
From Edge to Equipment: Design and Implementation of a
Machine-Learning-Enabled Smart Manufacturing System

by

Hung Nguyen

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 6, 2023

Keywords: edge computing, smart manufacturing, computation offloading, computing
performance, machine learning, secs gem

Copyright 2023 by Hung Nguyen

Approved by

Xiao Qin, Chair, Alumni Professor of Computer Science and Software Engineering
Yi Zhou, Co-chair, Associate Professor of Computer Science

Shubhra (Santu) Karmaker, Assistant Professor of Computer Science and Software
Engineering

Jakita Thomas, Philpott-WestPoint Stevens Associate Professor, Computer Science and
Software Engineering

Alvin Lim, Professor of Computer Science and Software Engineering
Eric Wetzel (University Reader), Associate Professor of Building Science

Abstract

In smart manufacturing, data management systems are built with a multi-layer archi-

tecture, in which the most significant layers are the edge and cloud layers. The edge layer,

not surprisingly, renders support to data analysis that genuinely demands low latency. Cloud

platforms store vast amounts of data while performing extensive computations such as ma-

chine learning and big data analysis. This type of data management system has a limitation

rooted in the fact that all data ought to be transferred from the equipment layer to the edge

layer in order to perform thorough data analyses. Even worse, data transferring adds delays

to a computation process in smart manufacturing. In the first part of the dissertation stud-

ies, we investigate an offloading strategy to shift a selection of computation tasks toward

the equipment layer. Our computation offloading mechanism opts for smart manufactur-

ing tasks that are not only light weighted but also do not require saving or archiving at the

edge/cloud. We demonstrate that an edge layer is able to judiciously offload computing tasks

to an equipment layer, thereby curtailing latency and slashing the amount of transferred data

during smart manufacturing. Our experimental results confirm that the proposed offloading

strategy offers the capability for data analysis computing in real-time at the equipment level

- an array of smart devices are slated to speed up the data analysis process in semiconductor

manufacturing. With collected data, we apply the empirical results as training and testing

data to construct a machine learning model that recommends whether it is advantageous to

offload computation from the edge layer to the equipment layer based on the current system

status.

In the second part of the dissertation, we elaborate on a novel scheduler – a schedul-

ing algorithm that allocates edge computing resources with awareness of workload at the

ii

equipment layer. Our edge scheduling algorithm is adroit at determining the most appro-

priate scenarios to offload computing tasks from edge to equipment, thereby maximizing

throughput while meeting the priority requirements of the tasks. A limitation of current

research on edge scheduling is that available resources from the equipment layer were not

used to achieve maximum throughput. The main difference between our scheduling algo-

rithm and the other edge scheduling techniques is that we use available resources at the

equipment layer. Other State-of-the-Art scheduler algorithms are not considering using re-

sources at the equipment level. By using additional resources at the equipment level, our

experimental results shows that the total computation time has been shortened by 27.75%

and the throughput has increased by 38.45% comparing to Hybrid Computing Solution or

HCS scheduling performance, a State-of-the-Art scheduling algorithm.

Moreover, to enable offloading computation tasks from the edge layer to the equipment

layer, the edge layer ought to be able to assign specific computation tasks to the equipment.

In semiconductor manufacturing, the host computer located at the edge layer communicates

to the equipment through SECS/GEM communication protocol. As the last piece in this

dissertation, we design an advanced protocol on the SECS/GEM interface to facilitate the

transfer of computational tasks from the edge to the equipment. Current research on Equip-

ment level Fault Detection and Classification (FDC) suggested to build a software module

at the equipment layer to perform computation. The limitation of this technique is that it

requires software modification every time the computation logic changes. Furthermore, this

technique is not flexible to allow the equipment to perform any other computation tasks be-

sides FDC. With the new protocol in place, the host has the capability to dynamically assign

data analysis tasks to the equipment. Additionally, the protocol also offers a mechanism for

the equipment to report back the analysis results to the host.

iii

Acknowledgments

I would like to express my deepest appreciation to Dr. Xiao Qin from Auburn University

and Dr. Yi Zhou from Columbus State University for the guidance and support throughout

my research at Auburn University. Dr. Qin has provided me invaluable direction for my

research. Dr. Zhou spent countless meetings to share his knowledge and expertise with me.

I am also thankful to my Ph.D. committee, Dr. Shubhra (Santu) Karmaker, Dr. Jakita

Thomas, Dr. Alvin Lim, and my University Reader, Dr. Eric Wetzel, for all the guidance

and outstanding feedbacks.

I am also grateful to the executive team at Yield Engineering Systems, Inc. for the

support during my research progress.

Finally, but the most importantly, I appreciate for the support from my wife, Loan, and

my children, Michelle and Jenny, for unconditional love and support.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . ix

List of Tables . xii

List of Abbreviations . xiii

1 Introduction . 1

1.1 Background . 1

1.2 Motivations and Research . 2

1.2.1 Why this dissertation research is important? 2

1.2.2 Dissertation Statement . 3

1.2.3 Research Questions . 3

1.3 Benefits and Contributions . 4

1.4 A Roadmap . 6

2 Related Works . 8

2.1 Smart Manufacturing Systems with Cloud-Edge 8

2.2 Offloading Computation Tasks . 11

2.3 Resources Scheduling . 12

3 From Edge to Equipment: Design and Implementation of a Machine-Learning-

Enabled Smart Manufacturing System . 13

3.1 Modeling Computation Time at the Edge and Equipment Layers 13

3.1.1 Computing Time on the Edge Layer 13

3.1.2 Computing Time on the Equipment layer 14

3.1.3 Machine Learning Models . 15

v

3.2 Experimental Setup . 22

3.3 Experimental Results . 25

3.3.1 Algorithmic Complexity of Computing Tasks 25

3.3.2 CPU Utilization . 29

3.3.3 Data Size . 34

3.3.4 Algorithm Design . 34

3.4 Using machine learning to determine whether to offload computation from the

edge layer to the equipment layer . 37

3.4.1 Purpose of the Evaluation With Machine Learning Models 37

3.4.2 Experimental Setup . 38

3.4.3 Evaluation Method . 43

3.4.4 Observation . 45

3.4.5 Reason Behind the Observation . 49

3.4.6 Implication: Lessons Learned . 51

3.5 Summary . 51

4 Task Scheduling on Edge Layer with Option to Offload Computing Tasks from

Edge to Equipment . 53

4.1 System Architecture . 53

4.2 Experimental Setup . 55

4.3 Datasets . 56

4.4 Algorithm . 57

4.5 Performance Metrics . 64

4.6 Experimental Results . 65

4.6.1 A State-of-the-Art Scheduling Technique: Hybrid Computing Solution

(HCS) . 65

4.6.2 Comparing Experimental Results with HCS 65

4.6.3 Scheduling Experimental Results with Tasks Priority 66

vi

4.7 Scheduling Summary . 68

5 Dynamic AI Computation Tasks with SECS/GEM in Semiconductor Smart Man-

ufacturing . 71

5.1 Background . 71

5.2 Motivation . 72

5.3 Latency With Data Transfer Using SECS/GEM Messages 73

5.4 Adding New Set of Messages for Communication Between the Edge and the

Equipment . 74

5.5 System Design . 74

5.6 New Messages to Support Offloading Computing Tasks from Edge to Equipment 75

5.6.1 SECS/GEM Protocol for Predefined Analyses 76

5.6.2 SECS/GEM Protocol for Custom Analyses 81

5.6.3 Ad-hoc Analysis . 84

5.7 Scenarios . 85

5.7.1 Scenario 1: Computation Tasks are Triggered by Events 85

5.7.2 Scenario 2: Ad-hoc Performing Computation Tasks 87

5.8 Summary . 89

6 Conclusions and Future Work . 90

6.1 Offloading Computing Tasks from the Edge to the Equipment 90

6.2 Task Scheduling for Smart Manufacturing 91

6.3 Communication Protocol in the SECS/GEM Interface 91

6.4 Future Research Directions . 91

Bibliography . 93

Appendices . 100

A Data From Experiments for Offloading From Edge to Equipment 101

B Data For Scheduling Algorithm Comparison - Hybrid Computing Solution (HCS)

vs. Offloading . 109

vii

C Data For Scheduling Algorithm Comparison - Different Wait Time Limits . . . 110

D Supporting Variables for New SECS/GEM Communication Protocol 111

viii

List of Figures

1.1 An Example of Computing Time in Semiconductor Processing 2

2.1 A Typical Edge-Cloud System Architecture . 9

3.1 Dimensionality Reduction in LDA: Data set with 2 features 16

3.2 Dimensionality Reduction in LDA: Project data to X Axis 16

3.3 Dimensionality Reduction in LDA: Project to X Axis Result 17

3.4 Dimensionality Reduction in LDA: Project data to New Axis 17

3.5 Dimensionality Reduction in LDA: Project to New Axis Result 18

3.6 An Example of Decision Tree Classifier . 20

3.7 Random Forest Concept . 21

3.8 SVM Hyperplane . 23

3.9 SVM Margin . 24

3.10 O(n) Performance . 26

3.11 O(nlogn) Performance . 27

3.12 O(n2) Performance . 28

3.13 The impact of algorithmic complexity on performance of equipment computer

with 1% CPU utilization . 30

ix

3.14 The impact of algorithmic complexity on performance of equipment computer

with 50% CPU utilization . 31

3.15 The impact of algorithmic complexity on performance of equipment computer

with 90% CPU utilization . 32

3.16 The impact of algorithmic complexity on performance of equipment computer

with 99% CPU utilization . 33

3.17 The impact of CPU utilization on performance of equipment computer 35

3.18 Machine Learning Flow . 37

3.19 Generic confusion matrix . 43

3.20 Confusion Matrix from Logistic Regression Model 45

3.21 Confusion Matrix from Linear Discriminant Analysis Model 45

3.22 Confusion Matrix from K-Nearest Neighbors Classifier Model 46

3.23 Confusion Matrix from Decision Tree Classifier Model 46

3.24 Confusion Matrix from Random Forest Model 47

3.25 Confusion Matrix from Support Vector Machines Model 47

3.26 Decision Tree Model . 50

4.1 System Architecture with Scheduler . 54

4.2 Results of the Hybrid Computing Solution or HCS. 66

4.3 HCS vs Offload with 50% CPU Threshold and 8GB Memory Threshold 67

x

4.4 Offload Scheduling Data with Different Wait Time Limits 69

4.5 Average Wait Time by priorities with different wait-time limit or WTL. 70

5.1 System Design . 75

5.2 Communication Diagram - Computation Tasks Triggered by Events 86

5.3 Communication Diagram - Ad-hoc Performing Computation Tasks 88

xi

List of Tables

3.1 Important Factors in Computation Time . 38

3.2 Important Factors in Computation Time . 41

3.3 Average Key Measures of Performance for each ML Model 49

4.1 Notations in Scheduling Algorithms . 63

5.1 Latency of Transferring Data Variables with SECS/GEM 73

5.2 Summary of Dynamic AI Messages in SECS/GEM 89

A.1 Equipment Performance - CPU Utilization 1% 101

A.2 Equipment Performance - CPU Utilization 15% 102

A.3 Equipment Performance - CPU Utilization 35% 103

A.4 Equipment Performance - CPU Utilization 50% 104

A.5 Equipment Performance - CPU Utilization 75% 105

A.6 Equipment Performance - CPU Utilization 90% 106

A.7 Equipment Performance - CPU Utilization 99% 107

A.8 Edge Performance . 108

B.1 Tasks Scheduling Data - HCS vs Offloading . 109

C.1 Tasks Scheduling Data - Different Wait Time Limits (WTL) 110

D.1 Variables in Dynamic AI Messages . 111

xii

List of Abbreviations

APC Advanced Process Control

CEID Collection Event ID

FDC Fault Detection and Classification

GEM The Generic Model for Communications and Control of Manufacturing Equipment

HCS Hybrid Computing Solution

KNN K-Nearest Neighbors

LDA Linear Discriminant Analysis

SECS SEMI Equipment Communication Standard

SEMI Semiconductor Equipment and Materials International

SPC Statistical Process Control

SVM Support Vector Machine

VID Variable ID

xiii

Chapter 1

Introduction

1.1 Background

With the fast development of information technology, cloud computing, machine learn-

ing, natural language processing, artificial intelligence, modern production and manufactur-

ing of the semiconductor industry have relied on smart manufacturing systems to achieve

high productivity, cost reduction, efficiency in production control, and early detection of

production issues [13, 26, 29, 30, 34]. In semiconductor manufacturing, monitoring and

analyzing process data is critical and indispensable to bolster productivity [32, 69]. Data

analysis techniques such as machine learning, deep learning, statistical process control (SPC),

fault detection and classification (FDC), and advanced process control (APC) are deployed

for the purpose of defect prediction, maintenance recommendations, and resource alloca-

tion [4, 8, 11, 22, 41, 59].

In the process of semiconductor manufacturing, production data from semiconductor

equipment is collected and transferred to an edge layer and a cloud layer for further analysis

and storage. Real-time computing in smart manufacturing is performed at the edge layer

[21, 58]. If production data ought to be stored or archived, data will be transferred and

inserted into cloud databases [38, 78].

Most data management systems for manufacturing are built with two computing layers:

the cloud layer and edge layer [35, 40, 61]. The cloud layer, in a growing number of cases, are

applied to store a large amount of data and to support complicated computing tasks that

require abundant computing resources. These computing tasks include, but are not limited

to, artificial intelligence algorithms, big data applications, machine learning algorithms, and

deep learning networks [5, 12, 19, 49]. The cloud layer, with its rich resources, can be

1

beneficial for big data tasks as well as long-term data storage [53, 23, 14]. The edge platform,

which is closer to the devices and equipment, is used for low-latency computing tasks that

are critical for the early detection of fault processes [65]. One example is using the edge

platform to perform and orchestrate data analyses. A holistic combination of cloud and

edge computing in data management systems helps to curb the latency in real-time data

analysis computation. In a wide range of these systems, data analysis computing is pushed

from the cloud level to the edge level with the hope to reduce the latency of data transferring

and analysis computing [25, 33, 45, 46, 67].

Figure 1.1: An Example of Computing Time in Semiconductor Processing

1.2 Motivations and Research

1.2.1 Why this dissertation research is important?

We can see from Fig. 1.1 that data analytic computing tasks are frequently and repeat-

edly performed during semiconductor manufacturing. The computing tasks may be simple

tasks such as process data monitoring, statistical process control, resource allocation, or

complex algorithms for early failure prediction and other purposes [16, 32]. Data analy-

sis in smart manufacturing, especially in semiconductor manufacturing, is vital to achieve

high product quality [2, 30]. Reducing data analysis computation latency is desirable for

increasing production throughput [9, 45].

2

As chip size is reduced to the single-digit nanometer level, the amount of processing data

that is needed for analysis significantly increases [7, 17]. Performing data analysis at the

edge layer or the cloud layer requires a vast amount of data to be transferred from equipment

[65, 66]. Accordingly, the latency of data analysis and the computing process is enlarged.

Network bandwidth, of course, is likely to be overloaded and saturated by delivering too much

data from thousands of equipment in the factory to the edge layer [45, 67]. Furthermore,

handling all types of computing tasks at the edge layer inevitably faces the grand challenge

of system complexity: it is obliged to perform data management and analysis on all different

data types from heterogeneous equipment types in semiconductor processing [47, 60]. These

problems motivate us to propose an offloading method, for smart manufacturing in the

semiconductor industry, to judiciously shift a selection of computing tasks from the edge

layer to the equipment layer.

1.2.2 Dissertation Statement

The primary goal of this dissertation study is to reduce the latency of computation

tasks in semiconductor smart manufacturing environment when the amount of data increases

from 2000 data points to 50000 data points per wafer. We aim to solve this issue with

three main tasks: analyzing the performance of offloading computation tasks from the edge

layer to the equipment layer, designing a scheduling algorithm to support offloading, and

proposing a protocol to provide a mechanism for dynamically assigning computation tasks

to the equipment.

1.2.3 Research Questions

To achieve the aforementioned overarching goal, we will address the four following in-

triguing research questions through the dissertation.

• Research Question 1: What is the key performance discrepancy between edge-based

computing and equipment-based computing?

3

• Research Question 2: How to determine the tasks that should be offloaded from the

edge layer to the equipment layer to enhance the performance of smart manufacturing

systems?

• Research Question 3: How to incorporate task-offloading into edge resource scheduling?

• Research Question 4: How to apply offloading tasks to semiconductor manufacturing

environments?

1.3 Benefits and Contributions

In this dissertation, we propose a judicious method of selecting computing tasks that

can be offloaded to the equipment level to achieve the lowest computing latency for smart

manufacturing. With this approach in place, some computing tasks are performed at the

edge level while the other selected tasks are running at the equipment layer where the data

is originated.

