct

canonical ensemble [78]. All the particles to the left of the shock wave front (SWF) constitute

the shocked material while all the particles to the right constitute the unshocked material. Semi-

periodic boundary conditions are employed as detailed in Sec. 2.4.1, and the particles at the

thermostat and A-C interfaces interact with each other directly. As discussed in Sec. 3.1.1, the

damping factor ζ in the Langevin thermostat increases linearly throughout each atomistic TR.

The only difference here is that ζ = ζ0 in the continuum TRs.

Figure 4.2: CAC geometry for one-dimensional moving window shock simulations.

With the 1D CAC framework, we employ two distinct moving window methods to track

the propagating shock front: the conveyor technique and the coarsen-refine technique. These

methods are described in the sections that follow.
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4.4.2 Conveyor technique in 1D

A schematic of the moving window using the conveyor technique is shown in Fig. 4.3. The

shock wave originates at the center of the WR as detailed in Sec. 4.4.4 and immediately begins

propagating forward into the unshocked material. After the shock has traveled one equilibrium

spacing r0, the atomic parameters (initial position, displacement, velocity, and acceleration)

of the first coarse-scaled particle in the chain (P1) are set equal to the parameters of the lattice

point immediately to its right (LP11). The initial position ofLP11 is stored, but its displacement,

velocity, and acceleration must be interpolated using the linear shape function from Eq. (4.26)

as shown in [123]:

UP1 ⇒ ULP11 = φ1(x11)UP1 + φ2(x11)UP2

U̇P1 ⇒ U̇LP11 = φ1(x11)U̇P1 + φ2(x11)U̇P2

ÜP1 ⇒ ÜLP11 = φ1(x11)ÜP1 + φ2(x11)ÜP2 (4.35)

After this, the initial position of LP11 is set equal to the initial position of LP12 and so on

throughout the first element until we reach the final lattice point in the element (LP1F ). Then,

the initial position of LP1F is set equal to the initial position of P2. For lattice points, only

the initial positions are updated because their displacements are interpolated during the Verlet

algorithm. These steps get repeated throughout each coarse-scaled element in the chain, and in

the fine-scaled region, the parameters of a given atom are set equal to the parameters of its right

neighbor without any interpolation. Lastly, we assign the following values to the final particle

in the chain (PF ):

XPF = XPF−1 + r0

UPF = 0 km

U̇PF = 0 km/sec

ÜPF = 0 km/sec2 (4.36)
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where local atomic energy fluctuations induced near xF are damped by the Langevin thermostat

as in [77].

This shifting process occurs iteratively with a frequency of τ−1 = US/r0 and effectively

allows the monatomic chain to “follow” the propagating shock wave. Therefore, if the sim-

ulated shock velocity matches the analytical shock velocity, the SWF should remain at the

center of the WR throughout the entire simulation. We refer to this as a conveyor method be-

cause the chain moves in the positive x-direction with a constant velocity, and the coarse-scaled

and fine-scaled regions always have the same respective lengths. Hence, no real refinement or

coarsening of the domain takes place.

Due to the specified shifting frequency, the highest time resolution in the conveyor tech-

nique is r0/US . This is solely because the region of interest in the domain is the SWF which

travels with a known velocity of US . Phenomena with longer or shorter time scales would

indeed be captured in the domain, but depending on their relative velocity, they may either out-

pace or fall behind the wave front and reflect off the A-C interfaces. The time resolution of the

conveyor method could easily be increased by shifting the simulation cell more frequently. The

only limiting factor would be the time step of the integration algorithm. Hence, the conveyor

technique is highly adaptable to other dynamic behavior in materials such as crack growth or

dislocation evolution.

Figure 4.3: Moving window using the conveyor technique in 1D.
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4.4.3 Coarsen-refine technique in 1D

A schematic of the one-dimensional moving window using the coarsen-refine technique is

shown in Fig. 4.4. As in the conveyor technique, the SWF originates at the center of the

WR and propagates into the unshocked material. In the coarsen-refine method, however, atoms

near the left A-C interface become lattice points while lattice points near the right A-C inter-

face become atoms. Therefore, the moving window update does not occur until the shock has

traveled a distance of one element length nr0. After this, the last node in the shocked contin-

uum region (the node at the left A-C interface) becomes the second to last node in the shocked

continuum region. Next, n−1 lattice points are assigned the initial positions of the correspond-

ing n− 1 atoms in the shocked atomistic region. Then, the first atom in the shocked atomistic

region becomes the new A-C interface node and is assigned the initial position, displacement,

velocity, and acceleration of the atom n− 1 positions ahead of it. Effectively, a new continuum

element has been created behind the SWF, and the shocked material has been coarsened.

This atomic parameter assignment occurs throughout the fine-scaled region as long as the

current atom plus n−1 is less than or equal to the first node in the unshocked continuum region.

After this point, each fine-scaled atom is assigned the parameters of the given lattice point n−1

positions ahead of it. As in the conveyor technique, the initial positions of the lattice points are

stored, but their displacements, velocities, and accelerations must be interpolated. Finally,

the second node in the unshocked continuum region maintains its parameters from the Verlet

update, but it is now defined as the first node in the unshocked continuum region. Effectively,

a continuum element ahead of the SWF has been transformed into atoms, and the unshocked

material has been refined. After this entire process completes, the LMM is updated to reflect

the modified mass distribution.

The coarsen-refine technique occurs iteratively with a frequency of τ−1 = US/nr0, and it

is distinct from the conveyor method because the initial and final positions of the framework

do not change. Rather, the entire monatomic chain remains stationary and only the boundaries

of the atomistic region are updated. We also note that the interface atoms of the atomistic

TR bands are shifted accordingly. As a result, the shocked continuum region lengthens, the
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unshocked continuum region shortens, and the atomistic region tracks the SWF through the

domain. For reasons similar to those mentioned in Sec. 4.4.2, the coarsen-refine technique

introduces a time resolution of nr0/US into the domain due to the update frequency. Therefore,

while phenomena such as elastic waves or dislocations could drift out of the fine-scaled region,

they would merely reflect off the boundary or be absorbed by the TRs while the WR tracked

the shock.

The current coarsen-refine technique arises from a consideration of the balance between

efficiency and accuracy. For example, merely refining the domain ahead of the wave front

would result in total accuracy but no efficiency as the fine-scaled region would get larger and

larger while the simulation evolved. This would defeat the purpose of the CAC method and

significantly increase the computational load over time. Likewise, merely coarsening the do-

main behind the wave front would result in total efficiency but no accuracy as the fine-scaled

region would get smaller and smaller while the shock approached the A-C interface. Thus, we

strike a balance between these two extremes by coarsening and refining equally-sized portions

of the domain at the same rate.

Figure 4.4: Moving window using the coarsen-refine technique in 1D.

4.4.4 Initialization of the shock wave

We choose a final strain ε+ and use Eqs. (2.49) and (2.50) to obtain the mean particle veloc-

ity v+ and shock front velocity US . This mean particle velocity represents a new equilibrium

velocity for particles in the shocked region, and the integration algorithm is updated accord-

ingly. The imposed strain causes the shocked region to experience uniaxial compression, and
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the particles obey the Cauchy-Born rule such that their new positions follow the overall strain

of the material. The non-zero particle velocity and compressive strain cause the shocked region

to reach its final state and produce a forward-propagating shock wave beginning at the center

of the WR. The temperature rise θ+ is calculated from Eq. (2.51) and imposed in the left TR,

so the entire shocked region achieves this temperature [78]. The fine-scaled TR bands are far

enough away from the SWF (the non-equilibrium region) such that they are in regions of “lo-

cal” equilibrium. This ensures the validity of applying thermostats onto strained sections of the

domain [70].

77



Chapter 5

Results with the 1D CAC Framework

In this chapter, we present verification studies and shock wave propagation results obtained

with the one-dimensional CAC framework. These results have also been published in Computer

Methods in Applied Mechanics and Engineering [2].

5.1 CAC verification studies

For the sake of brevity, results from the first two verification studies are presented and dis-

cussed in Appxs. B.1 and B.2. In Appx. B.1, we performed force vs. displacement tests

to verify that Eq. (4.24) was correctly implemented into the one-dimensional framework as

well as ensure force matching at the A-C interfaces. We found that the spring constants of the

fine-scaled, coarse-scaled, and CAC domains were nearly identical. Next, in Appx. B.2, we

performed temperature equilibration tests to ensure that the thermostat damping method dis-

cussed in Sec. 3.1.1 maintained the correct temperature in the undamped WR. We found that

the Langevin thermostat equilibrated the system to the given input temperature and maintained

this temperature for the entire runtime.

5.1.1 Predicting phonon dispersion relations

The CAC method has been used previously to predict the dynamics of dislocations [120, 167,

168], cracks [169, 170, 171], and phase transformations [172]. Since this is the first attempt to

extend CAC to simulate propagating shock waves and since we are incorporating a Langevin

thermostat into portions of the domain to achieve the correct unshocked and shocked tempera-

tures, we need to verify that our CAC framework can accurately predict properties of phonon
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dynamics. Specifically, we need to ensure that the 1D CAC framework can reproduce the

correct dispersion relation – a relationship between the wavevector and angular frequency.

Lattice dynamics and spectral energy density background

In crystalline materials, heat is classically conducted through lattice vibrations. At the quantum

level, these lattice vibrations are characterized by phonons. Finite temperature is generated in a

material through the vibration of atoms around their respective equilibrium positions, and these

vibrations can be viewed as a gas of phonons. Because of the interatomic force field, these

particle vibrations occur collectively and thus form traveling waves.

Based on the solution of the harmonic equation of motion, Lattice Dynamics (LD) repre-

sents a particle’s displacement from equilibrium as a series of sinusoidal waves [173, 174]:

uα(x, t) =
1

(Nlmα)1/2

∑
k,ν

eαkνQkνexp [i (k · x− ωkνt)] . (5.1)

Equation (5.1) decomposes the displacement of the αth atom in the lth unit cell at time t into

a linear combination of the normal modes Qkν , and the linear decomposition originates from

crystal symmetry. Each of the normal modes represents a wave that can be characterized by

the phonon branch ν in the dispersion diagram along with the wavevector k and corresponding

frequency ωkν . Additionally, eαkν is the displacement (or polarization) vector which gives the

direction in which each atom travels, mα is the mass of the αth atom in the lth unit cell, Nl is

the total number of unit cells in the domain, and x is the equilibrium position of the lth unit

cell. For a one-dimensional monatomic chain, there is only one atom per unit cell (α = 1 and

Nl = N where N is the total number of atoms), each atom has the same mass (mα = m),

displacement to the left is defined as negative while displacement to the right is defined as

positive (eαkν = 1), and there is only one phonon branch in the dispersion diagram (ν = 1).

Hence, in a one-dimensional setting, Eq. (5.1) reduces to the following:

u(x, t) =
1

(Nm)1/2

∑
k

Qkexp [i (k · x− ωkt)] . (5.2)
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Although LD provides a fundamental description of phonon properties in perfect crystals

at low temperatures, it cannot account for anharmonic behavior like phonon-phonon scattering.

Finite temperature effects can be integrated into LD through quasi-harmonic methods, but such

methods are typically unwieldy and impractical to implement [175, 176]. We need to verify

that our CAC framework can produce the correct dispersion relation because this relation char-

acterizes the dynamics of a crystalline system and provides a direct test of a given theoretical

model [177]. CAC naturally incorporates anharmonic phenomena, and fortunately, alternative

methods to LD have been developed to evaluate phonon properties of crystalline systems in

MD settings. The most common technique is the calculation of the phonon spectral energy

density, and a very robust equation for the spectral energy density comes from a 2010 paper by

John A. Thomas and his coworkers [178]. Their derivation is summarized below.

The spectral energy density results from projecting the positions of atoms onto the nor-

mal modes of vibration Qkν(t). The contribution to the normal-mode amplitude arising from

uαξ (β, t) – the displacement in the βth direction of the αth atom inside the ξth unit cell at time t

– is given as follows:

Qα
kν(β, t) = eαkν(β)

√
mα

Nl

×

{
Nl∑
ξ

uαξ (β, t) · exp [ik · xξ(t0)]

}
, (5.3)

where eαkν is the corresponding component of the polarization vector, Nl is the total number

of unit cells, xξ(t0) is the equilibrium position of the ξth unit cell at t0, and k and ν are the

respective wavevector and phonon branch from before. The total normal-mode amplitude is

Qkν(t) =
∑
β

Nα∑
α

Qα
kν(β, t), (5.4)

and the average kinetic energy of normal mode kν is as follows:

T̄kν =
∑
β

Nα∑
α

T̄αkν(β) =
∑
β

Nα∑
α

{
1

2τ0

∫ τ0

0

[
Q̇α∗

kν (β, t) · Q̇α
kν(β, t)

]
dt

}
, (5.5)
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where Q̇α∗
kν (β, t) is the complex conjugate of Q̇α

kν(β, t). We transform the kinetic energy from

the time domain to the frequency domain using Parseval’s theorem [179] as follows:

T̄kν =
∑
β

Nα∑
α

1

4τ0

∣∣∣∣ 1√
2π

∫ τ0

0

[
Q̇α

kν(β, t) · exp(−iωt)
]
dt

∣∣∣∣2 , (5.6)

where ω = ωkν is the angular frequency. If we substitute the time derivative of Eq. (5.3) into

Eq. (5.6) and average over Nl, we get the spectral energy density:

ϕ(k, ω) =
1

4πτ0Nl

∑
β

Nα∑
α

mα

∣∣∣∣∣
∫ τ0

0

{
Nl∑
ξ

u̇αξ (β, t)× exp [ik · xξ(t0)− iωt]

}
dt

∣∣∣∣∣
2

. (5.7)

Equation (5.7) is derived exclusively through LD, and the displacement vectors do not appear

here because they are orthonormal. For a one-dimensional monatomic chain, Eq. (5.7) reduces

to the following:

ϕ(k, ω) =
m

4πτ0N

∣∣∣∣∣
∫ τ0

0

{
N∑
n=1

u̇n(t)× exp [ik · xn(t0)− iωt]

}
dt

∣∣∣∣∣
2

. (5.8)

The spectral energy density is defined as the average kinetic energy per unit cell as a

function of wavevector and frequency. We use Eq. (5.8) to calculate the phonon dispersion

curve of the one-dimensional CAC framework by postprocessing atomic velocities in the fine-

scaled region and nodal velocities in the coarse-scaled regions.

Spectral energy density results

We test the ability of the CAC method to reproduce the accurate phonon dispersion relation by

performing a spectral energy density calculation with the atomistic-continuum domain shown

in Fig. 2.6. For this simulation, the monatomic chain contains 260 atoms in the fine-scaled

region and 20 nodes in each coarse-scaled region for a total of 300 particles. The element

length L in the coarse-scaled regions is defined as six times the equilibrium spacing (6r0), and

standard periodic boundary conditions are applied at x0 and xF .
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The spectral energy density plot as well as the dispersion relation obtained analytically

through LD using the modified Morse potential can be seen in Fig. 5.1. The dispersion relation

for a one-dimensional monatomic crystal is given by the following standard equation:

ω =

√
4C

m

∣∣∣∣sin(kr0

2

)∣∣∣∣ (5.9)

where C is the elastic constant defined as the second derivative of the interatomic potential

function at r0 in this case. This simulation was performed at 10 K, and we note that the data

is a little noisy because the Langevin thermostat is stochastic and thus generates a new random

number for each particle at each time step. The frequency resolution on the vertical axis is 0.004

rad/ps, the wavevector resolution on the horizontal axis is 0.004, and the contours indicate the

magnitude of the spectral energy density for each (k, ω) combination.

Figure 5.1: Phonon spectral energy density contour plot of a CAC monatomic chain calcu-
lated using the Langevin thermostat. The red line represents the analytical dispersion relation
obtained from LD, and the simulation was performed at 10 K.

In Fig. 5.1, we observe that the phonon dispersion relation obtained in the fine-scaled re-

gion of the CAC framework is identical to that obtained from LD. This confirms that if modeled

with the finest mesh (L = r0), our CAC domain can accurately reproduce the exact dynamics

of particles in an atomistic system. However, the dispersion relation for the coarse-scaled re-

gions is only accurate for phonons whose wavevector is smaller than a critical value, kC . This
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occurs because the linear shape functions used in the coarse-scaled regions inhibit the trans-

mission of small-wavelength phonons with wavevectors larger than kC or wavelengths smaller

than 2π/kC . The critical wavevector kC for an allowed error ε is calculated by the element

length (L = nr0) in the coarse-scaled regions according to the following equation [180]:

kC = max
k

{∣∣∣∣sin(kr0

2

)
− sin

(
kL

2

)∣∣∣∣ ≤ ε

}
. (5.10)

For this equation to be valid, the length values must be in nanometers, so r0 = 0.25471 nm and

L = 6r0 = 1.5283 nm in our case. We choose an allowable error of ε = 5% which corresponds

to a critical wavevector of kC = 0.064 π
r0

. Hence, only phonons with wavelengths longer than

λC = 2π/kC = 7.96 nm can pass into the coarse-scaled regions with a reflection of less than

5%. This is consistent with the plot in Fig. 5.1 where the difference between the dispersion

relations of the fine-scaled and coarse-scaled regions is imperceptible for k < kC .

Therefore, CAC can be used to accurately predict the dynamics of phonons with wave-

lengths longer than 2π/kC even when linear shape functions are incorporated into the coarse-

scaled regions. This implies that the current one-dimensional CAC framework can also produce

accurate group velocities for phonon wave packets as discussed in Sec. 5.1.3. These results are

consistent with spectral energy density plots obtained in previous works which use the CAC

method for phonon heat transport and the prediction of phonon properties [121, 126, 180]. In-

creasing the temperature in the domain merely results in the contours of the spectral energy

density having a greater magnitude due to the faster vibrational motion of particles.

5.1.2 Phonon wave packet reflections at the A-C interface

To visualize the transmission and reflection of waves at the A-C interfaces, we perform phonon

wave packet studies using the one-dimensional CAC framework. We create the wave packet

from a single branch of the dispersion relation obtained in Sec. 5.1.1 with a narrow frequency

range and well-defined polarization. Specifically, for each phonon mode, we know the corre-

sponding wavevector k and angular frequency ω from the LD dispersion relation or spectral
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energy density plot, and we can generate a Gaussian wave packet by assigning an initial dis-

placement Un to the nth particle as follows [181, 182, 183]:

Un = Aε(k)exp [ik(xn − x0)] exp
[
−(xn − x0)2/ξ2

]
. (5.11)

In Eq. (5.11), A is the displacement amplitude, ε(k) is the polarization vector (ε(k) = 1 in 1D),

xn is the position of the nth particle, x0 is the position of the particle at the center of the wave

packet, and ξ is the spatial extent of the wave packet. The time-dependent displacement and

velocity are calculated as follows:

U∗n = Un × e−iωt (5.12)

V ∗n =
dU∗n
dt

= −iωUn × e−iωt, (5.13)

and at t = 0, the initial velocity of the wave packet is given as [183]

Vn = ω × Imag(Un). (5.14)

After the wave packet is initialized in the atomistic region, it propagates into the undisturbed

medium, so only the displacement and velocity at t = 0 (Eqs. 5.11 and 5.14) are used.

In Fig. 5.2, we present four sets of CAC simulation results with wave packets of the

following four central wavevectors: k = 0.01, 0.05, 0.1, and 0.2 π
r0

. These wave packets

are chosen to represent a range of values on the dispersion curve such that k = 0.01 π
r0

is in

the atomistic-continuum overlap region, k = 0.05 π
r0

is slightly below the critical wavevector,

k = 0.1 π
r0

is slightly above the critical wavevector, and k = 0.2 π
r0

is a short-wavelength phonon

which cannot be modeled by the coarse-scaled region. We observe that the long-wavelength

wave packet (k = 0.01 π
r0

) achieves nearly complete transmission across the A-C interface, and

the k = 0.05 π
r0

wave packet has only a small reflection. This shows that CAC can accurately

incorporate phonon waves into the coarse-scaled regions when k < kC . However, the shorter-

wavelength wave packet (k = 0.1 π
r0

) has less transmission at the A-C interface, while the
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k = 0.2 π
r0

wave packet is completely reflected. This is because the wavelength corresponding

to k = 0.2 π
r0

is smaller than what can be modeled by the coarse-scaled region using linear inter-

polation. The energy transmission of wave packets at the A-C interface for various wavevectors

can be seen in Table 5.1.

(a) (b)

(c) (d)

Figure 5.2: Phonon wave packet simulations performed with the following wavevectors: (a)
0.01 π

r0
(b) 0.05 π

r0
, (c) 0.1 π

r0
, and (d) 0.2 π

r0
.

These phonon wave packet results confirm that the reflections at the A-C interface are

a direct result of the numerical discrepancy between the atomistic and continuum regions as

shown in previous studies [121, 126]. This mismatch is attributed to the dispersive nature of

the frequency-wavevector relation which comes from the fact that the nonlocal internal force-

displacement relationship is the only constitutive relation in CAC [117]. Hence, the coarse-

scaled regions in CAC simulations impede elastic waves with wavelengths shorter than 2π/kC .

To allow these short-wavelength (large wavevector) waves to pass smoothly from the atomistic
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to the continuum region, the CAC finite element formulation would need to be modified to

allow the full population of phonon waves to propagate across the A-C interface [126].

Table 5.1: Effect of wavevector on the energy transmission of a phonon wave packet traveling
from the fine-scaled region to the coarse-scaled region.

k / (π/r0) % energy transmission
0.01 99.97
0.05 99.61
0.06 99.11
0.07 98.10
0.08 95.83
0.09 90.63
0.10 73.35
0.20 0.00

5.1.3 Moving window with phonon wave packets

To verify that the two CAC moving window methods described in Secs. 4.4.2 and 4.4.3 main-

tain a stationary wave at the center of the fine-scaled region and do not produce any spurious

phenomena at the A-C interfaces, we perform moving window simulations with a phonon wave

packet. We choose a medium-wavelength wave packet (k = 0.2 π
r0

) such that the wave would

ordinarily be reflected at the A-C interface if allowed to propagate freely. The only distinc-

tion with these simulations is that the Langevin thermostat is not applied to the domain – the

particles are initially at rest.

Simulation results using the medium-wavelength wave packet both with and without the

conveyor mechanism are presented in Fig. 5.3. We observe that this method effectively prevents

the phonon wave packet from propagating forward, and the wave remains at the center of the

atomistic region. Additionally, no spurious waves appeared at either A-C interface throughout

the duration of the simulation. These results confirm that the conveyor moving window method

works correctly and can track waves much longer than would be allowed in traditional MD

simulations. Hence, when using the analytical shock velocity to determine the update frequency

in shock simulations, the conveyor technique should accurately predict the actual speed US of

the shock front.
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(a) (b)

Figure 5.3: Wave packet simulations performed both (a) with and (b) without the conveyor
method.

When modeling a phonon wave packet with the conveyor method, the moving window

update frequency is determined by the group velocity of the wave packet. In each simulation,

we use the analytical group velocity given by vg = ∂ω
∂k

to initialize the update frequency defined

as τ−1 = vg/r0. Then, we observe the drift in the propagating wave packet to calculate its actual

group velocity. These analytical and simulated group velocities are plotted against the reduced

wavevector in Fig. 5.4. Here, we see that the actual group velocity of the wave packet obtained

from the conveyor method follows the analytical group velocity exactly over the full range of

wavevectors. This confirms that the conveyor mechanism works correctly for both large and

small wavelength waves and does not alter the wave speed in any nonphysical manner.

