Quantifying the Variability of Production of Asphalt Mixtures through newly implemented Performance Tests for the Wisconsin Department of Transportation

by

Rachel Taylor Cousins

A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science

> Auburn, Alabama May 5, 2023

Keywords: Balanced Mix Design, Indirect Tensile Asphalt Cracking Index, Hamburg Wheel Tracking Test

Copyright 2023 by Rachel Taylor Cousins

Approved by

Randy C. West, Chair, PhD, Civil and Environmental Engineering Raquel Moraes Puchalski, PhD, Civil and Environmental Engineering Carolina Rodezno, PhD, Civil and Environmental Engineering Fan Yin, PhD, Civil and Environmental Engineering

Abstract

This study aims to determine an appropriate standard deviation of Balanced Mix Design performance tests for Wisconsin specifications based on field-produced mixes. Identifying variability is an essential aspect of the pavement materials and construction industry. Federal Highway Administration (FHWA) and State Department of Transportation (DOTs) quantify the variability of material properties to manage quality. Typical asphalt mixture properties measured to assess variability have been binder content, aggregate gradation, and mix volumetrics. New performance tests are being used to assess the quality of an asphalt mix. These new performance tests included in the balanced mix design are rutting and cracking indicators on an asphalt mix.

This study used mixtures from ten shadow projects from various locations across Wisconsin to obtain representative production variability data to determine the within-lot pooled standard deviation. For this study, two performance tests, Hamburg Wheel Tracking Test (HWTT) and Indirect Tensile Asphalt Cracking Index (IDEAL-CT), were performed for the mixtures from the ten shadow projects and their representative lots/sublots.

The analysis methods used to quantify the variability include the standard deviation, coefficient of variation, normality, outlier test, and cumulative distribution function of production standard deviations. The final conclusions of this study indicated that asphalt content was the least variable quality characteristic measured with a COV of 2.8%. The most variable quality characteristic measured with a COV of 2.8%. IDEAL-CT had a mean COV of 13.1%. The mean COV for air voids was 10.4%. The mean COV for HWTT CRD20k was 10.9%.

2

Acknowledgments

I want to thank my advisor, Dr. Randy West, for his support throughout this project and the academic opportunities he provided me during my time at Auburn. Special thank you to Dr. David Timm for the semester I spent under his guidance and the opportunities to be a part of the test track instrumentation team. A thank you to my outstanding committee members, Dr. Raquel Moraes, Dr. Fan Yin, and Dr. Carolina Rodezno, for the time they spent reviewing this Thesis and the guidance they provided.

I want to thank my fellow graduate students at the NCAT laboratory for all the support. My NCAT friends Megan Foshee, Elizabeth Turochy, and Tiana Lynn, whom I had the pleasure of getting to know and work with throughout this research journey. My roommate from France, Amelie Martin, who spent a semester with us at NCAT.

A special thank you to the research engineers, Adam Taylor, Nathan Moore, and Jason Moore, for their guidance in the laboratory. I would also like to thank Mrs. Vickie Adams for coming in early so I would have a lab buddy and for the countless times we went to get fried chicken and mac and cheese at the best spot in Auburn.

The lifelong friends I made through Auburn Ducks Unlimited who made Auburn a good time and the support system they provided. They are indeed the best people and mean the world to me.

I try to tell my Montana ranch family how much they have meant to me over these past two years, but I don't think it's possible to thank them enough. Mike and Maria, Mary and Dustin, Stephanie and the kiddos (who provided lovely drawings for my office), Rose and Derek, Joey, and the countless others in the Shields Valley community for their encouragement and for allowing me to spend my summers/school breaks in the best part of the country.

3

I want to thank my parents, Lee and Karen, and my sister, Natalie, for the love, support, encouragement, and guidance they have given me through this journey.

Lastly, a special thank you to the civil engineering department here at Auburn University for the financial support to continue seeking higher education. Thank you to the Wisconsin Department of Transportation and the National Center for Asphalt Technology for funding the research.

Table of Contents

Abstract
Acknowledgments
List of Tables
List of Figures
List of Abbreviations
Chapter 1 – Introduction
1.1 Background12
1.2 Research Objective
1.3 Scope of Work
1.4 Organization of Thesis13
Chapter 2 – Literature Review
2.1 Background on Balanced Mix Design14
2.2 Variability in the Production of Asphalt Materials
2.2.1 Previous Measures of Overall Variability in Roadway Construction
2.2.2 Typical Variability in Asphalt Mixtures
2.2.3 Uses of Variability to Establish Specification Limits
2.2.4 Current Quality Control/Quality Acceptance in Wisconsin
2.3 Test Methods
2.3.1 IDEAL-CT
2.3.2 IDEAL-CT Variability
2.3.3 Hamburg Wheel Tracking Test
2.3.4 Hamburg Wheel Tracking Test Variability

Chapter 3 – Research Plan
3.1 Selection of Shadow Projects
3.2 Testing Plan24
3.2.1 Mixture Processing24
3.2.2 Summary of Testing Plan
3.2.3 HWTT Testing Procedure
3.2.4 IDEAL-CT Procedure27
3.3 Method of Analysis
3.3.1 Calculation of Sample Mean, Standard Deviation, and Coefficient of Variation 28
3.3.2 Outlier Evaluation of a Lot
3.3.3 Normality Procedure
3.3.4 CDF of Production Standard Deviation and Coefficients of Variation
3.3.5 Percent Within Limits Calculations
3.4 Summary
Chapter 4 – Results and Discussion
4.1 Summary of Averages, Standard Deviations, and Coefficients of Variation
4.2 Normality Test
4.3 Evaluation of Outliers
4.4 Examining Potential Relationships between Variability of Asphalt Content and Air
Voids with IDEAL-CT and HWTT46
4.5 Percent Within Limits based on Current WisDOT Specification
4.6 Cumulative Distribution Frequency of Production Standard Deviation and COV . 51
Chapter 5 – Conclusions and Recommendations

5.1 Summary	
5.2 Conclusions	60
5.3 Plans for Future Research	61
References	
Appendix 1 – Mix Designs	

List of Tables

Table 3.1 Project Summary	. 23
Table 3.2 t _{crit} values for a 5% Significance Level	. 30
Table 3.3 Wisconsin DOT Performance Test Requirements	. 31
Table 4.1.1 Asphalt Content Summary	. 34
Table 4.1.2 Air Voids Summary	. 35
Table 4.1.3 CT _{index} Summary	. 36
Table 4.1.4 CRD _{20k} Summary	. 37
Table 4.1.5 Passes to 12.5 mm Rut Depth Summary	. 38
Table 4.2.1 Normality Test Results for IDEAL-CT Sublots	. 39
Table 4.2.2 Normality Test Results for HWTT CRD20k	.41
Table 4.2.3 Normality Test Results for HWTT Passes to 12.5 mm	. 42
Table 4.2.4 Normality Test Results for Asphalt Content	. 43
Table 4.2.5 Normality Test Results for Air Voids	. 45
Table 4.3.1 Outlier in Air Voids	. 45
Table 4.5.1 IDEAL-CT PWL	. 49
Table 4.5.2 HWTT PWL	. 51

List of Figures

Figure 2.3.1 Load vs. LLD Data	17
Figure 2.3.2 HWTT Data Analysis, CRD _{20k}	20
Figure 3.1 Project Locations in Wisconsin	24
Figure 3.2.1 Quartering Devices	25
Figure 3.2.2 Quartering Devices	25
Figure 3.2.3 Testing Plan Flow Diagram	
Figure 3.2.4 Troxler HWTT Machine at NCAT Laboratory	27
Figure 3.2.5 Troxler IDEAL Plus Machine at NCAT Laboratory	
Figure 4.2.1 Probability Plot of CT _{index} Project 1	
Figure 4.2.2 Probability Plot of HWTT CRD _{20k} Project 1	40
Figure 4.2.3 Probability Plot of HWTT Passes to 12.5 mm Project 1	
Figure 4.2.4 Probability Plot of Asphalt Content Project 1	
Figure 4.2.5 Probability Plot of Air Voids Project 1	44
Figure 4.4.1 IDEAL-CT vs. AC COV	47
Figure 4.4.2 IDEAL-CT vs. Va COV	47
Figure 4.4.3 HWTT CRD _{20k} vs. AV COV	
Figure 4.4.4 HWTT CRD _{20k} vs. Va COV	
Figure 4.6.1 CDF of Std. Dev. CT _{Index}	
Figure 4.6.2 CDF of COV for CT _{Index}	53
Figure 4.6.3 CDF of Std. Dev. HWTT CRD _{20k}	54
Figure 4.6.4 CDF of COV for HWTT CRD _{20k}	54
Figure 4.6.5 CDF of Std. Dev. for HWTT passes to 12.5 mm	55

Figure 4.6.6 CDF of COV for HWTT passes to 12.5 mm	55
Figure 4.6.7 CDF of Std. Dev. for Asphalt Content	56
Figure 4.6.8 CDF of COV for Asphalt Content	57
Figure 4.6.9 CDF of Std. Dev for Air Voids	57
Figure 4.6.10 CDF of COV for Air Voids	58
Figure 4.6.11 CDF of Std. Dev. for CT _{index} , HWTT CRD _{20k} , asphalt content, air voids	. 59
Figure 4.6.12 CDF of COV for CT _{index} , HWTT CRD _{20k} , asphalt content, air voids	. 59

List of Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
ANOVA	Analysis of Variance
BMD	Balanced Mix Design
CDF	Cumulative Distribution Frequency
COV	Coefficient of Variation
FHWA	Federal Highway Administration
HMA	Hot Mix Asphalt
HWTT	Hamburg Wheel Tracking Test
IDEAL-CT	Indirect Tensile Asphalt Cracking Test
NCAT	National Center for Asphalt Technology
PWL	Percent Within Limits
QA	Quality Assurance
QC	Quality Control
QI	Quality Index
QMP	Quality Management Program
QV	Quality Verification
WisDOT	Wisconsin Department of Transportation

Chapter 1 – Introduction

1.1 Background

This research aims to quantify the overall variability of asphalt mixture performance test results for Balanced Mix Design (BMD) tests being considered for use in Quality Assurance (QA) by the Wisconsin Department of Transportation (WisDOT). Overall variabilities of traditional quality characteristics such as binder content, aggregate gradation, and mixture volumetrics properties have been well documented in previous studies. Overall production variability is used to measure product quality. However, very little research has been reported on the overall variability of new performance tests used in BMD tests. The WisDOT has selected the indirect tensile asphalt cracking test (IDEAL-CT) and Hamburg wheel tracking test as their two performance tests for BMD.

1.2 Research Objective

The main objectives of this thesis were to:

- Statistically analyze the overall variability of performance test results from ten shadow projects
- Recommend appropriate standard deviations for the BMD performance tests for Wisconsin specifications based on field-produced mixes

1.3 Scope of Work

Several steps were accomplished to meet the research objectives. First, ten shadow projects were selected across Wisconsin from which asphalt mixtures were sampled during production at the same time as traditional QA samples for each sublot for two to three lots. A shadow project is a project on which additional (BMD) tests are conducted at a frequency similar to existing acceptance quality characteristics. The additional test results are only used for research purposes

and not used to influence the production process or material acceptance decisions. In total, 134 mixture samples were obtained for this study. These mixture samples were shipped to NCAT for performance testing. These mixture samples were volumetrically verified for specific gravity and air voids, and samples were compacted to specification requirements for performance testing. HWTT and IDEAL-CT tests were conducted on each sublot sample. The data from the performance tests were statistically analyzed using various methods to provide overall variability statistics for developing QA specifications for performance tests in Wisconsin.

1.4 Organization of Thesis

This thesis has been organized into five chapters. Chapter One is the introduction: including the background, research objectives, scope of work, and the organization of this thesis. Chapter Two is a literature review on the background of BMD, variabilities in the production of asphalt paving materials, and test methods on IDEAL-CT and HWTT. Chapter Three focuses on the research plan, explaining the selection of shadow projects, testing plan, and method of analysis. Chapter Four discusses the results and the impact of the outlier analysis on the variability results. Chapter Five provides the conclusions and recommendations for this project.

Chapter 2 – Literature Review

2.1 Background on Balanced Mix Design

Most state highway agencies currently use the Superpave mix design method (AASHTO M 323) and associated criteria for asphalt mix design specifications. Since many of these agencies have been dissatisfied with Superpave mixtures' cracking and durability performance, recent research efforts proposed moving toward a new mix design approach that directly assesses a mixture's resistance to prevalent distresses. Balanced Mix Design (BMD) is defined as "asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate, and location within the pavement structure" (AASHTO PP105-20). BMD usually includes two or more performance tests, such as rutting and cracking tests, to determine how well the mixture resists common forms of distress in asphalt pavements (West, R et al., 2021).

In 2021 the Wisconsin Department of Transportation (WisDOT) developed a draft special provision, the *HMA Pavement Balanced Mix Design*, to implement BMD (Wisconsin, 2021). The performance tests used in the special provision are the Hamburg Wheel-Tracking Test (HWTT) to evaluate the mixture for rutting resistance and moisture resistance and the Indirect Tensile Asphalt Cracking Test (IDEAL-CT) for cracking resistance (Wisconsin, 2021).

2.2 Variability in the Production of Asphalt Materials

Variability in the production of asphalt paving mixtures is an important measure to assess quality. One definition of quality states that "quality is inversely proportional to variability" (Montgomery, D). AASHTO R 9 *Acceptance Sampling Plans for Highway Construction*, recommends quantifying the "overall" variability of quality characteristics for QA programs (AASHTO R 9-05). Hughes (1996) described overall production variability to consist of four components: testing variability, sampling variability, materials variability, and construction variability. Mathematically, overall variance (σ_o^2), is the sum of the testing variance (σ_t^2), sampling variance (σ_s^2), materials variance (σ_m^2), and construction variance (σ_c^2), shown as Equation 1.

$$\sigma_o^2 = \sigma_t^2 + \sigma_s^2 + \sigma_m^2 + \sigma_c^2$$
 Equation 1

Where:

$\sigma_o^2 = overall variance$
$\sigma_t^2 = testing \ variance$
$\sigma_s^2 = sampling \ variance$
$\sigma_m^2 = materials \ variance \sigma_c^2 = construction \ variance$
2.2.1 Previous Measures of Overall Variability in Roadway Construction

Between 1956 and 1962, construction materials tests were conducted at the AASHO Road Test, which documented the overall variabilities of material qualities encountered during the construction of the pavements (Hughes, 1996). After the results of the AASHO Road Tests were published, many highway agencies established statistically based specifications using the variabilities of typical materials and construction processes (Hughes, 2005).

2.2.2 Typical Variability in Asphalt Mixtures

In NCHRP Synthesis 232 completed in 1996, Hughes summarized variabilities of common acceptance quality characteristics such as laboratory compacted, air voids, gradation, and asphalt content based on data obtained through random sampling procedures (Hughes, 1996). By the 1970s, statistically, based-specifications had been incorporated into QA programs with a strong dependence on statistical analysis (Halstead, 1979). Other asphalt material properties often studied include: gradation, asphalt material viscosity, and asphalt binder penetration (Solaimanian et al. 1995).

2.2.3 Uses of Variability to Establish Specification Limits

AASSHTO R 9, Standard Practice for Acceptance Sampling Plans for Highway Construction, explains types of acceptance plans and states that a "statistical acceptance plan is one based on analysis of either variables or attributes" (AASHTO R 9-05). The standard gives an example acceptance plan using the Percent Within Limits (PWL) procedure based on population, estimates of central tendency, and variability (AASHTO R 9-05). The example given in AASHTO R 9 Appendix X1 includes an analysis of "target miss" variability; this is an important case where quality characteristic has a specified target value and upper and lower specification limits are set above and below the target value (West et al., 2023).

2.2.4 Current Quality Control/Quality Acceptance in Wisconsin

WisDOT developed its hot mix asphalt (HMA) quality management program (QMP) in the early 1990s. QMP is considered a best construction practice to ensure that an agency receives quality construction materials produced by a contractor (Faheem et al., 2018). Developing a QMP specification involved identifying key asphalt mixture parameters related to long-term pavement performance and the development of the agency's quality assurance (QA) program, including procedures for quality assurance (QA) and quality verification (QV) (Faheem et al., 2018). The asphalt pavement acceptance quality characteristics in Wisconsin's QMP are aggregate gradation, asphalt content, air voids, voids in the mineral aggregate, and in-place density (Faheem et al., 2018).

2.3 Test Methods

2.3.1 IDEAL-CT

The IDEAL-CT is an asphalt mixture performance test to assess cracking resistance using laboratory-prepared cylindrical specimens developed for mix design and quality assurance testing (Zhou 2019). According to the test method, ASTM D8225-19, a cylindrical specimen is centered in the indirect tensile test fixture, and a load is applied at a rate of 50.0+2.0 mm/min. The load and the vertical displacement measured during the test are used to calculate the CT_{Index} (Figure 2.3.1). The CT_{Index} is calculated from failure energy, the post-peak slope of the load-displacement curve, and deformation at 75% of the peak load (shown in Equation 2.3.1).

$$CT_{Index} = \frac{t}{62} * \frac{l_{75}}{D} * \frac{G_f}{|m_{75}|} * 10^6$$
 Eq. 2.3.1

Where:

 CT_{Index} = cracking tolerance index

 $G_f = \text{fracture energy} (J/m^2)$

 $|m_{75}|$ = absolute value of the post-peak slope m_{75} (N/m)

 l_{75} = displacement at 75% of the peak load after the peak (mm)

D = specimen diameter (mm)

t = specimen thickness (mm)

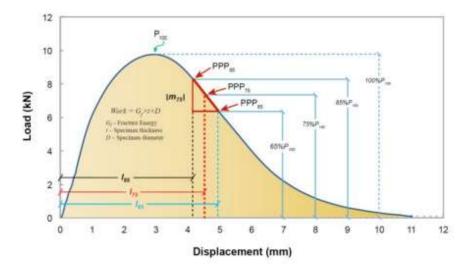


Figure 2.3.1: Load vs. LLD Data (Zhou, 2019)

2.3.2 IDEAL-CT Variability

A Texas A&M Transportation Institute study reported the testing variability (repeatability) of the IDEAL-CT test based on its sensitivity to asphalt mix characteristics and conditions. The CT_{Index} was sensitive to RAP and RAS content, asphalt binder type, binder content, and aging conditions. The highest within-lab COV was 23.5%, and most COVs were less than 20% (Zhou, 2019).