Our empirical study in the arena of smart manufacturing in the semiconductor industry

demonstrates three-fold strengths of our computation offloading mechanism. An immediate

benefit of our new design is a reduction in the overhead of handling data for computing

tasks at the edge level, including storing data into temporary storage at the edge for com-

putation. Another advantage is curbing computing latency for smart manufacturing tasks:

our offloading mechanism enables smart manufacturing systems to detect defective materials

early in a manufacturing process. As a third good point, our offloading mechanism plays a

vital role in smart manufacturing because each piece of equipment produces a different type

of data, including the format of data and the meaning of data [66]. Our offloading method

reduces the development time to build a data management system that needs to handle a

wide variety of data types and all computing tasks at the edge layer. The aforementioned

new benefits offered by our offloading mechanism are tabulated below.

4

• Benefit 1. Reducing the overhead of handling data for computing tasks at the edge

level.

• Benefit 2. Curbing computing latency for smart manufacturing tasks.

• Benefit 3. Shortening the development time spent in building a data management

system.

We systematically conduct a performance comparison on edge-layer-based computing

against its equipment-layer-based counterpart. The comparison study weighs in multiple

factors, including algorithmic complexity, data size, CPU utilization, and computer type

- edge servers or equipment nodes. On the basis of this empirical study, we propose an

algorithm to select tasks that can be offloaded to the equipment layer, aiming to immensely

shorten processing latency.

Moreover, we propose a resource scheduling algorithm that takes into account the total

resources from both the edge and the equipment. In doing so, this novel resource scheduling

algorithm can offload computing tasks to the equipment layer.

Furthermore, to enable offloading computing tasks from the edge layer to the equipment

layer in semiconductor manufacturing, we proposed a protocol for the edge to send requests

to the equipment. In semiconductor industry, SECS/GEM interface has become a dominant

method for the host computer on the edge layer to communicate with the equipment by

sending commands and requesting data and status [44, 81]. Therefore, we build our protocol

based on the format of SECS/GEM interface. Powered by this protocol, the host computer

on the edge can define computing tasks on the equipment. The host can also define the events

to trigger computing tasks to be executed. Additionally, the host can request computing

results from the equipment.

The contributions of this research are summarized as follows.

• Contribution 1. We conduct a performance comparison between edge-based computing

and equipment-based computing.

5

• Contribution 2. We propose a computation offloading mechanism to cut back the

latency of smart manufacturing tasks.

• Contribution 3. We propose a machine learning model to generate computation of-

floading (yes/no) recommendations.

• Contribution 4. We propose a resource scheduling that enables offloading computing

tasks from the edge layer to the equipment layer.

• Contribution 5. We propose a communication protocol for the edge layer to communi-

cate with the equipment layer to define computing tasks, trigger computing tasks, and

collect computing results.

1.4 A Roadmap

Chapter 2 reviews related works about edge computing for the smart manufacturing

environment. Chapter 3 explains our proposed system for offloading computing tasks from

the edge layer to the equipment layer. The section 3.1 describes the model we use for

calculating total computation time at the edge layer and the equipment layer. After that,

in section 3.2 we describe the system settings we used for experiments and the factors that

can affect the experimental results. Then the results of our experiments are reviewed and

discussed in section 3.3. Based on the results, we propose a selection method for offloading

computing tasks to the equipment level. This section also introduces several machine learning

models that we used for evaluating our experimental results. Section 3.4 explains in detail

the evaluation of experimental results with various machine learning models and selects

the best model for offloading decisions. In chapter 4, we propose an algorithm for our

novel resource scheduler that can be applied to a pool of resources from both the edge

layer and the equipment layer. We also run experiments and compare our results with

a State-of-the-Art scheduling from [33]. Chapter 5 discusses in detail our new protocol

for communication between the edge layer and the equipment layer. The new protocol is

6

designed to allow the host computer on the edge layer to dynamically assign computing tasks

to the equipment. Chapter 6 gives conclusions and discusses additional research directions

on offloading computing tasks from the edge layer to the equipment layer.

7

Chapter 2

Related Works

This chapter presents research that is related to our studies. The chapter is organized

as follows. Section 2.1 discusses previous research on smart manufacturing systems based

on edge and cloud layers. Section 2.2 presents research related to offloading computation to

equipment. Finally, section 2.3 walks through research on resource scheduling on the edge

layer.

2.1 Smart Manufacturing Systems with Cloud-Edge

Edge computing has evolved as an important technique for enterprise data management

systems [6, 39, 50, 79]. Data generated in manufacturing has increased in both volume and

complexity [2, 42, 51]. Building an effective system architecture for data management and

analysis is vital for smart manufacturing, especially in time-sensitive environments such as

semiconductor processing [18, 47].

Umpteen attempts have been made to design system architectures to slash the comput-

ing time for real-time applications [15, 48, 72, 75]. Proposed system architectures tried to

reduce latency in data analysis computing by creating multi-layer systems which collaborate

between the cloud and edge layers [24, 52]. Latency is one of the most important metrics

for computing performance evaluation. The computing performance can be achieved by

offloading computing tasks from the cloud to the edge where it is closer to the data [20, 57].

In [33], the authors proposed a hybrid computing framework to support various real-time

requirements in smart manufacturing supported by edge computing. This hybrid architec-

ture system includes the following elements: cloud server, device computing layer, software

defined network layer, and edge computing layer. In this architecture, the device computing

8

layer is responsible for driving mechanical devices. On the other hand, the edge servers are

used for real-time computing tasks in the edge layer since this layer is close to the device

layer where the data is produced. In the cloud layer, the servers are used for computation-

ally intensive tasks such as AI and machine learning. Lastly, the software-defined network

is used for coordination among different computing layers for resource scheduling to achieve

low latency.

Figure 2.1: A Typical Edge-Cloud System Architecture

The authors in [71] proposed an edge-supported cloud computing platform specifically

for smart manufacturing. This platform includes three modules: the edge production module,

the edge metrology module, and the cloud module. The edge metrology module is used for

quality control, while the edge production module aids in continuous process control. The

cloud is used for AI-assisted decision-making to support smart manufacturing. The edge

9

computing layer combines the edge metrology module and the edge production model. In

this platform, defective chips can be detected early in the edge computing layer leading to

improvement in product quality and reduction in production costs.

In [51], the authors introduced a hierarchical architecture that includes the cloud, the

fog, and the edge. The cloud is utilized for big data analysis and storage in this architecture.

It also supports large-scale collaboration among the layers within the architecture. The fog

computing layer is considered as an extension of cloud computing and provides computing

services closer to the devices. Edge computing also supports computation like fog computing,

but it is closer to data sources. In this architecture, fog computing utilizes interconnection

capabilities among nodes, and edge computing is performed in isolated edge nodes.

The authors in [62] proposed using cloud only, without the edge layer, to support data

analytic in semiconductor manufacturing. In this design, data from the equipment layer

is transferred through the cloud gateway to the cloud infrastructure, beyond the facility’s

firewall. A software application will be installed on the cloud to perform data storage and

analysis. Fault detection and classification (FDC) is performed at the cloud layer. The

software on the cloud will send notification back to the system if it detects any issues.

Similarly, multiple cloud-edge systems have been proposed in [3, 31, 40, 54, 74, 64, 73].

The overall architecture of those systems can be summarized as shown in Fig. 1.

There are four common points in the proposed cloud-edge architecture.

1) Moving time-sensitive computing tasks from the cloud layer to the edge layer in order to

achieve low latency and early detection of defects.

2) The physical device layer produces and sends the data to the edge layer for computing.

This layer includes machines, sensors, cameras, motors, industrial PCs, and other mechanical

and electrical devices.

3) An algorithm exists to coordinate and schedule computing tasks in the edge layer.

4) The systems were built to support smart manufacturing.

10

The above architecture faces the issue of longer time requirement to transfer data from

the device layer to the edge layer because the amount of data produced by the device layer

is increasing significantly. Although computing tasks have been pushed down from the cloud

to the edge, which is closer to the data, latency in computing at the edge layer increases

when the amount of data increases. Furthermore, the local bandwidth from the device layer

to the edge layer will become a bottleneck with the increase in the amount of data that needs

to be transferred from equipment to the edge layer.

2.2 Offloading Computation Tasks

Some significant efforts have been made to perform data analysis at the equipment

level. In [28], the authors introduced the Equipment level Fault Detection and Classification

(FDC) System to perform optimization and anomaly detection of semiconductor equipment.

In this design, the equipment transfers some data to the Equipment level FDC System

locally instead of the host. The Equipment Level FDC System can perform data analysis in

a shorter time since it does not add data transfer latency into the analysis process and can

react faster to any issues in material processing.

In [36], the authors proposed a system that can be mainly used in mobile communication.

The system includes three layers: cloud computing layer, edge computing layer, and end

device layer. In this system, the edge layer includes edge servers and edge devices. Edge

servers are deployed on the edge network and act as bridges between edge devices and

the cloud. The end device layer includes mobile servers and mobile devices. Mobile servers

provide computing services for the assign tasks. Mobile devices are end devices that generate

tasks and can choose to process tasks locally or offload the tasks to the edge servers for

computing or scheduling to other mobile servers for computing.

In an effort to reduce computation latency, other studies have been conducted to try to

offload computation tasks from the edge to other available resources such as local servers,

other mobile devices, or nearby smart vehicles on freeway [27, 68, 77].

11

2.3 Resources Scheduling

With the rapid development of cloud-edge systems, scheduling resources to perform

computing tasks became a critical process for efficiently managing system resources. In [33],

the authors proposed a scheduling algorithm to select an edge server that can satisfy the

condition that the queued time is less than the required time. If there are multiple edge

servers that satisfy the condition, the algorithm will randomly choose an edge server to

perform the task. In [1], the authors proposed a hybrid workflow scheduling on cooperative

edge cloud computing. This cooperative edge cloud computing includes three layers. Layer

1 is IoT devices. Layer 2 is cooperative edge nodes which consists of edge devices and edge

data centers. Layer 3 is multi-cloud Services. Layer 3 consists of powerful resources to

carry out extensive computing tasks such as machine learning, business intelligence, and

interactive visualization. In this cooperative edge-cloud computing system, the scheduling

method estimates and plans resources based on QoA (Quality of Service) parameters and

is responsible for selecting optimal virtual machines for task execution. There are many

research on scheduling for cloud-edge or cloud-fog-edge systems [10, 37, 43, 63, 70, 76], task

scheduling on the edge and fog layer has been developed and discussed to support smart

manufacturing.

12

Chapter 3

From Edge to Equipment: Design and Implementation of a Machine-Learning-Enabled

Smart Manufacturing System

This chapter presents our studies on offloading computation tasks from the edge layer

to the equipment layer and is organized as follows. Section 3.1 presents how we model

computation time at the edge layer and the equipment layer. Next, section 3.2 explains

the setups for our experiments, followed by experimental results in section 3.3. Section 3.4

discusses in detail how we apply machine learning models based on our collected data. The

summary of this chapter is outlined in section 3.5.

3.1 Modeling Computation Time at the Edge and Equipment Layers

We develop a simple yet effective computation time model with respect to two cases,

which facilities making decisions of offloading computation from the edge layer to the equip-

ment layer.

3.1.1 Computing Time on the Edge Layer

In this scenario, data analytic is carried out at the edge layer. To this end, characteristics

data of each processed material (e.g., wafer) and the information of equipment statuses must

be transferred to the edge layer for computation. One common method in the semiconductor

industry for transferring data from the equipment layer to the edge layer is file transfer. More

specifically, the control system running on the equipment computer first writes processed data

to a file during material processing. Next, after the material processing is finished, the control

system sends the data file to the edge. Then, the edge performs analytical computations to

check the system status and determine if the product quality is normal for the process to

13

continue. The computing time on the edge layer can be expressed as:

TEd total = TEq write + Ttransfer + TEd read + TEd comp, (3.1)

where TEd total denotes the total time to perform computations on the edge server; TEq write

denotes the total time to write all process data or test data for material to data files; Ttransfer

denotes the total time to transfer data files for material from the equipment layer to the edge

layer; TEd read represents the time for the edge server to read material data files; and TEd comp

is the time for the edge server to perform computing tasks on the data set.

Assuming there are N process steps in total, and process step ith has Mi data files, the

total time for an equipment computer to write all process data or test data to data files is

computed as follows:

TEq write =
N∑
i=1

Mi∑
j=1

tEq write,i,j, (3.2)

where tEq write,i,j denotes the time to write data to output data file jth at process step ith.

The total time to transfer data files from the equipment layer to the edge layer is

calculated as:

Ttransfer =
K∑
k=1

ttransfer,k, (3.3)

where K represents the number of files to be transferred, and ttransfer,k denotes the time for

transferring file kth.

And K can be computed as:

K =
N∑
i=1

Mi, (3.4)

where Mi is the number of data files that are produced at process step ith.

3.1.2 Computing Time on the Equipment layer

In the scenario of performing analytical computing at the equipment layer, there is no

need to transfer data files from the equipment layer to the edge layer. In particular, data

14

produced at the equipment layer is saved to local data files. After the material processing

is completed, the control system running on the equipment computer reads the data file to

perform analytical computations. Then, based on the calculation result, the control system

determines whether the semiconductor manufacturing system proceeds to the next process.

Accordingly, the computing time on the equipment layer can be formed as:

TEq total = TEq write + TEq read + TEq comp, (3.5)

where TEq total denotes the total time to perform computations on the equipment layer;

TEq write denotes the total time for an equipment computer to write all process data or test

data for material processing to data files, which is calculated according to Equation (3.2);

TEq read is the time for the equipment computer to read the local data files; and TEq comp

represents the time for the equipment computer to perform computing tasks on the data set.

3.1.3 Machine Learning Models

After collecting experimental data, we fit our data set into machine learning models to

evaluate the model that can be a good fit for computation offload recommendation.

Logistic Regression Classification Model

The logistic function has the following form:

p(x) =
1

1 + e−(x−µ)/s
(3.6)

Where µ is a location parameter (p(µ) = 1/2) and s is a scale parameter.

Our data set will have multiple features, p1, p2, ..., pn, the logistic function can be

rewritten as follows:

p([x1, x2, ..., xn]) =
1

1 + e−([x1,x2,...,xn]−µ)/s
(3.7)

15

Figure 3.1: Dimensionality Reduction in LDA: Data set with 2 features

Figure 3.2: Dimensionality Reduction in LDA: Project data to X Axis

16

Figure 3.3: Dimensionality Reduction in LDA: Project to X Axis Result

Figure 3.4: Dimensionality Reduction in LDA: Project data to New Axis

17

Figure 3.5: Dimensionality Reduction in LDA: Project to New Axis Result

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a dimensionality reduction technique for super-

vised classification problems. Dimensionality reduction is a process of reducing the number

of features in a data set by removing redundant and dependent features. Dimensionality

reduction is important for better understanding and presentation of a data set. Dimension-

ality reduction also enhances the performance of classification process. Figure 3.1 shows a

data set with 2 features x1 and x2 and 2 classes green and red. Figure 3.2 shows a projection

of this data set to x1 axis. This method doesn’t clearly distinguish data into two classes as

shown in Figure 3.3. This approach ignores useful information from feature x2. Figure 3.4

shows that LDA finds a new axis for projecting data set and achieves a good result as shown

in Figure 3.5.

LDA algorithm performs classification by maximizing the separability between classes,

i.e. the distance between the mean of different classes, and minimizing the variation within

each class.

Suppose the data set has C classes, µi is the mean vector of class i, Mi is the number

of samples within class i, i = 1,2,3...,C , M is the total number of samples in the data set,

and µ is the mean of the entire data set.

M =
C∑
i=1

Mi (3.8)

18

µ =
1

C

C∑
i=1

µi (3.9)

The separability between classes, or between-class matrix is calculated as in Equation

3.10.

Sb =
C∑
i=1

(µi − µ)(µi − µ)T (3.10)

The within-class matrix is calculated as shown in Function 3.11.

Sw =
C∑
i=1

Mi∑
j=1

(xi,j − µi)(xi,j − µi)
T (3.11)

K-Nearest Neighbors (KNN)

K-Nearest neighbors algorithm is a ”lazy learning” model due to the fact that this model

only stores training data. There is no actual training stage in this model. When a prediction

needs to be performed, the model will use stored training data for computing k-nearest

neighbors around the point being classified. K and distance metrics will need to be defined

for computing k-nearest neighbors. Then the majority class of k-nearest neighbors will be

used to determine the class of the query point. The followings are the most commonly used

distance metrics.

• Euclidean distance is calculated as below:

d(X, Y) =

√√√√ n∑
i=1

(xi − yi)2 (3.12)

• Manhattan distance is calculated as below:

d(X, Y) =
n∑

i=1

|xi − yi| (3.13)

19

• Minkowski distance is calculated as below:

d(X, Y) = (
n∑

i=1

|xi − yi|p)(1/p) (3.14)

• Hamming distance is used when comparing two binary strings with the same length.

The Hamming distance between two binary strings is the number of bit positions where

the bits are different.

Figure 3.6: An Example of Decision Tree Classifier

Decision Tree Classifier

Decision tree classifier is a supervisor machine learning algorithm that simply makes a

classification decision based on a set of rules on features of input data. During training stage,

a decision tree is generated from training data. Figure 3.6 shows an example of a decision

tree classifier with 3 features and 2 classes.