In Fig. 5.5, we present results of a wave packet simulation performed with the coarsen-

refine technique. Here, the wave originates at the left of the domain and travels to the right

over a period of 400 ps. The displacement profile of the wave packet at 0 ps, 200 ps, and

400 ps is shown, and the dotted lines represent the position of the left and right A-C interface

at each time. We observe that the initial and final positions (x0 and xF ) remain stationary

while the atomistic region moves through the entire domain by the simultaneous coarsening

of the left continuum region and refinement of the right continuum region. In effect, the left

coarse-scaled region lengthens, and the right coarse-scaled region shortens as the simulation

progresses in time. As a result, the fine-scaled region tracks the wave packet thus preventing
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Figure 5.4: Analytical and simulated group velocities of phonon wave packets.

it from ever encountering an interface. The coarsen-refine technique allows one to efficiently

follow a propagating wave.

Figure 5.5: Time evolution of a phonon wave packet using the coarsen-refine technique.

5.2 One-dimensional CAC shock propagation results

In this section, we present results from shock wave simulations performed with both the con-

veyor and coarsen-refine moving window technique using the one-dimensional CAC domain

from Fig. 4.2. Before conducting these studies, we had to determine an appropriate length for
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the fine-scaled region to ensure that the structured shock front was fully-contained in this re-

gion and did not “spill over” into the coarse-scaled regions. The length of the fine-scaled region

is determined by the spatial shock thickness (TS) which is calculated from the shock velocity

(US) and rise time (RS) by the following equation: TS = US × RS . Studies have shown a

wide range in the shock rise times for small-domain FCC metals with lower limits of ∼ 10−3

ns [184] and upper limits of ∼ 100 ns [158] for the same material. To be safe, we choose a

rise time of 100 = 1.0 ns. The materials studied are Cu, Al, Ag, and Ni with a maximum com-

pressive strain of −0.1. Using a rise time of 1.0 ns with the analytical shock velocity obtained

from ε+ = −0.1, we get the following upper limits of the shock thickness for Cu, Al, Ag, and

Ni respectively: 55,170 Å (∼21,660 atoms), 79,700 Å (∼27,980 atoms), 42,680 Å (∼14,838

atoms), and 70,700 Å (∼28,452 atoms). Therefore, without loss of generality and to be extra

precautious, we perform each shock simulation with 40,000 atoms in the fine-scaled region.

5.2.1 Conveyor method in 1D

We first simulate propagating shock waves in the CAC domain using the conveyor moving

window technique described in Sec. 4.4.2. For these simulations, the left and right coarse-

scaled regions each contain 20,000 nodes with an element length of 6r0 for a total of 80,000

particles in the domain. Additionally, each atomistic TR band contains 100 atoms where ζ = ζ0

increases linearly throughout each band. The atomistic TRs are much longer than the force

range to ensure that the WR achieves the correct temperature. Simulations are performed with

Cu, Al, Ag, and Ni for final strains (ε+) ranging from -0.01 to -0.1, and each simulation is

allowed to run for 1.0 ns. Results from four of these simulations for ε+ = −0.06 are shown in

Fig. 5.6. Here, the dotted lines represent the A-C interfaces, and we plot the velocity profile of

the shock at 0.0 ns, 0.5 ns, and 1.0 ns.

For each of these shock simulations, v+, US , and θ+ are obtained using the 3rd-order

Eulerian thermoelastic equations from Sec. 2.2 (Eqs. 2.49, 2.50, and 2.51 respectively). The

Grüneisen constant Γ1 and density ρ0 are given in Sec. 2.4.3, and Γ̂11 is determined from Eq.

(2.41). Additionally, the 2nd and 3rd order elastic constants are calculated from the equations

developed by Born [185]. These equations allow one to compute the elastic constants of cubic
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(a) (b)

(c) (d)

Figure 5.6: Velocity profiles of shock wave simulations performed with the 1D conveyor tech-
nique for ε+ = -0.06. Results are shown for the following four materials: (a) Cu, (b) Al, (c) Ag,
and (d) Ni.
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monatomic crystals whose atoms interact according to a central pairwise force law [186, 187,

188]:

C11 =
a4

2V

∑
j

m4
jD

2
jΠ(rj) (5.15)

C111 =
a6

2V

∑
j

m6
jD

3
jΠ(rj). (5.16)

Here, a is one-half the lattice parameter of the material, V is the volume per atom (V = 2a3 for

FCC crystals), and Π is the interatomic potential. Also,

rj =
[
m2
j + n2

j + l2j
] 1

2 a (5.17)

where mj , nj , and lj are position coordinates of any atom in the lattice. Finally, Dj is an

operator given as follows:

Dj =
1

rj

d

drj
. (5.18)

With the modified Morse potential, r0 is defined as the equilibrium spacing along the

close packed direction of the lattice. Therefore, we calculate C11 and C111 using Eqs. (5.15)

and (5.16) by summing over the first nearest neighbors of the 1D chain, and we find Ĉ111 from

these constants using Eq. (2.39). Knowing Γ1, Γ̂11, ρ0, C11, and Ĉ111, we can then obtain

the analytical shock velocity US (as well as v+ and θ+) required to begin the simulation. As

seen in Fig. 5.6, the shock front drifts over time from the center of the WR, and hence the

simulated shock velocity deviates slightly from the analytical value. We fit the shock profile

to a hyperbolic tangent function using MATLAB’s Curve Fitting tool, and track the shock drift

over 1.0 ns (with an equilibration time of 300 ps) to obtain the actual shock velocity. These

results for all four elements over the full range of compressive strains studied can be seen in

Fig. 5.7.

We observe in Fig. 5.7 that the shock velocity data obtained from the CAC simulations

correspond well to the results obtained from 3rd-order Eulerian theory over the full range of

strains. For all four materials, the actual shock velocity exceeds the analytical value by 2-3.5%.

Specifically, the average errors for Cu, Al, Ag, and Ni are given respectively as follows: 2.33%,
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(a) (b)

(c) (d)

Figure 5.7: Simulated shock velocity (US) vs. strain (ε+) data for (a) Cu, (b) Al, (c) Ag, and
(d) Ni. Analytical results from 2nd and 3rd order Eulerian theory are also shown.
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3.33%, 2.25%, 3.23%. These errors are attributed to the analytical approximation of the elastic

constants in Eqs. (5.15) and (5.16) (in fact, [187] found that these equations slightly under-

predicted the experimental elastic constants of a bulk lattice at room temperature). The stiffer

CAC results may also be due to thermal effects and including fourth order terms in the Eulerian

equations could further reduce the differences between simulation and theory. Nonetheless, the

drift in the shock front is nearly imperceptible for many hundreds of picoseconds which shows

that such errors are fairly small for this type of problem. Therefore, the conveyor method

maintains a stationary wave front at the center of the WR with minimal deviation from the

theoretical shock velocity.

To confirm the ability of the CAC framework to track the propagating shock for very long

simulation times with this moving window technique, we conduct simulations using Cu, Al,

Ag, and Ni with ε+ = −0.06 for 5 ns, where US and v+ are assigned their computational

values. Results from these simulations can be seen in Fig. 5.8. In each case, we observe

the shock front remain stationary at the center of the WR while the spatial width of the shock

front increases over time – implying that the shock wave is unsteady. This is expected because

steady shock behavior is achieved through transverse atomic displacement which is impossible

in a monatomic chain [28, 42, 19]. Hence, the conveyor technique allows the CAC domain

to track a propagating shock much longer than traditional NEMD simulations. Additionally,

each of these domains contains 80,000 particles and covers a total length of nearly 70 µm.

An equally sized atomistic domain would be composed of 280,000 atoms and thus require

3.5x more memory. Therefore, the CAC framework with the conveyor technique significantly

reduces the computational overhead of large-domain simulations.

5.2.2 Coarsen-refine method in 1D

Next, we track a propagating shock in the CAC domain using the coarsen-refine moving win-

dow technique described in Sec. 4.4.3. In this case, however, the fine-scaled portion of the

chain begins at the left boundary and is allowed to travel with the shock front through the en-

tire domain by the simultaneous coarsening of the left continuum region and refinement of the

right continuum region. Therefore, the shocked coarse-scaled region begins with 500 nodes,
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(a) (b)

(c) (d)

Figure 5.8: Velocity profiles of 1D CAC shock simulations performed with (a) Cu, (b) Al, (c)
Ag, and (d) Ni for 5 ns (ε+ = −0.06).
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the unshocked coarse-scaled region begins with 39,500 nodes, and the fine-scaled region again

contains 40,000 atoms for a total of 80,000 particles. The element length in each continuum

region is 6r0 giving a total domain size of ∼ 709,367 Å. As before, each atomistic TR band

contains 100 atoms. During the simulation, the left continuum region will grow, the right con-

tinuum region will shrink, and the atomistic region will remain at a constant length. Results of

a simulation performed with Cu for ε+ = −0.06 are shown in Fig. 5.9.

(a) (b)

(c) (d)

Figure 5.9: Velocity profile snapshots of a single propagating shock at the following times:
(a) 0.0 ns, (b) 4.0 ns, (c) 8.0 ns, and (d) 12.0 ns. Here, ε+ = -0.06, and the atomistic domain
follows the shock front using the coarsen-refine technique. The dotted lines represent the one-
dimensional A-C interfaces.

In these plots, we observe the evolution of the shock wave over 12.0 ns. The fine-scaled

region successfully tracks the moving wave front through the entire CAC domain with min-

imal spurious behavior at the A-C interfaces. As expected, we observe compression of the

material to the left of the shock wave while the rightmost point remains stationary. Hence,
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using the coarsen-refine moving window technique in a CAC framework allows us to model

shock propagation over engineering length scales and time frames. In contrast to the conveyor

technique, the shock can now travel through the entire domain because the lengths of the con-

tinuum regions change. Previous studies have incorporated mesh refinement schemes into both

finite element and atomistic-continuum frameworks [116, 123, 189, 190]. However, employ-

ing simultaneous coarsening/refinement methods to model highly non-equilibrium events like

propagating shock waves is an active area of research. This work serves as a first step for using

such a technique in a multiscale setting.

5.2.3 Shock front structure in 1D

In Figs. 5.8 and 5.9, we observe that the spatial width of the shock front increases over time –

implying that the shock wave is unsteady. To understand this phenomenon further, we analyze

the growth in shock front thickness over 5 ns for the four different materials. A plot of this data

obtained for ε+ = -0.06 is shown in Fig. 5.10. These results are in qualitative agreement with

results from previous NEMD studies which modeled weak shock waves through materials in a

one-dimensional setting and also observed unsteady wave behavior [28, 42, 19]. Additionally,

we note that the growth rate of the shock width is approximately constant up to ∼1,000 ps

and then slows down at higher time steps. This characteristic mirrors the results obtained

previously in the moving window atomistic framework [1]. Finally, from this data, we obtain

a lower bound of ∼0.003 ns and an upper bound of ∼0.3 ns for the shock rise time across

each material. These values are very similar to the ranges observed in previous studies for

small-domain FCC metals [158, 184].

5.2.4 Computational efficiency of the 1D CAC framework

Finally, we compare the computational cost of a shock simulation performed with CAC to

an equally-sized MD simulation of a shock wave. MD simulations were conducted using an

entirely fine-scaled domain. The runtime is calculated for a range of domain sizes, and the CAC

framework always contains 40,000 atoms in the fine-scaled region. The results are summarized

in Table 5.2. Here, the units represent hours of runtime required for every nanosecond of
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Figure 5.10: Growth in the spatial width of the shock wave front over 5 ns. Here, ε+ = -0.06,
and results are shown for Cu, Al, Ag, and Ni.

simulation time (h/ns), and each simulation was conducted with 40 processors. Notably, even

the smallest CAC domain is already a factor of 2 faster than the pure MD system. For the

longest domain, the speedup factor grows to nearly 6 even though there are only 4.67x as many

atoms in the MD simulation as particles in the CAC simulation. This study illustrates benefits of

using CAC with the moving window techniques to significantly reduce the total computational

time of large-scale, nonlinear simulations.

Table 5.2: Simulation costs of the 1D CAC method against pure MD for various domain sizes.
The number of particles required in CAC and number of atoms required in MD for the given
domain length is shown (the CAC system always contains 40,000 atoms in the fine-scaled
region).

Domain size (Å) Particles (CAC) Atoms (MD) h/ns (CAC) h/ns (MD) Speedup
98,827 40,000 40,000 0.371 0.371 1.000

247,069 50,000 100,000 0.505 0.996 1.972
395,310 60,000 160,000 0.600 1.544 2.573
543,551 70,000 220,000 0.724 1.976 2.729
691,792 80,000 280,000 0.765 2.542 3.323
840,034 90,000 340,000 0.912 3.171 3.477
988,275 100,000 400,000 0.996 4.440 4.458

1,729,481 150,000 700,000 1.583 9.343 5.902
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Chapter 6

Transmitting Multiple High-Frequency Phonons across Length Scales

In this chapter, we develop and present results for a technique to pass multiple high-frequency

phonons between the atomistic and continuum regions of the CAC framework. These results

have also been published in Computational Materials Science [3].

6.1 Wave passing background

Multiscale modeling techniques endeavor to link observable material behavior to effects at

lower length scales. One of the central challenges with concurrent schemes is ensuring com-

patibility at the A-C interfaces so as to mitigate ghost forces in static systems and spurious wave

behavior in dynamic systems [110]. Typically, such non-physical phenomena arise because the

spectrum of the continuum model has a much smaller cutoff frequency than that of the atom-

istic model [97]. Although many techniques have been developed to reduce ghost forces in

static frameworks [146, 191], the advancement of dynamic multiscale methods is nevertheless

hindered by spurious wave reflections at the A-C interfaces.

To overcome this obstacle, most concurrent methods incorporate techniques to either min-

imize or absorb transient waves impinging on the A-C interfaces [78, 192, 193, 194]. An early

scheme developed by [195] incorporates Langevin dynamics into the fine-scaled equations of

motion and dampens specified particles in a “stadium” region around the inner atomistic core.

Specifically, the method couples a one-dimensional atomistic domain to a linear elastic contin-

uum and reduces wave reflections at the A-C interfaces by calculating the time-history-kernel

(THK). This approach has proven to be effective, and variations of it have been introduced into

98



other concurrent multiscale frameworks such as CADD [78] and the Bridging Scale Method

(BSM) [103]. However, because the THK method suffers from issues related to computa-

tional expense and scalability, various BSM frameworks have developed more efficient THK

techniques, but such schemes are still only effective for linear solids [192, 196, 197]. Other

approaches to reduce wave reflections include minimizing the reflection coefficient at the A-C

boundaries [193, 198] as well as applying digital filters to remove high-frequency phonons that

travel back into the fine-scaled region [199, 200].

Because all of these methods either minimize or absorb waves impinging on the A-C

interfaces, information from short-wavelength phonons is lost. Furthermore, damping meth-

ods will inevitably eliminate fine-scaled wave data which should instead be transmitted across

the boundaries [126]. One of the first attempts to solve this problem came in [201] which

enhances a space-time discontinuous Galerkin finite element method by incorporating an en-

richment function into the system. This technique has since been used to study both wave

and crack propagation through materials, and it can successfully conserve energy and trans-

mit high-frequency waves across the A-C interfaces [202]. Unfortunately, the framework in

[201] requires extra degrees of freedom in the coarse-scaled regions, and the enriched func-

tions must be removed at the continuum nodes in order to incorporate the short-wavelength

phonons. Therefore, conserving the correct wave phase is challenging, so this technique can-

not be easily used to study dynamic problems which require phonon coherency. As a result, a

concurrent multiscale method is needed which would preserve phonon coherency and permit

the full range of phonons to travel across the A-C interfaces.

Previous work has developed a technique to transfer high-frequency phonons across length

scales within the CAC framework [126]. As stated earlier, CAC is a dynamic multiscale method

which follows the solid state physics model of crystals whereby the structure is continuous

at the lattice level but discrete at the atomic level, and a single set of governing equations

is used throughout the entire domain [128]. As a result, the wave transfer problem reduces

to a numerical problem caused by the discrepancy in finite element mesh sizes between the

atomistic and continuum regions. This is a long-standing obstacle in continuum modeling and

was regarded by Zienkiewicz as one of the great unsolved problems in the Finite Element
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Method [203]. The work in [126] developed a supplemental basis for the CAC solution along

with a new LD-based finite element scheme to pass a single high-frequency phonon between the

atomistic and continuum regions. This technique allowed a wave packet with any wavevector

and frequency to travel across the A-C interfaces without introducing new degrees of freedom

into the coarse-scaled regions. However, this method could only be used for a single phonon

and was demonstrated in a non-periodic domain.

In this chapter, we develop a technique based upon the work in [126] to pass multiple

high-frequency phonon wave packets between the atomistic and continuum regions of a pe-

riodic CAC framework. This method uses the LD interpolation scheme to incorporate short-

wavelength displacements into the continuum regions and introduces novel numerical tech-

niques into the formulation to track a variety of wave packets across time. Specifically, two

Fourier transforms are performed (both before and after the phonon is generated), and the dif-

ference in amplitude coefficients are stored in a master array in order to track waves of any

wavevector at various time steps. Such a technique will be useful in real-world applications

which involve the interaction and transmission of multiple waves within a single atomistic-

continuum domain.

6.2 Lattice dynamics finite element formulation

6.2.1 Lattice dynamics method

In this section, we present a technique that was first formulated in [126] to overcome the issue of

spurious wave reflections at the A-C interfaces, and we add extra details where necessary. This

scheme uses an LD description of traveling waves to derive a new phonon wave-based finite

element approximation of the CAC governing equations. Specifically, a novel interpolation

method is employed to allow the transmission of high-frequency waves that would ordinarily

be reflected at the A-C interface due to the linear shape functions. While the conventional finite

element approximation discussed in Ch. 4 can only model low-frequency waves (with k < kC)

in the coarse-scaled regions, the current LD formulation allows the complete transmission of

high-frequency waves (with k > kC) from the atomistic to continuum region and vice versa.
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If we consider a typical polyatomic crystalline system with Nα particles in each unit cell,

then the standard approximation of the displacement field is given by Eq. (4.15). However, the

LD-based method modifies this equation such that the particle displacements are now approxi-

mated as follows:

uα(x, t) =
2d∑
j=1

Φj(x)
[
Uα
j (t)− Uα

sj(t)
]

+ uαs (x, t) α = 1, 2, . . . , Nα. (6.1)

In this equation, uα(x, t) is the new displacement at time t of the αth atom within a given

unit cell located at position x; d is the dimensionality of the system; 2d is the total number

of nodes in an element; Φj(x) is the conventional tri-linear shape function; Uα
j (t) is the total

displacement of the αth atom in the jth element node at time t; Uα
sj(t) is the short-wavelength

displacement (denoted by the subscript s) of the αth atom embedded in the jth element node

at time t; and uαs (x, t) is the short-wavelength displacement at time t of the αth atom within a

unit cell at any material point x (not necessarily a nodal position). Since the tri-linear shape

functions satisfy partition of unity
(∑2d

j=1 Φj(x) = 1
)

, we can rewrite Eq. (6.1) as follows:

uα(x, t) =
2d∑
j=1

Φj(x)
[
Uα
j (t)− Uα

sj(t) + uαs (x, t)
]
. (6.2)

As a result of this new basis, the CAC governing equation must be updated to account for the

modified displacement interpolation which is now a function of time:

ραüα(x, t) = fαint(x) + fα(x). (6.3)

In Eq. (6.2), the additional components of the displacement field approximation are Uα
sj(t)

and uαs (x, t) which represent the short-wavelength displacements that need to be calculated. We

note that at a given node j, Uα
sj(t) = uαs (x, t), and Eq. (6.2) reduces to the following:

uαj (x, t) =
2d∑
j=1

Φj(x)Uα
j (t). (6.4)
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We can further reduce this expression for the αth atom embedded in node j by recalling that

the shape function Φj(x) will equal 1 at node j and 0 everywhere else:

uαj (x, t) = Uα
j (t). (6.5)

Therefore, the displacements of particles at nodal locations remain unchanged when introduc-

ing the short-wavelength basis function. Instead, only the neighboring particles at non-nodal

unit cells located at material points x within an element get modified by Eq. (6.2). These en-

hanced displacements will influence the force calculations at nodal locations which will allow

short-wavelength phonons to pass through the coarse-scaled region.

Although the motion of a particle in a crystalline system is an oscillatory function of time,

atomic motion is traditionally described by lattice vibrations [204]. Specifically, for a harmonic

approximation, atomic displacement can be decomposed into a linear combination of normal

modes with a discrete set of wavevectors where the number of wavevectors equals the number

of unit cells [205]. If we only consider the contributions from short-wavelength phonons with

k > kC , then the displacement of the αth particle in a unit cell at undeformed position x is

given as follows:

uαs (x, t) =
1

(Nlmα)1/2

∑
k,ν(k>kC)

eαkνQkνexp [i (k · x− ωkνt)] . (6.6)

In Eq. (6.6), each linear combination of normal modes represents the contribution from a wave

with wavevector k and phonon branch ν. Additionally, Nl is the total number of unit cells

in the system; mα is the mass of the αth particle in the lth unit cell; eαkν is the polarization

vector that determines which direction each particle moves; Qkν is the normal mode coordinate

which gives both the amplitude of the wave and the time dependence; and ωkν is the angular

frequency corresponding to wavevector k. We can then rewrite Eq. (6.6) to obtain the following
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expressions for Uα
sj(t) and uαs (x, t) [126]:

Uα
sj(t) =

1

NA

∑
k,ν(k>kC)

eαkνU
α
kνexp [i (k · xj − ωkνt)] (6.7)

uαs (x, t) =
1

NA

∑
k,ν(k>kC)

eαkνU
α
kνexp [i (k · x− ωkνt)] (6.8)

where NA represents the total number of unit cells in only the atomistic region, and Uα
kν is the

amplitude. The only difference between the above two equations is that Eq. (6.7) is calculated

for a particle α located in a unit cell at node j, while Eq. (6.8) is calculated for a particle α

located in a unit cell at any elemental point x. Hence, Eq. (6.7) is only a function of t while Eq.

(6.8) is a function of both x and t.

We use Eq. (6.2) to enrich the displacement field in the coarse-scaled region with high-

frequency waves. This is achieved by linking the short-wavelength displacement at an unknown

position x and time t in the coarse-scaled region to information at a known position x0 and time

t0 in the fine-scaled region as follows:

uαs (x, t) =
1

NA

∑
k,ν(k>kC)

eαkνU
α
kν(x0, t0)exp {i [k · (x− x0)− ωkν(t− t0)]}

=
1

NA

∑
k,ν(k>kC)

eαkνU
α
kν(x0, t0)exp [i (k ·∆x− ωkν∆t)] . (6.9)

Here, we have only shown the expression for uαs (x, t) as the expression for Uα
sj(t) would have

the same form. In Eq. (6.9), ∆x = x−x0 represents the spatial distance between the current unit

cell at location x in the continuum region and the reference unit cell at undeformed location x0

in the atomistic region. Additionally, ∆t = t− t0 represents the difference between the current

time t and the time t0 at which Uα
kν(x0, t0) was calculated.

We can use Eq. (6.9) to calculate uαs (x, t) [and Uα
sj(t)] and then substitute these expres-

sions into Eq. (6.2). As a result, short-wavelength effects will now be incorporated into uβ(x′)

from Eq. (4.14) which will enhance the internal force calculation. Specifically, the forces at the

nodes will now contain information from the entire spectrum of phonon waves: low-frequency

data from linear interpolation and high-frequency data from LD calculations. Therefore, it is
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clear that an accurate determination of uαs (x, t) and Uα
sj(t) is crucial to achieve proper force

matching, and this requires calculating the amplitude Uα
kν(x0, t0) of each short-wavelength

phonon mode. We derive this amplitude in the following section.