The Utah Department of Transportation conducted a study comparing the IDEAL-CT and I-FIT cracking tests to determine a feasible candidate for the cracking test in their BMD implementation. The study compared within and between lab COVs. They found that the IDEAL-CT COV ranged between 15 and 25% within and between labs and concluded that was an acceptable range of variability for a cracking test (VanFrank et al., 2020).

The National Center for Asphalt Technology (NCAT) compared results from six different IDEAL-CT machines (Moore et al., 2021). They stated that consistent specimen preparation is key to achieving low variability (Moore et al., 2021). The results of tests with different machines were compared using an equivalence limit of 20% of the average CT_{Index} (Moore et al., 2021).

In 2018, NCAT conducted a round-robin study on performance tests being considered for the BMD implementation. This study was broken into two phases, and fifteen different labs completed IDEAL-CT testing. The within-lab COV for phase one was 19.5%, and the betweenlab COV was 35.3%. For phase two of this project, the IDEAL-CT within-lab COV was 18.8%, and the between-lab COV was 20.2%. The difference between phase one and phase two was that all of the specimens were made in a single laboratory for phase two, while each laboratory made its own specimens in phase one. The difference in between-lab COV drops between the studies

18

highlights the importance of consistent sample preparation for CT_{index} results (Taylor et al., 2022).

COVs of CT_{index} range from 15% to 35% for within and between-lab. Results were found to be sensitive to RAP content, asphalt content, asphalt binder type, and aging conditions, according to the study completed by the Texas A&M Transportation Institute study. Studies recommended testing an adequate number of replicate samples; the NCAT study did approximately 50 replicate samples per machine when performing statistical analysis on mixes, and that sample preparation is an essential step in reducing variability.

2.3.3 Hamburg Wheel Tracking Test

The Hamburg Wheel Tracking Test (HWTT) is a performance test used to evaluate asphalt mixtures rutting resistance and moisture susceptibility. According to AASHTO T324, a pair of laboratory-compacted specimens, 62mm in thickness and 150mm in diameter, is loaded using a reciprocating steel wheel. The test specimens are submerged in a temperature-controlled water bath, and the total deformation is measured and plotted as a function of the number of wheel passes.

For this study, the HWTT raw data were analyzed for rutting using two methods. The first method, referred to as the corrected rut depth method, isolates deformation due to rutting from deformation due to moisture damage, as illustrated in Figure 2.3.2 (Yin et al., 2014). This separation of the HWTT specimen damage according to the two distress mechanisms is necessary since the remedies for the two distresses are different. Thus, the corrected rut depth at 20,000 passes (CRD_{20k}) is a better indicator of mixture rutting resistance than the traditional HWTT rutting parameters of total rut depth or passes to 12.5mm rut depth (West et al., 2021).

19

However, to relate the HWTT results of this study to previous research, the total passes to 12.5 mm rut depth was also recorded.

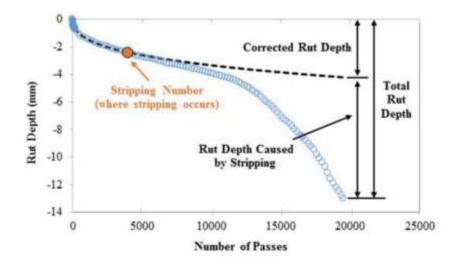


Figure 2.3.2: HWTT Data Analysis, CRD_{20k} (West et al., 2021)

2.3.4 Hamburg Wheel Tracking Test Variability

The Texas Transportation Institute studied the variability of seven HWTT devices, all manufactured by Precision Metal Works, in three laboratories in Texas. The two-way analysis of variance (ANOVA) showed that the variability within and between machines increased with the increase in load cycles (Chowdhury et al., 2004).

A round-robin study conducted by the University of California Pavement Research Center (UCPRC) involved twenty laboratories around California. Each lab conducted four HWTT tests. Two tests were conducted on specimens made by UCPRC and the other two were conducted on specimens compacted by each participating laboratory. The laboratories reported test results at rut depths after 5,000, 10,000, 15,000, and 20,000 passes, the number of passes to 12.5 mm rut depth, creep slope, stripping slope, and stripping inflection point. An outlier analysis was conducted if a lab's average differed considerably from the other labs. An ANOVA study concluded that the type of HWTT device used was significant only for the rut depth after 5,000 and 10,000 passes. Single-operator variability was measured to be relatively low. Between-lab variability was relatively high for all results measured (Mateos, 2017).

In the 2018 NCAT round-robin study, the HWTT variability was analyzed since this is the most popular rutting performance test being considered for BMD implementation. Thirty-two labs participated in the first phase of the round-robin study; four different HWTT machines were used between the labs. At 10,000 passes, two of the thirty-two labs were shown as outliers; at 20,000 passes, four of the thirty-two labs were shown as outliers. The within and between-lab COV were reported for 10,000 and 20,000 passes. The within-lab COV for 10,000 passes was 9.0%, and for 20,000 passes, it was 9.4%. The between-lab COV for 10,000 passes was 21.1%, and for 20,000 passes, the COV was 25.9%. It is stated in the study that the COV results for within-lab repeatability are good, and the between-lab COV is reasonable (Taylor et al., 2022).

NCHRP project 20-07/Task 361, Hamburg Wheel-Track Test Equipment Requirements and Improvements to AASHTO T 324, evaluated the capabilities of available HWTT devices and identified issues with the AASHTO T 324 standard. The study concluded that there are differences in machines in the waveform, temperature range, and reporting parameters (Mohammad et al., 2015). Recommendations for fixing HWTT devices proposed addressing equipment capabilities, data collection, data analysis, and reporting to address the differences between machines (Mohammad et al., 2015).

A study completed by the AASHTO Materials Reference Laboratory studied the precision estimates for AASHTO T 324. The results proposed several changes to AASHTO T 324 to improve the repeatability and reproducibility of the HWTT machines. These changes included: starting location of the wheel, alignment of the wheel with respect to the specimen,

21

measurement locations used in the analysis, variability in the cutting of the gyratory specimens, potentially increasing the specimen length, designing a new mold in terms of material and reducing the joint space between the two specimens (Azari, 2014). Precision estimates were reported for the number of passes to a threshold rut depth for single-operator COV of 16.6% and for multi-laboratory COV of 24.2% (Azari, 2014).

In summary, HWTT variability increases with increasing cycles based on the Texas Transportation Institute study. AASHTO T 324 has several parameters, waveform, temperature range, and reporting parameters, that can be improved upon to improve the repeatability and reproducibility of HWTT results. The NCAT round-robin study reported within-lab COVs of rut depths at 10,000 passes to be 9.0%, and at 20,000 passes to be 9.4%.

Chapter 3 – Research Plan

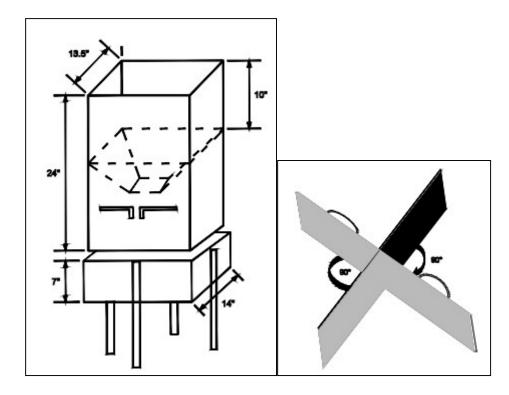
3.1 Selection of Shadow Projects

For this study, ten shadow projects were chosen from various locations across Wisconsin to represent the state's diversity in aggregate type, binder grades, and mix types. Wisconsin contractors obtained the surface mixture samples for the research while they also sampled mix for QC testing. For WisDOT, random samples are taken every 750 tons, representing a sublot. A typical lot in Wisconsin consists of five sublots; this gave 10 to 15 mix samples per shadow project. Table 3.1 summarizes the shadow project county locations, the region in Wisconsin, route, mix design number, mix type, and contractor. Figure 3.1 shows a map of the ten shadow project locations. The mix designs for each project can be found in Appendix 1. All of the mixtures were designed using the Superpave method.

				WisDOT Mix		Contractor
Project	County	Region	Route	Design ID	Mix Type	
1	Ozaukee	Southeast	IH 43	250-0032-2021	4 MT 58-28 S	Payne & Dolan
2	Florence	North Central	STH 139	250-0263-2021	4 LT 58-28 S	Payne & Dolan
3	Grant	Southwest	STH 011	601-21-4MTR301	4 MT 58-28 S	Mathy
4	Kewaunee	Northeast	STH 029	250-0035-2022	4 MT 58-28 S	Northeast Asphalt
5	Waukesha	Southeast	STH 067	250-0051-2022	4 MT 58-28 S	Rock Road
6	Lacrosse	Southwest	STH 016	147-21-4MTR301	4 MT 58-28 S	Mathy
7	Bayfield	Northwest	USH 063	158-22-5MTRW301	5 MT 58-34 V	Mathy
8	Iowa	South Central	USH 018	0-250-0025-2021	4 HT 58-28 S	Payne & Dolan
9	Barron	Northwest	USH 008	360-22-4MTRW301	4 MT 58-34 V	Mathy
10	Waushara	Central	IH 039	250-0107-2022	4 HT 58-28 S	American Asphalt

 Table 3.1 Project Summary

Figure 3.1 Project Locations in Wisconsin


3.2 Testing Plan

Two performance tests were conducted for this study: IDEAL-CT and Hamburg Wheel Tracking Test (HWTT).

3.2.1 Mixture Processing

The asphalt mixtures used in this study were sampled during plant production while the contractor was sampling for regular QC/QA testing for WisDOT projects. For each project, sublots for two to three lots were sampled, resulting in approximately 15 samples per project. Two five-gallon buckets of asphalt mix for each sublot were obtained to ensure sufficient material for testing. The contractors also provided the results of their QC tests corresponding to each sample. The mixes were shipped from their respective Wisconsin contractor to NCAT for performance testing. Each bucket of loose asphalt mix was heated to compaction temperature and reduced to testing size per AASHTO R47-19 *Standard Practice for Reducing Sample of Asphalt Mixtures to Testing Size*. A Quartermaster quartering device, shown in Figure 3.2.1, was

used to reduce the sample size while ensuring representative samples for consistent laboratory results. As shown in Figure 3.2.2, a quartering template was used to further reduce the sampled mix to size. This sample-reducing method produced four maximum specific gravity (G_{mm}) samples, two bulk specific gravity (G_{mb}) samples, and approximately fifteen test specimens per sublot.

Figures 3.2.1 and 3.2.2 : Quartering Devices (AASHTO R47-19)

Once the loose plant mix was reduced to the testing size, the samples were stored in sealed, labeled plastic bags to be compacted later. Each specimen was compacted to 62 mm in height and 150 mm in diameter using a gyratory compactor, following ASTM D6925-15. Each sample was made by the same engineer, scale, oven, and gyratory compactor to reduce specimen variability. The theoretical maximum specific gravity (G_{mm}), known as the Rice test, was determined for each mix. A trial specimen was made using the previously reduced samples to

determine the mass needed to achieve7.0±.05 air voids, 150 mm in diameter and 62 mm in thickness.

3.2.2 Summary of Testing Plan

Figure 3.2.3 shows a flow diagram of the testing procedure performed. Across the ten projects in this research study, a total of 134 sets of four samples were subjected to IDEAL-CT and HWTT testing. The maximum specific gravity (G_{mm}) and bulk specific gravity (G_{mb}) were verified to be consistent with the contractors' data using the multi-lab d2s limits in AASTO T 209 and T 166, respectively.

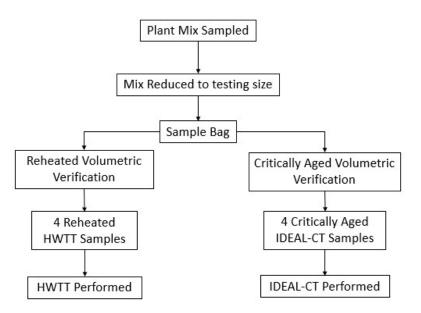


Figure 3.2.3 Testing Plan Flow Diagram

3.2.3 HWTT Testing Procedure

Mix was reheated to the compaction temperature to compact the HWTT specimens. Each specimen's air voids were checked using AASHTO T166, Standard Method of Test for Bulk Specific Gravity (G_{mb}) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens. Each HWTT specimen was cut to fit into the HWTT mold. All HWTTs were conducted following AASTHO T 324 using the Troxler machine shown in Figure 3.2.4.

Figure 3.2.4 Troxler HWTT Machine at NCAT Laboratory

3.2.4 IDEAL-CT Procedure

For the IDEAL-CT test specimens, the loose plant mix samples were long-term aged for 6 hours at 275°F. This aging procedure was recommended to simulate in-service aging in a previous WHRP project using Wisconsin mixtures in 2018 (Bahia, 2018). This is similar to the "critical aging" procedure recommended by NCAT (Chen et al, 2018). A maximum specific gravity (G_{mm}) test and a bulk specific gravity (G_{mb}) test were performed on asphalt samples produced from the aged mixture. Once the quantity of loose mix needed to produce 150 mm diameter compacted samples to a height of 62 mm with 7.0% +/- 0.5% air voids, four specimens were compacted for IDEAL-CT testing. The IDEAL-CT test was conducted according to ASTM D8225 using the Troxler IDEAL Plus, shown in Figure 3.2.5.

Figure 3.2.5 Troxler IDEAL Plus machine at NCAT Laboratory

3.3 Method of Analysis

For this experiment, statistical analysis was performed on the data collected from the HWTT and IDEAL-CT tests. Statistical analysis was also performed on the percent binder (P_b) and air voids (V_a) from the contractor's QC data. For the IDEAL-CT tests on each sublot, the average and standard deviation was calculated from four replicates. The HWTT data was used to determine the corrected rut depth (CRD) and the number of passes to reach a rut depth of 12.5 mm for the left and right wheels. The results for the left and right wheels were averaged to yield an average CRD, and an average passes to 12.5 mm rut depth for each sublot.

3.3.1 Calculation of Sample Mean, Standard Deviation, and Coefficient of Variation

The sample mean (Eq 3.1), standard deviation (Eq. 3.2), and coefficient of variation (Eq. 3.3) were calculated from the five sublots based on each lot. The calculations are as follows:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
Equation 3.1: Sample Mean
$$s = \sqrt{\frac{\sum(x_i - \overline{x})^2}{n}}$$
Equation 3.2: Standard Deviation
$$COV = \frac{\overline{x}}{s}$$
Equation 3.3: Coefficient of Variation

Where:

- \overline{x} = Sample Mean
- s = standard deviation

COV = coefficient of variation

- x_i = each value from the sample population
- n = number of items in the sample

3.3.2 Outlier Evaluation of a Lot

An outlier can be defined as "one that appears to deviate markedly from other members of the sample in which it occurs" (ASTM E178-21). This outlier procedure used in this study was developed by the Maine Department of Transportation and is an adaptation from ASTM E178 *Dealing with Outlying Observations*. This calculation procedure is based on a "two-tail t-test" with a level of significance (α) of 5%. The calculation steps are as follows:

- 1. Calculate the sample average (\bar{x}) and standard deviation (s) of the results in the lot.
- Find the critical t value "t_{crit}" from Table 3.2 using the total number of samples (n) in the sample set.
- Determine the total allowable deviation (D) on either side of the sample average by multiplying 't_{crit}' by s.
- 4. Establish values for Max and Min by adding and subtracting D to and from \overline{x} .
- 5. Any results greater than the Max or less than the Min are determined to be an outlier.

п	<i>t</i> _{crit}
3	1.155
4	1.481
5	1.715
6	1.887
7	2.020

Table 3.2 *t_{crit}* values for a 5% Significance Level

This outlier evaluation procedure was performed on results from the IDEAL-CT, HWTT, the contractor's reported air voids, and asphalt content for each lot.

3.3.3 Normality Procedure

An Anderson-Darling (AD) test was performed using Minitab software to assess the normality of the results of quality characteristics from each project. This test compares the empirical cumulative distribution function of the data with the distribution expected if the data was normal ("Test for Normality"). The AD statistic measures how well the data follows the normal distribution; the better the distribution fits the data, the smaller the AD statistic. The null hypothesis for the Anderson-Darling test was that the data followed a normal distribution. If the p-value was less than 0.05, the null hypothesis was rejected and it was concluded that the data were found to be not normally distributed. The AD test was performed on the ten projects individual sublot data for IDEAL-CT, HWTT, air voids, and asphalt content.

3.3.4 CDF of Production Standard Deviation and Coefficients of Variation

The cumulative distribution frequency (CDF) for each project's lot standard deviations and coefficients of variation were plotted using Minitab software. Cumulative distribution frequencies are used to evaluate the distribution of a dataset. They can help analyze the percentage of the data that lie above or below a particular value, and the steepness or slope of the CDF can indicate how close the observations are to the mean (Cumulative, 2020).

3.3.5 Percent Within Limits Calculations

Percent within limits (PWL) calculations were conducted on each project's lot for IDEAL-CT and HWTT data based on current WisDOT specification criteria, as shown in Table 3.3. PWL is the percentage of a lot falling within a set specification limit based on simple statistics. Since the HWTT and IDEAL-CT criteria are minimum values (one-sided criteria), only the lower quality index was calculated following Equation 3.4.

$$Ql_L = \frac{(\overline{x} - LL)}{S}$$
 Eq. 3.4

Where:

 $Ql_L = Lower Quality Index$

 \overline{x} = mean of test results

LL = Lower specification Limit (tolerance)

S = Standard Deviation

The "Q" table from AASHTO R 42 was used to find the PWL corresponding to each Ql.

Table 3.3 Wisconsin DOT Performance	Test Requirements
-------------------------------------	-------------------

Binder Designation Level ¹	HWTT N12.5	HWTT SIP	IDEAL-CT CT Index ²
S	≥ 10,000	≥ 8,000	≥ 30
н	≥ 15,000	≥ 8,000	≥ 30
V	≥ 20,000	≥ 8,000	≥ 30
E	≥ 20,000	≥ 8,000	≥ 30

2. For SMA, increase the minimum CT_{Index} criterion to 80 for all binder designation levels.

3.4 Summary

Once the asphalt mixture samples were received at NCAT from the Wisconsin

contractors, they were reduced, compacted, and evaluated using various AASHTO procedures.

The two performance tests completed on each sublot sample were the IDEAL-CT and HWTT.

All specimen preparation and tests were conducted at NCAT by the same engineer using the same equipment to minimize variability. For each lot on each of the ten mixes, the average, standard deviation, and coefficient of variation were calculated for CT_{index} and HWTT CRD and passes to 12.5 mm rut depth, and the results were analyzed for outliers, normality, cumulative distribution frequency, and percent within limits.