20

Figure 3.7: Random Forest Concept

Random Forest

Random forest is a supervisor machine learning algorithm that can be used for both

classification and regression problems. Random forest algorithm contains multiple decision

trees. Each decision tree takes a subset of a given data set and produces a predicted output.

The random forest algorithm takes the predicted output from each decision tree and votes for

majority to produce a final prediction. The concept of random forest algorithm is illustrated

in Figure 3.7.

Support Vector Machines

Support vector machines (SVM) is a machine learning algorithm that is a supervised

machine learning algorithm used for classification and/or regression. SVM is used to find a

hyperplane that classifies the type of data. When the number of features is 2, the hyperplane

is a line. When the number of features is 3, the hyperplane is a plane. Figure 3.8 illustrates

21

hyperplanes in SVM. The objective of SVM is finding a hyperplane such that the margin is

maximized. With a large margin, future data points can be classified with more accuracy.

Figure 3.9 illustrates small vs. large margin in SVM.

3.2 Experimental Setup

We implemented the proposed method of offloading computation from the edge layer to

the equipment layer. We conducted a series of experiments with different factors that can

have bearing on the performance of computation at the equipment layer. Then we compared

the performance at the equipment layer with that at the edge layer.

To carry out experiments, we set up a system that includes a server for edge computing

and a computer for equipment computing. The edge computer has an AMD Threadripper

Pro 3975WX 3.5 GHz 32 cores processor, 512 GB memory, 2TB SSD NVMe for the operating

system, and 2TB SSD SATA for data. The operating system on the edge server is Ubuntu

20.04. The equipment computer is a regular computer with Windows 10 Professional, Intel

i7 8 cores 2.80 GHz CPU, 16GB memory, and 1TB hard drive.

The experiments aim to determine the factors or combination of thereof that can deliver

better performance at the equipment layer.

• Data size: the number of data points which are produced for each material (for example,

wafer) during processing. The data size we used for experiments range from 2000 data

points to 50000 data points.

• CPU utilization: the current utilization of the CPU during analytic computation (ex-

cluding the utilization that is used for performing analytic computation).

• Algorithm complexity: We conducted the experiments with different algorithmic com-

plexities: O(n), O(nlogn), and O(n2)

• Edge or Equipment: We performed experiments on the edge server and equipment

computer and compared the results.

22

(a) SVM Hyperplane With 2 Features

(b) SVM Hyperplane With 3 Features

Figure 3.8: SVM Hyperplane

23

(a) Small Margin

(b) Large Margin

Figure 3.9: SVM Margin

24

For each algorithmic complexity, we measured computing time with different data sizes,

from 2000 data points to 50000 data points. The experiments were conducted on the edge

server and on the equipment computer. For the equipment computer, we measured comput-

ing time with different percentages of CPU utilization. Total computing time is measured

for each test case.

3.3 Experimental Results

We conduct extensive experiments to evaluate the performance and effectiveness of our

offloading strategy. In this part of the study, we shed light on the impacts of numerous

factors on computing performance. In particular, we first investigate the impacts of the

algorithmic complexity of computing tasks. Then, we examine the influence of the CPU

utilization of equipment computers, followed by the examination of the performance factor

of data size[80]. Finally, we present a computing offload algorithm that takes into factors

algorithmic complexity, CPU utilization, memory usage to make offloading decisions, thereby

minimizing computing time.

3.3.1 Algorithmic Complexity of Computing Tasks

In the first group of experiments, we investigate the impacts of the time complexity

(i.e., Big O) of computing tasks on computing time. We study three computational tasks

with different time complexities, namely, O(n), O(nlogn), and O(n2). We compare the

computing time of the three computational tasks running on the edge layer against that on

the equipment layer. To thoroughly study the equipment performance, we vary the CPU

utilization of the equipment computer when performing the computational tasks.

Computational Tasks with O(n)

Fig. 3.10 shows the computing time for O(n) tasks running on the device computer and

the edge server with respect to different numbers of data points. It indicates that performing

25

O(n) computing tasks on the equipment computer saves more time than performing the tasks

on the edge server. These results are expected. The reason is that O(n) computing tasks can

be completed in a very short time. For example, with 2000 data points, O(n) computing tasks

can be done in 0.0214 seconds on the equipment computer even when the CPU utilization

is as high as 99%. In contrast, data needs to be transferred from the equipment layer to the

edge layer first in order to perform computing tasks on the edge layer. In this case, data

transfer contributes most of the latency in edge computing due to the short computation

time of O(n) tasks.

Figure 3.10: O(n) Performance

26

Figure 3.11: O(nlogn) Performance

Computational Tasks with O(nlogn)

The experimental results of the O(nlogn) case plotted in Fig. 3.11 are similar to the

results illustrated in Fig. 3.10. That is, the computing time of the O(nlogn) computa-

tional tasks running on the equipment computer is shorter than that running on the edge

server. Although the computing time of the O(nlogn) computational tasks increases slightly

compared to the O(n) tasks, data transfer from the equipment layer to the edge layer still

dominates the total computing time. For example, even when the CPU utilization is 99%,

the computing time is still under one second.

Computational Tasks with O(n2)

However, when it comes to the computational tasks with the time complexity of O(n2),

the edge server outperforms the equipment computer in terms of computing time (see Fig.

27

Figure 3.12: O(n2) Performance

3.12). There exists two main reasons behind this observation. First, it takes much longer time

for O(n2) computational tasks to be completed. Second, when performing O(n2) tasks, the

number of data points plays a significant role in computing time. Specifically, the computing

time increases exponentially as data size increases. Unlike the O(n) and O(nlogn) cases

above, data transfer from the equipment layer to the edge layer in this case becomes an

insignificant factor in computing time.

Performance Comparison Between Tasks of O(n), O(nlogn), and O(n2)

To investigate the impacts of CPU utilization on computing time, we compare the com-

puting performance between tasks of O(n), O(nlogn), and O(n2) on the equipment computer.

Fig. 3.13 shows the comparison in computing time between O(n) and O(nlogn) tasks, O(n)

and O(n2) tasks, and O(nlogn) and O(n2) tasks, running on the equipment computer with

28

its CPU utilization set to 1%. It demonstrates that the computing time of both O(n) and

O(nlogn) tasks goes up linearly as the data size increases. However, the total computing

time is still very small. On the other hand, the computing time of O(n2) tasks grows expo-

nentially as the data size increases. We can see the same trends when CPU utilization is set

50%, 90%, and 99% in Fig. 3.14, Fig. 3.15, and Fig. 3.16 respectively.

3.3.2 CPU Utilization

In this set of experiments, we evaluate the impacts of CPU utilization on computing

time. We measure the computing time of O(n), O(nlogn) and O(n2) tasks under different

CPU utilization. We set the number of data points at 10000, 30000 and 50000.

Fig. 3.17 plots the computing time of O(n), O(nlogn) and O(n2) tasks with respect

to different CPU utilization. It shows that when the CPU is busy for other tasks, it takes

a longer time for the computational tasks to complete. And in the case of 10000 data

points shown in Fig. 3.17a, the computing time increases exponentially after CPU utilization

becomes higher than 50%. We also see similar trends in the 30000 and 50000 data point cases

(see Fig. 3.17b and Fig. 3.17c). That is, the computing time rises sharply when the CPU

utilization reaches 75% in both Fig. 3.17b and 3.17c. These ascending trends in computing

time are expected and exist for two main reasons. First, when the CPU utilization of the

equipment computer is high, the CPU must switch to other tasks and cannot focus on the

computational tasks, thereby taking a longer time for the CPU to perform the computational

tasks. Second, with more data points fed to the CPU, the size of the data becomes larger,

and thus, leading to a longer time to process the data. In short, CPU utilization has a

significant impact on determining whether to offload computing tasks from the edge layer to

the equipment layer.

29

(a) Performance O(n) vs O(nlogn)

(b) Performance O(n) vs O(n2)

(c) Performance O(nlogn) vs O(n2)

Figure 3.13: The impact of algorithmic complexity on performance of equipment computer
with 1% CPU utilization

30

(a) Performance O(n) vs O(nlogn)

(b) Performance O(n) vs O(n2)

(c) Performance O(nlogn) vs O(n2)

Figure 3.14: The impact of algorithmic complexity on performance of equipment computer
with 50% CPU utilization

31

(a) Performance O(n) vs O(nlogn)

(b) Performance O(n) vs O(n2)

(c) Performance O(nlogn) vs O(n2)

Figure 3.15: The impact of algorithmic complexity on performance of equipment computer
with 90% CPU utilization

32

(a) Performance O(n) vs O(nlogn)

(b) Performance O(n) vs O(n2)

(c) Performance O(nlogn) vs O(n2)

Figure 3.16: The impact of algorithmic complexity on performance of equipment computer
with 99% CPU utilization

33

3.3.3 Data Size

Now we are in the position of investigating the impacts of data size on the computing

time. Again, we measure the computing times of O(n), O(nlogn) and O(n2) tasks with

respect to the number of data points. We carry out the experiments under four CPU utiliza-

tion conditions of the equipment computer, ranging from 1% to 50%, 90%, and 99%. The

experimental results are plotted in Fig. 3.13, Fig. 3.14, Fig. 3.15 and Fig. 3.16, respectively.

We can observe from Fig. 3.13 - Fig. 3.16 that regardless of the time complexity, the

computing time grows as the data size increases. And among these three computational tasks

of different complexities, the curves of O(n) and O(nlogn) tasks grow relatively linearly. In

contrast, the computing time of O(n2) task soar exponentially. For instance, Fig. 3.15 shows

that the curves of O(n) and O(nlogn) tasks both ascend relatively linearly, with the O(nlogn)

curve higher than the O(n) curve. However, compared with the curve of O(n2) task, O(n)

and O(nlogn) tasks exhibit flat curves, being much smaller than that of O(n2) task. These

phenomena exist because the increase in the number of data points cause the CPU to take

a longer time to process.

In a nutshell, the number of data points serves as a non-negligible factor in computing

time. The larger the number of data points, the longer the computing time. The data used

in this section can be found in Appendix A.

3.3.4 Algorithm Design

In this part of the study, we propose our computing offload algorithm that facilitates

making decisions on when to offload heavy tasks from the edge layer to the equipment layer.

In order for the equipment computer to perform its functionalities, such as controlling the

equipment and producing data, it is vital to preserve certain computing resources (e.g., CPU

time and memory space) and avoid pushing the equipment computer to its maximum limits.

Our observations and analysis above reveal that the most significant factors that affect com-

puting time are the time complexity of computational tasks and the CPU utilization of the

34

(a) Performance - 10000 Data Points

(b) Performance - 30000 Data Points

(c) Performance - 50000 Data Points

Figure 3.17: The impact of CPU utilization on performance of equipment computer

35

Algorithm 1 Computing Offload Algorithm
Input:
CPU Threshold
RAM Threshold
Current CPU Utilization
Current RAM Utilization

1: if Current CPU Utilization > CPU Threshold then
2: Computing on edge layer
3: Return
4: end if
5:

6: if Current RAM Utilization > RAM Threshold then
7: Computing on edge layer
8: Return
9: end if
10:

11: if Complexity >= O(n2) then
12: Computing on edge layer
13: else
14: Computing on equipment layer
15: end if

equipment computer. For example, our experimental results in Section 3.3.1, Section 3.3.2,

and Section 3.3.3 indicate that O(n2) tasks perform better at the edge layer, whereas O(n)

and O(nlogn) tasks perform better at the equipment layer.

Taking into account the three significant factors: CPU utilization, memory usage, and

time complexity, we propose an algorithm to determine whether to offload a specific compu-

tation task to the equipment layer or perform the task on the edge layer, aiming to minimize

computing time.

The computing offload algorithm outlined in Algorithm 1 first checks the current CPU

utilization of the equipment computer; if it is greater than a pre-defined CPU threshold,

the computational task will be performed on the edge layer (see Lines 1-3 in Algorithm 1).

Next, the computing offload algorithm examines the current memory usage; if it is greater

than a pre-defined memory threshold, the computational task will be performed on the edge

layer (see Lines 6-9 in Algorithm 1). Lastly, the computing offload algorithm looks into the

36

time complexity of the computational task; if the time complexity is bigger than O(n2), the

computational task will be executed on the edge layer, otherwise, the computational task will

be offloaded and performed on the equipment computer (see Lines 11-15 in Algorithm 1).

3.4 Using machine learning to determine whether to offload computation from

the edge layer to the equipment layer

3.4.1 Purpose of the Evaluation With Machine Learning Models

The purpose of using machine learning models is to evaluate the validity our recom-

mendation to offload computation tasks from the edge to the equipment layer. The machine

learning models can also help to determine when it is efficient to offload computation. Lastly,

after training and testing machine learning algorithms, we can choose the best machine learn-

ing model and compare it with Algorithm 1. Figure 3.18 shows a generic machine learning

training and testing flow.

Figure 3.18: Machine Learning Flow

37

3.4.2 Experimental Setup

As discussed in section 3.3, the factors that affect the computation total time are data

size, CPU utilization, and algorithmic complexity of the computation task. Obviously, CPU

speed also affects the computing time. The list of factors includes:

• Data size (number of data points)

• CPU utilization (percentage)

• CPU speed (GHz, we have only one CPU speed due to limited resource, but we put it

here for heterogeneous platform)

• Algorithmic complexity (O(n), O(nlogn), or O(n2)

Table 3.1: Important Factors in Computation Time

Data Size CPU Utilization CPU Speed Algorithmic Complexity

200 1 2.8 O(n)

400 1 2.8 O(n)

...

50000 1 2.8 O(n)

200 1 2.8 O(nlogn)

400 1 2.8 O(nlogn)

...

50000 1 2.8 O(n2)

200 1 2.8 O(n2)

400 1 2.8 O(n2)

...

50000 1 2.8 O(n2)

Continued on next page

38

Table 3.1 – continued from previous page

Data Size CPU Utilization CPU Speed Algorithmic Complexity

200 15 2.8 O(n)

400 15 2.8 O(n)

...

50000 15 2.8 O(n)

200 15 2.8 O(nlogn)

400 15 2.8 O(nlogn)

...

50000 15 2.8 O(nlogn)

200 15 2.8 O(n2)

400 15 2.8 O(n2)

...

50000 15 2.8 O(n2)

...

...

...

200 99 2.8 O(n)

400 99 2.8 O(n)

...

50000 99 2.8 O(n)

200 99 2.8 O(nlogn)

400 99 2.8 O(nlogn)

...

50000 99 2.8 O(nlogn)

200 99 2.8 O(n2)

Continued on next page

39

Table 3.1 – continued from previous page

Data Size CPU Utilization CPU Speed Algorithmic Complexity

400 99 2.8 O(n2)

...

48000 99 2.8 O(n2)

50000 99 2.8 O(n2)

Table 3.1 shows details of the factors in calculating total computation time. We use those

factors as features to feed into machine learning models that determine whether to offload

computing tasks from the edge layer to the equipment layer. Data size, CPU utilization, and

CPU speed are numerical values which can be used as features. The algorithmic complexity

feature has three values, O(n), O(nlogn), and O(n2). We use one-hot encoding method to

convert the feature Algorithmic Complexity into three features: O(n), O(nlogn), and O(n2).

After converting, our feature list includes:

• Data size (number of data points)

• CPU utilization (percentage)

• CPU speed (GHz)

• O(n): 1 or 0. If O(n) is 1, O(nlogn) and O(n2) must be zero.

• O(nlogn): 1 or 0. If O(nlogn) is 1, O(n) and O(n2) must be zero.

• O(n2): 1 or 0. If O(n2) is 1, O(n) and O(nlogn) must be zero.

We create an Offload label to indicate whether the computation task should be offloaded

from the edge layer to the equipment layer. Offload can be labeled as 1 or 0. If Offload is

1, it is efficient to offload computation task from the edge to the equipment. Otherwise, the

value of Offload is 0. We use total computing time data that we collect in our experiments

to label data. If total computing time on the equipment is less than total computing time on

40

the edge server, Offload is labeled as 1. If total computing time on the equipment is greater

than or equal to total computing time on the edge server, it is not necessary to offload

computing task to the equipment, Offload is labeled as 0. Table 3.2 shows data format we

use for training machine learning models.

Table 3.2: Important Factors in Computation Time

Data Size CPU Utilization CPU Speed O(n) O(nlogn) O(n2) Offload

200 1 2.8 1 0 0 1

400 1 2.8 1 0 0 1

...

50000 1 2.8 1 0 0 1

200 1 2.8 0 1 0 1

400 1 2.8 0 1 0 1

...

50000 1 2.8 0 1 0 1

200 1 2.8 0 0 1 1

400 1 2.8 0 0 1 1

...

50000 1 2.8 0 0 1 0

200 15 2.8 1 0 0 1

400 15 2.8 1 0 0 1

...