6.2.2 Determining the amplitude of the short-wavelength phonon mode

In order to enhance the displacement approximation to include the effects of high-frequency

phonon waves, we must calculate the amplitude Uα
kν(x0, t0) by analyzing the displacements in

the fine-scaled region. This is achieved by taking the Fourier transform of each atom in the

fine-scaled region one unit cell at a time. We can represent the short-wavelength displacement

of the αth particle at undeformed position xj and time t as follows:

uαs (xj, t) =
∑
k,ν

Aαkνeαkνexp [i (k · xj − ωkνt)] +Bα
kνeαkνexp [i (k · xj + ωkνt)] . (6.10)

As before, we have only shown the expression for uαs (xj, t) as the same analysis applies to

Uα
sj(t). Eq. (6.10) is a general expression for the short-wavelength displacement, but it is

understood that xj = x0 and t = t0 in this example. Here, Aαkν and Bα
kν are the two unknown

coefficients computed for each mode which represent both parts of the coefficient Uα
kν(x0, t0).

Hence, the goal is to calculate Aαkν and Bα
kν at t0 as these coefficients will then be applied to the

short-wavelength calculation (Eq. 6.9) at every subsequent time step.

To find these amplitudes, we must take the discrete Fourier transform (DFT) of both the

initial displacements uαj and initial velocities vαj in the atomistic region. This analysis will give

us Cα
k and Dα

k which represent the amplitude vectors of the displacement and velocity data

respectively. We can define the DFT as follows:

Xα
k =

NA−1∑
j=0

xαj exp [−i (k · jr0)] (6.11)

where r0 is the equilibrium displacement between unit cells, and the index j specifies that

the summation occurs over the αth atom within each unit cell in the atomistic region. If we

let xj = jr0 be the position of the jth unit cell in the undeformed configuration, we get the
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following DFTs for displacements and velocities:

Cα
k =

NA−1∑
j=0

uαj exp [−i (k · xj)] (6.12)

Dα
k =

NA−1∑
j=0

vαj exp [−i (k · xj)] . (6.13)

We can then relate the modal amplitude in Eq. (6.12) to the phonon modes in Eq. (6.10)

evaluated at t = 0 for a specific wavevector k:

Cα
k =

∑
ν

uαs (xj, 0)exp [−i(k · xj)]

=
∑
ν

Aαkνeαkνexp [i (k · xj − k · xj − ωkν0)] +Bα
kνeαkνexp [i (k · xj − k · xj + ωkν0)]

=
∑
ν

(Aαkν +Bα
kν) eαkν . (6.14)

Next, we can perform a similar analysis for the modal amplitude of the velocities in Eq. (6.13)

by taking the derivative of Eq. (6.10) with respect to t:

Dα
k =

∑
ν

vαs (xj, 0)exp [−i(k · xj)]

=
∑
ν

−iωkνA
α
kνeαkνexp [i (k · xj − k · xj − ωkν0)] + iωkνB

α
kνeαkνexp [i (k · xj − k · xj + ωkν0)]

=
∑
ν

(Bα
kν − Aαkν) iωkνeαkν . (6.15)

Finally, we arrive at a system of two equations with the two unknowns Aαkν and Bα
kν :

Cα
k =

NA−1∑
j=0

uαj exp [−i (k · xj)] =
∑
ν

(Aαkν +Bα
kν) eαkν (6.16)

Dα
k =

NA−1∑
j=0

vαj exp [−i (k · xj)] =
∑
ν

(Bα
kν − Aαkν) iωkνeαkν . (6.17)
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Therefore, the DFTs of displacement and velocity for the αth particle within each unit cell

produce a 2ν by 2ν matrix to solve for the coefficients Aαkν and Bα
kν corresponding to a given

wavevector k.

6.2.3 Calculating the short-wavelength amplitude in 1D

Since we are demonstrating this technique using a one-dimensional monatomic chain, we now

solve these equations assuming such an environment. In 1D, there is only one phonon branch

(ν = 1), particles can only travel in the ±x direction (eαkν = 1), and there is only one atom per

unit cell (Nα = 1). As a result, Eqs. (6.16) and (6.17) reduce to the following:

Ck =

NA−1∑
j=0

ujexp [−i (k · xj)] = Ak +Bk (6.18)

Dk =

NA−1∑
j=0

vjexp [−i (k · xj)] = (Bk − Ak)iωk. (6.19)

Solving Eqs. (6.18) and (6.19) for Ak and Bk gives the following:

Ak =
Ck
2

+ i
Dk

2ωk
(6.20)

Bk =
Ck
2
− i Dk

2ωk
. (6.21)

Substituting these expressions for Ak and Bk back into Eq. (6.10) when xj = x0 and t = 0, we

get the following:

us(x0, 0) =
∑
k

(Ak +Bk)e
ikx0 (6.22)

=

[
Ck
2

+ i
Dk

2ωk
+
Ck
2
− i Dk

2ωk

]
eikx0 (6.23)

= Cke
ikx0 . (6.24)
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Hence, we arrive at the following expression for the amplitude of the short-wavelength phonon

mode in 1D:

Uk(x0, t0) = Cke
ikx0 =

NA−1∑
j=0

uje
−ikxjeikx0 . (6.25)

Substituting this back into Eq. (6.9) for the one-dimensional monatomic chain:

us(x, t) =
1

NA

∑
k(k>kC)

Cke
ikx0exp [i (k ·∆x− ωk∆t)] (6.26)

=
1

NA

∑
k(k>kC)

Ckexp {i [k · (x0 + ∆x)− ωk∆t]} (6.27)

=
1

NA

∑
k(k>kC)

Ckexp [i (k · x− ωk∆t)] (6.28)

where x = x0 + ∆x is the location of the node in the continuum region. Additionally, Ck is

given by the following expression:

Ck =

NA−1∑
j=0

uje
−ikxj =

NA−1∑
j=0

uj [cos(k · xj)− isin(k · xj)] . (6.29)

As a result, we can rewrite us(x, t) in trigonometric form as follows:

us(x, t) =
1

NA

∑
k(k>kC)

[Re(Ck)− iIm(Ck)] [cos(k · x− ωk∆t) + isin(k · x− ωk∆t)] (6.30)

where

Re(Ck) =

NA−1∑
j=0

ujcos(k · xj) (6.31)

Im(Ck) =

NA−1∑
j=0

ujsin(k · xj). (6.32)

Keeping only the real parts, we arrive at our final expression for the short-wavelength displace-

ment in 1D:

us(x, t) =
1

NA

∑
k(k>kC)

[Re(Ck)cos(k · x− ωk∆t) + Im(Ck)sin(k · x− ωk∆t)] (6.33)
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Therefore, when simulating a high-frequency phonon wave packet using the described

LD technique, we utilize the velocity-Verlet algorithm from Sec. 2.4.2 to evolve the wave

initialized in the atomistic region. Next, we store the displacements of each particle in an array

at time t = 0 ps and follow the procedure outlined previously to calculate Uα
kν . Then, at each

time step t, we use Eq. (6.9) to compute uαs (x, t) at a given position x, and we calculate the

total displacement of each continuum node using Eq. (6.2). Finally, we calculate the internal

force of each particle as a function of relative displacements using Eq. (4.14) and update the

time step. This technique allows high-frequency phonons that would ordinarily be reflected at

the A-C interface to pass smoothly between the atomistic and continuum regions.

6.2.4 Passing a single high-frequency wave packet from atomistic to continuum

We now present a 1D wave packet simulation performed with the LD interpolation method.

The results can be seen in Fig. 6.1, and k = 0.2 π/r0 in this case. Hence, we can directly

compare the results in Fig. 6.1 to the results in Fig. 5.2d. We observe that the LD interpolation

scheme permits the entire phonon wave packet to travel across the A-C interface from the

atomistic to the continuum region with a nearly imperceptible reflection. This is in contrast

to the complete reflection seen in Fig. 5.2d and is congruent with the results from previous

studies [126]. Additionally, by enabling periodic boundary conditions, we observe that the

LD interpolation method allows the high-frequency phonon wave packet to travel between

the two outer continuum regions and back to the center atomistic region. The transmission

demonstrated in Fig. 6.1 validates the implementation of the LD interpolation method.

6.3 Lattice dynamics technique for multiple waves

6.3.1 Background and preliminary approach

While the method presented in the previous section has been shown to efficiently pass high-

frequency phonons between the atomistic and continuum regions of a CAC domain, the scheme

is limited to single wave packets of a specified wavevector. This is because the short-wavelength

amplitude information can only be stored for one wave at a time to prevent data from being
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(a) (b)

(c) (d)

Figure 6.1: High-frequency phonon wave packet simulation performed with the LD interpola-
tion method (k = 0.2 π/r0).
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overwritten. However, many MD simulations produce multiple waves and other transient phe-

nomena, so a scheme which could keep track of more than one wave packet and pass each wave

across the A-C interface in a multiscale setting would be invaluable. In this section, we present

an LD interpolation method to be used with multiple waves and wavevectors in a single CAC

domain.

We recall the expression for the displacement field approximation from Sec. 6.2.1:

uα(x, t) =
2d∑
j=1

Φj(x)
[
Uα
j (t)− Uα

sj(t) + uαs (x, t)
]
. (6.34)

Here, we note that both Uα
sj(t) and uαs (x, t) contain all the short-wavelength information of a

given wave packet at time t. Again, since the same analysis applies to both terms, we only

focus on uαs (x, t) in this section. Equation (6.10) gives the short-wavelength displacement of

the αth particle at an undeformed position xj and time t, and the primary terms in that equation

are the coefficients Aαkν and Bα
kν as we saw in Sec. 6.2.2. Let us now assume that multiple wave

packets will be generated in the domain where t is the current time in the simulation, and tl is

the time at which a given wave packet l is nucleated. Then, in principle, Eq. (6.10) could be

expanded to account for these different wave packets at various time steps as follows:

uαs (xj, t) =
∑
k,ν

∑
l

Aαkν,le
α
kνexp {i [k · xj − ωkν(t− tl)]} (6.35)

+Bα
kν,le

α
kνexp {i [k · xj + ωkν(t− tl)]}

where the inner summation occurs over all wave packets l. Now, the coefficients Aαkν,l and

Bα
kν,l correspond to each wave packet l. We refer to this as the preliminary or “naive” approach

because the amplitude coefficients still do not have a time component, and hence each wave

generated at time tl cannot be tracked over time. As a result, any new phonon initialized at time

tl 6= 0 will be reflected off the A-C interface as seen in Fig. 6.2. Specifically, the main issue

lies in keeping track of each individual phonon generated at time tl without losing information

from other phonons. In an attempt to overcome this difficult problem, we provide a detailed

solution below.
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(a) (b)

(c)

Figure 6.2: Naive approach to passing multiple waves across the A-C interface in which wave
1 crosses but wave 2 gets reflected (k = 0.2π/r0).
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6.3.2 Solution to the preliminary approach

Each wave packet can be characterized by its wavevector and frequency combination (k, ω),

its short-wavelength amplitudes (Aαkν,l and Bα
kν,l), and the time at which is was initialized (tl).

These terms must be tracked and stored correctly in order to allow multiple waves to pass across

the A-C interfaces. To this end, we first rewrite Eq. (6.35) as follows:

uαs (xj, t) =
∑
k,ν

∑
l

Aαkν,lexp[i · ωkνtl]eαkνexp [i (k · xj − ωkνt)] (6.36)

+Bα
kν,lexp[−i · ωkνtl]eαkνexp [i (k · xj + ωkνt)] .

Thus, we now have “time-stamped” coefficients Aαkν,lexp[i · ωkνtl] and Bα
kν,lexp[−i · ωkνtl]

which contain the unique information for each phonon and encode the time at which the wave

is nucleated. During each time step (before a new wave is generated), we take a “snapshot”

of the domain in k-space whereby the amplitude coefficients are obtained from the Fourier

transform discussed in Sec. 6.2.2. After the generation of a new phonon, a second Fourier

transform of the domain is taken, and the first set of coefficients is subtracted from the second.

This allows us to see which frequencies are “new” and thus gives us information about the

current wave without the influence from previous phonons. Finally, we add the difference in

these coefficients to a global “master” array and use a modified form of Eq. (6.9) to calculate

the displacement of each particle:

uαs (x, t) =
1

NA

∑
k,ν(k>kC)

∑
l

eαkνU
α
kν,lexp[i · ωkνtl]exp [i (k ·∆x− ωkν∆t)] . (6.37)

As a result, the displacement field approximation is updated based upon multiple waves, and

no information gets lost.

6.3.3 Detailed explanation in 1D

We now elaborate on this process for a one-dimensional monatomic chain as is utilized in the

present work. Fig. 6.3 gives a visual representation of two high-frequency wave packets with
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wavevector-frequency pairs of (k1, ω1) and (k2, ω2) traveling within the 1D CAC framework

described in Sec. 2.4.1. The first phonon is generated at time t1, the second phonon is generated

Figure 6.3: Schematic of two phonon wave packets traveling through a CAC domain.

at time t2, and without loss of generality, we assume that each wave originates at the center of

the atomistic region. For a one-dimensional system, Eq. (6.36) reduces to the following:

us(xj, t) =
∑
k

∑
l

Ak,lexp[i · ωktl]exp [i (k · xj − ωkt)] (6.38)

+Bk,lexp[−i · ωktl]exp [i (k · xj + ωkt)] .

By following the procedure discussed in Sec. 6.2.3, we can solve for the coefficients and

substitute these back into Eq. (6.9) to achieve the following short-wavelength displacement

approximation in 1D:

us(x, t) =
1

NA

∑
k(k>kC)

∑
l

Ck,lexp[i · ωktl]exp [i (k · x− ωkt)] (6.39)

where t is the global simulation time, and Ck,l is the derived coefficient given by Eq. (6.29).

Recall that Ck,l is purely a function of the atomic displacements, undeformed positions, and

wavevectors. Furthermore, Eq. (6.39) is the same as Eq. (6.28) but with the added exponential

term and summation over l.

Therefore, we have the new time-stamped coefficient Ek,l = Ck,lexp[i · ωktl]. Expanding

out Ck,l into its real and imaginary parts, we get the following:

Ek,l = Ck,lexp[i · ωktl] = [Re(Ck,l)− iIm(Ck,l)] [cos(ωktl) + isin(ωktl)] (6.40)
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where Re(Ck,l) and Im(Ck,l) are given by Eqs. (6.31) and (6.32) respectively. Next, we can

define the real and imaginary components of the coefficient Ek,l:

Re(Ek,l) = Re(Ck,l)cos(ωktl) + Im(Ck,l)sin(ωktl) (6.41)

Im(Ek,l) = Re(Ck,l)sin(ωktl)− Im(Ck,l)cos(ωktl). (6.42)

Substituting the two parts of this coefficient back into Eq. (6.39) and writing the expression in

trigonometric form, we get the following:

us(x, t) =
1

NA

∑
k(k>kC)

∑
l

[Re(Ek,l) + iIm(Ek,l)] [cos(k · x− ωkt) + isin(k · x− ωkt)] .

(6.43)

Then, keeping only the real parts of Eq. (6.43), we arrive at the final expression for the multi-

wave, short-wavelength displacement in 1D:

us(x, t) =
1

NA

∑
k(k>kC)

∑
l

[Re(Ek,l)cos(k · x− ωkt)− Im(Ek,l)sin(k · x− ωkt)] . (6.44)

Equation (6.44) allows us to update the atomic displacements given multiple high-frequency

waves in the CAC domain.

6.3.4 Using the LD technique with time integration

We now discuss how the process described above is incorporated into the time integration

algorithm, and we use the two waves from Fig. 6.3 as a reference. Additionally, we assume

that t = t2 and the first phonon (wave 1) has already been nucleated in the atomistic region.

The steps are enumerated as follows.

1. After the particle velocity update, we calculate the time-independent amplitude coeffi-

cients Ck,l. Specifically, we find the real and imaginary components of the coefficient

Ck,l using Eqs. (6.31) and (6.32) and store them in a k-based array in which each index is

a different wavevector. This effectively allows us to take a “snapshot” of the framework
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in k-space and thus capture the information from any phonon currently within the do-

main. Referring back to Fig. 6.3, we calculate and store the Ck,1 coefficients to preserve

the displacements/velocities induced by wave 1.

2. If desired, we then generate the second phonon (wave 2) after obtaining Ck,1 and update

the particle displacements and velocities accordingly. In other words, displacements and

velocities resulting from wave 2 are added to those values induced by wave 1 such that

both phonons are still present in the domain and information from each is preserved.

3. At the end of the time step, we then calculate the time-independent amplitude coefficient

of wave 2 (Ck,2). We note that the wavevector of wave 2 can be any value – it does not

have to be the same as wave 1.

4. Next, we subtract the real and imaginary components of Ck,1 from the corresponding

components of Ck,2. This gives us the exclusive frequencies from wave 2 as seen below:

Re(Ck,21) = Re(Ck,2)− Re(Ck,1) (6.45)

Im(Ck,21) = Im(Ck,2)− Im(Ck,1). (6.46)

5. Finally, we substitute Re(Ck,21) and Im(Ck,21) into Eqs. (6.41) and (6.42) to obtain the

new time-stamped coefficient Ek,2. This coefficient contains all the “new” information

from wave 2 including its generation time.

The real and imaginary parts of Ek,2 are added to a global k-based array where each array

index contains the sum of the Ek,l coefficients from every generated phonon (the Ek,1 coef-

ficients from wave 1 would have already been obtained at t = t1). This array serves as a

“master template” by storing the time-stamped coefficients from every phonon, and a visual

representation for wave 1 and wave 2 can be seen in Fig. 6.4. We note that the nondegenerate

wavevectors are limited to kx = πnx/r0NA where nx is an integer ranging from 0 to NA − 1

[178]. Thus, for any given wavevector, we know the corresponding total amplitude coefficient.

We can then use these coefficients in Eq. (6.44) during all subsequent time steps to calculate

the short wavelength displacement induced by multiple wave packets.
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Figure 6.4: Master template for the time-stamped wave passing coefficients.

The flow chart shown in Fig. 6.5 provides an overview of the various steps required to

pass more than one phonon wave packet between the atomistic and continuum regions of a

CAC domain using the velocity Verlet time integration algorithm. We note that the second

Fourier transform always occurs at the end of each time step regardless of whether or not a new

wave is nucleated. If there is not a new phonon present in the domain, the first and second Ck,l

coefficients will cancel out and Ek,l will equal zero. As a result, no “extra” data is ever added

to the master template.

Figure 6.5: Flow chart showing the various steps taken to pass multiple waves between the
atomistic and continuum regions of a CAC domain.
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6.4 Benchmark examples with multiple waves

To verify the implementation and effectiveness of the technique discussed in Sec. 6.3, we

perform simulations with multiple waves using the CAC framework described in Sec. 2.4.1.

Specifically, we utilize the new technique to pass various high-frequency wave packets between

the atomistic and continuum regions of the multiscale domain. Results from these simulations

can be seen in both Fig. 6.6 as well as in Fig. 6.7. In each simulation, we nucleate four

waves in the atomistic region and allow them to propagate to the right and travel across the A-C

interfaces. The waves are generated in time increments of 15 ps, and each has a high wavevector

value that would ordinarily cause the phonon to be completely reflected (as demonstrated in

Fig. 5.2). We note that in Fig. 6.6, each phonon has the same wavevector (k = 0.2π/r0) while

in Fig. 6.7, the phonons increase in wavevector from k = 0.2π/r0 to k = 0.5π/r0. This is

done in order to showcase how the new method can be used with multiple waves of a variety of

frequencies within the same domain.

In both figures, we observe that the new method outlined in Sec. 6.3 permits each short-

wavelength phonon wave packet to travel across the A-C interface with no observable reflec-

tion. Additionally, this scheme facilitates periodic boundary conditions whereby the waves

can travel between the two outer continuum regions and back into the inner atomistic region.

Hence, this method may be used in practical applications which require a periodic domain. Fi-

nally, we note that this technique can be utilized to track phonons with a variety of frequencies

within a single domain, and these waves may interact with each other freely without undermin-

ing any stored data. Therefore, we can use this method to transmit many waves across length

scales as they contact each other as well as the domain boundary.
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(a) (b)

(c) (d)

Figure 6.6: Multiple high-frequency phonon wave packets traveling through a single CAC
domain. In this case, each phonon has the same wavevector: k = 0.2π/r0.
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(a) (b)

(c) (d)

Figure 6.7: Multiple high-frequency phonon wave packets traveling through a single CAC
domain. In this case, each phonon has a different wavevector as is shown.
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Chapter 7

Results with the 2D CAC Framework

The results found in this chapter have also been published in Computational Mechanics [4]. As

stated previously, the study of shock wave propagation using the CAC method has been limited

due to the highly dynamic nature of such phenomena. In Ch. 5, we incorporated two moving

window techniques into a CAC framework to track a nonlinear shock wave for long runtimes,

but this formulation only considered a 1D chain of particles and was thus limited in scope.

7.1 Two-dimensional computational framework

7.1.1 2D abstract

In this chapter, we develop a multiscale framework using the CAC method to simulate long-

time shock wave propagation through a two-dimensional lattice. Specifically, we utilize both

the Hugoniot shock equations [11] as well as the nonlinear Eulerian shock equations [136] to

analyze the well-known Riemann problem of an individual discontinuity traveling through a

material. Furthermore, we enhance the moving window techniques first presented in [2] to

track the shock over long simulation times and engineering-scale domains. Each method keeps

the shock front in the middle of the atomistic region for the entire runtime, so the wave front

never encounters the A-C interfaces. This allows us to model shock propagation for greater

simulation times than traditional NEMD and multiscale methods and thus gain valuable infor-

mation about the long-term, time-averaged material response to shock loading of two different

FCC ductile metals: Cu and Al. The results from each set of shock equations are compared

to analytical models as well as empirical data to highlight the directional anisotropies in single
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crystals subject to shock loading. Next, parametric studies are performed related to the shock

front’s structure and its planarity. Finally, the capability of the CAC moving window technique

compared to classic NEMD is showcased through speedup and efficiency tests.

7.1.2 2D geometry and boundary conditions

We use our personal C++ code to develop, test, operate, and update the two-dimensional CAC

framework, and the monatomic lattice is divided into three primary regions as seen in Fig. 7.1.

The two coarse-scaled (continuum) regions are composed of rhombus elements, and the four

particles which make up any particular element are classified as nodes in this work. We choose

rhombus elements because they align with the primitive unit cell of the FCC lattice (see Sec.

7.2.1) and thus facilitate a smooth transition between the fine-scaled and coarse-scaled regions.

Specifically, the x-direction corresponds to the [112] lattice orientation while the y-direction

corresponds to the [1̄10] lattice orientation. Since element connectivity is not required in CAC

[117], each node is a member of only one element, and this greatly reduces the complexity of

the finite element formulation. Furthermore, the edges of the grid in the continuum regions are

“filled in” with particles which we refer to as boundary atoms in this work. This is done in

order to facilitate periodic boundary conditions as shown in [146].

Figure 7.1: Schematic of the two-dimensional CAC framework.

The two continuum regions border the central fine-scaled (atomistic) region on the left and

right-hand side, and we classify the particles in this region as either inner atoms or just atoms in
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the present work. The “elements” in the fine-scaled region are reduced to their smallest possible

configuration such that only four atoms constitute the entire area of each element. Hence,

both the fine-scaled and coarse-scaled regions are technically made up of rhombuses with the

only differences being the area and mass of their respective elements. As a consequence, one

governing equation along with a single mass matrix is utilized for both regions, the interatomic

potential is the only constitutive relation, and all force calculations are nonlocal [123]. Thus,

as mentioned in Sec. 2.4, the particles at the A-C interfaces (xA,0 and xA,F ) have a direct

communication with each other without creating ghost forces [127, 146].

