GENETIC AND EVOLUTIONARY PROTOCOLS FOR SOLVING DISTRIBUTE

ASYMMETRIC CONSTRAINT SATISFACTION PROBLEMS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This
dissertation does not include proprietary or classified information.

Ser-Geon Fu
Certificate of Approval:
Alice E. Smith Gerry Dozier, Chair
Professor Associate Professor
Industrial and Systems Engineering Computer Science and Software
Engineering
Kai Chang Min-Te Sun
Professor Assistant Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

Joe F. Pittman
Interim Dean
Graduate School

GENETIC AND EVOLUTIONARY PROTOCOLS FOR SOLVING DISTRIBUTE

ASYMMETRIC CONSTRAINT SATISFACTION PROBLEMS

Ser-Geon Fu

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fullfilment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn , Alabama
August 4, 2007

GENETIC AND EVOLUTIONARY PROTOCOL FOR SOLVING DISTRIBUTED

ASYMMETRIC CONSTRAINT SATISFACTION PROBLEM

Ser-Geon Fu

Permission is granted to Auburn University to make copies of this dissertatisn at i
discretion, upon request of individuals or institutions and at their expense. The author
reserves all publication rights.

Signature of Author

Date of Graduation

DISSERTATION ABSTRACT

GENETIC AND EVOLUTIONARY PROTOCOLS FOR SOLVING DISTRIBUTE

ASYMMETRIC CONSTRAINT SATISFACTION PROBLEMS

Ser-Geon Fu

Doctor of Philosophy, August 4, 2007
(M.Sw.E., Auburn University 2001)
(B.S., Chung-Hua University 1999)

193 Typed Pages

Directed by Gerry V. Dozier

Processor speed has been growing at an exponential rate oyesth&0 years.
Computers are getting smaller, cheaper and faster. Ovepaste30 years, with the
growth of the internet, new forms of decentralized distributsdpriting architectures
have emerged. The emergence of distributed architecturegdads the creations of
distributed computing systemasd a new field of research.

Distributed computing studies the coordination of computers, processuifr

processes that are physically distributed but work towards a comgaan Many of the

iv

fundamental issues involved with distributed computing have been thorouglayches®
in the past, for example, synchronization, point-to-point communicatie]atk issues,
etc. To date, there is a growing need for the development oicajomis that can
effectively utilize the underlying architecture to solve compestributed optimization
problems. To this end, one can either create a new algoripfecifisally for the
architecture or modify existing techniques to run on the newtaothre. In this work,
the latter approach is adopted.

Evolutionary computation (EC) has been shown to be capable of solwimglex
problems where traditional methods fail to yield satisfactoggults. However, to date
there has been no research into creating true distributedvEiCslistributed genomes.
This dissertation presents a set of genetic and evolutionary @O{@&EPS), which are
ECs modified to solve distributed problems. To assess théorpance of GEPs, we
will be testing GEPs on distributed constraint satisfactiablpms, where the variables
and constraints are geographically distributed among various éageess within a
distributed system. We will also apply these GEPs tost#mesor network tracking

problem, and the sensor network sharing problem.

Style Manual or Journal: IEEE Standard

Computer Software used: OpenOffice 2.0

Vi

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES

1. INTRODUCTION

1.1.
1.2.
1.3.
1.4.

Distributed Architecture and Resource Allocation
Sensor Networks

Evolutionary Computation

Outline

2. RESOURCE ALLOCATION AND CONSTRAINT SATISFACTION

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
29

2.10.
2.11.
2.12.
2.13.

Introduction

Resource Allocation

Linear Programming

Non-Linear Programming

Integer Programming

Dynamic Programming

Resource Allocation and Evolutionary Computation
Constraint Satisfaction

Solving Constraint Satisfaction Problems
Distributed Resource Allocation Problems

Solving Distributed Resource Allocation Problems
Distributed Constraint Satisfaction Problems
Solving Distributed Constraint Satisfaction Problems

3. GENETIC AND EVOLUTIONARY PROTOCOLS

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Introduction

Distributed Breakout Algorithm (dBA)
Society of Hill-Climbers (SoHC)

Genetic and Evolutionary Protocols (GEPS)
Distributed Stochastic Algorithm (DSA)
Modifications to DSA

Vil

>3

OO OBRNEEFE X

4. SOLVING DISTRIBUTED ASYMMETRIC CONSTRAINT
SATISFACTION PROBLEMS USING GENETIC AND EVOLUTIONARY

PROTOCOLS 40
4.1. Introduction 40
4.2. Randomly Generated DisACSP 40
4.3. Testing 41
4.4. Results: mdBA vs SoHC 42
4.5. Results: Genetic Protocol (GSoHC) 48
4.6. Results: Evolutionary Protocol (ESoHC) 53
4.7. Results: mdBA vs SoHC vs GSoHC vs ESoHC 59
4.8. Results: Distributed Stochastic Algorithm (DSA) and Society of DSA 64
4.9. Performance Analysis of DSA and SoDSA 74
4.10. Results of the Genetic Operator on SODSA 77
4.11. Results of the Evolutionary Operator on SoDSA (ESoDSA) 83
4.12. Performance Comparison of DSA, SoDSA, GSoDSA, ESoDSA 92
4.13. Final Comparison 96
4.14. An Adaptive SoDSA and the BreakOut List 100
5. THE SENSOR NETWORK 106
5.1. Introduction 106
5.2. A Sensor Network 106
5.3. Sensor Network Issues 108
5.4. The Sensor Tracking Problem 109
5.5. The Sensor Sharing Problem 111
6. THE SENSOR TRACKING PROBLEM 115
6.1. Introduction 115
6.2. Problem Inplementation 116
6.3. The Targets 117
6.4. Theoretical Analysis 118
6.5. Test Method 119
6.6. Results 120
6.7. Conclusion 129
7. THE SENSOR SHARING PROBLEM 130
7.1. Introduction 130
7.2. Problem Implementation 130
7.3. The Requests 131
7.4. Testing 132
7.5. Theoretical Discussion 133
7.6. Results (Uniform Distribution) 138
7.7. Results (Normal Distribution) 146
7.8. Conclusions 160
8. CONCLUSIONS AND FURTHER RESEARCH 164

BIBLIOGRAPHY

viii

167

Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 5.1
Figure 7.1

LIST OF FIGURES

Constraint Network with Symmetric Constraints

Constraint Network with Asymmetric Constraints

dBA Pseudo-code 30
A Distributed Candidate Solution 31
A Distributed Population 32
DSA Pseudo-Code 37
Differing Models for DSA 38
Sample Sensor Tracking Scenario 111

Upper and Lower bound for constraint tightness for the Sensor Shatiag
Problem

18
18

Table 4.1
Table 4.2
Table 4.3

Table 4.4
Table 4.5

Table 4.6
Table 4.7
Table 4.8
Table 4.9

Table 4.10

Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16
Table 4.17

Table 4.18

Table 4.19

Table 4.20

LIST OF TABLES

Percentage of problems solved within 2000 iterations

Average number of iterations to find a solution

One Factor ANOVA test Results over the Average lterations to find44
a Solution for SOHC where gf 5 and df= 17,994

Average number of Constraint Checks to find a feasible solution
Average number of unresolved constraints when no solution was 46
found within 2000 iterations

Percentage of total constraints unresolved after 2000 iterations
Average Ending BreakOut List Length

Percentage of problems solved for GSoHC with varying mutation 50
rates

Average number of Iterations required to solve a problem for GSoH&1
with varying Mutation Rates

Table 4.10. F-values from running the one Factor ANOVA test on 51
the results from Table 4.9 over the varying mutation rdte=(4, dfy
=495 and fop = 0.05,F = 2.39)

Percentage of Problems Solved for GSoHC with Mutation rate of 52
0.06

Average Cycles to Solve a Problems for GSoHC with Mutation rate52
of 0.06

Average number of unresolved constraints when no solution was 52
found within 2000 iterations

Percentage of total constraints unresolved after 2000 iterations

Average number of Constraint Checks to find a feasible solution

Percentage of Problems solved by ESoHC with varying Mutation rate

Average Number of Cycles to Solve a Problem with varying probleri6
Tightness and Mutation Rate

F-values from running the one Factor ANOVA test on the results 57
from Table 4.14 over the varying mutation ratd, € 5, df; = 594
and forp = 0.05,F = 2.23)

Comparison of Percentage of Problems Solved for ESoHC-0.06 aixd
EsoHC-0.12

Comparison of Average lterations to Solve a Problem for ESoHC- 57
0.06 and ESoHC-0.12

43
43

47

45

46

52
53
54

Table 4.21
Table 4.22
Table 4.23
Table 4.24
Table 4.25
Table 4.26
Table 4.27
Table 4.28
Table 4.29
Table 4.30
Table 4.31
Table 4.32
Table 4.33
Table 4.34
Table 4.35
Table 4.36
Table 4.37
Table 4.38
Table 4.39
Table 4.40
Table 4.41
Table 4.42
Table 4.43

Table 4.44

Table 4.45

Average number of unresolved constraints when no solution was 58
found within 2000 iterations

Percentage of total constraints unresolved after 2000 iterations

Average number of Constraint Checks to find a feasible solution

Comparison of Percentage of Problems Solved between mDBA,
SoHC, GSoHC, and ESoHC

Comparison of Average number of Cycles to Solve a Problem
between mDBA, SoHC, GSoHC, and ESoHC

Average Remaining Conflicts when no solution was found within
2000 Iterations

Average Constraint Checks to solve a problem within 2000 Iterations

Comparison of Average Ending BreakOut List Length

Percentage of Problems Solved for DSA and SoDSA on problems 65
with Constraint Tightness of 0.01

Average Iterations to Solve a Problem for DSA and SoDSA on
problems with Constraint Tightness of 0.01

Percentage of Problems Solved for DSA and SoDSA on problems 66
with Constraint Tightness of 0.02

Average Iterations to Solve a Problem for DSA and SoDSA on
problems with Constraint Tightness of 0.02

Percentage of Problems Solved for DSA and SoDSA on problems 67
with Constraint Tightness of 0.03

Average Iterations to Solve a Problem for DSA and SoDSA on
problems with Constraint Tightness of 0.03

Percentage of Problems Solved for DSA and SoDSA on problems 68
with Constraint Tightness of 0.04

Average Iterations to Solve a Problem for DSA and SoDSA on
problems with Constraint Tightness of 0.04

Percentage of Problems Solved for DSA and SoDSA on problems 70
with Constraint Tightness of 0.05

Average Iterations to Solve a Problem for DSA and SoDSA on
problems with Constraint Tightness of 0.05

Percentage of Problems Solved for DSA and SoDSA on problems 70
with Constraint Tightness of 0.06

Average Iterations to Solve a Problem for DSA and SoDSA on
problems with Constraint Tightness of 0.06

Average Remaining Conflicts when a solution was not found within71
2000 iterations for problems with tightness of 0.01

Average Remaining Conflicts when a solution was not found within71
2000 iterations for problems with tightness of 0.02

Average Remaining Conflicts when a solution was not found within72
2000 iterations for problems with tightness of 0.03

Average Remaining Conflicts when a solution was not found within72
2000 iterations for problems with tightness of 0.04

Average Remaining Conflicts when a solution was not found within72
2000 iterations for problems with tightness of 0.05

Xl

65

66

67

68

70

70

58
58

63
63

Table 4.46

Table 4.47

Table 4.48

Table 4.49

Table 4.50

Table 4.51

Table 4.52

Table 4.53

Table 4.54

Table 4.55

Table 4.56

Table 4.57

Table 4.58

Table 4.59

Table 4.60

Table 4.61

Table 4.62

Table 4.63

Table 4.64

Table 4.65

Average Remaining Conflicts when a solution was not found within73
2000 iterations for problems with tightness of 0.06

Average Number of Constraint Checks to solve a problem when a 73
solution was found within 2000 Iterations for problems with
tightness 0.01

Average Number of Constraint Checks to solve a problem when a 74
solution was found within 2000 Iterations for problems with
tightness 0.02

Average Number of Constraint Checks to solve a problem when a 74
solution was found within 2000 Iterations for problems with
tightness 0.03

Average Number of Constraint Checks to solve a problem when a 74
solution was found within 2000 Iterations for problems with
tightness 0.04

Average Number of Constraint Checks to solve a problem when a 75
solution was found within 2000 Iterations for problems with
tightness 0.05

Average Number of Constraint Checks to solve a problem when a 75
solution was found within 2000 Iterations for problems with
tightness 0.06

Percentage of Problems Solved for GSoDSA on problems with 78
Constraint Tightness of 0.01

Average Iterations to Solve a Problem for GSoDSA on problems 78
with Constraint Tightness of 0.01

Percentage of Problems Solved for GSoDSA on problems with 78
Constraint Tightness of 0.02

Average Iterations to Solve a Problem for GSoDSA on problems 78
with Constraint Tightness of 0.02

Percentage of Problems Solved for GSoDSA on problems with 79
Constraint Tightness of 0.03

Average lterations to Solve a Problem for GSoDSA on problems 79
with Constraint Tightness of 0.03

Percentage of Problems Solved for GSoDSA on problems with 80
Constraint Tightness of 0.04

Average Iterations to Solve a Problem for GSoDSA on problems 80
with Constraint Tightness of 0.04

Percentage of Problems Solved for GSoDSA on problems with 80
Constraint Tightness of 0.05

Average Iterations to Solve a Problem for GSoDSA on problems 80
with Constraint Tightness of 0.05

Percentage of Problems Solved for GSoDSA on problems with 81
Constraint Tightness of 0.06

Average lterations to Solve a Problem for GSoDSA on problems 81

with Constraint Tightness of 0.06
Average Remaining Conflicts when a solution was not found within82
2000 iterations for problems with tightness of 0.01

Xl

Table 4.66

Table 4.67

Table 4.68

Table 4.69

Table 4.70

Table 4.71

Table 4.72

Table 4.73

Table 4.74

Table 4.75

Table 4.76

Table 4.77

Table 4.78

Table 4.79

Table 4.80

Table 4.81

Table 4.82

Table 4.83

Table 4.84

Table 4.85

Average Remaining Conflicts when a solution was not found within82
2000 iterations for problems with tightness of 0.02

Average Remaining Conflicts when a solution was not found within82
2000 iterations for problems with tightness of 0.03

Average Remaining Conflicts when a solution was not found within82
2000 iterations for problems with tightness of 0.04

Average Remaining Conflicts when a solution was not found within83
2000 iterations for problems with tightness of 0.05

Average Remaining Conflicts when a solution was not found within83
2000 iterations for problems with tightness of 0.06

Average Number of Constraint Checks to solve a problem when a 84
solution was found within 2000 Iterations for problems with
tightness 0.01

Average Number of Constraint Checks to solve a problem when a 84
solution was found within 2000 Iterations for problems with
tightness 0.02

Average Number of Constraint Checks to solve a problem when a 84
solution was found within 2000 Iterations for problems with
tightness 0.03

Average Number of Constraint Checks to solve a problem when a 84
solution was found within 2000 Iterations for problems with
tightness 0.04

Average Number of Constraint Checks to solve a problem when a 85
solution was found within 2000 Iterations for problems with
tightness 0.05

Average Number of Constraint Checks to solve a problem when a 85
solution was found within 2000 Iterations for problems with
tightness 0.06

Percentage of Problems Solved for ESoDSA on problems with 86
Constraint Tightness of 0.01

Average lterations to Solve a Problem for ESoDSA on problems 86
with Constraint Tightness of 0.01

Percentage of Problems Solved for ESoDSA on problems with 86
Constraint Tightness of 0.02

Average Iterations to Solve a Problem for ESoDSA on problems 86
with Constraint Tightness of 0.02

Percentage of Problems Solved for ESoDSA on problems with 87
Constraint Tightness of 0.03

Average Iterations to Solve a Problem for ESoDSA on problems 87
with Constraint Tightness of 0.03

Percentage of Problems Solved for ESoDSA on problems with 87
Constraint Tightness of 0.04

Average lterations to Solve a Problem for ESoDSA on problems 87
with Constraint Tightness of 0.04

Percentage of Problems Solved for ESoDSA on problems with 88

Constraint Tightness of 0.05
Xiii

Table 4.86

Table 4.87

Table 4.88

Table 4.89

Table 4.90

Table 4.91

Table 4.92

Table 4.93

Table 4.94

Table 4.95

Table 4.96

Table 4.97

Table 4.98

Table 4.99

Average Iterations to Solve a Problem for ESoDSA on problems 88
with Constraint Tightness of 0.05

Percentage of Problems Solved for ESoDSA on problems with
Constraint Tightness of 0.06

Average lterations to Solve a Problem for ESoDSA on problems 88
with Constraint Tightness of 0.06

Average Remaining Conflicts when a solution was not found within89
2000 iterations for problems with tightness of 0.01

Average Remaining Conflicts when a solution was not found within89
2000 iterations for problems with tightness of 0.02

Average Remaining Conflicts when a solution was not found within90
2000 iterations for problems with tightness of 0.03

Average Remaining Conflicts when a solution was not found within90
2000 iterations for problems with tightness of 0.04

Average Remaining Conflicts when a solution was not found within90
2000 iterations for problems with tightness of 0.05

Average Remaining Conflicts when a solution was not found within90
2000 iterations for problems with tightness of 0.06

Average Number of Constraint Checks to solve a problem when a 91
solution was found within 2000 Iterations for problems with
tightness 0.01

Average Number of Constraint Checks to solve a problem when a 91
solution was found within 2000 Iterations for problems with
tightness 0.02

Average Number of Constraint Checks to solve a problem when a 91
solution was found within 2000 Iterations for problems with
tightness 0.03

Average Number of Constraint Checks to solve a problem when a 92
solution was found within 2000 Iterations for problems with
tightness 0.04

Average Number of Constraint Checks to solve a problem when a 92
solution was found within 2000 Iterations for problems with
tightness 0.05

88

Table 4.100 Best Possible results for SODSA, GSoDSA, and ESoDSA given an93

value ofp (Percentage of Problems Solved)

Table 4.101 Best Possible results for SODSA, GSoDSA, and ESoDSA given an94

value ofp (Average Number of Iterations to Solve a Problem)

Table 4.102 Comparison of Percentage of Problems Solved between the dBA a@id

DSA variations

Table 4.103 Comparison of Average Number of Iterations to Solve a Problem 99

Table 4.104 Comparison of Adaptive SODSA and Fixed SopSA.5)

between dBA and DSA variations
101

Table 4.105 Comparison of Average Number of Iterations to Solve a problem 101

between Adaptive-SoDSA and fixed SoD34Q.5)

Table 4.106 Comparison of SODSA, with and without a breakout list, over the 103

percentage of problems solved within 2000 iterations p#th5
Xiv

Table 4.107 Comparison of SoDSA, with and without a breakout list, over the 103

average number of cycles to solve a problem p#th.5

Table 4.108 Comparison of ASoDSA, with and without a breakout list, over th&04

percentage of problems solved within 2000 iterations p#th5

Table 4.109 Comparison of ASoDSA, with and without a breakout list, over th&04

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Table 7.8

Table 7.9

Table 7.10

average number of cycles to solve a problem pAth.5
Results of SOHC on the Sensor Tracking Problem over all parametéd
settings

Results of GSoHC on the Sensor Tracking Problem over all 123
parameter settings

Results of ESoHC on the Sensor Tracking Problem over all 123
parameter settings

Comparison of results for SOHC, GSoHC, and ESoHC at a 124

communication density of 0.4

Results of SoDSAX0.1) on the Sensor Tracking Problem over all 125
parameter settings

Results of GSoDSAH0.1) on the Sensor Tracking Problem over allLl26
parameter settings

Results of ESoDSAH0.1) on the Sensor Tracking Problem over all126
parameter settings

Comparison of SODSA, GSoDSA, and ESoDSA at communicatioril27
density 0.4

The Comparison of the six algorithms/protocols at communication128
density 0.4

Probability of a requesting a sensor of a specific type given a
Gaussian random number generator with mean 3.5

Results of all algorithms on the Sensor Sharing Problem with arrivaB8
intervals at 1 iteration and life span of 10 iterations

Results of all algorithms on the Sensor Sharing Problem with arrivi40
intervals at 1 iteration and life span of 50 iterations

Results of all algorithms on the Sensor Sharing Problem with arrivid1
intervals at 1 iteration and life span of 200 iterations

Results of all algorithms on the Sensor Sharing Problem with arrivi42
intervals at 10 iteration and life span of 10 iterations

Results of all algorithms on the Sensor Sharing Problem with arrival3
intervals at 10 iteration and life span of 50 iterations

Results of all algorithms on the Sensor Sharing Problem with arrival3
intervals at 10 iteration and life span of 200 iterations

Results of all algorithms on the Sensor Sharing Problem with arrivial4
intervals at 50 iteration and life span of 10 iterations

Results of all algorithms on the Sensor Sharing Problem with arrixii4
intervals at 50 iteration and life span of 50 iterations

Results of all algorithms on the Sensor Sharing Problem with arritdb
intervals at 50 iteration and life span of 200 iterations

136

XV

Table 7.11

Table 7.12

Table 7.13

Table 7.14

Table 7.15

Table 7.16

Table 7.17

Table 7.18

Table 7.19

Table 7.20

Table 7.21

Table 7.22

Table 7.23

Table 7.24

Table 7.25

Results of all algorithms on the Sensor Sharing Problem with arrivied7
intervals at 1 iteration and life span of 10 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arrivie49
intervals at 1 iteration and life span of 50 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arriveb0
intervals at 1 iteration and life span of 200 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arrivib1
intervals at 10 iteration and life span of 10 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arrivebl
intervals at 10 iteration and life span of 50 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arriveb2
intervals at 10 iteration and life span of 200 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arriveh2
intervals at 50 iteration and life span of 10 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arriveb3
intervals at 50 iteration and life span of 50 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arriveb3
intervals at 50 iteration and life span of 200 iterations and normal
distribution with standard deviation of 1

Results of all algorithms on the Sensor Sharing Problem with arriveb5
intervals at 1 iteration and life span of 10 iterations and normal
distribution with standard deviation of 0.5

Results of all algorithms on the Sensor Sharing Problem with arriveb5
intervals at 1 iteration and life span of 50 iterations and normal
distribution with standard deviation of 0.5

Results of all algorithms on the Sensor Sharing Problem with arriveb6
intervals at 1 iteration and life span of 200 iterations and normal
distribution with standard deviation of 0.5

Results of all algorithms on the Sensor Sharing Problem with arriveb7
intervals at 10 iteration and life span of 10 iterations and normal
distribution with standard deviation of 0.5

Results of all algorithms on the Sensor Sharing Problem with arriviEs8
intervals at 10 iteration and life span of 50 iterations and normal
distribution with standard deviation of 0.5

Results of all algorithms on the Sensor Sharing Problem with arriveb9
intervals at 10 iteration and life span of 200 iterations and normal
distribution with standard deviation of 0.5

XVi

Table 7.26 Results of all algorithms on the Sensor Sharing Problem with arrivEb9
intervals at 50 iteration and life span of 10 iterations and normal
distribution with standard deviation of 0.5

Table 7.27 Results of all algorithms on the Sensor Sharing Problem with arrivieb0
intervals at 50 iteration and life span of 50 iterations and normal
distribution with standard deviation of 0.5

Table 7.28 Results of all algorithms on the Sensor Sharing Problem with arriveb0
intervals at 50 iteration and life span of 200 iterations and normal
distribution with standard deviation of 0.5

XVil

CHAPTER 1

INTRODUCTION

1.1. Distributed Architecture and Resour ce Allocation

Processor speed has been growing at an exponential rate ovesttb® paars and
computers are becoming smaller, cheaper and faster [152]. tii@vpast 30 years, with
the growth of the Internet, new forms of decentralized, idiggd computing
architectures have begun to emerge [13, 22], which has ke toreation of distributed
computing systemand a new field of research [13]

Distributed computing studies the coordination of computers, processw&r
processes that are physically separated but work towards a common gaél [, 116,
148]. Examples of distributed systems include multi-processdaersgs[16], server
clusters [16], multi-agent systems [19] and sensor netwarksl, 150, 176]. Many of
the fundamental issues involved with distributed computing have demoughly
researched in the past, for example, synchronization [148}t-fmepoint communication
[148], deadlock issues [16], etc. For applications running on distdbsystems, the
main concern is how to effectively utilize the availableougses to complete the task.
Thus, distributed resource allocation problems (DisRAP) argraieto research in
distributed computing [5, 14, 16, 19, 160].

Distributed resource allocation involves the assignment of res®u separate

entities/agents such that they can complete individual tasks prtielsystem, as a
1

whole, accomplish specific goals [14, 16, 19]. As there aferdift types of distributed
systems, the resources that need to be distributed mayrearnbeing shared among all
agents [16] to being separately owned by individual agents [18]bldMs often arise
due to the lack of centralized control and the existence of emmtston resources within
and/or between agents [7, 30, 38, 122]. The lack of centralizedkantt distributed
constraints mean that DisSRAPs cannot be solved with traditaptahization or search
techniques. Typically, DisRAPs are solved through negotiabomgcomise based
techniques [19, 86, 95, 160] or queueing and scheduling techniques [14, 16,]20, 116
depending on the architecture of the system. It has been ghawBisRAPs can be
modelled as distributed constraint satisfaction problems @#3g54]. This makes it
possible to solve DisRAPs with the solution methods that wegeally developed for

DisCSP [54].

1.2. Sensor Networks

A sensor network is a collection of wirelessly connected, lost pods that contain
a number of sensing devices and are deployed over a specific gecgjregimn for any
number of purposes [1, 11, 151, 176]. A sensor network can also be véswvad
multiagent system [19]. There are many problems relatédetasage and set up of a
sensor network [1, 11, 151, 176]. However, this research focusesooapplication
problems of the sensor network: the fundamental sensor network trgckisigm [3, 7,
30, 87, 99, 130] and the new sensor sharing problem [38].

The sensor network tracking problem involves monitoring and following moving

targets within the coverage area of a network of station#gnamous sensing devices

2

[3, 7, 30, 87, 99, 130]. Each sensor pod has a Doppler radar thay isapalble of
detecting the relative distance and general direction ofgettérom itself [3, 7, 30, 87,

99, 132]. Thusk sensor pods must work together and share distance and relative
direction information to be able to triangulate and accwratigipoint the actual position

of the target [7]. To effectively track a targktpf all sensor pods that can detect the
target must be assigned to follow it, but at the same time khe=esor pods must also be
able to communicate directly with each other to share taéve position data [7]. A
target is said to bk-trackable [7] if, out of all the pods that are able to date&tpods

that are capable of directly communicating with each other can be assigrask tib.

The sensor network sharing problem involves the allocation of tnsensor
resources to satisfy as many user requests for sensors déepl@8. Each sensor pod
containsm different sensors, and each pod is capable of turning on oryoffuanber of
the m sensors that it has. However, in order to reduce the power cpinsarof the
individual pods, assume that only one of theensors can be turned on in a sensor pod at
any given time. Thus, any user can request upgensors from the sensor network to
collect data [38], whera is the number of pods in the network. Each request will also
have a time value (life span) associated with it that gpedifiow much sensor time must
be allocated to the request to completely satisfy it. Wheser places a request for
sensors, the network would then need to assigwds to have the specified sensors
turned on [38]. In addition to satisfying the user's sensailspeébe network must also
satisfy a series of constraints in the form of internal allocationsig®licr each pod [38].

As more users make requests (and old requests are compieted@iwork must be able

to dynamically reassign sensors among the pods so as tg aatisfany user requests as

possible without violating any of the internal allocation policies.

1.3. Evolutionary Computation

Evolutionary computation (EC) is the study of algorithms and proldeming
techniques inspired by the processes of natural evolution [29, 32, 49, 38252 ECs
have been shown to find good solutions for relatively hard problenesewtraditional
methods were not able to provide satisfactory results [49]. However, up to now ECs have
mainly been used to solve centralized problems. The concepdtobuted computing
has generally been used as a method to speed up ECs throaljelipation of the
algorithm with the use of a parallel population [8, 61, 96, 137]. 3toidy presents two
new ECs, genetic and evolutionary protocols (GEPs) [41]. ThesGisre created
through the addition of distributed crossover and mutation operatting twurrent best
distributed method for solving DisCSPs, Yokoo's distributed breakgatidgim (dBA)
[164, 165, 166, 170]. Unlike traditional distributed ECs [8, 61, 96, 1GERs use
distributed candidate solutions to solve DisCSPs [164, 165, 166, 17@] timly
distributed manner. In order to compare the performance of @H&®wn methods for
solving DisCSPs, the GEPs will be tested on randomly gertkdistributed asymmetric
constraint satisfaction problems (DisSACSPs) [36, 37], as aglbn the sensor network

tracking [3, 7, 30, 87, 99, 130] and the sensor network sharing problem[38].

1.4. Outline

The remainder of this dissertation is arranged as follow<Chiapter 2, an in-depth
discussion of resource allocation problems, DisRAPs, conssatigfaction problems,
DisCSPs, and some known methods for solving them will be preser@édypter 3
describes the creation of the GEPs from a known good solution mith@isCSPs,
dBA. Chapter 4 presents and discusses the results obtainedesting the GEPs on
randomly generated DiSACSPs. Chapter 5 illustrates tecture and issues involved
with the sensor network, along with detailed explanations anchpga of the sensor
tracking and sharing problems. Chapters 6 and 7 present the results obtainedtingm te
the GEPs on the sensor tracking and sharing problems. FiGalypter 8 summarizes

the study, lists its conclusions, and suggest directions for possible futuremesear

CHAPTER 2

RESOURCE ALLOCATION AND CONSTRAINT SATISFACTION

2.1. Introduction

The applications used to demonstrate the effectiveness of thetiogeand
evolutionary protocols (GEPs) are both instances of the dynamidudlistt resource
allocation problem, namely the sensor network tracking problem, [30, 87, 99, 130]
and the sensor sharing problem [38]. To gain a better understapidihigtributed
resource allocation problems, centralized resource allocataitepns will be presented
first. Since resource allocation problems can be modeledorstraint satisfaction
problems [54], this research will be focused on solving the séraing [3, 7, 30, 87,
99, 130] and sharing problems [38] modeled as distributed constatistastion

problems [7].