50000 15 2.8 1 0 0 1

200 15 2.8 0 1 0 1

400 15 2.8 0 1 0 1

...

Continued on next page

41

Table 3.2 – continued from previous page

Data Size CPU Utilization CPU Speed O(n) O(nlogn) O(n2) Offload

50000 15 2.8 0 1 0 1

200 15 2.8 0 0 1 1

400 15 2.8 0 0 1 1

...

50000 15 2.8 0 0 1 0

...

...

...

200 99 2.8 1 0 0 1

400 99 2.8 1 0 0 1

...

50000 99 2.8 1 0 0 1

200 99 2.8 0 1 0 1

400 99 2.8 0 1 0 1

...

50000 99 2.8 0 1 0 1

200 99 2.8 0 0 1 1

400 99 2.8 0 0 1 1

...

48000 99 2.8 0 0 1 0

50000 99 2.8 0 0 1 0

We use Stratified K-Fold function in sklearn python library to split the data set into

training and testing data. We split the data set 10 times, each time the Stratified K-

Fold function creates a different split into training and testing data sets. The reason we

42

use Stratified K-Fold is to preserve the percentage of samples for each class in the Offload

column. In other words, the ratio between offload and non-offload cases in the training

data is the same as that of testing data. For each split of data, we apply machine learning

algorithms on the training data set to build a model for each algorithm. Then we use the

models to predict the outcome of the testing data set.

Figure 3.19: Generic confusion matrix

3.4.3 Evaluation Method

We conduct training and testing of our data set on various machine learning algorithms,

including logistic regression, linear discriminant analysis, k-nearest neighbors classifier, de-

cision tree classifier, random forest, and support vector machines. It is worth noting that

since we have only one CPU speed in our dataset, it is not necessary to include CPU speed

in the feature list for this evaluation. For heterogeneous platforms with different types of

computers, CPU speeds should be included in the feature list.

For each machine learning algorithm, we feed the training data and build a model. We

use the model to predict the outcome of the testing data. Then we evaluate the performance

of the machine learning model by comparing the prediction with the actual labels of the

testing data set. To evaluate the performance of a machine learning model, we collect the

following parameters for each run and calculate the average values:

43

• Confusion matrix

– True positive

– True negative

– False positive

– False negative

• Precision

• Recall

• Accuracy score

A confusion matrix is a table that is used to define the performance of a classification

algorithm. A generic confusion matrix is shown in Figure 3.19. The main components of

the confusion matrix are true positive (TP), true negative (TN), false positive (FP), false

negative (FN).

The accuracy score is calculated as follows:

Accuracy score =
TP + TN

TP + TN + FP + FN
(3.15)

The precision value is calculated as follows:

Precision =
TP

TP + FP
(3.16)

The recall value is calculated as follows:

Recall =
TP

TP + FN
(3.17)

44

Figure 3.20: Confusion Matrix from Logistic Regression Model

Figure 3.21: Confusion Matrix from Linear Discriminant Analysis Model

3.4.4 Observation

Logistic Regression

Figure 3.20 shows the confusion matrix when testing our data set with logistic regression

model. From the confusion matrix, we calculate the following measures:

• Precision = 0.9811

• Recall = 0.8753

• Accuracy score = 0.8837

45

Figure 3.22: Confusion Matrix from K-Nearest Neighbors Classifier Model

Figure 3.23: Confusion Matrix from Decision Tree Classifier Model

Linear Discriminant Analysis

Figure 3.21 shows the confusion matrix when testing our data set with linear discrimi-

nant analysis model. From the confusion matrix, we calculate the following measures:

• Precision = 0.9975

• Recall = 0.9052

• Accuracy score = 0.9213

46

Figure 3.24: Confusion Matrix from Random Forest Model

Figure 3.25: Confusion Matrix from Support Vector Machines Model

K-Nearest Neighbors Classifier (KNN)

Figure 3.22 shows the confusion matrix when testing our data set with k-nearest neigh-

bors classifier model. From the confusion matrix, we calculate the following measures:

• Precision = 0.8086

• Recall = 1

• Accuracy score = 0.8086

47

Decision Tree Classifier

Figure 3.23 shows the confusion matrix when testing our data set with decision tree

classifier model. From the confusion matrix, we calculate the following measures:

• Precision = 0.9551

• Recall = 0.9612

• Accuracy score = 0.9285

Random Forest

Figure 3.24 shows the confusion matrix when testing our data set with random forest

model. From the confusion matrix, we calculate the following measures:

• Precision = 0.9550

• Recall = 0.9578

• Accuracy score = 0.9255

Support Vector Machines

Figure 3.25 shows the confusion matrix when testing our data set with support vector

machines model. From the confusion matrix, we calculate the following measures:

• Precision = 0.8086

• Recall = 1

• Accuracy score = 0.8086

After training machine learning models, we feed testing data into those models and

obtain key measures of performance from each model as shown in Table 3.3.

48

Table 3.3: Average Key Measures of Performance for each ML Model

ML Model True
Posi-
tive

False
Posi-
tive

True
Nega-
tive

False
Nega-
tive

Precision Recall Accuracy
Score

Logistic Regression 304.7 6.7 75.7 43.4 0.9811 0.8753 0.8837
Linear Discriminant Anal-
ysis

315.1 0.9 81.5 33 0.9975 0.9052 0.9213

K-Nearest Neighbors 348.1 82.4 0 0 0.8086 1 0.8086
Decision Tree 334.6 17.3 65.1 13.5 0.9551 0.9612 0.9285
Random Forest 333.4 17.4 65.0 14.7 0.9550 0.9578 0.9255
Support Vector Machines 348.1 82.4 0 0 0.8086 1 0.8086

3.4.5 Reason Behind the Observation

Table 3.3 shows a summary of the performance for each machine learning model. From

the characteristics of the performance, we group the models into three groups.

Group 1 - Low accuracy for negative selection

Observing the logistic regression model, we notice that this model has a high precision

value of 0.9811 and a high recall value of 0.8753. The accuracy score is also relatively good

with a score of 0.8837. However, looking at negative prediction, the rate of accurately picking

out a negative case is very low. With TN = 75.7 and FN = 43.4, the accuracy percentage

of picking a negative case is TN/(TN + FN) = 63.56%, which is relatively low. We can see

the same issue with linear discriminant analysis (LDA) model. The LDA model has high

precision (0.9975) and high recall (0.9052). But its ability to pick out a correct negative

case is low. With TN = 81.5 and FN = 33, the percentage to correctly pick out a negative

case is TN/(TN + FN) = 71.18%. This group of machine learning models is not a suitable

candidate for predicting offload recommendation for our scenario.

Group 2 - All predictions are positive

From our observation with the k-nearest neighbors classifier and support vector machines

models, the prediction outcome is always positive. The size of the testing data set is 431

with 349 positive labels and 82 negative labels. The percentage of positive labels is 80.97%.

49

And because the models always predict positive outcomes, the accuracy score, precision,

and recall are relatively high. However, these two models are not able to predict a negative

outcome of our testing data set.

Group 3 - High accuracy

Our top two models are decision tree classifier and random forest. The decision tree

classifier model has precision, recall, and accuracy score of 0.9551, 0.9612, and 0.9285 respec-

tively. The random forest model has precision, recall, and accuracy score of 0.9550, 0.9578,

and 0.9255 respectively. Most importantly, these two models can also predict negative out-

come with higher accuracy than the other models. With TN = 65.1 and FN = 13.5, the

percentage to correctly pick out a negative case of decision tree classifier model is TN/(TN

+ FN) = 82.82%. Similarly, the accuracy for negative prediction of random forest is 81.56%.

Figure 3.26: Decision Tree Model

50

3.4.6 Implication: Lessons Learned

From our experiments with different machine learning models, we choose decision tree

classifier as the best model to predict our computation offload scenario. We use the whole

data set we have as training data and feed this data set into the decision tree classifier

algorithm to build a final machine learning model. To avoid overfitting, we set the maximum

depth of the tree to 3. The result model is shown in Figure 3.26.

On comparing the decision tree classifier model with Algorithm 1, we find that they are

closely aligned. As we see at the first node of decision tree classifier model, if the algorithmic

complexity is not O(n2), y is equal to 1, i.e. the model recommends to offload computation

task from the edge layer to the equipment layer. We also see that the decision tree classifier

only checks whether the algorithmic complexity is O(n2) or not. If it is not O(n2), it doesn’t

check for O(n) or O(nlogn), this is also aligned with Algorithm 1. Another similarity is

that the decision tree classifier also checks for CPU Utilization of 62.5%, which is similar to

the CPU Threshold in our algorithm, to determine the prediction outcome. In general, if

we have an adequate amount of memory, then memory utilization factor doesn’t affect the

performance of computation task, therefore we did not have memory utilization as a feature

in our data set. But our algorithm checks for RAM Utilization before determining offload

recommendation. For simplicity, our Algorithm 1 doesn’t check for data size, and that is a

minor difference between the decision tree classifier model with our algorithm.

This comparison between the decision tree classifier model and Algorithm 1 shows that

our recommendation for offloading computation task from the edge layer to the equipment

layer is helpful and proven to be efficient in smart manufacturing for semiconductor.

3.5 Summary

Our experiments showed that computing tasks could be offloaded from the edge layer

to the equipment layer in some instances resulting in an improvement in performance and a

reduction in the data transfer requirement between layers in a manufacturing environment.

51

On the basis of these facts, we propose an algorithm to determine which layer should perform

a computational task based on the factors of the existing conditions of the system. We also

fit our experimental dataset into various machine learning models and determine the model

that is suitable for offloading decision.

52

Chapter 4

Task Scheduling on Edge Layer with Option to Offload Computing Tasks from Edge to

Equipment

This chapter presents our resource scheduling scheme for computation tasks, which pro-

vides three options. The first option is to offload tasks from the edge layer to the equipment

layer. The second option takes into account priority when selecting a task for scheduling.

The third option is to raise the priority of a task when it is waiting for a resource. The

chapter is organized as follows. Section 4.1 presents the design of the system architecture of

our resource scheduling scheme. Section 4.2 explains the experimental setups, followed by

the discussion of our datasets shown in section 4.3. Next, we walk through our scheduling al-

gorithms and the performance metrics in section 4.4 and in section 4.5, respectively. Section

4.6 shows our experimental results. Finally, we summarize the chapter in section 4.7.

4.1 System Architecture

In traditional systems, the layers that perform computation tasks are the edge layer

and the cloud layer. Some systems have fog/edge layers instead of only the edge layer.

Our system architecture consists of both cloud, an edge layer, and an equipment layer.

Specifically, the cloud is used for data storage and heavy computing tasks; the edge layer is

employed to support smart manufacturing, and the equipment layer services as an interface

to hardware. Though our system architecture is similar to other system designs, our system

differentiate from other systems in that the equipment layer can also perform computing

tasks. Our scheduler determines if tasks can be performed at the equipment level based on

multiple factors: algorithm complexity, CPU utilization, RAM utilization, and availability.

Our system architecture contains the following four parts.

53

Figure 4.1: System Architecture with Scheduler

54

• Cloud Layer

• Edge Layer

• Equipment Layer

• System Software Control

– Scheduler

– Communication Module

In our system, the System Software Control contains two modules - Scheduler and

Communication Module. Communication Module is responsible for communicating tasks

that resources need to complete to resources. Communication Module is also in charge of

collecting statuses and results from the tasks.

4.2 Experimental Setup

We create a simulation system to carry out scheduling experiments. This simulation

system contains a pool of edge servers at the edge layer for performing computation tasks,

and a pool of equipment computers at the equipment layer for offloading tasks from the edge.

The detailed simulation system is outlined as follows:

• Edge Layer

– 6 Edge Servers

∗ Default 5% CPU Utilization

∗ Default 20GB Memory Utilization, Max 512GB

• Equipment Layer

– 7 Equipment Computers

∗ Default 5% CPU Utilization

55

∗ Default 2GB Memory Utilization, Max 32GB

• Resources Scheduler

4.3 Datasets

We generate ten datasets, on which we perform experiments to make sure there is

no dataset-dependency in our results. Each dataset consists of 1000 randomly generated

computation tasks. And each computation task exhibits the following properties:

• TComp: The computing time for task t, which is in the range of 1 - 30 seconds.

• TTotal transfer: The total time to read, write, and transfer needed data to complete task

t, which is in the range of 1 - 10 seconds.

• TAt: The time the task arrives at the system, ranging between 0 - 99 seconds.

• ϵt: CPU Utilization for task t, which is randomly generated between 1 - 30 percent.

• ωt: Memory Utilization for task t, which is randomly generated between 1 - 16 GB.

• δt: algorithm complexity of task t, which can be O(n), O(nlogn), or O(n2).

• Priority level (e.g., 1, 2, 3, 4, and 5, and 1 denotes the highest priority)

Data transfer time is only applicable if the task is executed on the edge layer. The total

time to perform task t on the edge layer can be calculated as

TEq total = TTotal transfer + TComp, (4.1)

If the task is executed on the equipment layer, data transfer time will not be counted

in the total execution time. From our experiments (see Chapter 3), the computing time on

the equipment layer is longer than the computing time of the same task on the edge layer

because the edge layer contains more powerful servers. The computing time also depends

56

on the current CPU utilization on the equipment computer. Therefore, in our simulation

scheduling, if the task is assigned to the equipment layer, the computing time TComp will be

modified as follows:

• If CPU UTILIZATION on Equipment PC ≤ 50

TComp = TComp * 1.1

• If CPU UTILIZATION on Equipment PC > 50 and ≤ 75

TComp = TComp * 1.2

• If CPU UTILIZATION on Equipment PC > 75 and ≤ 90

TComp = TComp * 1.4

• If CPU UTILIZATION on Equipment PC > 90

TComp = TComp * 1.6

4.4 Algorithm

The purpose of our scheduling algorithm is two-fold. First, resources at the edge layer

and the equipment layer are seamlessly integrated. Second, appropriate resources are allo-

cated to computation tasks. The scheduling algorithm is outlined in Algorithm 2, 3, and

4. Table 4.1 shows the notations and symbols used in the algorithms throughout this chap-

ter. In the process of making scheduling decisions, the scheduler takes into account the time

complexity of computation tasks as well as the availability of resources to determine whether

it is feasible to offload computation task to the equipment layer.

In detail, the scheduling algorithm goes through the following four primary stages:

• Checking for completed tasks and removing these completed tasks from the tasks pool.

• Analyzing cancelled tasks and removing these cancelled tasks from the tasks pool.

• Checking if there are any waiting tasks.

57

Algorithm 2 Scheduling with Offloading Tasks Enabled

Input: PW , PE, LEN(PW), LEN(PE), WTL

1: Start the scheduler

2: for i← 0 to (LEN(PE)− 1) do

3: task ← PE[i] // Get the ith task in executing list

4: if αtask = COMPLETED then

5: Remove task from PE

6: end if

7: end for

8:

9: if LEN(PW) = 0 then

10: No action, wait 1 second, then go back to step 1

11: end if

12:

13: for i← 0 to (LEN(PW)− 1) do

14: task ← PW [i] // Get the ith task in wait list

15: if αtask = CANCELLED then

16: Remove task from PW

17: end if

18: end for

19:

20: // In case there was some cancelled tasks and PW is empty

21: if LEN(PW) = 0 then

22: No action, wait 1 second, then go back to step 1

23: end if

24:

25: while (Resource is available AND LEN(PW) > 0) do

26: // Pick the next task to assign resource

27: if (EP is true) then

28: selected task ← get highest priority task()

29: else

30: selected task ← get longest wait task()

31: end if

32:

33: // Start allocating resource for task

34: EC ← null

58

35: // If the task can run on equipment, try to allocate an equipment for the task

36: if (δselected task < O(n2)) then

37: EC ← allocate equipment pc()

38: end if

39:

40: βselected task ← −1
41: // If equipment resource is allocated, executing the task

42: task has resource← false

43: if EC ̸= null then

44: execute task(selected task, EC)

45: βselected task ← 0

46: Move selected task from PW to PE

47: task has resource← true

48: else

49: // If equipment resource is not available, try to allocate an edge server

50: ES ← allocate edge server()

51: // If the edge server is allocated, execute the task

52: if ES ̸= null then

53: execute task(selected task, ES)

54: βselected task ← 1

55: Move selected task from PW to PE

56: task has resource← true

57: end if

58: end if

59: if task has resource ̸= true then

60: γselected task ← γselected task + 1

61: if γselected task = WTL then

62: if θselected task > 1 then

63: θselected task = θselected task − 1

64: γselected task ← 0

65: end if

66: end if

67: end if

68: end while

69: Wait 1 second, then go back to step 1

59

Algorithm 3 get highest priority task()

Input: PW , LEN(PW)

1: if LEN(PW) = 0 then

2: Return NULL

3: end if

4: for i← 1 to 5 do

5: for j ← 0 to LEN(PW)− 1 do

6: task ← PW [j]

7: if θtask = i then

8: return task

9: end if

10: end for

11: end for

Algorithm 4 get longest wait task()

Input: PW , LEN(PW)

1: if LEN(PW) = 0 then

2: Return NULL

3: else

4: Return PW[0]

5: end if

• Continuously performing resource allocation until there is no waiting task or no avail-

able resources.