We note that to avoid introducing non-physical strains into the domain during shock sim-

ulations, semi-periodic boundary conditions are employed in the x-direction whereby the par-

ticles at the extreme ends of the lattice (x0 and xF ) are neighbors with the nodes at the A-C

interfaces (xA,0 and xA,F respectively) [2]. Additionally, since the present work only considers

uniaxial compression, we utilize periodic boundary conditions in the y-direction when model-

ing a longitudinal shock wave.

7.1.3 Shock parameters

In Table 7.1, we present the empirical Hugoniot shock parameters as well as the second, third,

and fourth-order elastic constants (in a normal and Eulerian setting) for both Cu and Al. The

Hugoniot parameters are obtained from [15], the second and third-order elastic constants for Cu

and Al are obtained from [206] and [207] respectively, and the fourth-order elastic constants are

obtained from [137]. For these values, the temperature is assumed to be 295 K, C0 is given in

km/sec, S is unitless, and the elastic constants are given in GPa. The Hugoniot parameters are

derived for a shock wave propagating through a bulk, polycrystalline material. Furthermore,

the elastic constants represent the pure-mode directions such that a planar shock impact results

in an exclusively longitudinal component (along the [100] direction) with no transmitted shear

stress, and hence the one-dimensional analysis is valid. We use these parameters as initial

input in our shock simulations and compare the results from the CAC model to analytical and

empirical data in Sec. 7.4.
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Table 7.1: Hugoniot and Eulerian shock parameters for Cu and Al (θ = 295 K, C0 in km/sec,
and Cαβ in GPa).

Property Cu [100] Al [100]
C0 3.94 5.33
S 1.49 1.34
C11 166 107
C111 -1270 -1080
Ĉ111 722 204
C1111 11900 25000
Ĉ1111 2000 10500

7.1.4 ‘Elastic’ shock waves

To legitimately utilize the shock equations from Sec. 2.2 as well as avoid intractability with the

moving window techniques, we perform shock simulations with relatively small strains such

that the resulting stresses are below the HEL of the material (see Appx. C.0.2). To main-

tain consistency, we refer to these as elastic shock waves in the present work. Elastic shock

waves are often modeled in defect-free crystals with NEMD techniques to study a particular

phenomenon, test a new framework, or validate a given potential [1, 41, 140], and their distin-

guishing characteristic is the lack of any permanent dislocations (inelastic deformation) behind

the wave front. This is possible because the HEL is typically higher than what is seen in exper-

imental settings [119], and the wave speed is still greater than the sound velocity in the material

at the low strains. Modeling shock propagation with the CAC moving window framework us-

ing thermoelastic-viscoplastic models [208, 209] is a worthy pursuit but would add an extra

layer of complexity to the current model and is thus reserved for future studies.

7.2 Two-dimensional CAC method

For a discussion of AFT and the finite element implementation of CAC, see Sec. 4. We note

here that a unique feature of 2D CAC is that element connectivity is not required because the

nonlocal interatomic force field is the only constitutive relation [117]. This is similar to aspects

of the cohesive zone model [210] and greatly simplifies the implementation of both the mass

matrix as well as the force calculations.

123



7.2.1 Element formulation in 2D

Rhombohedral elements are utilized within the CAC formulation to replicate the primitive unit

cell of a monocrystalline lattice (FCC in the present work). A sketch of this can be seen

in Fig. 7.2, where we observe the primitive unit cell (blue lines) within the broader FCC

crystal structure. Furthermore, the shaded region represents the two-dimensional atomic plane

Figure 7.2: Rhombohedral element constituting the primitive unit cell (blue lines) of an FCC
lattice. The shaded region represents the two-dimensional rhombus element utilized in the
present formulation.

used in our formulation whereby rhombus elements are incorporated throughout the domain.

Since the same constitutive relation is used both within elements as well as between elements,

dislocations and cracks emerge naturally through the separation of finite elements [117]. This

is a direct result of the CAC governing equations, and it allows such defects to pass smoothly

across the A-C interfaces without deforming individual elements. As a result, some mesh

sensitivity may be introduced into simulations with very high strains whereby different grid

resolutions alter the convergence of the solution.

A schematic of the two-dimensional rhombus element can be seen in Fig. 7.3. Here, the

black circles represent the four nodes where the governing equations are applied, and the grey

circles represent the lattice points which serve as nodal neighbors and thus aid in the force

calculations. For monatomic crystals, each nodal location (unit cell) only contains one atom,

and the positions of the lattice points are interpolated using Eq. (4.15) throughout the element.

We emphasize that the lattice points are excluded from the Verlet algorithm. Finally, since no
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Figure 7.3: Schematic of the two-dimensional rhombus element.

external forces are applied in this work, the governing equations from Sec. 4.2 reduce to the

following:

MÜ− Fint = 0 (7.1)

where the terms M and Fint are given as

M =

∫
Ω(x)

[ρΦ(x)Φ(x)] dx (7.2)

Fint =

∫
Ω(x)

Φ(x)

∫
Ω(x′)

nα∑
j=1

f [Φ(x)Ui −Φ(x′)Uj] dx′dx =

∫
Ω(x)

Φ(x)fint(x)dx. (7.3)

In Eq. (7.1), M is the mass matrix, and Sec. 7.2.2 provides a full derivation of this term. In

brief, we utilize the lumped mass matrix approach in the present formulation which effectively

reduces M to the following expression for each element:

M =
mNppe

Nnpe

(7.4)

where m is the atomic mass, Nppe is the number of particles per element (including lattice

points), and Nnpe is the number of nodes per element [146].
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The terms Ü and Fint are the respective accelerations and internal forces for each atom/node

in the lattice, and nα represents the total number of neighbors of particle i within a specified

cutoff radius. Furthermore, the local force fint(x) on particle i at position x is obtained exclu-

sively from the interatomic potential through relative displacements of particles, and the total

force is obtained through Gaussian quadrature rules (see Sec. 7.2.3). We note that the sur-

rounding lattice points act as atomic neighbors when calculating the force fint(x) of a node in

the continuum regions, whereas in the fine-scaled region, atomic neighbors are merely other

atoms.

7.2.2 Mass matrix in 2D

We now elaborate on the isoparametric formulation of the mass matrix for a given continuum

element in the two-dimensional CAC framework. As stated in Sec. 7.2, element connectivity

is not required in CAC. Hence, this derivation is general and can be applied to any element in

the domain assuming the physical nodal coordinates of that element are known.

The isoparametric shape functions of a four-node element are given as follows:

φ1(ξ, η) =
1

4
(1− ξ)(1− η) (7.5)

φ2(ξ, η) =
1

4
(1 + ξ)(1− η) (7.6)

φ3(ξ, η) =
1

4
(1− ξ)(1 + η) (7.7)

φ4(ξ, η) =
1

4
(1 + ξ)(1 + η) (7.8)

which can be stored in a matrix as

Φ(ξ, η) =

φ1 0 φ2 0 φ3 0 φ4 0

0 φ1 0 φ2 0 φ3 0 φ4

 (7.9)
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where φi = φi(ξ, η). In order to map the element between the global and natural coordinate

system, we need the Jacobian which is given as follows:

J =

∂φ1/∂ξ ∂φ2/∂ξ ∂φ3/∂ξ ∂φ4/∂ξ

∂φ1/∂η ∂φ2/∂η ∂φ3/∂η ∂φ4/∂η




x1 y1

x2 y2

x3 y3

x4 y4


(7.10)

where (x1, y1), (x2, y2), (x3, y3), and (x4, y4) are the positions of the four element nodes in the

global coordinate system. We note that the numbering goes counterclockwise starting from the

left node as seen in Fig. 7.4. Expanding out Eq. (7.10) and taking the appropriate derivatives

Figure 7.4: Mapping from global to natural coordinates of a two-dimensional CAC element.

of the shape functions, we obtain the four components of the Jacobian:

J1 =
x1

4
(η − 1) +

x2

4
(1− η) +

x3

4
(η + 1)− x4

4
(η + 1) (7.11)

J2 =
y1

4
(η − 1) +

y2

4
(1− η) +

y3

4
(η + 1)− y4

4
(η + 1) (7.12)

J3 =
x1

4
(ξ − 1)− x2

4
(ξ + 1) +

x3

4
(ξ + 1) +

x4

4
(1− ξ) (7.13)

J4 =
y1

4
(ξ − 1)− y2

4
(ξ + 1) +

y3

4
(ξ + 1) +

y4

4
(1− ξ). (7.14)

Hence, the Jacobian determinant is

det(J) =

∣∣∣∣∣∣∣
J1 J2

J3 J4

∣∣∣∣∣∣∣ = J1J4 − J2J3 (7.15)
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which can be simplified using a software program like Wolfram Mathematica.

The expression for the mass matrix of the 2D element in global coordinates is given as

follows:

M = ρ

∫
A

ΦTΦ dA. (7.16)

Writing this in natural coordinates:

M = ρ

∫ 1

−1

∫ 1

−1

[
ΦTΦ · det(J)

]
dξdη (7.17)

where

ΦTΦ =



φ1 0

0 φ1

φ2 0

0 φ2

φ3 0

0 φ3

φ4 0

0 φ4



φ1 0 φ2 0 φ3 0 φ4 0

0 φ1 0 φ2 0 φ3 0 φ4

 (7.18)

and ρ is the area of the element. As a result, we can use the expressions for the shape functions

as well as det(J) from Eq. (7.15) to calculate all sixty-four components of the mass matrix for

the given element. It turns out, however, that only ten of these components are unique, so we

can simplify the mass matrix significantly as follows:

M =



M11 M13 M15 M17

M13 M33 M35 M37

M15 M35 M55 M57

M17 M37 M57 M77


(7.19)

where

Mij = ρ

∫ 1

−1

∫ 1

−1

[φiφj · det(J)] dξdη. (7.20)
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After obtaining the cumulative force on each node in the element through Gaussian inte-

gration (see Sec. 7.2.3), we can then calculate the respective accelerations as follows:



ü1

ü2

ü3

ü4


=



M11 M13 M15 M17

M13 M33 M35 M37

M15 M35 M55 M57

M17 M37 M57 M77



−1 

f1

f2

f3

f4


. (7.21)

In this work, we use the lumped mass matrix approximation, and specifically, the row-sum

method. Hence, we can further simplify our calculations and sum the rows of the mass matrix

such that

M1 = M11 +M13 +M15 +M17 (7.22)

M2 = M13 +M33 +M35 +M37 (7.23)

M3 = M15 +M35 +M55 +M57 (7.24)

M4 = M17 +M37 +M57 +M77. (7.25)

Therefore, we arrive at the final result for the accelerations of the four nodes:



ü1

ü2

ü3

ü4


=



f1/M1

f2/M2

f3/M3

f4/M4


. (7.26)
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For the sake of completeness, we provide the expressions for the ten unique components

of the two-dimensional mass matrix below:

M11 =
ρ

36
[(3x1 − x3)(y2 − y4) + x2(2y4 + y3 − 3y1) + x4(3y1 − 2y2 − y3)] (7.27)

M13 =

ρ

72
[x1(3y2 − y3 − 2y4) + x2(y4 + 2y3 − 3y1) + x3(y1 − 2y2 + y4) + x4(2y1 − y2 − y3)]

(7.28)

M15 =
ρ

72
[(x1 − x3)(y2 − y4)− (x2 − x4)(y1 − y3)] (7.29)

M17 =

ρ

72
[x1(2y2 + y3 − 3y4) + x2(y4 + y3 − 2y1)− x3(y1 + y2 − 2y4) + x4(3y1 − y2 − 2y3)]

(7.30)

M33 =
ρ

36
[x1(3y2 − 2y3 − y4) + 3x2(y3 − y1) + x3(2y1 − 3y2 + y4) + x4(y1 − y3)] (7.31)

M35 =

ρ

72
[x1(2y2 − y3 − y4)− x2(2y1 − 3y3 + y4) + x3(y1 − 3y2 + 2y4) + x4(y1 + y2 − 2y3)]

(7.32)

M37 =
ρ

72
[(x1 − x3)(y2 − y4)− (x2 − x4)(y1 − y3)] (7.33)

M55 =
ρ

36
[(x1 − 3x3)(y2 − y4)− x2(y1 − 3y3 + 2y4) + x4(y1 + 2y2 − 3y3)] (7.34)

M57 =

ρ

72
[x1(y2 + y3 − 2y4)− x2(y1 − 2y3 + y4)− x3(y1 + 2y2 − 3y4) + x4(2y1 + y2 − 3y3)]

(7.35)

M77 =
ρ

36
[x1(y2 + 2y3 − 3y4) + x2(y3 − y1)− x3(2y1 + y2 − 3y4) + 3x4(y1 − y3)] (7.36)

As can be seen, each of these terms is strictly a function of the four nodal positions of the

element in the global coordinate system as well as the density ρ. Thus, assuming that we know

the global coordinates, we can calculate each component of the mass matrix and thereby obtain

the acceleration of each node.
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7.2.3 Gaussian integration in 2D

When employing the two-dimensional framework, we calculate the internal force density using

Gaussian integration, so we now elaborate on this method for a 2D coarse-scaled element. In

Gaussian integration, the elemental forces are approximated by the forces at both the nodes as

well as the integration points. Thus, while more complex to implement, Gaussian integration

typically results in more accurate force calculations when using complex geometries or large

elements. For all of our simulations, we use twelve-point Gaussian integration such that each

element, in addition to the four nodes, contains twelve integration points. These integration

points are chosen such that there are two along each edge of the element and four on the interior

surface as seen in Fig. 7.5. In particular, both the edge and surface integration points are chosen

to be equal to the lattice points which directly neighbor the nodes, and this is comparable to

techniques used in other multiscale schemes such as cluster-QC [10] and three-dimensional

CAC [146].

Figure 7.5: Two-dimensional CAC coarse-scaled element. Nodes are shown in black, edge
integration points are shown in green, surface integration points are shown in orange, and lattice
points are shown in grey.

The forces within the 2D element are thus split into three distinct parts associated with the

(1) nodes, (2) edges, and (3) surfaces as seen in the equation below:

Fint = FNint + FEint + FSint. (7.37)
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The first term in Eq. (7.37) represents the forces at the nodes and is calculated as follows:

FNint = wN1Φ(N1)fint(N1) + wN2Φ(N2)fint(N2) + wN3Φ(N3)fint(N3) + wN4Φ(N4)fint(N4)

=



φ1(N1)

φ2(N1)

φ3(N1)

φ4(N1)


fint(N1) +



φ1(N2)

φ2(N2)

φ3(N2)

φ4(N2)


fint(N2) +



φ1(N3)

φ2(N3)

φ3(N3)

φ4(N3)


fint(N3) +



φ1(N4)

φ2(N4)

φ3(N4)

φ4(N4)


fint(N4)

=



1

0

0

0


fint(x1, y1) +



0

1

0

0


fint(x2, y2) +



0

0

1

0


fint(x3, y3) +



0

0

0

1


fint(x4, y4)

=



fint(x1, y1)

fint(x2, y2)

fint(x3, y3)

fint(x4, y4)


(7.38)

where we note that all of the weights equal one. Additionally, each shape function equals

one at its nodal location and zero everywhere else. Equation (7.38) would be the only force

used in nodal integration – a technique which effectively does not alter the forces obtained

using the interatomic potential function and relative displacement of particles. Although nodal

integration is more computationally efficient, it is less robust than Gaussian integration and

only accurate for simple geometries and relatively small elements, so it is not used in 2D CAC.

The second two forces in Eq. (7.37) are given as follows:

FEint =
8∑
j=1

(wj,x · wj,y)Φ(j)fint(j) (7.39)

FSint =
12∑
j=9

(wj,x · wj,y)Φ(j)fint(j). (7.40)
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In Eqs. (7.39) and (7.40), the summations occur over the eight edge integration points and four

surface integration points respectively. Furthermore, the terms wj,x and wj,y are the weights of

the integration points along the x and y directions. Finally, Φ(j) is the shape function vector

at the given integration point while fint(j) is the force of the integration point obtained through

the potential function. For the sake simplicity, we do not write out the full expressions of these

terms, but the expansion would be similar to that shown for the nodal forces in Eq. (7.38).

7.3 Two-dimensional shock propagation technique

7.3.1 Shock initialization in 2D

For each simulation, the shock wave is characterized using either the Hugoniot (Sec. 2.1)

or Eulerian (Sec. 2.2) governing equations, and the shock front is achieved by dividing the

grid from Fig. 7.1 into different regions as seen in Fig. 7.6. The boundary particles within

each continuum domain (red circles) constitute the thermostat regions and are categorized as

“damped” atoms since they apply a constant temperature to the lattice through the Langevin

thermostat. Furthermore, a narrow band of inner atoms at each A-C interface are also damped

to ensure that the window region made up of “undamped” atoms (blue circles) achieves the

correct canonical ensemble [2]. We note that as in [78], the nodes (black circles) are left

undamped to prevent spurious behavior within each element. The shock wave front (SWF)

starts at the midpoint of the WR and travels to the right along the positive x-direction with

a speed of US . We delineate material to the right of the SWF as the unshocked region and

material to the left of the SWF as the shocked region.

To initialize the shock, we assign a final strain ε+ to the shocked region and use either

Eqs. (2.12) and (2.14) for the Hugoniot formulation or Eqs. (2.49) and (2.50) for the Eulerian

formulation to calculate the mean particle velocity v+ and SWF velocity US . The Hugoniot

parameters C0 and S as well as the elastic constants C11, Ĉ111, and Ĉ1111 are initially assigned

their literature values given in Table 7.1. The particle velocity v+ is the new equilibrium ve-

locity for the shocked region, and the strain ε+ causes the lattice to compress uniaxially such
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Figure 7.6: Two-dimensional CAC geometry used for shock wave simulations. Here, the red
circles represent damped atoms, the blue circles represent undamped atoms, and the black
circles represent nodes.

that particles behind the SWF obey the Cauchy-Born rule [156]. As a result, the shocked re-

gion achieves its final state and the SWF starts to propagate forward beginning in the middle

of the WR. The temperature θ+ calculated from either Eq. (2.32) or Eq. (2.51) is applied to

the shocked TR, and each TR is far enough away from the non-equilibrium SWF to be con-

sidered within a region of “local” equilibrium. Hence, we can legitimately apply the Langevin

thermostat to the strained portion of the domain [70].

In the following sections, we discuss how the moving window techniques are incorporated

into the two-dimensional CAC framework.

7.3.2 Conveyor method in 2D

Figure 7.7 provides a schematic of the conveyor technique for the two-dimensional CAC frame-

work. This technique is similar to the scheme found in [2] for one dimension, but there are more

intricacies and complexities associated with the higher-dimensional lattice. After the SWF has

traveled one lattice spacing (alat) along the positive x-direction from the center of the WR, the

initial position, displacement, velocity, and acceleration of particles in the first two columns of

the grid are set equal to the parameters of their rightmost neighbors within the same row. The

neighbors may be either boundary atoms, nodes, or lattice points, but if they are lattice points,

the Verlet parameters are first interpolated as discussed in Sec. 4.2. Effectively, the parameters
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of particles within the first two columns of the lattice are removed from the simulation as is

noted in the figure by the leftmost arrow.

Figure 7.7: Schematic of the moving window conveyor technique for the 2D CAC framework.
The white circles represent removed particle locations while the gold/orange circles represent
inserted particle locations.

This process continues throughout the entire domain from the beginning of the shocked

region to the end of the unshocked region, and we note that only the initial position of lat-

tice points are updated since their displacements, velocities, and accelerations are interpolated

during the integration algorithm. Particles in the final column of the domain (denoted by the

gold and orange circles in Fig. 7.7) are given new initial x-positions which are one lattice

spacing greater than their current initial x-positions, and their y-positions remain the same.

Furthermore, their displacements, velocities, and accelerations are all set equal to zero, and

the Langevin thermostat dampens any energy fluctuations generated near xF as in [77]. This

conveyor mechanism occurs with a frequency of τ−1 = US/alat, and if the simulated and ana-

lytical shock velocities are the same, the SWF will remain stationary in the middle of the WR

for the entire runtime. The resulting time resolution of alat/US is thus optimized for the given

shock propagation velocity, but higher time resolutions are achievable depending on the speed

of the phenomenon in question.

7.3.3 Coarsen-refine method in 2D

A schematic of the two-dimensional coarsen-refine method can be seen in Fig. 7.8, and it

is again similar in principle to the 1D technique from [2]. Here, after the SWF has traveled

a distance equal to the length of the element diagonal (ediag) plus the lattice spacing divided
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by two, the moving window mechanism begins whereby material in the shocked continuum

region gets coarsened and material in the unshocked continuum region gets refined. In the

shocked region, coarsening is achieved by transforming the relevant particles into nodes and

lattice points such that new elements appear in the previous atomic locations. On the other

hand, in the unshocked region, refinement takes place by changing nodes and lattice points into

fine-scaled particles through both parameter re-assignment and linear interpolation – similar to

what is done with the conveyor technique. This procedure effectively transmits the fine-scaled

region forward to the new SWF location as seen in Fig. 7.8.

Figure 7.8: Schematic of the moving window coarsen-refine technique for the 2D CAC frame-
work.

After this process completes, undamped particles at the A-C interfaces in the shocked ma-

terial are redefined as damped particles and vice versa for particles in the unshocked material.

Furthermore, the mass matrix is modified to exhibit the new mass distribution within the lat-

tice. This technique occurs iteratively with a frequency of τ−1 = US/
1
2

(ediag + alat), and the

integer time counter n is increased by one each time the mechanism terminates (as shown in

Fig. 7.8). When utilizing the coarsen-refine method, the entire two-dimensional grid remains

stationary and merely the location of the fine-scaled region is shifted. As a result, most the

the domain can be populated with finite elements while a comparatively small section of atoms
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track the propagating shock wave through the lattice. This technique thus ultimately endeavors

to balance total efficiency and total accuracy of nonlinear shock wave modeling.

7.4 Elastic Anisotropy: Crystal Orientation Dependence of Shock Propagation Response

In this section, we elaborate on the shock velocity and longitudinal stress results obtained with

both the Hugoniot and Eulerian formulations and discuss how they relate to the directional

anisotropy of materials subject to shock impact. Recent NEMD works have studied shock

propagation along different lattice directions of single crystals and observed a significant ori-

entation dependence on the material’s shock response [13, 14, 50, 82]. This phenomenon has

also been documented for elastic shock waves in small-scale, atomistic domains [140]. Inter-

estingly, large-scale experimental studies have not shown the same orientation dependence of

shock parameters [83], but this may be due to the fact that bulk crystals naturally have more de-

fects than what can be feasibly represented using atomistic techniques [14]. The present work

provides a unique insight on this phenomenon because the CAC domain is modeled after the

primitive unit cell of an FCC lattice and thus promotes a smooth transition between the atom-

istic and continuum regions. Hence, the shock travels along the [112] longitudinal direction,

and the [1̄10] direction is transverse to the direction of propagation. To the authors’ knowledge,

this is one of the first studies to analyze shock evolution along this particular orientation.