Chapter 4 – Results and Discussion

This chapter summarizes the results from the performance testing conducted at NCAT on mixtures from the ten shadow projects sampled by WisDOT contractors. These mixes were tested using IDEAL-CT and HWTT performance tests, along with the asphalt content and air voids from the contractor's QC data to evaluate the production variability of the properties. *4.1 Summary of Averages, Standard Deviations, and Coefficients of Variation*

For mixes of each shadow project, the contractors provided samples for two or three lots, and for each lot, there were five sublots. Therefore, the tests' average, standard deviation, and COV s were calculated from the results of five sublots.

Table 4.1.1 summarizes the asphalt content of each project. The asphalt content has the lowest overall COVs among the evaluated quality characteristics, with an average COV of 2.8%; the maximum COV was observed to be 7.2%.

Table 4.1.2 summarizes the air voids for each project. The air voids had an average COV of 10.4%.

Table 4.1.3 summarizes the CT_{Index} for each project. The average COV for CT_{Index} was 13.1%, with the minimum COV being 1.3% and the maximum COV being 39.7%.

Table 4.1.4 summarizes the CRD_{20k} calculated for each project. The average COV for CRD_{20k} was 10.9%, with a maximum COV of 26.4%, and a minimum COV of 4.1%. Table 4.1.5 summarizes the HWTT passes to reach a 12.5 mm rut depth. The average COV for passes to 12.5 mm was 16.6%, with a maximum of 35.8% and a minimum of 2.8%.

Asphalt Content						
Project	Lot	Average	Std. Dev.	COV		
1	Lot 1	6.1	0.2	2.6%		
	Lot 2	6.3	0.2	3.8%		
2	Lot 2	5.6	0.1	1.3%		
	Lot 3	5.7	0.1	2.5%		
3	Lot 2	5.8	0.2	2.6%		
	Lot 3	6.0	0.4	7.2%		
	Lot 4	5.9	0.3	5.9%		
	Lot 2	5.9	0.1	1.7%		
4	Lot 3	6.0	0.1	1.9%		
	Lot 4	6.0	0.1	1.4%		
	Lot 4	5.7	0.2	3.4%		
5	Lot 5	5.8	0.2	3.1%		
	Lot 6	5.8	0.1	1.9%		
6	Lot 9&11	6.0	0.1	2.2%		
6	Lot 10	5.9	0.2	2.8%		
	Lot 3&6	6.6	0.1	1.3%		
7	Lot 4	6.7	0.1	1.8%		
	Lot 5	6.8	0.1	1.3%		
8	Lot 3	5.8	0.2	4.0%		
	Lot 4	5.8	0.1	1.9%		
	Lot 5	5.7	0.2	2.7%		
9	Lot 8	5.6	0.1	2.1%		
	Lot 9	5.6	0.1	2.3%		
	Lot 10	5.4	0.3	5.8%		
10	Lot 8	6.2	0.2	2.7%		
	Lot 9	6.2	0.1	2.1%		
	Lot 10	6.2	0.2	3.0%		

Table 4.1.1 Asphalt Content Summary

Air Voids						
Project	Lot	Average	Std. Dev.	COV		
1 - P&D Jackson	Lot 1	3.3	0.4	12.8%		
	Lot 2	3.1	0.3	10.2%		
2 - NEA Popple	Lot 2	2.8	0.1	4.1%		
River	Lot 3	2.9	0.2	6.7%		
3 - Mathy Plant 1	Lot 2	2.9	0.2	7.9%		
	Lot 3	2.9	0.1	4.5%		
	Lot 4	2.8	0.4	15.8%		
	Lot 2	2.9	0.3	10.3%		
4 - NEA Denmark	Lot 3	3.0	0.1	2.9%		
	Lot 4	3.2	0.1	1.7%		
	Lot 4	3.3	0.3	8.3%		
5 - Rock Road	Lot 5	3.2	0.2	6.8%		
	Lot 6	3.3	0.3	9.0%		
6 - La Crosse	Lot 9&11	2.9	0.3	10.1%		
o - La Crosse	Lot 10	2.4	0.4	15.5%		
7 - Drummond	Lot 3&6	3.1	0.5	16.5%		
	Lot 4	2.8	0.5	16.8%		
	Lot 5	2.6	0.3	9.9%		
8 - Dodgeville	Lot 3	3.0	0.4	14.9%		
	Lot 4	2.7	0.6	21.3%		
	Lot 5	2.9	0.6	19.5%		
9 - Turtle Lake	Lot 8	3.1	0.2	6.2%		
	Lot 9	2.8	0.4	14.6%		
	Lot 10	3.0	0.3	10.8%		
10 - Coloma	Lot 8	3.0	0.1	3.6%		
	Lot 9	2.8	0.3	10.6%		
	Lot 10	2.8	0.3	10.0%		

Table 4.1.2 Air Voids Summary

IDEAL CT						
Project	Lot	Average	Std. Dev	COV		
1 - P&D Jackson	Lot 1	47.0	7.4	15.6%		
	Lot 2	48.0	4.0	8.4%		
2 - NEA Popple	Lot 2	58.2	9.1	15.7%		
River	Lot 3	62.8	19.6	31.1%		
	Lot 2	62.7	6.4	10.2%		
3 - Mathy Plant 1	Lot 3	69.7	27.7	39.7%		
-	Lot 4	73.3	17.8	24.3%		
-	Lot 2	86.2	7.6	8.8%		
4 - NEA Denmark	Lot 3	83.8	10.7	12.8%		
	Lot 4	89.0	6.0	6.7%		
	Lot 4	40.1	4.3	10.7%		
5 - Rock Road	Lot 5	44.3	8.8	19.9%		
	Lot 6	51.3	5.2	10.1%		
6 - La Crosse	Lot 9&11	46.2	3.6	7.8%		
6 - La Crosse	Lot 10	51.2	7.7	15.1%		
7 - Drummond	Lot 3&6	106.7	16.8	15.7%		
	Lot 4	113.5	7.8	6.9%		
	Lot 5	120.4	8.9	7.4%		
8 - Dodgeville	Lot 3	45.1	2.0	4.4%		
	Lot 4	51.0	4.6	9.1%		
	Lot 5	43.4	0.6	1.3%		
9 - Turtle Lake	Lot 8	51.5	8.9	17.2%		
	Lot 9	58.9	5.2	8.8%		
	Lot 10	57.5	5.5	9.5%		
10 - Coloma	Lot 8	113.2	11.6	10.3%		
	Lot 9	118.4	14.5	12.2%		
	Lot 10	119.5	16.4	13.7%		

Table 4.1.3 CT_{Index} Summary

HWTT - Corrected Rut Depth 20,000 passes						
Project	Lot	COV				
1 - P&D Jackson	Lot 1	10.7	2.2	20.4%		
I - P&D Jackson	Lot 2	11.0	1.4	13.1%		
2 - NEA Popple	Lot 2	16.4	2.8	16.8%		
River	Lot 3	16.2	0.7	4.4%		
	Lot 2	9.0	0.4	4.1%		
3 - Mathy Plant 1	Lot 3	11.0	0.4	4.1%		
	Lot 4	10.6	1.2	11.7%		
	Lot 2	15.9	1.6	10.3%		
4 - NEA Denmark	Lot 3	16.2	1.3	8.0%		
	Lot 4	17.3	3.0	17.6%		
	Lot 4	10.5	1.0	9.9%		
5 - Rock Road	Lot 5	11.2	0.7	5.8%		
	Lot 6	10.5	0.7	7.0%		
6 - La Crosse	Lot 9&11	11.3	1.0	8.7%		
0 - La Closse	Lot 10	11.6	1.6	13.5%		
	Lot 3&6	11.7	0.7	5.6%		
7 - Drummond	Lot 4	13.1	3.4	26.4%		
	Lot 5	16.4	3.3	20.1%		
	Lot 3	10.2	1.2	11.9%		
8 - Dodgeville	Lot 4	10.2	1.0	10.0%		
	Lot 5	8.4	1.2	14.3%		
	Lot 8	9.7	0.9	9.3%		
9 - Turtle Lake	Lot 9	11.0	1.1	9.6%		
	Lot 10	12.0	1.3	10.6%		
	Lot 8	11.6	0.6	4.9%		
10 - Coloma	Lot 9	13.3	1.4	10.6%		
	Lot 10	12.6	0.6	5.1%		

Table 4.1.4 CRD_{20k} Summary

HWTT - Passes to 12.5 mm Rut Depth						
Project	Lot Average Std. Dev CO					
1 - P&D Jackson	Lot 1	11416	4085.8	35.8%		
I - P&D Jackson	Lot 2	9662	3298.4	34.1%		
2 - NEA Popple	Lot 2	5670	952.13	16.8%		
River	Lot 3	4785	905.8	18.9%		
	Lot 2	14580	2752.5	18.9%		
3 - Mathy Plant 1	Lot 3	11188	909.21	8.1%		
	Lot 4	11642	2575.7	22.1%		
	Lot 2	5682	523.12	9.2%		
4 - NEA Denmark	Lot 3	6200	734.81	11.9%		
	Lot 4	4800	486.16	10.1%		
	Lot 4	13972	2768.7	19.8%		
5 - Rock Road	Lot 5	10662	2670.8	25.0%		
	Lot 6	11266	1864.5	16.5%		
6 - La Crosse	Lot 9&11	8460	608.6	7.2%		
0 - La Closse	Lot 10	9018	1618.3	17.9%		
	Lot 3&6	7192	215.1	3.0%		
7 - Drummond	Lot 4	6592	1294.2	19.6%		
	Lot 5	4726	1197.2	25.3%		
	Lot 3	9188	2272.4	24.7%		
8 - Dodgeville	Lot 4	9056	1568.8	17.3%		
	Lot 5	11278	1973.5	17.5%		
	Lot 8	10870	1189.3	10.9%		
9 - Turtle Lake	Lot 9	9278	1828.5	19.7%		
	Lot 10	9370	1463.9	15.6%		
	Lot 8	9990	1406.6	14.1%		
10 - Coloma	Lot 9	8302	235.4	2.8%		
	Lot 10	8840	553.2	6.3%		

Table 4.1.5 Passes to 12.5 mm Rut Depth Summary

4.2 Normality Test

For the Normality Test, the Anderson-Darlington (AD) statistic and the probability plots of the sublot averages of IDEAL-CT, HWTT, asphalt content, and air voids were calculated for each of the ten shadow projects. Figures 4.2.1 through 4.2.5 display the probability plot and the AD test

statistic for Project 1 as examples. Tables 4.2.1 through 4.2.5 display the summary results of the AD statistic and the corresponding p-values for all 10 projects.

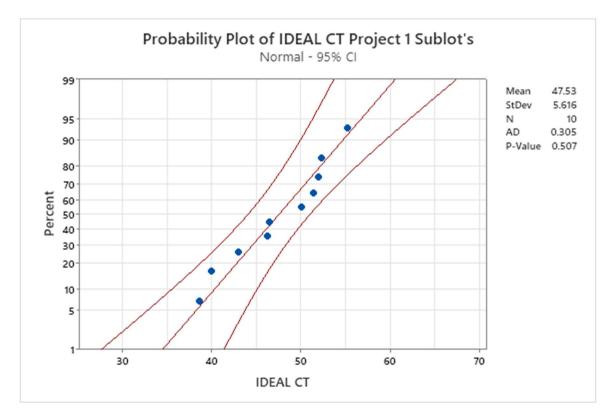


Figure 4.2.1 Probability Plot of CT_{index} Project 1

IDEAL CT						
Project	N (number of sublots)	AD Statistic	p-value			
1 - P&D Jackson	10	0.305	0.507			
2 - NEA Popple River	9	0.327	0.440			
3 - Mathy Plant 1	15	0.891	0.017			
4 - NEA Denmark	15	0.251	0.691			
5 - Rock Road	15	0.61	0.091			
6 - La Crosse	10	0.533	0.128			
7 - Drummond	15	0.129	0.978			
8 - Dodgeville	15	0.525	0.151			
9 - Turtle Lake	15	0.454	0.231			
10 - Coloma	15	0.473	0.208			

From Table 4.2.1, it can be seen that the p-value for the Anderson-Darling test of normality was greater than 0.05 except for Project 3, indicating that the CT_{index} results from most projects were normally distributed. For Project 3, the AD normality test may have been influenced by the high CT_{index} results from a four sublots compared to the average for all 15 sublots. For this project, the average CTindex for all sublots was 68.6, but CT_{index} results for sublot 3-4, 3-5, 4-2, and 4-3 were 106.2, 92.2, 86.4, and 95.9, respectively. This example brings to light a limitation of assessing normality with small data sets.

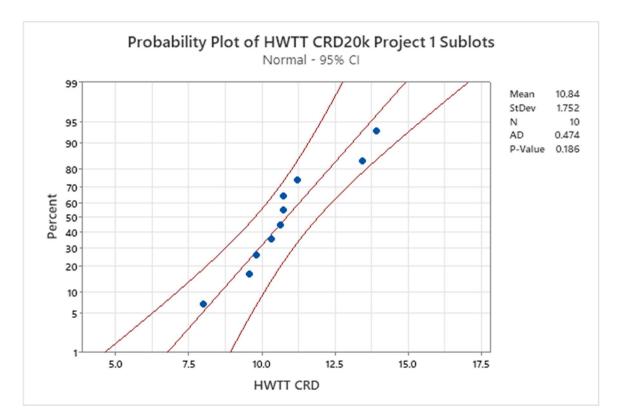


Figure 4.2.2 Probability Plot of HWTT CRD_{20k} Project 1

HWTT CRD20k						
Project	N (number of sublots)	AD Statistic	p-value			
1 - P&D Jackson	10	0.474	0.186			
2 - NEA Popple River	9	0.282	0.548			
3 - Mathy Plant 1	15	0.482	0.196			
4 - NEA Denmark	15	0.642	0.076			
5 - Rock Road	15	0.389	0.339			
6 - La Crosse	10	0.21	0.807			
7 - Drummond	15	0.81	0.027			
8 - Dodgeville	15	0.305	0.526			
9 - Turtle Lake	15	0.357	0.407			
10 - Coloma	15	0.725	0.046			

Table 4.2.2 Normality Test Results for HWTT CRD_{20k}

Table 4.2.2 shows that the p-value for the Anderson-Darling test of normality for HWTT CRD_{20k} results was greater than 0.05 for all projects except for Project 7, indicating that the HWTT CRD_{20k} results from most projects were normally distributed. For Project 7, the high CRD_{20k} results for sublots 4-5 and 5-1 were 18.8 mm and 21.4 mm, respectively, compared to the average of 13.7 mm for all 15 sublots. This example again demonstrates a limitation of assessing normality with small data sets.

Similarly, Table 4.2.3 summarizes the Anderson-Darling results for HWTT passes to 12.5 mm rut depth. For this quality characteristic, the AD test p-value was less than 0.05 for Project 7 and 10 and was just above 0.5 for Project 3. The other seven projects had p-values well above 0.5 indicating that the HWTT results of the majority of projects were normally distributed.

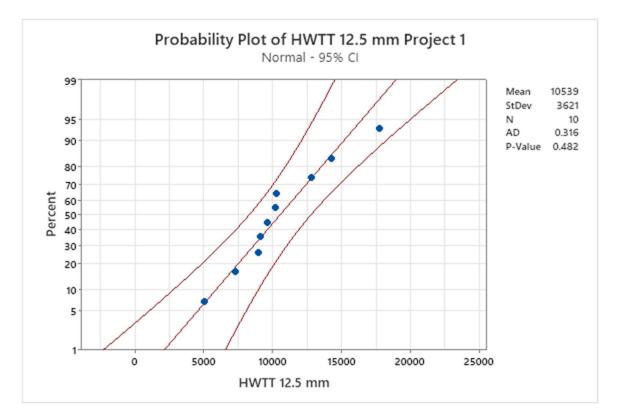


Figure 4.2.3 Probability Plot of HWTT Passes to 12.5 mm Project 1

HWTT Passes to 12.5 mm						
Project	N (number of sublots)	AD Statistic	p-value			
1 - P&D Jackson	10	0.316	0.482			
2 - NEA Popple River	9	0.338	0.412			
3 - Mathy Plant 1	15	0.691	0.056			
4 - NEA Denmark	15	0.145	0.958			
5 - Rock Road	15	0.329	0.476			
6 - La Crosse	10	0.253	0.653			
7 - Drummond	15	1.248	0.005			
8 - Dodgeville	15	0.400	0.319			
9 - Turtle Lake	15	0.263	0.647			
10 - Coloma	15	0.964	0.011			

Table 4.2.3 Normality Test Results for HWTT Passes to 12.5 mm

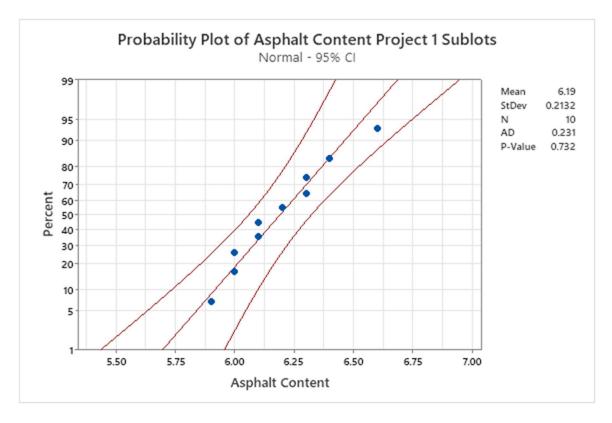


Figure 4.2.4 Probability Plot of Asphalt Content Project 1

Asphalt Content							
Project	N (number of sublots)	AD Statistic	P-Value				
1 - P&D Jackson	10	0.231	0.732				
2 - NEA Popple River	9	0.393	0.298				
3 - Mathy Plant 1	15	0.46	0.223				
4 - NEA Denmark	15	0.759	0.037				
5 - Rock Road	15	0.268	0.631				
6 - La Crosse	10	0.405	0.285				
7 - Drummond	15	0.974	0.010				
8 - Dodgeville	15	0.419	0.285				
9 - Turtle Lake	15	1.108	0.005				
10 - Coloma	15	0.508	0.167				

Table 4.2.4 Normality Test Results for Asphalt Content

Table 4.2.4 shows that the p-values for the Anderson-Darling test of normality of asphalt content results was greater than 0.05 for seven of the ten shadow projects, indicating that asphalt content results for most projects were normally distributed. Project 4, 7 and 9 had p-values less

than 0.05, indicating that their asphalt content results were not normally distributed. For Project 4, asphalt contents were very consistent with all 15 sublots having asphalt contents between 5.8% and 6.1%. Likewise, Project 7 had very consistent asphalt contents ranging from 6.5% to 6.8%, with six of the 15 sublot results at 6.8%. Project 9's asphalt contents ranged from 5.1% to 5.7% but five of the 15 results were 5.7% which does not seem to follow a normal distribution, but the analysis is limited by the small data set.