2.2. Resour ce Allocation

Resource allocation problems (RAPS) involve the assignment orbdigin of
limited resources to a series of tasks, while at theestame optimizing an objective
function [17, 62, 65, 70, 79, 132, 143]. Given that resources aredinite sum of all

allocated resources must not exceed the amount availablegivBn,an RAP withn

variables X; X, ..., X, , the solution must satisfy the constraiﬁ X;<N [68]. Some

RAPs may require that all available resources be allocatedhwneans a solution must
6

satisfy Z X;=N [67, 70, 132, 143]. Also, since it is not possible to allocatetivega
resources, all RAPs have a non-negativity constraint such thatohohe variables are
assigned negative values. Additional constraints may be addegpetfy certain
allocation patterns (policies) or guarantee a minimum amourgsofurces to a certain
variable/task [48, 56, 57, 67, 70, 82, 85, 88, 89, 92].

There are two major types of RAP, continuous and discrete [63,320,143]. The
difference is mainly in the domain type of the variables involvBiscrete RAPs have
discrete variable domains, while continuous RAPs have continuous vadiailains.
RAPs can further be divided based on two characteristidhenobjective function,
separability and convexity. An objective function is considesmaable if the overall
fitness is the sum of the independent local partial fithesseg (63,32, 143]. Formally,

a separable function is one where

f(xlyxzy...,xn)=z f.(x)

i=1
Convexity is the property where given any objective functfgpand two values andj,
f'(i) < f(j) if, and only if,i < j, wheref'(x) is the first order derivative dfx). Separability
and convexity are the two most exploited objective function propentieoperations
research [65, 70, 132, 143], for formulating solution methods for RAPs.

The field of Operations Research (OR) has developed a numbeunoérical
methods, such as the simplex method [27, 65, 69, 77, 118, 132, 133, 135, 1434153,
158, 169], the interior point algorithm [65, 72], the branch and bound mgsBodO,
112, 157], and gradient-based methods [10, 47], that can be uselydoR®\Ps. To

apply these methods, the RAP must first be formulated itherea linear programming

7

[27, 65, 70, 72, 118, 132, 135], integer programming [65, 70, 132, 134, 157], dynami
programming [9, 42, 65, 111, 159], or nonlinear programming problem [6, 10, 47, 65, 78,
158]. It should be noted that although the word “programming” id, ukes has nothing

to do with computer implementations, but rather, the word “progiagims used to

refer to “planning” [65, 70, 111, 157]. These four problem formulatichrigues are
discussed in turn below, along with some techniques and sesitdgit are commonly

used to solve the programming problems.

2.3. Linear Programming

Linear programming [65, 70, 72, 118, 135] is an indispensable tool for iopesrat
research and has been used to solve a wide variety of probleshaling resource
allocation problems. It should be noted that linear programmingtia problem solving
method, but rather a standard model by which a problem can be ftech(6&, 70, 72,
118, 135]. However, not all problems can be formulated using [ptegramming (LP).
LP works on a specific class of problems, where the fitnesstolgefunction is linear
[65, 70, 72, 118, 135]. This linear restriction also applies tthallconstraints that may
exist [65, 70, 72, 118, 135, 156]. It is also assumed that surees are separable,
meaning variables must have a continuous domain [65, 70, 72, 118, 135, 156]aunlike
separable objective function. Mathematically, an LP problenoiehed as follows [65,

70, 118]:

maximizi f(X)=C-X
subject to: AX ' <B',

x>0 VxeX
where : X—(x1 x2 LX) ER"
C=(c, .) R"
(blb2 b, ER"
a, Ay
A=|: .o V a,eR
a., - a,

(2.3.1)
where X is the vector of all the variable€, is the corresponding coefficients of each
variable in the objective functiofy A is a matrix of coefficients for each variable within
the set ofm constraint inequalities, and is the set of upper bound values for each
constraint inequality. Expanding the model, the objective functiote&lg separable

and can be rewritten as:

F(X)=Y ox

i=1

Themlinear constraint inequalities created fréd’ < B" can be expanded as follows:

a X, +ta X, <b;

amr’ x1+---4:ranl-xmsbm
This is known as the standard LP model [65, 70, 72, 118, 135, 156] andhsanta
constraints and variables.

The most common method used to solve a LP problem is the simelénod [65,

69, 70, 77, 118, 133, 135, 153, 154], which exploits the property that the optimal solution
is a corner point of the feasible space. Because the feapiabe is enclosed by the
boundaries created by the constraints, a corner point is the poeumicit two or more

constraint boundaries intersect. The simplex method starts from any arlitmaey point

9

feasible (CPF) solution and moves the candidate solution from oRes@Btion to a
better neighboring one until the optimal solution is found [70, 118, 1%4 simplex
method has been shown to have a worst case exponential time complexityabercaye
polynomial time complexity [77, 133].
Another method for solving a LP problem is known as the interior point method [65,

72]. As with the simplex method, the interior point method igerative improvement
method [65, 72], but rather than starting from a CPF solutionntagor point method
starts from a random point within the space of feasible soluéindsteratively moves in
the direction that will most improve the objective function untilogmimal solution is
found [65, 72]. Computationally, per iteration the interior pointhoe is more complex
than the simplex method [65]. However, it has been shown thaiwvtnst case

performance of the interior point method is polynomial time [77, 133].

2.4. Non-Linear Programming

Though LP is a powerful tool for operations research and solving resoucatialh
problems, it is limited by the linear requirement placed fen dbjective function and
constraints [65, 70, 118]. The formulation of problems using non-linegrgmming
(NLP) is the same as LP with the exception that the contstrand objective function do
not need to be linear [6, 10, 47, 65, 78, 158]. Though the general fohhPofis
nontrivial to solve [6], solution methods have been found for speddicses of NLP
problems. Examples of NLP problem classes that have known solutitegsats include
linearly constrained optimization, quadratic programming, convex progragnrand
separable programming [6, 10, 47, 65, 78, 158].

10

Linearly constrained optimization problems are similar to grtBblems with the
exception that the objective function is nonlinear [65]. These prablsan usually be
solved with a modified version of the simplex method used_P{65]. The interior
point method also makes an ideal solution strategy as it do@sswne that the optimal
solution will be a CPF solution, like the simplex method [6, 65, 72, 158].

Quadratic programming problems [65, 117] are a subclass of lineamktrained
optimization problems where the objective function is quadratio@ér 2), while the
constraints stay linear [6, 65, 117]. Unlike general nonlinearctge functions, a
quadratic objective function is much easier to work with becthesglobal optimal will
also be the only local optimal. Quadratic programming problempreferably solved
with barrier and interior point methods [6, 65], but can alssdieed with a modified
simplex method [6, 65, 117].

Convex programming [63, 129, 140] covers a wide range of problem types.
Problems falling under convex programming must satisfy the esgemts that the
objective function be convex and the constraints be concave [65, 132, A48Jncave
function is the opposite of a convex function and must satisfy thetrammnsthat
Vi,jeR,i<j—-f'(i)>f'(j),where f'(i) and f'(j) are first order derivatives of
the functionf [65, 70, 132, 143]. As with quadratic programming problems, the
characteristics of the convex programming problem guarantees thanvtherdy be one
local optimal, which will also be the gobal optimal and uniquaiutgmi. Convex
programming problems can be solved with gradient algorithms [65137),143] or a

modified simplex method [169].

11

Separable programming [62, 65, 78 132, 143] is a special type of convex
programming problem with the additional property that the objectivetiumds
separable. Separable programming problems are easier to #wwe convex
programming problems, as the objective function can be approximaiaymumber of
linear functions. This can only be done with separable programmatdeprs because
of the objective function's separability. Separability impttest it is possible to break
the objective function into a series of single variable functiaéch makes it possible
to perform linear approximations on each individual variable fanctiSeparability also
guarantees that the combined optimal of the individual partial olgeittnctions will be
the global optimal. By breaking a nonlinear function into aesesf linear functions, the
simplex method can be used. Since a series of linear funetienssed to approximate
the original nonlinear objective function, the accuracy of the appréximaan be
increased simply by using more linear functions.

As these four examples demonstrate, solutions to NLP problemshighly
dependent on the characteristics of the objective function and dotsstad tend to be
iterative improvement methods. With the wide range of possiblegotypes for NLP
problems, no single solution method or strategy can be used tsteatly obtain a

solution.

2.5. Integer Programming

Up to this point, solution methods for continuous RAPs have been caatsidheit
many practical problems are discrete. For such situatioegeinprogramming (IP) [65,
70, 132, 134, 157] must be used. Integer programming can be further diviolgualire

12

IP, where all variables require integer value assignments, awdl i, where only some
of the variables have integer domains [70, 157]. It has been shatalltIP problems
can be relaxed and/or transformed into the LP standard form [65]. dihedifierence is
the additional constraint that all or some variables must be assigned integs: val

Pure IP problems may look simpler than LP problems due to the imdutsearch
space from being continuous (infinite) to discrete (finite). Ha@we typically IP
problems are harder to solve than LP problems [65, 70, 157]. The finite seaceho$ a
pure IP does not make the problem any easier to solve, as the nomfeasible
solutions can still grow exponentially with problem size. hibidd be noted that for an
LP problem, the feasible search space is infinite, but ordyasively small subset of this
search space is of interest, namely the corner point feg€ilBIE) solutions that the
simplex method targets [65, 70, 118, 154].

The most common strategy for solving an IP problem is to transtanto standard
LP form [157], ignore the integer requirements, and solve indsPatype problem with
the simplex method [65, 70, 118, 132, 154, 157]. This is also known asldxation
[65]. However, it is not often that the solution to an LRuation will also be integral.
If the solution found by the simplex method is not integral, thercutting plane method
[157] can be used to add a new constraint to the transformaobiem to eliminate any
non-integer optimal solution. After the constraint is added, thelsxmmethod is
reapplied to the new problem. The repeated process of findirmjuaos with the
simplex method and adding a new constraint is performed until theabpsolution
found by the simplex method also satisfies the integer requitenjé0, 157]. This

procedure is known to be finite [70, 154].

13

Another approach to solving an IP problem is the branch and bound meth@@,[65,
111, 157]. The branch and bound method breaks the problem down into a number of
subproblems by selecting a variable and assigning a differamg fraim its domain for
each subproblem (branch). Each subproblem is run through the simgférod to
estimate the objective function's upper bound. Based on the estjrtta¢ subproblem
with the most promise is then further divided. This is reggkaintil an optimal set of
variable assignments is found. In many ways, the branch and baihddmns similar to
the graph search algorithm A* [127]; where A* uses a distdregistic to guide its
search, the branch and bound method uses the estimate for thevelbjewition's upper
bound for each subproblem to guide its search.

As IP problems become larger and more complex, there is no nigeda
deterministic method for solving them [65, 70, 157]. TransformingRhgroblem into
the LP standard form and applying the simplex method will notagtee an integer
solution [65, 70, 157]. The cutting plane method [70, 157] works, biteasumber of
cutting planes increase, the problem becomes more complex dbe tewly added
constraints. The branch and bound method also has its faults, as it is very postige f
branching tree to grow exponentially and consume large amountsnedmn¢65, 70,
111, 157]. Recently, there have been developments in efficienbpearal heuristics
that identify better solutions in shorter amounts of time tharrdl&ation and other
methods that utilize the simplex method for IP [65, 70, 111, 132,15%3, Some of
these new solution methods include the use of algorithms and meistibguirom

evolutionary computation [63, 82, 90].

14

2.6. Dynamic Programming

Dynamic programming [9, 42, 65, 111, 159] is a solution strategy<tudten used
for solving decision problems. Specifically, the problem must sbo$istages where a
variable is assigned a value or a decision is made at &agh [9, 42, 65, 111, 159]. A
common example of this type of problem is the problem of findingstieatest path
between two points through a number of intermediate points [9jvadeknown as the
traveling salesman problem (TSP) [65, 132, 143]. Unlike LP, wheatandard form bis
used to formulate the problem, dynamic programming (DP) doedave a standard
form [9, 42, 65, 111, 159]. Thus, formulating a problem in DP form o&guoires some
ingenuity [65].

DP can be further subdivided into deterministic dynamic prograg and
probabilistic (stochastic) dynamic programming [9, 42, 65, 111, 1B@terministic DP
is used to solve problems where the choice at a specific stage will lead tifia spsult,
as with the aforementioned path finding problem [9, 111]. Probabi{s&bchastic) DP
is used to solve problems where specific choices will probatalist lead to varying
outcomes [114]. In these cases, the goal would be to optimiexpleeted outcome [65,
114]. The branch and bound method is the primary solution algorghrsofving DP

problems [9, 42, 65, 111, 159].

2.7. Resour ce Allocation and Evolutionary Computation
Though the deterministic methods presented above are useful and lggneratle
good results, they are extremely limited as to the tgpgsoblems they can address. In

the case of DP, the strategy itself does not scale wekrger problems [42, 159].

15

Though LP has a general solution method, the simplex method, macyicalr
application problems cannot be formulated into the LP standard[6r&®, 47, 65, 78,
158]. In the case of NLP, there is no unique solution methochéogeéneral form, as
with the simplex method for LP [6, 65, 70, 78, 132, 143, 158].

Evolutionary computation is the study of algorithms and problem solving techniques
that are inspired by the processes of natural evolution [29, 49, T4#.most widely
used evolutionary computations (ECs) include genetic algorithmg [22A 142, 107],
evolution strategies (ES) [4, 51, 126], evolutionary programming [ERH3], genetic
programming (GP) [51, 80], particle swarm optimization (P$) 75], ant systems
(AS) [32, 34], and ant colony optimization (ACO) [32, 33]. &dcresearch has shown
that ECs are often able to find solutions to complex problemswhich traditional

methods are unsatisfactory [29, 49, 142].

2.8. Constraint Satisfaction

Resource allocation problems can be modeled as constrainadaisfproblems
(CSP) [108, 109], which are composed of a set of variailes,set of domaind), for
each variable, and a set of constrai@s,limiting the assignments of values to each
variable. The goal is to find a set of value assignments<Xfilom D such that no
constraints inC are violated [28, 39, 40, 43, 94, 106, 125, 129, 141, 161]. The
constraints inC may come in many different forms, possibly constraining iplalt
variables simultaneously [28, 161]. However, all constraintsbeadecomposed into a
set of binary constraints, where a binary constraint is one that involves amatiables
[28]. With binary constraints, a CSP can be illustrated gsaph, a constraint network

16

[28, 161]. In a constraint network, all variablesXrare vertices in the graph, while the
edges between vertices represent constraints [28, 161]. Thusclorstraint network
G(V, E) containing the set of verticeé and the set of edgds V = X, an edgek; |
betweenV; andV, exists if, and only if, 3C; ;€C.

There are two additional properties of a CSP, namely constdainsity and
constraint tightness [28, 39, 40, 92, 161]. The constraint denslig imtio between the
number of constraints in the network and the total number of possibitraints. The
constraint tightness represents the probability that a valuenassng pair of two
variables is not allowed if there exists a constraint atggebetween the two variables
(vertices). The constraint density can be calculated by diyithe number of existing
edges by the total number of possible edges, whioknis1)/2 wheren is the number
of vertices in the graph. Given two variableandx and their corresponding domaids
andd;, the constraint tightness is found by dividing the number of no-goodedexwv
andx; by size(d,;)x size(d;) .

In the constraint network definition described so far, it shdoddnoted that all
constraints are symmetric in nature. Each arc (edge) espam<onstraint on both the
vertices it is connected to. Symmetric constraints are demsl public, since both
variables involved know of the existence of the constraints. Amgbeaof a constraint
network with symmetric constraints is given in Figure 2.1.

Constraints may also be asymmetric. A constraint netwotk asymmetric
constraints is shown in Figure 2.2, where asymmetric constraietgepresented by
directional arcs (directed edges) connecting vertices witl@rconstraint network. The

directional arcs represent imposed constraints. Thus, in Fij@renode B imposes
17

/B (C) (B) c
k.. [0, 2, 3] B, C)%(3,2) ! [1. 2, 3]) [0.2,3] er. B, C) % (3, 2)1’ [\ [1. 2. 3] ,fJ
A \E_ 7 \\»h,_d,/" j RO
Figure 2.1. Constraint Network with Figure 2.2. Constraint Network with

Symmetric Constraints Asymmetric Constraints

constraints on the values of A and C. However, since the @rairactional, vertices A
and C have no knowledge of such constraints. This type of constralsb known as a
private constraint [52], since only the variable imposing the conttriaas knowledge of
them. CSPs with asymmetric constraints are known as asgyrantSPs (ACSPs). In
general, ACSPs are harder to solve than CSPs because oksemgar of the private
constraints [36, 54].

Not all CSPs are solvable [93, 139]. It is possible that a &®Pbecome over
constrained, causing it to have no solution [139]. For CSPs, the bguntiare
problems have on average one solution and beyond which problems maydave
solution is called the phase transition [139]. It has been siimatrthe phase transition
can be defined by the constraint tightness in terms of the nuohberiables, domain
size, and constraint density [139]. The equation for the phasstioa [139] is defined

as follow, wheren is the number of variables) is the domain sizgl is the constraint

density, andP2., is the constraint tightness for the phase transition:

18

-2

p2 " :1_ mpl(n—l) (281)

This can be derived from the following equation that estim&iesntmber of possible
solutions §) in a randomly generated CSP [93]:

S=m"(1- p2)Prrn-17e (2.8.2)
The phase transition for the valp2 in terms ofn, m, andplis whenS= 1. So, solving
for p2 for the case&s = 1 will result in 2.8.1. The phase transition given in 2.8fbris
symmetric CSPs. For asymmetric CSPs, since thertotaber of possible arcs between
nodes for a graph with nodes isn-(n—1) rather thann-(n—1)/2, the equation used to
estimate the number of possible solutions becomes:

S=m"(1- p2)Pr"r- (2.8.3)
From this equation, it can be derived that the phase transitioAG8IPs is as follow,

where P2 is the constraint tightness for the phase transition [37]:

-1

-1 — pl, (n-1)
pzcritA 1 m (284)

2.9. Solving Constraint Satisfaction Problems
CSPs have been shown to be NP complete [164], so solving large CSPs isahontrivi
There are a variety of algorithms that can be used to s@W®rs €39, 40, 43, 106, 125,
129, 141, 164], including two classes of deterministic methods, wpaitexative
improvement and backtracking algorithms [39, 40, 43, 106, 125, 129, 141, 164].
Backtracking algorithms are initiated by putting all the vaaabh a specific order
and, starting with the first variable, iteratively assignuajues to the variables while

trying not to violate any constraints with variables that havadyréeen assigned values

19

[164]. When a variableX,, cannot be assigned a value that does not violate any
constraints with previously assigned variabbésto X, backtracking is triggered. The
algorithm will try to change the value of the previously assigratble, Xq;,. If no new
value can be found, then the algorithms rolls back again untii@leis found that can
be changed. A backtracking algorithm is a depth first searchtbegpossibilities and is
thus complete [127]. If a solution exists, it will find teelution, and if one does not
exist, it will be able to determine that [164].

Backtracking searches can suffer from thrashing, where alereaariable
assignment creates a situation where there is no feasibke assignment for a variable
later in the search. However, in order to identify and chémgeariable that is causing
the conflict, a large number of backtracks and unnecessary seancisé be performed.
To remedy this problem, arc-revision and arc-consistencyitilge [127, 164] can be
added to backtracking to eliminate the infeasible values fromashenof unassigned
variables and thus reduce the amount of wasted searches and backtracking [84,164, 167
The order by which variables are assigned values can alsbapgex! based on how
constrained each variable is [84, 164, 167].

lterative improvement algorithms start with an arbitrarycdetariable assignments
(a candidate solution) that may contain multiple constraint violations. The algadhniginm t
iteratively changes the value assignment of the variables to relecaumber of
constraint violations [39, 42, 43, 106, 125, 129, 141]. These algorithms watlyus
incapable of determining whether a feasible solution actuallysg@8, 40, 43, 106, 125,
129, 141]. One example of an iterative improvement algorithimeisrin conflict Hill-
climber [165].

20

There is also a hybrid method, the weak commitment s¢a6zh 165 166]. As
with to bracktracking algorithms, this builds solutions one varighlae assignment at a
time. However, like iterative improvement algorithms all ables are given an initial
random value. If the initial assignment contains no conflibisn that is the solution.
Variables are chosen based on the number of conflicts thegnedsinitial value has
with other variable assignments. The variable with the most conflicts wiidsen first,
assigned a new value that minimizes the conflicts and plated partial solution. Any
new variable-value pair placed into the partial solution mist aot conflict with
variable-value pairs already in the partial solution sethelVno more variables can be
assigned a new value that does not conflict with those alredalg partial solution, then
backtracking occurs. Instead of simply removing the variable-yadirethat was last
placed into the partial solution set like normal backtrackinggettige partial solution is
discarded and the process starts over. However, though all gavabk pairs are
discarded from the partial solution set, they become the linviéiues for the next
iteration. So, iteratively, the initial solution used to duihe partial solution will
improve after each backtrack. In this sense, it is very much likerative improvement
algorithm.

ECs have also been sutilized to solve CSPs with grea¢su1§89, 40, 43, 106, 125,
129, 141]. Some of the ECs used include genetic algorithms [4&r@4¢olonies [129,
141], and evolutionary/arc-consistency hybrids [40], as wellvadutonary iterative

improvement hybrids [39].

21

2.10. Distributed Resour ce Allocation Problems

With the development of distributed architectures, one of the gnablems that
arises on the application level is how to utilize the availaéd®urces, either shared or
privately owned, to accomplish the given task [14, 16, 19, 20, 95, 1081169121,
160]. The acquisition of resources required to complete tadkte wompeting with
other processes for the limited resources, is one of the sriad that affect distributed
RAPs [14, 108, 109, 160]. One of the primary characteristic oigtebuted RAP
(DisRAP) is the lack of centralized control [14, 108, 109, 160].Di8RAP can be
formalized as a problem having a set of agents, a set of resdbat@re either shared or
distributed among agents, and a set of tasks/requests for essdbet need to be
satisfied [108, 109]. The goal is to formulate an assignmemésafurces to specific
agents or tasks to satisfy the given requests.

There are three types of DisRAP: those studied in multi-agystems [19], those
studied in distributed and parallel computing [16], and those studisystems such as
sensor networks [7]. They differ by whether the resourcewred by individual
agents or shared between groups of agents and whether the taslssps are internal to
the agent or external. A task is considered to be internal to an agentheltampletion
of the task is the sole responsibility of the specific agemt,ta accomplish this it must
acquire resources that are owned by other agents or sharedthgthagents. A task is
external when it is one that is shared among or assignell agests, and the agents
strive to complete this task cooperatively.

The primary focus for multi-agent systems (MAS) [19] has bgenerally on

problems where resources are owned by the individual agents and the tastesraakto

22

an agent [160]. For DisRAPs studied in distributed and ph@@puting [16], the
resources are shared among overlapping groups of agents, withgsthstriveing to
complete its own internal tasks by gathering all the necessary resasifess as possible
[116]. This problem is best summarized by the formulation ofsthwealled drinking
philosopher problem [16]. The problems of interest here, namelyetisois network
sharing [38] and tracking problems [7, 30, 108], both belong to teevifhere tasks are
external, with the agents each possessing their own resdfi®s109]. A possible
fourth type of DisRAP is where agents share resources apdne to external requests.
However, this scenario cannot be considered a true DisRAP aanitbe easily

reformulated as a centralized problem.

2.11. Solving Distributed Resour ce Allocation Problems

For the first type of DisSRAP with MAS, Wu et al [160] gsva thorough review of
the many deterministic methods for solving these DisRAPs &gonoduction research
point of view. They divide the solutions methods into three typesm@rket, (2)
compensation, and (3) coalition formation. The market based approach viexasioios
resources as marketible commodities on the market that aredvly their importance
and quantity. The processes needing the resources then bid faastheces. This
approach has the specific drawback of requiring a single loctiideep track of all
resource costs, which creates an inherent bottleneck. The catperepproach has
processes that provide some sort of compensation to the providerresthuece. This
approach assumes that it is the individual agents that are gdabkimresources. The

coalition formation approach encourages agents to form beneafmaditions for more

23

efficient and profitable usage of their resources. These ap@m®atave all been
successfully used in many real life applications [160], baitgaite different from the EC
based approach that will be adopted for this research.

For DisRAPs on distributed and parallel computing systemssdhgion methods
have generally focused on queueing methods [16, 20, 116]. The maintisguased to
be resolved for any solution on such systems is the preventaeadfock and starvation
[16, 20, 116]. Deadlock is created when multiple processes qiadiof the resources
they need and the must wait for other resources to becomaldwailThis creates the
possiblity of a cyclic wait, where process A waits for psscB to release the required
resources, while B is also waiting for A to rekease tlseures it needs [16, 20, 116].
Starvation occurs when a process never gets the resources it needs, eithemoaeaoke
the required resources is ever available or because the precasssiantly being pre-
empted by other processes [16, 20, 116]. Any solution method must at least prevent these
two situations from acurring and, at the same time, reducevdiidime needed to gain
access to all required resources to complete a task [16, 20, 116].

For the third type of DisRAP, which can be used for sensoramk$ywit has been
shown in [7], [108] and [109] that they can be mapped to distribotattraint
satisfaction problems and solved as DisCSPs. More detaiBis®SPs and solution

methods for DisCSPs will be presented in the next solution.

2.12. Distributed Constraint Satisfaction Problems
Just as RAPs can be reformulated as CSPs, DisRAPs canfdymulated as

DisCSPs [108, 109]. DisCSPs are CSPs with the additionset af agent®\ among

24

which the variables, domains and constraints fXgrd and C are distributed [164, 165,
166]. The distributed CSP is a type of problem and should not be edniuish
distributed/parallel methods that may be employed to solve CSPs. Thus, theesyai#th,
a standard CSP, is to create a value assignment for gaadtvariable such that no
constraints are violated. Due to the distributed nature of the prptiies will have to be
accomplished through message passing among agents [164, 165, 166].

Typically, in a DisCSP, each agent holds exactly one variglfié, 165, 166].
However, the cases where an agent holds multiple variablebecaasily handled by
either finding the set of solutions to the local CSP and usiaigas the variable domain
for the local agent or by simply creating virtual local agemtsandle one variable each
[164]. With the distribution of one variable per agent, the asynmunadrsion of the CSP
can be modeled much more accurately, since the private corstamnow be stored on

a per agent basis [54].

2.13. Solving Distributed Constraint Satisfaction Problems

Distributed CSPs must be solved through the use of messageypa®s®ng agents.
Two algorithms that we used for solving standard CSPs can dabfied to solve
DisCSPs, Leading to the asynchronous backtracking (ABT) digofit64, 167] and the
asynchronous weak commitment (AWC) search [164, 167]. Unlike tesitralized
counterparts, which assign values to variables one at a timase two algorithms
assigned values to all variables simultaneously. After theesare assigned, they are
sent to all neighbors to check for constraint violations. Theasnent and reassignment

process of the variables takes place asynchronously as the ag@estsrelevant

25

information among each other. The asynchronous weak commiteamhshas been
shown to greatly outperform asynchronous backtracking [164].

Distributed breakout [164, 166] (dBA) is an iterative improvemerthotkused for
solving DisCSPs that is based on Morris' breakout method [11Bg dBA starts by
assigning random values to all the variables. During, eaddtictie, a variable will
communicate its value with its neighbors to calculate the nuroberonflicts and
possible improvements, which is also communicated with ighbers. Based on this
information, the variable that can resolve the most conflicts will bgvatl to change. In
terms of computational complexity, dBA is more computationallynsitee than either
ABT or AWC. However, it has been shown that dBA is capablpedforming better
than AWC and ABT on critical problems [164]. The dBA approadhbeg discussed in
more detail in the next Chapter, as it is the basis for #reetgr and evolutionary
protocols that will be presented.

The distributed stochastic algorithm (DSA) is a recently agexl algorithm for
solving DisCSPs [170, 171]. In some ways it is similarh® dBA, except with the
distinct property that more than one variable may change valuach ieeration [170,
171]. It also has a slightly lower communication overhead caedp@arthe dBA. Once
again, DSA is an iterative improvement method. Starting feorandom initial set of
variable assignments, the agents communicate values and ealcolaticts and
improvements. Each variable that is capable of changinglit® to reduce the number
of local conflicts is allowed to change with a probabifity This makes it possible for
multiple variables to change at the same time and then pogssibhpe from any local

optimum. Here, genetic and evolutionary protocols based on DSAb&ithe main

26

competitor to the genetic and evolutionary protocols created frol dBie results will
show that DSA's ability to have multiple variables change at ongelly gives it an

advantage over dBA, but this becomes a weakness as the problems become harder.

27

CHAPTER 3

GENETIC AND EVOLUTIONARY PROTOCOLS

3.1. Introduction

This chapter introduces and describes the genetic and evolutionaigcgls
(GEPs). Yokoo's distributed breakout algorithm (dBA) [164, 165, 166, 170 Will b
discussed in depth, along with the modifications performed to eahtmperformance.
The Society of Hill-Climbers (SoHC) [35, 37], which is a hat modification to the
dBA, will also be discussed. Afterwards, the distributedssover and mutation
operators [36, 41] used to create the GEPs from the SoHCheavillescribed. The
distributed stochastic algorithm (DSA) [171, 172] will alsogsesented, along with the

modifications needed to create GEPs with DSA as a basis rather than dBA.

3.2. Distributed Breakout Algorithm (dBA)

The dBA was developed by Yokoo [164, 165, 166, 170, 171] to solve distributed
constraint satisfaction problems (DisCSP). The dBA usesagegmssing to implement
a distributed steepest descent hill-climber [164]. In order to prevehtlttoémber from
becoming trapped at a local optimum, the breakout method [112]dstaseodify the
fithess space such that the search can escape from any local optimum.