7.4.1 Simulation specifications

The results in this section are obtained from shock wave simulations performed with the con-

veyor moving window technique using the CAC domain described in Fig. 7.6. For every sim-

ulation, the left and right coarse-scaled regions each contain 250 particle columns for a total

length of 250alat, and each element diagonal has a length of 8alat. Furthermore, the fine-scaled

region contains 2,500 particle columns, and the length of each element diagonal is merely the

lattice spacing (alat). Additionally, each atomistic TR band contains 20 columns to ensure

that the WR reaches the desired temperature [78]. Simulations are conducted for compressive

strains (ε+) ranging from 1% to 9% and 1% to 8% for Cu and Al respectively (see Appx. C.0.2),

and the total runtime is 2 ns. A velocity profile of the two-dimensional shocked lattice can be
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seen in Fig. 7.9a. Specifically, we track the SWF over time in MATLAB by taking a column

average of the particle velocities as shown in Fig. 7.9b.

(a)

(b)

Figure 7.9: Velocity profiles of the propagating shock in the CAC framework. (a) SWF in the
two-dimensional grid (not to scale); (b) SWF obtained from averaging the column velocities of
the lattice.

7.4.2 Shock velocity results

Shock velocity results obtained for both Hugoniot and Eulerian theory can be seen in Figs. 7.10

and 7.11 respectively. Specifically, Fig. 7.10 displays the shock velocity vs. particle velocity

data (as well as the derived Hugoniot equations) of four different sets of simulations using both

(a) Cu and (b) Al. Here, the blue line represents the polycrystalline Hugoniot calculated in [15],

and the green data points are the average velocity results for shocks propagating through the

standard CAC domain. As a comparison, we also invert the lattice such that the [1̄10] orientation

lies along the x-direction, and the [112] orientation lies along the y-direction. These results are

given by the red data points. As in Appx. C.0.2, we performed stress vs. strain studies for this

inverted lattice and found yielding to occur at 9% strain for Cu and 8% strain for Al, so we

maintain ε+ values below these elastic limits when simulating shocks along the [1̄10] direction.

Finally, we also present one-dimensional atomistic shock data obtained from [1] for Cu and

calculated in this work for Al.
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(a) (b)

Figure 7.10: Hugoniot shock wave results for both (a) Cu and (b) Al. The polycrystalline shock
Hugoniot obtained from [15] is shown in blue. Two-dimensional CAC Hugoniot data obtained
for shocks propagating along the [112] and [1̄10] lattice directions are shown in green and red
respectively. One-dimensional shock Hugoniots are given in orange. The Cu Hugoniot comes
from [1], and the Al Hugoniot is calculated in the present work.

(a) (b)

Figure 7.11: Eulerian shock results for both (a) Cu and (b) Al. The blue line represents ve-
locities obtained from fourth-order Eulerian theory. Two-dimensional CAC data obtained for
shocks propagating along the [112] and [1̄10] lattice directions are shown in green and red
respectively. One-dimensional CAC data obtained from [2] are in orange.
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The data and associated Hugoniot equations in Fig. 7.10 clearly show the dependency

of a shock’s propagation velocity on the given lattice orientation. In particular, both of the

two-dimensional CAC Hugoniots have C0 and S values which are greater than the standard

polycrystalline Hugoniot. This is most likely due to the fact that the FCC primitive unit cell is

rhombohedral instead of cubic, so the entire CAC lattice is more compressed than a traditional

structured FCC grid. This causes the particles in the domain to be more compact which results

in larger forces from the interatomic potential and hence higher shock velocities. Additionally,

the polycrystalline Hugoniot data are fitted to strong shock waves for which yielding reduces

the effects of the shear modulus. Hence, we would anticipate the shocks from [15] to be slower

than the elastic CAC shocks since shear stress is limited to plastic yield strength. Next, as

expected, the inverted CAC lattice produces slightly higher shock velocities than the lattice

from Fig. 7.6 since the [1̄10] lattice spacing is shorter than the [112] spacing. Finally, the one-

dimensional shock velocities are greater than the those from the two-dimensional simulations

due to the lack of any transverse motion which naturally dampens the shock speed. Instead, the

1D results are comparable to plane-plane collisions in a bulk lattice [33].

We observe a similar phenomenon for the Eulerian results in Fig. 7.11 where we now plot

average shock velocity vs. applied strain. Here, the green and red data points are from the

same types of 2D simulations as those from Fig. 7.10. However, the blue line now represents

the analytical results from fourth-order Eulerian theory, and the orange data points are 1D

CAC shock results obtained from [2]. Since we utilize elastic constants obtained for shocks

propagating along the [100] direction and the CAC formulation analyzes shocks along the

[112] and [1̄10] directions, elastic anisotropy in the crystal lattice is a major reason why the

results from the various models differ.

As seen previously, the 1D shock velocities are slightly greater than the 2D velocities from

the present study, and the inverted CAC lattice has a higher slope than the standard CAC lattice.

For Cu, the shock velocities predicted at higher strains by Eulerian theory are indeed lower than

the 2D and 1D CAC results, but this is not the case for Al. The reason for the anomalous results

with Al is not necessarily clear, but it could be due to the fact that the third- and fourth-order

elastic constants are not always measurable to high accuracy, so uncertainties in their values
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would lead to uncertainty in the results predicted by fourth-order Eulerian theory. Nonetheless,

we observe qualitative compatibility between the Hugoniot and Eulerian formulations which

gives us confidence that the current CAC framework produces accurate results and can thus be

reliably used to measure the response of materials to shock propagation along various lattice

directions.

7.4.3 Longitudinal stress results

To supplement the anisotropic shock velocity results from Sec. 7.4.2, we perform longitudinal

stress vs. strain studies using the shocked data for both Cu and Al, and these results can be seen

in Fig. 7.12. Specifically, we calculate the time-averaged virial (thermodynamic) stress (σxx)

in the shocked region using Eq. (C.1), and we relate the Cauchy stress (Pxx) to the virial stress

as follows [140]:

Pxx = (1− ε)σxx (7.41)

where we note that compressive stress/strain is considered positive.

Fig. 7.12 shows the shock stress Pxx normalized by the second-order elastic constant C11

as a function of the applied strain. The data from Hugoniot and Eulerian theory were practically

identical, so without loss of generality, we only exhibit the Eulerian results. The [100] second,

third, and fourth-order Eulerian models are represented by the blue, orange, and green lines

respectively, while the [112] and [1̄10] shock stress data are represented by the purple circles

and gold diamonds respectively. As in Sec. 7.4.2, we clearly observe the orientation depen-

dence and elastic anisotropy of the shock stress as the CAC data is significantly higher than that

predicted by the various Eulerian models for shocks along the [100] direction. Furthermore,

the [1̄10] CAC simulations produced shock stresses which were slightly higher than those from

the [112] simulations. Again, this is primarily due to the higher compression velocities caused

by the larger ‘compactness’ of CAC domains. This anisotropic stress data is congruent with a

previous work which analyzed elastic shocks along various lattice directions using a number of

different potential functions [140].
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(a) (b)

Figure 7.12: Longitudinal stress data for both (a) Cu and (b) Al. The blue, orange, and green
lines represent the [100] results from 2nd, 3rd, and 4th-order Eulerian theory respectively. The
purple circles and gold diamonds represent the [112] and [1̄10] CAC data respectively.

7.5 2D Results with the Coarsen-Refine Method and Formulation Efficiency

Without loss of generality, we only reference data from Eulerian theory in this section as both

shock models gave similar quantitative results.

7.5.1 Coarsen-refine simulations

In Fig. 7.13, we present results from a shock wave simulation performed using the coarsen-

refine technique over 6 ns. Here, we can observe the atomistic portion of the domain success-

fully follow the evolving shock front throughout the CAC framework with no spurious wave

behavior at the A-C interfaces. Due the elastic nature of the shock as discussed in Sec. 7.1.4,

no dislocations are present to the left of the wave front, but we do see the shocked material

maintain the mean particle velocity of v+ for the entire runtime. These results are in contrast

to those performed using the conveyor technique because now the SWF may travel through

the entire CAC domain while staying within the fine-scaled region. Although previous work

has used mesh refinement to study phenomena within both finite-element [189] and multiscale

[116, 123, 190] schemes, utilizing simultaneous refine/coarsen techniques to study dynamic,

high-temperature phenomena is still a challenging area of research [2]. Thus, the present for-

mulation provides a novel means for tracking propagating shocks over long runtimes, and may
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be used to research even more complex lattice structures in the future such as nanoscale com-

posites or high-entropy alloys (HEAs).

Figure 7.13: 2D shock simulation using the coarsen-refine moving window technique.

7.5.2 Shock structure and planarity

We now use the coarsen-refine simulations to analyze the shock front’s spatial width over 5

ns, and the results for ε+ = −0.06 can be seen in Fig. 7.14. As a comparison, we also show

the 1D CAC results from [2]. Unlike the 1D data, the present work shows a clear steadiness

in the shock wave behavior as evidenced by the fact that the shock width remains constant

throughout the simulation with very little deviation from the mean. We also do not observe a

significant change in the shock front’s planarity throughout the simulation’s duration. Finally,

similar results were found for both Cu and Al over the range of strains studied with the present

formulation. Clearly, for shock waves modeled at the microscale, the ability of particles to

oscillate transversely to the direction of shock propagation plays a large role in the overall

steadiness of the wave. These results are similar to findings from previous NEMD studies

which observed a change in shock structure and steadiness when transitioning from a 1D to

3D regime [28]. In particular, the transition from unsteady to steady waves was due to the

“increase in coupling between vibrational excitations normal and transverse to the direction of

shock wave propagation” [42]. Our work shows this for two dimensions as well.
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Figure 7.14: Spatial shock width over time. The blue and red circles represent the 1D CAC
data from [2] for both Cu and Al respectively. The gold squares and purple diamonds represent
the 2D CAC data for Cu and Al from the present work.

7.5.3 Framework speedup and efficiency

For the sake of completeness, we now present results for speedup/efficiency tests which com-

pare the two-dimensional moving window CAC framework to equally-sized NEMD domains.

The data from these two studies can be seen in Fig. 7.15. Specifically, in Fig. 7.15a, we

maintain a constant ratio in the CAC lattice such that the fine-scaled region is always one-tenth

the length of the entire grid, and we run simulations for increasing domain sizes. We observe

the CAC vs. MD speedup reach an asymptotic value around 4.0x (further increases in domain

size did not significantly effect the speedup). Next, in Fig. 7.15b, we keep the total lattice size

constant and vary the length of the coarse-scaled region from 0% to 100% of the total area.

Clearly, as the percentage of the lattice that is coarse-scaled increases, the speedup does as well

up to a maximum value of approximately 6.5x. These studies demonstrate the utility of using

the present CAC framework to enhance performance in large-scale simulations.
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(a) (b)

Figure 7.15: Efficiency of the CAC framework vs equally-sized MD domains. In (a), the total
runtimes are compared for increasing system sizes. Here, the central fine-scaled region of the
CAC lattice is always 1/10 the length of the entire grid. In (b), the simulation speedup is shown
when the size of the domain remains constant, but the coarse-scaled region increases from 0%
to 100% of the lattice.
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Chapter 8

Conclusion

In this final chapter, we summarize all the work explained in this dissertation, discuss the

scientific contributions made with these projects, and consider current and future goals for this

research.

8.1 Summary

8.1.1 One-dimensional atomistic framework

In the first part of this dissertation, we developed a moving window framework using MD to

model long-time shock wave propagation through a one-dimensional monatomic chain. The

framework was composed of a window region containing the shock wave flanked by thermo-

stat boundary regions on either end of the domain. The dynamics of the window region were

governed by the classic MD equations of motion while continuum shock conditions were in-

corporated into the boundary regions. The boundary regions utilized the Langevin thermostat

along with a linear damping technique to prevent spurious reflections and absorb any artifact

waves that impinged on the WA/CA interfaces. The moving window focused the shock wave

front at the center of the WA region by adding/removing atoms to/from the WA and CA regions.

This allowed us to use relatively small domain sizes to model shock wave propagation much

longer than conventional NEMD shock simulations. Before presenting the results, we intro-

duced a classical single-wave Riemann problem and defined the one-dimensional scheme. We

then discussed the Langevin damping band method as well as the moving window formulation,

and we extensively verified that each component of the framework was functioning properly.
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In Sec. 3.3, we used the moving window framework to follow the propagating shock wave

and calculate the shock velocity vs. particle velocity Hugoniot of the close packed framework.

We observed that the EOS parameters obtained from the Morse and EAM potentials were in

good agreement with the results from other MD studies. We then performed moving window

shock simulations with the new EOS parameters to obtain a stationary shock wave front. This

allowed us to track the shock wave for a few nanoseconds (much longer than conventional

NEMD shock simulations) and characterize the shock’s structure. We observed a linear increase

in the width of the shock front up to 500 ps followed by a gradual increase until the end of the

simulation. This increase in the shock front thickness was attributed to the fact that the one-

dimensional framework is unable to account for transverse atomic displacements. These results

were consistent with early MD studies which used a one-dimensional chain of atoms to model

shock wave propagation [28].

With this work, we demonstrated that the moving window formulation could follow a

propagating shock wave for long simulation times (≥ 1 ns). Additionally, we showed that a

shock propagating through a “close packed” one-dimensional monatomic chain could serve as

a good approximation for a planar shock wave propagating along the [110] direction of a bulk

single-crystal lattice. Transverse effects appear to be less influential along this lattice orien-

tation [50], and our derived Hugoniot parameters were shown to be in good agreement with

other MD studies [13, 14]. Existing NEMD shock techniques demonstrate distinct Hugoniot

equations along the various lattice directions of a bulk crystal [13, 14, 50, 82] while experimen-

tal methods show no such distinction [83]. A higher-dimensional moving window formulation

could be used to resolve such a discrepancy. The results achieved with the moving window

atomistic framework served as a stepping stone and proof-of-concept for the development of

the fully-coupled CAC framework for shock wave propagation discussed in the next part of this

dissertation.

8.1.2 One-dimensional CAC framework

In the second part of this dissertation, we developed a moving window multiscale frame-

work using the CAC method to model shock wave propagation through a one-dimensional
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monatomic chain. Specifically, we studied the classic Riemann problem of a single propagating

shock wave in an infinite medium. We characterized the shock at the continuum level using the

third-order nonlinear Eulerian thermoelastic equations for shock compression in anisotropic

crystals [136, 137]. We then incorporated two different moving window techniques into the

framework which tracked the moving shock front in distinct ways. In the first method, the

entire domain followed the wave front in a conveyor fashion, while in the second method, the

fine-scaled region traveled through the chain by simultaneous coarsening and refinement.

We performed many verification studies with the framework including the replication of

phonon dispersion curves and the simulation of phonon wave packets. Shock wave studies re-

vealed that the CAC framework could accurately model propagating shocks with velocities very

similar to those predicted by third-order Eulerian continuum theory. Additionally, these studies

showed that the conveyor technique could maintain the wave front in the middle of the fine-

scaled region for very long simulation times. Finally, simulations performed with the coarsen-

refine technique demonstrated that the fine-scaled region could travel with the shock through

the domain and thus prevent the shock wave from encountering the atomistic-continuum inter-

face.

This work showcased the ability of the CAC framework to simulate highly non-equilibrium,

transient events like shock waves through engineering-scale domains over realistic time scales.

Atomistic methods have modeled many features of shock propagation in materials over the past

several decades, but the scalability of such schemes is restricted by computational resources.

While multiscale methods like CAC overcome size-scalability issues, studies which use these

atomistic-continuum frameworks to model shock-like events have been limited. This is partly

because fast-moving, nonlinear phenomena like shock waves can be hard to capture even in

fairly large computational frameworks. When such events are simulated, the total runtime is

nevertheless bounded because the shock will eventually leave the domain. The CAC method

along with the two moving window techniques discussed in this paper significantly reduces the

computational expense of such simulations and provides a means to model a propagating wave
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over extended time scales. The present formulation will also be very valuable when study-

ing other phenomena in a 1D chain such as nonlinear transition waves, Hertzian contact, and

phonon transport [121, 126, 211, 212, 213].

8.1.3 CAC phonon wave passing formulation

In the third part of this dissertation, we developed a technique to transmit multiple high-

frequency phonon waves across length scales within a periodic CAC domain. Specifically, we

utilized the LD interpolation scheme from [126] and introduced novel numerical techniques

into the framework to update the continuum region with short-wavelength data and track mul-

tiple waves across time. We first replicated the phonon dispersion relation of the system in

order to find the critical wavevector kC above which the curves of the coarse-scaled region and

fine-scaled region diverged. Wave packet simulations confirmed that phonons with wavevectors

< kC fully transmit across the A-C interface while phonons with wavevectors> kC completely

reflect. Next, we described the LD-based finite element scheme developed in [126] to transmit

a single short-wavelength phonon across length scales. A wave packet simulation confirmed

the ability of this method to transmit a high-frequency k = 0.2π/r0 phonon from the atomistic

to the continuum region with nearly imperceptible reflection.

We then described the technique to pass multiple high-frequency phonons between the

atomistic and continuum regions of the CAC framework. To implement this method, we first

expanded the short-wavelength displacement equation to account for a variety of wave packets

nucleated at different time steps. However, the coefficients in this equation were still time-

independent, and we showcased how this “naive” approach could only store information for one

phonon at a time. Next, we modified the displacement equation to incorporate “time-stamped”

coefficients which encoded the initialization time of each wave. During the integration algo-

rithm, we performed two separate Fourier transforms both before and after a new phonon was

generated. By obtaining the amplitude coefficients, we effectively took a “snapshot” of the do-

main in k-space which allowed us to know which information was new. The difference in these

coefficients was used to calculate the updated time-stamped coefficients which were then stored

in a “master” array. Hence, information from multiple phonons was tracked over time, and the
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displacement field could be updated to incorporate each of these waves into the continuum re-

gions. Simulations performed with this technique confirmed its effectiveness in transmitting

multiple short-wavelength phonons across the A-C interfaces.

While this technique can be used to transmit multiple short-wavelength waves, we note

some limitations of this scheme. The framework, in its current state, is incapable of transmitting

short-wavelength waves generated due to physical processes such as scattering. For example,

during impact simulations, a shock wave may interact with a microstructural interface and

produce high-frequency transient waves which travel throughout the domain. Such a wave

will appear in the system during the Verlet integration. However, in the current framework,

the short-wavelength wave packet nucleation occurs at a very specific step in the flowchart

(Fig. 6.5) external to the Verlet integration. As such, any high-frequency wave generated

during Verlet integration will not be captured and thus not added to the master template. We

emphasize, however, that the current technique is not meant to be a decisive solution to a

complex problem of wave scattering/transmission in multiscale modeling. Rather, this method

is a step towards tracking a variety of high-frequency waves which are nucleated in a concurrent

domain over time.

In the future, we hope to extend this technique to higher-dimensions and use it to study

waves in systems with complex microstructures. Such microstructures could arise from par-

ticles being randomly oriented within a monatomic lattice or alloyed materials giving rise to

intricate particle arrangements within polyatomic crystals. For diatomic systems in particular,

there would be two branches of the analytical dispersion relation, and in principle, the present

formulation could be used to transmit high-frequency optical phonons between the fine-scaled

and coarse-scaled regions of the CAC domain and vice versa. We also hope to expand this

method to account for different wave types such as elastic waves and orthogonal wavelets. Fi-

nally, we intend to eventually solve the scattering problem whereby we could transmit across

length scales multiple high-frequency waves generated from a physical process such as a mov-

ing dislocation or shock impact.
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8.1.4 Two-dimensional CAC framework

In the fourth part of this dissertation, we developed a dynamic moving window CAC framework

to simulate shock wave propagation through a two-dimensional, single-crystal lattice. Specif-

ically, we characterized the shock using both the linear Hugoniot [21] and nonlinear Eulerian

[136] shock equations to analyze the well-known Riemann problem of a single discontinuity

traveling through an infinite medium. The CAC multiscale formulation was utilized for its

ability to seamlessly transition between the fine-scaled and coarse-scaled regions, and many

verifications and analyses were conducted on the higher-dimensional system. We elaborated

on the technique to initialize the shock front in the lattice as well as described two moving win-

dow methods which were incorporated into the domain. These schemes provided a mechanism

to study the evolution of the shock over very long simulation times by preventing non-physical

wave reflections at the A-C interfaces.

We performed many shock wave simulations within the CAC framework and used the

moving window techniques to track the shock front through two different FCC materials: Cu

and Al. The unique lattice directions inherent to the CAC formulation provided us the op-

portunity to study how directional anisotropies in single crystals can give rise to orientation-

dependent shock velocities. We observed that longitudinal shocks traveling along the [112]

and [1̄10] directions of the CAC domain propagated at distinct velocities for a given strain and

particle velocity. These shock velocities were also different from those predicted by polycrys-

talline Hugoniot and Eulerian analytical models as well as previous one-dimensional atom-

istic and multiscale data. From these results, we were able to derive new Hugoniot param-

eters for the CAC formulation, and longitudinal stress calculations further validated the ob-

served anisotropic material response. Our data agreed qualitatively with the results from pre-

vious NEMD studies which identified this orientation-dependence of shock evolution in solids

[13, 14, 50, 82].

Next, in Sec. 7.5, we exhibited the capability and novelty of the present framework by us-

ing the coarsen-refine technique to track a propagating shock wave through the entire grid. By

leveraging concepts from previous atomistic and finite element schemes as well as exploiting
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the unique qualities of the CAC formulation, the fine-scaled region could travel through the do-

main at the speed of the moving wave front, and we noted the significance of this for advancing

non-equilibrium multiscale research. We utilized this techinique to study the shock’s structure

and planarity over very long runtimes which are typically unattainable in traditional NEMD

methods. Finally, we presented multiple plots comparing the efficiency of an NEMD system to

an equally-sized CAC lattice. We observed that the present moving window multiscale scheme

had significantly faster runtimes for various domain sizes – a necessary quality for realistic and

scalable atomistic-continuum models.

The present 2D work is innovative in its own right, but it also opens the door to more

complex research involving the use of multiscale domains to simulate dynamic, nonlinear phe-

nomena over engineering length scales. While we focused only on elastic shock waves in

this work, we hope to expand this formulation to model elastic-plastic shocks [208] in poly-

crystalline materials to study the role of grain boundaries on shock evolution. Additionally,

recent works have used both atomistic [214, 215] as well as multiscale [16, 216, 217] methods

to predict material behavior in medium-entropy and high-entropy alloys. This work provides a

framework to study shock propagation through such materials. Furthermore, we would also like

to utilize machine learning algorithms in this scheme to pass information from the mesoscale to

macroscale [218]. Finally, we hope to eventually incorporate the high-frequency wave passing

technique into the present formulation to study shock scattering and the role of scattered waves

in subsequent material behavior.

8.2 Scientific contributions of this work

We now comment on a select number of scientific contributions made in this dissertation. The

potential research avenues opened up by this research are numerous and are touched on more

in Sec. 8.3, but in this section, we merely discuss the immediate advancements to knowledge

and computational methods brought about by this work.

1. First, we developed a new technique to characterize a discontinuous shock wave within an

atomistic framework and model long time shock propagation through the domain using a
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moving window. As stated previously, traditional NEMD shock simulations suffer from

limited simulation times due to phenomena such as boundary reflections. Techniques

like the Hugoniostat [70] and MSST [74] overcome some of these issues but still suffer

from problems related to scalability. Furthermore, while moving window methods have

been implemented into other atomistic schemes [76], the shock is still generated through

piston-driven techniques and is thus harder to analyze. To our knowledge, the atomistic

moving window framework presented at the beginning of this dissertation is one of the

first formulations to allow one to accurately and reliably study shock wave propagation

and evolution over engineering time scales.