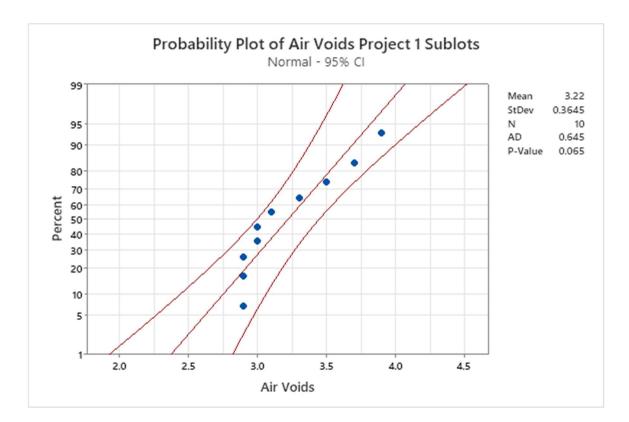


Figure 4.2.5 Probability Plot of Air Voids Average

Table 4.2.5 shows that the p-values for the Anderson-Darling test of normality of air void content results was greater than 0.05 for nine of the ten shadow projects, indicating that air voids were normally distributed for most projects. Only Project 4 had a p-values less than 0.05, indicating that their asphalt content results were not normally distributed. For this project, air

voids were very consistent, ranging from 2.7% to 3.3%, with a mean of 3.0%. However, five of the 15 sublots had air voids of 3.1% and four sublots had air voids of 3.2% which does not seem to follow a normal distribution, but the analysis is limited by the small data set.

Air Voids							
Project	N (number of sublots)	AD Statistic	p-value				
1 - P&D Jackson	10	0.645	0.065				
2 - NEA Popple River	9	0.367	0.348				
3 - Mathy Plant 1	15	0.458	0.227				
4 - NEA Denmark	15	0.873	0.019				
5 - Rock Road	15	0.269	0.628				
6 - La Crosse	10	0.139	0.960				
7 - Drummond	15	0.622	0.085				
8 - Dodgeville	15	0.285	0.576				
9 - Turtle Lake	15	0.327	0.455				
10 - Coloma	15	0.576	0.112				

Table 4.2.5 Normality Test Results for Air Voids

4.3 Evaluation of Outliers

The research project evaluated 27 lots and 134 sublots across the ten shadow projects. Within each sublot, replicates of CT_{index} were evaluated for outliers. Four replicates of IDEAL-CT specimens were individually tested; these four replicates were averaged to obtain the sublot value. The IDEAL-CT data was assessed for outliers within the lot based on the average CT_{index} for each sublot. The HWTT data had a left and right wheel that were averaged to give one value for each sublot.

For air voids, there was only one observed outlier within project one. Table 4.3.1 shows an example calculation for project one, lot two. The green shaded cells mean it is within the outlier range, while the red cell marks the outlier.

Table 4.3.1 Outlier in Air Voids

Air Voids
All volus

		Average
	7-1	3.0
	8-1	3.0
	9-1	3.7
	10-1	3.1
	10-2	2.9
Average		3.140
Standard Deviation		0.321
t critical		1.715
allowable deviation		0.550
Max		3.690
Min		2.590

Overall, one outlier was observed across the projects for all the IDEAL-CT lots tested in project 8, lot 5.

4.4 Examining Potential Relationships between Variability of Asphalt Content and Air Voids with IDEAL-CT and HWTT

To determine if asphalt content and air voids variability influenced the variability of IDEAL-CT and HWTT results, their respective calculated COVs of each lot were plotted against each other in scatterplots. Best-fit linear regression equations were determined for these correlation plots using Excel. The scatterplots of CT_{index} COV versus asphalt content and air voids COVs can be seen in Figure 4.3.1 and Figure 4.3.2, respectively. The scatterplots of HWTT CRD_{20k} COV versus asphalt content and air voids COVs can be seen in Figure 4.3.3 and Figure 4.3.4, respectively. The coefficient of determination (R²) indicates how well the regression equation explains the relationship between the two variables. R² can be interpreted as the percentage of the change in the dependent variable, CT_{index} COV, in this case, which can be attributed to the independent variable, asphalt content COV in this case. In general, the low R²

46

indicates that the variabilities of asphalt content and air voids had little to no influence on the variabilities of CTindex and HWTT CRD_{20k}.

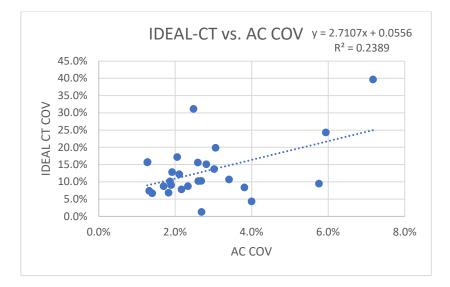


Figure 4.4.1 IDEAL-CT vs. AC COV

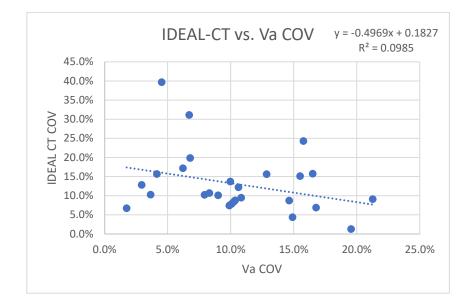


Figure 4.4.2 IDEAL-CT vs. Va COV

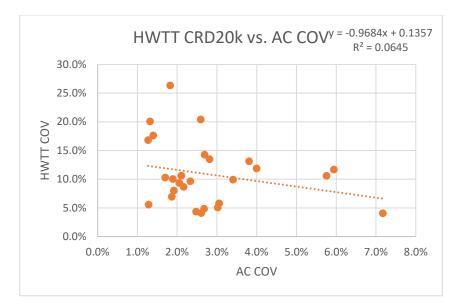


Figure 4.4.3 HWTT CRD20k vs. AC COV

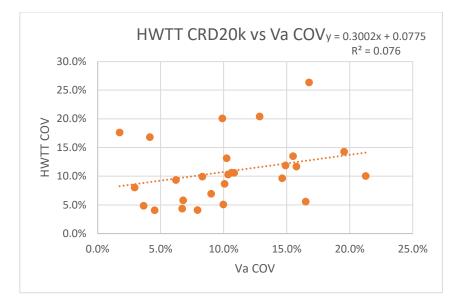


Figure 4.4.4 HWTT CRD 20k vs. Air Voids COV

4.5 Percent Within Limits based on Current WisDOT Specification

Percent within limits (PWL) were calculated for each lot and project based on current WisDOT specifications. For the IDEAL-CT test, the minimum specification limit for CT_{index} was set at 30. Table 4.5.1 summarizes the PWL calculations, where it can be seen that the only lots with PWLs below 100% were projects 3, lot 3 and project 5, lot 5.

Table 4.5.1 IDEAL-CT PWL							
D : (IDEAL-C		COV		01	DWI
Project		Average	Std. Dev	COV	n	Ql	PWL
1 - P&D Jackson	Lot 1	47.0	7.4	15.6%	5	2.32	100
	Lot 2	48.0	4.0	8.4%	5	4.46	100
2 - NEA Popple River	Lot 2	58.2	9.1	15.7%	5	3.09	100
	Lot 3	62.8	19.6	31.1%	4	1.68	100
	Lot 2	62.7	6.4	10.2%	5	5.09	100
3 - Mathy Plant 1	Lot 3	69.7	27.7	39.7%	5	1.43	94.8
	Lot 4	73.3	17.8	24.3%	5	2.43	100
	Lot 2	86.2	7.6	8.8%	5	7.44	100
4 - NEA Denmark	Lot 3	83.8	10.7	12.8%	5	5.01	100
	Lot 4	89.0	6.0	6.7%	5	9.87	100
	Lot 4	40.1	4.3	10.7%	5	2.36	100
5 - Rock Road	Lot 5	44.3	8.8	19.9%	5	1.62	98.2
	Lot 6	51.3	5.2	10.1%	5	4.09	100
6 - La Crosse	Lot 9&11	46.2	3.6	7.8%	5	4.46	100
	Lot 10	51.2	7.7	15.1%	5	2.74	100
	Lot 3&6	106.7	16.8	15.7%	5	4.57	100
7 - Drummond	Lot 4	113.5	7.8	6.9%	5	10.70	100
	Lot 5	120.4	8.9	7.4%	5	10.12	100
	Lot 3	45.1	2.0	4.4%	5	7.66	100
8 - Dodgeville	Lot 4	51.0	4.6	9.1%	5	4.53	100
	Lot 5	43.4	0.6	1.3%	5	24.14	100
	Lot 8	51.5	8.9	17.2%	5	2.42	100
9 - Turtle Lake	Lot 9	58.9	5.2	8.8%	5	5.61	100
	Lot 10	57.5	5.5	9.5%	5	5.05	100
	Lot 8	113.2	11.6	10.3%	5	7.15	100
10 - Coloma	Lot 9	118.4	14.5	12.2%	5	6.11	100
	Lot 10	119.5	16.4	14%	5	5.46	100

Table 4.5.1 IDEAL-CT PWL

For HWTT, the number of passes to a rut depth of 12.5 mm for both the left and right wheels were recorded and averaged. The WisDOT specification required a minimum of 10,000 passes to reach 12.5 mm rutting for low and medium traffic projects and a minimum of 20,000 passes to reach 12.5 mm for high traffic projects. Table 4.5.2 summarizes the HWTT PWL calculations. In this table, the projects are colored according to traffic category (yellow for low traffic, blue for medium traffic, and green for high traffic). Several projects had failing HWTT

results resulting in negative Quality Index (QI) values, and PWL of less than 50% (highlighted in red).

It is important to note that the HWTT machine used for this project differs from the machine used in previous research for Wisconsin. There are a couple of reasons that the HWTT results for the mixtures evaluated in this project are worse than from previous studies. One possible explanation is that a calibration check of the machine used for this project near the end of testing for this study revealed that the wheel paths of this machine did not follow a sinusoidal form as required in the AASHTO standard. Another difference is that the HWTT analysis software programs used with the HWTT machines use different seating passes before the initial rut depth is established. Currently, the AASHTO standard does not address seating passes. It should also be noted that the current WisDOT specification was not the criteria that the previous research completed at NCAT recommended. Even though the mixes here did not meet the WisDOT specifications, this study was conducted on variability.

HWTT - Corrected Rut Depth 20,000 passes							
Project		Average	Std. Dev	COV	n	Ql	PWL
1 - P&D Jackson	Lot 1	11416.0	4085.8	35.8%	5	0.35	62
1 - P&D Jackson	Lot 2	9662.0	3298.4	34.1%	5	-0.10	50
2 NEA Donnia Divor	Lot 2	5670.0	952.1	16.8%	5	-4.55	50
2 - NEA Popple River	Lot 3	4785.0	905.8	18.9%	4	-5.76	50
	Lot 2	14580.0	2752.5	18.9%	5	1.66	99
3 - Mathy Plant 1	Lot 3	11188.0	909.2	8.1%	5	1.31	92
	Lot 4	11642.0	2575.7	22.1%	5	0.64	72
	Lot 2	5682.0	523.1	9.2%	5	-8.25	50
4 - NEA Denmark	Lot 3	6200.0	734.8	11.9%	5	-5.17	50
	Lot 4	4800.0	486.2	10.1%	5	-10.70	50
	Lot 4	13972.0	2768.7	19.8%	5	1.43	95
5 - Rock Road	Lot 5	10662.0	2670.8	25.0%	5	0.25	59
	Lot 6	11266.0	1864.5	16.5%	5	0.68	74
6 - La Crosse	Lot 9&11	8460.0	608.6	7.2%	5	-2.53	50
0 - La Closse	Lot 10	9018.0	1618.3	17.9%	5	-0.61	50
	Lot 3&6	7192.0	215.1	3.0%	5	-13.05	50
7 - Drummond	Lot 4	6592.0	1294.2	19.6%	5	-2.63	50
	Lot 5	4726.0	1197.2	25.3%	5	-4.41	50
	Lot 3	9188.0	2272.4	24.7%	5	-4.76	50
8 - Dodgeville	Lot 4	9056.0	1568.8	17.3%	5	-6.98	50
	Lot 5	11278.0	1973.5	17.5%	5	-4.42	50
	Lot 8	10870.0	1189.3	10.9%	5	0.73	75
9 - Turtle Lake	Lot 9	9278.0	1828.5	19.7%	5	-0.39	50
	Lot 10	9370.0	1463.9	15.6%	5	-0.43	50
	Lot 8	9990.0	1406.6	14.1%	5	-7.12	50
10 - Coloma	Lot 9	8302.0	235.4	2.8%	5	-49.69	50
	Lot 10	8840.0	553.2	6.3%	5	-20.17	50

Table 4.5.2 HWTT PWL

4.6 Cumulative Distribution Frequency of Production Standard Deviation and COV

Cumulative distribution frequencies were plotted for each lot standard deviation and COV for the CT_{Index} , CRD_{20k} , air voids, and asphalt content.

Figure 4.6.1 and Figure 4.6.2 show the CT_{Index} standard deviation and COV, respectively, for each lot. The 50th percentile for the CT_{index} standard deviation is 7.5 The 50th percentile for CT_{index} COV was 13.2%, with approximately 80% of the lots tested having a COV under 20%.

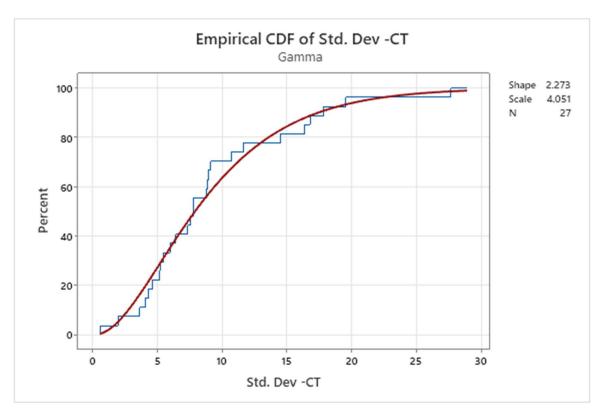


Figure 4.6.1 CDF of Std. Dev. CT_{Index}

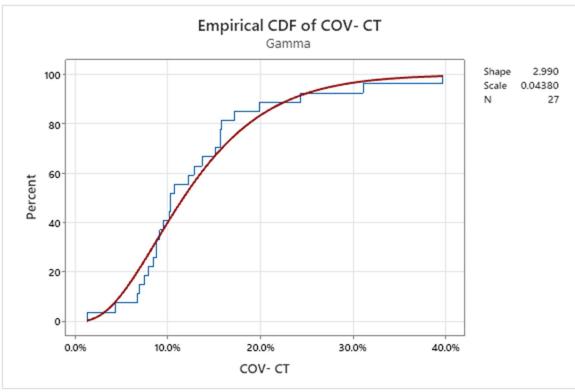
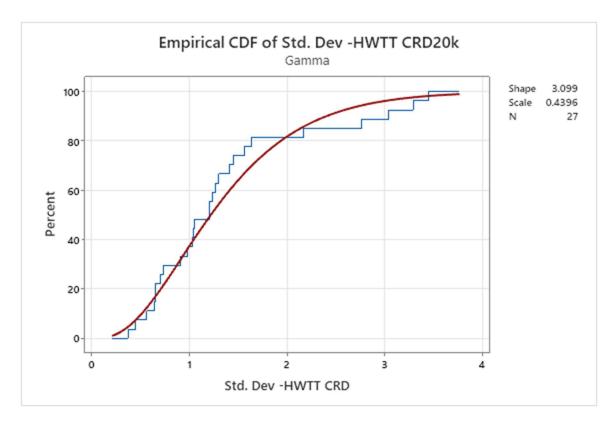
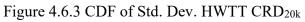




Figure 4.6.2 CDF of COV for CT_{Index}

Figures 4.6.3 and 4.6.4 show the CDF plots of standard deviation and COV for HWTT CRD_{20k}, respectively. The standard deviation had a 50th percentile of 1.3 The COV had a 50th percentile of 10.9%. Figures 4.6.5 and 4.6.4 show the CDF plots of standard deviation and COV for HWTT passes to 12.5 mm, respectively. The standard deviation had a 50th percentile of 1554 passes. The COV has a 50th percentile of 16.6%.

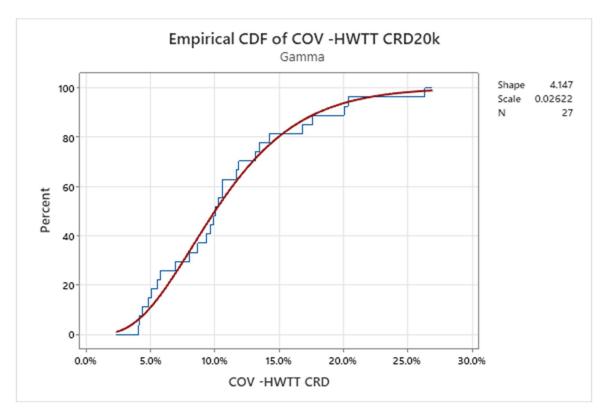


Figure 4.6.4 CDF of COV for HWTT CRD_{20k}

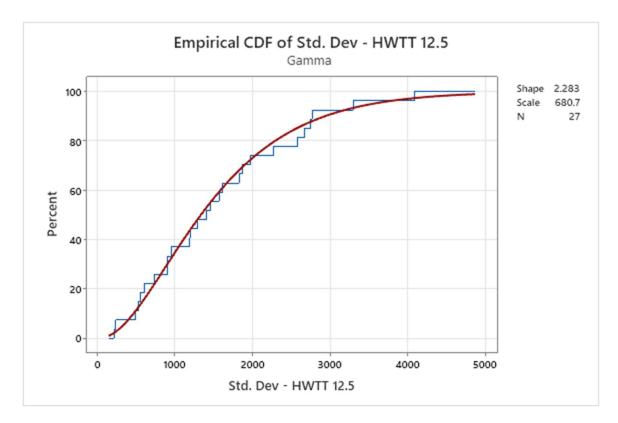


Figure 4.6.5 CDF of Std. Dev. for HWTT passes to 12.5 mm

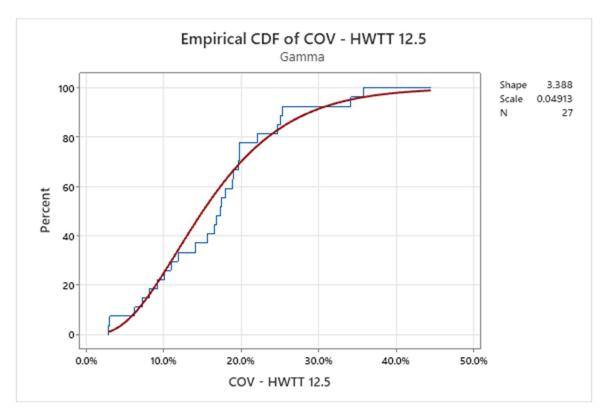


Figure 4.6.6 CDF of COV for HWTT passes to 12.5 mm

Figures 4.6.7 and 4.6.8 display the CDFs of the standard deviation and COV of asphalt content, respectively. Figures 4.6.9 and 4.6.10 show the CDF of the standard deviation and COV of air voids, respectively.