The scheduling algorithm first accesses the pool of executing tasks (PE) for any com-

pleted tasks, followed by deleting those completed tasks from the pool PE (see lines 2 - 7

in Algorithm 2). Next, the scheduling algorithm checks the pool of waiting tasks (PW).

If the pool is empty, the scheduling algorithm will await one second and restart from the

beginning (see lines 9 - 11 in Algorithm 2). Then, the scheduling algorithm examines the

pool of waiting tasks (PW) and remove cancelled tasks from the pool if any (see line 13 - 18

in Algorithm 2). After that, the scheduling algorithm checks the pool of waiting tasks one

60

Algorithm 5 allocate equipment pc()

Input: THLD CPU EQ, THLD RAM EQ, task t

1: Get the list LIST EC of PCs from equipment layer, sorted in ascending order by CPU

utilization.

2: count← LEN(LIST EC)

3:

4: EC ← NULL

5: found = false

6: for i← 0 to count− 1 do

7: EC ← LIST EC[i]

8: found = false

9: if (CPUEC + λt > THLD CPU EQ) then

10: break

11: end if

12: if RAMEC + ωt ≤ THLD RAM EQ then

13: found = true

14: break

15: end if

16: end for

17:

18: if (found) then

19: Return EC

20: else

21: Return NULL

22: end if

more time and if the pool is empty, it waits for one second and restarts from the beginning

(see line 21 - 23 in Algorithm 2).

The scheduling algorithm now starts allocation resource for computation tasks. It always

monitors and ensure that there is at least one waiting task and resources are available (see

line 24 in Algorithm 2). Next, the scheduling algorithm picks a task to allocate resource. If

task priority is considered (EP is true), the scheduling algorithm picks the highest priority

task in waiting pool, otherwise it picks the task with the longest wait time (see line 25 - 30

61

Algorithm 6 allocate edge server()

Input: THLD CPU ED, THLD RAM ED, task t

1: Get the list LIST ES of edge servers from the edge layer, sorted in ascending order by

CPU utilization.

2: count← LEN(LIST ES)

3:

4: ES ← NULL

5: found = false

6: for i← 0 to count− 1 do

7: ES ← LIST ES[i]

8: found = false

9: if (CPUES + λt > THLD CPU ED) then

10: break

11: end if

12: if RAMES + ωt ≤ THLD RAM ED then

13: found = true

14: break

15: end if

16: end for

17:

18: if (found) then

19: Return ES

20: else

21: Return NULL

22: end if

in Algorithm 2). Algorithm 3 explains how to elect the highest priority task, and Algorithm

4 is the process of picking the longest waited task.

After selecting a task, the next step of the algorithm is to assign resources. If the

time complexity of the task is less than O(n2), the scheduling algorithm tries to pinpoint

a resource from the equipment layer (see line 34 - 37 in Algorithm 2). The Algorithm 5

shows the process of allocating a resource from the equipment layer. If a resource is found

in the equipment layer, the task will be executed at the equipment layer: the task will be

62

Table 4.1: Notations in Scheduling Algorithms

Notations Description

PW The pool of tasks waiting for execution

PE The pool of tasks that are executing

LEN(PW) The number of tasks waiting for execution

LEN(PE) The number of tasks in executing state

EP Enabled Task Priority: if the value is true, priority of the task
is considered when selecting the next task to allocate resource,
if the value is false, ignore task priority

WTL Wait time limit for upgrading task’s priority

ES Edge server

EC Equipment computer

CPUES Current CPU Utilization of the Edge server ES

RAMES Current Memory Utilization of the Edge server ES

CPUEC Current CPU Utilization of the Equipment computer EC

RAMEC Current Memory Utilization of the Equipment computer EC

THLD CPU ED CPU Threshold at the Edge layer

THLD RAM ED Memory threshold at the Edge layer

THLD CPU EQ CPU Threshold at the Equipment layer

THLD RAM EQ Memory threshold at the Equipment layer

LIST ES List of edge servers at the Edge layer

LIST EC List of equipment PCs at the Equipment layer

LEN(LIST ES) The number of edge servers at the Edge layer

LEN(LIST EC) The number of equipment PCs at the Equipment layer

αt Execution status of task t. Valid values are WAITING, EXE-
CUTING, COMPLETED, CANCELLED

βt 1: task t runs on edge server, 0: task t runs on equipment, -1:
no resource has been assigned

δt Algorithm complexity of task t. Values: O(n), O(nlogn), O(n2)

γt Wait time of task t from last upgrade.

θt Current priority of task t

λt CPU requirement for task t

ωt Memory requirement for task t

moved from the pool of waiting tasks (PW) to the pool of executing tasks (PE) (see line

39 - 46 in Algorithm 2). If the task is not executed at the equipment layer, the scheduling

algorithm attempts to assign resources from the edge layer. The Algorithm 6 sketches the

63

process of allocating resource at the edge layer. If an edge resource is available, the task will

be performed at the edge layer (see line 48 - 55 in Algorithm 2).

If there is no available resource for the scheduled task, the scheduling algorithm will

expand the wait time of the task. If the wait time of the task reaches a stipulated wait

limit for upgrading priority, the scheduling algorithm promotes the priority of the task and

resets the wait time to zero (see line 57 - 65 in Algorithm 2). Then, the scheduling algorithm

awaits one second and restart the process. The scheduling period of one second, of course,

can be configured according to the dynamic workload conditions.

4.5 Performance Metrics

To present the experimental results gleaned from extensive experiments in the next sec-

tion, we outline the performance metrics below. The total running time of all the submitted

tasks resemble the workload to be handled by the smart manufacturing system. We pay

particular attention to the total and average response time of tasks at various priority levels

ranging from 1 to 5.

All the measured metrics are tabulated in the list below.

• Total running time for 1000 tasks in dataset

• Number of offloaded tasks

• Total response time and Average response time for all tasks

• Total response time and Average response time for tasks with priority 1

• Total response time and Average response time for tasks with priority 2

• Total response time and Average response time for tasks with priority 3

• Total response time and Average response time for tasks with priority 4

• Total response time and Average response time for tasks with priority 5

64

4.6 Experimental Results

4.6.1 A State-of-the-Art Scheduling Technique: Hybrid Computing Solution

(HCS)

To evaluate our scheduling performance, we compare our scheduling results with a

State-of-the-Art scheduling technique: the Hybrid Computing Solution or HCS as described

in the literature [33]. In the Hybrid Computing Solution - HCS, the algorithm selects an

edge computing server if the executing time of tasks running on the server is less than the

requirement to complete the task.

We collect the following data as performance metrics for comparison:

• Total time to complete all tasks (Unit: seconds).

• Throughput (Unit: number of tasks per second).

• Total wait time (Unit: seconds).

• Average wait time per task (Unit: seconds).

Figure 4.2 sketches the results obtained by running the leading-edge HCS algorithm

described in the literature [33].

4.6.2 Comparing Experimental Results with HCS

We perform our scheduler as described in Algorithm 2 on the same 10 datasets that are

published available 4.6.1. When offloading computation tasks to the equipment layer, our

scheduling algorithm selects a resource from the equipment layer with the constraint of the

CPU threshold as well as the memory threshold on equipment computers. We repeatedly

run our algorithm on all the 10 datasets with different combinations of CPU utilization and

memory utilization to cover the wide workload spectrum. For the purpose of comparing our

scheduling algorithm with the State-of-the-Art HCS scheduling algorithm, we pick the result

of the settings in the middle of the range, which is comprised of CPU threshold of 50% and

65

(a) Total Time to Finish All Tasks (b) Throughput

(c) Total Wait Time (d) Average Wait Time

Figure 4.2: Results of the Hybrid Computing Solution or HCS.

memory threshold of 8GB. In this scenario, the comparison result unveils that the average

total time to complete 1000 tasks is drastically shortened by 27.75% when enable offloading

tasks to the equipment layer. The comparison result also shows that the throughput is

immensely bolstered by 38.45%, the total wait time and average wait time per task are cut

back by 38.8%. Figure 4.3 shows the comparison in total running time, throughput, total

wait time, and average wait time. The data used for the comprehensive comparison can be

found in Appendix B.

4.6.3 Scheduling Experimental Results with Tasks Priority

Another factor we consider in resource scheduling is task priority. As discussed in

Section 4.3, tasks are assigned priorities - a value ranging between 1 to 5. The five priority

66

(a) HCS vs Offload - Total Time (b) HCS vs Offload - Throughput

(c) HCS vs Offload - Total Wait Time (d) HCS vs Offload - Average Wait Time

Figure 4.3: HCS vs Offload with 50% CPU Threshold and 8GB Memory Threshold

levels only serve as a demonstration. In the real-world setting, of course, the total number

of priority levels can be configured. In our experiments, Priority 1 is the highest priority,

and priority 5 is the lowest priority. When task priority option is enabled in the resources

scheduler and there is the lack of adequate resources, the lower priority tasks would have

to wait indefinitely - a serious starvation problem to be addressed. To resolve this issue, we

implement the wait-time limit or WTL in Table 4.1. WTL is the amount of time a task

should wait before its priority is promoted. To compare the effect of different WTL values,

we fix, in the equipment level, the CPU threshold at 50% and the memory threshold at 8GB.

We undertake the experiments with the following value of the wait-time limit (WTL):

• No priority

• Apply priority with WTL = 10 seconds

67

• Apply priority with WTL = 20 seconds

• Apply priority with WTL = 30 seconds

• Apply priority with WTL = 40 seconds

• Apply priority with WTL = 50 seconds

• Apply priority with WTL = 60 seconds

• Apply priority with WTL = 70 seconds

• Apply priority with WTL = 80 seconds

• Apply priority with WTL = 90 seconds

• Apply priority with WTL = 100 seconds

• Apply priority and no priority upgrade (No WTL)

From our experimental results, as shown in Figure 4.4, there is not any significant

differences in total executing time, throughput, total wait time, and average wait time of all

tasks when running resource scheduling with different values of wait-time Limits. On the

contrary, looking at average wait time for each priority group, we see a significant difference

in performance of each group when changing wait-time limit value. If wait-time limit is set

to a small value – low priority groups can be upgraded in a faster pace – the tasks with

priority 1 have no performance edge over those tasks with lower priorities. When wait-time

limit increases so that it takes longer time for the low priority groups to be promoted, we

observe from 4.5 that the tasks with the highest priority outperform the low-priority tasks

in term of average wait time. The data shown in this section can be found in Appendix C.

4.7 Scheduling Summary

In this section, we proposed a system for smart manufacturing architecture, which con-

sists of a cloud layer, an edge layer, an equipment layer, and a system software control

68

(a) Total Executing Time with Different WTL (b) Throughput with Different WTL

(c) Total Wait Time with Different WTL (d) Average Wait Time with Different WTL

Figure 4.4: Offload Scheduling Data with Different Wait Time Limits

module. The system software control module is the vital part of our design. At the heart of

the system software control module is a scheduling algorithm that supports resource schedul-

ing with ability of offloading computation tasks from the edge layer to the equipment layer.

Besides, the scheduling algorithm can take priorities into consideration when selecting com-

putation tasks to schedule resources. Moreover, the scheduling algorithm can also promote

a task to a higher priority if the task wait too long to execute, thus preventing low-priority

tasks from sitting at the bottom of the queue without resources to execute.

69

Figure 4.5: Average Wait Time by priorities with different wait-time limit or WTL.

70

Chapter 5

Dynamic AI Computation Tasks with SECS/GEM in Semiconductor Smart Manufacturing

In this chapter, we present a mechanism for offloading computation tasks from the edge

layer to the equipment layer. This chapter is organized as follows. Section 5.1 and section 5.2

respectively discuss the background and motivation of the communication protocol between

the host computer on the edge layer and the equipment. Section 5.3 presents the latency

when transferring data variables through SECS/GEM interface. Next, section 5.4 discusses

the reasons we believe a new protocol is needed for communication between the edge layer

and the equipment layer, and section 5.5 presents the system architecture to support the

new protocol. Section 5.6 presents how the new protocol works, followed by the scenarios of

usages in section 5.7. Finally, the summary of this chapter is given in section 5.8.

5.1 Background

With the rapid development of machine learning and artificial intelligence, advanced

data analysis has become essential in smart manufacturing, especially in the semiconductor

industry since it helps in early detection of failures in the process [1]. A massive amount

of data is collected during manufacturing processes, and analyzing the data in real-time is

critical for improving quality and productivity.

The use of multiple layers systems is the most common way of managing smart manufac-

turing: the equipment layer, the edge layer, and the cloud layer [2]. In semiconductor manu-

facturing, the equipment layer includes many types of equipment such as process equipment,

metrology equipment, and test equipment. The equipment layer is responsible for collecting

data during processing and testing. The data will be transferred to the edge layer for analysis

71

and production control. Some data will be transferred to the cloud layer for long term stor-

age, machine learning and artificial intelligence computing tasks. This conventional method

of organizing data and analysis creates latency due to the delay in data transfer between

layers of the smart manufacturing system. Another problem with this method is that the

network bandwidth gets overloaded with vast amounts of data transferring from equipment

in the factory to the edge servers.

Some computing tasks can be performed at the equipment layer to reduce the latency of

transferring data from the equipment to the edge. The issue is that computing tasks need to

be dynamically decided by the edge layer during material processing. The equipment layer

is not able to identify which computing tasks need to be performed at a given time during

processing.

5.2 Motivation

The issues motivate us to propose a communication protocol in SECS/GEM messages

for the host to assign data analysis tasks to the equipment and collect the results for making

decisions for the next steps in the process. In semiconductor manufacturing, different types

of data analytics need to be performed on process data, including process data monitoring,

statistical process control, resources scheduling, and failure prediction [3]. Some of those

computing tasks can be performed at the equipment level to achieve real-time response.

Without instruction from the host, the equipment always performs certain pre-defined anal-

yses at some pre-defined stages during material processing. It is hence critical for the host

to be able to send requests to the equipment to perform data analyses and report the re-

sults. The proposed system will enable dynamic analysis computation tasks in semiconductor

manufacturing.

72

Table 5.1: Latency of Transferring Data Variables with SECS/GEM

Number of Data Variables Assigning Values to Data
Variables Time (seconds)

Transferring Data Variables
to Host Time (seconds)

1000 0.33 1.48
2000 0.83 2.15
3000 1.17 3.65
4000 1.84 4.92
5000 2.02 5.84
6000 2.31 6.91
7000 2.87 7.38
8000 3.19 8.53
9000 3.45 9.28
10000 3.66 10.26

5.3 Latency With Data Transfer Using SECS/GEM Messages

To carry out experiments, we set up a small network that includes two computers with

CPU Intel i7 Processor, 16G RAM, 1TB HD, and Windows 10 Professional. The comput-

ers were connected through a gigabit Ethernet switch. We developed a basic SECS/GEM

message transfer program for testing purposes. The host computer executed SECS/GEM

in active mode and the equipment computer executed SECS/GEM in passive mode. We

collected data variables by using data collection method defined in [5, 6]. The experiments

were conducted with different numbers of data variables.

Table 5.1 shows the results we collected in the experiments. It is worth noting that the

latency tabulated here is higher than the actual data transfer time over the network. The

reason behind this measurement is that the latency of data transferring over SECS/GEM

interface includes data transfer time as well as all overheads incurred by the SECS/GEM

interface, which is responsible for formatting SECS/GEM messages on the equipment side

and decrypting the messages on the host side to extract the values of data variables.

73

5.4 Adding New Set of Messages for Communication Between the Edge and

the Equipment

In semiconductor industry, factory automation is usually implemented through SECS/GEM

interface. The SECS/GEM interface supports a set of standards which were defined by the

Semiconductor Equipment and Materials International organization (SEMI). In smart manu-

facturing system, the equipment belongs to the equipment layer, and the host, which controls

the equipment and collects data though SECS/GEM interface, belongs to the edge layer.

The current SECS/GEM interface does not include a protocol for implementing dy-

namic data analysis to support smart manufacturing in the semiconductor industry. This

paper proposes a protocol for the host in the edge layer to assign data analysis tasks to the

equipment and collect the results through SECS/GEM interface.

We propose to add a new stream, which includes a collection of SECS messages, to

support dynamic data analysis during processing. The new stream provides an interface for

the host to define computing tasks and send the tasks to the equipment. The new stream

also defines an interface for the equipment to acknowledge the tasks and report the results

to the host. A computing task can be a simple calculation, a predefined statistical process

control rule, or a python script with input parameters.

5.5 System Design

To reduce the latency of data analysis tasks, we design a system that can minimize data

transfer from the equipment to the host. Fig. 5.1 shows the system design that supports

dynamic analysis computations using SECS/GEM. In this design, the host can send SECS

messages to the equipment to define analysis computing tasks and link the tasks to some

specific events. On the equipment, we add a new software module, Data Analysis Engine,

that executes the analysis tasks and reports the results to the host. With this design, it is

not necessary to send data variables to the host for analysis.