2. With the one-dimensional atomistic framework, we were also able to validate previous

NEMD studies of weak, structured shock waves by analyzing the shock front drift as

well as the increase in the shock front thickness over time. Because of the close-packed

nature of the one-dimensional chain, our system could be compared to other works which

studied shock wave propagation along the [110] direction of an FCC lattice. By using the

moving window technique to monitor the shock front drift over long simulation times,

we were able to optimize the shock velocity vs. particle velocity Hugoniot parameters

for our domain, and these corresponded well to the parameters obtained from two pre-

vious NEMD studies [13, 14]. Furthermore, since the one-dimensional framework was

incapable of incorporating transverse atomic motion, we could only study weak elastic

shock waves, and we expected these shocks to develop a structure as they evolved as

was seen in previous studies [42]. We did observe this phenomena because the shock

front thickness increased over very long simulation times (3 ns), and this confirmed the

structured nature of such 1D shocks.

3. Next, with the one-dimensional CAC research, we developed one of the first frame-

works to use a domain refinement/coarsening mechanism to track a propagating shock

wave over very long simulation times and engineering length scales. Coupled atomistic-

continuum methods have been developed since the early 1990s in order to overcome
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some of the intrinsic constraints of traditional atomistic techniques such as limited do-

main sizes and large computational overhead. However, such multiscale formulations

have been hindered in their study of dynamic wave propagation due to the difference in

material description between the coarse-scaled and fine-scaled regions as well as the fact

that the wave may reflect off the A-C interface. We overcame such issues by charac-

terizing our domain using CAC which utilizes a single governing equation to describe

both the atomistic and continuum regions. Furthermore, we incorporated two moving

window techniques into the framework to follow the shock as it evolved within the in-

ner fine-scaled zone. Effectively, the atomistic region traveled with the shock front as

it propagated through the larger continuum medium, and such a scheme had not been

accomplished previously in the literature.

4. Using the one-dimensional moving window CAC framework, we were able to perform

valuable shock wave studies which would not have been possible through either experi-

ments or traditional atomistic simulations. First, we analyzed the average shock propa-

gation velocity over 1 ns for a range of compressive strains. We found that the velocities

obtained from our CAC simulations corresponded very well to the data from third-order

Eulerian theory with the largest error being ∼ 3% [137]. This was true not only for

Cu but also for Al, Ag, and Ni. Next, we analyzed the growth in the spatial width of the

shock front over 5 ns and observed good agreement with previous NEMD studies of weak

1D shocks [42, 28, 1, 19]. Finally, we compared the CAC simulations to equally-sized

NEMD simulations and showed that our framework was much more computationally

efficient with a speedup of nearly 6x.

5. With the high-frequency wave passing technique, we developed (to the authors’ knowl-

edge) the first concurrent atomistic-continuum formulation to transmit multiple short-

wavelength phonons between the fine-scaled and coarse-scaled regions and vice versa.

While a previous study has also published in this area [126], their particular method could

only be used for a single phonon in a non-periodic domain. In the present work, we in-

troduced novel numerical techniques into an LD scheme for CAC in order to enhance the
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interpolation method in the continuum regions to allow multiple waves to pass through

unimpeded. The phenomena of spurious wave reflections at the A-C interfaces is one of

the biggest unsolved problems in modern multiscale modeling, and it is particularly rele-

vant for simulations that involve shock scattering. While our framework cannot solve the

scattering problem, it nevertheless provides valuable insight and results for an extremely

complex topic.

6. We have emphasized throughout this dissertation that the study of shock wave propa-

gation using multiscale methods has been limited due to the highly dynamic nature of

such phenomena. While the 1D research addressed this complication by incorporating

two moving window techniques into a CAC framework to track a nonlinear shock wave,

this formulation only considered a one-dimensional chain of particles and was thus lim-

ited in scope. The 2D framework developed in this work is the first of its kind to model

long-time, large-domain shock wave propagation through a multi-dimensional atomistic-

continuum domain using moving window techniques. As a result, our understanding

of the connection between microscale behavior and the continuum response of materials

subjected to shock impact is significantly enhanced. The potential research avenues avail-

able to the community through this framework are numerous, and the knowledge gained

using such a formulation may be used in the future to develop more durable armor for

use in both military and space applications.

8.3 Ongoing research in the Mechanics of Materials Laboratory

8.3.1 Current work: three-dimensional alloys

At present, we have expanded the two-dimensional framework into three dimensions as well as

significantly enhanced the parallelization scheme to increase the efficiency of Gaussian force

calculations in large-scale CAC simulations. In particular, we can now choose to run the code

using either the shared-memory architecture of OpenMP or the distributed memory architecture

of MPI depending on the scope and specific requirements of the given problem. Additionally,

we have implemented data structures to read-in information from EAM interatomic potential
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files for three-dimensional frameworks, and we continue to use nearest-neighbor pair potentials

(i.e. Lennard-Jones and Morse) for both one and two-dimensional grids. Furthermore, we have

the capability to perform simulations using either periodic, fixed, or free boundary conditions

in each direction, and we can execute various essential tasks such as calculating the spectral

energy density, virial stress, and elasticity tensor as well as modeling a shock through a normal

or inverted grid using moving window techniques. Most of the reasoning and analysis presented

in Sec. 7.2 for 2D elements is similar in principle for 3D, but the main difference is that an

extra dimension is created along the [1̄11̄] lattice orientation in the z-direction which increases

the complexity of the mass matrix and Gaussian integration formulations. For visualization, a

screenshot of the three-dimensional monatomic grid can be seen in Fig. 8.1, and all of our code

can be found at github.com/vinagr/movingwindow.

Figure 8.1: Ovito visualization of the three-dimensional monatomic grid.

The most substantial modification we have made to the CAC code in the past few months is

the capability to simulate alloyed materials using complex EAM multi-body potentials. Specif-

ically, we have been modeling the medium-entropy alloy (MEA) FeNiCr within our three-

dimensional CAC framework using the advanced EAM potential developed in 2018 for this

material [219]. In recent years, computational research of complex multicomponent alloys has

experienced a revival due to the attractive properties of such solids [220, 221, 222, 223, 224];

and in 2016, an average-atom (A-atom) approach was developed for the EAM potential to
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study the “complex defect/defect interactions that are nearly impossible to extract from direct

simulations on explicit random alloys at high concentration” [225]. Various MD simulations

have been performed using the A-atom method over the past few years [226, 227], but the first

study to incorporate this technique into a multiscale CAC framework occurred just last year

[16]. This state-of-the-art formulation maintains a true-random system in the fine-scaled re-

gion but transitions to A-atom bulk elements in the coarse-scaled regions as seen in Fig. 8.2.

Here, we observe that the lattice directions change slightly when introducing the z-dimension,

and this necessitates modifications in the generation of the grid as well as the orientation of the

elements. We have incorporated these changes as well as others in our updated version of the

three-dimensional MEA CAC framework for use in shock and dislocation simulations.

Figure 8.2: Schematic of the MEA CAC framework using the A-atom method. The A-C and
A-atom interfaces are represented by the red and yellow lines respectively. Furthermore, the
inset shows the relative finite element orientation as well as the boundary particles [16]8.

8Reprinted from Computational Materials Science, vol. 201; K. Chu, A. Diaz, Y. Chen, T. Zhu, and D.L. Mc-
Dowell; “Multiscale Concurrent Atomistic-Continuum (CAC) modeling of multicomponent alloys,” pp. 110873,
2022. Obtained with permission from Elsevier.
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As stated, we are now utilizing the three-dimensional CAC framework along with the

A-atom approach to model austenitic stainless steels with nominal FeNiCr components. An

austenitic stainless steel is one of the five types of crystalline structures of stainless steels (along

with ferritic, martensitic, duplex, and precipitation hardened), and its main arrangement is

austenite (face-centered cubic) [228]. Hence, the x, y, and z directions change from their

standard CAC configuration to the following: x = [1̄12], y = [110], and z = [1̄11̄]. Such a

difference necessitates a rather significant update to the grid, integration points, and Gaussian

force calculations, which we accomplished while also maintaining the ability to simulate non-

alloy materials. Furthermore, the EAM potential becomes more complex because we must now

account for different types of interacting particles α and β as seen in the equation below:

Πi = Fα

(∑
j 6=i

ραβ (rij)

)
+

1

2

∑
j 6=i

Vαβ (rij) (8.1)

where ραβ is the electron density contributed from neighbor j of element β to atom i of element

α. Depending on the potential file, ρ can either be a functional specific to the elements of both

particles i and j (eam/fs files) or just the element of particle i (eam/alloy files). Please see the

LAMMPS documentation page for more details about the various types of EAM files.

For an extensive derivation of the force equations from the EAM potential, the reader is

referred to either the appendix of [109] or the PyCAC website [127]. To summarize those

works, if ρij 6= ρji (i.e. an eam/fs file):

fi =
∑
j(j 6=i)

[
∂Vij(rij)

∂rij
+
∂F (ρ̄i)

∂ρ̄i

∂ρij(rij)

∂rij
+
∂F (ρ̄j)

∂ρ̄j

∂ρji(rij)

∂rij

]
rij
rij

(8.2)

where ρ̄i is the total electron density for particle i, and rij is the magnitude of the vector rij .

However, if ρij = ρji (i.e. an eam/alloy file), Eq. (8.2) simplifies to the following:

fi =
∑
j(j 6=i)

[
∂Vij(rij)

∂rij
+

(
∂F (ρ̄i)

∂ρ̄i
+
∂F (ρ̄j)

∂ρ̄j

)
∂ρij(rij)

∂rij

]
rij
rij

(8.3)
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Since we are utilizing an A-atom approach within the coarse-scaled regions of the CAC

domain, the EAM potential must be modified slightly to accurately represent such averaged-

atoms as shown in [225]. Here, we follow the derivation found in that work. In particular, we

simulate an N -component alloy where the average concentration of each element X is cX and∑N
X=1 cX = 1. In each alloyed material, individual particles occupy various particle sites {i}.

We express this site occupation using the variable sXi where sXi = 1 if a particle of type X

exists at atomic site i, and sXi = 0 in all other cases. Using this nomenclature, we can express

the EAM potential as follows [225]:

E
({
sXi
})

=
∑
i,X

sXi F
X(ρi) +

1

2

∑
i,j 6=i,X,Y

V XY
ij sXi s

Y
j (8.4)

where we know that

ρi =
∑
j 6=i,X

sXj ρ
X
ij (8.5)

In Eq. (8.4), X and Y specify different particle types, V XY
ij is the pair potential between

particles of type X and Y at sites i and j, and FX(ρi) is the standard embedding energy at

position i for particle X .

We can recover the average energy of a given collection of atomic positions {i} by “av-

eraging over all possible site occupations consistent with the overall alloy composition” [225].

Doing this results in the following average energy:

〈E0〉 =
∑
i,X

cX〈FX (ρi)〉+
1

2

∑
i,j 6=i,X,Y

V XY
ij cXcY (8.6)

where 〈sXi 〉 = cX in Eq. (8.6). If we then perform a Taylor expansion around the average

electron density ρ̄i and ignore second and higher-order terms, we get the following:

〈E0〉 =
∑
i

FA (ρ̄i) +
1

2

∑
i,j 6=i

V AA
ij (8.7)
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where

FA (ρ̄i) =
∑
X

cXF
X (ρ̄i) (8.8)

V AA
ij =

∑
X,Y

cXcY V
XY
ij (8.9)

ρ̄i =
∑
j 6=i

∑
X

cXρ
X
ij (8.10)

In the above equations, A refers to an average-atom with embedding function FA and pair

potential V AA
ij . Equation (8.7) has the same form as the traditional EAM potential, but the

difference is that average atomic properties are now used to generate a new particle species.

Because the averaging procedure smooths local energy fluctuations inherent to a true random

alloy, the energies and forces of A-atoms are merely approximate. As a result, various mechan-

ical and structural properties may differ slightly between a true random alloy and an A-atom

lattice [225].

The A-atom technique permits one to model random alloys of arbitrary composition by

performing an analytic average over all possible particle sites to acquire the mean properties

of the disordered alloy. Such a scheme creates a new averaged particle species which trans-

forms the EAM function into a “single-atom average-atom” potential. While purely atomistic

simulations are valuable for understanding the defect interactions and mechanical properties

of complex materials like multicomponent alloys, developing accurate interatomic potentials

for such MD simulations remains a major challenge, and this is especially true for alloys

[152, 229, 230, 231, 232, 233, 234, 235]. Multiscale schemes like CAC may be utilized to

compute discrete atomic values explicitly while also extending the domain to continuum length

scales where A-atoms are incorporated. Using such an approach, we can simulate a dynamic

multicomponent framework without losing the intricate details of defect interactions and other

important phenomena.
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8.3.2 Future project ideas

The novel work presented in this dissertation opens up numerous research avenues for future

projects, and I will discuss just a handful of them here. The first and most obvious exten-

sion of this work would be to utilize the three-dimensional MEA framework along with the

A-atom approach to simulate moving dislocations and/or propagating shocks through a mul-

tiscale framework using the moving window techniques. Although simulations of alloys have

been performed at the atomic- and meso-scales over the past few years [220, 221, 222], the first

concurrent formulation to model an MEA appeared in the literature just last year [16]. Hence,

our understanding of how phenomena like shocks and dislocations influence the overall mate-

rial response of an MEA or HEA across length scales in lacking. A corollary of such research

would be to use the CAC moving window technique to analyze shock propagation across grain

boundaries and/or interfaces of a composite as seen in Fig. 8.3a. When a shock encounters

such boundaries, transient elastic waves will travel throughout the material as seen in Fig 8.3b,

and the formulation developed in this dissertation could be used to study these interactions.

(a)
(b)

Figure 8.3: (a) Graphene-reinforced Cu composite showing the interface regions as well as the
boundary atoms [17]9. (b) Shock wave (black line) interacting with various microstructural
interfaces and producing transient elastic waves (red lines) [18]10.

9Reprinted from Research; Y. Fan, Y. Xiang, and H.-S. Shen; “Temperature-dependent mechanical proper-
ties of graphene/cu nanocomposites with in-plane negative poisson’s ratios,” 2020. Open access article. Figure
obtained with permission from the terms and conditions of the Creative Commons Attribution license.

10Reprinted from International Journal of Solids and Structures, vol. 51, no. 21-22; V. Agrawal and K. Bhat-
tacharya; “Shock wave propagation through a model one-dimensional heterogeneous medium,” pp. 3604-3618,
2014. Obtained with permission from Elsevier.
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Another noteworthy research endeavor would involve utilizing the CAC coarsen-refine

technique to model strong shock waves with thermoelastic-viscoplastic models like those de-

veloped in [208] and [209]. While 3D multiscale moving window simulations of such realistic

shock waves would be very unique and valuable, the shocked region would produce numerous

dislocations and stacking faults as seen in Fig. 8.4. Although domain refinement ahead of the

shock wave front would be fairly straightforward for such models, coarsening the grid in the

shocked material would be extremely challenging if not impossible with current formulations.

In studying these strong shocks, one would also need to develop a technique to pass disloca-

tions between the fine-scaled and coarse-scaled regions while simultaneously coarsening the

grid. Hence, a secondary research project could involve optimizing the continuum element

sizes for dislocation transmission within an adaptive mesh-refinement CAC framework.

Figure 8.4: Shock-induced dislocations and intersecting stacking faults at piston face. Atoms
are colored according to potential energy [19]11.

If we are considering “pie-in-the-sky” research goals, the two that come to mind are re-

lated to high-frequency wave transmission across the A-C interfaces as well as a “non-arbitrary”

temperature formulation for multiscale systems. The issue of wave reflections at the intersec-

tion of fine-scaled and coarse-scaled domains is a problem inherent to multiscale modeling,

11Reprinted from Science, vol. 280, no. 5372; B.L. Holian and P.S. Lomdahl; “Plasticity induced by shock
waves in nonequilibrium molecular-dynamics simulations,” pp. 2085-2088, 1998. Obtained with permission from
the American Association for the Advancement of Science.
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and simulating nonlinear shock propagation enhances this problem since shocks produce tran-

sient waves during impact. Although the current dissertation developed a unique method to

tackle this puzzle, developing a robust technique to solve the scattering problem and seamlessly

transmit randomly generated high-frequency phonons across length scales would be amazing.

Furthermore, most concurrent schemes rely on thermostats to apply temperature to the domain.

While certain methods such as max-ent QC have been developed in recent years [113], a non-

arbitrary temperature formulation for multiscale systems is still needed. Such a scheme would

ideally follow the mathematics developed in [236] (one of the most complicated papers I have

ever read).

Finally, a long-term research goal would be to develop frameworks which connect atom-

istic and multiscale modeling with machine learning and continuum mechanics (see Fig. 8.5).

Machine learning (ML) has become extremely popular in recent years [237], and techniques

which utilize atomistic and/or multiscale techniques to inform ML algorithms are actively be-

ing developed [238]. In particular, one could create methods to simulate material behavior

at the atomic scale, input that data into advanced ML algorithms, and utilize such results to

inform continuum models of phenomena like void growth or crack propagation. Such a tech-

nique would enhance our understanding of material behavior at various length scales and also

advance knowledge in fields such as experimental mechanics and even planetary science.

Figure 8.5: Connection between atomistic simulations, multiscale schemes, machine learning,
and continuum models.
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[5] T. De Rességuier, D. Loison, A. Dragon, and E. Lescoute, “Laser driven compression to

investigate shock-induced melting of metals,” Metals, vol. 4, no. 4, pp. 490–502, 2014.

[6] J. S. Amelang, G. N. Venturini, and D. M. Kochmann, “Summation rules for a fully

nonlocal energy-based quasicontinuum method,” Journal of the Mechanics and Physics

of Solids, vol. 82, pp. 378–413, 2015.

[7] I. Tembhekar, The Fully Nonlocal, Finite-Temperature, Adaptive 3D Quasicontinuum

Method for Bridging Across Scales. PhD thesis, California Institute of Technology,

2018.

164



[8] R. E. Rudd and J. Q. Broughton, “Concurrent coupling of length scales in solid state

systems,” Computer Simulation of Materials at Atomic Level, pp. 251–291, 2000.

[9] R. E. Miller and E. B. Tadmor, “A unified framework and performance benchmark of

fourteen multiscale atomistic/continuum coupling methods,” Modelling and Simulation

in Materials Science and Engineering, vol. 17, no. 5, 2009.

[10] J. Knap and M. Ortiz, “An analysis of the quasicontinuum method,” Journal of the Me-

chanics and Physics of Solids, vol. 49, no. 9, pp. 1899–1923, 2001.

[11] M. A. Meyers, Dynamic Behavior of Materials. John Wiley & Sons, 1994.

[12] A. Mitchell, W. Nellis, J. Moriarty, R. Heinle, N. Holmes, R. Tipton, and G. Repp,

“Equation of state of al, cu, mo, and pb at shock pressures up to 2.4 tpa (24 mbar),”

Journal of Applied Physics, vol. 69, no. 5, pp. 2981–2986, 1991.

[13] E. Bringa, J. Cazamias, P. Erhart, J. Stölken, N. Tanushev, B. Wirth, R. Rudd, and

M. Caturla, “Atomistic shock hugoniot simulation of single-crystal copper,” Journal of

Applied Physics, vol. 96, no. 7, pp. 3793–3799, 2004.

[14] E. Lin, H. Shi, and L. Niu, “Effects of orientation and vacancy defects on the shock

hugoniot behavior and spallation of single-crystal copper,” Modelling and Simulation in

Materials Science and Engineering, vol. 22, no. 3, 2014.

[15] S. P. Marsh, LASL shock Hugoniot data. University of California press, 1980.

[16] K. Chu, A. Diaz, Y. Chen, T. Zhu, and D. L. McDowell, “Multiscale concurrent

atomistic-continuum (cac) modeling of multicomponent alloys,” Computational Materi-

als Science, vol. 201, 2022.

[17] Y. Fan, Y. Xiang, and H.-S. Shen, “Temperature-dependent mechanical properties

of graphene/cu nanocomposites with in-plane negative poisson’s ratios,” Research,

vol. 2020, 2020.

165



[18] V. Agrawal and K. Bhattacharya, “Shock wave propagation through a model one dimen-

sional heterogeneous medium,” International Journal of Solids and Structures, vol. 51,

no. 21-22, pp. 3604–3618, 2014.

[19] B. L. Holian and P. S. Lomdahl, “Plasticity induced by shock waves in nonequilibrium

molecular-dynamics simulations,” Science, vol. 280, no. 5372, pp. 2085–2088, 1998.

[20] R. A. MacDonald and W. M. MacDonald, “Thermodynamic properties of fcc metals at

high temperatures,” Physical Review B, vol. 24, no. 4, pp. 1715–1724, 1981.

[21] L. Davison, Fundamentals of Shock Wave Propagation in Solids. Springer Science &

Business Media, 2008.

[22] G. T. Gray III, “High-strain-rate deformation: mechanical behavior and deformation

substructures induced,” Annual Review of Materials Research, vol. 42, pp. 285–303,

2012.

[23] S. Fensin, J. Escobedo, G. Gray III, B. Patterson, C. Trujillo, and E. Cerreta, “Dynamic

damage nucleation and evolution in multiphase materials,” Journal of Applied Physics,

vol. 115, no. 20, 2014.

[24] J. F. Bingert, R. M. Suter, J. Lind, S. F. Li, R. Pokharel, and C. P. Trujillo, “High-

energy diffraction microscopy characterization of spall damage,” in Dynamic Behavior

of Materials, Volume 1, pp. 397–403, Springer, 2014.

[25] R. E. Miller and E. B. Tadmor, “The quasicontinuum method: Overview, applications

and current directions,” Journal of Computer-Aided Materials Design, vol. 9, no. 3,

pp. 203–239, 2002.

[26] R. McQueen, S. Marsh, J. Taylor, J. Fritz, and W. Carter, “The equation of state of solids

from shock wave studies,” High velocity impact phenomena, vol. 293, pp. 294–417,

1970.

[27] R. Thurston, “Waves in solids,” In: Mechanics of solids IV (Festkoerpermechanik IV).

Berlin, vol. 4, pp. 109–308, 1974.

166



[28] B. Holian, “Atomistic computer simulations of shock waves,” Shock Waves, vol. 5, no. 3,

pp. 149–157, 1995.

[29] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” The Jour-

nal of Chemical Physics, vol. 27, no. 5, pp. 1208–1209, 1957.

[30] B. Alder and T. Wainwright, “Molecular dynamics by electronic computers,” Transport

Processes in Statistical Mechanics, pp. 97–131, 1958.

[31] J. Gibson, A. Goland, M. Milgram, and G. Vineyard, “Dynamics of radiation damage,”

Physical Review, vol. 120, no. 4, pp. 1229–1253, 1960.

[32] L. Verlet, “Computer ”experiments” on classical fluids. i. thermodynamical properties

of lennard-jones molecules,” Physical Review, vol. 159, no. 1, pp. 98–103, 1967.

[33] D. Tsai and C. Beckett, “Shock wave propagation in cubic lattices,” Journal of Geophys-

ical Research, vol. 71, no. 10, pp. 2601–2608, 1966.

[34] G. E. Duvall, R. Manvi, and S. C. Lowell, “Steady shock profile in a one-dimensional

lattice,” Journal of Applied Physics, vol. 40, no. 9, pp. 3771–3775, 1969.

[35] R. Manvi, G. Duvall, and S. Lowell, “Finite amplitude longitudinal waves in lattices,”

International Journal of Mechanical Sciences, vol. 11, no. 1, pp. 1–8, 1969.

[36] R. Manvi and G. Duvall, “Shock waves in a one-dimensional non-dissipating lattice,”

Journal of Physics D: Applied Physics, vol. 2, no. 10, pp. 1389–1396, 1969.