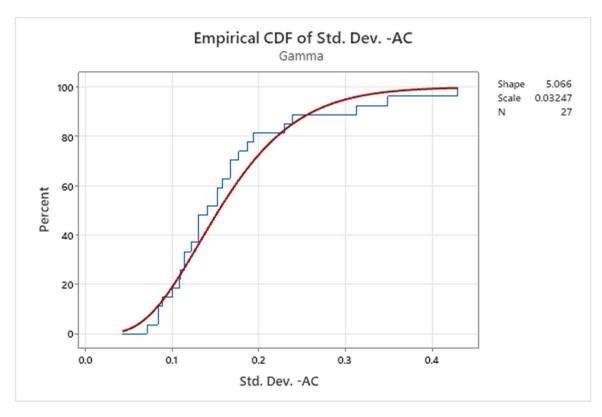
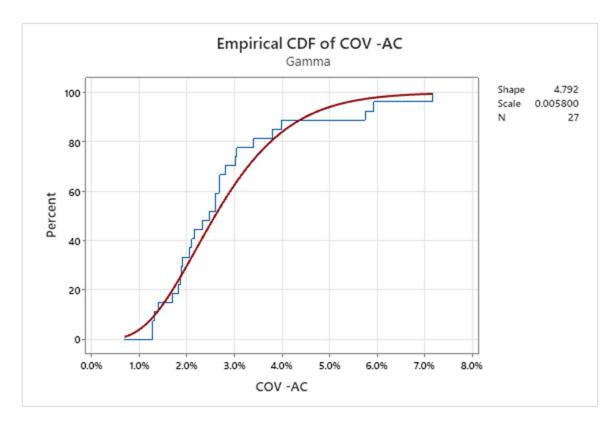



Figure 4.6.7 CDF of Std. Dev. for Asphalt Content

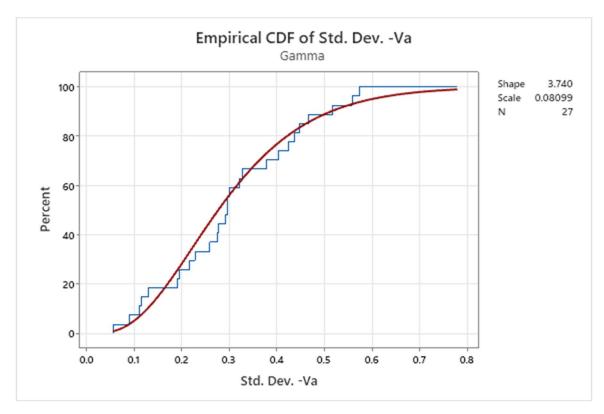


Figure 4.6.9 CDF of Std. Dev. for Air Voids

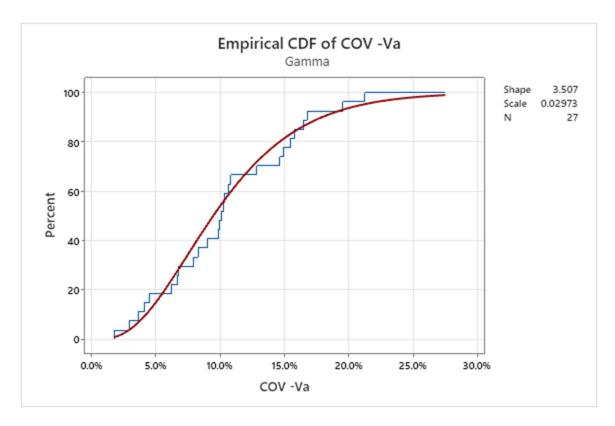


Figure 4.6.10 CDF of COV for Air Voids

A combined plot of CDFs for standard deviations of CT_{index}, HWTT CRD_{20k}, asphalt content, and air voids is shown in Figure 4.6.11. A combined plot of CDFs of COVs of CT_{index}, HWTT CRD_{20k}, HWTT passes to 12.5 mm, asphalt content, and air voids are shown in Figure 4.6.12. It can be seen in Figure 4.6.12 that the asphalt content COV was the lowest, air voids and HWTT CRD_{20k} has very similar COV distributions, and the HWTT passes to 12.5 mm COV was the highest.

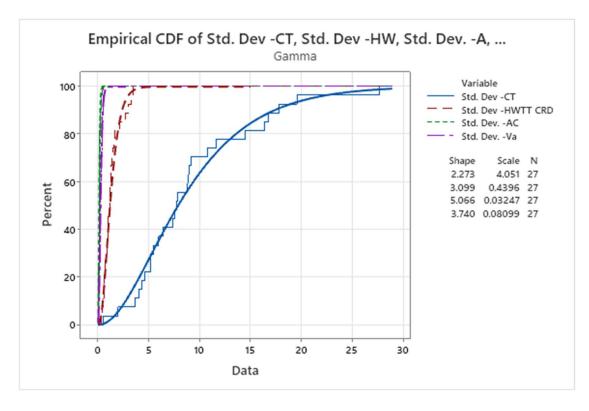


Figure 4.6.11 CDF of Std. Dev. for CTIndex, HWTT CRD20k, asphalt content, air voids

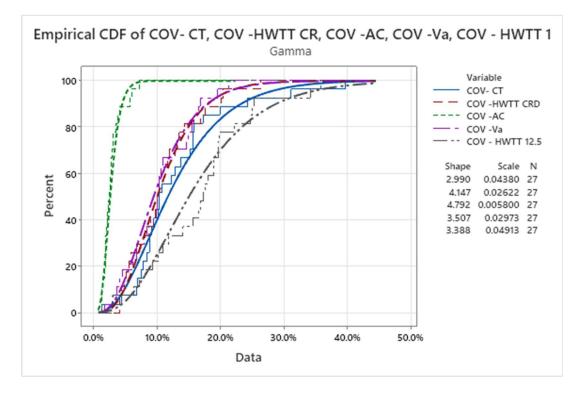


Figure 4.6.12 CDF of COV for CT_{Index}, HWTT CRD_{20k}, HWTT passes to 12.5 mm, asphalt

content, air voids

Chapter 5: Conclusions and Recommendations

5.1 Summary

The main objective of this thesis was to statistically analyze the overall variabilities of the performance test results for ten shadow projects. A recommended appropriate standard deviation for the BMD performance test is also provided based on the Wisconsin field-produced mixes. In total, 134 mixture samples were obtained and sent to NCAT for performance testing. The statistical analysis included a summary of the averages, standard deviations, and coefficients of variation. The Anderson-Darlington statistic and probability plots of the ten shadow projects sublots were calculated to check for normality. Results were analyzed to determine outliers on the IDEAL-CT, HWTT CRD_{20k}, asphalt content, and air voids. The percent within limits was calculated based on current WisDOT specifications on the IDEAL-CT and HWTT passes to 12.5 mm. Finally, CDF plots were made on production standard deviations and COVs.

5.2 Conclusions

After statistical analysis, the following conclusions are made:

 AC content was the least variable quality characteristic, with a mean COV of 2.8%. HWTT passes to 12.5 mm rut depth was the most variable quality characteristic with a mean COV of 16.6%. IDEAL-CT had a mean COV of 13.1%. The mean COV for air voids was 10.4%. The mean COV for HWTT CRD_{20k} was 10.9%. From the literature reviewed the COV results achieved at NCAT were lower. These parameters were measured across ten shadow project's production variability, one reason these might be lower is due to the extreme carefulness that was taken during sample preparation.

60

Another reason is that there was a small sample size going into each shadow project's lot (five sublots).

- Normality testing showed that HWTT passes to 12.5 mm followed the most normal distribution, and the least normal distribution was the CT*index*.
- The PWL analysis of CT_{index} indicated that 25 of the 27 lots had 100% PWL over the ten projects. HWTT passes to 12.5 mm rut depth did not meet the PWL, partly due to the HWTT machine not having a sinusoidal wavelength.

5.3 Plans for Future Research

Studies should follow up with these ten projects over the years to document the field cracking and rutting to determine correlations between lab and field performance.

References

- AASHTO PP 105-20. Standard Practice for Balanced Design of Asphalt Mixtures. American Association of State Highway and Transportation Officials, Washington, D.C., 2020.
- AASHTO R 9-05. Acceptance Sampling Plans for Highway Construction. American Association of State Highway and Transportation Officials, Washington, D.C., 2018.
- AASHTO R 30-22. *Standard Practice for Mixture Conditioning of Asphalt Mixture*. American Association of State Highway and Transportation Officials, Washington, D.C., 2022.
- AASHTO R 42-06. Standard Practice for Developing a Quality Assurance Plan for Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials, Washington, D.C., 2016.
- AASHTO R 47-19. Standard Practice for Reducing Sample of Asphalt Mixture to Testing Size. American Association of State Highway and Transportation Officials, Washington, D.C., 2019.
- AASHTO T 166-22. Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens. American Association of State Highway and Transportation Officials, Washington, D.C., 2022.
- AASHTO T 209-22. Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures. American Association of State Highway and Transportation Officials, Washington, D.C., 2022.
- AASHTO T 324-22. Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures. American Association of State Highway and Transportation Officials, Washington, D.C., 2022.

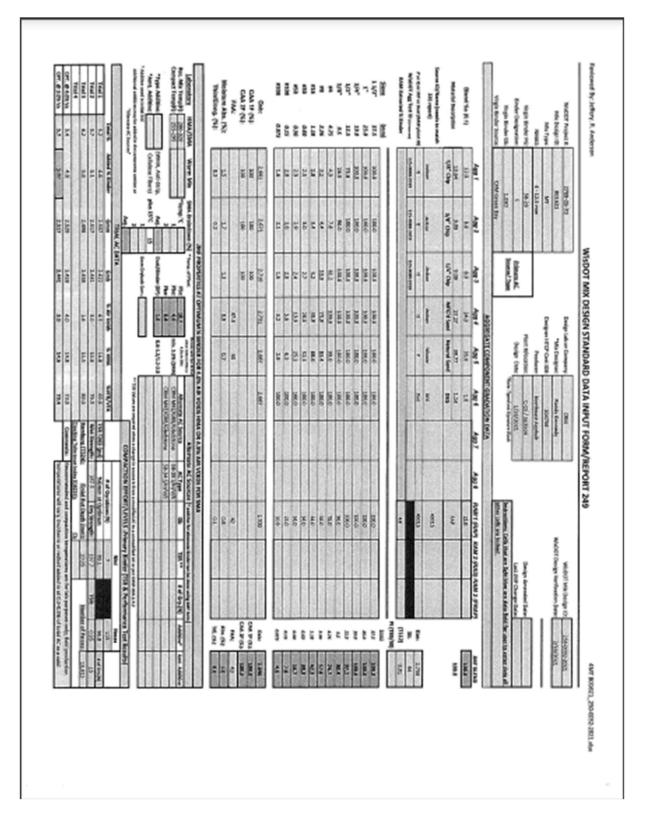
- American Society of Testing and Materials (2019). ASTM D8225-19: Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature. ASTM International.
- American Society of Testing and Materials. *ASTM E 178-21: Standard Practice for dealing with Outlying Observations*. ASTM International. 2021.
- Azari, H. 2014. Precision Estimates of AASHTO T 324, Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). Transportation Research Board. Washington, D.C.

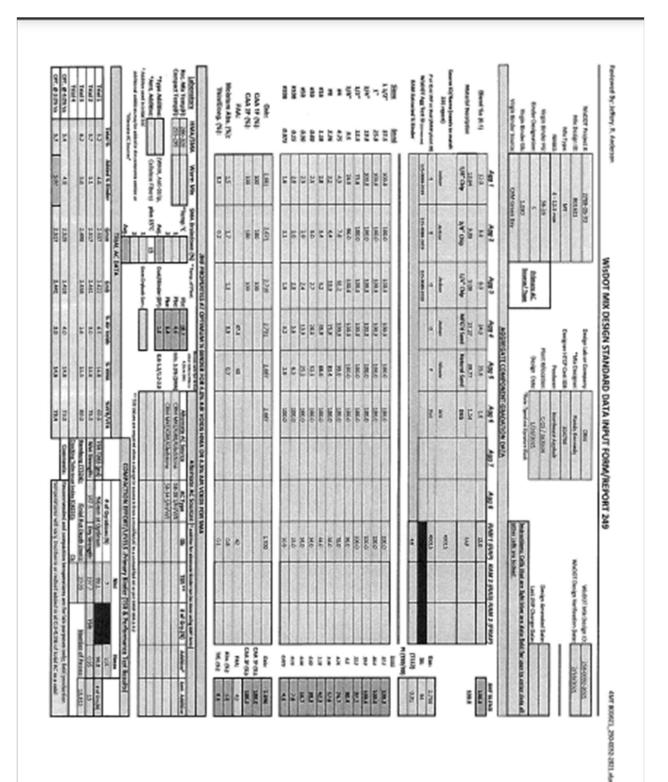
Bahia et al. Field Aging and Oil Modification Study. WHRP Project 0092-17-04, 2018.

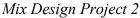
- Chen, C., F. Yin, P. Turner, R. West, and N. Tran, 2018, Selecting a Laboratory Loose Mix Aging Protocol for the NCAT Top-Down Cracking Experiment, Transportation Research Record I-13, Transportation Research Board.
- Chowdhury, A., Button, Joe., Wikander, J. 2004. Variability of Hamburg Wheel Tracking Devices. Texas Transportation Institute.
- Christensen, D. W., Bonaquist, R.F. 2006. Volumetric Requirements for Superpave Mix Design. NCHRP Report 567. Washington, D.C.
- "Cumulative Frequency." *Calcworkshop*, 20 Sept. 2020, https://calcworkshop.com/exploringdata/cumulative-

frequency/#:~:text=A%20cumulative%20frequency%20graph%20shows,the%20running %2Dtotal%20of%20frequencies.

Faheem, Ahmed, and Arash Hosseini. Evaluation of WisDOT Quality Management Program (QMP) Activities and ... Oct. 2018, https://wisconsindot.gov/documents2/research/0092-15-05-final-report.pdf. Halstead, W.J. 1979. NCHRP Synthesis of Highway Practice 65: Quality Assurance.


Transportation Research Board, National Research Council. Washington, D.C., 42 pp.


- Hughes, Charles. 1996. Synthesis of Highway Practice 232: Variability in Highway Pavement Construction. Transportation Research Board. Washington, D.C.
- Hughes, Charles. 2005. NCHRP Synthesis 346: State Construction Quality Assurance Programs. Transportation Research Board. Washington, D.C.
- Mateos, A., Jones, D. 2017. Support for Superpave Implementation: Round Robin Hamburg Wheel-Track Testing. University of California Pavement Research Center. UC Davis.
- Mohammad, L., Elseifi, M., Raghavendra, A., Ye, M. 2015. NCHRP Web-Only Document 219:
 Hamburg Wheel-Track Test Equipment Requirements and Improvements to AASHTO T
 324. Transportation Research Board. Washington, D.C.
- Montgomery, D.C. (2009), Introduction to Statistical Quality Control (Chapter 1), Wiley, NY.
- Moore, N., Steger, R., Bowers, B., Taylor, A. 2021. Investigation of IDEAL-CT Device Equivalence: Are All Devices Equal? Asphalt Paving Technology.
- Solainmanian, M., Kennedy, T. 1995. Production Variability Analysis of Hot-Mixed Asphalt Concrete Containing Reclaimed Asphalt Pavement. Texas Department of Transportation.
- Taylor, A., Moore, J., Moore, N. 2022. NCAT Performance Testing Round Robin. NCAT Report 22-01. Auburn, AL.
- "Test for Normality." *Minitab*, https://support.minitab.com/en-us/minitab/20/help-and-howto/statistics/basic-statistics/supporting-topics/normality/test-for-normality/.
- VanFrank, K., Romero, P. 2020. Balanced Asphalt Concrete Mix Performance in Utah, Phase
 IV: Cracking Indices for Asphalt Mixtures. Utah Department of Transportation Research
 & Innovation Division.


- West, R., Hand, A., Weiss, J., Musselman, J., Moore, N. 2023. NCHRP Project 10-116:Quantifying Variability in Quality Characteristics of Pavements. Transportation Research Board. Washington, D.C.
- West, R., Yin, F., Rodezno, C., Leiva, F. 2021. Balanced Mixture Design Pilot and Field Sections. Wisconsin Highway Research Program.
- West, R., Yin, F., Rodezno, C., Taylor, A. 2021. Balanced Mixture Design Implementation Support. Wisconsin Highway Research Program.
- Wisconsin DOT. 2021. WI State-of-the-Practice Approach A. National Asphalt Pavement Association.
- Yin, F., E. Arambula, R. Lytton, A. E. Martin, and L. G. Cucalon. 2014. Novel Method for Moisture Susceptibility and Rutting Evaluation Using Hamburg Wheel Tracking Test. Transportation Research Board.
- Zhou, F. 2019. Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control, and Quality Assurance. NCHRP IDEA Project 195, Transportation Research Board.