Each agent begins by randomly choosing a value from the given ddéonatime

variable it holds, which is sent to all neighbors of the agértie agent then waits to
28

receive the values sent out by its neighbors to build an agent \Based on the agent
view, the agent can then calculate how many constraint gt plus breakout
violations, it is currently in, along with the most constraint atioins it can resolve by
changing its value, which is also known as the gain. When calculating thelhgavalue
from the domain that can resolve the most constraint conflicts is also found. Thisvalue i
referred to here as the next best value. After calculdkiagocal conflicts and gain,
these two values are sent to all the neighbors. The agenbrtice more waits to receive
the conflicts and gains of its neighbors in order to build its conflidtgain view. Based
on the gain view, if the local agent can resolve the most ctsfthen it is allowed to
change to its next best value. If none of the agents carveeanly of the existing
conflicts, then it is assumed that a local minimum has bemrhed and breakout entries
are created and/or incremented. All agents then send theentwalue to their
neighbors again and the whole process continues until all conflicestdeen resolved.

Thus, each iteration of the algorithm consists of two communicatidesy The pseudo

code for the dBA can be seen in Figure 3.1. This code is ereouteall agents
simultaneously.

The breakout management mechanism (BMM) stores a list of breakdugs.
Each entry is composed of a 4-tuple and a weight or penalty.vdalbhe 4-tuple in a
breakout entry stores a no-good, which is composed of the two variabtk their
corresponding values that are considered a no-good. Thus, a breakoutofentry
((var;,var;,valug,valug),1) adds an extra penalty of 1 for violating the no-good where
var, is assignedvalue and var; is assignedvalug. The breakout list is stored in a

distributed manner, allowing each distributed agent to storeritnes related to its own

29

address= LOCAL_ADDRESS()
value= RANDOM(Domain)
Vieneighborsdo SENvalue, i
WAIT()
Vieneighborsdo RECEIVEi, agent_view)
conflict=CALCULATE_CONFLICT()+ BREAKOUTS_VIOLATED()
gain=CALCULATE_GAIN ()
Vieneighborsdo SEND(conflict, gain,)
WAIT()
10. Vieneighborsdo RECEIVHi, conflict_view,gain_view)
11. Vieneighbors If (gain>gain_view) then do
If (gain>0) then value=NEXT BEST VALUE
else INCREMENT_BREAKOUT()
12. Do Step 3 — 11 Untdonflict=0

©CoNoOrWNE

Figure 3.1. dBA Pseudo-code

no-goods. Thus, when an agent needs to create breakouts,a$ @daeakout entry for
each no-good that its value is currently violating. If an erlteady exists, the weight is
incremented instead. In this manner, the weight/penalty doh éreakout alters the
fithess space such that searches can escape or avoid any local optima.

Modifications have been made to dBA to enhance its performance [1Bd¢ of
Yokoo's modification was the use of broadcasting [164]. With broadgasach agent
does not just send information to its direct neighbors, but alsall tother agents.
Broadcasting has the added benefit of letting each agentataltiié global fithess. The
dBA with broadcasting (dBA+BC) has been shown to perform b#titer the standard
dBA on critical problems [164], although on sparse problems dBA+Bfompes worse
than dBA [160]. A major downside of dBA+BC is the added communication overhead.

The dBA+BC algorithm was further modified by Dozier [35] to en® its
performance. Sliding was added to the dBA to improve its pe&ice and further help
it escape from a local optimum. Sliding allows a random varitdlchange its value

30

when the search is stuck at a local optimum. This improvderpemce by allowing
variables that may not be involved in any conflicts to change Wlagie and possibly
move out of the current local optimum. A random search through thebleadomain
was also implemented when looking for the next best value anoonaixgain in order

to prevent possible cycling of the search.

3.3. Society of Hill-Climbers (SoHC)

The dBA can be considered as using a distributed candidate sdtutroplement a
distributed hill-climber. The logical representation of th&trddbuted candidate solution
(dCS) can be seen in Figure 3.2 Each agent carriesvitdoreakout list stored within a
Breakout Management (BMM) structure. Even with this breakouhar@sm, however,
to gradually escape from a local optimum, dBA still suffecsnfthe same problem as a
normal hill-climber: If the initial starting point for the hitkmber is far from the actual
solution, it will take more time to find the solution. The breakowchanism only
guarantees that the search will eventually escape a local optimum, but how loakethis t

depends on the local optimum. These two factors greatly dffeqperformance of the

dBA.
Agent Agenj Agent
dcs | X X, X |
Cl CZ Cn
BMM, BMM, BMM

Figure 3.2. A Distributed Candidate Solution
31

The society of hill-climbers (SoHC) [33, 35] increases théopeiance of the dBA
by overcoming these two problems. Instead of using a singlebdistd candidate
solution (dCS), SoHC uses a population of dCSs. This effectorebtes a distributed
population, as shown in Figure 3.3. Each agent now carries atdtahstances of the
variable they hold, where ik the population size. This is equivalent to haWrappies
of the dBA, or in this case the modified dBA+BC (mdBA) [35], rumgnin parallel. The
biggest difference here from runnikgndBAs in parallel is that all instances share the
same BMM. This is clearly seen in the figure, whethaaigh each agent holds
instances of the variablX;, each agent still has only one breakout management
mechanism.

The population-based approach spreads the search out and preverdsctié@m
being trapped in a local optimum for too long. This approachmaddes it possible to

identify many local optima in parallel. The shared BMMilitates the indirect

Agent Agen, Agent
dacg | X, | Xo | X |
acs | X | X | o X |
dCs | X || Xo | oo | Ko | |

Cl C2 Cn
BMM, BMM, BMM

Figure 3.3. A Distributed Population
32

communication of known local optima, and no-goods associated with loeal optima
will be penalized more severely within a shorter amount of.tifieis helps individuals
trapped in a local optimum to escape more quickly.

There are definite overheads involved with such a modificationrst Ehe
computation time required locally on each agent is increased by adaktoirhough the
number of packets sent is still the same, more informationcladed in each packet;
instead of sending one local value, one conflict count, and one maxgaum the
packets must now contakwvaluesk conflict counts anét gain values. Given the overall
increase in performance, these drawbacks are acceptableir@nthln The increase in

the amount of information per packet also increases link utilization.

3.4. Genetic and Evolutionary Protocols (GEPS)

GEPs are further modifications of the SoHC algorithm basecheraddition of
genetic and evolutionary operators [36, 40]. The successful apphicdtihe distributed
genetic and evolutionary operators in GEPs makes two systmpgons, namely that
a global view is available and that each agent has a random ngetemator that is
seeded in exactly the same way and is used the same number of times.

The genetic operator was added to SoHC to create GSoHCernleéiogprotocol.
The genetic operator is a combination of distributed genetic crosasosienutation. The
form of genetic crossover used is a uniform crossover. Réseas also been carried
out with single point, two point, and multi-point crossover [41], thetresults show no
significant difference in performance. Uniform crossover isefloee used as it is the

simplest to implement and all crossover operations can be deadedxecuted locally

33

for an agent. For each iteration, once the conflict view hes bailt (after step 10 in
Figure 3.1) the fitness for each individual dCS can be calculateddting up the
corresponding conflict views. Based on the calculated fitlesgjistributed individuals
with better than average fitness will perform the normaldhithbing routine while the
remainder execute the genetic operator and are replacedesttmbinations of the best
individual. Thus, only half the population effectively performs Hilkbing each
iteration.

When the genetic operator is invoked, the agent will take the variable msibtine
invoking dCS and replace it with the value of the dCS with the flestss with a
probabilityp.. The variable instance will take on a random value from the idowith
probability p,. Finally, the value of the variable instance will stay unchanged
probability 1—(p.+ P,,) .

The evolutionary operator is triggered in a similar way togeeetic operator. The
evolutionary operator was added to SoHC to create ESOHC (evolytipraaocol), and
does not use crossover, but only mutation. Thus, a dCS with belovgavJeness will
trigger the evolutionary operator (after Step 10 in Figure 3Jce triggered, the agent
will take the value of the variable instance of the dCS thaedathe evolutionary
operator and replace it with the value of the dCS with the best fim#sprobability 1 —
pm. With probabilityp., the value is replaced by a random value from the domain.

The GEPs greatly improve the performance of SoHC by adding meienod
exploitation. Exploration and exploitation are behaviors thaewestded to the ant
colony optimization (ACO) [32] to either diversify the seardo inn-searched regions or

concentrate the search around regions that are known to be gooel, théeterms are

34

used as qualitative meassures in order to describe thd dedravior of the algorithms
(protocols). An algorithm that uses more exploration will have a muessdi population
of candidate solutions that are more spread out in the seamd sygale an algorithm
that uses more exploitation will have a population that is moneentrated around a
region known to be good with relatively higher fitness. Fangxe, comparing the two
approaches, SoHC uses the most exploration, while ESoHC useserpo&ation.
ESoHC can be seen as having half the population performing atipioand the other
half exploiting the best candidate solution. It should be notedthatsize of the
population used also affects the level of exploration performea, larger population is
able to diversify the search more than a smaller population.

By adding elements of exploitation to SoHC with genetic amdlugéonary
operators, it becomes much easier for candidate solutions teedsmapa local optimum
or areas of less promise. GSoHC does not perform as much exmtoda ESoHC, as
each variable in the below average individuals only has @ance of taking on the
corresponding value of the best individual, while staying unchangedweittance op..
ESoHC exploits the current best solution more than GSoHC by intieigsihe search
closer to the best individual, as each agent of the below @&veeaglidates takes on the
value of the best with probability 1 pr, wherep, is usually a relatively small value.
Thus, even though GSoHC and ESoHC only have half their population doiactual
hill-climbing move, they are capable of finding solutions faster cotically hard
problems.

Other modifications of SOHC have also been explored in the fist The ant-like
society of hill-climbers [55] (ASoHC) was one modification ttispecifically tried to

35

reduce the space complexity created by the BMM for hard problehpart from the
possible space complexity of the BMM, the other concern waghbaireakout entries
may effectively partition the fitness space into portionskingait difficult for the search
to jump from one region to another. The primary modification for ASoHC was ¢hefus
a decaying breakout penalty for each entry. The breakout penalty denas the local
and global update rules of the ant colony optimization (ACO) [32, 38k same decay
was also added to ESoOHC and GSoHC resulting in a lower smaoplexity and a

generally shorter breakout list with no significant change in performance [55].

3.5. Distributed Stochastic Algorithm (DSA)

The distributed stochastic algorithm was developed by WeixionggZfle/1, 172]
to solve distributed resource allocation and constraint sat@faproblems. DSA's
primary characteristic is its inherent parallelism, whadbws multiple agents to change
their value in a given iteration [171, 172]. In many walys similar to dBA because it
also uses communication to negotiate value changes towards acgatys§olution. Like
the original dBA, each agent running DSA only sends the value cyresgigned to the
agent to its neighbors. Where dBA also sends the number of eonhstiaflicts and the
maximum gain to its neighbors, DSA keeps these values local. Thus, pecket count
level, DSA only sends half the amount of packets as dBA. The psedddar DSA is
given in Figure 3.4.

The pseudo-code shows that DSA is similar to dBA up to stepVBen gain is
calculated, the next best value is also found, similar to dBAdBA, the conflict and
gain are sent to the neighbors, while in the DSA, ¢beflict andgain are used, instead,

36

to determine whetheraluewill be changed to the next best value. Whethemext best
value is assigned teoalue is also determined by, which specifies the degree of
parallelism, or more simply, the probability thalue will be changed. Five models
were presented to show the different conditions under wiadle is changed. These
models are presented in Figure 3.5. For DSA/#lueis changed with probabilitp if
gainis greater than 0. For DSA-Balueis changed with probabilitp if eithergain or
conflictis greater than 0. For DSA-@alueis changed with probabilitg no matter what
the gain and conflict are. DSA-D hawalue change ifgain is greater than O, or, else,
value will change with probabilityp if conflict is greater than 0. Finally, DSA-E has
value change whemain is greater than 0, or elsealue will change with probabilityp.
Tests on graph coloring problems, carried out by Weixiong Zhang hawshat DSA-
B is the most stable and best performer of the five models [172].

What thep value implies is that multiple agents are capable of changagvalues
simultaneously. As will be shown later, this property works bothe DSA's advantage
and disadvantage. The ability to have multiple agents changesaihges also explains
why DSA does not need a mechanism similar to the breakout methobyugexidBA to
escape local optima. The algorithm is capable of probaldlistimimping out of a local

optimum when multiple agents choose to change their values. Howlegeslso means

1.value= RANDOM(Domain)

2. Yieneighbor: dco Send(i,value)

3. Wait....Vieneighbor. Receiv (value,,i)

4. conflict= CALCULATE_CONFLICT()

5.gain= CALCULATE_GAIN()

6. value= ASSIGN_NEW_VALUE(, conflict, gain)
7. Repeat steps 2 — 7 until all conflicts resolved

Figure 3.4. DSA Pseudo-Code
37

Model gain>0 conflict > 0; gain =0 | conflict= 0;gain=0
DSA-A | valuewith p -- --

DSA-B | valuewith p valuewith p --

DSA-C | valuewith p valuewith p valuewith p
DSA-D vvalue valuewith p --

DSA-E vvalue valuewith p valuewith p

Figure 3.5. Differing Modelsfor DSA [172]

that the algorithm is capable of probabilistically jumping avirayn promising solution
regions. Thus, on critically hard problems, the DSA may not conwengyewell. As the
performance of DSA is determined by th&alue, its performance may improve if the
value is varied with time. This possibility will also bgplored in the testing phase of

this study.

3.6. Modificationsto DSA

As dBA was used in comparison to DSA in [171], DSA will dmmpared to the
various dBA modifications created for this study, namely SoHEoHEC, and ESoHC.
However, since SoHC, ESoHC, and GSoHC have an automatic popuddtiantage
[35, 36, 37, 39, 55], similar modifications will be made to the O8Arder to match
those changes made in the dBA to create the GEPs. Sincd8DsSthe best performing
algorithm of the five models, based on [172], this will be usetha basis for the DSA
based GEPs created for this study.

First, as for dBA, the simple DSA was given a distributed amn. Unlike the
SoHC, the distributed individuals in the society of DSA (SoD#8A)not share any

information with each other about the search. Also, even thougbritieal DSA did

38

not need a global view, a global view was added to facilitegeprocess of determining
whether a distributed individual has found the solution. This gloleaV @ilso requires
that at least theonflict, which is calculated, also be broadcast so that each agent c
calculate the fitness for each distributed individual. Thensomcation of the calculated
conflict by each agent also makes it possible for DSA to supggrimetric constraints,
and these constraints will be the focus of this study. To B&#, has primarily been
used to solve problems with symmetric constraints [171, 172]. Thihig may be seen
as a retarding factor for DSA to have to send an extra paeké iteration and create a
global view, the results show that DSA also benefits from the pbpnlbased approach
as well.

The genetic and evolutionary operators were then added to the SoX%#ate the
genetic and evolutionary SODSA (GSoDSA and ESoDSA). The twaigpsrwere not
changed and were implemented similarly to those usedSoH& and ESoHC. The
inclusion of the two operators further necessitates the needdtwmbal view. The next
chapter will compare the performance of mdBA, SoHC, GSoHC, ESdbEA-B,
SoDSA, GSoDSA, and ESoDSA by applying them to the problem of randomdyajed

asymmetric constraint satisfaction problems (DisACSPs).

39

CHAPTER 4
SOLVING DISTRIBUTED ASYMMETRIC CONSTRAINT SATISFACTION

PROBLEMS USING GENETIC AND EVOLUTIONARY PROTOCOLS

4.1. Introduction

In order to assess the performance of the Genetic (GSoHCEwanidtionary
(ESoHC) Protocols (GEPs), they will first be tested on ramglganerated distributed
asymmetric constraint satisfaction problems (DisACSP).irdwerall performance will
be compared to those of the mDBA and Society of Hill-Clim{&eHC) to see how
much of an improvement is gained. The GEPs will also be conhparthe Distributed

Stochastic Algorithm (DSA) and the DSA based GEPs created for thisatesear

4.2. Randomly Generated DisACSP

A randomly generated DiSACSP can be defined by four parasnéier number of
variables/agents], domain sizerf), constraint densitypf), and constraint tightnesp,)
[36, 37, 164]. The problem parameters can be expressed as a 4rupley,, p>. AS
mentioned in Chapter 2, not all CSPs are solvable. Thus, thenbesttor of problem
difficulty is how close it is to the phase transition [93, 140¢ hardest problems will be
at the phase transition [140]. In previous work [36, 37], we have stmtmandomly

generated ACSPs with parameters <30, 6, 1, 0.01> - <30, 6, 1, 0D§oa indicators

40

of performance. Thus, these will be the problems primarily tsedst the dBA based
GEPs, mDBA, SoHC, DSA and DSA based GEPs.

In randomly generated DisACSPs, a constraint, or no-good, ceeplesented by a
4-tuple, war,, var, vak, vakb>, composed of the two variables and their corresponding
value assignments. Since the constraints are asymmetric, given tyoot®<, y, a, »
and v, x, b, &, if x#Yy, then the two no-goods are not equivalent and are considered to
be separate constraints. It should be notedxthalt never be equal ty, thus «, vy, a, »
and <, x, b, & will never be equivalent when asymmetric constraints aré. uShe no-
good <, v, a, I» can then be interpreted as Xifs assigned the valug theny cannot be

assigned the value”

4.3. Testing

When testing algorithms for solving randomly generated Did2€Sa primary
concern is whether the algorithm can solve the problem withimven grumber of
iterations. The primary metric for performance is the peagentof problems an
algorithm can solve. In a situation where two algorithmdopa similarly on the
percentage of problems solved, the algorithm that can find a solution in feweoriia
judged to be better.

For these tests, each algorithm was given 2000 iterations to solvee¢hepgbblem.
If a solution was not found within 2000 iterations, then the dlgarwas terminated, the
problem was marked as being unsolved and 2000 was recorded as the oéimbe
iterations for that problem [37, 37, 55]. The average number of iterations neestdadet
a problem will therefore also include the runs where no solutemfaund. Thus, if an

41

algorithm was unable to find a solution for any of the problems, tthee average number

of iterations for that algorithm would be 2000.

4.4. Results: mdBA vs SOHC

Tables 4.1 and 4.2, show the results for SOHC on a total of 600 randendrated
problems with 100 problems for each parameter set, <30, 6, 1, &80a>6, 1, 0.02>,
<30, 6, 1, 0.03>, <30, 6 1, 0.04>, <30, 6, 1, 0.05>, and <30, 6, 1, 0.06>. Aft6al
trial runs were performed on each randomly generated probleeaébr parameter set.
The results are therefore averaged over 3000 runs per population and tightness setting.

As described earlier, the only difference between a SoHC mdBA is the
population based approach of the SoHC. Consequently, when a SoHC yas onl
population size of 1, it becomes a mdBA. As the results imatbles show, the general
trend is that as the problem gets harder it becomes exponentraér bafind a solution
within 2000 iterations. However, the larger the population simemore likely it is that
the algorithm will find a solution and it will do so faster.

Though problems with a tightness of 0.01 are relatively easplve,sthe results
show that there is still a 0.5% chance that the mdBA will fail tatiiea solution within
2000 iterations. As there were 100 different problems genef@@edins performed on
each, and a failure rate for the mdBA of 0.5%, this indicatdstlieae were problems
where the mdBA was not able to solve consistently in the &0rtms. Since each trial
run differs by only the initial random candidate solution, this ol the possible
impact the initial starting candidate solution has on the perforenainthe algorithm. As

the problems become harder, SOHC also begins to suffer from this conssteblem if

42

the population size is not large enough; for example with a SoH®©®mflations size 2
(SOHC-2) at a tightness of 0.02, SoHC-4 at 0.03, and SoHC-8 at 0.04.

At a tightness of 0.05, the problem is considerably harder for both SOHC and mdBA,
and even SoHC-32 was not able to solve 50% of the problems. Howewstll
performed much better than the mdBA, which was only able teesbl4% of the
problems. At the phase transition tightness of 0.06 where there may only be owa soluti
mdBA, SoHC-2, SoHC-4, and SoHC-8 were not able to find anyisotutvithin 2000
iterations, while SoOHC-16 was able to solve only 0.03% (1 out of 300egsroblems
and SoHC-32 solved 0.23% (7 out of 3000) of the problems. Based amcthailedt-
test for the difference in mean wigh= 0.05, the performance difference between SoHC-
16 and SoHC-32 is not significant.

To assess the significance of the results, an ANOVAwastperformed over each
problem tightness to show that the change in performance, s@ablm 4.2, caused by

the population increase is significant. The one-factor ANOVSA weas performed and

SoHC Population Size

Tightness 1 2 4 8 16 32
0.01] 99.50, 100.00] 100.00] 100.00; 100.00, 100.00
0.02 91.50 99.20 100.00f 100.00f 100.00] 100.00
0.03 80.53 95.97 99.77 100.00f 100.00] 100.00
0.04 70.93 89.50 98.23 99.77] 100.00(100.00
0.05 5.40 9.40 16.17 24.80 35.47 49.73
0.06 0.00 0.00 0.00 0.00 0.03 0.23

Table 4.1. Percentage of problems solved within 2000 iterations

SoHC Population Size

Tightness 1 2 4 8 16 32
0.01] 17.80 6.11 4.87 3.83 2.98 2.28
0.02 187.52 31.76 13.09 11.28 9.73 8.55

0.03 437.11] 121.58 34.97 23.57 19.60 17.11
0.04] 891.44] 527.94 261.78 139.42 83.40 53.67
0.05 1945.43] 1898.77| 1814.74| 1702.74) 1542.41] 1334.73
0.06] 2000.00] 2000.00{ 2000.00[2000.00 1999.49| 1997.79

Table4.2. Average number of iterationsto find a solution

43

the results are presented in Table 4.3. Given thék tredue for df= 5, d§ = 17,994 and
p =0.01is 3, the results presented in Table 4.2 is clegryfisant and the population
size does have a significant affect on performance.

It can be argued that the direct comparison of performanceeéetwarying
population sizes is inherently unfair as the larger populatios sidegain an automatic
advantage, since they tend to search through more candidatersohgr iteration. One
method used to equalize this performance difference is todbdke total number of
fitness function evaulations, which corresponds to the number of candidaitions
searched before finding a solution. Here, instead of averagingsg function
evaulations, the average number of constraint checks made before fandeasible
solution is used for comparison. The results are presentedbie 7.4. It should be
noted that in a distributed problem, the most time consuming pricessssage passing
among the agents. This is the main reason why, in thiarokgeiterations of an
algorithm is used as a primary benchmark.

Table 4.4 shows the average number of constraint checks for instahees a
feasible solution was found, which is why there are no results for populaemnadsil, 2,
4, and 8 when the constraint tightness is 0.06. At the same anhgightness, the
averages for the remaining population sizes of 16 and 32 should regarded as being

significant either as they are averages over the very small setfhat actually found a

Tightness F-value
0.01 30.522196
0.02 269.509278
0.03 655.380354
0.04 1660.770074
0.05 528.006735
0.06 3.387420

Table 4.3. One Factor ANOVA test Resultsover the Average
Iterationsto find a Solution for SOHC where df, =5 and dfy = 17,994

44

feasible solution within 2000 iterations. In all cases,ititeease of constraint checks,
percentage-wise, is greater than the decrease in the averatgper of iterations to solve
a problem. The decrease in the average number of iteraticéveoa problem as the
population grows does contribute to the result that the average aoinslrecks does not
grow linearly with the population size.

As the problems get harder, it becomes harder for the manyiaasiatf SOHC to
find a solution within 2000 iterations. This makes it moreidiff to see the
performance difference between differing population sizes.solee this problem, the
number of constraint violations at the end of 2000 iterations for those where a
feasible solution was not found is recorded and averaged. Tillesrae presented in
Table 4.5. To put the numbers in Table 4.5 into perspective, Tabldivides the
numbers in Table 4.5 by the maximum number of constraints thatgeaerated given
the problem tightness to show the average percentage of thedosataints that were
not resolved at the end of 2000 iterations when no solution was found.

One of the biggest difference between SoHC and a standard hill-climberusé of
the breakout list to penalize known no-goods. The purpose of the breaitoigt th
modify the fitness such that the search can move out of adptalal. This should be

considered when examining and interpreting the results preseniedles 4.5 and 4.6.

The tables simply show the remaining constraint conflicts 2@€0 iteration when no

Population Size
Tightness 1 2 4 8 16 32
0.01 14,266 24,604 43,460 76,397, 134,174 236,889
0.02 36,852 65,940 117,897 215,881 395,503 732,900
0.03] 102,988 161,884 259,480 443,567 793,935 1,460,071
0.04] 779,021 1,266,325 1,702,760 2,121,342| 2,822,877| 3,976,789
0.05| 2,209,501] 4,199,550 7,861,272| 14,935,237 27,019,787| 51,316,213
0.06 23,053,840 96,982,649

Table 4.4. Average number of Constraint Checksto find a feasible solution

45

solution is found and does not factor in the possible penalty placed on theserdsrstra
the surrounding search space by the breakout mechanism. Thus]lgeneither the
ending fitness value nor the number of remaining constraints cantendioa close a
search is to finding a feasible solution as there is no real way of telling whetlseatih
ended the 2000 iterations stuck at a local optimal or in the gro€esoving out of one.
However, the tables do show that when the problem gets hardér,awgbnstraint
tightness of 0.05 and 0.06, where there are a large number of local optimnare¢hse in
population size helps find relatively better sub-optimal solutiortkinvthe same 2000
iterations. This is especially seen for problems with atcains tightness of 0.06 where
less than 1% of the problems were solved within 2000 iterations.
One of the concerns about SoHC that was addressed in a previous study [55] was the

issue of space complexity. The question was whether the breakout listhvegolte too
long and take up a significant amount of memory. Table 4.7 showsdlega length of

the breakout list at the end of each run. As expected, incgedise population size

SoHC Population Size
Tightness 1 2 4 8 16 32
0.01 1.07

0.02 1.28 1.25
0.03 1.66 1.76 3.00
0.04 3.86 3.83 3.90 3.50
0.05 11.22 9.87 8.72 7.47 6.80 6.22
0.06 16.91 15.06 13.79 12.81 11.90 11.18

Table 4.5. Average number of unresolved constraints when no solution was
found within 2000 iterations

SoHC Population Size
Tightness 1 2 4] 8 16 32
0.01] 0.34%

0.02] 0.20% 0.20%
0.03 0.18% 0.19%| 0.32%
0.04 0.31% 0.31%| 0.31%| 0.28%
0.0 0.72% 0.63%| 0.56%| 0.48%| 0.43%| 0.40%
0.0 0.90% 0.80%| 0.73%| 0.68%| 0.63%| 0.60%

Table 4.6. Per centage of total constraints unresolved after 2000 iter ations

46

increased the length of the breakout list, especially for hgmadnems. For problems
with a tightness of no more than 0.03, SoHC was usually able to solve the pbaiibeen
many breakouts were placed. This can be seen as the aeedigg length of the list
decreased with population size. As the problems become handeeasing the
population size increased the chance of finding a local optimunchvimniturn increased
the average length of the breakout list. It is interestirgp&othat at the phase transition,
SoHC actually placed fewer breakouts than when at a tightié€s85. This highlights
one of the weaknesses of the breakout method, where if there is a large clostecag
optima, then the search may oscillate between the maal dptima until the penalty
weights have accumulated to the point of escaping the enistecl Thus, at the phase
transition, SoHC was not able to find as many local optimia @auld at a tightness of
0.05, which is why the breakout list is significantly shorter.géneral, the breakout list
length scales logarithmically with the population size.

Based on these results, there is no doubt that SOHC performsthattendBA, and
this performance difference can be attributed to SoHC's populéised approach.
However, neither was able to solve a significant number of probbknthe phase
transition. Next the effect on performance of adding the genetic operator to SoHC will be

considered.

Population Size

Tightness 1 2 8 16 32
0.01] 0.04 0.01 0.01] 0.00 0.01] 0.01
0.02 1.05 0.69 0.43 0.32 0.27, 0.24
0.03 8.69 8.45 6.77 5.23 4.06 3.60
0.04 77.03] 96.65 102.61] 99.91| 99.82 91.96
0.05 150.92| 230.84] 332.83] 444.53| 556.26| 652.11
0.06| 122.84| 189.06] 276.30 385.83| 512.95] 654.64

Table4.7. Average Ending BreakOut List Length
47

4.5. Results: Genetic Protocol (GSoHC)

The distributed genetic operator has two parameters, ndheefyrobability that the
variable randomly chooses a value from the domain, the mutationpsatend the
probability that the variable takes on the value of the best instdrecerossover ratg..
Since the genetic operator uses uniform crossover, the vajyewidf be 0.5. However,

because mutation and crossover are performed in the sam#hetpprameter constraint

2:-p.+ Pn,=1 needs to be satisfied. Based on this constraint, the mutatierwas
selected as the determining factor for the crossover hatprevious works, the mutation
rate was set at 6% with a crossover rate of 47%, but heredhks obtained by varying
the mutation rate will be explored. These results are b@sé¢kde average performance
over the same 600 problems used for testing SOHC. EachivmammditGSoHC was run
once on each of the 600 problems.

Tables 4.8 and 4.9 present the number of problems solved and the awsedipn#
to solve a problem for each mutation and problem setting. hdw $he significance of
the results, a one factor ANOVA test was performed to shdwtlver changing the
mutation rate has a significant affect on the average numbéerations to find a
solution. The F-values for the ANOVA tests are presentedaieT4.10, while the sets
of results that are significant are highlighted in Tables 4.8 and 4.9.

Table 4.8 shows that the mutation rate does not affect the parfoenat a tightness
of 0.01. This is supported by the results in table 4.10 as the rparfoe of varying
mutation rates is not significant. At a tightness of 0.02, the GSoHOwitnutation and
a population size of 2 (GsoHC-0.00-2) and 4 (GsoHC-0.00-4) are the only algorithms that

were not able to solve all the problems. The performance differstarts to show at a

48

tightness of 0.03, where no mutation and too much mutation aredettimental to
GSoHC performance. However, an increase in population aizstdl make up for the
performance variation due to mutation. At a tightness of 0.04, GSoHC-0.06 and GSoHC-
0.12 appear to perform better than the other candidates. Aghmess of 0.05, it
becomes clear that a mutation rate of 0.24 or more is too asutite two variations fall
behind. GSoHC-0.12 falls slightly behind GSoHC-0.06 here, but the imesgsting
result is that GSoHC-0.00 is actually able to beat GSoHC-0.@omilation sizes less
than 16. This is due to the higher level of exploitation innptaossover than crossover
with mutation. However, GSoHC-0.06-32 performs significantly béttan GSoHC-
0.00-32. At a tightness of 0.06, none of the variations perform signlfidaetter than
the others.