[37] A. Paskin and G. Dienes, “Molecular dynamic simulations of shock waves in a three-

dimensional solid,” Journal of Applied Physics, vol. 43, no. 4, pp. 1605–1610, 1972.

[38] A. Paskin and G. Dienes, “Molecular dynamic simulation of shock waves in 3 dimen-

sions,” in Bulletin of the American Physical Society, vol. 20, American Institute of

Physics, 1975.

[39] A. Paskin, A. Gohar, and G. Dienes, “Simulations of shock waves in solids,” Journal of

Physics C: Solid State Physics, vol. 10, no. 19, pp. 563–566, 1977.

167



[40] A. Paskin, A. Gohar, and G. Dienes, “Simulations of shock waves in solids,” Journal of

Physics and Chemistry of Solids, vol. 39, no. 12, pp. 1307–1311, 1978.

[41] B. Holian and G. Straub, “Molecular dynamics of shock waves in one-dimensional

chains,” Physical Review B, vol. 18, no. 4, pp. 1593–1608, 1978.

[42] B. L. Holian and G. K. Straub, “Molecular dynamics of shock waves in three-

dimensional solids: Transition from nonsteady to steady waves in perfect crystals and

implications for the rankine-hugoniot conditions,” Physical Review Letters, vol. 43,

no. 21, pp. 1598–1600, 1979.

[43] G. Straub, B. Holian, and R. Swanson, “Molecular-dynamics of shock-waves in 3-

dimensional lennard-jones systems in the solid-phase,” in Bulletin of the American Phys-

ical Society, vol. 25, American Institute of Physics, 1980.

[44] B. L. Holian, “Modeling shock-wave deformation via molecular dynamics,” Physical

Review A, vol. 37, no. 7, pp. 2562–2568, 1988.

[45] B. Holian, A. Voter, N. Wagner, R. Ravelo, S. Chen, W. Hoover, C. Hoover, J. Hammer-

berg, and T. Dontje, “Effects of pairwise versus many-body forces on high-stress plastic

deformation,” Physical Review A, vol. 43, no. 6, pp. 2655–2661, 1991.

[46] C. E. Morris, “Shock-wave equation-of-state studies at los alamos,” Shock Waves, vol. 1,

no. 3, pp. 213–222, 1991.

[47] N. J. Wagner, B. L. Holian, and A. F. Voter, “Molecular-dynamics simulations of two-

dimensional materials at high strain rates,” Physical Review A, vol. 45, no. 12, pp. 8457–

8471, 1992.

[48] N. J. Wagner and B. L. Holian, “Massively parallel molecular dynamics simulations

of two-dimensional materials at high strain rates,” MRS Online Proceedings Library,

vol. 291, 1992.

[49] B. L. Holian and R. Ravelo, “Fracture simulations using large-scale molecular dynam-

ics,” Physical Review B, vol. 51, no. 17, pp. 275–292, 1995.

168



[50] T. C. Germann, B. L. Holian, P. S. Lomdahl, and R. Ravelo, “Orientation dependence

in molecular dynamics simulations of shocked single crystals,” Physical Review Letters,

vol. 84, no. 23, pp. 5351–5354, 2000.

[51] T. C. Germann, B. L. Holian, P. S. Lomdahl, D. Tanguy, M. Mareschal, and R. Ravelo,

“Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation

results,” Metallurgical and Materials Transactions A, vol. 35, no. 9, pp. 2609–2615,

2004.

[52] E. Bringa, K. Rosolankova, R. Rudd, B. Remington, J. Wark, M. Duchaineau, D. Kalan-

tar, J. Hawreliak, and J. Belak, “Shock deformation of face-centred-cubic metals on

subnanosecond timescales,” Nature Materials, vol. 5, no. 10, pp. 805–809, 2006.

[53] S. Srinivasan, M. Baskes, and G. Wagner, “Atomistic simulations of shock induced

microstructural evolution and spallation in single crystal nickel,” Journal of Applied

Physics, vol. 101, no. 4, 2007.

[54] G. E. Norman, A. Y. Kuksin, V. V. Stegailov, and A. V. Yanilkin, “Atomistic simulation

of plasticity and fracture of crystalline and polycrystalline metals under high strain rate,”

in AIP Conference Proceedings, vol. 955, pp. 329–334, American Institute of Physics,

2007.

[55] E. M. Bringa, S. Traiviratana, and M. A. Meyers, “Void initiation in fcc metals: effect

of loading orientation and nanocrystalline effects,” Acta Materialia, vol. 58, no. 13,

pp. 4458–4477, 2010.

[56] S. Fensin, J. Escobedo-Diaz, C. Brandl, E. Cerreta, G. Gray III, T. Germann, and S. Val-

one, “Effect of loading direction on grain boundary failure under shock loading,” Acta

Materialia, vol. 64, pp. 113–122, 2014.

[57] R. Perriot, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Evolution of elastic

precursor and plastic shock wave in copper via molecular dynamics simulations,” in

Journal of Physics: Conference Series, vol. 500, IOP Publishing, 2014.

169



[58] A. Bisht, A. Neogi, N. Mitra, G. Jagadeesh, and S. Suwas, “Investigation of the elasti-

cally shock-compressed region and elastic–plastic shock transition in single-crystalline

copper to understand the dislocation nucleation mechanism under shock compression,”

Shock Waves, vol. 29, no. 7, pp. 913–927, 2019.

[59] X. Tian, K. Ma, G. Ji, J. Cui, Y. Liao, and M. Xiang, “Anisotropic shock responses of

nanoporous al by molecular dynamics simulations,” Plos One, vol. 16, no. 3, 2021.

[60] D. Tramontina, E. Hahn, M. Meyers, and E. Bringa, “Simulation of tantalum nanocrys-

tals under shock-wave loading: Dislocations and twinning,” in AIP Conference Proceed-

ings, vol. 1793, AIP Publishing LLC, 2017.

[61] G. Righi, C. J. Ruestes, C. V. Stan, S. J. Ali, R. E. Rudd, M. Kawasaki, H.-S. Park, and

M. A. Meyers, “Towards the ultimate strength of iron: spalling through laser shock,”

Acta Materialia, vol. 215, 2021.

[62] Q. Zhu, J.-L. Shao, H. Pan, and P. Wang, “Collapse of stacking fault tetrahedron and

dislocation evolution in copper under shock compression,” Journal of Nuclear Materials,

vol. 554, 2021.

[63] A. Higginbotham, M. Suggit, E. M. Bringa, P. Erhart, J. Hawreliak, G. Mogni, N. Park,

B. Remington, and J. Wark, “Molecular dynamics simulations of shock-induced defor-

mation twinning of a body-centered-cubic metal,” Physical Review B, vol. 88, no. 10,

2013.

[64] D. Wu, K. Chen, Y. Zhu, L. Zhao, M. Huang, and Z. Li, “Unveiling grain size effect

on shock-induced plasticity and its underlying mechanisms in nano-polycrystalline ta,”

Mechanics of Materials, vol. 160, 2021.

[65] Y. Zhu, D. Wu, L. Zhao, S. Liang, M. Huang, and Z. Li, “A novel shock-induced mul-

tistage phase transformation and underlying mechanism in textured nano-twinned cu,”

Extreme Mechanics Letters, vol. 48, 2021.

170



[66] S. Fensin, S. Valone, E. Cerreta, J. Escobedo-Diaz, G. Gray, K. Kang, and J. Wang, “Ef-

fect of grain boundary structure on plastic deformation during shock compression using

molecular dynamics,” Modelling and Simulation in Materials Science and Engineering,

vol. 21, no. 1, 2012.

[67] X.-X. Wang, A.-M. He, T.-T. Zhou, and P. Wang, “Spall damage in single crystal tin

under shock wave loading: A molecular dynamics simulation,” Mechanics of Materials,

vol. 160, 2021.

[68] Y. Chen, Z. Jian, S. Xiao, L. Wang, X. Li, K. Wang, H. Deng, and W. Hu, “Molecular

dynamics simulation of shock wave propagation and spall failure in single crystal copper

under cylindrical impact,” Applied Physics Express, vol. 14, no. 7, 2021.

[69] M. Dewapriya and R. Miller, “Molecular dynamics simulations of shock propagation

and spallation in amorphous polymers,” Journal of Applied Mechanics, vol. 88, no. 10,

2021.

[70] J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P. S. Lomdahl, T. C. Germann, and

B. L. Holian, “Uniaxial hugoniostat: A method for atomistic simulations of shocked

materials,” Physical Review E, vol. 63, no. 1, 2000.

[71] J.-B. Maillet and S. Bernard, “Uniaxial hugoniostat: method and applications,” in AIP

Conference Proceedings, vol. 620, pp. 367–370, American Institute of Physics, 2002.

[72] R. Ravelo, B. Holian, T. Germann, and P. Lomdahl, “Constant-stress hugoniostat method

for following the dynamical evolution of shocked matter,” Physical Review B, vol. 70,

no. 1, 2004.

[73] D. Bedrov, J. B. Hooper, G. D. Smith, and T. D. Sewell, “Shock-induced transformations

in crystalline rdx: A uniaxial constant-stress hugoniostat molecular dynamics simulation

study,” The Journal of Chemical Physics, vol. 131, no. 3, 2009.

[74] E. J. Reed, L. E. Fried, and J. Joannopoulos, “A method for tractable dynamical studies

of single and double shock compression,” Physical Review Letters, vol. 90, no. 23, 2003.

171



[75] E. J. Reed, L. E. Fried, W. D. Henshaw, and C. M. Tarver, “Analysis of simulation tech-

nique for steady shock waves in materials with analytical equations of state,” Physical

Review E, vol. 74, no. 5, 2006.

[76] V. Zhakhovskii, K. Nishihara, and S. Anisimov, “Shock wave structure in dense gases,”

Journal of Experimental and Theoretical Physics Letters, vol. 66, no. 2, pp. 99–105,

1997.

[77] V. V. Zhakhovsky, M. M. Budzevich, N. A. Inogamov, I. I. Oleynik, and C. T.

White, “Two-zone elastic-plastic single shock waves in solids,” Physical Review Let-

ters, vol. 107, no. 13, 2011.

[78] S. Qu, V. Shastry, W. Curtin, and R. E. Miller, “A finite-temperature dynamic coupled

atomistic/discrete dislocation method,” Modelling and Simulation in Materials Science

and Engineering, vol. 13, no. 7, pp. 1101–1118, 2005.

[79] D. Holland and M. Marder, “Ideal brittle fracture of silicon studied with molecular dy-

namics,” Physical Review Letters, vol. 80, no. 4, pp. 746–749, 1998.

[80] R. L. Selinger and J. M. Corbett, “Dynamic fracture in disordered media,” MRS Bulletin,

vol. 25, no. 5, pp. 46–50, 2000.

[81] J. Knowles, “On the relation between particle velocity and shock wave speed for ther-

moelastic materials,” Shock Waves, vol. 12, no. 2, pp. 137–144, 2002.

[82] A. Neogi and N. Mitra, “Shock induced deformation response of single crystal cop-

per: Effect of crystallographic orientation,” Computational Materials Science, vol. 135,

pp. 141–151, 2017.

[83] R. Chau, J. Stölken, P. Asoka-Kumar, M. Kumar, and N. Holmes, “Shock hugoniot of

single crystal copper,” Journal of Applied Physics, vol. 107, no. 2, 2010.

[84] G. Straub, B. Holian, and R. Petschek, “Molecular dynamics of shock waves in one-

dimensional chains. ii. thermalization,” Physical Review B, vol. 19, no. 8, pp. 4049–

4055, 1979.

172



[85] A. Davis, “Development of a one-dimensional moving window atomistic framework to

model steady state shock wave propagation,” Master’s thesis, Auburn University, 2020.

[86] R. J. Hardy, “Formulas for determining local properties in molecular-dynamics simu-

lations: Shock waves,” The Journal of Chemical Physics, vol. 76, no. 1, pp. 622–628,

1982.

[87] J. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes.

iv. the equations of hydrodynamics,” The Journal of Chemical Physics, vol. 18, no. 6,

pp. 817–829, 1950.

[88] S. Kohlhoff, P. Gumbsch, and H. Fischmeister, “Crack propagation in bcc crystals stud-

ied with a combined finite-element and atomistic model,” Philosophical Magazine A,

vol. 64, no. 4, pp. 851–878, 1991.
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Appendix A

Additional Verification for the 1D Atomistic Framework

A.1 NVT ensemble

First, we perform constant temperature simulations for systems of 10,000 atoms using the

Langevin thermostat which is designed to maintain a canonical ensemble. We can compute

the microscopic temperature using the equipartition theorem [239]:

N∑
n=1

KE =
N∑
n=1

1

2
mv2

i =
dim

2
NkBT. (A.1)

In our case, dim = 1, N is the total number of atoms, and KE is the total kinetic energy of the

group of atoms. We test the performance of the Langevin thermostat using all three potential

functions (Lennard-Jones, modified Morse, and EAM) at temperatures ranging from 250 K -

1,250 K. Since the melting temperature of copper is 1,358 K, we do not perform simulations

with higher input temperatures. The total run-time for each simulation is 3,000 ps with an

equilibration time of 5 ps. In this case, standard periodic boundary conditions are enforced

such that the leftmost atom interacts with the rightmost atom in the chain and vice versa. The

results from these MD simulations can be seen in Fig. A.1.

For all three potential functions, the average temperatures oscillate around their corre-

sponding initial input values for the entire run-time of 3,000 ps. However, we notice that the

variance in the average temperature does increase with increasing input temperature. This ef-

fect occurs regardless of which potential function is used. Such a phenomenon makes physical

sense because the frequency of oscillation of the particles in a solid increases as the tempera-

ture in the solid is raised. Additionally, we observe that at higher temperatures, the Langevin
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thermostat equilibrates the system to the initial input temperature more slowly than at lower

temperatures. This effect is seen for all three potential functions, and it is most prominent at

an input temperature of 1,250 K. This is understandable as the Langevin thermostat is a local

thermostat, and hence there is a lack of feedback between the target temperature and input tem-

perature. From these results, it is apparent that we maintain an NVT ensemble for a wide range

of input values.

(a) (b)

(c)

Figure A.1: Constant temperature NVT results with the 1D atomistic framework using (a)
Lennard-Jones, (b) modified Morse and (c) EAM potentials.

A.2 Mechanical properties

Verification of the Lennard-Jones and modified Morse potentials is carried out by computing

the tangent modulus of the system over a range of temperatures, while verification of the EAM

potential is achieved by computing the cohesive energy and bulk modulus of the system at 0 K.

In each case, we compare the simulated mechanical properties to their corresponding literature

values for copper.

192



A.2.1 Lennard-Jones and Morse potentials

To compute the isothermal elastic modulus in 1D (tangent modulus), we utilize the microscopic

elasticity tensor derived in [97]. The conventional expression for the microscopic elasticity

tensor at a temperature T is given as follows [97]:

cijkl =
1

V

[
2NkBT (δilδjk + δjlδik) +

〈
c0
ijkl

〉
− V 2

kBT
Cov

(
σinstij , σinstkl

)]
(A.2)

where 〈·〉 refers to a phase average, kB is Boltzmann’s Constant, V is the volume, and the

covariance operator is defined by

Cov (A,B) ≡ 〈AB〉 − 〈A〉 〈B〉 . (A.3)

Additionally, c0
ijkl is defined as

c0
ijkl =

1

V

[
1

4

∑
α6=β

∑
γ 6=δ

καβγδ
rαβi rαβj rγδk r

γδ
l

rαβrγδ
− 1

2

∑
α 6=β

ϕαβ
rαβi rαβj rαβk rαβl

(rαβ)3

]
(A.4)

where ϕαβ is the interatomic force depending only on the distance rαβ between the atoms and

καβγδ is the bond stiffness defined by

καβγδ ≡ ∂ϕαβ

∂rγδ
=

∂2Πint

∂rαβ∂rγδ
. (A.5)

This bond stiffness is interpreted for a simple pairwise potential, where the force on atom α

due to atom β depends only on the distance rαβ . Equation (A.2) can be further simplified by

splitting the instantaneous stress terms into kinetic and potential parts as seen below:

σK,instij = − 1

V

∑
α

pαi p
α
j

mα

σV,instij =
1

2V

∑
α 6=β

ϕαβ
rαβi rαβj
rαβ

. (A.6)

193



Substituting σinst = σK,inst + σV,inst into the third term of Eq. (A.2) and noting that the cross-

terms cancel, 〈
σK,instij σV,instij

〉
=
〈
σK,instij

〉〈
σV,instij

〉
(A.7)

we get the following:

Cov
(
σinstij , σinstkl

)
= Cov

(
σK,instij , σK,instkl

)
+ Cov

(
σV,instij , σV,instkl

)
. (A.8)

Then, as shown in [97], the kinetic terms can be reduced as follows:

Cov
(
σK,instij , σK,instkl

)
= (δikδjl + δilδjk)N (kBT )2 . (A.9)

Substituting Eqs. (A.8) and (A.9) into Eq. (A.2), we get the simpler form of the elasticity

tensor:

cijkl =
1

V

[〈
c0
ijkl

〉
− V 2

kBT
Cov

(
σV,instij , σV,instkl

)
+NkBT (δikδjl + δilδjk)

]
. (A.10)

Here, the first term is the elasticity at 0 K, the second term is the instantaneous potential energy,

and the third term is the instantaneous kinetic energy. It is noted that the third term goes to zero

as T → 0 K. Additionally, [240] showed that the fluctuation term disappears as the stress and

potential terms expand. In this case, c = c0, where c0 is given by Eq. (A.4). We note that the

elastic constants associated with shear vanish in the thermodynamic limit, as shown in [241].

However, Eq. (A.10) still allows us to calculate the elastic constants of solids by replacing the

phase averages with time averages.

The method just described to calculate the spatial elastic modulus is known as the stress

fluctuation method [242, 243, 244]. We use this stress fluctuation method to calculate the

microscopic elastic (tangent) modulus of a one-dimensional chain of atoms with constant length

L and constant temperature T. For the 1D case, Eq. (A.10) reduces to the following [245]:

c =
1

L

[
2NkBT + L

〈
c0
〉
− L2

kBT
Cov

(
σV,inst, σV,inst

)]
(A.11)

194



where L is the chain length, and “Cov” is the covariance operator given by Eq. (A.3). Then, the

c0 Born term in 1D is

c0 =
1

L

N∑
i=1

N∑
j=i+1

[
ϕ′(xij)(xij)

2 − ϕ(xij)xij
]

(A.12)

where xij = xj − xi. Finally, the potential part of the instantaneous stress in 1D is given as

follows:

σV,inst =
1

L

N∑
i=1

N∑
j=i+1

ϕ(xij)xij. (A.13)

We compare the tangent modulus obtained from MD to the tangent modulus obtained

from the Quasi-Harmonic (QH) approximation. The QH approximation for the temperature-

dependent stress-free spatial tangent modulus of a one-dimensional chain of atoms is [97, 245]

c = r0

[
Π′′(r0) +

kBT

2

Π(4)(r0)Π′′(r0)− (Π′′′(r0))2

(Π′′(r0))2

]
(A.14)

where r0 = r0(T ) is the stress-free equilibrium lattice constant at temperature T. In this case,

the temperature dependence of the equilibrium lattice constant is obtained through the follow-

ing equation [97]:

Π′(r0) +
kBT

2

Π′′′(r0)

Π′′(r0)
= 0. (A.15)

This requires calculation of third and fourth derivatives of the potential function Π, making

calculations for EAM cumbersome. We use Eq. (A.14) to obtain the analytic tangent modulus

values for the Lennard-Jones and modified Morse potentials.

We utilize Eq. (A.11) to calculate the microscopic tangent modulus of a one-dimensional

chain of 10,000 Cu atoms using the Lennard-Jones and modified Morse potential functions.

We test the performance of each of these potentials using the Langevin thermostat at various

temperatures. For each of the input temperatures, we calculate the corresponding equilibrium

lattice spacing using Eq. (A.15). Using these temperature-dependent lattice spacings, we can

obtain the tangent modulus from MD simulations with Eq. (A.11) and compare this to the value

obtained analytically with Eq. (A.14).
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Plots showing the MD and analytic tangent modulus results can be seen in Fig. A.2. Here,

we present the analytic tangent modulus values (blue line) for temperatures ranging from 0 -

900 K, but we limit the MD calculations for Lennard-Jones and Morse to 400 K and 450 K

respectively. As shown in [245], the MD-derived tangent modulus of the system becomes non-

physical for input temperatures above ≈ 450 K. The total run-time for each MD simulation

is 3,000 ps with an equilibration time of 10 ps. As in section A.1, each atom is treated as a

thermostat atom, and normal periodic boundary conditions are enforced such that the leftmost

atom interacts with the rightmost atom and vice versa. In Fig. A.2, we observe that the calcu-

lated tangent modulus values from MD are in close agreement with the analytic values obtained

from the QH approximation. This validates the implementation of Lennard-Jones and modified

Morse potentials in the program.

(a)

(b)

Figure A.2: Tangent modulus results for the Langevin thermostat using the (a) Lennard-Jones
and (b) modified Morse potentials.
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A.2.2 EAM potential

To verify the EAM potential, we calculate the cohesive energy E0 as well as the bulk modulus

B of the system at 0 K. The cutoff radius for the EAM potential is 5.507 Å, and we consider

a periodic chain of 500 atoms where each atom is treated as a window (non-thermostat) atom.

The experimental value of the equilibrium lattice spacing of Cu is 3.615 Å, so we vary the

lattice constant from 3.605 Å to 3.625 Å in steps of 0.001 Å. The potential energy per atom

as a function of the cubic lattice spacing is plotted in Fig. A.3, and the data can be fitted to a

parabola.

Figure A.3: Potential energy per atom vs. cubic lattice spacing in steps of 0.001 Å. Circles are
data computed from the EAM potential, and the line is a parabola fitted to the data.

The minimum of this parabola corresponds to the cube of the equilibrium lattice spacing,

r0 = 3.615 Å. This matches the experimental data exactly because r0 is one of the fitted

parameters of the EAM potential. The energy per atom at r0 is the cohesive energy, Ecoh =

-3.540 eV , which is another fitted parameter [153]. Hence, our implementation of the EAM

potential gives an accurate representation of the cohesive energy of Cu.

As discussed in [246], the curvature of the parabola at r0 can be used to calculate the bulk

modulus using

B(V ) = V

(
∂2E

∂V 2

)
T,S

= 4(r0)3(2a) (A.16)
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where a is the parabola coefficient, and we multiply by four to account for every atom in

the given lattice volume. Applying this equation to the data in Fig. A.3, we obtained a bulk

modulus value of B = 135.4 GPa, which is not very accurate when compared to the literature

value of 140 GPa [153]. To obtain a more accurate bulk modulus, we compute the E(V ) curve

again in the range of |r − r0| < 10−4 Å. Specifically, we perform the calculations in steps of

0.0008 Å. This plot can be seen in Fig. A.4. The curvature of this new parabola at r0 gives a

bulk modulus value ofB = 140.6 GPa, which is the fitted bulk modulus of this potential model.