Appendix

Mix Design Project 1

MATHY CONSTRUCTION CO. GENERAL CONTRACTORS

POST OFFICE BOX 189 ONALASKA, WI 54650

FAX 608-781-4694 PHONE 608-781-4683

Report of Bituminous Mix Design

Project Name	Dubuque - Shullsburg STH 11
Date	August 27, 2021
Project #	1706-00-70
Test#	601-21-4MTR301
County	Grant
Specifications	12.5mm MT Design
Course/Layer	

	Percent	Material		1		Location	/ Source	-		~	Gsb		
1	28	1/2" Was	hed Chips	s(1248)		Browns B	Bottom 24	88,3E Du	buque, l	A	2.698		
2	33	3/16" Wa	shed Mar	n Sand(140	13)	Browns E	Browns Bottom 24,88,3E Dubuque,IA						
3	17	1/2* Scre	ened San	id(5502)	2-30	Tegeler F	Tegeler Pit 26,89,3W Deleware, IA						
4	22	RAP(6.0°	% AC)(72	06)		Plant 1 R	AP				2.671		
5	42250	1.46	10	199							- 010044000		
6	÷.												
7		1				-9							
8	(_						
otal		1	2	3	4	5	6	7	8	Comb Gab	2.696		
Virgin A	gg Blend	35.90	42.31	21.79			J	J	J	Comb G	2.734		

Appregate Gradations

Sie	eve	Ś			Mate	rial				Job Mix	Sp	ec
(Std)	(mm)	1	2	3	4	5	6	7	8	JOD MIX	High	Low
2	50	100.0	100.0	100.0	100.0	3	3	3	9 6	100.0	8 9	
1.5"	37.5	100.0	100.0	100.0	100.0	(K.	¥	i á	100.0	형	
1"	25	100.0	100.0	100.0	100.0					100.0		
3/4"	19	100.0	100.0	100.0	100.0	<u>.</u>	8 	8 	ģ	100.0	£ 3	
1/2"	12.5	92.0	100.0	100.0	94.0					96.4		
3/8"	9.5	60.0	100.0	100.0	88.0		ŝ.	ŝ.	š	86.2	8 - 3	
#4	4.75	13.0	97.0	98.0	69.0					67.5		
#8	2.36	2.1	67.0	86.0	58.0	(2	2 2	Q	50.1	新した	
#16	1.18	1.4	42.0	70.0	51.0	3	3	3	8 8	37.4	8 8	
#30	0.6	1.3	28.0	46.0	41.0	2	5	8	i i	26.4	8	
#50	0.3	1.2	18.0	14.0	30.0	Ş	3	8	8	15.3	8 - 8	
#100	0.15	1.1	8.0	1.8	16.0	3	3	8	8 6	6.8	8 9	
#200	0.075	1.0	2.7	1.0	9.7		210	22		3.5	100 100	
Soun	dness	225-57	225-57	3	6	3	2 2	24 12	Q 1		121	Max
AR 100	/500 Rev	2021	2021	÷		(š	š	Ý		13 & 4	5 Max
Crush 1	Face (%)	100.0	100.0	25.0	99.0)		99.0	75	Min
Crush 2	Face (%)	100.0	100.0	23.0	99.0		8 	<u>e</u>	é 👘	99.0	60	Min
Sand	Equiv.									88	40	Min
Flat & E	long (%)	0.9	3	0.5	0.1		8	8	ê 🚺	0.7	5 N	lax
Fine A	gg Ang		49.7	40.5	43.2					43.8	43	Min
	r Abs.	1.1	0.9	0.7	1.0		6	6	a) S	0.9	1	

Test Methods: D312, T176/D2419, T11/C117, T27/C136, D4791, D5821, T304/C1252, T96/C131, T209/D2041, T166/D2726

MATHY CONSTRUCTION CO.

GENERAL CONTRACTORS

829 19TH AVE N POST OFFICE BOX 188 ONALASKA, VII 54664

PHONE 008-781-4883 FAX 088-781-4694

Report of Bituminous Mix Design

Project Name	Dubuque - Shullaburg STH 11
Data	August 27, 2021
Project #	1708-00-70
Teet #	501-21-4MTR301
County	Gnent.
Bpecifications	12.5mm MT Design
Courses/Lever	

Mix Properties

Tila #	- 1 1-	2	3	4	5	
AC Content (% by WI)	5.0	5.6	8.0	8.5		5.4
Compaction Level	Deelgn	Dasign	Deelga	Deelgn		Mex
Air Voide V. (%)	6.3	3.7	22	1.0		42
%G @ N.	89.4	90.6	82.0	92.9		90.5
%Gmm @ Name	P4.7	86.3	87.A	99.0		PALA
VMA (%)	15,7	15,4	13,2	15.3		14,8
VFA (%)	00.5	76.0	85.6	93.2		71.8
Density (kg/m²)	2391	2412	2433	2442		2428
Gma	2.381	2412	2.438	2.442		2.425
G _{ma}	2.525	2.605	2.487	2488		2.000

LO Y TO	DONE
N	7
Na	75
N	115

Г	Antikinip
Г	None

23

Nitz Deelan

			worden faanse mendel de semande	
Vi Vi	d Lipo	Opecification	Primary AC Source	1
3.0	4.0	() () () () () () () () () ()	MIA - La Grosse	P
6.7	5.4		Alternatio Sources	6
4.4	4.1	£	MIA - La Crosse	P
15.3	16.6	14.5 Minimum	MIA - La Crosse	P
80.4	74.1	70 - 78	MIA - La Cases	P
2.498	2.609	÷		Т
2.423	2409			Г
\$2	4.9	5		T
0.5	0.5	8		
0.7	0.7	0.8 - 1.2	% Ender Po	a palma
	90.4	< 89.0 Rec	3.0	ġ.,
	96.8	~96.0	22.8%	Г
	98.8	SH-C Max		-
8	5.8	75 Minimum	Average # of Gynations	Т
276	-300			
	3.0 6.7 4.4 16.3 80.4 2.498 2.423 3.2 0.5 0.7 0.7 8 8	5.7 5.4 4.4 4.1 16.3 16.5 80.4 74.1 2.498 2.609 2.423 2.409 3.2 4.9 0.5 0.5 0.7 0.7 90.4 95.9	3.0 4.0 6.7 5.4 4.4 4.1 16.3 16.5 14.5 Minimum 80.4 74.1 70 - 78 2.498 2.609 2.423 2.409 3.2 4.9 0.5 0.5 0.7 0.8 - 1.2 90.4 < 89.0 Max	Value Opecification 3.0 4.0 5.7 5.4 4.4 4.1 16.3 16.5 16.4 74.1 80.4 74.1 80.4 74.1 70 - 78 2.498 2.609 3.2 4.9 0.5 0.5 0.7 0.7 0.8 78.0 90.4 480.0 16.5 1.2 3.2 4.9 0.5 0.5 0.7 0.7 0.8 78.0 98.8 98.0 98.8 98.0 98.8 75 Minimum

Primary AC Source	ACType	66
MIA - La Catego	PE 663-26	1.029
Alternatio Sources		
MIA - La Crosse	P6 655-34	1.023
MIA - La Crosse	PG 685-34	1.020
MIA - La Crosse	PQ 581135	1.081
% Ender Pa	pitormani	_
3.0	4.0	

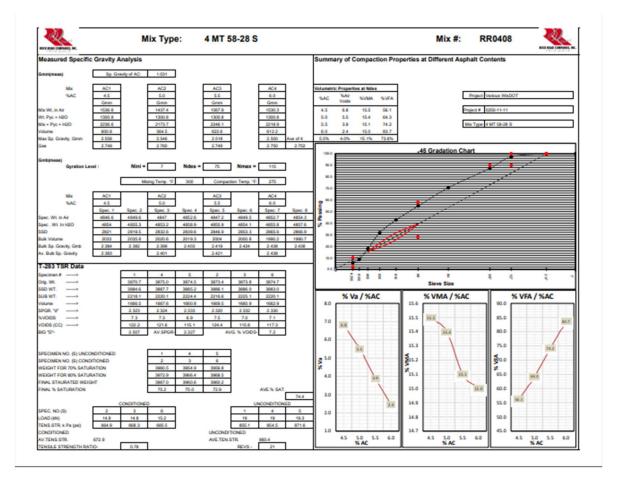
Since this dasign is material specific, the conclusions and recommendations contained within any

catelene and any material extension in a construction of a construction of the material of the second from material extension of a construction of the second second restriction of the second second

Signature get 5. gr Cert. No. Clade: 100163 6/27/2021

Mix Design Project 4

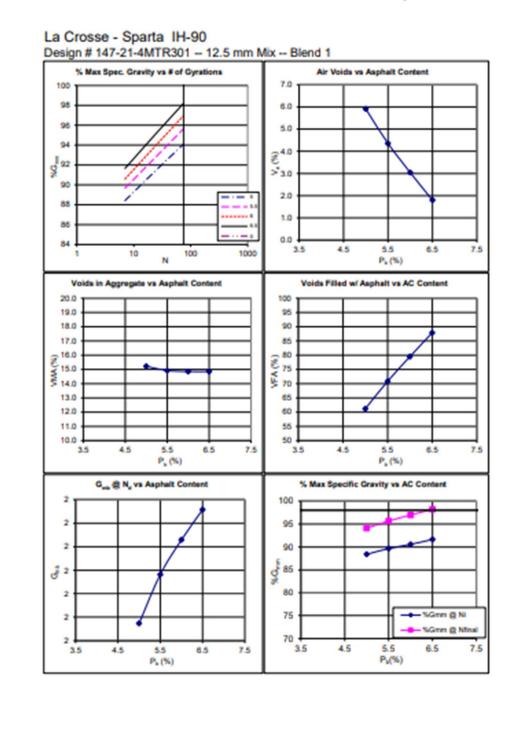
Reviewed By: Jeffery. R. Anderson


WISDOT MIX DESIGN STANDARD DATA INPUT FORM/REPORT 249

4MT 802022_25

Trial 4								Coucking Tolerand	index Departs	0		Section Provide	and the second s	Service -
1000 3	9.6	20	1-5/1	1.403	6.2	123	0.0	ALC: NOT THE OWNER		THE PART OF A	10.10	19MILL	ALC: NO. OF TAXABLE	1700.
Trial 2 Trial 3	5.7	4.5	2.541	2.463	2.3	15.2	77.0	Wet Strength: Hemburg (T314)	393.7	Dry Strength: ht Depth (mm):	45L5 18.30	- THE	C.B7	15
Trial 1	\$2	4.0	2.561	2,454	5.0	15.4	67.5	TER T283 (pel)	NGmm e	Optimum	90,4		96.9	Autory
		Added % Sinder	Gmm	Gmb	N Air Volda	N VMA	NVTB/VTA			rtions (N)	7		115	_
			TRIAL AC	DATA							Nini		Netas	
***	twinate AC Sources	en o constantes	AVE	a a a a a a a a a a a a a a a a a a a		22	and and the state					SR & Performa	nce Test Re	suits)
litical additions ma	ty he added in the	to realize dreaments	-			· .	* ISR Wakes are ma	alled when a sharge	In source is from a	modified AC to a use	nulfed AC or ser	CMM MILLER		2010
Amt. Additive:		Cellulose Fibera)	plus 15°C 15	Green Drylack Cort.										-
Type Additive:		WMA, Anti-Strip,	Avg.	Dust/Binder (DP)	10	0.6-1.2/1.2-2.0		and the second	and served and the	2	5	-	-	
		2000 200400	2	Pba	0.8	The second	CRM MKE/GR	5/Giadatone	55-34 S/H/V/E	Q ()				
npact Temp(F):		1	1	Pbe	4.7	min. S.SN (SMA)	CRM MKE/GR	S/Gleditone	58-28 S/H/WE	2 - CO (68 - 1	(and service servic	Station -	
. Mix Temp(F):	280-320	Sector Contraction of the	*Temp.'C	Pbr		Aller COL & Haller	Aternate /	AC Source	ACType	Gb	758 **	# of Gry.(N)		Aprt. Ad
aboratory	HMA/SMA	Warm Mix	SMA Draindown (N			COLUMN TO THE OWNER					marte Minder can be	done using 2007 for	J	
			1.4	WF PROPERTIES A	T OPTIMUM N	SINDER FOR 4 0	N AR VOIDS H	MA OR 4.5%	R VOIDS FOR	MA				
Thin/Elong	-twi-	0.4	13	S.,	1								THE (N):	0.
Moisture Ab		0.8	1.0	0.6	1.0					0.7	-		Abs.(N):	0.1
FAA				46	41		-	1		44	-		FAA:	42
CAA 2F		100	100				-		-		<u> </u>		CAA IF (%):	300
CAA IF		100	100	1. Contraction of the second s			1						CAA IF (%):	10
Geb:		2,775	1.765	2.776	2.567	2.667				2.739			Gebr	2.7
													Page 1	-
#200	0.075	1.0	1,2	17	2.3	100.D				11.1			4.675	
#100	0.15	11	13	3.5	4.0	300.0	3	e - 19		16.8	((\$.15	. 6.
#50	0.30	1.1	1.4	6.5	21.3	\$00.0	1	1		23.1			6.89	- 15
830	0.60	12	15	11.5	74.6	300.0	9	(101	1		6.60	37
#16	1.10	1.2	15	22.5	90.6	300.0				45.7			1.18	47
-	2.36	1.5	1.7	46.6	96.3	100,0	2	i (2)		58.1			2.85	57
-	4.75	1.6	61	90.0	100.0	100.0		. S		75.9	{		4.05	. 73
3/8*	9.5	20.0	89.0	100.0	100.0	300.0	0	() (i		97.0	1 (1	8.5	
1/2*	12.5	80.0	100.0	100.0	100.0	300.0	1	2		100.0	5 K		12.5	90
3/4*	19.0	100.0	100.0	100.0	100.0	100.0	1	5 - 24		100.0			28.0	10
1"	25.0	100.0	100.0	100.0	100.0	300.0		: 5		300.0	4		25.0	20
11/2*	37.5	100.0	100.0	100.0	100.0	100.0	2	: 0		100.0	1	1	\$7.5	10
Save	(mm)												(card)	-
and increased											-		PI (189/90)	ų
RAM Devacted 1			227000702020	- 22	28 C	× 72	7	1 S.		ê (x - 1	:		(7112)	0
or Q or MF or Dat MisDOT Agg Test I		4 225-0006-2020	Q 225-0006-2030	R	-	Diet				40.07			Gae:	27
	(C)		12			Duet				40027			1,222,131	2.7
nce ID/Name (ne 225 repor		Denmark	Denmark	Denmert.	Ahmdt Pit	DEG				40007				
10.00				1			-							
Material Desc	ription	s/a" Chip	3/8" Chip	MIG'd Send	Natural Sand	DEG				RAP.				
Bland %s	(0.1)	30.0	11.0	20.0	34.5	0.5	3	: 2		24.0	4			100
	20	Agg 1	Apg 2	Agg 3	Apg 4	Agg 5	Agg 6	Agg 7	Agg 8	_	RAM 2 (RAS)	RAM 2 (FRAP)		JMF B
						ATE COMPONE								
Vigin 8	Inder Source:	CRM G	insen Bey		1					other cells are l	octaid.			
	in Binder Gb:		080	Source/ Type			Note Typed out Sign	atture should				this are data for	AL POIL MENT THE	and the state
	Designation:		\$	Primary AC		Design Date:	3/2/2		20			MF Change Dets:	d	_
	in Binder PG:		6-28	and the second s	,	lant A/location:	Portable /					Amended Detec	-	
	NMAS:		2.5 mm	-	1	Producer:	Northeast							_
	Miz Type:		WIT	-	Designer	HTCP Cert ID#:	104							
A	Ab Design ID:		2023	-		*Mix Designer:	Randy E				MisDOT Design V	Vertification Date:	1/21	1/2022
		10000				100 C 12 C 10	100000000000000000000000000000000000000	1999 av			1993 Contemport	S. 66 S. 6 S. 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	100000
	OT Project #:	4125	-14-00		Design La	ab or Company:	01	M			WhiDO	T Mix Design ID:	250-0.	085-2022

Mix Design Project 5


<u> </u>				* Reci		Road Co			esign	н.					2
Project	Various V	TODAY			Spec.	WaboT]		Plant Location	289/Detafield	1			Over	\$/\$1,9022
Project B.	6250-1	1-11			RR Ma #	RRD408	1		MD Tech Signature	-spay	1			DOT Vec Date	4/5/2022
Ms Type:	4 MT SI	-38 S			WisDOT Mix Veril	250-0051-2022	j		MD Tech Plint :	Jan Waxam	j				
Ag		Rec 1	Rec 2			Agg 1	Agg 2		Agg 2	Agg 4	854F / MF		ASP	HALT]
Approgate	Description	WLF 10" RAP	WILF RAS			WLF SIT ST	WLF 3W ST		WLF WMS	WLF itlend Sand	156		\$9-29	\$]
Source D	esignation	West	Red.			MultiPa & Bit 10h R18E, Masteria County	Void Po, 8 36 Table R 185, Maskenha County		West Paul & Bit 10% RIM: Viewherke Charity	WestPo 8 88 104 RIM: Viscimite County	Wolf Devenan Plant	Fire Hi	Resou M	ACHE, Dubuque,	
Internal	Source #														1
	Test #					225-257-2021	225-257-2021		225-357-2021	225-257-2821	Ú0		1.0	Q1	1
ource Quality	Sound	NA				2.4	2.4		2.4	2.4	1				,
Data Data	LA 106/908	NA				4.1/23.0	4.1/234		4.1/23.0	41/23.0	1				
	Frenze	NA				1.3	1.3		13	1.3	1				
% Agg	regate	24.00	3.00			15.00	9.00		24.00	24.00	1.00	Sieve	Size	JMF Bland	4 MT (12.5mm N75)
1.12"	27.5mm	100.0	100.0			100.0	193.0		100.0	100.0	100.0	110*			
r M	25.4mm	100.0	100.0			100.0	100.0		103.0	100.0	106.4	1° 304°	35. denos	193.0	
314° 112°	12.5mm	103.0	103.0		<u> </u>	100.0	100.0		100.0	100.0	106.4	314"	12.000	97.3	100
3/8"	8.Smin	95.8	100.0			31.0	96.4		100.0	96.4	100.0	38"	8.6mm	87.5	90 max
84	4.75mm	77.3	99.4			1.9	24.8		100.0	90.3	106.6	84	478mm	76.7	
19	2.36mm	\$7.4	98.8			1.7	2.8		65.9	85.9	106.6	89	2.36mm	54.8	28-58
F16 F20	1.18mm	423	81.9 59.2			1.6	2.1		40.0	79.8	105.4	#10 #20	C-Barry	423	
850	0.3446	18.7	\$2.3			1.5	2.6		18.0	25.0	106.8	#50	0.3um	17.8	
#100	D.15um	12.3	44.5			5.4	2.5		6.0	6.4	98.0	8100		8.7	
8200	4.475am	8.1 92	23.4			1.2	3.3		2.8	3.3	91.0	CAA 1		92.3	24-104
	1F (%)	92.1				95.9	100		1	28.6		CAAI		90.8	60
Flat & E	langeted											Flat & El		0.05	Fait & Elong
	AD4	3.3				1.5	1.4		1.3	1.1		A99		1.5	A22 A04
	nb AA	2.698	2.541		L	2748	2.319		2,317	2454	2.708	9		2.495	GID 40 MIN
	h AC	49%	24.9%		1										Sand Equiv.
	% Gran @			1			uid AC Properties				100.00	eric Propr		4	PI (TERNIC)
NLaval	Nini Nini	Ndes	Nitas			Tate Po	\$.5%			1AC	THAT VOID			S-VMA	SWEA
Revis	2	75	115			Virgn Pb	2.6%			4.5%	6.8%			15.5%	58.1%
% Genre	89.4%	96.3%	97.4%			Pba	476			5.5%	5.5%	_	-	15.4%	64.2% 34.2%
H	dA Maing and Compa	ector Temperatures				RAM PD	1.9%			6.0%	2.4%			15.0%	84.0%
Marg serap	200	Compaction Temp.	3795						4% Va Ostimun		4.0%			15.1%	72.6%
	4 MT 58-28 S		F 10			Optimum Der	sign Data @ 4			MIXA:	RR0408 VMA			Gm	
	rations 5		% AC			teplacement 9%		% Voids			VMA 15.1%		-	2.53	
	-												<u> </u>		
	mb		VFA			ise .		Gsb		0	Alter Okiter			TS	
2/	119		73.6%		2.	750		2.695		100	1.21 21 Bearl on Pag			0.7	8 Ann
	4 MT 58-28 S						esign Data 🙊	3.0	% Va	MIX#:	RR0408				
	s s		% AC 5.8%			teplacement		% Voids 3.0%			VMA 15.0%			Gm 2.5	
												_	-		
	132		VFA 80.0%			750	<u> </u>	Csb 2,695		Dus	1.13		_	15	