Table 4.9 shows the average number of iterations that were nexdmivé a
problem. The numbers further reinforce the performance advantgg®adiC-0.06 as,
taking into consideration the percentage of problems solved, GSoH@a@gable to
solve more problems faster than the other variants. Thesesratsdt show that at a
tightness of 0.01, where the problem is easy, the choice of mutaienis not as
important, but as the problem gets harder it becomes cleapthatuch mutation is not
good for the search. Tables 4.11 and 4.12 shows the detailed fes®SoHC-0.06
over the same set of 600 problems, except with each problem run 30 times.

With the chosen mutation rate of 0.06 for GSoHC, Tables 4.13 andP#e$ént the
average number of remaining constraints when no solution was fouhah 2000
iterations, along with the percentage of overall constraints.rayvthe trend in average
remaing constraints is the same as SoHC, except GSoHC admger remaining

49

Mutation [Population Size

Rate 2 4 8 16 32
0.00 100.00f 99.00(100.00] 100.00| 100.00
0.06 100.00f 100.00[100.00] 100.00| 100.00
0.0y 0.12 100.00 100.00] 100.00, 100.00| 100.00
0.24 100.00f 100.00(100.00] 100.00| 100.00
0.50 100.00f 100.00[100.00] 100.00| 100.00
0.00 95.000 99.00| 100.00(100.00(100.00
0.06 100.00f 100.00(100.00] 100.00| 100.00
0.02] 0.12 100.00 100.00; 100.00; 100.00] 100.00
0.24 100.00f 100.00(100.00] 100.00| 100.00
0.50 100.00f 100.00(100.00] 100.00| 100.00
0.00 92.000 97.00| 100.00(100.00(100.00
0.06 100.00(100.00(100.00] 100.00| 100.00
0.03f 0.12 100.00 100.00; 100.00, 100.00] 100.00
0.24 100.00 100.00(100.00] 100.00| 100.00

Tightness

0.50 96.00f 100.00| 100.00f 100.00f 100.00
0.00 73.000 90.00 99.00f 100.00[100.00
0.06 92.00 100.00| 100.00f 100.00f 100.00
0.04{ 0.12 89.00 100.00| 100.00f 100.00f 100.00
0.24 80.00f 98.00| 100.00f 100.00f 100.00
0.50 78.000 96.00] 99.00f 100.00[100.00
0.00 14.000 31.00] 64.000 82.00] 81.00
0.06 11.00, 29.00] 53.00] 87.00] 95.00
0.05 0.12 7.000 29.00f 45.000 70.00] 91.00
0.24 7.000 16.00f 32.00] 41.00] 68.00
0.50 6.000 13.00f 17.00] 30.00] 43.00
0.00 0.00 0.00 0.00 1.00 2.00
0.06 0.00 0.00 0.00 0.00 0.00
0.06f 0.12 0.00 0.00 1.00 1.00 1.00
0.24 0.00 0.00 0.00 1.00 1.00
0.50 0.00 1.00 0.00 1.00 1.00

Table 4.8. Per centage of problems solved for GSoHC with varying
mutation rates

constraints than SoHC. The reduction of remaining constraints thé increase of
population size is still true.

Table 4.15 presents the average number of constraint checks to smieblem,
when a solution was found within 2000 iterations. The numbers shatw@SoHC
requires a lot fewer constraint checks on average to find a solttios.is mainly due to
the fact that GSoHC finds solutions faster than SoHC and ibleapasolving nearing

twice as many problems as SoHC, in some cases. This affepe@adly apparent as the
50

Mutation |Population Size
Rate 2 4 8 16 32
0.00 5.49 24.00 3.31 2.63 2.05
0.06 5.52 4.30 3.53 2.71 1.93
0.01] 0.12 5.66 4.22 3.46 2.69 1.92
0.24 5.56 4.02 3.39 2.56 2.00
0.50 5.71 4.64 3.41 2.60 2.10
0.00f 113.96 31.76 9.20 8.13 7.07
0.06 16.29 12.68 9.61] 8.27 6.89
0.02 0.12 16.54 11.78 9.86 8.48 7.21
0.24 19.47 12.95 10.19 8.93 7.83
0.50 19.67 12.59 10.90 8.94 7.97
0.00f 190.54 96.72 18.59 15.07 13.06
0.06 52.34 25.48 19.96 16.25 13.43
0.03 0.12 64.31 36.39 21.25 17.16 14.60
0.24 91.07 37.74 24.73 18.23 15.20
0.50] 163.56 39.44 25.89 19.13 16.78
0.00 696.22 316.25 94.71 45.71 28.95
0.06] 521.88) 157.76 86.13 46.42 32.81
0.04 0.12| 710.50| 212.85 90.13 55.20 39.34]
0.24] 764.71] 325.97| 132.28 78.06 44.84
0.50] 839.82 406.14| 185.61] 111.76 64.53
0.00| 1861.76| 1641.81| 1084.19] 727.98 685.31
0.06| 1874.73| 1622.95| 1328.67| 619.98 404.85
0.05 0.12| 1945.84| 1677.73| 1347.86) 989.11 563.74
0.24] 1928.33| 1809.71| 1622.62| 1438.58] 1054.31
0.50] 1939.65| 1886.31| 1828.13] 1614.08] 1500.40
0.00] 2000.00[2000.00] 2000.00| 1983.69| 1963.63
0.06| 2000.00] 2000.00f 2000.00, 2000.00 2000.00
0.06 0.12| 2000.00] 2000.00| 1991.06] 1982.00| 1981.68
0.24] 2000.00] 2000.00| 2000.00] 1988.26| 1984.88
0.50 2000.00] 1981.87| 2000.00] 1983.22| 1987.87

Table 4.9. Average number of Iterationsrequired to solve a problem for GSoHC
with varying Mutation Rates

Tightness

GSoHC Population Size

Tightness 2 4 8 16 32
0.01] 0.5310, 0.9720 0.4532 0.2508| 0.4152
0.02] 4.8267| 0.9489 7.5559 5.4176| 10.1112
0.03] 4.5569| 3.2745| 13.7172| 16.6609| 23.4597
0.04] 4.9642| 7.5421| 7.5939 20.5739| 19.8019
0.05] 1.0338] 4.2327| 19.9734] 43.7507| 50.9842
0.06] 0.0000] 1.0000 1.0000 0.2777| 1.0184

Table 4.10. F-values from running the one Factor ANOVA test on theresultsfrom
Table 4.9 over thevarying mutation rate

(df, = 4, dfg = 495 and for p = 0.05, F = 2.39)

51

Population Size

Tightness 2 4 8 16 32
0.01] 100.00f 100.00[100.00[100.00] 100.00
0.02] 100.00f 100.00; 100.00; 100.00] 100.00
0.03 99.97] 100.000 100.00, 100.00| 100.00|
0.04 95.10 99.90, 100.00, 100.00| 100.00f

0.05 820 29.90] 6123 8450 93.93
0.06 0.00 0.23 0.80 1.10 2.30
Table4.11. Percentage of Problems Solved for GSoHC with Mutation
rate of 0.06
Population Size

Tightness 2 4 8 16 32

0.01] 5.69 4.26 3.38 2.63 2.00

002 1690 11.74 9.62 8.22 7.12

003 5253 2860 2014 16.15] 13.70
0.04 49354 167.14] 77.83[46.06] 32.36
0.05| 1912.67| 1655.58| 1186.17] 692.19] 392.25
0.06 2000.00] 1997.69] 1989.41] 1982.33] 1966.50
Table4.12. Average Cyclesto Solve a Problemsfor GSoHC with

Mutation rate of 0.06

GSoHC Population Size

Tightness 2 4 8 16 32
0.01]
0.02
0.03 2.67

0.04 5.23 4.67
0.05] 10.81 8.47 6.83 5.29 3.59
0.06] 15.98 13.34 11.35 9.66 8.06)
Table 4.13. Average number of unresolved constraints when no solution
was found within 2000 iterations

GSoHC Population Size

Tightness 2 4 8 16 32
0.01
0.02
0.03] 0.28%

0.04] 0.42%| 0.37%
0.05] 0.69%| 0.54%| 0.44%| 0.34%| 0.23%
0.06] 0.85%| 0.71%| 0.60%| 0.51%| 0.43%
Table 4.14. Per centage of total constraintsunresolved after 2000
iterations

population size increases. At a population size of 32 and probl@ma tightness of
0.05, GSoHC requires, on average, less than half the number of constrainttclsatke

a problem as compared to SoHC.

52

GSoHC [Population Size

Tightness 2 4 8 16 32
0.01 22,812 38,133 66,924 117,543 207,926
0.02 66,244 102,653 179,313 322,166 586,382
0.03 193,616 240,468 373,757 639,234 1,136,351
0.04 1,622,238 1,277,302 1,279,050/ 1,648,906 2,505,111
0.05| 4,435,264 7,620,302(11,859,729| 15,837,771 20,138,056
0.06 9,889,704| 13,278,653| 15,976,856] 42,034,304

Table 4.15. Average number of Constraint Checksto find a feasible solution

4.6. Results: Evolutionary Protocol (ESoHC)

Unlike GSoHC, ESoHC depends on mutation only. Thus, if the mutatierdrops
to 0, ESOHC becomes similar to SoHC. The only difference dvbalthat in ESoHC
with a mutation rate of 0 (EsoHC-0), the below average halfi@fpopulation, fithess-
wise, will become exact copies of the best individual. The anpé changing the
mutation rate on the performance of ESoHC is first considelteshould be noted that
given the mutation ratp,, below average individuals in ESoHC will become variations
of the best individual.

Similar to GSoHC, a one-factor ANOVA test was perforroadhe results to see if
the variation in the average iterations to solve a problengmfisant over the various
mutation rates. The results of this is presented in Takig and the significant sets of
results are highlighted accordingly in Tables 4.16 and 4.17.

As shown in Table 4.16 a mutation rate of 0.06 and 0.12 appearstahwfbest
performance, with the lower mutation rate edging the other mytlgl in the number of
problems solved. At a problem tightness of 0.05, where the problensigetficantly
harder, it is interesting to see that a mutation ratefof & population size of 2 actually
performs quite well compared to lower mutation rates, althdbighperformance does

not scale with population size. Ultimately, the determiniagidr appears to be the

53

balance between exploration and exploitation; with a lower toatathere is more
exploitation, while higher mutation rates create more exptorat At low population
sizes, a high level of exploration can help the algorithmabhttgher population sizes, a

lower mutation rate, and greater exploitation must be usebttn better results as the

Mutation [Population size

Tightness | ™ e o 4 8 16 32
0.06 100| 100| 100| 100] 100

0.12| 100] 100] 100] 100] 100

0.25 100] 100] 100| 100] 100

0000 50| 100 200] 100] 100] 100
0.75 100] 100] 100| 100] 100

1.00 100] 100] 100| 100| 100

0.06 100] 100| 100] 100 100

0.12| 100] 100] 100] 100 100

0.25 100] 100] 100] 100 100

0020 50[100 200 100] 100] 100
0.75 100] 100] 100] 100] 100

1.00] 99| 100] 100| 100| 100

0.06] 100] 100] 100| 100 100

0.12 100] 100] 100] 100] 100

0.25 100] 100] 100] 100] 100
0.03—0550] o6 200] 100] 100 100
0.75| 98| 100] 100] 100] 100

1.00] 96| 100] 100] 100| 100

0.06] 97| 100] 100] 100 100

0.12] o1 100] 100] 100 100

0.25| o1l 99 100] 100 100
004050 80| 98 100] 100 100
0.75] 80| 95 99| 100 100

1.00] 75 97 100] 100| 100

0.06] 10| 33 66 88 92

012 7| 28] 61 84 o4

025 6| 24 38 72 s8
005050 5| 17 23 37 53
075 4§ 17 31 2

1.00| 12| 11 16| 21| 44

008 o o 2 o 3

012 o o o 1 3

025 o o o 1 2
006080 o o o 1 o
075 o o o o 1

100 o o 1 o o

Table 4.16 Per centage of Problems solved by ESoHC with varying
Mutation rate

54

population itself contributes a certain level of exploration to the sediuis.is supported
by the data in Table 4.17.

The results show that ESOHC performs best at a mutation ratewhd 0.06 to
0.12. It is interesting to see how that at lower populatiors SE80HC-0.06 is actually
able to slightly outperform EsoHC-0.12 even though the lower mutaditenleads to
higher levels of exploitation. However, as population size incsedbe performance
margin is reduced and ESoHC-0.12 outperforms ESoHC-0.06 at a popudat of 32.
To take a closer look at the performance of ESoHC-0.12 and EsoHOA@G6pk the
100 randomly generated problems used earlier and run each BE&old@on on each
problem 30 times, producing the results in Tables 4.19 and 4.20.

The results in Tables 4.19 and 4.20 show that, for the most [@HE&0.06 and
ESoHC-0.12 perform the same except for when the problem tighthas<i05, where
there is a definite discrepancy in the performance of theB®oHC's. Based on the
statistical test for the difference of means, the perfooaalifference is significant. As
mentioned earlier, ESOHC-0.06 does not scale well with populaeras ESoOHC-0.12
performs better at a population size of 32, while the percentageoblems solved by
ESoHC-0.06 did not increase a statistically significant amotnenvihe population size
increased from 16 to 32. As this study uses a population si22 of the application
tests in later chapters, ESoHC-0.12 will be used in this work.

Tables 4.21 and 4.22 presents the average number of remaining otsstren a
solution was not found within 2000 iterations, along with the pemgenof overall
constraints. Compared to GSoHC, ESoHC is able to furtlterceethe number of
remaining constraints if a solution was not found within 2000titers. The reduction

55

Mutation |Population size
Tightness | ™ e 7 2 8 16 32
006 562 412 295 237 169
012 575 417 296 232 169
025 579 411 308 242 162
000050 597 4200 331 257 205
075 573 460 348 270 220
1.00] 607 435 343 272 Lo4
0.06] 1575 1109 838 _ 697 599
012 1636 1121 871 689 595
0.25] 1954 1197 993 7.78] 6.30
000050 2472 1279 1078 848 _ 7.59
0.75] 2078 1319 1072l 898 811
1.00] 4247 1258 1101 9.25| 8.21
0.06] 5127 2506 1982 1295 1183
012 49.09 2981 19.63 13.96] 1201
025 7376 29.13] 2096 16.72] 13.75
003050 15481 3531 2380 1753 1543
0.75| 114.76] 40.06] 25.41] 20.23| 16.65
1.00] 15233 46.98 26.84) 19.14] 16.85
0.06| 42244 157.72] 66.63 4553] 28.30
0.12] 58163 188.95 68.76] 41.01] 3113
0.25| 738.75 22054] 87.60] 5549 33.56
004050 78246] 329.43 18125 98.75] 51.36
0.75| 796.24] 415.04] 206.88] 103.54] 67.40)
1.00] 816.11] 408.84 180.05] 121.05| 70.15
0.06] 1869.31] 1616.81] 1079.15| 584.67] 49654
0.12] 1044.60] 1699.69] 1109.38| 747.35| 398.95
0.25| 1048.38 1706.74] 1558.01] 984.08] 550.96
0.05 50| 1939.80] 1780.64] 1727.08] 1496.23| 1303.10
0.75| 1951.03 1908.91] 1844.79| 1579.07| 1454.74
1.00 1881.10| 1893.87] 1835.21] 1726.75| 1530.74
0.06] 2000.00] 2000.00] 1977.03] 2000.00] 1955.90)
0.12] 2000.000 2000.00] 2000.00] 1981.89| 1976.29
[0.25] 2000.00 2000.00] 2000.00] 1982.08] 1967.15
0.06—0.50] 2000.00] 2000.00] 2000.00| 1983.00] 2000.00
0.75] 2000.00] 2000.00] 2000.00] 2000.00| 1980.49
1.00] 2000.00 2000.00] 1998.13] 2000.00] 2000.00

Table4.17. Average Number of Cyclesto Solve a Problem with
varying problem Tightness and Mutation Rate

of remaining conflicts with the increase of population sizels® auch greater than
either SOHC or GSoHC.
Table 4.23 shows the average constraint checks required to soleblenpr In

comparison to SoHC and GSoHC, the average number of constraint chdekéowest,
56

ESoHC Population Size

Tightness 2 4 8 16 32
0.01] 0.3394| 1.2380f 3.9514| 2.5037| 7.1414
0.02] 1.4319] 4.8906| 21.2557| 30.8899| 45.2767
0.03] 3.5733] 4.1276(7.3808| 36.1806| 42.1127
0.04] 5.6627| 9.2503(14.4472| 14.7535(18.8872
0.05(1.4520] 4.9716| 30.6146(46.7359| 63.3445
0.06] 0.0000 0.0000f 1.9364] 0.6005] 0.9879

Table 4.18. F-values from running the one Factor ANOVA test on theresults
from Table 4.14 over the varying mutation rate

(df, =5, dfy =594 and for p=0.05, F = 2.23)

Mutation |Population Size
Tightness Rate 2 4 8 16 32
0.06] 100.00] 100.00 100.00] 100.00] 100.00
0.01 0.12| 100.00 100.00 100.00 100.00| 100.00
0.06] 100.00] 100.00 100.00] 100.00] 100.00
0.02 0.12] 100.00] 100.000 100.00] 100.00] 100.00
0.06 99.80| 100.00{ 100.00 100.00{ 100.00
0.03 0.12] 99.83] 100.00, 100.00] 100.00] _100.00
0.06 95.87 99.87| 100.00{ 100.00| 100.00
0.04 0.12 94.10 99.80] 100.00{ 100.00 100.00
0.06 11.37 33.30 69.13 89.83 90.63
0.05 0.12 7.40 28.50 64.30 87.37 95.40
0.06 0.13 0.40] 0.67 1.47 3.07
0.06 0.12 0.13 0.43 0.70 1.33 2.70
Table 4.19. Comparison of Percentage of Problems Solved for ESoHC-0.06 and
ESoHC-0.12
Mutation |Population Size
Tightness Rate 2 4 8 16 32
0.06 5.60 4.11] 3.11 2.32 1.72
0.01 0.12] 550 411 307 232 1.68
0.06 16.41 10.93 8.48 6.95 5.75
0.02 0.12 16.69 11.32 8.82 7.09 5.89
0.06 53.08 26.66 17.76 13.70 11.24
0.03 0.12 61.73 28.55 18.71 14.36 11.71
0.06] 449.80| 156.21 69.59 40.84 28.59
0.04 0.12] 54864 17458 7559 41.67] 28.26
0.05 0.06] 1876.80| 1605.17| 1071.15] 596.87| 486.41
e 0.12] 1919.95| 1675.000 1131.62] 634.82] 349.35
0.06] 1998.89] 1994.99] 1990.11] 1980.83] 1956.59
0.06 0.12] 1998.10] 1995.09] 1988.67| 1980.96| 1961.25

Table 4.20. Comparison of Average Iterationsto Solve a Problem for ESoHC-
0.06 and ESoHC-0.12

57

especially at larger populations. It is interesting to nibét at a population size of 2,
ESoHC performs more constraint checks to solve a problem than GSAHWS is
attributed to characteristics of the algorithm itself that e discussed in the next

section.

4.7. Results: mdBA vs SOHC vs GSoHC vsESoHC

After determining the best parameter settings for GSoOHC &wHE, it is now
possible to compare the performance of mdBA, SOHC, GSoHC, andE® see the
affect of the distributed crossover and mutation operators. Table gt2thk percentage

of problems solved by each algorithm. For GSoHC, the mutagienwas set to 0.06
ESoHC Population Size

Tightness 2 4 8 16 32
0.01]
0.02
0.03 2.00

0.04 6.08 2.75
0.05[11.01 8.60 6.25 4.39 2.09
0.06] 16.34 13.16] 10.65 8.13 4.86
Table4.21. Average number of unresolved constraints when no solution was
found within 2000 iterations

ESoHC Population Size

Tightness 2 4 8 16 32
0.01
0.02
0.03] 0.21%

0.04] 0.49% 0.22%
0.05] 0.70% 0.55% 0.40% 0.28% 0.13%
0.06] 0.87% 0.70% 0.57% 0.43% 0.26%

Table 4.22. Per centage of total constraintsunresolved after 2000 iterations

ESoHC |Population Size

Tightness 2 4 8 16 32
0.01 21,732 35,576 59,737 102,979 178,961
0.02 65,024 95,987 157,701 267,324 468,051
0.03 215,580 232,026 330,249 534,828 913,065
0.04 1,819,121| 1,294,928 1,175,971 1,392,709 2,017,939
0.05 4,414,477 7,630,448| 10,968,302| 14,227,463 17,108,391
0.06| 3,295,741 8,533,629 7,079,017| 20,599,088 41,263,427

Table 4.23. Average number of Constraint Checksto find a feasible solution
58

with a the crossover rate of 0.47. For ESoHC, the mutationvadeset at 0.12. Once
again, it should be noted that SOHC with a population size of 1 is mDBA.

The mDBA quickly falls behind on the percentage of problems soasedhe
problem gets harder, which is expected. At a population sizeibisdnteresting to see
that there is no significant performance difference betweerCS@&%oHC, and ESoHC
when comparing the percentage of prob lems solved. Unlike Sotéadulation size
of 2 GSoHC and ESoHC have only one individual doing plain hill-climbifgus, the
advantage of the distributed crossover and mutation is not as obyieuke population
size increases, the effectiveness of these two operatdsststgahow as the GSoHC and
ESoHC are able to solve more problems even with only half the poputdtichmbing.
When comparing the percentage of problems solved, the performanGSobiC and

ESoHC are not significantly different, even at the phase transition.

Population Size

Tightness 1 2 4 8 16 32
SoHC| 99.50| 100.00| 100.00[100.00f 100.00f 100.00

0.01] GSoHC| 100.00[100.00[100.00(100.00f 100.00
ESoHC 100.00 100.00f 100.00[100.00f 100.00;
SoHC| 91.50 99.20| 100.00[100.00[100.00f 100.00

0.02] GSoHC| 100.00[100.00[100.00{ 100.00f 100.00
ESoHC 100.00[100.00[100.00(100.00f 100.00
SoHC|] 80.53| 95.97| 99.77| 100.00[100.00[100.00

0.03] GSoHC 99.97| 100.00| 100.00; 100.00, 100.00
ESoHC 99.83] 100.00| 100.00; 100.00, 100.00
SoHC| 70.93] 89.50 98.23] 99.77[100.00 100.00

0.04] GSoHC 95.10, 99.90| 100.00] 100.00, 100.00
ESoHC 94.10 99.80] 100.00] 100.00] 100.00
SoHC| 5.40 9.40, 16.17| 24.80] 35.47| 49.73

0.05] GSoHC| 8.20| 29.90 61.23 84.50(93.93
ESoHC 7.40] 28.50] 64.30] 87.37] 95.40
SoHC|] 0.00 0.00 0.00 0.00 0.03 0.23

0.06] GSoHC 0.00 0.23 0.80 1.10 2.30
ESoHC 0.13 0.43 0.70 1.33 2.70

Table 4.24. Comparison of Percentage of Problems Solved between
mDBA, SoHC, GSoHC, and ESoHC

59

Table 4.25 compares the average number of cycles needed to fahaienswith
each of the algorithms. Based on the one factor ANOVA wegdgt p = 0.05, the
performance differences between the varying algorithmgsfisiant in all cases. The
importance of exploitation and exploration can clearly be geémeiresults: at the same
population size, SOHC has the lowest level of exploitation, folibiwe GSOHC, then
ESoHC. Thus, at a population size of 2, SOHC is able to n@8&dHC and ESoHC,
which have very little exploration at this small a population sizperformance and find
a solution at least as fast as GSoHC and ESoHC. As theapiopusize increases, the
population gives GSoHC and ESoHC the level of exploration that #uéyand SoHC
falls behind due to the lack of exploitation. Though the performaricESoHC and
GSoHC are fairly similar, ESoHC, with its higher level gpitation, is able to perform
better at larger population sizes. Ultimately, ESoHé&shketter performing algorithm
by a small margin, especially with a large population.As roeeti earlier, the average
number of remaining conflicts when a solution was not found within 2@08tions
cannot be used as an indication as to how close the algoritbrsatvzing a problem, but
can be used to compare, which algorithm is able to end tptinat better sub-optimal
solution given the same amount of run time. The results are compiled in Table Be26. T
results show the affect of the population in ending with better solutions, dpiecithe
hard problems with a constraint tightness of 0.05 and 0.06. For problems whihasg)
of 0.06, none of the algorithms could solve a significant number of the 100 test problems,
however, Table 4.26 clearly shows that even though no solution coddditheé for the
majority of test runs, ESOHC clearly ends its run on a bsttleroptimal given the same
2000 iterations of run time.

60

Population Size

Tightness 1 2 4 8 16 32
SoHC 17.80 6.11 4.87 3.83 2.98 2.28

0.01] GSoHC 5.69 4.26 3.38 2.63 2.00
ESoHC| 5.50 4.11 3.07 2.32 1.68
SoHC| 187.52 31.76 13.09 11.28 9.73 8.55

0.02] GSoHC 16.90 11.74 9.62 8.22 7.12
ESoHC 16.69 11.32 8.82 7.09 5.89
SoHC| 437.11] 121.58 34.97 23.57 19.60 17.11f

0.03] GSoHC 52.53 28.60 20.14 16.15 13.70)
ESoHC 61.73 28.55 18.71 14.36 11.71f
SoHC|] 891.44| 527.94 261.78] 139.42 83.40 53.67|

0.04] GSoHC 493.54 167.14 77.83 46.06 32.36
ESoHC] 548.64 174.58 75.59 41.67 28.26
SoHC| 1945.43| 1898.77 1814.74) 1702.74| 1542.41| 1334.73

0.05] GSoHC 1912.67| 1655.58/ 1186.17| 692.19| 392.25
ESoHC| 1919.95 1675.00f 1131.62| 634.82[349.35
SoHC| 2000.00{ 2000.00 2000.00] 2000.00[1999.49(1997.79

0.06] GSoHC 2000.00| 1997.69] 1989.41| 1982.33| 1966.50
ESoHC 1998.10] 1995.09| 1988.67] 1980.96| 1961.25

Table 4.25. Comparison of Average number of Cyclesto Solve a Problem between
mDBA, SoHC, GSoHC, and EsoHC

Population Size
Tightness 1 2 4 8 16 32
SoHC 1.07]
0.01 |GSoHC
ESoHC
SoHC 1.28] 1.25
0.02 |GSoHC
ESoHC
SoHC 1.66] 1.76] 3.00
0.03 [GSoHC 2.67
ESoHC 2.00
SoHC 3.86| 3.83(3.90] 3.0
0.04 |GSoHC 523 4.67
ESoHC 6.08] 2.75
SoHC 11.22| 9.87| 8.72| 7.47] 6.80] 6.22
0.05 [GSoHC 10.81 8.47| 6.83] 5.29] 3.59
ESoHC 11.01] 860 6.25] 4.39] 2.09
SoHC 16.91| 15.06| 13.79] 12.81] 11.90| 11.18
0.06 |GSoHC 15.98] 13.34| 11.35] 9.66| 8.06
ESoHC 16.34] 13.16| 10.65] 8.13] 4.86
Table 4.26. Aver age Remaining Conflicts when no solution was found within 2000
Iterations

61

On the other side of the average remaining conflicts, theréeisnumber of
constraint checks to solve a problem, which is presented in F&le As the problems
get harder, both GSoHC and ESoHC perform fewer constraint chedksl a solution
compared to SoHC. This is especially true with larger ptipulaizes where GSoHC
and ESoHC really performs better. The difference betweSoHE and ESoHC is
slightly smaller than that of SoHC. This difference is nmibstly caused by the fewer
number of iterations that ESOHC needs to find a solution as compared to GSoHC.

Table 4.28 shows a comparison of the average ending breakout list length @r SoH
GSoHC, and ESoHC. In general, ESoHC required the least number of bseakbist is
simply due to the fact that the below average half of the populatibfdbecome 88%
copies of the best individual, which results in a concentrategtiseaound the best
individual. Thus, fewer local optima are found, as compared towtter searches
performed by GSoHC or SoHC. The increase in space requiresneat linear to the
population size, but, rather, logarithmic. Thus, space complexitot a concern when

scaling SoHC, GSoHC, and ESoHC in terms of population size.