Figure A.4: Potential energy per atom vs. cubic lattice spacing in steps of 0.0008 Å. Circles
are data computed from the EAM potential, and the line is a parabola fitted to the data.
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Appendix B

Additional Verification for the 1D CAC Framework

B.1 Force vs. displacement tests

To ensure that the one-dimensional CAC framework achieves proper force matching at the A-

C interfaces and thus does not produce any spurious wave phenomena, we perform force vs.

displacement tests. This is accomplished by pulling the first particle in the chain very slowly at

a constant rate and plotting the net force acting on it as a function of its absolute displacement

over time. Specifically, we displace the particle at a rate of 1.6695 × 10−7 Å/ps for 10,000

ps. We perform these simulations using fine-scaled, coarse-scaled, and CAC domains with a

total of 595 particles and lattice points in each system. Hence, the fine-scaled domain consists

of 595 atoms, the coarse-scaled domain consists of 100 nodes with each element having a

length of 6r0, and the CAC domain consists of an inner atomistic region containing 360 atoms

and two outer continuum regions each containing 20 nodes. The results from these force vs.

displacement studies can be seen in Fig. B.1.

We observe that the coarse-scaled and CAC domains produce slopes which are nearly

identical to the slope obtained from the fine-scaled domain with relative errors of 0.0% and

0.84% respectively. We note that even smaller relative errors were achieved with larger domain

sizes. This implies that the spring constant is approximately the same in all three frameworks.

From these results, we conclude that the nodal integration and linear interpolation schemes

used in our 1D CAC framework yield accurate forces on the individual particles. Therefore,

Eq. (4.14) is implemented correctly, and our system does not produce any spurious phenomena
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(a) (b)

(c)

Figure B.1: Force vs. displacement test results for (a) fine-scaled, (b) coarse-scaled, and (c)
CAC domains.
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at the A-C boundaries. Additionally, the spring constant remains largely unchanged when

transitioning from a fine-scaled domain to an equally-sized coarse-scaled or CAC domain.

B.2 Temperature equilibration tests

In this section, we verify that the CAC system from Fig. 4.2 can achieve the correct NVT en-

semble in the undamped WR when the Langevin thermostat is applied to each TR. Specifically,

we ensure that the temperature of the WR remains stable for various desired temperatures under

equilibrium conditions. The input temperature θ0 is specified, and the particles initially have

random velocities such that the CAC domain contains the correct total energy for an equilib-

rium system at θ0. Ideally, under equilibrium conditions, the system should achieve steady state

with the appropriate equipartition of kinetic and potential energies. As with the 1D atomistic

framework, each TR is at least the range of the forces, and the maximum damping parameter

ζ0 is one-half the Debye frequency (1
2
ωD). Results for the temperature equilibration studies can

be seen in Fig. B.2.

Figure B.2: Temperature in the undamped WR vs. time. Here, the Langevin thermostat is
applied to the TRs for the following input temperatures: 10 K, 100 K, 200 K, 300 K, 400 K,
and 500 K.

For each of these simulations, the CAC domain contains a total of 1,000 particles with

100 nodes in each coarse-scaled TR, 50 atoms in each fine-scaled TR, and 700 atoms in the

WR. We then evolve the system for 5 ns and calculate the temperature of the undamped WR

at each time step using the equipartition theorem. The temperature in each TR remains steady
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at the input temperature θ0 and thus acts as a constant-temperature reservoir. In Fig. B.2, we

plot the temperature in the WR vs. time for the following input values: 10 K, 100 K, 200 K,

300 K, 400 K, and 500 K. In each case, we observe the temperature stabilize after a short time

and achieve a steady state around the respective input temperature. We note that the variance in

the temperature increases with larger input values because the particles oscillate more rapidly

at higher temperatures. This effect can also be seen in Table B.1 which shows the time-average

temperature and its corresponding standard deviation in the WR for each simulation. These

results confirm that when an input temperature θ0 is applied to each TR, the undamped WR

maintains an equilibrium steady state around this value.

Table B.1: Time-average temperature in the WR and its associated standard deviation for vari-
ous input temperatures θ0 applied to each TR.

θ0 (K) 〈θ〉 〈δθ〉
10 10.19 0.52

100 98.64 5.37
200 200.65 11.24
300 302.72 16.52
400 400.66 19.35
500 496.39 24.56
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Appendix C

Additional Verification for the 2D CAC Framework

In this section, we present results from additional studies which verify that the two-dimensional

CAC framework functions correctly.

C.0.1 Temperature equilibration

First, we verify that the two-dimensional CAC framework used in the shock wave simulations

(Fig. 7.6) can achieve the correct canonical ensemble in the undamped WR when the Langevin

thermostat is applied to each TR. In particular, we demonstrate that the system equilibrates to

the proper steady-state value over long simulation times for a range of input temperatures. The

initial random velocities of the particles are such that the system has the correct total energy

for a given temperature θ0. Furthermore, we ensure that each TR has a length which is at

least equal to the force range of the interatomic potential, and we set the damping parameter

ζ equal to one-half the Debye frequency of the material (1
2
ωD). These specifications are based

off results from previous multiscale studies which used CADD [78] as well as CAC [2] to

characterize the domain. The temperature equilibration results for both Cu and Al can be seen

in Fig. C.1.

The domain size for these simulations is as follows: 200 total columns (100 in the atom-

istic region and 50 in each continuum region) and 40 total rows. Within the fine-scaled region,

there are 5 columns in each TR and hence 90 columns in the undamped WR. Each simulation

is performed for 1 ns, and the temperature in the WR is obtained at every time step using the

equipartition theorem. For the two-dimensional CAC framework, the maximum temperature
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(a) (b)

Figure C.1: Temperature in the undamped atomistic region of the 2D CAC framework vs. time
using the Morse potential for both (a) Cu and (b) Al. The Langevin thermostat is applied to
the TRs for the following input temperatures: 10 K, 100 K, 200 K, 300 K, 400 K, and 500 K.

obtained from shock loading is ∼ 450 K, so we perform analysis for the following input tem-

peratures: 10 K, 100 K, 200 K, 300 K, 400 K, and 500 K. In Fig. C.1, we observe that in

each simulation, the temperature achieves a steady state around its mean value with very little

deviation. Hence, this confirms the implementation of the framework from Fig. 7.6 and shows

that the WR can maintain the correct equilibrium temperature during long runtimes with both

materials.

C.0.2 Stress-strain relations

Next, we identify the elastic zone of the framework and ensure that the yield strength between

a purely atomistic domain and equally-sized CAC domain is comparable. This is done to

establish that the CAC force calculations are accurate as well as provide a range of input strains

for the shock equations. Specifically, we compress the grid uniaxially along the x-direction

([112] lattice orientation) with strains ranging from 0.01 - 0.2 and calculate the virial stress of

the domain for each input strain using the following expression [97]:

σkl =
1

A

〈
−
∑
α

mα (u̇αk − ¯̇uk) (u̇αl − ¯̇ul) +
1

2

∑
α,β

(α 6=β)

ϕαβ
rαβk rαβl
rαβ

〉
. (C.1)
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In Eq. (C.1), σ is the virial (thermodynamic) stress, A is the area of the grid, mα is the mass of

particle α, u̇αk is the velocity in the kth direction of particle α, ¯̇uk is the average velocity in the

kth direction of all particles in the given area, ϕαβ is the first derivative of the potential energy

at a distance rαβ between particles α and β (ϕαβ = ∂Π
∂rαβ

), and rαβk is the distance in the kth

direction between particles α and β. Since we consider uniaxial compressive strains for the

shock simulations, we only calculate the longitudinal stress (σkk = σxx) in this section and do

not perform any tensile tests. The stress vs. strain results for both Cu and Al at 450 K can be

seen in Fig C.2.

(a) (b)

Figure C.2: Virial stress of the domain as a function of strain for both (a) Cu and (b) Al.
Simulations were performed for both a purely atomistic (blue) and CAC (red) framework. In
each case, the system is equilibrated to 450 K, and the compression is applied uniaxially along
the x-direction.

For each atomistic simulation, the domain contains 100 columns and 20 rows, and the

runtime is 100 ps with an equilibration time of 50 ps. The parameters for the CAC simulations

are the same, but the lattice described in Sec. 7.1.2 (with damped atoms) is utilized instead of

the fully atomistic grid. Since 450 K is the highest temperature achieved in the shock simula-

tions, we specifically wanted to identify the yield point at this extreme temperature to inform

our shock calculations. In Fig. C.2, we observe that the linear elastic region of the CAC frame-

work is nearly identical to that of the atomistic framework for both Cu and Al with yielding

occurring at compressive strains of approximately 10% and 9% respectively. After this point,

dislocations begin appearing throughout the lattice in both the coarse-scaled and fine-scaled
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regions, so we maintain compressive strains ≤ 9% for Cu and ≤ 8% for Al when using the

Hugoniot and Eulerian shock equations. We note that experimental HEL values for Cu and

Al are on the order of 10s to 100s of MPa largely due to pre-existing defects present in bulk

metals. Since homogeneously nucleating a dislocation in a perfect crystal is much harder than

moving a dislocation which already exists in the microstructure, it makes sense that the HEL

values observed in the present work are higher than those obtained experimentally.

These results confirm the validity of the CAC force calculations, and they are also congru-

ent with results from previous CAC studies [117].

C.0.3 Young’s modulus

Finally, we compare the Young’s modulus of equally-sized atomistic and CAC frameworks for

both Cu and Al over temperatures ranging from 10 K to 500 K. Young’s modulus represents the

slope of the linear portion of the stress-strain curve, and it generally decreases with increasing

temperature as the particles in the material oscillate faster [245]. Therefore, we perform this

study to supplement the results from C.0.2 and thus confirm that the CAC framework functions

properly in the elastic regime at various temperatures. To calculate Young’s modulus for the

atomistic domain, we use the 2D elasticity tensor equation [97]:

Cklmn =
1

A

[
NkBθ (δkmδln + δknδlm) + A

〈
C0
klmn

〉
− A2

kBT
Cov

(
σV,instkl , σV,instmn

)]
. (C.2)

Here, A is the area of the grid, N is the total number of particles, θ is the temperature, and

‘Cov’ is the covariance operator defined by

Cov (A,B) ≡ 〈AB〉 − 〈A〉 〈B〉 (C.3)

where 〈·〉 is a phase average (time average in our case). Since we only consider uniaxial com-

pressive strain along the x-direction in the present work, we can obtain Young’s modulus by
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calculating C1111 as follows:

C1111 =
1

A

[
2NkBθ + A

〈
C0

1111

〉
− A2

kBT
Cov

(
σV,inst11 , σV,inst11

)]
(C.4)

where we understand that 1 = x here. In Eq. (C.4), σV,inst11 is merely the second part of Eq.

(C.1):

σV,inst11 =
1

2A

∑
α,β

(α 6=β)

ϕαβ

(
rαβ1

)2

rαβ
(C.5)

and C0
1111 is given as follows:

C0
1111 =

1

A

1

2

∑
α,β

(α 6=β)

∂ϕαβ

∂rαβ

(
rαβ1

)4

(rαβ)2 −
1

2

∑
α,β

(α 6=β)

ϕαβ

(
rαβ1

)4

(rαβ)3

 . (C.6)

Here again, ϕαβ = ∂Π
∂rαβ

, and rαβ is the distance between two particles α and β. Results from

the Young’s modulus studies can be seen in Fig. C.3.

Figure C.3: Young’s modulus vs. temperature for both Cu and Al. For each material, simula-
tions were performed using both a fully atomistic domain as well as a CAC domain.

In Fig. C.3, we have shown the atomistic Young’s modulus obtained from Eq. (C.4) as

well as the CAC Young’s modulus obtained from the slope of the stress-strain curves for both

Cu and Al. The domain sizes are the same as those described in C.0.2. In this figure, we again

observe the coherency between the two formulations because the Young’s modulus of the CAC
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framework is nearly the same as the Young’s modulus of the atomistic framework over the

full range of temperatures. As expected, we see more agreement at low temperatures than at

higher temperatures where the vibration of particles introduces slightly more error. However,

even at the upper end of 500 K, the largest difference is ∼ 5% which is small considering the

approximations inherent in the CAC finite element formulation. Hence, from each of these

verification studies, we can conclude that the CAC framework is implemented correctly and

can accurately represent the temperature and material parameters of an equally-sized atomistic

grid.
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Appendix D

Unsolicited Advice to Future Engineering Students

Here, I consider some of the lessons I learned while pursuing my PhD and reflect on how the

struggles inherent in such an endeavor influenced my overall outlook on life. Hopefully, these

musings will be beneficial to future students who are interested in obtaining a PhD in a STEM

field.

1. Have perseverance and a long time horizon

Obtaining a PhD in any science or engineering field, while ultimately fulfilling in the long

run, is a prolonged and arduous task. Depending on the discipline, it will typically take

between 4 and 7 years to complete your degree after 4 years of undergrad. Therefore,

if you are a senior about to finish high school, plan on spending another 8 - 11 years

in school before starting your career in the “real world.” During this time, you will take

very demanding classes that push the limits of your analytical ability and require many

weekends devoted to studying rather than hanging out with friends or family. In addition,

you are expected to perform innovative and publishable research while getting paid 1
3

to

1
4

of what you could be making with an industry job. However, throughout this process,

you will also learn a tremendous amount, meet incredibly smart people at the top of

your field, make life-long contacts through conferences and internships, publish new and

exciting research, and become an expert in a particular topic in science. Thus, while I do

believe the payout is worth it, achieving a PhD is a strenuous journey that requires you

to cultivate immense perseverance and set aside short-term pleasures for long-term gain.

2. Be passionate and have a purpose
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Along these same lines, you must be extremely diligent and passionate about your work

as well as have your mind focused on your purpose for pursuing scientific research in or-

der to complete a PhD. Talk to any doctoral student, and they will most likely tell you that

the hardest part about a PhD is not the research per se but the mental and psychological

fortitude required for the research. There will be many times when you have been work-

ing on a simulation or experiment for months, a deadline set by your advisor is coming

up in a few weeks, and you are up at 3 a.m. with no new results and a faulty framework.

Then, you will look on social media and see your peers from college starting new jobs,

buying houses, taking the weekends off, and seemingly living “the good life.” These mo-

ments will test you psychologically, and it is during these stressful times that you will

be tempted to throw in the towel. In fact, many students do just this as evidenced by the

fact that only 50% of people who begin a doctoral program actually finish it. Therefore,

you must find a research topic that interests you and ignites your passion, and you must

constantly remind yourself of the reasons for choosing this path. If you can do that, you

will not only be successful in your PhD, but you will also develop enough psychological

stamina to weather future stress points in your career and life.

3. Develop a plan but be flexible

During the first semester of grad school, my advisor and I decided on a topic for my PhD

research and developed a road map for achieving these goals over the next few years. This

was a crucial step as it organized my thinking and has continued to guide me in my work

even as I near the end of my doctoral research. However, I can safely say that while the

main objectives of that plan have stayed constant, there have been many twists and turns

along the way. Big ideas that I had when I started have been scraped entirely because

upon further study, they were either impossible to accomplish or so overly complex that

they would require many more years of intense research past the 4-7 years of a PhD.

In fact, I worked on one side project for an entire year that, while it produced some

interesting results, could not accomplish what I had hoped for initially. Conversely, I

have worked on other projects that I did not even consider in the initial road map such
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as performing higher-dimensional shock simulations within a multiscale framework. All

that to say, develop a long-term strategy and have the discipline to stick to it but also

know that your research will evolve over time so be in constant communication with

your advisor about your changing goals and perspectives.

4. Pick the right advisor

I cannot emphasize enough how important it is to pick the right PhD advisor as this one

action will determine whether your graduate school experience is pleasant and memo-

rable or dreadful and emotionally scarring. I have been very lucky and blessed to have

the same advisor throughout my entire PhD who I work very well with and whose re-

search goals are closely aligned with mine. However, I have talked with several doctoral

graduates who did not have such an advisor, and the stories they tell sound terrible. The

reason your advisor can make or break your success as a PhD student is because he is

not only your boss and the person through whom you typically receive funding, but he is

also your closest “colleague” for potentially 7 years and the main person who helps you

actualize your work. Therefore, when choosing a PhD advisor, consider a few things: (1)

Does this person have funding for me, or will I have to find funding through an outside

source? (2) Do I want an advisor who is very hands-on and guides me every step of the

way, or do I want an advisor who is rather hands-off and expects me to figure out most

things myself? (3) Do I share common research and career goals with this person, or

do we have different visions? (4) Do I want to be a member of a big lab where many

people work on the same project, or do I primarily want to work by myself? (5) Do I

want an advisor who expects me to work on one particular project and nothing else, or

do I want an advisor who has a more exploratory attitude towards research? If you can

find an advisor who you get along with and whose work style matches yours, your PhD

experience will be a little less painful.

5. Dream big but be realistic

It’s very important to set your goals and expectations high in order to stay motivated

during the often laborious tenure of a PhD. However, also realize that scientific research
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is hard, and you should celebrate every little accomplishment in your work. Focus on

making small, incremental advances to your field and don’t worry if you don’t make

some revolutionary new discovery in science. We’re constantly told stories of people like

Isaac Newton, Nikola Tesla, Albert Einstein, Richard Feynman, and Stephen Hawking

who had already changed our view of reality by the time they were 30. I made the

mistake of idolizing people like this when I first began studying physics in college, and

I used them as the standard for what constitutes success in research. However, these

men were the top 0.01% and possessed nearly inhuman levels of analytical ability and

general intelligence. Most of us will never reach the levels of greatness that they did, but

that is perfectly okay because science also advances through the everyday mathematics,

experiments, and simulations done by millions of people across the world. So, view your

PhD as participating in a small part of this grand symphony of scientific research, and

you will enjoy it much more.

6. Remain humble about what you can achieve

Going off the previous point, humility is potentially the most important virtue to cultivate

while engaged in PhD research. Without a humble spirit, you will greatly overestimate

your abilities, have overly-ambitious objectives, and set yourself up for failure. Thus,

before beginning graduate school, write down a list of challenging, but realistic, goals

that you would like to achieve during your tenure as a doctoral student. Some of mine

were as follows: (1) Study hard in all of my classes and try to maintain a 4.0 GPa.

(2) Pick a good advisor my first semester who shares my research interests. (3) Apply

for multiple fellowships in an attempt to obtain independent funding for my work. (4)

Take my Qualifying and Candidacy exams early enough so that I can focus on research.

(5) Defend a Master’s thesis as preparation for the final PhD defense. (6) Publish 2-3

research articles in highly-reputable journals. (7) Attend multiple conferences each year

to practice my public speaking skills and network with other scientists. (8) Participate

in at least one summer internship to expand my research and make contacts at a national

lab. (9) Become very knowledgeable about an area of science/engineering that interests
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me. (10) Make valuable friends and lifelong connections. Your individual goals may

be different, but as long as you remain humble, your graduate school experience will be

very memorable and profitable.

7. Create a daily schedule

The life of a PhD student is very open-ended and can thus often feel unstructured. The

positive aspect of this is that you get to work at your own pace and pursue research

avenues that you find interesting and important. The downside is that you may think

that you always need to be working, and you can feel guilty when taking any time off.

Therefore, it is important to develop a daily schedule that keeps you grounded and do

your best to stick to that schedule. This will help you not only be more efficient in your

research but will also prevent you from neglecting other important parts of your life such

as family, friends, and personal health. I’ll provide a few suggestions here. First, try to

wake up and go to sleep at the same time every day even if you don’t technically need

to. Next, set aside specific hours in the day to pursue your research and really endeavor

to stay within those bounds. Finally, when you’re not working, either pursue a hobby,

workout, or spend time with friends and family to allow your brain to relax and recharge.

I myself have struggled with sticking to a schedule while in graduate school, but the times

that I have been consistent with my schedule are typically the times when I feel the most

effective and peaceful.

8. Make connections with professional scientists and engineers

One of the many benefits of pursuing a PhD in a STEM field is the fact that you will be

surrounded by extremely intelligent people who you would not ordinarily encounter in

your everyday life. Although you may think that your particular research is extremely

specialized and niche, you would be surprised at how many other people are working on

similar topics around the globe. When I entered graduate school, I thought that nobody

would care about my research, but as I’ve advanced in my studies, I’ve talked and worked

with many people who have similar research interests. Therefore, it’s very important to

take advantage of networking with as many people in your field as you can during your
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PhD. This can occur through a variety of avenues including internships, conferences,

seminars, and on-campus recruitment events. Furthermore, try to meet people who have a

career path that you would like to emulate. For example, if you want to work at a national

lab after you graduate, seek out people at these labs who are working on projects that

align with your expertise and just strike up a conversation through email. You can also

ask your advisor to introduce you to them if you feel uncomfortable emailing someone

directly like that. Many times, researchers at these facilities enjoy discussing their work

with graduate students, and they can help boost your odds of finding a postdoc position.

9. Keep your personal health a priority

This is a point that regularly gets overlooked by individuals, not only in graduate school,

but as they pursue their career and life goals in general. We can so often get bogged down

in the everyday struggles of work and family that we forget to take care of ourselves

both physically and mentally. For example, my work is exclusively computational, so

I can find myself sitting at a desk in front of a computer screen for hours on-end each

day. While a relatively comfortable lifestyle, this type of work can nevertheless have

detrimental effects on the body and mind if not coupled with regular exercise and a

temperate diet. Therefore, I have cultivated a routine where each morning before I start

work, I go to the gym and either lift weights or take a long run for an hour or so. I have

discovered that this time away from work is definitely worth it because I feel so much

more productive on the days when I workout as opposed to the days when I cannot.

Furthermore, I try to maintain a moderate diet where I eat mostly high-protein foods

along with fruits and vegetables, but I also allow myself to enjoy occasional nights out

on the weekends. Finally, scientific research can be mentally draining, so I try to take

active steps to maintain my mental health through the toils of graduate school as well.

10. Enjoy the journey

During my junior year at Samford when I was talking to one of my professors about

whether to get a Master’s or a PhD after undergrad, he said, “Get a PhD. It will be very

difficult, but it will also open up many opportunities that you can’t even imagine right
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now. I’ve never regretted getting my PhD. I wouldn’t go back and do it again, but I’m

glad I did it.” This was some of the best advice I have ever received, and at this point

in my career, I’m so glad my 21-year-old self followed it. Pursuing a PhD has been,

by far, the most challenging thing I have ever done in my life, but it has also been the

most rewarding. I have learned so much, met so many amazing people, and undergone

many incredible experiences which have helped to boost my confidence in research and

shape my scientific understanding as a whole. Furthermore, I have had numerous career

doors open up that I know would not have been attainable without a PhD. Therefore,

if you’re a good student, like scientific research, and are on the fence about pursuing

a PhD, I would say do it. You won’t come back later in life and get a PhD because

life obligations (money, family, job, etc.) become too pressing, so do it while you’re

young when you are already accustomed to the academic lifestyle and have very few

responsibilities. It’s essentially a once-in-a-lifetime opportunity that can expose you to

many amazing life paths. The PhD is a roller coaster ride that is often arduous and

stressful but also extremely rewarding in the end. So, my last piece of advice would just

be to have a positive attitude throughout the whole experience and enjoy the journey.

Obtaining a PhD in aerospace engineering has been the greatest professional accomplish-

ment of my life thus far, and I am so grateful for being given the opportunity to work under Dr.

Agrawal at Auburn over these past six years. He has been an incredible mentor, and I cannot

thank him enough for seeing the potential in me and always encouraging me to seek out the

next interesting idea in science. The skills I have learned while pursuing this degree have given

me the confidence to know that wherever my engineering career takes me, I will be able to excel

and make meaningful contributions. Finally, none of my studies of the physical world would

have been possible without the Incarnate Logos, through Whom natural processes originate and

are thus made intelligible to the human mind. Therefore, I will conclude this dissertation with

my favorite Scripture verse – the one which arguably got me through graduate school, and the

one which I always remember when I am feeling doubtful or hopeless:

“Have I not commanded you? Be strong and courageous. Do not be frightened and do

not be dismayed, for the LORD your God is with you wherever you go.” – Joshua 1:9
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