10	RUCTION		346	THP	(CO	MST	RU	CILIO	ON (CO.		
131		5			GENE	RAL CO	NTRAC	TORS				
MA	(TF	IY	920 10 TH	AVE N	POST	OFFICE B	OX 189	ONA	LASKA,	WI 54650		
er.		15		PHONE	608-781-4	683	FAX 608	781-4694				
1	ASKA	~										
			R	eport of	Bitumi	nous Mi	x Desig	n				
Project N	lame		e - Sparta	1H-90				1				
Date Project #		August 2 1074-00-								1		
Test#			MTR301									
County		Monroe		0								
Specifica Course/L		12.5mm	MT Desig	n								
	te Sourc	05						•				
1000000		Material				Location	Source /				Gab	I I
1	18						16,2W M				2.588	
2 21 3/16* Washed Man Sand(1403) 3 22 1/4* Washed Man Sand(3402)					11,16,3W		k		2.650			
4	19	3/16" Screened Sand(5505)				Levis Pin	es 6,21,3				2.620	
5	20	RAP(6.1	% AC)(72	30)		1-90 Millin	igs.				2.672	
7												
8										6 1 1 1		
Total	gg Blend	1 22.50	2 26.25	3 27.50	4 23.75	5	6	7	8	Comb G _a	2.642	
_			20.20	21.00	20.10					Cond Ca	2.110	
the second value of the se	te Grada	tions			Mat	erial					Sc	00
(Std)	(mm)	1	2	3	4	5	6	7	8	Job Mix	High	Lo
2"	50 37.5	100.0	100.0	100.0	100.0	100.0			<u> </u>	100.0	\vdash	
1"	25	100.0	100.0	100.0	100.0	100.0				100.0		
3/4*	19	100.0	100.0	100.0	100.0	100.0				100.0		
1/2*	12.5	63.0 33.0	100.0	100.0	100.0	94.0			<u> </u>	92.1 84.3		
3 4	4.75	8.8	99.0	96.0	97.0	54.0				72.7		
#8	2.36	6.4	73.0	60.0	89.0	40.0				54.6		
#16	1.18	5.9	47.0	31.0	77.0	31.0				38.6		
#30	0.6	5.6 5.3	34.0	15.0	51.0	23.0			—	25.7	\vdash	
#100	0.15	4.4	11.0	3.0	1.8	12.0				6.5		
#200	0.075	3.1	3.0	1.5	0.8	8.2				3.3		
	dness V500 Rev	225-261 2021	225-18 2020	225-19 2021							121	Max 15 Ma
	Face (%)	100.0		100.0	34.0	100.0				98.6	-	Min
	Face (%)	100.0	100.0	100.0	33.0	100.0				98.6		Min
Sand										87	-	Min
	long (%) gg Ang	1.7	0.8	0.5	1.3	0.1 53.7				1.1 43.5	-	Aax Min
Fine A										1000		

August 2 1074-00	se - Spart 25, 2021			us Mix I	e e a .g.				
1074-00						1 _			
147-21-4	-12							0.	
	MTR301						- H		
						1 ~			
12.5mm	MT Desig	n							
<u> </u>						1			
	1	2	3	4	5	6	ľ	Gyrat	ions
by Wt)	5.0	5.5	6.0	6.5		5.6	- 1	N	7
Level	Design	Design	_			Мах	1	Na	75
	5.9	4.4	3.0	1.8		4.1	- 1	Na	115
							, r	Antic	trio
)	15.2	14.9	14.8	14.8		13.9	ł	Nor	-
)	61.2	70.8	79.5	87.9		70.2	•		
im")	2357	2378	2393	2406		2410			
	2.505	2.487	2.468	2.450					
	Ma	A 10	Creati	frates	Note: tri		_		Gð
<u> </u>	_	_	speci	Ication			_		1.029
	6.0	5.6							
5	4.8	4.4				MIA - La Cros	550	PG 58H-28	1.030
	14.8	14.9						PG 528-34	1.023
			70	- 76					1.023
			-			NIN-LE CIU	205	PG 301-34	1.020
	5.1	4.7		-		<u> </u>	_		
	-								
	1.0	1.0							
Ratio		1.0		- 1.2				acement	
N,	1.0	1.0 0.7 89.9	< 89.	0 Rec		3.	0	4.0	
Ni N _d	1.0	1.0	< 89.			3.			
N,	1.0	1.0 0.7 89.9 95.9 97.1	< 89. - 5 98.0	0 Rec 6.0	Averag	3.	0%	4.0	8
	Level (%) Ni Israi (m ²)	by Wt) 5.0 Level Design (%) 5.9 Ni 88.4 knai 94.1) 15.2 61.2 (m ²) 2357 2.357 2.505 / Va 3.0 b 6.0 b 4.8	by Wi) 5.0 5.5 Level Design Design (%) 5.9 4.4 Ni 88.4 89.7 kmi 94.1 95.6) 15.2 14.9) 61.2 70.8 m ³) 2357 2378 2.357 2.378 2.505 2.487 / Value 3.0 4.0 b 6.0 5.6 b 4.8 4.4 14.8 14.9 79.8 73.1 2.468 2.483	by Wt) 5.0 5.5 6.0 Level Design Design Design Design (%) 5.9 4.4 3.0 Ni 88.4 89.7 90.6 Main 94.1 95.6 97.0) 15.2 14.9 14.8 0 61.2 70.8 79.5 Im ³) 2357 2378 2393 2.357 2.378 2.393 2.357 2.505 2.487 2.468 V Value Speci 3.0 4.0 5.6 b 6.8 4.4 14.8 14.9 14.5 M 79.8 73.1 70 2.468 2.483 2.483	by Wt) 5.0 5.5 6.0 6.5 Level Design Design Design Design (%) 5.9 4.4 3.0 1.8 Ni 88.4 89.7 90.6 91.6 Keat 94.1 95.6 97.0 98.2) 15.2 14.9 14.8 14.8 61.2 70.8 79.5 87.9 Im ³ 2357 2378 2393 2406 2.357 2.378 2.393 2.406 2.505 2.487 2.468 2.450 V Value Specification 3.0 4.0 b 6.0 5.6 b 4.8 4.4 14.8 14.9 14.5 Minimum 79.8 73.1 70 - 76 2.468 2.483	by Wt) 5.0 5.5 6.0 6.5 Level Design Design Design Design Design (%) 5.9 4.4 3.0 1.8 Ni 88.4 89.7 90.6 91.6 Mini 94.1 95.6 97.0 98.2) 15.2 14.9 14.8 14.8 (%) 61.2 70.8 79.5 87.9 (m ³) 2357 2378 2393 2406 2.357 2.378 2.393 2.406 2.505 2.487 2.468 2.450 Value Specification Specification 3.0 4.0	by Wt) 5.0 5.5 6.0 6.5 5.6 Level Design Design Design Design Design Max (%) 5.9 4.4 3.0 1.8 4.1 Ni 88.4 89.7 90.6 91.6 89.7 (%) 5.9 4.4 3.0 1.8 4.1 Ni 88.4 89.7 90.6 91.6 89.7 (%) 15.2 14.9 14.8 14.8 13.9) 15.2 14.9 14.8 14.8 13.9 (%) 2357 2378 2393 2406 2410 2.357 2.378 2.393 2406 2.410 2.505 2.487 2.468 2.450 2.483 Mote: trials must brack // Value Specification MA - La Cro 3.0 4.0 MIA - La Cro b 6.0 5.6	by Wt) 5.0 5.5 6.0 6.5 5.6 Level Design Design Design Design Design Max (%) 5.9 4.4 3.0 1.8 4.1 Ni 88.4 89.7 90.6 91.6 89.7 y 15.2 14.9 14.8 14.8 13.9 y 61.2 70.8 79.5 87.9 70.2 Im ³ 2357 2378 2393 2406 2.410 2.357 2.378 2.393 2.406 2.410 2.505 2.487 2.468 2.450 2.483 Mote: trials must bracket de // Value Specification MIA - La Crosse 3.0 4.0 MIA - La Crosse MIA - La Crosse b 6.0 5.6 MIA - La Crosse b 4.8 4.4 MIA - La Crosse MIA - La Crosse MIA - La Crosse	by Wt) 5.0 5.5 6.0 6.5 5.6 Level Design Design Design Design Design Max (%) 5.9 4.4 3.0 1.8 4.1 Na Ni 88.4 89.7 90.6 91.6 89.7 97.1 Ni 88.4 89.7 90.6 91.6 89.7 97.1) 15.2 14.9 14.8 14.8 13.9 70.2 (m ³) 2357 2378 2393 2406 2410 2.357 2.378 2.393 2.406 2.410 2.505 2.487 2.468 2.450 2.483 Mote: trials must bracket desired V_s Mix-La Crosse PG 588-28 Atemate Sources MiX-La Crosse PG 588-28 MiX- La Crosse PG 588-28 MiX-La Crosse PG 588-34 MiX- La Crosse PG 588-34 MiX-La Crosse PG 588-34 MiX- La Crosse PG 588-34 MiX-La Crose

Mathy Construction Co. -- MTE

Mix Design Project 7

Reviewed By: Jeffery, R. Anderson

WISDOT MIX DESIGN STANDARD DATA INPUT FORM/REPORT 249

		-		(A)	120.00						14.12		10	
	of Project #:		-00-72		Design	Lab or Company:		nstruction			1.111	OT Mix Design ID:	55 51	
M	a Design ID:		MTRW301		192230-	*Mix Designer:	John Jos		WisDOT Design Vertilization Date:					
	Mix Type:		WT		Designa	r HTCP Cert ID4:	100163							
	NMAS:		.5 mm			Producers	Northwas							
Virgh	n Binder PG:	5	5-28		1	Plant A/location:	67/Ash	land,WI				n Amended Dete:	5	
Binder (Designation:	2	\$	Primary AC		Design Date:	5/31/					MF Change Dete:	2.	
Virgin	Binder Gb:	(1	029	Source/ Type			Note Typed out Sig	all are shock		Instructions: Co	the thet are list	this are data for	id for user to	a minima dati
Virgin Bir	der Sources	MIA-1	La Crossa	1	16					other cells are i	nched.		consecution and	
					AGGRE	GATE COMPONE	INT GRADATIO	NDATA						
		Agg t	Apg 2	Agg 3	Apg 4	Agg 5	Agg 6	Agg T	Apg 8	RAM T (RAP)	RAM 2 (RAS	RAM 2 (FRAP)	1. s	JMF BL
Blend %s (0	1.1)	16.0	26.0	30,0	24.0	0 0,		2		22.0				100.
Material Descri	ption	S/8" Washed Chips(3236)	3/8" Bit Agg(3235)	3/15" Washed Man Send(S403)	Washed Sand(5405)					RAP(7250)			đ	10.
urce ID/Name (nea 225 report)		Highbridge North 16,45,3W Ashland	Highbridge North 16,45,3W Ashland	Crocked Lake 36,47,5W	Crocked Late 36,47,5W					Ashland 1/2"				
	Section 1.	10,40,3W Adhiand	0	Redald	Redaid					NAP NAP			Gasc	2.86
WaDOT Agg Test ID		225-33-2020	225-33-2020	225-58-2019	225-58-2019			8			-	1	SE:	2.00
RAM Detracted N	and the second se	S	25	25	20-11-0-0-1	2 (N		S - 95		14		3	(7112)	0.3
1000000000	a series												PI (TBD/90)	
Sieve	(mm)	51											Anant	1
11/2*	37.5	100.0	100.0	100.0	100.0	0 01	0	1 22		300,0	8 3	2	\$2.5	100.
1*	25.0	300.0	100.0	100.0	100.0					300.0			25.0	100.
3/4*	19.0	100.0	100.0	100.0	100.0			2		100.0		1	18.0	300.
1/2*	12.5	300.0	100.0	100.0	100,0					200.0			12.5	100
3/0*	9.5	100.0 25.0	100.0	100.0	100,0					98.0	-	-	8.5	99.0
2	4.75	3.0	52.0	96.0	36.0			<u> </u>		0.08		-	4.75	55.0
#16	1.10	2.5	36.0	41.0	72.0	1 1		1 1		55.0		1	1.18	43.3
100	0.60	2.2	25.0	17.0	49.0	0 01	0	: 8		41.0	6	3	0.00	30.4
#50	0.30	1.6	17.0	15.0	20.0			1		25.D		1	6.80	16.5
#108	0.15	1.5	11.0	49	3.5	0 0		10		14.0			8.15	7.5
#200	0.075	1.0	7.2	17	11			1 13		10.0		1	4.675	4.7
Gab:		2.615	2.606	2.619	2.668	<u>г т</u>		-		2.654		í	Gate	2.65
CAA IF (%		1.00	100	100	73					2.054			CAA IF (%)	2.60
CAA 2F (%		100	100	100	62			8		91			CAA IF (%)	94.0
FAA:	10 I I		49.9	47.7	40.3					41.3	1		FAA:	43.5
Moisture Abs	061	0.6	1	0.2	0.5			i i		1	÷		Abs. (%):	0.7
Thin/Elong.		4.5	3.7	22	0,6	Ó Ó;	á d	1 12		0.4	()	3	TH.(%)	0.9
		2												íl.
				F PROPERTIES AT	FOPTIMUM %	BINDER FOR 4.0	% AIR VOIDS H							
Laboratory t	HMA/SMA	Warm Mix	SMA Draindown (%) "Temp."C	* Terep. of Plant	-	ARE LOUIS CALL		Alterna AC Source			TSR **	a dama talog 3MF han		
mpact Temp(F):		220-240	1 I	Pbe	20.0	min. S.SN(SMA)	MIX-L	Crosse	AC Type PG SBH-28	Gb 1.015	138	# of Gry.[N]	ACCIDIN**	Amt. Add
1999	Station of S	Segurar Science and	2	Pbs:	0.2		MIA-L		PG SES-54	1.025			5 3	
*Type Additive:		(WMA, Anti-Shrip,	ANE	Dust/Binder (DP):	8.9	0.6-1.2/1.2-2.0	MIA-L		PG 581-34	1.025	5			
*Amt. Additive:	0.30%	Celuiose Fibers)	plus 15'C 15	time byteck Car.			MA-L	Crosse	PG SEV-34	1.027			S	-
difficul additions may		contracts section or	2	ann orpara cars		r f	* Skules av re	pited when a change	in source is from a	conditional AC to a vehi	modified NL or per	CHM BRATAT	-	Second .
*Ala	mate ACSource		Ave				STREET, STREET, STREET, ST					TSR & Performa	ince Test Re	(ethue
			TRIAL ACT	ATA							Nini		Netas	
	Total N	Added S Sindler	Gram	Gmb	N Air Voida	S VMA	SVIB/VIA			ettons (N)	7		115	
Trial 1	5.0	3.9	2.471	2.335	55	16.4	66.4	75R 7283 (pet)	NGmm et	Optimum	90.4	-	95.8	A set time
Trial 2	5.5	4.4	2.453	2.250	4.2	16.3	74.1	Wet Strength:	94.3	Dry Strength:	101.7	118	CUS	- 20
Trial 3 Trial 4	6.0	4.9	2,435	2.368	2.8	16.1	82.6	Hamburg (1314) Conting Toleran	L Emini J	het Deuth imm)		Asami	our of Passes	
	5.5	45	2.450	2.379	4.0	16.2	75.4		Rinks: This is a li	VALUE NOT AN	0.15 Deal	m added as a WA	PM MPL	Pine .
OPT. @ 4.0% Va														