4.8. Results: Distributed Stochastic Algorithm (DSA) and Society of DSA

In many ways, the DSA is very similar to dBA as it waso designed to solve
DisCSPs. The main difference lies in that DSA is namgnchronous when it comes to
deciding which agent changes its value. For the mdBA, only ong agié change its
value per iteration, while for DSA, agents that are allowed¢hange, do so with a

probability P. Based on the DSA-B model used in these tests, an mgahbwed to

62

Population Size

Tightness 1 2 8 16 32
SoHC 14,266 24,604 43,460 76,397 134,174 236,889

0.01 |GSoHC 22,812 38,133 66,924 117,543 207,926
ESoHC 21,732 35,576 59,737 102,979 178,961

SoHC 36,852 65,940 117,897 215,881 395,503 732,900

0.02 |GSoHC 66,244 102,653 179,313 322,166 586,382
ESoHC 65,024 95,987 157,701 267,324 468,051

SoHC 102,988 161,884 259,480 443,567 793,935 1,460,071

0.03 |GSoHC 193,616 240,468 373,757 639,234 1,136,351
ESoHC 215,580 232,026 330,249 534,828 913,065

SoHC 779,021 1,266,325| 1,702,760 2,121,342 2,822,877 3,976,789

0.04 |GSoHC 1,622,238 1,277,302 1,279,050| 1,648,906 2,505,111
ESoHC 1,819,121 1,294,928 1,175,971] 1,392,709 2,017,939

SoHC 2,209,501 4,199,550| 7,861,272 14,935,237| 27,019,787 51,316,213

0.05 |GSoHC 4,435,264 7,620,302 11,859,729 15,837,771| 20,138,056
ESoHC 4,414,477| 7,630,448 10,968,302| 14,227,463| 17,108,391

SoHC 23,053,840 96,982,649

0.06 |GSoHC 9,889,704 13,278,653| 15,976,856 42,034,304
ESoHC 3,295,741 8,533,629 7,079,017| 20,599,088 41,263,427

Table 4.27. Average Constraint Checksto solve a problem within 2000 Iterations

change if it is able to reduce the number of conflicts origf durrently in a conflict, but

Population Size

Tightness 1 2 4 8 16 32
SoHC 0.04 0.01 0.01 0.00 0.01 0.01
0.01{GSoHC 0.02 0.01 0.01] 0.01 0.00
ESoHC 0.02 0.01 0.00 0.01 0.00
SoHC 1.05 0.69 0.43 0.32 0.27 0.24
0.02|GSoHC 0.77 0.34 0.24 0.23 0.17,
ESoHC 0.70 0.35 0.24 0.20 0.17,
SoHC 8.69 8.45 6.77 5.23 4.06 3.60
0.03|GSoHC 6.28 4.39 3.31 2.71 2.46
ESoHC 7.48 4.08 2.86 2.25 1.90
SoHC 77.03] 96.65| 102.61] 99.91] 99.82] 91.96
0.04{GSoHC 70.50] 46.53] 36.47| 3131 30.14
ESoHC 75.87] 45.26] 31.58] 24.03] 20.16
SoHC 150.92| 230.84| 332.83| 444.53] 556.26| 652.11
0.05|GSoHC 162.07] 254.00[295.01] 267.86| 227.35
ESoHC 158.07| 247.03[271.93] 228.96| 167.32
SoHC 122.84| 189.06| 276.30[385.83] 512.95| 654.64
0.06|GSoHC 130.22| 237.65 362.34] 483.11| 573.63
ESoHC 124.49| 227.68 349.87| 456.55| 478.81

Table 4.28. Comparison of Average Ending BreakOut List Length

cannot reduce the number of conflicts.

63

Once again the DiSACSPs generated to test SoHC, GSaiCESoHC were used
to test DSA and SoDSA. Because DSA has an extra pagRethe value ofP was
varied from 0.1 to 0.9 to test the affect on the resulteh Eandomly generated problem
was run 30 times for each set of parameter settingsholild once again be noted that at
a population size of 1, the SODSA becomes a DSA.

Table 4.29 and Table 4.30 show the results for DSA and SoDSA on probléne wi
tightness of 0.01. At a problem tightness of 0.01, the problem is ezamygh that
SoDSA is able to solve the problems 100% of the time andPtivalue makes no
difference when it comes to the percentage of problems solved iD& least able to
solve 99.5% of all the problems, which shows that, like dBA, theairgtarting position
also affects the outcome of DSA. In terms of the average nurhiderations needed to
find a solution, at a population size of Pavalue of 0.8 seems to be the fastest. Based
on a one factor ANOVA test with = 0.05, the performances of DSA wikh= 0.3 to 0.9
are not significantly different. This is highlighted in TaBl80. The same ANOVA test
performed on the results for SODSA with population sizes 2 t&h8% that varying the
P value has a significant affect on performance. In ternpopiilation size, a population
size of 32 is able to find solutions faster. Thus, though DSA is able to coynelase to
the performance of SoDSA in terms of the percentage of problaexls SODSA-32 is
able to solve problems the fastest. For problems of tightnessa®POdalue of 0.9 gives
the best performance.

Tables 4.31 and 4.32 shows the results for DSA and SoDSA for prohlgmsa
tightness of 0.02. DSA quickly falls behind in performance withbetadvantage of a
population. Comparing the percentage of problems solved for DSA, Pty 0.6

64

Population Size

P 1 2 4 8 16| 32
0.1] 99.67| 100.00] 100.00[f 100.00; 100.00] 100.00
0.2] 99.67| 100.00] 100.00[f 100.00] 100.00] 100.00
0.3] 99.63] 100.00] 100.00f 100.00] 100.00] 100.00
0.4] 99.57| 100.00[100.00[100.00{ 100.00| 100.00|
0.5] 99.67| 100.00[100.00/ 100.00[100.00] 100.00|
0.6] 99.50| 100.00[100.00/ 100.00[100.00] 100.00|
0.7] 99.67| 100.00[100.00f 100.00{ 100.00] 100.00|
0.8] 99.70| 100.00] 100.00f 100.00; 100.00] 100.00
0.9] 99.50; 100.00] 100.00f 100.00; 100.00] 100.00

Table 4.29. Per centage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.01

Population Size

P 1] 2 4 8| 16 32|
0.1] 36.99 21.95 16.88 13.30 10.59 8.52
0.2] 21.50 11.08 8.49 6.88 5.63 4.67
0.3|] 17.00 7.42 5.78 4.78 4.01 3.39
0.4] 15.68 5.47 4.39 3.71 3.14 2.75
0.5 12.12 4.32 3.61 3.06 2.65 2.34)
0.6] 14.33 3.60 3.02 2.59 2.32 2.07|
0.7] 10.33 3.05 2.59 2.29 2.06 1.88
0.8 9.08 2.61 2.28 2.04] 1.88 1.74
0.9] 12.69 2.30 2.03 1.85 1.71] 1.59

Table 4.30. Average Iterationsto Solve a Problem for DSA
and SoDSA on problemswith Constraint Tightness of 0.01

performs significantly worse, but not by much. Comparing aveitagaions to solve a
problem,P = 0.8 once again seem to perform the best, while the perfoenfanie = 0.3

to 0.9 are not significantly different, based on the one facld®¥A test. Looking at
the performance of SoDSA-2, though not 100% of all problems can bedsdhe
performance variance acroBss/alues is not significant. Comparing average iterations to
solve a problemP? = 0.6 performs the best while the performance variations between
0.4 to 0.9 are not significant. For larger population sizestof32,P = 0.9 continues to
perform significantly better than all of the other values, althahg problem is still not
hard enough to draw a conclusion about possible performance tren@S#forand
SoDSA. The only consistent conclusion seems to be that vatige enough population

size,P = 0.9 will perform the best.

65

Population Size
P 1 2) 4 8| 16| 32
0.1] 90.60] 99.30] 100.00] 100.00f 100.00] 100.00
0.2 90.80] 99.30] 100.00] 100.00f 100.00] 100.00
0.3] 90.80] 98.87| 100.00] 100.00{ 100.00| 100.00
0.4] 90.63] 99.00f 100.00] 100.00{ 100.00| 100.00
0.5] 91.50] 98.87| 100.00] 100.00f 100.00| 100.00
0.6] 89.80] 99.27 99.93] 100.00| 100.00] 100.00
0.7] 90.37| 99.10] 100.00] 100.00f 100.00] 100.00
0.8] 91.73] 98.97| 100.00] 100.00{ 100.00| 100.00
0.9] 90.33] 98.97| 100.00] 100.00{ 100.00| 100.00

Table 4.31. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.02

Population Size

P 1] 2 4 8 16 32
0.1] 238.91f 56.86 32.46 26.15 21.79 18.71
0.2| 209.34] 35.19 16.33 13.22 11.26 9.70
0.3] 201.09] 36.81 10.88 9.11 7.71 6.72
0.4] 199.89| 30.55 8.23 6.86 5.93 5.25]
0.5 179.85(30.92 6.69 5.58 4.85) 4.33]
0.6] 211.96] 21.60 6.93 4.81 4.19 3.76
0.7] 199.78] 23.87 4.79 4.15 3.69 3.35
0.8] 171.16] 25.83 4.28 3.71 3.34 3.03
0.9] 198.41] 25.21 3.85 3.36) 3.03 2.77

Table4.32. Average Iterationsto Solve a Problem for DSA
and SoDSA on problemswith Constraint Tightness of 0.02

Tables 4.33 and 4.34 shows the results for problems with a tighthe393.
Similar to tables 4.30 and 4.32, the setsPofalues for each population that do not
contribute significant performance variations, based on the AN@¥¢HA are highlighted
in Table 4.34. At a tightness of 0.03, the problems are startingctame hard enough to
reveal the performance difference due to the differing populaimes, and DSA falls
farther behind in all respects. TRevalue still does not have a significant impact on the
percentage of problems solved, although it still impacts the nuaiberations needed
to find a solution. For DSAP = 0.7 gives the best results, though oRly= 0.1 is
significantly worse. For SoDSA-2 and SoDSA-4, the percentdgaroblems solved,
though not 100%, is not significantly different when varyihgInterestingly, the be$t
value for speed is still 0.7 for SODSA-2 and SoDSA-4. As thelpbpn size increases,

66

the performance variations become more statistically signtficRhough the differences
in performance are slight and not seemingly significanfh@ptoblem gets harder, tRe
value needs to be smaller for smaller population sizes andgasavith population size.
Population size is still the most significant factor when campgathe percentage of
problems solved.

The results for DSA and SoDSA on problems with a constraininggbtof 0.04 is
shown in Tables 4.35 and 4.36. The problems here are considerably, hadi@ven
SoDSA-32 is barely able to solve 100% of the problems. The effdtie P value is
slightly more apparent and low valuesRoflo not perform as well. The best performance

in terms of the percentage of problems solved and the averaggoiie to solve a

Population Size

P 1 2 4 8 16 32
0.1] 67.43] 88.57| 98.60| 100.00| 100.00f 100.00
0.2| 69.37| 89.20] 98.70 99.93] 100.00| 100.00|
0.3] 67.73 87.73] 98.73 99.93] 100.00] 100.00|
0.4] 67.70 89.33] 98.83 99.97| 100.00] 100.00|
0.5] 65.20 88.53] 98.63| 100.00] 100.00f 100.00
0.6] 67.47| 88.40| 98.37| 100.00| 100.00f 100.00
0.7] 67.63] 88.73] 99.03| 100.00| 100.00f 100.00
0.8] 67.23] 88.63] 98.23 99.93] 100.00] 100.00|
0.9] 67.33] 87.57| 98.67 99.97| 100.00] 100.00|

Table 4.33. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.03

Population Size

P 1] 2 4 8 16 32
0.1] 759.46(341.25(115.45 56.38 43.22 34.99
0.2] 669.43 274.89(68.40 29.49 21.71 18.20
0.3] 682.04| 283.53 54.77 20.74 14.85 12.45
0.4] 674.72| 243.75| 45.21 15.40 11.33 9.55
0.5 717.31| 254.15| 44.86 11.90 9.30 7.84
0.6] 669.47 251.40| 47.33 10.15 7.89 6.79
0.7] 662.99| 241.98| 32.44 8.57 7.00 5.98
0.8] 668.46 242.53 46.73 9.24 6.31 5.47
0.9] 665.17| 261.93] 36.79 7.92 5.86 5.06

Table 4.34. Average Iterationsto Solve a Problem for DSA
and SoDSA on problemswith Constraint Tightness of 0.03

67

problem is still seen wheR is closer to 0.9. Based on the ANOVA test results, Rny
value greater than 0.5 tend to have similar performances wighiinsant variance. The
general trend that the higher the population the better the performance still holds.

Closer to the phase transition, with a problem tightness of 0.0§enaral
performance trend appears in the results, as seen in BaBleand 4.38. The affect of
theP value is more apparent here as the best performance is achidv&d=nt4 to 0.5.

The best performances are highlighted in Table 4.37 and 4.38, along with the neighboring
values that are not significantly different. When comparing aberage number of
iterations to solve a problem, the clustering becomes tightendr0.4 and 0.5 as the
population size increases. Finally, at the phase transigbingss of 0.06, as seen in

Tables 4.39 and 4.40, neither the DSA nor SODSA are able to salyeifacant number

Population Size

P 1] 2 4 8| 16 32
0.1| 38.07| 52.50| 74.37| 91.63 98.27 99.70]
0.2 40.60] 60.13] 8257 9550 99.27| 100.00
0.3] 4147 62.67| 8293 96.47] 99.53 99.90]
0.4 41.87| 64.37| 84.00] 96.33] 99.53 99.97
0.5] 41.43] 62.93] 84.03| 96.43 99.67| 100.00
0.6] 43.67| 64.10| 84.87| 96.57| 99.43| 100.00
0.7 42.93| 64.63| 84.57| 96.13] 99.57| 99.87
0.8] 40.93] 65.13] 87.03| 96.10(99.53 99.93
0.9] 44.37| 64.20] 83.90[96.60 99.60 99.97

Table 4.35. Percentage of Problems Solved for DSA and
SoDSA on problemswith Constraint Tightness of 0.04

Population Size

P 1 2 4 8| 16 32
0.1]1455.48|1263.43| 894.93| 544.77 298.36] 171.68]
0.2]1358.54(1047.84| 640.29| 332.87| 159.59 87.30
0.3|1305.26| 952.54| 564.16| 248.04| 112.26| 63.93
0.4]1275.89| 873.10| 502.93| 216.80| 92.68 45.70]
0.5|1271.45| 879.46| 467.86| 188.22| 74.11 38.85
0.6]1226.70| 849.75| 450.86| 171.91| 72.19 36.78
0.7|1237.51| 840.83| 449.49| 176.79| 67.64 37.04]
0.8]1265.26| 828.82| 406.49| 185.29| 74.47 36.37|
0.9]1210.63| 854.37| 468.78| 185.49| 80.61 38.23

Table 4.36. Average Iterationsto Solve a Problem for DSA
and SoDSA on problemswith Constraint Tightness of 0.04

68

of problems within the allotted 2000 iterations. However, SoDSA-3&llisble to solve
significantly more problems than DSA.

Based on the results presented in Tables 4.29 — 4.40, severalscomelcan be
drawn. DSA, like dBA, gains a significant performance in@emish a population based
approach, like SoDSA. The logical trend of better performande laiger population
size holds. The affect d® on the percentage of problems solved does not become
significant until the tightness increases to 0.04, where the prodims getting harder.
When comparing the average number of iterations needed to solve anprabthe
problem is relatively easy, then a larger valud’a$ preferable, especially when using
larger populations. As the problems get hardd?,value of around 0.4 to 0.5 becomes
more preferable, regardless of population size. This trenchlsanbe seen, to some
extent, in the results at the phase transition, although it is not significant.

Tables 4.41 to 4.46 presents the average remaining constraint tsomnitien a
solution was not found within 2000 iterations. For the simpler problems with a constrai
tightness of 0.01 to 0.03, there is very little dignificant variatietween the average
number of remaining conflicts when varying tRevalue. The difference starts to be
significant starting with problems of tightness 0.04 to 0.06. Tab#esto 4.46 has thie
values with the lowest remaining conflicts and others that dgedorm significantly
worse highlighted. As can be seen when comparing the resdlebles 4.41 to 4.46 to
those in Tables 4.29 to 4.40, having the fewest remaining confliets & solution was
not found does not correlate to being able to solve more problemgesihes, however,
do reinforce certain performance characteristics of DSA &o®SA. When the
problems get very hard, with a tightness of 0.05 and 0.06, the vaRehat yields the

69

Table4.

Population Size

P

1]

2)

4

8

16 32

0.1] 7.03

8.13

11.27

14.60]

19.50| 21.83

0.2 8.77

10.40

13.67|

18.47|

20.83| 27.90]

0.3] 8.47

11.50

15.07|

19.43

22.97| 32.13

0.4 8.70

11.60

15.13]

21.60

22.63| 33.97|

0.5 9.13

11.43

15.47|

20.57

28.83| 31.93

0.6 8.70

11.60

14.53]

13.00]

28.00 28.30]

0.7] 8.53

10.53

13.33]

17.77|

23.40| 25.77]

0.8 7.70

9.17

11.73]

15.87|

20.70| 20.53

0.9 7.13

7.97

9.90

13.00]

15.90| 14.60

37. Per centage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.05

Population Size

P 1 2 4 8| 16 32
0.1] 1867.02| 1857.65| 1824.65| 1787.57| 1734.42| 1740.55
0.2] 1853.56| 1829.12| 1801.02| 1741.12[1754.82| 1649.18
0.3] 1849.77| 1818.69| 1783.40(1724.63| 1720.67| 1587.02
0.4] 1848.29] 1816.30| 1771.72| 1686.63| 1719.21| 1548.72
0.5] 1844.81| 1816.42| 1772.94| 1697.64] 1588.93| 1569.27
0.6] 1847.46| 1817.68| 1785.14| 1843.27| 1595.94| 1615.86
0.7] 1850.45| 1823.16| 1794.26| 1741.07 1656.13| 1656.69
0.8] 1860.88| 1844.30| 1813.78| 1758.31| 1685.57| 1726.44
0.9] 1865.11] 1858.80| 1834.03| 1797.75 1760.81| 1806.90

Table 4.38 Average I terations to Solve a Problem for DSA and
SoDSA on problemswith Constraint Tightness of 0.05

Population Size

Table 4.39. Percentage of Problems Solved for DSA and
SoDSA on problemswith Constraint Tightness of 0.06

P

1

2

4

8|

16

32

0.14

0.00

0.03]

0.00

0.13

0.10

0.30

0.2

0.00

0.00

0.17

0.10

0.20

0.47

0.3

0.00

0.03]

0.07

0.20

0.17

0.60

0.4

0.07

0.03]

0.07

0.23

0.23

0.67

0.5

0.03

0.07

0.07

0.17

0.20

0.40

0.6

0.00

0.03]

0.07

0.10

0.13

0.50

0.7]

0.00

0.03

0.00

0.13

0.13

0.13

0.8

0.00

0.00

0.03

0.03

0.10

0.17

0.9

0.00

0.00)

0.00

0.00)

0.00

0.00

Population Size
P 1] 2 4 8| 16 32|
0.1] 2000.00] 1999.38| 2000.00[1998.38[1999.34] 1996.39
0.2 2000.00] 2000.00{ 1998.11| 1999.04[1997.80] 1994.52
0.3] 2000.00] 1999.35| 1999.06| 1996.83| 1998.28] 1992.95
0.4] 1999.48] 1999.91| 1998.88] 1997.40[1998.49| 1993.04
0.5] 1999.69] 1999.31| 1999.01| 1998.08[1997.40] 1994.63
0.6] 2000.00] 1999.47| 1999.60 1999.13[1999.34] 1992.59
0.7| 2000.00] 1999.79| 2000.00[1998.35(1998.21| 1998.83
0.8] 2000.00] 2000.00{ 1999.95| 1999.82[1998.25] 1998.19
0.9] 2000.00] 2000.00f 2000.00] 2000.00f 2000.00] 2000.00

Table 4.40. Average Iterationsto Solve a Problem for DSA and
SoDSA on problems with Constraint Tightness of 0.06

70

fewest remaining conflicts when a solution was not found ga#lgt0.1, which is the
lowest of all the tested values. In reference to Tablesah87.39, it can be seen that a
P value of 0.1 actually produces the worst results when it comgeernmentage of
problems solved. This is mainly because witR &alue of 0.1, DSA and SoDSA are
very prone to being stuck at a local optima as a minimum numbardniduals in
conflicts has a chance of changing their value each turn. Tdiealrmotive for having
multiple individuals change their values with a given probabisitthe hope that enough
individuals will change their values simultaneously and move thretseat of any local
optima without the use of a breakout list like dBA. Howeverpd tew individuals

change their values each iteration, then the chance of theh seaving out a local

Population Size

P 1 2 4 8 16 32
0.1 1.000 0.00f 0.00] 0.00] 0.000 0.00
0.2 1.000 0.00f 0.00] 0.00] 0.00 0.00
0.3 1.000 0.000 0.000 0.000 0.00 0.00
0.4 1.000 0.000 0.000 0.000 0.00 0.00
0.5 1.000 0.000 0.00] 0.00] 0.000 0.00
0.6 1.000 0.000 0.00] 0.00] 0.000 0.00
0.7 1.000 0.00f 0.00] 0.00] 0.00 0.00
0.8 1.000 0.00, 0.00] 0.00] 0.000 0.00
0.9 1.000 0.000 0.000 0.000 0.00 0.00

Table 4.41. Average Remaining Conflicts when a solution was not found
within 2000 iterations for problemswith tightness of 0.01

Population Size

P 1 2 4 8 16 32
0.1 1.06f 1.00f 0.00] 0.00] 0.000 0.00
0.2 1.05 1.000 0.000 0.00] 0.000 0.00
0.3 1.04f 1.000 0.00] 0.00] 0.000 0.00
0.4 1.04f 1.000 0.00] 0.00] 0.000 0.00
0.5 1.04f 1.00f 0.00] 0.00] 0.000 0.00
0.6 1.04f 1.00, 1.00, 0.00] 0.000 0.00
0.7 1.05 1.03] 0.00, 0.00] 0.000 0.00
0.8 1.06f 1.000 0.00] 0.00] 0.000 0.00
0.9 1.08 1.000 0.00f 0.00] 0.000 0.00

Table 4.42. Aver age Remaining Conflicts when a solution was not found
within 2000 iterations for problemswith tightness of 0.02

71

Population Size

P 1 2 4 8 16 32
0.1 1.21] 1.07] 1.03] 0.000 0.00 0.00
0.2 122 1.05 1.02] 1.00] 0.000 0.00
0.3 122 1.05 1.00] 1.00] 0.000 0.00
0.4 122 1.05| 1.04f 1.00] 0.00f 0.00
0.5 122 1.06] 1.00, 0.00] 0.000 0.00
0.6 1.21] 1.03] 1.02] 0.00] 0.000 0.00
0.7 1.19] 1.06] 1.00] 0.00] 0.000 0.00
0.8 126/ 1.08 1.06] 1.00] 0.000 0.00
0.9 1.24 110, 1.03] 1.00] 0.000 0.00

Table 4.43. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.03

Population Size

P 1 2 4 8 16 32
0.1 3.09 180 1.24 108 1.02] 1.00
0.2 2.16] 140 1.10f 1.01f 1.00f] 0.00
0.3 174 1.24(1.06] 1.02] 1.13] 1.00
0.4 1.72] 122 1.05] 1.02] 1.000 1.00
0.5 161 1.22(1.08/ 1.05 1.00, 0.00
0.6 1.62] 1.22] 1.09] 1.08] 1.08) 0.00
0.7 163 1.21f 1.06f 1.03] 1.00, 1.00
0.8 172 1.30, 1.10, 1.06/ 1.00, 1.33
0.9 198 1.31] 1.10, 1.05] 1.000 1.00

Table 4.44. Aver age Remaining Conflicts when a solution was not found within
2000 iterations for problemswith tightness of 0.04

Population Size

P 1 2 4 8 16 32
0.1| 14.21f 11.13] 9.05(7.08 5.39] 4.24
0.2]| 14.25 11.59 9.10 7.15| 5.45 4.11
03| 14.77] 1176 9.42[7.41 5.69] 4.43
0.4 | 15.35 12.67[10.10] 8.02] 6.25 4.79
0.5| 16.12 13.40[11.08 8.94| 7.26| 5.42
0.6 | 17.50] 14.67 12.38] 10.29] 8.22| 6.60
0.7 | 19.23 16.72| 14.17[12.00[9.86| 8.31
0.8 | 21.36| 18.64| 16.32| 14.26] 12.30] 10.49
0.9 | 23.96 21.51 19.18(17.24| 15.44) 13.56

Table 4.45. Aver age Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.05

optima becomes none. More on this will be discussed in the mekbrs as the
performance of DSA and SoDSA is analyzed.
Lastly, the average constraint checks required to find aimolwvithin 2000

iterations is presented in Tables 4.47 to 4.52. The results slabwding able to find a
72

Population Size

P 1 2 4 8 16 32
0.1 | 22.89 19.93| 17.71] 15.60| 14.04 12.68
0.2 | 23.70| 21.24) 18.80[16.84| 15.39| 13.87
0.3 | 24.70| 22.26| 20.00| 18.23| 16.57| 15.04
0.4 | 25.97| 23.58] 21.31| 19.61| 18.01] 16.54
0.5 | 27.25 25.08 22.97| 21.31] 19.51] 18.23
0.6 | 28.92 26.91] 25.00[23.27[21.59| 20.11
0.7 | 31.02 29.02| 27.15| 25.64| 23.82| 22.56
0.8 | 33.60] 31.39| 29.87[28.17| 26.73] 25.33
0.9 | 36.66 34.72 33.15(31.52[30.25 28.69

Table 4.46. Average Remaining Conflicts when a solution was not found within
2000 iterations for problemswith tightness of 0.06

solution faster does not guarantee that more of the problems csoivied especially
when matched up with results from Tables 4.29 to 4.40. Howéwxeresults do support
the trend that for easy problemsR &f 0.9 is capable of finding a solution faster. As the
problems get harder, the value Bfthat can find a solution faster gradually decreases.
The increase in population size has little to no affect on thmalpP value. More about

the behavior of DSA and SoDSA based on these results will be discussed in the following

section.
Population Size

P 1 2 4 8 16 32
0.1 41,685 65,740 105,760 176,341 297,063 508,054
0.2 20,931 33,235 56,464 95,962 165,764 293,084
0.3 14,193 23,341 40,131 69,510 122,623 219,751
0.4 10,815 17,905 31,386 55,917 101,298 185,324
0.5 8,748 14,896 26,478 47,639 87,791 164,322
0.6 7,266 12,740 23,192 42,503 78,813 148,412
0.7 6,389 11,178 20,399 38,247 72,145 137,219
0.8 5,527 10,089 18,635 35,424 67,138 128,769
0.9 4,989 9,212 17,275 32,927 63,140 122,411

Table 4.47. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.01

73

Population Size

P 1 2 4 8 16 32
0.1 86,919 139,098 226,117 391,216 689,928 1,228,311
0.2 43,364 70,891 118,292 203,861 365,618 660,315
0.3 29,074 47,885 80,408 142,589 257,036 470,370
0.4 21,834 36,676 63,142 112,275 203,059 378,377
0.5 17,647 30,236 51,638 93,783 172,951 322,183
0.6 15,340 25,793 45,109 81,694 152,425 285,120
0.7 12,952 23,167, 39,888 73,333 137,512 260,195
0.8 11,697, 20,661 36,498 67,440 126,992 242,672
0.9 10,377, 18,906 33,958 63,224 119,856 229,029

Table 4.48. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.02

Population Size

P 1 2 4 8 16 32
0.1 256,549 406,027 600,091 863,054| 1,420,850 2,465,145
0.2 133,667 210,828 304,376 450,904 730,207 1,289,255
0.3 89,595 148,621 207,276 310,585 514,120 908,315
0.4 66,529 108,046 160,070 240,069 400,827 717,769
0.5 58,510 88,966 129,819 204,270 336,525 602,268
0.6 45,160 74,597, 111,059 174,661 295,864 532,329
0.7 40,168 65,244 98,844 153,526 269,789 484,582
0.8 35,660 57,667, 87,048 143,971 249,641 456,520
0.9 33,251, 59,110 84,299 137,809 238,890 436,341

Table 4.49. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.03

Population Size
P 1] 2 4 8 16 32
0.1| 1,185962 2,159,166 3,814,223 6,058,160, 8,158,710 11,095,129
0.2 885,914 1,536,605 2,461,745 3,776,954 4,767,772 5,825,573
0.3 687,533 1,202,676 1,972,869 2,669,788 3,270,514 4,109,543
0.4 580,197 1,009,777 1,621,180 2,167,323 2,616,436 3,386,825,
0.5 542,240 881,336 1,420,254 1,932,303| 2,397,269 2,819,954
0.6 534,785 870,588 1,343,411 1,777,263 2,140,710 2,640,954
0.7 501,859 783,004 1,238,076 1,736,596 2,145,547 2,526,749
0.8 497,755 850,363 1,391,140, 1,916,964| 2,206,104 2,621,437
0.9 577,536 992,885 1,596,807| 2,229,644| 2,701,790 3,065,091,

Table 4.50. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 I terations for problemswith tightness 0.04

4.9. Performance Analysis of DSA and SoDSA

As mentioned earlier, the primary difference between the dBd DSA is in that

exactly one agent changes its value per iteration for dBA ahilember of agents may

probabilistically change their values in DSA. TRealue determines this probability of

74

Population Size
P 1 2 4 8 16 32
0.1| 2,325,052 4,328,498 9,170,672 18,590,982| 34,692,857| 66,021,711
0.2 | 2,310,771 4,580,092] 9,468,491 17,515,021| 31,836,127| 58,624,391
0.3 | 2,332,829 4,708,799 8,377,293 16,451,018| 30,736,035 59,254,702
0.4 | 2,291,876 4,406,440, 8,711,331] 16,039,103| 31,136,762 58,211,324
0.5| 2,6058100 4,779,735 8,281,816 16,271,251| 30,799,112 56,490,934
0.6 | 2,216,820 4,839,562 8,226,317| 16,664,668| 29,440,260 59,474,756
0.7 | 2,190,048 4,749,221 9,381,499 17,467,788 30,556,004 61,914,500
0.8 | 2,622,188 4,936,391 9,937,838 18,615,795 33,850,608 63,897,159
0.9 | 2,509,306 5,038,406/ 10,823,231 19,877,491| 36,606,913 70,720,779

Table 4.51. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.05

Population Size

P 1 2 4 8 16 32
0.1 733,555 17,773,339| 60,698,015 74,809,270
0.2 9,825,664 24,759,523| 42,431,858 77,215,742
0.3 269,555 7,277,405 10,086,828 45,439,114| 78,835,952
0.4 | 3,840,760 10,766,250 4,034,625 21,628,304| 65,141,250 92,230,027
0.5| 3,499,285 6,234,638 6,270,380 21,777,927 36,011,523 65,147,014
0.6 2,652,630 18,402,965 30,049,993 76,339,491 54,381,032
0.7 8,711,890 19,080,695| 35,744,929| 119,338,806
0.8 26,412,040, 41,709,105 14,515,950 103,706,929
0.9

Table 4.52. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.06

change. Examining the rules by which an agent is allowwechange for DSA-B in
Figure 3.5, it can be concluded that as long as an agent is involascbnflict, then that
agent will be allowed to change its value with probabHltyThe other rule, where agents
are allowed a chance to change if they can reduce the numbenfbfts, is ignored
because it will never be triggered unless the agent is cyriend constraint conflict.
This is due to the nature of asymmetric constraints.