74

Figure 5.1: System Design

5.6 New Messages to Support Offloading Computing Tasks from Edge to Equip-

ment

We propose a new collection of messages, Stream 22, in SECS/GEM interface to handle

all dynamic data analyses communication between the host and the equipment. The reason

we use Stream 22 because the latest addition to SECS/GEM interface was Stream 21. Data

analysis tasks include a method to perform data analysis, a data variable list used for the

task, and a data variable list for storing the results. Then the defined tasks will be linked to

some particular events of the semiconductor equipment. Events are anything that happens

on the systems. For example, material arrives at the system, processing starts, processing

ends, etc. When the event is triggered, the Data Analysis Engine performs the task and

75

sends the results to the host. Data analysis tasks can be classified as predefined analyses or

custom analyses.

5.6.1 SECS/GEM Protocol for Predefined Analyses

The host can send a request for predefined analysis task to the equipment using key-

words. The initial keywords are “min”, “max”, “average”, “stdev”, and “sum”. More

computing keywords can be added into the protocol based on agreements between the chip

manufacturers and the equipment providers to support certain analysis tasks. For predefined

analyses, we define the following SECS messages to setup analysis tasks on the equipment:

S22F1, S22F2, S22F3, S22F4, S22F5, and S22F6.

S22F1, Define analysis task (Host to Equipment)

The purpose of this message is for the host to define analysis tasks using keyword for

the equipment to perform. A list of zero-length following <DATAID> deletes all predefined

analysis task definitions and associated links. A list of zero-length following <DATAID>

deletes the analysis task TASKID. All CEID links to this TASKID are also deleted.

Structure:

L, 2

1. <DATAID>

2. L, m

1. L, 2

1. <TASKID>

2. L, 3

1. <KEYWORD>

2. L, n #VID list for results

1. <VID>

.

76

.

n. <VID>

3. L, p #VID list for analysis task

1. <VID>

.

.

p. <VID>

.

.

m. L, 2

1. <TASKID>

2. L, 3

1. <KEYWORD>

2. L, n #VID list for results

1. <VID>

.

.

n. <VID>

3. L, p #VID list for analysis task

1. <VID>

.

.

p. <VID>

S22F2, Define analysis task acknowledge (Equipment to Host)

Acknowledge or return error from S22F1.

Structure:

77

<DATACK>

DATACK is Define Analysis Task Acknowledge Code. Valid values of DATACK:

• 0: Accept

• 1: Denied. Invalid format.

• 2: Denied. At least one TASKID was already defined.

• 3: Denied. At least one VID does not exist.

• 4: Denied. At least one KEYWORD is unknown.

• 5: Denied. Other error.

S22F3, Link event to analysis task (Host to Equipment))

The purpose of this message is for the host to link analysis tasks to a collection event

(CEID). A list of zero-length following <CEID> deletes all links to that CEID.

Structure:

L, 2

1. <DATAID>

2. L, m

1. L, 2

1. <CEID>

2. L, n

1. <TASKID>

.

.

n. <TASKID>

.

78

.

m. L, 2

1. <CEID>

2. L, n

1. <TASKID>

.

.

n. <TASKID>

.

.

S22F4, Link event to analysis task acknowledge (Equipment to Host)

Acknowledge or return error from S22F3.

Structure:

<LATACK>

LATACK is Link Analysis Task Acknowledge Code. Valid values of LATACK:

• 0: Accept

• 1: Denied. Invalid format.

• 2: Denied. At least one CEID link was already defined.

• 3: Denied. At least one CEID does not exist.

• 4: Denied. At least one TASKID does not exist.

• 5: Denied. Other error.

79

S22F5, Task Result Notify (Equipment to Host)

Equipment sends task result to the host.

Structure:

L, 2

1. <TIMESTAMP>

2. L, m

1. L, 3

1. <TASKID>

2. L, n

1. <RESULT>

.

.

n. <RESULT>

3. <ERRORTEXT>

.

.

m. L, 3

1. <TASKID>

2. L, n

1. <RESULT>

.

.

n. <RESULT>

3. <ERRORTEXT>

.

.

80

S22F6, Task Result Notify Acknowledge (Host to Equipment)

The host acknowledges the task result from S22F5.

Structure:

<TRACK>

TRACK is Task Result Acknowledge Code. Valid values of TRACK:

• 0: Accept

• 1: Denied. Invalid format.

• 2: Denied. At least one TASKID does not exist.

• 3: Denied. The number of results does not match the definition of the task TASKID.

• 4: Denied. Other error.

After defining an analysis task and linking the task to a specific event, the host needs

to enable the event with S2F37.

5.6.2 SECS/GEM Protocol for Custom Analyses

For complex analysis algorithms, we design a protocol for the host to send the algorithms

to the equipment in Python language format and collect the results. In the new stream 22,

we define the following SECS messages to setup custom analysis tasks on the equipment:

S22F7 and S22F8.

S22F7, Define analysis script task (Host to Equipment)

The purpose of this message is for the host to define analysis script tasks that use python

script. A list of zero-length following <DATAID> deletes all analysis script task definitions

and associated links. A list of zero-length following <TASKID> deletes the analysis task

TASKID. All CEID links to this TASKID are also deleted. SCRIPTTYPE indicates the

81

type of the script that is stored in the variable SCRIPTTEXT. Example of valid values

of SCRIPTTYPE are ”python” or ”perl”. It is determined by the agreement between the

equipment supplier and the semiconductor factory to use a different type of script.

Structure:

L, 2

1. <DATAID>

2. L, m

1. L, 2

1. <TASKID>

2. L, 4

1. <SCRIPTTYPE>

2. <SCRIPTTEXT>

3. L, n #VID list for results

1. <VID>

.

.

n. <VID>

4. L, p #VID list for script parameters

1. <VID>

.

.

p. <VID>

.

.

m. L, 2

1. <TASKID>

2. L, 3

82

1. <SCRIPTTYPE>

2. <SCRIPTTEXT>

3. L, n #VID list for results

1. <VID>

.

.

n. <VID>

4. L, p #VID list for script parameters

1. <VID>

.

.

p. <VID>

S22F8, Define analysis script task acknowledge (Equipment to Host)

Acknowledge or return error from S22F7.

Structure:

<DASTACK>

DASTACK is Define Analysis Script Task Acknowledge Code. Valid values of DAS-

TACK:

• 0: Accept

• 1: Denied. Invalid format.

• 2: Denied. At least one TASKID was already defined.

• 3: Denied. At least one VID does not exist.

• 4: Denied. Invalid Python script.

• 5: Denied. Other error.

83

5.6.3 Ad-hoc Analysis

S22F9, Request to perform analysis task (Host to Equipment)

The purpose of this message is to allow the host to trigger the equipment to perform

analysis tasks without waiting for the corresponding events. When a corresponding event is

triggered, the tasks will be performed again.

Structure

L, 2

1. <DATAID>

2. <L, m

1. <TASKID>

.

.

m. <TASKID>

S22F10, Request to perform analysis task acknowledge (Equipment to Host)

Acknowledge or return error from S22F9.

Structure:

<REQTASKACK>

REQTASKACK is Request Task Acknowledge Code. Valid values of REQTASKACK:

• 0: Accept

• 1: Denied. Invalid format.

• 2: Denied. At least one TASKID does not exist

• 3: Denied. Other error.

84

5.7 Scenarios

5.7.1 Scenario 1: Computation Tasks are Triggered by Events

Fig. 5.2 shows a communication diagram of a scenario for the host to define an analysis

task and to configure for the task to be executed whenever a specific event happens on the

equipment. Steps of the communication between the Host (Edge) and the Equipment:

• 1) Define an analysis task: The host sends a message to the equipment to define an

analysis task. If the host needs to define a pre-defined task, the host will send a S22F1

message. If the host needs to define an analysis script task, the host will send a S22F7

message.

• 2) Acknowledge: The equipment sends S22F2 to acknowledge the message S22F1 or

sends S22F8 to acknowledge the message S22F7 from the host.

• 3) Link the analysis task to an event: The host sends S22F3 to link the analysis task

to an event

• 4) Acknowledge: The equipment sends S22F4 to acknowledge the message S22F3 from

the host.

• 5) Enable the event: The host sends S2F37 to enable the event. S2F37 is defined in

[55, 56].

• 6) Acknowledge: The equipment sends S2F38 to acknowledge the message S2F37 from

the host. S2F38 is defined in [55, 56].

• 7) Perform data analysis: When the event is triggered on the equipment, the Data

Analysis Engine on the equipment performs the analysis task, and at the same time,

the equipment sends S6F11 to the host to inform the host that the event has been

triggered. S6F11 is the Event Report Send message. The S6F11 message is defined in

[55, 56].

85

Figure 5.2: Communication Diagram - Computation Tasks Triggered by Events

86

• 8) Send results to the host: When the Data Analysis Engine finishes the data analysis

task, it sends S22F5 to report the results to the host.

• 9) Acknowledge: The host sends S22F6 to acknowledge the message S22F5 from the

equipment.

5.7.2 Scenario 2: Ad-hoc Performing Computation Tasks

Fig. 5.3 shows a communication diagram of a scenario for the host to set up an analysis

task and request the equipment to perform the task. In this scenario, the computation task

is performed only one time. Steps of the communication between the Host (Edge) and the

Equipment:

• 1) Define an analysis task: The host sends a message to the equipment to define an

analysis task. If the host needs to define a pre-defined task, the host will send a S22F1

message. If the host needs to define an analysis script task, the host will send a S22F7

message.

• 2) Acknowledge: The equipment sends S22F2 to acknowledge the message S22F1 or

sends S22F8 to acknowledge the message S22F7 from the host.

• 3) Ad-hoc executing the task: The host sends S22F9 to request the equipment imme-

diately executing the task.

• 4) Acknowledge: The equipment sends S22F10 to acknowledge the message S22F9 from

the host. Then the equipment starts executing the task.

• 5) Send results to the host: When the Data Analysis Engine finishes the data analysis

task, it sends S22F5 to report the results to the host.

• 6) Acknowledge: The host sends S22F6 to acknowledge the message S22F5 from the

equipment.

87

Figure 5.3: Communication Diagram - Ad-hoc Performing Computation Tasks

88

If the host needs the equipment to execute the task again, the process can be repeated

from step 3. The computing task has been defined on the equipment and the host does not

need to repeat step 1 to define the task again.

5.8 Summary

In this section, we conduct experiments to measure the latency when transferring data

variables from the equipment to the host by using SECS/GEM messages. The experiments

show that latency can significantly affect productivity in semiconductor manufacturing. We

also propose a new system design with Data Analysis Engine and a new Stream 22 in

SECS/GEM interface for the host to setup the equipment to perform real-time data analyses.

Table 5.2 shows a summary of new proposed messages for supporting dynamic AI computing

tasks.

Table 5.2: Summary of Dynamic AI Messages in SECS/GEM

SECS/GEM
Message

Description Host to Equipment or
Equipment to Host

S22F1 Define Analysis Task H− > E
S22F2 Define Analysis Task Acknowledge E− > H
S22F3 Link Event to Analysis Task H− > E
S22F4 Link Event to Analysis Task Acknowledge E− > H
S22F5 Task Result Notify E− > H
S22F6 Task Result Notify Acknowledge H− > E
S22F7 Define Analysis Script Task H− > E
S22F8 Define Analysis Script Task Acknowledge E− > H
S22F9 Request to Perform Analysis Task H− > E
S22F10 Request to Perform Analysis Task Acknowledge E− > H

89

Chapter 6

Conclusions and Future Work

In this chapter, we first review the studies and benefits of offloading computation tasks

from the edge layer to the equipment layer in section 6.1, followed by the summary of our

proposed scheduling algorithm in section 6.2. Section 6.3 summarizes our proposed protocol

for communication with SECS/GEM interface. Finally, we discuss future research directions

in section 6.4.

6.1 Offloading Computing Tasks from the Edge to the Equipment

Real-time computation with low latency becomes a pivotal requirement in smart man-

ufacturing. The current systems with computations on the cloud and edge layers increase

latency due to the time for transferring data from the equipment layer to the edge layer.

To address this issue, in this study, we revealed that offloading some computing tasks from

the edge layer to the equipment layer can significantly reduce computation latency, thereby

meeting the real-time requirement for smart manufacturing, especially in the semiconductor

industry. Moreover, offloading computing tasks to the equipment layer can also reduce the

overhead of handling all different formats of data received from the equipment layer. We

devised an algorithm for selecting computing tasks that can be offloaded to the equipment

level to achieve the lowest computing latency for smart manufacturing. Additionally, we

trained different machine learning models based on current system conditions to predict the

most efficient way to offload computing tasks from the edge layer to the equipment layer. To

evaluate the effectiveness of our offloading technique, we conducted extensive performance

comparisons between edge-based computing and equipment-based computing.

90

6.2 Task Scheduling for Smart Manufacturing

To address computing-intensive tasks in smart manufacturing systems, we developed

a novel resource scheduler, with an expectation to allocate edge computing resources with

awareness of the current workload of computing resources at the equipment layer. Our

resource scheduler is capable of allocating computing resources at the equipment layer for

computing-intensive tasks and free up resources at the edge layer for additional tasks, thereby

improving computation throughput.

6.3 Communication Protocol in the SECS/GEM Interface

Lastly, we proposed a new protocol - Stream 22 - in SECS/GEM interface to allow

the host computer on the edge layer to communicate with the equipment layer to support

offloading tasks. The proposed protocol is a component of the Communication Module in

System Software Control (see section 4.1). The proposed communication protocol allows

the edge layer to assign analytic computing tasks to the equipment layer including data

monitoring tasks, statistical process control tasks, and failure prediction tasks. This protocol

also enables the edge layer to collect the results from the equipment layer after the computing

tasks are completed. Furthermore, we designed a novel software architecture that can be

seamlessly integrated into the equipment control to enable the equipment to receive and

process tasks dispatched from the edge layer. We reckon that Stream 22 is expected to be

adopted as a foundation to support dynamic AI computation with offloading tasks in the

context of semiconductor smart manufacturing environment.

6.4 Future Research Directions

In terms of future research, there is potential for additional factors to be taken into

consideration when determining whether to offload computational tasks from the edge layer

91

to the equipment layer. For example, the current network performance of the system can

affect the data transfer latency when there is a large amount of data involved.

In resource scheduling, some computing tasks are critical for the operations of the smart

manufacturing system. We plan to look into scheduling high-availability resources for critical

tasks, and its impact on the performance of the system. Additionally, we aim to investigate

more features during the training of machine learning models to predict the performance

of the system. These features may include, but not limit to, the ratio of critical tasks to

regular tasks, as well as the percentage of high-availability resources in the overall smart

manufacturing system.

92

Bibliography

[1] R. Alsurdeh, R. N. Calheiros, K. M. Matawie, and B. Javadi. Hybrid workflow provi-
sioning and scheduling on cooperative edge cloud computing. In 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages
445–454, 2021.

[2] A. Anaya, W. Henning, N. Basantkumar, and J. Oliver. Yield improvement using
advanced data analytics. In 2019 30th Annual SEMI Advanced Semiconductor Manu-
facturing Conference (ASMC), pages 1–5, 2019.

[3] D. Borsatti, G. Davoli, W. Cerroni, and C. Raffaelli. Enabling Industrial IoT as a Service
with Multi-Access Edge Computing. IEEE Communications Magazine, 59(8):21–27,
2021.

[4] R. Busch, M. Wahl, P. Czerner, and B. Choubey. Yield prediction with machine learning
and parameter limits in semiconductor production. In 2022 International Symposium
on Semiconductor Manufacturing (ISSM), pages 1–4, 2022.

[5] S. Butte and S. Patil. Big data and predictive analytics methods for modeling and
analysis of semiconductor manufacturing processes. In 2016 IEEE Workshop on Micro-
electronics and Electron Devices (WMED), pages 1–5, 2016.

[6] K. Cao, Y. Liu, G. Meng, and Q. Sun. An overview on edge computing research. IEEE
access, 8:85714–85728, 2020.

[7] N. Chandrasekaran. Intelligent, data-driven approach to sustainable semiconductor
manufacturing. In 2022 6th IEEE Electron Devices Technology & Manufacturing Con-
ference (EDTM), pages 1–5, 2022.

[8] A. Chen, R.-S. Guo, and P.-J. Yeh. An effective spc approach to monitoring semi-
conductor manufacturing processes with multiple variation sources. In Proceedings of
ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE
Cat. No.00CH37130), pages 446–449, 2000.

[9] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin. Smart factory of industry
4.0: Key technologies, application case, and challenges. IEEE Access, 6:6505–6519,
2018.

[10] C.-C. Chen, W.-T. Su, M.-H. Hung, and Z.-H. Lin. Map–reduce–style job offloading
using historical manufacturing behavior for edge devices in smart factory. IEEE Robotics
and Automation Letters, 3(4):2918–2925, 2018.