Mix Design Project 8

Reviewed By: Jeffery. R. Anderson

WISDOT MIX DESIGN STANDARD DATA INPUT FORM/REPORT 249

C-5 4HT 502321

Trial 4	5.4	47	2.401	2,562	4.0	14.5	72.A			and compaction	and the second se			
								Eracking Toleran	os indes (D8205)	Ch				
Trial 3	6.0	53	2.458	2,416	1.7	13.9	\$7.5	Chard-tone Interd	li: Inini	but Deoth Ammit	1.25	Mate	ber of Passet:	20000
Trial 2	5.5	4.8	2.477	2.364	3.5	34.5	73.8	Wet Strength:	101.4	Dry Strength:	99.0	TSR:	1.00	24
Trial 1	5.0	43	2.496	2,365	5.3	34.8	64.2	158 T283 (pel)		t Optimum		-	96.5	and time i
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Total S	Added % Binder	TRIAL AC	Gmb	N Air Volda	SVMA	SVIE/VIA	1	a dife	utions (N)	Nisi	-	Nmex 160	
		ē.	TRIAL AC	DATA.				COMI	ACTION EFFO	RT/LEVELS -Pri		on & Perform		(LINEA)
	say be added in the Alternate AC Source	somets section or				SC 83	** TSR Values are neg	prote celo lerio						
diffure and in suite		Sata way at	1	Genes Dryback Carr.	1.5				1	100				10 C
*Ant. Additive		Cellulose Fibers)	pkus 15°C 15				ŝ			Q	0	8 0		82
*Type Additive		(WMA, Anti-Strip,	Ave.	Dust/Moder (DP)		0.612/1.320	2			3	0 2	S		8
		9 - 52	2	Pbe	1.0			S/Gieditone			S 3			12
mpact Temp(7)		3 7	1	Pbe	4.5	min. S.SN (SMM)		B/Gladitione	58-26 S/N/V/E			The article	The line	Participation of the local distance
c. Mix Temp(F)		THE REAL PROPERTY IN CASE	"Temp."C	1	13.6	Aller Like States	Alternete		AC Type	Gb	TSA **	# of Gry.(N)		Ant An
Laboratory	HMA/SMA	Warm Mix	SMA Draindown (%)		Continued &	HERE FOR ALL	A ALL TURIS			antes * addition for alle	mate Minday one bu	dame indust BAT Av-		
				F PROPERTIES A	OPTIMUM	BINDER SOR A	W AIR WOUND I		IR VOIDS END	SMA				
Thin/Elon	8- (%):	05	0.5	- 11 (i					1	51			TAL (N)2	0.1
Moisture A		15	23	13	0.7	0.7			2	1	2		Abe. (%):	12
FAA	20 a		-10	47	48	41				42	1		FAA:	46
CAA 2F		97	96							1.1.1.1			CAASE (%):	97,A
CAA 1F		22	99			-	-			5	-		GAA 1F (%):	99,0
Gab	o	2.602	2.586	2.639	2.674	2.651	2.651			2.633	1		Gab:	2.636
	2			NR 1939 3				-	-			-	1.83	
#200	0.075	12	1.6	2.4	2.0	1.0	100.0	C 2	3	13.3	2		8.675	. 41
#100	0.15	1.5	2.0	5.0	4.0	4.0	100.0	2 2	2	16.0	Q	1	8.15	6.2
#50	0.30	15	2.0	15.0	13.0	16.0	100,0			27.0			0.00	13.4
#30	0.60	2.0	3.0	27,0	27.0	42.0	100.0	0		41.0	Q 3	6	0.00	24.8
#16	1.18	2.0	3.0	41.0	46.0	56.0	100.0	5		50.0	ą – j	6	1.12	35.4
-	2.36	2.0	4.0	64.0	77.0	72.0	100.0	1 1		63.0	S (0	2.06	\$2.5
	4.75	3.0	19.0	97.0	100.0	94.0	100.0	1 (j	2	61.0	8	1	4.75	72.5
3/8"	3.5	23.0	97.0	100.0	100.0	100.0	100.0		5	DED		1		88.6
1/2"	12.5	80.0	100.0	100.0	100.0	100.0	100.0			100.0			#15	97.2
3/4"	19.0	100.0	100.0	100.0	100.0	100.0	100.0	8		100.0	S 3	1	18.0	100.0
1"	25.0	100.0	100.0	100.0	100.0	100.0	100.0	1 2		100.0	3	1 1	50	100.0
11/2"	37.5	100.0	100.0	100.0	100.0	100.0	100.0	4 4		100.0	8	1	27.5	100.0
Sieve	(mm)												(max)	5 - 1
									-		2		PI (T18)/90)	
RAM Extracted		an married	and south state?						6	- 10	e 3	6 7	(7112)	0.6
WaboT Age Test		225-0050-2017	225-0050-3017	0.0	-					- Contract			SE:	91
Patamente	33562	,			Q		DEG			RAMI		-	Grec	2,703
225 rep		Oregon	Oregon	Oregon	(Micheld)	Oregon	40005.00			40005.00				
surce ID/Name (n	and in case i	2			Waterico					14. C		·	1	
Material Des	cription	S/8" Chip	3/8" Chip	MFG'D Send	MFG'D Send	Netural Send	DEG			1/2" FRAP			1	
	89.930	0.200	1	THE STORAGE	1.40.202 (contract)	ECONTREPART	1000		-	The second second			1 '	100.0
Bland %a		14.0	Agg 2 12.0	Agg 3	Agg 4	Agg 5	Apg #	A00 /	Agg 8	15.0	nale a (nAs)	TONIE O DITEAP	í i	100.0
		Apg 1			27. 7. 7. 7. 7			Agg 7	4			RAM S (FRAP		JMT BLE
					AGGRE	ATE COMPONE	ENT GRADATIO	NDATA						
	Binder Source:		livesion		-					other calls are I			10.000	error bies
	ngin Binder Gb:		017	Source/Type			"Note: Typed out Sign			Instructions: Co		thins are date t	aid for user in	enter det
Binde	r Designation:	6 0	5	Primary AG		Design Date:	2/12/	2021	1			MF Change Date		
- 10	igh Binder PG:	54	0-26			Plant A/location:	40005/ 7	Itchburg	1		Destar	Amended Date		
	NMAS:	4-13	2.5 mm	a	- E	Producer:	Раути ал	d Dolen	1					
	Mix Type:		нт]	Designe	r HTCP Cert IDE:	105	762						
	MOR Drandlu (CC	30	2321			"Mix Designer:	Gregory A				WisDOT Design Verification Detec			/2021
	Mis Design ID:		00000 22		CREW CONT	Sauce and the second	5	all and a second se					100000000000000000000000000000000000000	100 C

POST OFFICE BOX 189 ONALASKA, WI 54650

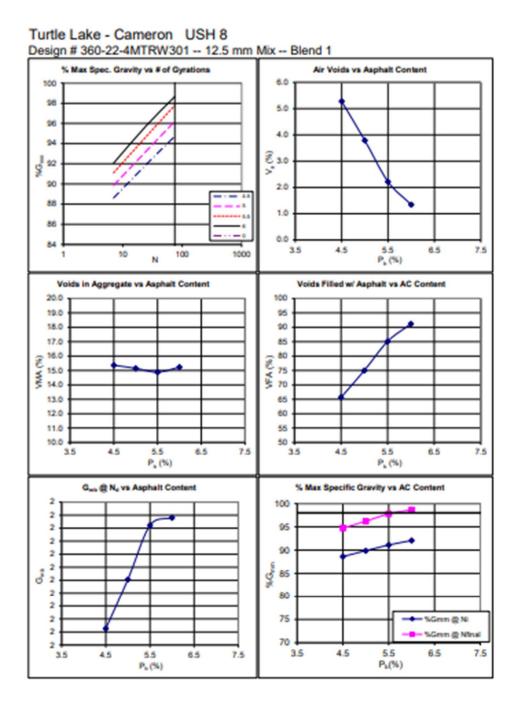
PHONE 608-781-4683 FAX 608-781-4694

Report of Bituminous Mix Design

Project Name	Turtle Lake - Cameron USH 8
Date	April 19, 2022
Project #	1570-05-63
Test#	360-22-4MTRW301
County	Barron
Specifications	4 MT WARM MIX
Coursell ayer	

920 10TH AVE N

Aggregate Sources


	Percent	Material				Location	/ Source				G			
1	18	3/4" X 3/	8" Bit Gra	vel		McLaine	9,35,13W	Barron			2.816			
2	22	3/8" Bt C	Gravel			McLaine	9,35,13W	Barron			2.772			
3	22	5/16" Wa	shed Mar	Sand		Safert 1,34,11W Barron								
4	21	5/8" Scre	ened San	d		McLaine 9,35,13W Barron								
5	17	RAP(5.2	% AC)			USH 8 Millings								
6														
7														
8														
Total		1	2	3	4	5	6	7	8	Comb G _{ub}	2.749			
Virgin A	gg Blend		26.83	26.83	25.61	20.73				Comb G _{ue}	2.768			

Aggregate Gradations

Sk	We .				Mate	erial				Job Mix	Sp	60
(Std)	(mm)	1	2	3	4	5	6	7	8	300 Mix	High	Low
2*	50	100.0	100.0	100.0	100.0	100.0				100.0		
1.5*	37.5	100.0	100.0	100.0	100.0	100.0				100.0		
1"	25	100.0	100.0	100.0	100.0	100.0				100.0		
3/4"	19	100.0	100.0	100.0	100.0	100.0				100.0		
1/2*	12.5	70.0	100.0	100.0	95.0	97.0				93.0		
3/8"	9.5	26.0	100.0	100.0	88.0	92.0				82.8		
#4	4.75	1.9	65.0	100.0	74.0	76.0				65.1		
#8	2.36	1.6	40.0	79.0	63.0	63.0				50.4		
#16	1.18	1.4	28.0	53.0	51.0	51.0				37.5		
#30	0.6	1.3	20.0	35.0	32.0	36.0				25.2		
#50	0.3	1.2	14.0	19.0	11.0	20.0				13.2		
#100	0.15	1.0	9.4	6.7	3.8	12.0				6.6		
#200	0.075	0.8	6.3	3.0	2.4	9.2				4.3		
Soun	dness	225-177	225-177	225-77	225-177						121	Max
LAR 100	/500 Rev	2022	2022	2021	2022						13 & 4	5 Max
Crush 1	Face (%)	96.0	100.0		8.0	94.0				82.9	75	Min
Crush 2	Face (%)	93.0	100.0		7.0	93.0				81.1	60	Min
Sand	Equiv.									84	40	Min
Flat & E	long (%)	4.0	0.7		1.1	1.5				2.5	5 N	lax
Fine A	gg Ang		49.2	47.9	42.1	42.0				45.8	43	Min
Wate	r Abs.	0.9	1.4	1.1	1.0	1.0				1.1		

Test Methods: D312, T176/D2419, T11/C117, T27/C136, D4791, D5621, T304/C1252, T96/C131, T209/D2041, T166/D2726

MATI	HY	920 10 TH		POST	OFFICE B	OX 189		SKA,	WI 54650	
CHALASKA	W	Repo		608-781-	4683 us Mix I		3-781-4694			
Project Name		ake - Cam	eron US	BH 8			1			
Date	April 19,								D'	
Project # Test #	1570-05	-63 4MTRW30	01					-		
County	Barron						1 ~			
Specifications	4 MT W	ARM MIX					1			
Course/Layer	1						1			
Mix Properties Trial #		1	2	3	4	5	6	ľ	Gyra	alions
AC Content (%	6 by Wt)	4.5	5.0	5.5	6.0		4.9	1	N,	7
Compaction	Level	Design	Design	Design	Design		Max	1	Na	75
Air Voids V		5.3	3.8	2.2	1.3		4.1	- 1	Na	115
%G _{na} @		88.6 94.7	89.9 96.2	91.1 97.8	92.1 98.7		89.8 96.6	ſ	WADMM	IX Additive
VMA (%		15.4	15.1	14.9	15.2		14.6			votherm
VFA (%	_	65.7	75.0	85.1	91.2		71.9			
Density (kg	(m ²)	2436	2455	2476	2479		2468			
G _{mb}		2.436	2.455	2.476	2.479		2.468			
Gas		2.572	2.552	2.532	2.513		2.556			
Mix Design						Note: tr	ials must brac			
Propert V.	ÿ	3.0	4.0	specif	ication		Primary AC Soc MIA - La Cros	_	AC Type PG 585-28	Gb 1.029
Design F	P.	5.3	4.9				Alternate Sou			
Added F	2	4.4	4.0				MIA - La Cros	_	PG 58H-28	1.035
VMA		15.1	15.1		mumini		MIA - La Cros	_	PG 585-34	1.025
VFA		80.2	73.5	70	- 76		MIA - La Cros	_	PG 58H-34	1.025
G _{ne}		2.544	2.556				MIA - La Cros	50	PG 58V-34	1.027
the second se		5.1	4.6		_		<u> </u>			
Pte		0.3	0.3							
			0.9	0.6	12		S. Dire			
P _{be} P _{ba} Dust/Binder		0.8					The second	der Rep	<i>inerrent</i>	
Paa Paa Dust/Binder %Goos @	N.	0.8	89.6		0 Rec		3.0	0	4.0	
Paa Paa Dust®inder %G _{mm} @ %G _{mm} @	Ni Ng	0.8	89.6 95.9	- 9	0 Rec 6.0		3.0			l
Paa Paa Dust/Binder %Goos @	N _d N _d		89.6	~ 9 98.0	0 Rec	Avera	3.0	0 .0%	4.0 18.4%	8

81

Mix Design Project 10

Reviewed By: Jeffery, R. Anderson

WISDOT MIX DESIGN STANDARD DATA INPUT FORM/REPORT 249

1145-22-417

Wiex	OTProject #:	1166	-07-79	12	Denign L	ab or Company:	American	Aphalt			White	TMix Ownign ID:	250-0	107-2022
	to Design ID:	1145-22-00	TR WORD 1(261)	1	10000000	*Mix Designer	Kennie I				Vis DOT De size V	Verification Date:	5/1	/2022
	Matya		NT .	1	Designed	HTCP Gention	101	_					4.	1.000
	NMAS:		2.5 mm			Producer	American							
Vini	in Binder PG:		128		1 .	Nati Afocation	Haynyhi				Owner	Amende d'Date :	12	
	Ownign attion:		5	Primary AC	· · · ·	Design Date:	5/12/				1.	Mi Change Date	2	
	1000		029	Sauras/Type			Note Typinel not Sig					this made in	111	
	initinder Giz			A CONTRACTOR OF						other mile are b		and press and	and the second	and the second
Vign Si	nder Saurae	Mile	ACTORN .	S 2	AGER	ATE COMPONE	NT GRAD ATIO	N DATA						
										-			-	
		Agg 1	Apg 2	Agg 3	Agg 4	Agg 5	Agg 6	Agg 7	Agg 8	_	RAM 2 (RAS)	RAM 3 (FRAP,		JAF B.D
Blend %s (0.1)	34.0	15.0	16.0	27.0	130 Weihed Sand-				15.0				100.0
Material Deport	iption	5/8x3/8-3226	3/8 BE-3225	3/8x2/8-3250	1/MMS-3404	5105				Miling-7230				
zurae IC/Name (tree 225 report		Seven Sixtem 36,20,7EAdems	Seven Slaters 36,20,78 Adams	Oxier 52678 Marathon	Calar 5,26,75 Menthon	Heyn 22, 19, ME Weathans				Plant Stodpile	-			
Por Q ar MF ar Date ((RAM along \$10	a	q	q	q	2		·		1 N			Gar	2.718
WHOOT Age Test		225-0036-2022	225-0036-2022	225-0037-2022	a sea a sea a sea a sea	225-191-2021		5		5	3		52:	71
RAM Extracted N		S		S.	20 2	25 - CP		S 98		44			(7112)	-
	2015년 - 2	d.									0		P1 (185/50)	6
Sieva	(mm)	5											tant .	-
1 1/2"	\$7.5	1000	100.0	100.0	100.0	100.0		2 22		100.0	S		\$7.5	100.0
I.	25.0	100.0	100.0	100.0	100.0	100.0				100.0			25.0	100.0
3/4"	19.0	1000	100.0	100.0	100.0	100.0				100.0		1	23.0	100.0
1/2"	12.5	77.0	100.0	1010	100.0	100.0				97.0	<u>.</u>		12.5	96.3
2/18*	9.5	36.0	100.0	100.0	100.0	99.0				93.0		-	85	88.9
**	4.75	32	70.0	34.0	100.0	900				710		1	4.75	_
415	2.56	1.9	25.0	42	0.02	84.0 79.0		· · · · · ·		540 410		1	2.35	17.1
100	0.60	15	17.0	23	34.0	56.0		·		330		-		23.8
150	0.30	1.4	12.0	15	16.0	240				240			6.80	113
#1.00	0.25	1.3	9.0	11	4.9	2.2		1		150	1 1	1	0.15	14
#200	0.075	1,1	6.8	10	2.6	1.0				104			4.675	17
Gab:	1	2.697	2.686	2.000	2.568	2.679		<u> </u>		2.691		1	Gabe	2.90
CAA IF	NI:	100	100	100	8	823		: 8		983	5		CAA IF (%)	99.1
CAA 2F (N):	100	100	100	S. come	761		1		967	1		CAA IF (%):	98.7
FAA	9.05	1 - 1 - 1 - 2 1 - 1 - 1 - 1 - 2	49.9	21 - 22 - 2 2	48.1	383		1 10		435			FAA:	45.4
Moisture Abs	6. (%):	0.2	0.35	0.39	0.54	0.3		200		1.01	5	1	Abs. (%):	0.5
Thin/Elong.	(%):	1.0	45	7A	S	6.9	. Ó	1 12		0.13			TH.(%):	1.1
		3												Q
I de la companya de la	HMA/SMA	Warm Mix			T OPTIMUM S	BINDERFOR 4.0	% AIR VOIDS H			SMA (*additive for stor				
Laborstory c. Mix Temp(F):	A MC VANN	225-245	SMA Draindown (%) "Temp."C	Por Por	113	discussion and the second	Albamate		AC Type	Cb Cb		# of Gry.(N)		A
impact T emp(#):		20	1	Pba	13	min. S.SN(SMA)	St Pau	Park	38-285	105		a to cap out		ALC: NO
110000	an and a second	Street States	2	Phe	0.5		0.650	2.2.5 <u>-</u> 2	5520078	5 - 100 - 1 1				
*Type Additive:		(WMA, Anti-Eirip,	ME-	Dust/Winder(OP)	0.7	0.64.2/1.22.0		12			1			
"Ant. Additive:	0.35	Celuine Fibers)	plus 15°C 15	times Drylask Cort.	-			12					C	_
add tional additions may	ybe added in the	on ments or ton or	2				*TSR Values arrented	and then address	in source is from a	codified AC to a use	nalified IC a per	QMM865332		1.00
-/10	errute ACS curve	e	Are-							RT/LEVELS -Pri			ance Test Re	salta
			TRIALACI	ATA							Nini		Nervas	
	Total N	Added % Bridger	Gmm	Gmb	S Ar Wells	SVMA	SAMBAWA			stions (N)			160	
Trial 1	20	4.4	2.512	2,353	63	167	62.2	TSA T2 03 (psi)		t Optimum	龍.7	-	97	- E offers
Trial 2	55	49	2.493	2,370	20	165	10.3	WetStrength:	2115	GryStrength:	2456	TSR	0.117	27
Trial 3 Trial 4	6.0	5.4	2,474	2.384	3.9	165	78	Cracking To lerges	in the second second	Lot Depth (mm):	-	lita mi	or of Passac	
111.0 1		5.2	2.478	2,379	40	16.5	75.8	Commenta:	and the second	tes used for wern	-			
OPT.@ 40% Va	5.8													