It is tempting to assume that the number of agents that chthegevalue each
iteration is equal tototal_agenix P, however this is not true. Based on the rules, only

agents that are involved in a conflict can change with a probability. Wheedheh first

starts, most of the agents are likely to be involved in at@ns conflict, making it

75

highly likely that many agents will change their value eacfatien. However, as the
conflicts are resolved the number of agents that are expected to change theidngise
The worst case comes when only one agent is involved in a cahswaflict, which is
very likely for DiSACSPs. For normal DisCSPs, since the tcaimés are symmetric, at
least 2 agents will be in a constraint conflict near thea#ritie search. With only one
agent in a constraint conflict, i is a small value, like 0.1, then it becomes likely that the
search will stay in the same location for multiple itersd. With only one agent in a
conflict andP = 0.1, the search may stay at the same position for up tteraéfions
before the agent in the conflict will change its value. This shibatsa relatively smal
value will significantly slow down the search when thereamiy a few conflicts left to
resolve. Consequently, for easier problems a highealue will actually help the search
converge faster. This is supported by the results in Tables 4.41 to 4.43 and 4.47 to 4.49.
From an exploration versus exploitation point of view, Fhealue determines the
amount of exploration at the beginning of the search and the amoarploitation as
the number of conflicts is reduced. This supports the results fagatsier problems.
Since there is a larger number of feasible solutions, exteresipéoration at the
beginning of the search can easily lead to or near abfeasolution. With high
exploitation, once close to a solution, the search will converge tolyt dmiickly. This is
why the results for the easier problems favé* @ 0.7 to 0.9. As the problems increase
in difficulty, high levels of exploration at the beginning of tleareh may not guarantee
that the candidate solutions will improve, which is whi af 0.4 to 0.5 become more
favorable. Thid? value is low enough that the expected number of agents changing ea

iteration is small, and as the search nears a feasihitosn and the number of conflicts

76

decreases, the value is high enough that the search does not get stuck in otierposi

for too long.

4.10. Results of the Genetic Operator on SODSA

This section examines the results of the genetic SODSA (GSpd¥8ated from the
addition of the distributed genetic operator to the SODSA. Td&sover and mutation
rates for the distributed genetic operator is kept the san@&SasiC. The results are
presented in Tables 4.53 — 4.64.

The results for problems with a constraint tightness of between 0.01 and®r@g ar
far from expectations as tlievalue's effect on performance is not very apparent when it
comes to percentage of problems solved, and the differences arstatistically
significant. When looking at the average number of cycles teesalproblem, the
maximum testedP value still performs the best overall, along with the scatifg
performance with population size.

As the problems get harder and closer to the phase transitiory, distenct shift of
performance begins to appear, as shown in Tables 4.59 to 4.62, aralud@fP that
produces better performance starts to get smaller Aghénéss of 0.04, B value of
around 0.6 and 0.7 produces the best results, though the performdtetafeen 0.5
and 0.8 are statistically similar. At a problem tightnes®.05, the range dP that
produces better performance is reduced to 0.2 to 0.4. This ddtoptof the optimal
range ofP can be attributed to the genetic operator, which producegex lamount of
exploration than the original SODSA. Consequently, in order topeosate for the
added level of exploration by the genetic operator, the amount &iratipn SODSA

77

Population Size

P 2

7l

8

1

32

0.1} 100.00

100.00

100.00

100.00

100.00

0.2] 100.00

100.00

100.00

100.00

100.00;

0.3] 100.00

100.00

100.00

100.00

100.00;

0.4] 100.00

100.00

100.00

100.00

100.00;

0.5] 100.00

100.00

100.00

100.00

100.00

0.6] 100.00

100.00

100.00

100.00

100.00

0.7] 100.00

100.00

100.00

100.00

100.00;

0.8 100.00

100.00

100.00

100.00

100.00;

0.9] 100.00

100.00

100.00

100.00

100.00;

Table 4.53. Percentage of Problems Solved for
on problemswith Constraint Tightness of

GSoDSA
0.01

Population Size

P 2 4 8 16 32
0.1] 15.09 9.16 6.59 5.22) 4.21
0.2 8.02 5.64 4.42 3.52 291
0.3 5.53 4.13 3.20 2.65 2.15
0.4 4.10 3.15 2.52) 2.07| 1.69
0.5 3.20 2.53 2.00 1.65 1.39
0.6 2.62 2.07 1.68 1.40 1.20
0.7 2.14 1.68 1.38 1.17 1.00
0.8 1.78 1.39 1.17 0.99 0.85
0.9 1.41 1.16 0.99 0.83 0.71

Table 4.54. Average Iterationsto Solve a Problem for
GSoDSA on problemswith Constraint Tightness of 0.01

Population Size

P 2 4 8 1 32
0.1] 98.57] 99.97| 100.00] 100.00| 100.00
0.2] 98.90 99.97] 100.00] 100.00] 100.00
0.3] 99.40] 100.00[100.00] 100.00] 100.00
0.4 99.00 100.00] 100.00] 100.00| 100.00
0.5 99.03| 100.00] 100.00] 100.00| 100.00
0.6] 98.90| 100.00[100.00] 100.00| 100.00
0.7] 98.97| 100.00] 100.00, 100.00| 100.00
0.8] 98.80 99.93] 100.00] 100.00] 100.00
0.9] 98.97] 100.00[100.00] 100.00| 100.00

Table 4.55. Percentage of Problems Solved for
on problems with Constraint Tightness of

GSoDSA
0.02

Population Size

P 2 4 8 1 32
0.1] 61.93] 2229 16.59 13.44] 11.40
0.2] 40.85| 13.27] 10.07 8.41] 7.15
0.3] 24.60 8.85 7.24 6.11] 5.30
0.4 29.02 6.95 5.65 4.83 4.14
0.5] 26.59 5.64 4.59 3.96 3.42
0.6] 28.07 4.73 3.90 3.32 2.87
0.7] 25.65 3.97 3.30 2.86) 2.50
0.8] 28.78 4.77 2.89 2.51] 2.21
0.9] 24.93 3.09 2.58 2.23 1.98

Table 4.56. Average Iterationsto Solve a Problem for
GSoDSA on problemswith Constraint Tightness of 0.02

78

Population Size

P 16 32
0.1] 86.47| 97.63] 100.00 100.00| 100.00
0.2] 88.07] 98.63] 99.97] 100.00f 100.00
0.3] 89.77] 98.87] 99.93 100.00f 100.00
0.4] 89.87| 98.60] 99.90 100.00| 100.00
0.5 89.97| 98.57] 99.93 100.00| 100.00
0.6] 89.77| 98.57| 100.00 100.00| 100.00
0.7] 89.57| 98.27] 99.97| 100.00| 100.00
0.8] 89.23 98.40] 99.93 100.00f 100.00
0.9] 88.57] 98.60] 99.97| 100.00| 100.00

Table 4.57. Percentage of Problems Solved for GSoDSA on
problemswith Constraint Tightness of 0.03

Population Size

P 2 8 16 32
0.1]384.69 117.11] 43.94 31.21] 25.14
0.2[301.88] 67.94] 24.32| 18.46| 15.10
0.3[249.44| 50.53| 18.84] 13.10| 10.77
0.4/242.00f 49.58| 15.48] 10.35 8.57
0.5/236.67| 46.95 12.41] 8.49 7.06
0.6[233.09| 44.82 9.46 7.29 6.01
0.7]235.20] 50.49 8.76 6.23 5.34
0.8]237.88] 44.05 8.86 5.67 4.77
0.9]250.86/ 40.59 7.34] 5.28 4.43

Table 4.58. Average Iterationsto Solve a Problem for
GSoDSA on problemswith Constraint Tightness of 0.03

performs needs to be reduced for better performance. With p®érnthe phase
transition, as shown in Tables 4.63 and 4.64, the performance of @SsDt very
impressive, though GSoDSA-32 is able to solve significantlyenppoblems than the
other population sizes, but, whers 0.9, GSoDSA-32 cannot find a solution to any of
the given problems.

Next, the average number of remaining constraint conflicts wisehuéion was not
found within 2000 iterations is shown in Tables 4.65 to 4.70. Thegablow that the
average number of remaining conflicts for GSoDSA follow the sgiema as those for
SoDSA. Population size is one major factor that the remaiminfiicts are lower, while

the p value's contribution is similar to that of SODSA. OveralBoBSA found better

79

Population Size

P 2 4 8 16 32
0.1] 50.77| 73.67| 87.97| 96.40| 98.97,
0.2] 61.10| 81.50| 93.53| 98.00] 99.47
0.3] 66.57| 85.33 95.63] 98.90| 99.77|
0.4] 68.30] 87.23| 96.47| 99.37| 99.90
0.5 68.53] 89.80| 97.30| 99.50| 99.90
0.6] 71.77| 89.73| 97.93| 99.73] 99.93
0.7] 71.87| 90.33] 97.90| 99.60] 99.87
0.8] 70.83] 89.30| 97.77| 99.47| 99.97
0.9] 69.50| 88.53] 97.03] 99.60| 100.00

Table 4.59. Per centage of Problems Solved for GSoDSA on
problemswith Constraint Tightness of 0.04

Population Size

P 2 8 16, 32
0.1] 1291.11] 851.48] 499.38] 246.40] 127.3§
0.2] 1053.66| 639.52] 330.04] 159.63] 78.3(
0.3 920.85| 520.93] 246.09| 111.89] 56.61
0.4 851.21] 462.32] 212.11] 91.16] 44.88
0.5 835.67| 406.77| 186.52] 80.06] 40.30)
0.6] 774.90] 39158 166.74] 75.73] 39.87
0.7] 775.91] 388.67] 168.60] 77.66] 39.60
0.8 815.64] 412.31] 180.48] 82.13] 42.11
0.9] 849.86| 441.89] 213.80] 91.29] 45.79

Table 4.60. Average Iterationsto Solve a Problem for
GSoDSA on problemswith Constraint Tightness of 0.04

Population Size

P 2 4 8 16 32
0.1 4.03 9.27| 17.67| 26.67| 37.07
0.2] 6.70] 13.70| 22.13| 34.53 44.90
0.3] 7.10| 13.60] 22.47| 35.07| 45.93
0.4] 6.53 11.90| 21.27| 32.87| 42.83
0.5 5.80 11.63] 17.63| 27.17| 38.63
0.6] 5.67| 8.70, 15.07| 22.97 32.63
0.7 3.70 7.37| 12.10] 18.20[26.17
0.8 3.67] 5.93 8.73] 12.87| 19.17
0.9 2.40 3.80] 6.23] 9.33] 12.00

Table 4.61. Percentage of Problems Solved for GSoDSA on
problemswith Constraint Tightness of 0.05

Population Size

P 4 8 16 32
0.1] 1959.01] 1900.23] 1779.13] 1640.21| 1472.41
0.2 1927.32| 1843.01] 1721.30] 1525.79| 1340.06
0.3] 1923.60| 1839.05(1727.47| 1515.99| 1325.24
0.4] 1926.64] 1857.62| 1735.02] 1574.87| 1387.45
0.5 1932.82] 1862.20(1778.57| 1647.19| 1476.29
0.6] 1938.00] 1894.38| 1813.77| 1701.82| 1557.05
0.7] 1955.71] 1914.69| 1845.71] 1763.74| 1648.41
0.8] 1959.65 1928.04 1894.71] 1833.70[1739.07
0.9 1974.90| 1959.06] 1928.72| 1882.94| 1840.73

Table 4.62. Average Iterationsto Solve a Problem for
GSoDSA on problemswith Constraint Tightness of 0.05

80

Population Size

P 2 4 8 g 32
0.1 0.00] 0.00 0.03] 0.17 0.43
0.2 0.00] 0.00] 0.03| 0.00| 0.40)
0.3 0.00] 0.00] 0.03] 0.03 0.30)
0.4 0.00] 0.00] 0.00] 0.00 0.50)
0.5{ 0.00] 0.00] 0.00] 0.0 0.47
0.6{ 0.00] 0.00 0.00] 0.00] 0.63
0.7] 0.00] 0.00] 0.00] 0.00 0.37
0.8] 0.00] 0.00] 0.00] 0.00 0.20)
0.9 0.00[0.00 0.00] 0.00[0.00)
Table 4.63. Percentage of Problems Solved for GSoDSA

on problemswith Constraint Tightness of 0.06

Population Size

P 2 8 16 32
0.1] 2000.00] 2000.00| 1999.85| 1998.96| 1993.96
0.2l 2000.00] 2000.00| 1999.58] 2000.00|1994.71
0.3 2000.00] 2000.00| 1999.54| 1999.59| 1994.63
0.4 2000.00] 2000.00| 2000.00] 2000.00|1992.80
0.5 2000.00] 2000.00| 2000.00| 2000.00|1992.17
0.6 2000.00] 2000.00| 2000.00] 2000.00| 1993.84
0.7 2000.00] 2000.00| 2000.00] 2000.00| 1997.05
0.8 2000.00] 2000.00| 2000.00] 2000.00|1998.17
0.9 2000.00] 2000.00] 2000.00] 2000.00|2000.00

Table 4.64. Average Iterationsto Solve a Problem for
GSoDSA on problemswith Constraint Tightness of 0.06

sub-optimal solutions than SoDSA when a feasible solution wasoant fwithin 2000
iterations.

Lastly, Tables 4.71 to 4.76 shows the average number of constrairkschec
performed when a solution was found within the 2000 iterations. fil$tenoticeable
difference between the results for GSoDSA and SoDSA is howtag value that
requires the fewest constraint checks to solve a problem desrEasGSoDSA. At a
problem tightness of 0.05, tipevalue that was able to find the solution with the fewest
constraint checks is around 0.5 to 0.6 for SODSA and around 0.1 to 0GSGDSA.
This is due to the affect that the genetic operator has asedreh, which is give it more
exploration. Thus, the optim&l value decreases to increase exploitation. More about

this will be discussed when comparing the results for SODSA, GSoDSA and ESoDSA.
81

Population Size
P 2 4 8 16 32
0.1| 0.00] 0.00] 0.00f 0.00] 0.00
0.2| 0.00f 0.00] 0.00f 0.00] 0.00
0.3| 0.00p 0.00] 0.00f 0.00 0.00
04| 0.000 0.000 0.00f 0.00] 0.00
0.5| 0.000 0.000 0.00f 0.00] 0.00
0.6| 0.00] 0.00] 0.00f 0.00] 0.00
0.7| 0.000 0.00] 0.00f 0.00] 0.00
0.8| 0.000 0.00] 0.00] 0.00] 0.00
09| 0.000 0.000 0.00] 0.000 0.00

Table 4.65. Average Remai

ning Conflicts when a solution was not found within

2000 iterationsfor problemswith tightness of 0.01

Population Size

P 2 4 8 16 32
0.1 1.000 1.00f 0.00; 0.00] 0.00
0.2 1.027 1.000 0.00f 0.00] 0.00
0.3 1.000 0.00f 0.00] 0.000 0.00
0.4 1.000 0.00] 0.00[0.00] 0.00
0.5 1.03] 0.00f 0.00] 0.00] 0.00
0.6 1.000 0.00] 0.00; 0.00] 0.00
0.7 1.03] 0.00f 0.00] 0.00 0.00
0.8 1.000 1.00f 0.00] 0.000 0.00
0.9 1.06f 0.00] 0.00[0.00] 0.00

Table 4.66. Aver age Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.02

Population Size
P 2 4 g 16 32
01| 105 104 000 000 0.00
02| 103 100 1.000 0.0 0.00
03] 103 1000 100 000 0.00
04| 103 1000 100 000 0.00
05| 1.03 100 1.000 0.0 0.00
06| 103 100 000 000 0.00
07| 103 1000 100 0.00 0.00
08| 103 108 1.00 0.0 0.00
09| 104 100 100 000 0.00
Table 4.67. Average Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.03
Population Size

P 2 4 g 16 32
01] 160 121 107 103 100
02| 1300 110 108 102 1.00
03] 119 108 1.02] 106 100
04] 1200 106 1.08 100 1.00
05| 115 1.05 104 100 1.00
06 111 105 102 100 100
07] 119 105 101 100 100
08| 118 106 101 100 1.00
09| 136 105 104 100 0.00

Table 4.68. Average Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.04

82

Population Size

P 2 4 8 16 32
0.1 8.49] 4.84] 3.12| 2.18 1.74
0.2 9.70 6.30] 3.91f 2.81 2.00
0.3] 11.01 7.69| 5.43] 3.73 251
04| 1222 9.24] 6.93] 527 3.80
0.5| 13.28/ 10.51| 8.52| 6.67| 4.88
0.6 [15.01f 12.13| 9.96 8.25 6.30
0.7 16.65 14.30[11.87(9.78 8.00
0.8 19.01] 16.77| 14.33| 12.35 10.06
0.9 21.52[19.41| 17.08| 15.30[13.32

Table 4.69. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.05

Population Size

P 2 4 8 16 32
0.1]| 17.89 13.56| 10.25| 7.97| 6.37
0.2 20.18/ 16.71| 14.01| 11.57| 9.76
0.3 21.91] 19.06| 16.59| 14.46| 12.61
0.4 | 23.54| 20.93| 18.70| 16.69| 15.14
0.5| 25.25| 22.70| 20.82| 19.18 17.36
0.6 | 27.20 24.97| 22.99| 21.16| 19.83
0.7 | 29.16| 27.40| 25.50| 23.78] 22.34
0.8 31.81 29.91| 28.21| 26.64] 25.24
0.9 34.96] 33.34| 31.53] 29.99| 28.71

Table 4.70. Aver age Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.06

4.11. Results of the Evolutionary Operator on SODSA (ESoDSA)

The distributed mutation operator can now be applied to SoDSleveal its
possible impact on performance. The mutation rate for the topesekept the same as
ESoHC,pn = 0.12, and the same test suit as before will be used. Becahseladk of a
crossover operator, the mutation alone has a high level of exjplojtathich impacts the
performance of SODSA in a slightly different way, especially in the optimgkrafP.

Tables 4.77 — 4.82 present the results for ESODSA on problems wahs#raint
tightness of 0.01 to 0.03. These results once again fall intdasiperformance
expectations to those seen earlier, where the problemsnapéy siot hard enough to

show any affect of the mutation operator.

83

Population Size

P 2 4 8 16 32
0.1 42,546 57,967 92,888 160,227 284,336
0.2 25,915 40,503 69,775 124,310 225,624
0.3 19,619 32,654 57,941 104,430 191,212
0.4 16,035 27,803 50,095 91,551 170,471
0.5 13,791 24,358 44,438 82,380 154,854
0.6 12,166 21,956 40,513 76,110 144,178
0.7 10,877, 19,981, 37,652 70,637 135,233
0.8 9,970 18,490 35,188 66,519 128,457
0.9 9,172 17,238 32,929 63,150 122,033

Table4.71. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.01

Population Size

P 2 4 8 16 32
0.1 102,566 145,857 237,461 411,906 733,971
0.2 57,211 90,503} 157,333 281,920 514,864
0.3 44,094 69,843 122,615 222,657 407,743
0.4 33,976 57,130 102,065] 186,849 347,583
0.5 29,047, 48,892 87,895 164,146 306,926
0.6 24,836 43,376 79,084 147,910 278,000
0.7 23,549 39,398 72,251 136,086 256,060
0.8 20,527 36,577 67,019 127,032 241,345
0.9 19,313 33,756 63,246 120,028, 228,468

Table4.72. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.02

Population Size

P 2 4 8| 16 32
0.1 363,380 427,246 589,690 933,469 1,604,005
0.2 203,002 251,855 361,039 599,891 1,049,869
0.3 147,786 191,279 275,402 457,794 814,457
0.4 121,919 154,437, 225,647 376,971 674,967
0.5 108,915 131,849 191,576 326,989 585,819
0.6 95,033 115,437 168,313 291,768 524,849
0.7 81,784 110,627| 156,852 269,447 486,328
0.8 83,470 97,092 145,060 251,344 455,404
0.9 75,314 92,664 140,255 239,688 436,742

Table 4.73. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.03

Population Size

P 2 4 8 16 32
0.1| 1,745,151 2,517,435 3,620,975 4,674,241 6,146,909
0.2 1,319,736 1,925,526/ 2,561,595 3,236,842 4,146,459
0.3| 1,170,564 1,661,341 2,094,692 2,483,850 3,297,897
0.4| 1,029,465 1,472,869 1,946,699 2,288,040 2,809,025
0.5 991,445 1,458,829 1,830,966/ 2,050,615 2,625,208
0.6 986,464 1,464,432 1,833,424 2,130,577 2,427,032
0.7 1,067,161 1,492,505 1,948,996 2,188,829 2,583,201
0.8 1,117,592 1,633,978 2,110,944 2,349,707 2,789,906
0.9 1,239,523 1,926,397 2,520,491 2,726,721 3,234,453

Table4.74. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 I terations for problemswith tightness 0.04

84

Population Size

P 2 4 8 16 32
0.1| 3,593,778 6,329,153 10,751,783| 18,053,987| 29,752,111
0.2 | 3,663,114 6,231,130 10,513,397| 18,371,181 30,798,587
0.3 | 4,106,944 6,738,343| 11,346,353| 19,685,627| 35,854,586
0.4 | 4,176,077 6,646,806| 12,844,431 22,844,991 40,812,985
0.5| 4,423,049 8,130,322 12,908,288| 24,962,242 45,062,051
0.6 | 4,458,580 8,331,941 14,357,599| 25,769,490, 51,494,768
0.7 | 5,156,076 8,474,265 16,745,830 27,800,473 53,428,556
0.8 | 5,186,621 10,006,428/ 18,197,907 30,699,647| 60,136,035
0.9 | 5,934,815 11,362,293 20,762,531 39,277,046 66,188,174

Table 4.75. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.05

Population Size

P 2 4 8| 16 32
0.1 12,369,032| 34,312,158 62,741,138
0.2 6,109,140 16,283,334| 39,000,375
0.3 2,737,999 14,966,864 23,235,259
0.4 16,560,794
0.5 44,527,776
0.6 68,852,839
0.7 103,312,926
0.8 105,794,349
0.9

Table 4.76. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.06

As the problems get harder, the rangd>dhat produces better performance begins
to appear, as seen earlier for GSoODSA. However, the differkes in the optimal value
range ofP. For GSoDSA, at a problem tightness of 0.04, the optimal ranganasd
0.6 to 0.7, while for ESODSA this range is slightly higher auad 0.7 to 0.9. This is
also true for problems with a tightness of 0.05. Where GSoDSAmagtimal range of
around 0.2 to 0.3, ESoDSA's range is slightly higher at around @.3.toOnce again,
the performance of ESoDSA at the phase transition is stilveyt impressive, though
ESoDSA-32 does perform significantly better than the others.

Tables 4.89 to 4.94 present the average number of remaining corsdrdlitts for
ESoDSA when a solution was not found within 2000 iterations. ré&salts can best be
described as extreme. In the worst case, ESODSA perfaorse than SoDSA, but

much better than GSoDSA in the best cases. This is ebpesgan when the problem
85

Population Size

P 2 4 1 32
0.1] 100.00| 100.00| 100.00, 100.00, 100.00
0.2] 100.00] 100.00] 100.00 100.00; 100.00
0.3] 100.00] 100.00| 100.00, 100.00, 100.00
0.4] 100.00[100.00] 100.00, 100.00f 100.00
0.5 99.97[100.00] 100.00, 100.00[100.00
0.6] 100.00[100.00] 100.00; 100.00[100.00
0.7] 100.00[100.00] 100.00, 100.00f 100.00
0.8] 100.00[100.00] 100.00, 100.00f 100.00
0.9] 100.00[100.00] 100.00, 100.00f 100.00

Table 4.77. Per centage of Problems Solved for ESoDSA on
problemswith Constraint Tightness of 0.01

Population Size

P 2 4 8 16| 32
0.1] 12.47 6.16) 4.01] 2.97 2.30
0.2 6.65 4.23 3.07 2.44] 1.91]
0.3 4.69 3.25 2.51 2.03 1.64
0.4] 3.69 2.71 2.08 1.73 1.46]
0.5 3.59 2.24 1.81 1.50 1.27
0.6 2.44 1.86 1.55] 1.30 1.10]
0.7 2.01 1.59 1.31] 1.11] 0.94
0.8 1.70 1.34] 1.13 0.95 0.81
0.9 1.42 1.17 0.96 0.81 0.70

Table 4.78. Average Iterationsto Solve a Problem for ESoDSA
on problems with Constraint Tightness of 0.01

Population Size

P 2 4 1 32
0.1] 98.37| 99.97| 100.00 100.00, 100.00
0.2] 98.30[100.00] 100.00, 100.00f 100.00
0.3] 98.60[100.00] 100.00, 100.00f 100.00
0.4] 98.90[100.00] 100.00, 100.00[100.00
0.5 98.77| 100.00| 100.00, 100.00, 100.00
0.6 99.10| 100.00| 100.00, 100.00, 100.00
0.7] 99.13[99.97| 100.00, 100.00f 100.00
0.8] 98.97[100.00] 100.00, 100.00f 100.00
0.9] 98.80[99.97] 100.00, 100.00f 100.00

Table 4.79. Per centage of Problems Solved for ESoDSA on
problemswith Constraint Tightness of 0.02

Population Size

P 2 4 8 1 32
0.1] 6295 18.53 12.47 9.59 7.82
0.2 50.35 10.96 8.28 6.83] 5.69
0.3] 39.39 8.04 6.43 5.36) 4.60
0.4 30.50 6.42 5.16) 4.38 3.81]
0.5| 31.51 5.30 4.34 3.71] 3.26
0.6 23.83 4.52 3.72 3.21] 2.79
0.7] 22.29 4.54 3.23 2.81 2.45
0.8] 25.59 3.41 2.86 2.46 2.20
0.9] 27.80 3.71 2.55 2.23 1.98

Table 4.80. Average Iterationsto Solve a Problem for ESoDSA
on problems with Constraint Tightness of 0.02

86

Population Size

P 2 4 8 16 32
0.1] 83.10 97.47[99.87| 100.00] 100.00
0.2] 85.77] 97.700 99.97| 100.00] 100.00
0.3] 87.70] 98.100 99.90| 100.00] 100.00
0.4 88.67] 98.03] 99.93] 100.00] 100.00
0.5 88.77] 98.50 99.97| 100.00] 100.00
0.6] 8853 98.73 99.97| 100.00] 100.00
0.7] 89.27] 98.57 100.00] 100.00] 100.00
0.8] 89.17] 98.50 99.90| 100.00] 100.00
0.9] 89.17] 98.50 100.00| 100.00] 100.00

Table 4.81. Percentage of Problems Solved for ESoDSA on
problemswith Constraint Tightness of 0.03
Population Size
P 2 4 16 32
0.1] 447.01] 116.47] 38.81] 24.82] 19.1§
0.2| 352.40 8300 21.98] 1565 12.79
0.3 292.74] 6471 17.81] 12.01] 9.94
0.4 263.45 59.07 1391 9.8l 8.09
05| 255.24] 47.30] 11.24] 818 6.84
0.6] 255.91] 40.87] 10.06] 7.10] 5.97
0.7] 239.19] 43100 828] 634 5.25
0.8 241.61] 4257 9.40 579 4.80
09| 239.97 4322 7.08) 527 4.4

Table 4.82. Average Iterationsto Solve a Problem for ESoDSA
on problemswith Constraint Tightness of 0.03

Population Size

P 2 8 16 32
0.1 47.07| 66.90| 84.50] 94.17| 98.27
0.2 57.500 74.13 91.37] 97.20] 98.83
0.3 62.47| 83.000 94.00f 97.67| 98.93
0.4 65.53] 83.100 94.17| 98.47| 99.70
0.5 68.50| 86.87] 96.00] 98.83] 99.83
0.6 68.60 85.63 96.67| 98.97| 99.90
0.7 68.30] 89.000 96.43] 99.40[99.83
0.8 70.60 90.27] 97.73] 99.43[99.90
0.9 70.23] 88.77] 96.60] 99.47[99.90

Table 4.83. Percentage of Problems Solved for ESODSA on
problemswith Constraint Tightness of 0.04

Population Size

P 2 8 16| 32
0.1] 1312.89] 944.16| 540.41| 278.99| 133.41]
0.2] 1091.57| 718.80] 338.06| 156.15| 77.69
0.3] 960.71| 523.94] 258.34| 123.99| 68.17
0.4] 879.19] 507.35 232.04| 99.11| 47.33
0.5 814.16| 430.57] 196.95| 87.31 42.24
0.6 813.62| 450.75 180.20] 83.95 36.25
0.7] 824.90| 398.08] 188.74| 78.04| 39.71]
0.8 801.59| 393.25| 168.26| 79.56| 42.31]
0.9] 836.74| 450.20] 219.56| 93.44| 47.80

Table 4.83. Average Iterationsto Solve a Problem for ESoDSA
on problemswith Constraint Tightness of 0.04

87

Population Size

P 4 8 16 32
0.1 4.63 10.57 16.97 23.60 33.23
0.2 6.77] 14.93 22.90 32.57 41.73
0.3 7.47) 16.63 25.77 35.83 45,17
0.4 7.00 15.03 24.97 36.90 46.17
0.5 6.20 12.10 22.07 34.40 45,10
0.6 5.73 10.53 18.43 27.47 39.07
0.7 3.87 8.20 13.43 20.50 28.43
0.8 3.00 6.07 9.57 13.63 19.43
0.9 2.20, 3.47 5.67 9.50 13.63

Table 4.84. Percentage of Problems Solved for ESoDSA on
problemswith Constraint Tightness of 0.05

Population Size

P 2 4 16 32
0.1] 1949.09| 1877.26| 1783.94] 1665.63| 1490.03
0.2] 1928.13| 1815.48| 1684.95 1507.86| 1325.57
0.3] 1911.12] 1787.13] 1651.71 1466.52| 1270.28
0.4] 1921.66] 1812.52| 1674.90] 1466.29| 1269.07
0.5 1926.06] 1853.92| 1711.94f 1521.42| 1321.96
0.6] 1934.86] 1876.34| 1767.20| 1640.10| 1458.31
0.7) 1955.72| 1902.67| 1831.69] 1733.80| 1606.67
0.8] 1969.13] 1930.05| 1874.81f 1822.35 1739.93
0.9] 1976.11 1963.11] 1929.04] 1881.21| 1815.97

Table 4.86. Average Iterationsto Solve a Problem for ESODSA
on problems with Constraint Tightness of 0.05

Population Size

P 2 8 16 32
0.1 0.00 0.00 0.03 0.07 0.37]
0.2 0.00 0.03 0.03 0.23 0.63
0.3 0.00 0.00 0.03 0.10 0.50
0.4 0.00 0.00 0.00 0.00 0.13
0.5 0.00 0.00 0.00 0.00 0.20
0.6 0.00 0.00 0.00 0.00 0.57|
0.7] 0.00 0.00 0.00 0.00 0.63
0.8 0.00 0.00 0.00 0.00 0.17]
0.9 0.00 0.00 0.00 0.00 0.17]

Table 4.87. Percentage of Problems Solved for ESoDSA on
problemswith Constraint Tightness of 0.06

Population Size

P 2 8 16 32
0.1 2000.00, 2000.00] 1999.70| 1999.16| 1994.98
0.2] 2000.00] 1999.80| 1999.65| 1997.20| 1992.61
0.3 2000.00] 2000.00f 1999.83| 1999.18| 1992.98
0.4 2000.00, 2000.00] 2000.00| 2000.00| 1997.60
0.5 2000.00, 2000.00] 2000.00| 2000.00| 1996.54
0.6/ 2000.00, 2000.00] 2000.00| 2000.00| 1991.60
0.7 2000.00, 2000.00] 2000.00| 2000.00| 1991.75
0.8 2000.00] 2000.00{ 2000.00] 2000.00| 1998.29
0.9 2000.00] 2000.00] 2000.00[2000.00] 1997.96

Table 4.88. Average Iterationsto Solve a Problem for ESoDSA
on problems with Constraint Tightness of 0.06

88

tightness is 0.05 and 0.06. Another aspect of note is that ESoDAnpervorse than
GSoDSA especially at low population sizes of 2 and 4.