93

[11] S.-J. Chen, H.-W. Liu, and W.-J. Wang. A Fault Tolerance Mechanism for Semicon-
ductor Equipment Monitoring. In 2017 IEEE 7th International Symposium on Cloud
and Service Computing (SC2), pages 171–176, 2017.

[12] C.-F. Chien, Y.-H. Chen, and M.-F. Lo. Advanced quality control (aqc) of silicon wafer
specifications for yield enhancement for smart manufacturing. IEEE Transactions on
Semiconductor Manufacturing, 33(4):569–577, 2020.

[13] C.-F. Chien, W.-T. Hung, and E. T.-Y. Liao. Redefining monitoring rules for intelligent
fault detection and classification via cnn transfer learning for smart manufacturing.
IEEE Transactions on Semiconductor Manufacturing, 35(2):158–165, 2022.

[14] E. Collins. Big data in the public cloud. IEEE Cloud Computing, 1(2):13–15, 2014.

[15] V. Gezer, J. Um, and M. Ruskowski. An introduction to edge computing and a real-time
capable server architecture. Int. J. Adv. Intell. Syst.(IARIA), 11(7):105–114, 2018.

[16] M. Ghahramani, Y. Qiao, M. C. Zhou, A. O’Hagan, and J. Sweeney. AI-based modeling
and data-driven evaluation for smart manufacturing processes. IEEE/CAA Journal of
Automatica Sinica, 7(4):1026–1037, 2020.

[17] R. G. Goss and K. Veeramuthu. Heading towards big data building a better data
warehouse for more data, more speed, and more users. In ASMC 2013 SEMI Advanced
Semiconductor Manufacturing Conference, pages 220–225, 2013.

[18] L. Gu and W. Yu. One comprehensive method to analyze semiconductor manufacturing
data by “piecewise” regression. In 2020 China Semiconductor Technology International
Conference (CSTIC), pages 1–2, 2020.

[19] Y.-C. Hsieh, C.-Y. Chen, D.-Y. Liao, P. B. Luh, and S.-C. Chang. Equipment sensor
data cleansing algorithm design for ml-based anomaly detection. In 2022 International
Symposium on Semiconductor Manufacturing (ISSM), pages 1–4, 2022.

[20] H. Huang, Q. Ye, and Y. Zhou. 6g-empowered offloading for realtime applications in
multi-access edge computing. IEEE Transactions on Network Science and Engineering,
pages 1–14, 2022.

[21] P. K. Illa and N. Padhi. Practical Guide to Smart Factory Transition Using IoT, Big
Data and Edge Analytics. IEEE Access, 6:55162–55170, 2018.

[22] T. Ito, W. Xueting, Y. Oomuro, and K. Nagashima. Advanced process control model
for trench shape of power devices. In 2022 International Symposium on Semiconductor
Manufacturing (ISSM), pages 1–4, 2022.

[23] V. K. Jain and S. Kumar. Big data analytic using cloud computing. In 2015 Second
International Conference on Advances in Computing and Communication Engineering,
pages 667–672, 2015.

94

[24] D. Jia, M. Bayati, R. Lee, and N. Mi. Rita: Efficient memory allocation scheme for
containerized parallel systems to improve data processing latency. In 2020 IEEE 13th
International Conference on Cloud Computing (CLOUD), pages 329–336, 2020.

[25] C. Jiang, J. Wan, and H. Abbas. An edge computing node deployment method based
on improved k-means clustering algorithm for smart manufacturing. IEEE Systems
Journal, 15(2):2230–2240, 2021.

[26] M. Khakifirooz, M. Fathi, and K. Wu. Development of Smart Semiconductor Manufac-
turing: Operations Research and Data Science Perspectives. IEEE Access, 7:108419–
108430, 2019.

[27] S. Khizar, M. D. de Amorim, and V. Conan. Offloading computing tasks beyond the
edge: A data-driven analysis. In 2021 13th IFIP Wireless and Mobile Networking
Conference (WMNC), pages 79–83, 2021.

[28] N. Kim, H. Choi, J. Chun, and J. Jeong. Introduction of equipment level FDC system
for semiconductor wet-cleaning equipment optimization and real-time fault detection. In
2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC),
pages 1–4, 2022.

[29] D. Kobayashi, S. Yasuda, T. Iuti, and S. Ito. Application of natural language processing
in semiconductor manufacturing. In 2022 International Symposium on Semiconductor
Manufacturing (ISSM), pages 1–3, 2022.

[30] C.-C. Kuo, P.-C. Chen, and C.-T. Tseng. Application of big data science in high
reliability automotive wafer yield management system and failure analysis. In 2022
International Symposium on Semiconductor Manufacturing (ISSM), pages 1–3, 2022.

[31] C. K. M. Lee, Y. Z. Huo, S. Z. Zhang, and K. K. H. Ng. Design of a Smart Manufac-
turing System With the Application of Multi-Access Edge Computing and Blockchain
Technology. IEEE Access, 8:28659–28667, 2020.

[32] Y. Lee and Y. Roh. Regression yield analysis for semiconductor manufacturing based
on fabrication conditions. In 2022 IEEE International Conference on Big Data (Big
Data), pages 6747–6748, 2022.

[33] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, and A. Celesti. A Hybrid Computing So-
lution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing.
IEEE Transactions on Industrial Informatics, 15(7):4225–4234, 2019.

[34] Z. Li, Z. Wang, and W. Shi. Automatic wafer defect classification based on decision
tree of deep neural network. In 2022 33rd Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC), pages 1–6, 2022.

[35] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu. Smart Manufacturing Schedul-
ing With Edge Computing Using Multiclass Deep Q Network. IEEE Transactions on
Industrial Informatics, 15(7):4276–4284, 2019.

95

[36] Y. Liu, G. Xiong, F. Zhu, S. Chen, L. Zhang, and X. Liu. Collaborative scheduling
of computing tasks for edge computing. In 2021 China Automation Congress (CAC),
pages 7824–7831, 2021.

[37] Y. Lu, L. Yang, S. X. Yang, Q. Hua, A. K. Sangaiah, T. Guo, and K. Yu. An intelligent
deterministic scheduling method for ultralow latency communication in edge enabled
industrial internet of things. IEEE Transactions on Industrial Informatics, 19(2):1756–
1767, 2023.

[38] Z. Lv and R. Lou. Edge-fog-cloud secure storage with deep-learning-assisted digital
twins. IEEE Internet of Things Magazine, 5(2):36–40, 2022.

[39] A. Mijuskovic, R. Bemthuis, A. Aldea, and P. Havinga. An enterprise architecture
based on cloud, fog and edge computing for an airfield lighting management system.
In 2020 IEEE 24th International Enterprise Distributed Object Computing Workshop
(EDOCW), pages 63–73, 2020.

[40] J. Moon and J. Jeong. Smart Manufacturing Scheduling System: DQN based on Coop-
erative Edge Computing. In 2021 15th International Conference on Ubiquitous Infor-
mation Management and Communication (IMCOM), pages 1–8, 2021.

[41] J. Moyne, J. Samantaray, and M. Armacost. Big data emergence in semiconductor
manufacturing advanced process control. In 2015 26th Annual SEMI Advanced Semi-
conductor Manufacturing Conference (ASMC), pages 130–135, 2015.

[42] J. Moyne, J. Samantaray, and M. Armacost. Big data capabilities applied to semicon-
ductor manufacturing advanced process control. IEEE Transactions on Semiconductor
Manufacturing, 29(4):283–291, 2016.

[43] W. Na, Y. Lee, N.-N. Dao, D. N. Vu, A. Masood, and S. Cho. Directional link scheduling
for real-time data processing in smart manufacturing system. IEEE Internet of Things
Journal, 5(5):3661–3671, 2018.

[44] H. H. Nguyen. Dynamic ai computation tasks with secs/gem in semiconductor smart
manufacturing. In 2022 International Symposium on Semiconductor Manufacturing
(ISSM), pages 1–4, 2022.

[45] H. H. Nguyen, Y. Zhou, K. Kushagra, and X. Qin. Computation offloading from edge to
equipment for smart manufacturing. In 2022 IEEE/ACM 15th International Conference
on Utility and Cloud Computing (UCC), pages 207–212, 2022.

[46] T.-D. Nguyen and E.-N. Huh. Ecsim++: An inet-based simulation tool for modeling
and control in edge cloud computing. In 2018 IEEE International Conference on Edge
Computing (EDGE), pages 80–86, 2018.

[47] A. Nowitschkow, C. Saal, and O. Lohse. Factory data management: Definition and
differentiation from manufacturing operations management. In 2021 22nd IEEE Inter-
national Conference on Industrial Technology (ICIT), volume 1, pages 718–721, 2021.

96

[48] N. Peter. Fog computing and its real time applications. Int. J. Emerg. Technol. Adv.
Eng, 5(6):266–269, 2015.

[49] M. S. K. Pheng and L. G. David. Artificial intelligence in back-end semiconductor
manufacturing: A case study. In 2022 IEEE International Conference on Distributed
Computing and Electrical Circuits and Electronics (ICDCECE), pages 1–4, 2022.

[50] G. Premsankar, M. Di Francesco, and T. Taleb. Edge computing for the internet of
things: A case study. IEEE Internet of Things Journal, 5(2):1275–1284, 2018.

[51] Q. Qi and F. Tao. A Smart Manufacturing Service System Based on Edge Computing,
Fog Computing, and Cloud Computing. IEEE Access, 7:86769–86777, 2019.

[52] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu. Edge computing in
industrial internet of things: Architecture, advances and challenges. IEEE Communi-
cations Surveys & Tutorials, 22(4):2462–2488, 2020.

[53] A. K. Sandhu. Big data with cloud computing: Discussions and challenges. Big Data
Mining and Analytics, 5(1):32–40, 2022.

[54] D. Scotece, C. Fiandrino, and L. Foschini. On the Efficiency of Service and Data
Handoff Protocols in Edge Computing Systems. In 2021 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, 2021.

[55] Semiconductor Equipment and Materials International (SEMI). Standard SEMI E30-
0418, Specification for the Generic Model for Communications and Control of Manu-
facturing Equipment (GEM), 2018.

[56] Semiconductor Equipment and Materials International (SEMI). Standard SEMI E5-
0219, Specification for SEMI Equipment Communications Standard 2 Message Content
(SECS-II), 2019.

[57] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

[58] S. Trinks and C. Felden. Edge Computing architecture to support Real Time Analytic
applications : A State-of-the-art within the application area of Smart Factory and
Industry 4.0. In 2018 IEEE International Conference on Big Data (Big Data), pages
2930–2939, 2018.

[59] C.-P. Tsai, H.-C. Hsiao, Y.-C. Chao, M. Hsu, and A. R. Chang. Bridging the Gap
between Big Data System Software Stack and Applications: The Case of Semiconductor
Wafer Fabrication Foundries. In 2018 IEEE International Conference on Big Data (Big
Data), pages 1865–1874, 2018.

[60] T. Tsuda, S. Inoue, A. Kayahara, S.-i. Imai, T. Tanaka, N. Sato, and S. Yasuda. Ad-
vanced semiconductor manufacturing using big data. IEEE Transactions on Semicon-
ductor Manufacturing, 28(3):229–235, 2015.

97

[61] J. Vater, L. Harscheidt, and A. Knoll. A Reference Architecture Based on Edge and
Cloud Computing for Smart Manufacturing. In 2019 28th International Conference on
Computer Communication and Networks (ICCCN), pages 1–7, 2019.

[62] G. Villareal and J. Lee. The benefits of real-time cloud analytics in semiconductor.
In 2020 International Symposium on Semiconductor Manufacturing (ISSM), pages 1–4,
2020.

[63] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu. Fog computing for energy-
aware load balancing and scheduling in smart factory. IEEE Transactions on Industrial
Informatics, 14(10):4548–4556, 2018.

[64] P. Wang, J. Mu, and Y. Zhang. Research on Edge Computing of Automatic Control
System of Unattended Intelligent Manufacturing Equipment. In 2021 IEEE Interna-
tional Conference on Artificial Intelligence and Computer Applications (ICAICA), pages
1075–1078, 2021.

[65] Y. Wang, C. Zhao, S. Yang, X. Ren, L. Wang, P. Zhao, and X. Yang. Mpcsm: Microser-
vice placement for edge-cloud collaborative smart manufacturing. IEEE Transactions
on Industrial Informatics, 17(9):5898–5908, 2021.

[66] J. W. Webb and J. Webb. A method for storing semiconductor test data to simplify
data analysis. In 2016 IEEE AUTOTESTCON, pages 1–10, 2016.

[67] C. Yang, S. Lan, L. Wang, W. Shen, and G. G. Q. Huang. Big Data Driven Edge-Cloud
Collaboration Architecture for Cloud Manufacturing: A Software Defined Perspective.
IEEE Access, 8:45938–45950, 2020.

[68] C. Yang, W. Lou, Y. Liu, and S. Xie. Resource allocation for edge computing-based
vehicle platoon on freeway: A contract-optimization approach. IEEE Transactions on
Vehicular Technology, 69(12):15988–16000, 2020.

[69] S. Yasuda, T. Tanaka, M. Kitabata, and Y. Jisaki. Chamber and recipe-independent
fdc indicator in high-mix semiconductor manufacturing. IEEE Transactions on Semi-
conductor Manufacturing, 34(3):301–306, 2021.

[70] L. Yin, J. Luo, and H. Luo. Tasks scheduling and resource allocation in fog comput-
ing based on containers for smart manufacturing. IEEE Transactions on Industrial
Informatics, 14(10):4712–4721, 2018.

[71] J. Ying, J. Hsieh, D. Hou, J. Hou, T. Liu, X. Zhang, Y. Wang, and Y.-T. Pan. Edge-
enabled cloud computing management platform for smart manufacturing. In 2021 IEEE
International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), pages
682–686, 2021.

[72] Z. Yu, Y. Lu, Q. An, C. Chen, Y. Li, and Y. Wang. Real-time multiple gesture recog-
nition: Application of a lightweight individualized 1d cnn model to an edge computing
system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:990–
998, 2022.

98

[73] J. Yuan, Y. Xiang, Y. Deng, Y. Zhou, and G. Min. Upoa: A user preference based
latency and energy aware intelligent offloading approach for cloud-edge systems. IEEE
Transactions on Cloud Computing, 2022.

[74] C. Zhang and W. Ji. Edge Computing Enabled Production Anomalies Detection and
Energy-Efficient Production Decision Approach for Discrete Manufacturing Workshops.
IEEE Access, 8:158197–158207, 2020.

[75] D. Zhang, N. Vance, and D. Wang. Demo abstract: Real-time heterogeneous edge com-
puting system for social sensing applications. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 101–102, 2018.

[76] Q. Zhang, L. Gui, S. Zhu, and X. Lang. Task offloading and resource scheduling in
hybrid edge-cloud networks. IEEE Access, 9:85350–85366, 2021.

[77] S. ZhangKun, Z. Zhisheng, X. Zhijie, and D. Min. A new approach to accelerate edge
computing process based on multi-user computation offloading. In 2022 2nd Interna-
tional Conference on Computer, Control and Robotics (ICCCR), pages 186–190, 2022.

[78] C. Zhao, L. Ren, Y. Laili, and L. Lai. An architecture of knowledge cloud based
on manufacturing big data. In IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, pages 4176–4180, 2018.

[79] Z. Zhao, L. Wang, L. Zha, W. Wang, L. Gong, Y. Gao, H. Gao, Y. Lei, and J. Dong.
Research on edge cloud architecture of intelligent power plant. In 2022 IEEE 2nd
International Conference on Digital Twins and Parallel Intelligence (DTPI), pages 1–3,
2022.

[80] Y. Zhou, S. Taneja, C. Zhang, and X. Qin. Greendb: Energy-efficient prefetching and
caching in database clusters. IEEE Transactions on Parallel and Distributed Systems,
30(5):1091–1104, 2018.

[81] M. Zhu, X. Peng, Y. Sun, S. Fuyang, and D. Jiao. Simulation study of semiconduc-
tor communication protocol secs/gem. In 2021 International Conference on Wireless
Communications and Smart Grid (ICWCSG), pages 148–152, 2021.