Finally, Tables 4.95 to 4.99 shows the average number of constrackscwhen a
solution was found within 2000 iterations. The results for whenigidéness is 0.06 is
omitted, since ESODSA was not able to solve a significant nuwfbproblems at the
phase transition. Again, like GSoDSA, the advantage of the mutgperator does not
show until the population size increases to a certain levetl when a solution is found,

ESoDSA is capable of finding it faster than GSoDSA or SoDSA in the best case.

Population Size

P 2 4 8 16 32
01| 100 0.00f 0.00f 0.00, 0.00
0.2| 100 1.00] 0.00f 0.00, 0.00
03] 100 0.0 0.000 0.000 0.00
04| 100 0.000 0.00 0.000 0.00
05| 100 0.00f 0.00] 0.00, 0.00
0.6| 100 1.00f 0.00 0.00, 0.00
0.7| 100 0.00f 0.00 0.00, 0.00
08| 100 0.0 0.00f 0.00 0.00
09| 100 0.00f 0.00 0.000 0.00

Table 4.89. Average Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.01

Population Size

P 2 4 8 16 32
0.1| 1.000 1.00f 1.000 1.00f 0.00
02| 1.02] 1.00f 1.000 0.00f 0.00
03| 1.01 1.00f 1.000 0.00] 0.00
04| 1.00 1.00f 0.00 0.00 0.00
05| 1.01 1.00f 1.000 0.00f 0.00
0.6| 1.000 1.00f 1.000 0.00f 0.00
0.7| 1.000 1.00f 1.000 0.00] 0.00
0.8| 1.01 1.00f 1.000 0.00] 0.00
0.9| 1.000 1.00f 1.000 0.00] 0.00

Table 4.90. Aver age Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.02

89

Population Size

P 2 4 8 16 32
0.1 1077 103 101 1.03 1.00
0.2 1.06f 1.03] 102 1.000 1.00
0.3 1.06) 103 101 1.000 1.00
0.4 1.05 1.03] 100 1.000 1.00
0.5 1.06) 1.02] 1.00 1.00f 1.00
0.6 1.06) 102 1.00 1.000 1.00
0.7 1.06f 1.03] 101 1.000 1.00
0.8 1.06) 102 102 1.000 1.00
0.9 1.08f 1.04/f 100 1.000 1.00

Table 4.91. Average Remai

2000 iter

ning Conflicts when a solution was not found within

ationsfor problemswith tightness of 0.03
Population Size

P 2 4 8 16 32
01| 211 122 110 107 102
02| 174 121 110 105 1.03
03] 156 1200 111 107 102
04| 152 121 112] 107 1.04
05| 139 121 113 108 105
06| 146 121 115 107 103
07| 151 122 1158 111 104
08| 165 124 115 110 1.04
09| 220 123 118 113 107

Table 4.92. Aver age Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.04

Population Size

P 2 4 8 16 32
0.1 11.96 576 256 187 176
02| 1281 6.60] 275 193 174
03| 1364 735 297, 198 179
04| 1499 841 353 220 184
05 1673 9.71] 4.09 229 19
0.6 [19.04[12.07] 5.48 271 2.09
0.7 | 22.46[15.09] 7.82 3.24 221
0.8 [29.43(20.20] 11.53] 4.93 2.60
09| 40.60[28.10] 18.17| 9.1 3.86

Table 4.93. Average Remai

2000 iter

ning Conflicts when a solution was not found within

ationsfor problemswith tightness of 0.05
Population Size
P 2 4 g 16
01| 2067 15.01] 9.8 6.42 516
02| 2231 17.31] 1254 824 591
03| 2389 1955 14.97] 10.42[7.08
04| 26.18 21.99] 17.67] 12.94 9.03
05| 29.32] 24.94] 20.63 15.90] 11.49
0.6 | 3431 28.93] 24.41 19.56] 14.62
0.7 | 42.29] 34.50] 29.39 24.34] 18.82
08| 53.10] 43.88] 36.93 30.15 23.77
09| 6814 56.46] 45.49 36.81] 29.09

Table 4.94. Average Remaining Conflicts when a solution was not found within
2000 iterationsfor problemswith tightness of 0.06

90

Population Size

P 2 4 8 16 32
0.1 51,892 71,469 103,708 153,509 242,228
0.2 32,709 48,484 75,745 122,887 210,058
0.3 24,435 38,446 62,464 106,211 186,485
0.4 19,836 31,761 53,900 93,528 169,369
0.5 16,687 27,748 47,418 85,681 156,289
0.6 14,532 24,495 43,032 78,489 145,851
0.7 12,826 21,985 39,766 73,395 137,261
0.8 11,535 20,290 37,077 69,033 129,935
0.9 10,432 18,747 34,943 65,267 123,964

Table 4.95. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.01

Population Size

P 2 4 8 16 32
0.1 140,478 188,066 269,129 407,524 647,854
0.2 82,259 114,680 175,409 282,221 481,523
0.3 58,183 85,008 133,677 226,519 397,381
0.4 47,736 68,732 111,406 193,585 344,046
0.5 39,849 58,930 97,230 169,804 309,668
0.6 34,038 51,291 86,431 153,448 281,672
0.7 29,715 46,326 78,529 141,860 261,447
0.8 26,880 42,165 73,529 132,349 246,278
0.9 24,379 39,452 69,080 125,677 234,688

Table 4.96. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.02

Population Size

P 2 4 8 16 32
0.1 490,941 576,642 721,104 971,414 1,436,113
0.2 319,558 340,934 410,327 598,006 965,864
0.3 226,022 234,933 309,589 463,902 751,986
0.4 183,932 180,563 252,899 383,209 636,965
0.5 154,179 152,739 212,260 336,571 564,299
0.6 130,332 136,513 193,864 304,470 516,776
0.7 127,100 125,044 176,449 280,225 484,164
0.8 107,225 115,884 166,426 264,076 458,330
0.9 100,447 107,446 154,786 255,330 444,390

Table 4.97. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.03

91

Population Size
P 2 4 8 16 32
0.1 | 2,355,099] 2,726,528 3,520,206 4,773,925 7,073,629
0.2 | 1,889,058 1,824,803 2,139,780 2,829,185 3,992,412
0.3 | 1,563,163 1,405,081 1,520,078 1,911,209| 2,842,228
0.4 | 1,435519] 1,131,554 1,175,373| 1,606,677 2,142,501
0.5 1,291,574 978,213 1,027,035 1,355,630 1,993,144
0.6 | 1,189,639 877,986 1,014,372 1,236,056 1,706,210
0.7 | 1,157,601 825,882 854,445 1,111,234| 1,618,174
0.8 | 1,257,572 856,753 810,371 1,107,536 1,533,351
0.9 | 1,478,347 978,806 876,916/ 1,072,485 1,572,602

Table 4.98. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.04

Population Size
P 2 4 8 16 32
0.1| 4,629,642 7,770,018 11,647,125 17,903,560, 27,920,933
0.2 | 5,247,980 6,750,838 9,547,754| 14,850,556 23,674,069
0.3 | 4,457,469 6,952,846 9,199,942 14,126,160, 21,407,914
0.4 | 4,259,277) 6,601,637 8,730,343 12,138,217| 18,882,487
0.5 | 5,486,227 7,277,284 8,258,080 12,042,307 19,197,504
0.6 | 5,716,990, 6,917,400, 9,197,221 11,749,542 19,888,730
0.7 | 6,397,717| 7,836,249 10,206,255 12,972,664 19,968,623
0.8 | 5,852,732] 9,904,828 10,942,930 15,644,613 21,342,322
0.9 | 5,476,070 12,228,213| 14,668,554| 16,358,605 27,548,492

Table 4.99. Average Number of Constraint Checksto solve a problem when a
solution was found within 2000 Iterations for problemswith tightness 0.05

4.12. Performance Comparison of DSA, SoDSA, GSoDSA, ESoDSA

Table 4.100 shows the best possible results for SODSA, GSoDSALSOIDSA
over the percentage of problems solved for any gRenNot considering the possible
affects ofP on the results makes it possible to collect the best resudtsler to compare
the impact of the genetic and evolutionary operators. For thévetyatasier problems
with constraint tightnesses of 0.01 to 0.03, there is no distinfetrelice between the
performance of the three algorithms, SODSA, GSoDSA, and ESo@§$A.tightness of
0.04, SoDSA-2 falls slightly behind the performance of GSoDSAE2ES0DSA-2, but

is able to catch up as the population size increases.

92

At a tightness of 0.05 and population sizes 2 and 4, SoDSA pertogttes than
either GSODSA and ESoDSA. This performance difference mayttieuted to the fact
that GSoDSA and ESoDSA have only half the population performing the $9&p,
while the other half is applying either the genetic or evolutiorgwgrator. At a
population size of 8, GSODSA and ESoDSA catches up to the perfoenosh SODSA as
the benefits of the genetic and evolutionary operators become morerdppat a
population size of 32, both GSoDSA and ESoDSA perform significarelyer than
SoDSA.

At the phase transition, the performance of SODSA seems tdigh#lysahead,
though not by a significant margin. The lead is taken over by GSoDSA and ESoDSA at a
population size of 32, though still not by a significant amount.

Table 4.101 shows the best average number of iterations to spheblam for

SoDSA, GSoDSA, and ESoDSA. For the easier problems witiinegses of 0.01 to

Population Size

Tightness 1 2 8 16 32
SoDSA|] 99.70 100.00[100.00; 100.00| 100.00| 100.00|

0.01] GSoDSA 100.00] 100.00f 100.00, 100.00[100.00
ESoDSA 100.00] 100.00f 100.00, 100.00[100.00
SoDSA|] 91.73] 99.30[100.00; 100.00| 100.00; 100.00

0.02] GSoDSA 99.40| 100.00; 100.00| 100.00; 100.00
ESoDSA 99.13| 100.00, 100.00| 100.00; 2100.00
SoDSA|] 67.73] 89.33 99.03] 100.00| 100.00; 100.00

0.03] GSoDSA 89.97| 98.87| 100.00| 100.00; 100.00
ESoDSA 89.27| 98.93] 100.00| 100.00; 100.00
SoDSA| 44.37] 65.13] 87.03] 96.60] 99.67| 100.00

0.04f GSoDSA 71.87] 90.33] 97.93] 99.73] 100.00
ESoDSA 70.60 90.27| 97.73] 99.47] 99.90
SoDSA| 9.13] 11.60] 15.47| 21.60] 28.83] 33.97

0.05 GSoDSA 7.10 13.70f 22.47| 35.07| 45.93
ESoDSA 7.47] 16.63| 25.77| 36.90| 46.17
SoDSA] 0.07 0.13 0.10 0.13 0.51 0.53}

0.060 GSoDSA 0.00 0.00 0.03 0.17 0.63}
ESoDSA 0.00 0.03 0.03 0.23 0.63}

Table 4.100. Best Possibleresultsfor SODSA, GSoDSA, and ESoDSA given any
value of P (Percentage of Problems Solved)

93

0.03, the performances of the three are fairly similar. Asildv be expected, both
GSoDSA and ESoDSA were able to find solutions faster onageethan SoDSA.
Interestingly, at a tightness of 0.04, GSoDSA is slightly stottean SoDSA and
ESoDSA at finding a solutions with a population size of 32. Aglaness of 0.05, the
performance differences fall back in line with those of the percenfag®blems solved,
where SoDSA performs better at lower populations and GSoDSAS0BDSA perform

better at higher populations.

The key factor to consider when comparing the results of SODSADGA, and
ESoDSA is the balance of exploration and exploitation. As whén ant colony
optimization [31] and all other forms of search algorithms, pheper balance of
exploration and exploitation can have a major impact on the lbperdormance. Too
much exploration and the search may not converge towards asphtile too much

exploitation and the search may get stuck at a local optimum.

Population Size

Tightness 1 2 4 8 16 32
SoDSA| 9.08 2.30 2.03 1.85 1.7]] 1.59

0.01] GSoDSA 1.41] 1.16 0.99 0.83 0.71
ESoDSA 1.42 1.17 0.96 0.81] 0.70
SoDSA] 171.16 21.60 3.85 3.36 3.03 2.77

0.02] GSoDSA| 24.60 3.09 2.58 2.23 1.98
ESoDSA 22.29 3.41 2.55 2.23 1.98
SoDSA] 662.99] 241.98 32.44 7.92 5.86 5.06

0.03] GSoDSA| 233.09 40.59 7.34 5.28 4.43
ESoDSA| 239.97 40.87 7.05 5.27 4.41
SoDSA| 1210.63] 828.82] 406.49| 171.91 67.64 36.37|

0.04f GSoDSA| 77490 388.67| 166.74 75.73 39.60
ESoDSA| 801.59| 393.25| 168.26 78.04 36.25
SoDSA| 1844.81| 1816.30| 1771.72| 1686.63| 1588.93] 1548.72

0.05| GSoDSA| 1923.60[1839.05| 1721.30| 1515.99] 1325.24
ESoDSA 1911.12| 1787.13| 1651.71| 1466.29] 1269.07
SoDSA|] 1999.48| 1998.48| 1998.65| 1998.49| 1992.35(1994.56

0.06| GSoDSA 2000.00[2000.00] 1999.54| 1998.96] 1992.17
ESoDSA 2000.00[1999.80] 1999.65| 1997.20| 1991.60

Table 4.101. Best Possibleresultsfor SODSA, GSoDSA, and ESoDSA given any
value of p (Average Number of Iterationsto Solve a Problem)
94

DSA/SoDSA is special in that the amount of exploration perforbhethe search
decreases over time. At the beginning of the search, when agenys are in constraint
conflicts, a high value oP gives the search a decent amount of exploration and it is
capable of possibly resolving multiple conflicts in one iteration aipre agents change
their values. A relatively smat in the beginning will slow exploration, but can turn out
to be a conservative way of resolving conflicts. This is becassthe problems get
harder, having multiple agents change their values simultaneousglystb create even
more constraint conflicts. However, as the number of agents inr@omn<onflicts is
reduced, the amount of exploration performed by DSA is also redsocest fewer
agents are expected to change their value each iteration. No mattearubilve problem
is, when the number of agents in conflicts drops to a certain level, it betavoesble to
have a higheP, in order to maintain a certain level of exploration, bec#@ugeis too
small the search will actually stagnate. Thus, for bestlts, a value oP must be
chosen such that the exploration in the very beginning of thehsesanot too wide, and
at the same time, the search is prevented from stagriabnguickly near the end. As
discussed earlier, the optimal range Poffor SODSA near the phase transition, at a
problem tightness of 0.05, is 0.4 to 0.5.

The addition of the genetic and evolutionary operators createift eanshis optimal
P range by adding more exploration and some exploitation to SoO®A.evolutionary
operator, which uses mutation only, contributes a higher levelpdbieation to SODSA
at the beginning of the search, but when the number of agents iictsodfbps below a
certain point, the mutation operator actually helps exploratt@m.example, given th&
= 0.5, when the number of agents in conflicts drops to 4, then foy éeeation, the

95

number of agents expected to change their value is 2. Howeusrlow average
individual that invokes the mutation operator will become an 88% coppheofbbest
individual, which in the current case with 30 agents, meansitthat equivalent to
changing 3 to 4 agents' values in one iteration. This behavips EESoDSA find a
solution faster than SODSA as it is able to search mucle eftectively around an area

of promise than SoDSA. Thus, by denoting the number of agents inainhstinflicts

as agent and the total number of agents agent, then the point beyond which the
evolutionary operator starts contributing exploration to the seashwhen
agen;-p,>agen.-P. The genetic operator adds even more exploration to SODSA, as
the below average individuals effectively become 47% copies of the best individual. This
exploration is much wider than that used by the evolutionary apevahtich though still

good at finding a solution, does not work as fast.

4.13. Final Comparison

Finally, it is useful to combine all the results for mdBAHE, GSoHC, ESoHC,
DSA, SoDSA, GSoDSA, and ESoDSA and compare their performaiedle 4.102
presents the percentage of problems solved for dBA and dBA badesl dkdhgside the
best of the DSA and DSA based GEPs. For problems with cimidightnesses of 0.01
and 0.02, the problems are easy enough that the difference beheegmlgorithms are
minimal. The most obvious result is how soon the performance ofa8liADSA starts
to lag behind. The effect of population size is very obvious; @bblem tightness of
0.03, the DSA based GEPs are already lagging behind at a popuiagonf 2. The

performance gap widens as the problems' constraint tightness @scréas0.04.

96

However, as the population size increases, ESoHC and GSoHiblar& solve about
twice as many problems as SoOHC, SoDSA, GSoDSA, and ESoO%aA. performance
advantage continues to show at the phase transition with populatesnasil6 and 32,

where ESoHC and GSoHC solve at least twice as many proldsntbe other 4

algorithms.

Population Size
Tightness 1 2 4 16 32
SoHd| 99.50] 100.00] 100.00| 100,00 100.00] 100.00
GSoHC 100.00] 100.00] 100.00] 100.00] 100.00
ESoHC 100.00] 100.00] 100.00] 100.00] 100.00
0.00=5opSAl 99.70] 100.00] 100.00] 100.00| 100.00 100.00
GSoDSA 100.00] 100.00] 100.00] 100.00] 100.00
ESoDSA 100.00] 100.00] 100.00] 100.00] 100.00
SoHd 9150 99.20] 100.00] 100.00| 100.00| 100.00
GSoHC 100.00] 100.00] 100.00] 100.00] 100.00
| Esorc 100.00] 100.00] 100.00] 100.00] 100.00
0.02=—S5pSAl 9173 99.30] 100.00] 100.00] 100.00 100.00
GSoDSA 99.40] 100.00] 100.00| 100.00| 100.00
ESoDSA 99.13| 100.00] 100.00| 100.00| 100.00
Sord 8053 95.97| 99.77] 100,00 100.00] 100.00
GSoHd 99.97| 100.00] 100.00 100.00| 100.00
| Esonc 99.83] 100.00] 100.00| 100.00] 100.00
0.03—SopSAl 67.73 89.33] 99.03| 100.00] 100,00 100.00
GSoDSA 89.97| 98.87] 100.00 100.00] 100.00
ESoDSA 89.27] 98.93 100.00 100.00] 100.00
Sond 7093 8950 9823 99.77 100.00] 100.00
GSoHd 95.10 99.90] 100.00 100.00| 100.00
ESoHC 94.10] 99.80] 100.00] 100.00] 100.00
0.04—SopSAl 4437 6513 87.03] 96.60] 99.67 100.00
GSoDSA 71.87] 9033 97.93 99.73] 100.00
ESoDSA 70.60] 9027 97.73 99.47] 99.90
SoHd 540 9.40] 16.17] 24.80 3547 49.73
GSoHC 820 2000 6123 8450 93.93
[ESoHC 7.40] 2850 64.30 87.37] 95.40
0.09—SopsAl 9.13 11.60] 1547 21.60] 28.83] 33.97
GSoDSA 710 13.70] 2247 3507] 45.93
ESoDSA 7.47] 1663 25.77] 36.90] 46.17
Sond 000 0.00 000 000 003 023
GSoHC 0.00 023 080 110 230
[EsoHc 013|043 070 133 270
0.080—sobsAl 0.07 013 010 013 051 053
GSoDSA 0.00] 000 003 017 063
ESoDSA 0.00 003 003 023 063

Table 4.102. Comparison of Percentage of Problems Solved between the
dBA and DSA variations

97

Table 4.103 presents the average number of iterations needed to gobldean.
Here, the DSA and DSA based GEPs have the distinct advantageef for problems
with constraint tightnesses of 0.03 or less. The ability of 8é DSA based GEPs to
change more than one variable per iteration works to their adeamteaking them up to
twice as fast as the dBA and dBA based GEPs when findiofuaos. However, this
speed becomes a handicap as the problems get harder. Withgrakdems, it becomes
less desirable to simultaneously change more than one varableteration, as this can
create more new conflicts than it resolves.

Another possible reason for the poor performance of the DSA andoBSA GEPs
when the problem gets harder is the algorithm's inability litle.s DSA is solely
dependent on the chance that more than one agent will change itsoveseape from a
local optimum. However, for DiISACSPs, it is very likely thhé search will reach a
point where only one agent is in a constraint conflict. Thusdbasehe rules of DSA-
B, only that agent is allowed the option of changing. However, if heeva that agent's
domain causes another agent to be in a constraint conflict ovedbel one it is in, then
the search becomes trapped in a local optimum. In thesisits, the mdBA will
simply “slide” and have a random variable change its value whiledajown breakouts.
The added population approach, used by SoDSA, helps resolve thiosig@iiewhat,
and the addition of the genetic and evolutionary operators furthprtbaleduce the
possibility of such a situation occurring.

Though the genetic and evolutionary operators are able to enhancefdinengece

of DSA on harder problems, it is still insufficient to beat tensistency of SoHC,

98

Population Size

Tightness 1 2 2 8 16 2
Sond 1780 611 487 383 293 228
GSoHd 560 426 338 263 200
ESOHC 550 411] 307 232 168
000—sopsAl 908 230 203 185 171 159
GSoDSA 141 116 099 083 0.71
ESoDSA 142 117 096 081 0.70
Sond 18752 3L76] 1309 1i28] 973 _ 855
GSoHd 16.00] 1174|962 822 7.12

| EsoHo 16.60] 11.32] 882 7.09 589
0.02=SopsAl 17116 2160 3.85 3.36] 3.03 277
GSoDSA 24.60] 3.00 258 223 1.98
ESoDSA 2220 3.41 255 223 1.98
Sond 437.11 12158 34.97] 2357 19.60] 17.11
GSoHd 5253 28.60] 20.14] 16.15 13.70

| Esono 6173 2855 18.71] 1436 1L71
0.03—SoDsAl 66299 241.08 3244] 7.92] 586 5.6
GSoDSA 233.00] 4059 7.34] 528 4.43
ESoDSA 2390.97| 40.87| 7.05| 527 441
Sond 89144 527.04] 261.78] 139.42] 83.40| 53.67
GSoHd 29354 167.14] 77.83] 46.06] 32.36
ESoHC 548.64] 17458 7559 4167 28.26
0.04—SoDSAl 1210.63 828.82] 40649 171.91 67.64 36.37
GSoDSA 774.90 388.67| 166.74] 75.73 39.60
ESoDSA 80150 393.25| 168.26] 78.04] 36.25
SoHd 194543 189877 1814.74] 1702.74] 1542.41 1334.73
GSoHd 1012.67| 165558 1186.17] 692.19 392.25

[EsoHd 1010.05| 1675.00] 1131.62] 634.82] 349.35
0.05—SoDSAl 1844.81] 1816.30] 1771.72| 1686.63 1588.93 1548.72
GSoDSA 1023.60| 1839.05| 1721.30] 151599 1325.24
ESoDSA 1011.12| 1787.13] 1651.71] 1466.29] 1269.07
SoHd 2000.00] 2000.00] 2000.00] 2000.00] 1999.49] 1997.79
GSoHd 2000.00] 1997.69| 1989.41 1982.33 1966.50

| EsoHd 1008.10| 1995.00] 1988.67| 1980.96 1961.25
0.06—SoDSA| 109948 1098.48] 1098.65| 1098.49| 1992.35 1994.56
GSoDSA 2000.00] 2000.00] 1999.54] 1998.96| 1992.17
ESoDSA 2000.00] 1999.80| 1999.65| 1997.20] 1991.60

Table 4.103. Comparison of Average Number of Iterationsto Solve a Problem
between dBA and DSA variations

ESoHC, and GSoHC. However, when the problems are relativeptes the DSA and

DSA based GEPs offer a faster alternative to SoHC, GSoHC, and ESoHC.

99

4.14. An Adaptive SODSA and the BreakOut List

As mentioned earlier, varying the valuePfor the DSA and DSA based GEPs may
possibly increase the performance and remove one parametecdrmideration when
implementing the algorithm. It is interesting to bridftpk at possible ways of adapting
thep value throughout the search process to see if the performance can bedncidese
possibility and impact of adding the breakout management mechamisnmSoHC into
SoDSA is also considered.

To see if performance can be increased for the SODSA by hawirepaptiveP
value, a version of SODSA can be created with an adaptredue based on a simple rule
and then tested on the same set of randomly generated DisATRE#main objective of
implementing this adaptive value is to keep the search from stagnating or remaining in
one location too long due to the low probability of change and taridy mimic the
behavior of dBA and SoHC, to a certain extent, they are knowerform well. So, for
this test, simply leP equal the inverse of the number of agents currently in a constraint
conflict. This guarantees that, on average, at least one &glecihange its value every
iteration, even when only one agent is in a constraint conflittis effectively makes
DSA behave similarly to dBA. The value is updated every iteration after the number of
conflicts are communicated. For a population, every distributed thdiVpossesses its
own P value. For comparison, the results from SoDSA with a fRe@dlue of 0.5 were
arbitrarily selected. The percentage of problems solved can be seen in Table 4.104.

The results show that adaptive SODSA (ASoDSA) can only, at besth the
performance of the SoDSA with a fix&lvalue. At a problem tightness of 0.05, the
SoDSA with fixedP value performs significantly better than ASoDSA at all popaortati

100

sizes. Table 4.105 shows the average number of iterations neddetiacsolution and

further reinforces the performance edge of the fixed SODSA. With tlepioe of when

the problem tightness is 0.01 and the population size is greater2th&oDSA is

significantly faster than ASoDSA when it comes to finding a solution.

The adaptiveP value becomes both an advantage and a disadvantage to ASoDSA.

Near the end of the search, when the number of agents in casffielatively small,

ASoDSA will converge or move around much faster than the standd@8/4 since at

least 1 agent will change its value each iteration. Howdverway selected to adapt the

Population Size

Tightness 1 2 4 8 16 32

Adaptive] 99.78] 100.00] 100.00] 100.00, 100.00] 100.00

0.0 Fixed 99.67] 100.00] 100.00] 100.00| 100.00] 100.00

| Adaptive| 89.67 99.11] 100.00] 100.00] 100.00] 100.00

0.02—Fixed 91.50] 98.87| 100.00] 100.00| 100.00] 100.00

| Adaptive| 67.000 88.22] 9833 100.00] 100.00] 100.00

0.03Fixed 6520 8853 98.63 100.00 100.00] 100.00

0.od_Adaptivel 36.78] 5511 8000 0467 99.44] 99.78

: Fixed 41.43 62.93 84.03] 9643 99.67 100.00

1 Adaptive] 2.22] 4.00] 856 1178 20.56 30.22

005 —Fiied 9.13 11.43] 1547 2057 28.83 3193

| Adaptve] 0.00] __0.11] 0.0 022 0.44] 056

006~ Fixed 007 007 010 013 030 053
Table 4.104. Comparison of Adaptive SODSA and Fixed SoDSA (p=0.5)

Population Size

Tightness 1 2 Z g 16 32
Adaptivel 1114 490 356 274 207 158
00—Fed 1212 232 361 306 265 234
| Adaptve] 222.85 32.30] 11.87] 961 _ 810 _ 6.89
0.0 Fixed 179.85] 30.92 6.60] 558 485 433
| Adaptie] 700.13] 275.42] 67.04] 25.08] 20.48] 17.36
003 Fixed 717.31] 254.15] 44.86] 11.90] 9.30] 7.84
0.0l _Adaptive] 1450.11] 1160.72 70615 379.69 17275 108.8
: Fixed 127145 879.46] 467.86 188.22] 74.11] 38.85
| Adaptive] 1977.80] 1962.34] 1000.23| 1871.73 1767.32| 1629.05
0.0 Fixed 1844.81] 1816.42 1772.94] 1697.64] 1588.93] 1569.27
.o _Adaptive 200000 1998.71 2000.00] 1997.84 199567 1994.79
: Fixed 1999.61] 1999.23| 1998.65| 1998.49 1998.12 1996.00

Table 4.105. Comparison of Average Number of Iterationsto Solve a problem
between Adaptive-SoDSA and fixed SoDSA (p=0.5)

101

P value also effectively impacts the amount of exploration dzat be performed
compared to the fixedP value implementation. The inability for multiple agents to
change their values slows down the search at the beginning, shwhy for easier
problems the standard SoDSA is faster at finding a solution. For slightly harder problems
(tightness of 0.04), the adapti® value creates a situation that is the opposite of
expectations.