99

Appendices

100

Appendix A

Data From Experiments for Offloading From Edge to Equipment

Table A.1: Equipment Performance - CPU Utilization 1%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.00999999 0.0139997 0.325999736
4000 0.019499302 0.027500391 1.314498901
6000 0.028564672 0.040564756 2.944564561
8000 0.034500122 0.050499201 5.254499436
10000 0.046998978 0.068499088 8.268498898
12000 0.047500134 0.073500157 11.8824997
14000 0.054497243 0.084995032 16.2074976
16000 0.059999943 0.095000029 21.14850021
18000 0.068503142 0.108502865 26.84500266
20000 0.074498653 0.119002103 33.16449953
22000 0.082499265 0.132999181 40.26399899
24000 0.089000702 0.144000292 47.90350127
26000 0.099000693 0.159000635 56.0320003
28000 0.103999853 0.16849947 65.11799908
30000 0.110998631 0.180499316 75.3109994
32000 0.117999315 0.192501068 85.14599896
34000 0.132499694 0.211999416 95.50099969
36000 0.133498907 0.218497753 107.5029997
38000 0.139000416 0.230000973 120.3210001
40000 0.146499872 0.241000414 132.3540001
42000 0.154498339 0.254998684 150.0849988
44000 0.161500931 0.267999172 168.8009992
46000 0.168000221 0.280499935 183.122
48000 0.175498724 0.291498899 201.1619985
50000 0.183000803 0.304000616 213.4540012

101

Table A.2: Equipment Performance - CPU Utilization 15%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.014999628 0.018500328 0.33199954
4000 0.018497706 0.026998044 1.306995392
6000 0.025998592 0.038498163 3.002997398
8000 0.036498785 0.052999258 5.26699853
10000 0.045500755 0.067000388 8.296000718
12000 0.047996998 0.073498488 11.93249798
14000 0.06349452 0.09399374 16.26549419
16000 0.06099987 0.096998453 21.21799946
18000 0.068000078 0.108998775 26.85249972
20000 0.075501204 0.120501518 33.06550097
22000 0.083499193 0.133999347 40.24549699
24000 0.090002537 0.146502495 47.64300346
26000 0.098500252 0.158998967 56.25449824
28000 0.111001014 0.176002263 65.91649985
30000 0.112000465 0.182998657 75.35999989
32000 0.121501923 0.196501971 84.83150196
34000 0.12700057 0.208501577 96.10000229
36000 0.134001493 0.220500946 107.5040011
38000 0.142500639 0.235002756 120.475501
40000 0.149000645 0.244999886 132.5884997
42000 0.155997515 0.257499218 150.8334992
44000 0.167999029 0.275499821 169.747
46000 0.17099905 0.283998489 186.464999
48000 0.186999798 0.304499865 204.1690004
50000 0.187000751 0.311000347 220.4165006

102

Table A.3: Equipment Performance - CPU Utilization 35%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.010999918 0.014499664 0.329500675
4000 0.01850009 0.027000666 1.442502261
6000 0.02649808 0.038497687 2.973998786
8000 0.034499168 0.050999164 5.289999723
10000 0.041001321 0.062500716 8.297000886
12000 0.047997236 0.073998213 11.91649771
14000 0.061598605 0.093998909 16.27299904
16000 0.061499596 0.09749651 21.31749654
18000 0.070498228 0.111999035 26.92399955
20000 0.075497865 0.121498823 33.24149704
22000 0.084499358 0.135501384 40.81200027
24000 0.091001034 0.148000002 47.99799943
26000 0.098499536 0.15950036 56.40800071
28000 0.10450077 0.170999765 65.45649886
30000 0.113003015 0.183499575 75.60000109
32000 0.121502399 0.196502685 85.41700387
34000 0.128500224 0.210500956 96.5369997
36000 0.135502815 0.222001552 108.3455026
38000 0.141496181 0.23249793 120.8934975
40000 0.151501895 0.250002146 135.6870022
42000 0.166500807 0.269499063 153.3685005
44000 0.164504528 0.273003101 170.6510053
46000 0.172998667 0.286999464 185.6289985
48000 0.179999828 0.300999403 203.8985002
50000 0.186001062 0.310002089 220.0145023

103

Table A.4: Equipment Performance - CPU Utilization 50%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.015500307 0.017500162 0.343496323
4000 0.023000002 0.030499936 1.370999575
6000 0.028002023 0.040501832 3.115501165
8000 0.036002398 0.053002119 5.54450345
10000 0.04399991 0.066000938 8.692003012
12000 0.050500869 0.07700014 12.43550277
14000 0.063497782 0.094997644 16.51549649
16000 0.065003396 0.101003886 21.43050576
18000 0.072998762 0.113997459 27.47449755
20000 0.080500365 0.126999856 34.12850332
22000 0.086494922 0.137994766 41.78749895
24000 0.094498873 0.150999308 49.01199889
26000 0.10300231 0.164501667 57.86649871
28000 0.111498213 0.177998161 66.96399674
30000 0.119500398 0.193500041 77.64950085
32000 0.1249969 0.201998234 87.33599734
34000 0.13100028 0.213502645 98.97700143
36000 0.140995502 0.228498459 111.3654971
38000 0.150500536 0.242500782 123.9145022
40000 0.156499624 0.255000114 136.3150008
42000 0.184510469 0.288506746 158.024508
44000 0.182498932 0.292500973 173.7095003
46000 0.175998926 0.29300046 191.9594994
48000 0.190000772 0.311500549 212.2210011
50000 0.194495201 0.320001125 235.2645011

104

Table A.5: Equipment Performance - CPU Utilization 75%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.01399827 0.016999245 0.373497009
4000 0.02149868 0.029498816 1.45550108
6000 0.030500174 0.043499709 3.313498974
8000 0.035997391 0.052997828 5.729500056
10000 0.049006223 0.073004007 9.129505634
12000 0.059003114 0.08650279 12.8855021
14000 0.067002828 0.100500877 18.67150026
16000 0.068001032 0.105499744 24.09150029
18000 0.073498488 0.115999699 30.62650085
20000 0.082000732 0.131497145 40.47550082
22000 0.095999957 0.152501822 44.00650049
24000 0.095989227 0.156990528 52.00348783
26000 0.11250186 0.177001 61.6220007
28000 0.112999677 0.184997081 72.78099966
30000 0.121004105 0.199998618 82.75899911
32000 0.129507541 0.210007667 93.62900829
34000 0.137999057 0.224998473 107.7025013
36000 0.148999453 0.244995595 118.4889996
38000 0.156997681 0.256996155 132.3199971
40000 0.162001372 0.267003775 145.6865013
42000 0.168502331 0.275500298 167.2755034
44000 0.180500031 0.295001745 187.6184993
46000 0.194998503 0.338499069 204.4334984
48000 0.193490267 0.323501348 224.1260006
50000 0.20199728 0.335497618 240.3464959

105

Table A.6: Equipment Performance - CPU Utilization 90%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.014999629 0.018497468 0.424497366
4000 0.026001454 0.035501958 1.743502617
6000 0.037999153 0.051998376 3.915498972
8000 0.044496536 0.06801033 6.997498035
10000 0.055502415 0.084502459 10.70100164
12000 0.061500311 0.09449935 15.3684988
14000 0.06999755 0.107998133 20.98999762
16000 0.079499006 0.128499746 29.26650024
18000 0.093003749 0.147497415 34.64300013
20000 0.102500201 0.163500786 43.32750011
22000 0.116004229 0.178497791 52.58699846
24000 0.121000528 0.19850111 61.8670013
26000 0.128003359 0.212501765 72.39000297
28000 0.143000841 0.22950077 84.65600038
30000 0.151501417 0.250499487 97.2869997
32000 0.164002419 0.265004397 110.1500029
34000 0.172499419 0.282499552 124.2804992
36000 0.188515664 0.30700779 139.5220074
38000 0.194499493 0.31999898 156.0659985
40000 0.214999437 0.338000536 171.4825006
42000 0.209501266 0.346001625 192.689501
44000 0.220997334 0.364499807 221.5559986
46000 0.23199439 0.38549614 238.231997
48000 0.236501455 0.396500111 258.441
50000 0.253002167 0.417504549 281.3395023

106

Table A.7: Equipment Performance - CPU Utilization 99%

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 0.020498276 0.021499396 0.499998331
4000 0.023998976 0.032500506 1.984499455
6000 0.045501232 0.065503597 4.120001793
8000 0.057004214 0.078001977 7.323001862
10000 0.062001228 0.097501993 11.51700282
12000 0.080500126 0.122002363 16.57650041
14000 0.099003553 0.154004812 22.56000591
16000 0.103006363 0.159994603 29.55049872
18000 0.104990244 0.174499512 37.44049931
20000 0.121499539 0.193998814 46.06700135
22000 0.14150238 0.215502977 56.64850282
24000 0.142999887 0.235999822 66.52949881
26000 0.16699791 0.271500349 79.08500123
28000 0.177499533 0.290997267 91.35699964
30000 0.191500902 0.313496828 105.4665025
32000 0.205500603 0.338001251 119.4160013
34000 0.204001665 0.344002962 135.9595015
36000 0.213000775 0.353000403 151.654005
38000 0.239001751 0.395497561 170.0684993
40000 0.25449872 0.42399931 187.6294975
42000 0.260500431 0.425998211 217.7010002
44000 0.278496981 0.465997458 239.2329993
46000 0.298503637 0.480004549 262.3705049
48000 0.310505629 0.502503633 286.525003
50000 0.318001032 0.536998749 304.5695012

107

Table A.8: Edge Performance

Data Size Total Computing Time
with O(n)

Total Computing Time
with O(nlogn)

Total Computing Time
with O(n2)

2000 1.733159465 1.736802701 2.029076699
4000 2.162054525 2.169898973 3.363678919
6000 1.764053024 1.775770105 4.487607397
8000 1.943600845 1.959469986 6.812240076
10000 2.231365361 2.251736798 9.857959904
12000 2.133716332 2.158566461 13.31153534
14000 2.508967311 2.538674981 17.8970913
16000 2.4974642 2.531521341 22.61502363
18000 2.865437801 2.904316241 28.13518291
20000 2.632671649 2.676464612 34.12620812
22000 3.027922548 3.07635466 40.06665722
24000 3.480059031 3.532942656 48.18244994
26000 2.994064965 3.051556268 56.01033584
28000 3.478096574 3.540417998 64.10312756
30000 3.610690477 3.676864985 74.37795604
32000 3.247574554 3.318192945 82.91229104
34000 3.323814651 3.400343677 93.81036856
36000 3.553130818 3.634977531 104.7217047
38000 3.643384988 3.730532462 116.2898655
40000 3.853545822 3.94382564 126.9629783
42000 3.730803067 3.830066259 143.081718
44000 3.887523876 3.992079006 155.8463445
46000 3.897168078 4.005313076 170.9015299
48000 4.097793565 4.210493313 184.6555419
50000 4.127615336 4.247290495 200.8538202

108

Appendix B

Data For Scheduling Algorithm Comparison - Hybrid Computing Solution (HCS) vs.

Offloading

Table B.1: Tasks Scheduling Data - HCS vs Offloading

Dataset Total
Time
HCS

Total
Time
With
Offload

Through-
put HCS

Through-
put
With
Offload

Total
Wait
Time
HCS

Total
Wait
Time
With
Offload

Avg
Wait
Time
HCS

Avg
Wait
Time
With
Offload

1 637 459 1.57 2.18 195602 128431 195.60 128.43
2 603 435 1.66 2.30 185947 122887 185.94 122.89
3 653 474 1.53 2.11 213336 139386 213.34 139.39
4 612 451 1.63 2.22 195899 131778 195.90 131.78
5 616 442 1.62 2.26 190326 124829 190.32 124.83
6 611 432 1.64 2.31 188641 127074 188.64 127.07
7 638 460 1.57 2.17 192557 124870 192.56 124.87
8 624 455 1.60 2.20 197397 131502 197.40 131.50
9 626 461 1.60 2.17 180300 122993 180.30 122.99
10 644 456 1.55 2.20 208422 135511 208.42 135.51

109

Appendix C

Data For Scheduling Algorithm Comparison - Different Wait Time Limits

Table C.1: Tasks Scheduling Data - Different Wait Time Limits (WTL)

WTL Total
Exe-
cuting
Time

Through-
put

Total
Wait
Time

Avg
Wait
Time

Avg
Wait
Time
Prior-
ity 1

Avg
Wait
Time
Prior-
ity 2

Avg
Wait
Time
Prior-
ity 3

Avg
Wait
Time
Prior-
ity 4

Avg
Wait
Time
Prior-
ity 5

No priority 459 2.18 128431 128.43 126.50 123.48 134.64 124.69 133.02
WTL = 10 461 2.17 126228 126.23 119.99 119.76 131.71 124.47 135.34
WTL = 20 461 2.17 126745 126.75 113.01 116.99 132.57 127.91 143.44
WTL = 30 463 2.16 124096 124.10 100.66 107.87 129.40 132.40 150.80
WTL = 40 473 2.11 124803 124.80 86.31 104.07 132.08 135.92 166.13
WTL = 50 466 2.15 123877 123.88 76.68 86.35 129.63 143.50 184.20
WTL = 60 462 2.16 121739 121.74 55.85 79.56 126.16 149.74 198.40
WTL = 70 469 2.13 124161 124.16 42.48 73.01 126.95 157.48 221.54
WTL = 80 471 2.12 124637 124.64 21.98 62.10 127.25 168.75 244.15
WTL = 90 472 2.12 127470 127.47 14.96 58.25 127.95 182.26 255.73
WTL = 100 469 2.13 126774 126.77 8.25 58.70 140.27 182.61 247.62
No WTL 462 2.16 124620 124.62 5.86 58.21 133.98 172.30 254.44

110

Appendix D

Supporting Variables for New SECS/GEM Communication Protocol

The Table D.1 lists all variables that would be used in new proposed messages in Section

5.6.

Table D.1: Variables in Dynamic AI Messages

Variable Description In Message Values

DATACK Define Analysis Task S22F2 0: Accepted

Acknowledge Code 1: Denied, invalid format

2: Denied, at least one

TASKID was already de-

fined

3: Denied, at least one

VID does not exist

4: Denied, at least one

KEYWORD is unknown

5: Denied, other error

LATACK Link Analysis Task S22F4 0: Accepted

Acknowledge Code 1: Denied, invalid format

2: Denied, at least one

CEID was already de-

fined

Continued on next page

111

Table D.1 – continued from previous page

Variable Description In Message Values

3: Denied, at least one

CEID does not exist

3: Denied, at least one

TASKID does not exist

5: Denied, other error

TRACK Task Result S22F6 0: Accepted

Acknowledge Code 1: Denied, invalid format

2: Denied, at least one

TASKID does not exist

3: Denied, the number

of results does not match

the definition of the task

TASKID

4: Denied, other error

DASTACK Define Analysis Script S22F8 0: Accepted

Task Acknowledge 1: Denied, invalid format

Code 2: Denied, at least one

TASKID was already de-

fined

3: Denied, at least one

VID does not exist

4: Denied, invalid script

5: Denied, other error

REQTASKACK Request Task S22F8 0: Accepted

Continued on next page

112

Table D.1 – continued from previous page

Variable Description In Message Values

Acknowledge Code 1: Denied, invalid format

2: Denied, at least one

TASKID does not exist

3: Denied, other error

113

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Motivations and Research
	Why this dissertation research is important?
	Dissertation Statement
	Research Questions

	Benefits and Contributions
	A Roadmap

	Related Works
	Smart Manufacturing Systems with Cloud-Edge
	Offloading Computation Tasks
	Resources Scheduling

	From Edge to Equipment: Design and Implementation of a Machine-Learning-Enabled Smart Manufacturing System
	Modeling Computation Time at the Edge and Equipment Layers
	Computing Time on the Edge Layer
	Computing Time on the Equipment layer
	Machine Learning Models

	Experimental Setup
	Experimental Results
	Algorithmic Complexity of Computing Tasks
	CPU Utilization
	Data Size
	Algorithm Design

	Using machine learning to determine whether to offload computation from the edge layer to the equipment layer
	Purpose of the Evaluation With Machine Learning Models
	Experimental Setup
	Evaluation Method
	Observation
	Reason Behind the Observation
	Implication: Lessons Learned

	Summary

	Task Scheduling on Edge Layer with Option to Offload Computing Tasks from Edge to Equipment
	System Architecture
	Experimental Setup
	Datasets
	Algorithm
	Performance Metrics
	Experimental Results
	A State-of-the-Art Scheduling Technique: Hybrid Computing Solution (HCS)
	Comparing Experimental Results with HCS
	Scheduling Experimental Results with Tasks Priority

	Scheduling Summary

	Dynamic AI Computation Tasks with SECS/GEM in Semiconductor Smart Manufacturing
	Background
	Motivation
	Latency With Data Transfer Using SECS/GEM Messages
	Adding New Set of Messages for Communication Between the Edge and the Equipment
	System Design
	New Messages to Support Offloading Computing Tasks from Edge to Equipment
	SECS/GEM Protocol for Predefined Analyses
	SECS/GEM Protocol for Custom Analyses
	Ad-hoc Analysis

	Scenarios
	Scenario 1: Computation Tasks are Triggered by Events
	Scenario 2: Ad-hoc Performing Computation Tasks

	Summary

	Conclusions and Future Work
	Offloading Computing Tasks from the Edge to the Equipment
	Task Scheduling for Smart Manufacturing
	Communication Protocol in the SECS/GEM Interface
	Future Research Directions

	Bibliography
	Appendices
	Data From Experiments for Offloading From Edge to Equipment
	Data For Scheduling Algorithm Comparison - Hybrid Computing Solution (HCS) vs. Offloading
	Data For Scheduling Algorithm Comparison - Different Wait Time Limits
	Supporting Variables for New SECS/GEM Communication Protocol