The way theP value is adapted effectively turns DSA into a simple Hitkler in
the average case. This means that it will lock onto a gmadowards the closest local
optimum and go straight towards it. Then, once the search psegrbsyond the point
where the number of agents in conflict reduces to a certaeh kere is no way for the
ASOoDSA to escape the local optimum. Consequently, for an ASpB&h dCS will
shoot for the closest local optimum and effectively get stuckethd-or the standard
SoDSA, the ability for multiple agents to change their valiresiisaneously means that
it has a higher probability of avoiding this result, although waitety the search will end
in the same way. The result is that the standard SoDS/Aa agher probability of
finding a local optimum that is the global optimum, when compared to ASoDSA.

The next question therefore becomes whether a breakout list valirhprove the
performance of SODSA and ASoDSA, since this implementationSWDSA seems to
have run into the same problem many iterative improvement #garisuffer from of
being trapped at a local optimum. The addition of a breakout distdaalso mean that
the distributed individuals will actually share some informa@out the search space

instead of searching independently. The testing is primarilysixt on problems of

102

tightness 0.04 to 0.06, as these problems are hard enough for a bresikouinbke a
difference.

Tables 4.106 and 4.107 show the results from the test runs on staoB&4 @ith
and without a breakout list. Statistical analysis was performed oagdtksrto determine
if the differences were significant, but the differences between SoD$”andt without a
breakout list were not statistically significant except févew the problem tightness was
0.06 and the population size 16 and 32. In the two exception, CBeESA with
breakout performed better. However, in general, the performance remaihecgext.

Moving on to the performance differences between ASoDSA with without a

breakout list, the results are shown in Tables 4.108 and 4.109. Tdrentts between

the performances are even closer than the differences IpeSe&SA with and without

breakout. Statistically, adding a breakout list does not changgedtiermance of
ASoDSA.
Population Size
Tightness | BreakOut 1 2 4 8 16 32
with| 37.33 60.11] 82.33] 93.00] 98.67] 99.78
004 Withowt| 4143 6293 84.03] 96.43] 99.67 100.00
_ With 4.22 9.22 15.33[22.89] 31.22] 35.78
00y Withowt| 9.13] 1143 1547 2057] 2883 3L93
| With 0.11] 0.00 0.00 0.33 1.44 1.89
0080 Withou| 007 007 _ 010 013 030 _ 053

Table 4.106. Comparison of SODSA, with and without a breakout list, over the
per centage of problems solved within 2000 iterations with p=0.5

Population Size
Tightness | BreakOut 1 2 4 8 16 32
With| 1346.12] 939.17| 497.04] 25420 96.18 46.99
0.04\Without| 1271.45| 879.46] 467.86| 188.22] 74.11 38.85
- With| 1954.93 1898.81] 1822.47| 1711.27| 1579.58 1450.77
0.05\ithout| 1844.81] 1816.42 1772.94] 1697.64] 1588.93 1569.27
- With| 1999.22] 2000.00] 200000, 1995.77| 1983.01] 1976.06
0.06\without| 1999.61] 1999.23 1998.65 1998.49] 1998.12 1996.00

Table 4.107. Comparison of SODSA, with and without a breakout list, over the
average number of cyclesto solve a problem with p=0.5

103

Population Size
Tightness | BreakOut 1 2 4 8 16 32
With| 40.67] 6489 8167 9211 96.78] 99.11
0.04—Withowt| — 36.78] 55.11] 80.00 94.67] 99.44 99.78
i With 2.2 278 822 11.44] 17.44 25.00
0.05Without 222 400 856| 1178 20.56] 30.22
P With 011 000 000 011 _ 056 0.78
0.06—Without 000 011 000 022 044 056

Table 4.108. Comparison of ASoDSA, with and without a breakout list, over the

per centage of problems solved within 2000 iterations with p=0.5

Population Size
Tightness | BreakOut 1 2 4 8 16 32
With| 1387.54] 1004.09 674.11] 387.92] 220.09] 119.33
0.04—\Without| 1450.11] 1160.72] 706.15| 379.65] 172.75 108.18
- With| 1979.11] 1971.63 1908.31] 1874.20] 1788.28] 1684.05
0.0 \Without| 1977.89] 1962.34] 1900.23| 1871.73| 1767.32] 1629.25
] With| 1998.89] 2000.00] 2000.00] 1998.70] 1992.04] 1995.38
0.06Without| 2000.00] 1998.71] 2000.00] 1997.84] 1995.67 1994.79

Table 4.109. Comparison of ASoDSA, with and without a breakout list, over the
average number of cyclesto solve a problem with p=0.5

The reason a breakout list does not significantly improve the paafuare of DSA
(SoDSA) is due to the way DSA chooses the agent to change its esheeially at local
optima. Unlike mdBA, which supports “sliding,” the DSA only allows agents in conflicts
to change. Because DSA is designed to actively reduceeaalye conflicts, a behavior
similar to thrashing in backtrack algorithms can occur, @sfy¢ when solving
DiSACSPs. Because an agent in a constraint conflict canaatilely try to change its
own value to resolve it, a situation may occur where the valsigranent of agenX; is
creating conflicts with other agents, but locally it seeconflict as the constraints are
asymmetric. Thus, the other agents try to resolve the asnfimong themselves until
either they find a solution or a value assignment in another &igggers a constraint
conflict in X;, which finally causes it to change its value and resolve athtstanding
constraint conflicts. This is less likely to happen for a mdBAggentX has a chance of

changing its value whenever the search hits a local optimuroauBe of the difference
104

in behavior at a local optimum, the breakout list has less offect ar no affect on the
performance of DSA/SoDSA than it does for mdBA/SoHC.

Though there are many other ways of modifying and utilizingotieekout list and
the adaptive® value that could potentially improve the performance of DSA and SoDSA,
it is beyond the scope of this research, which is more conceitiethe implementation

of genetic and evolutionary operators.

105

CHAPTER 5

THE SENSOR NETWORK

5.1. Introduction

This chapter, presents the sensor network and its architec®orae issues related
to the usage and implementation of a sensor network, like esffrgency [1, 11, 25,
44,71, 81, 104, 128, 138, 149, 163, 178] and packet routing [1, 11, 12, 68, 71, 138, 150,
151, 175, 178], will also be discussed. The sensor network tracking [3,48, 37, 99,

132] and sharing problems [38] will then be stated in greater detail.

5.2. A Sensor Network

A sensor network can best be described as a collection désghe connected, low
cost pods containing various sensing devices that can be deployed epecifc
geographical region for any number of purposes [1, 11, 151, 176]. Exaofgessor
network applications include monitoring small localized changeakdrenvironment [1,
11, 151, 176], target tracking [3, 7, 30, 46, 87, 99, 132, 176], and geiatsatollection
[1, 11, 151, 176]. A sensor network, as a tool, is scalable, radmstcan be highly
efficient [1, 11, 151, 176].

Each sensor pod within the sensor network usually contains @sgrghnsceiver,

multiple sensors, and some sort of power supply [1, 11, 151, 176]. sifimdicity of

106

construction makes them small and low in cost. However, duslinits the tasks they
can perform. Individually, each pod cannot collect much data, $u aollective
network, the sensor network can collect large amounts of fine deda as sensor pods
are usually densely deployed [1, 11, 151, 176]. Pods communicate tlihmugke of
wireless communication, primarily broadcasting [1, 11, 151, 176]l data that is
collected is forwarded from one pod to the next until it neacthe sink or base station,
set up to collect and analyze all the information.

The sensor network's scalability comes from the fact that padsbe added
indefinitely to further increase the granularity of the datéect#dd. The density of pods
and the use of data forwarding makes the network robust andntotergod failures,
which usually occur frequently due to possible mechanical or power failure. The hopping
of data from one pod to the next instead of sending informationtlgliec the base
station is much more power efficient [1, 11, 25, 68, 151, 176], gsaiver requirement
for sending data directly from one node to another, without going thr@umgh
intermediate nodes, increases exponentially in relation tplipsical distance between
the two nodes.

The study of sensor networks is currently a promising field &faret because of
the potential it offers as a tool and the various issues that arise from its tauusi¢a76].
The problems range from the implementation of software to theraootish of the
hardware. There are power issues [1, 11, 25, 44, 71, 81, 104, 128, 138, 1498163,
networking issues [1, 11, 12, 100, 119, 128, 140, 155, 161, 176, 177, 178], and, more
practically, issues involved with adapting it for specific aggilons [176]. This research
focuses on problems that arise at the application layer pertaining to the sdf@vaes

107

on the sensor network. Software solutions to the sensor networkgslia8] and
tracking [3, 7, 30, 46, 87, 99, 130, 176] problems will be explored usingetheenetic

and evolutionary protocols.

5.3. Sensor Network Issues

Power is the primary constraint limiting a sensor network [1,151, 176]. Since
each sensor pod usually carries nothing more than a battéryaviiked life span, the
problem has been how to conserve energy while maintaining an aaeepérformance.
The single most power consuming task a sensor pod needs to perfoommunication
[1, 11, 151, 176], and topology and connectivity are the two primargréaeffecting

power consumption for communication [100, 119, 128, 155, 160, 178].

The problem of minimizing power use for communication can be solved by reducing

the effective communication radius [155] of the pod and/or reducing the amounfiof traf
passing through the pod. Though reducing the communication radiugffeetive way
of reducing power consumption, there is the concern of losing network connectikigy. T
fear is that one pod failure may sever communications betwgewsup of pods and the
base station. Also, a pod whose failure will cause the nettwddse connectivity will

also be inherently more prone to failure, as more trafficpaigs through it to reach the
base station. These concerns make the problem of finding an effenigyntetopology,

that minimizes the power requirement for sending a packet betavgetwo given nodes
in the network nontrivial. It has also been shown that such a topology will be auminim

spanning tree and thus is an NP-hard problem [68].

108

Broadcasting is not the most energy efficient way of commungatata [1, 11,
151, 176] as the amount of packet traffic generate&d(ii), which is why various other
routing methods have been devised for more energy efficient roulihgse methods
include direct diffusion [1, 11, 151, 176] and rumor routing [1, 11, 151]. 17Be two
main strategies either call for a pod to ignore a packeplatety if the pod is not on the
packet's direct/established path towards the base stationquirerat to aggregate
information from multiple incoming packets into a single outggagket to reduce the

number of active packets while ensuring the same amount of information is propagated.

5.4. The Sensor Tracking Problem

The tracking of mobile objects with a sensor network is a fundthepplication
[176]. Though this is often approached as a sensor network problem [3, 7, 30, 46, 87, 99,
130, 176], here it will be examined from a distributed CSP poimieyt, as formalized
by Bejar et al [7], who referred to it as SensorCSP.

The sensor tracking problem involves the monitoring and following of mgovi
targets within the coverage area by a network of stationaonauious sensing devices
[7, 108, 176]. Each sensor pod has a Doppler radar that is only eagathitecting
relative distance and the general direction of a target fteaif {108]. Thusk sensor
pods must work together and share distance and relative aliréctormation to be able
to triangulate and accurately pinpoint the actual position oftalget. To effectively
track a targetk of all sensor pods that can detect the target must be assigned tatifialow
target, but at the same time, theksesensor pods must also be able to directly
communicate with each other to share the relative positionf7aif8]. A target is said

109

to bek-trackable [7], if, out of all the pods that are able to detedt pods that are
capable of direct communication can be assigned to track it.

The sensor tracking problem is a distributed resource albocptoblem, since the
data that is collected about the target is distributed amaitigpia sensor pods. Along
with resource requirements to accurately track an objeete tare also communication
constraints among sensors. Bejar et al [7] showed that tisi€&:SP formulation of the
sensor tracking problem is NP-complete and suggested the distributed CSP solvers
such as asynchronous backtracking or distributed backtracking [7] to solve it.

To further illustrate the sensor tracking problem, Figure 5.5epts a tracking
scenario. The figure shows a total of 9 sensor pods and lieassead to represent the
communication links between the pods. Note that not all pods canwuoate directly
with each other. Assuming that the sensing distance of a a@duivalent to its
communication distance, target A can then be detected by pods 4, 5, 7, and 8, while target
B can be detected by pods 1, 2, 4, and 5. If 4 sensor pods naidelie detect a target
and directly communicate with each other in order to propedgk a target (a 4-
trackable configuration), then a problem arises where targatsd cannot be tracked
simultaneously. However, if a 3-trackable solution is all thateeded, then a possible
solution would have target A tracked by pods 5, 7, and 8 and Grgatked by pods 1,
2, and 4.

This research focuses on solving a specific version of the SensorCSP prdtgesn w
targets need to be 3-trackable using the new evolutionary andcgprabcols. For
testing purposes, assume that all sensors have perfect yisabidltcan detect anything
within their area of deployment. Whether two pods can dyrectimmunicate is

110

N

XX
X
T ® ©

Figure 5.1. Sample Sensor Tracking Scenario

randomly determined based on a set communication density. iz iagplementation

and the results obtained will be presented in the next chapter.

5.5. The Sensor Sharing Problem

In general, there are three models for sensor network operdli6@f namely
continuous, event-driven, and user-initiated. A sensor network underottigmuous
model will start collecting data as soon as it is deployetiantinue until all pods falil.
An event-driven sensor network will idle until a specific phenomenon occurs orioandit
is met. At this point, the network starts collecting infoloratuntil the event ends
(sensor tracking). A user-initiated sensor network wik idhtil a user manually starts
the data collection process and will continue collecting datathetiuser tells it to stop.
The sensor network sharing problem arises from a user-initiated model.

The sensor network sharing problem [38] involves the allocation aktinsensor
resources to satisfy as many user requests for sensors sislgposEach sensor pod

containsm different sensors and is capable of turning on or off any orfeeof sensors.

111

However, to reduce power consumption of the individual pods, assumentpaine of
them sensors can be turned on in a sensor pod at any given time. Thus, msecgieat
up ton sensors from the sensor network to collect data, wheréhe number of pods in
the network [25]. Each request will also have a time valsecated with it that
specifies how much sensor time must be allocated to the requashpletely satisfy it.
When a user places a request¥@ensors, the network would then need to assjgods
to have the specified sensors turned on [38]. In addition i&fysad) the user's sensor
needs, the network must also satisfy sensor constraints fartheof internal allocation
policies of each pod [38]. As more users make requests (and old reapeestsnpleted),
the network will need to dynamically reassign sensors among gw@s to satisfy as
many user requests as possible while not violating any of theaht@iocation policies
of the sensor pods.

For example, assume a sensor network with nine sensor pods, edutrepod
carries the same three types of sensor. When there aoststanding requests for
sensors, all pods are inactive and all the sensors are turnedVb#n a user makes a
request for sensors, the request is broadcast from the sirlkhe abds in the network.
Upon reception of the request, the pods will “wake up” and negdiatet of sensor
assignments to satisfy the requests. Since each pod cahawayone sensor active at
any given time, with a sensor network of nine pods, a maximunmefsensors can be
requested by a user. A request for sensors made by a user can be sgbbgsarsensor
request vector, where the number of components of the vector is equivalent to the number
of types of sensors that are availalie, Each component of the vector will then
represent the number of sensors of that specific type requieda vector of <1, 3, 0>

112

represents a request for 1 sensor of type 1, 3 sensors of gk ribne of type 3. To
satisfy this sensor request vector, a total of four sensor pod$eugshe active and turn
on the proper sensor. Along with the sensor request vector, ezpekst also contains a
duration valuef, which specifies how long the sensor(s) requested must stegdton.
Assuming that = 10, the full user request here would then be {<1, 3, 0>, 10}. ece
sensor and duration requirements are met, the request compigtespares. If there are
no more requests active, then all sensor pods return to thggivabrinactive state. Since
there are only nine sensors pods, a sensor request like <5, 2, 3> cannot be accepted.

One of the benefits of a user-initiated sensor network isftsrently longer life
span. When there are no user requests for resources, the entire metmairis dormant,
thus requiring each pod to expend little to no power. Onceja@ese is issued, the
network wakes up and the pods negotiate a means of satisfyinggtiest. When a set
of sensor assignments that satisfies the request is found, tlu tles podswho are not
assigned to have an active sensor can once again idle. sThig imainly for those not
on the forwarding path of data from the active pods to the sink.

The sensor sharing problem can be seen as a general formseh8w tracking

problem. Instead of tracking specific targets, the sharinggrolmvolves the allocation
of sensor resources for more general purposes. Similarlyeriserssharing problem can

also be modelled as a DisCSP.

113

CHAPTER 6

THE SENSOR TRACKING PROBLEM

6.1. Introduction

This chapter presents the implementation and testing of the seaangrproblem.
Specifically, the genetic and evolutionary protocols are testeding them to solve the
3-trackable problem. For comparison, the modified DSA and the li2SAd GEPs from
Chapter 4 will also be used. Before the results are presantis first necessary to
discuss the details of the implementation, the mapping of genaticegolutionary

protocols to the problem, and the testing methodology.

6.2. Problem Implementation

The details of the sensor tracking problem have been discussedl d4eves in
previous chapters. Here, the focus is on the details of thenmaptation, along with the
assumptions made for the testing of the GEPs.

As mentioned in the previous chapter, the sensor tracking probleeaisd as a
DisCSP, as formulated by Bejar [7]. The first assumpsahat all the pods are capable
of detecting everything within their region of deploymentowdver, though pods have
perfect visibility, direct communication between pods is nargoteed. As with the
asymmetric constraints used in Chapter 4, the communicatiordéetpods will also be

asymmetric. Given two podsandB, they can directly communicate with each other if,
114

and only if, A can communicate wittB and B can communicate withA. The
communication arcs used to determine whether pods can commumit&ie generated
based on an arc density, which is equivalent to the constraint density used in Chapter 4.
When a pod is not tracking a target, its radar will be $wicto the off state to
conserve energy. To accommodate this, the value 0 is resertiexlvariable domain to
represent the off state. The values in a variable's domdlirthws represent the ID
number of the target currently being tracked. So, with a donmeno$ 6, excluding O,

the network as a whole can track up to 6 targets simultaneously.

6.3. TheTargets

Since all the sensor pods are assumed to have perfect visiitigye the virtual
target is placed physically is not considered. It is assuimadthe target is inserted
within the region of deployment of the sensor network. The tavg#tappear at fixed
intervals and will remain until they have been tracked fepecified amount of time.
The arrival time between targets and the tracking time redj@iar each target are varied.
Note that a target is being tracked if, and only if, eya8tlpods that can directly

communicate with each other are assigned to monitor it.

6.4. Theoretical Analysis

Since the question of whether two pods can communicate with ethen is
determined probabilistically by a communication density, theigtsea communication
density at which there is no possible configuration by whitdrget can be successfully
tracked. Similar to the way the phase transition is cakdiléor the general randomly

115

generated DiSACSP, the process starts by estimating thieenwhpossible solution§
For only one target that must be 3-trackable, the number of possiblefMagsking this
target withn sensor pods, assuming all pods can directly communicate withotiaer,
would be:

|
S=Cn,3=m (6.3.1)

This, however, does not take into consideration the probabilitywloapdds may not be

able to communicate with each other. Assuming that the prdigahiit any podA can

communicate with pod is a and assuming that this communication is asymmetric, the

probability of having 3 pods that can directly communicate witth edber is > .

Note that if the communication links between pods were to be symemthen the

probability would instead be” "

Combining this with 6.3.1 gives the expected
number of ways to track a target with exactly 3 sensor peils, the probability of
communication between two pods being

n! 6
m'a (6.3.2)

S=C, ,a** "=
Based on 6.3.2, this can then be extended to cover the caseingteael of one target,
two targets need to be tracked. Once again, the communidatnsity is ignored. If all
pods can directly communicate with each other, then the nuofibeays to track two
targets in a 3-trackable configuration witlsensor pods is:
S=C, 3C 13 (6.3.3)
Next, again consider the communication density. The formulafi@d3.2 reveals that

the probability of any set of three randomly chosen pods being aldenmunicate

directly with each other isy®, where o is the probability that pod\ can directly
116

communicate with pod. So, to obtain the average number of configurati@dgor
tracking two targets in a 3-trackable manngt, must be factored in for every three pods

chosen, giving the following:

n! 12
313! (n—6) (6.3.4)

Based on 6.3.2 and 6.3.4, it is then possible to deduce that the dxpaatber of

— 6 6_
S=C, 50 C 0=

solutions,S for trackingx targets withn sensors pods and a communication density; of
in ak-trackable configuration is as follows:

n! x-k-(k=1)

> - [xK]

(6.3.5)

Based on 6.3.5, the communication density at which there is onlgxpeeted feasible

solution would be:

_ n! D)
a_[(k!)![n—(x-k)]!] o (6.3.6)

Equation 6.3.6 predicts that the communication density at which theeprabltoughest

for tracking 10 targets in a sensor network of 30 sensor podsnaad3ttrackable

configuration is around 0.388. This will be supported by the test results presented next.

6.5. Test Method

A total of 30 sensor pods were used to test the sensor trgmkdhigm. Since the
focus here is on the 3-trackable problem and 30 sensors pods &aa tnagimum of 10
targets, the domain size was therefore increased from ¢vweps size of 6 to 10. The
communication arc density varied between [0.4, 1.0] and theasgenerated using the
same method as the random DisACPs in Chapter 4, with thptexcéhat the constraint

tightness was 0 and the constraint density was equal to the arc density.
117

The virtual targets were inserted into the network at fixeervals and each had a
specific life span. The time unit used was the cycleatittns of the algorithm being
executed. The target drop interval used for testing was {1, 2sd}a new target
appeared every 1, 2, or 5 iterations. The amount of time tkegat needed to be
tracked also varied and was set to either {10, 50, 200}, wépatifies the number of
iterations that a target needed to be successfully trackiedebdisappearing. The
protocols being tested ran a total of 1000 iterations.

Based on the differing combinations of arrival times and [fns, it was possible
for more than 10 targets to be inserted into the networksudh cases, it was assumed
that the first 10 targets in the queue would be active while the rest wstanaitby, in the
queue. Thus, queuing time was also being meassured, and wasdritebdeas short as
possible. Given the presence of queuing, the insertion of$dardeta network becomes
similar to placing a explicit tracking request into the networkus, the number of target
tracking requests that could be satisfied during the 1000 iterakeoution time also
serves as a very important metric.

The thrid metric that was measured and collected was théeruoh stable cycles
within the 1000 iterations. A stable cycle is defined as oneendikactive targets (up to
10) are being tracked successfully. This also implies thatweo sensor pods that are
assigned to track the same target will be able to directlyrzonicate with each other. A
stable cycle has the benefit of saving energy as no reconfgurati reassignment of
sensor pods needs to be performed. Ideally, a reassignmeatkfidgrtasks should only
occur when either a new target becomes active or when are datiget has been
satisfied.

118

The protocols and algorithms that were tested on the sensorngapkbblem
included the dBA based GEPs, SoHC, SoDSA, and DSA based GHfespopulation
size was set to 32, as this gave the best results. Fogetigtic and evolutionary
operators used, the settings for crossover and mutation ratesh@esame as those used
in Chapter 4. For the DSA and DSA based GHEPwsas set to 0.1 as this permits no

more than 3 agents to change their value each iteration.

6.6. Results
The results from using SoHC on the sensor tracking problem arenfedsin

Table 6.1. As expected, when the communication density drops, the mahdiable
cycles decreases, the average queue time for a request escrand the number of
satisfied tracking requests decreases. The ideal numb&mi{um number) of stable
cycles, average queue time and number of requests satis@edlsar included as
reference metrics for the performance. The maximum numbealdescycles is based
on the ideal assumption that each new tracking request caasblread in a single
iteration. Based on the fact that the sensors are taggestic, as long as the number of

targets that need tracking stays the same, the networkreggoo reconfiguration.

Consequently, the ideal number of stable cycles is sinipﬁlQO—[MlN (1O,TL/TA)],
whereT, represents the life span of a target ands the arrival interval for the requests.
The minimum average queue time is simply the interval between eactegeest, while
the number of requests satisfied is also a functioh.of

For the parameter settings that eventually have at leashd Gn@ximum) tracking

tasks in the queue, the number of stable cycles is fairlyasimbince any set of sensors
119

can track any target, once a stable configuration is foungsmng out one target for
another will not affect the stability of the network as this dusequire a reassignment
of tracking tasks. As the results show, however, this is only trygafameters that have
a life span to arrival time ratio of 10 or above. The nunolbé¢otal iterations subtracted
by the maximum number of possible stable cycles gives the avewagger of iterations
needed to set up the initial configuration for tracking the mara 10 targets with the
network. So, for SOHC, at a communication density of 1.0 it takest 20 iterations to
find a stable configuration to track 10 targets. At a coamoation density of 0.8, the
number of iterations increases to around 60, while at 0.6, the numiteratibns varies
from 300 — 400 iterations. Approaching the point where only one feasiblition is
expected at a communication density of around 0.388, SoHC is unabiairitain a
stable cycle except for when the average number of activetdany the queue drops
below 10. This supports the previous prediction that the hard probldhiewrhen the
communication density gets close to 0.388. It should be notedhhsed on the
definition of a stable cycle, not being able to maintaitable cycle does not mean that
no 3-trackable configuration for a target exists. Rather, pli@® that no 3-trackable
configuration can be found such that the current set of targmis be tracked
simultaneously.

The parameter setting with the worst performance, in terratabfe cycles, is when
the arrival intervals of the targets is 2 iterations and dhgets have a life span of 10
iterations. The low number of stable cycles is due to the cunséed to reconfigure
sensor assignments. Since SoHC is only able to change tgenasst of one agent in
any given iteration, this implies that it would take at least 3 iterationedafB-trackable

120

configuration for any target. This, in combination with tiheval interval of the targets
and their life spans, creates a situation where for the ityaggrthe 1000 iterations, the
number of targets that must be tracked fluctuates betwee.5 Tihe constant need to
reassign a sensor creates the large number of unstable.cybiecontrast, for the
parameter setting with arrival intervals of 5 and life spains0, the number of targets
being tracked at any given time is much fewer and more cunstdich makes it

possible to maintain a much larger number of stable cycles.

The results of applying the GEPs (GSoHC and ESoHC) to thkirtgaproblem
using the same parameters are shown in Tables 6.2 and 6.8eeAsn Chapter 4, on
randomly generated DiSACSPs, ESoHC is able to find solufaster than GSoHC,
which in turn is faster than SoHC. The same trend is Beee for the number of stable

cycles. ESoHC is able to maintain a higher number of stable cycles smabli ito find

Arrival intenval 1 1 il 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200
Density Stable Cycles

0.4 0.00 0.00 0.00 0.06 0.00 0.00| 280.85 1.23 1.23
0.6| 640.38| 606.18] 623.83] 561.52| 673.30] 597.71| 933.68 643.32] 640.75
0.8 931.00] 932.51] 932.65(645.14| 931.85 932.09| 977.89] 929.44| 930.52
1.0 970.97] 970.96| 970.96 724.63] 970.96] 970.97| 989.00 970.97| 970.96
Ideall 990.00] 990.00] 990.000 995.00f 990.00, 990.00] 998.00 990.00] 990.00
Awverage Queue Time
0.4] 42.96] 221.68 759.35 44.22| 227.04) 760.21] 42.69 217.95 727.70
0.6| 11.44] 5823 231.49 11.98 56.25 232.83] 10.35 56.34(226.83
0.8 10.28 51.41) 206.62(10.63] 51.100 205.19| 10.07] 50.63] 202.92
1.00 10.15] 50.78] 203.72f 10.23] 50.45 202.12| 10.04 50.15 200.72
Ideall 10.00[50.00] 200.000 10.00f 50.00, 200.00] 10.00] 50.00] 200.00
Requests Satisfied
0.4] 247.68] 4295 7.04 242.09] 41.96 6.62| 177.25 45.15 7.78
0.6| 869.75| 167.86] 39.02] 495.84| 172.18 38.68| 199.00, 169.88] 39.20
0.8 963.83] 189.44] 40.00| 495.85 189.47] 40.00| 198.99 187.68] 40.00
1.0 975.76] 190.00 40.00] 495.86] 190.00f 40.00] 199.00, 190.00[40.00
Ideall 990.00| 190.00] 40.00 499.00f 190.00, 40.00] 199.00 190.00{ 40.00

Table 6.1. Results of SOHC on the Sensor Tracking Problem over all parameter
settings
121

a solution faster. However, the results for a communicationitdesfs0.4 reveal that
SoHC actually performs better in terms of the average queue time abémoimequests
satisfied. The reason for this lies in the issue of populdiwmersity. SOHC has a more
diverse population than either ESoHC or GSoHC. The use of gametievolutionary
operators, due to their emphasis on exploitation, causes hgbplation to be largely
focused around a single solution. This becomes a problem wheneeemtif6olution
needs to be found. For the GEPs, their population is not as diespexially when a
solution is found, which makes it difficult for GEPs to move fritv@ previous solution
to a new one as fast when the requirements change. SoHC, howékeits more
diverse population is not as prone to this weakness.

A closer look at the performance of SOHC and the GEPs at a communication density
of 0.4 in Table 6.4, reveals some interesting results. Thereliftes in the number of
stable cycles for the three algorithms are either non-existanhot statistically
significant, with the exception of the parameter setting for anmafval and life span of
(5, 10), which is the simplest of all the parameter settidgsa setting of (5, 10) ESoHC
has an edge due to its ability to quickly find a solution. GSad€s not perform
significantly worse than ESoHC and is much more stable than SoHC.

When comparing the average queuing time for tracking tasks, GSoHC is only able to
perform significantly better on the easiest problem settinggeneral, the performance
of GSoHC improves as the life span of a target increasestanmkrformance when
targets have a life span of 200 iterations is statisticattyilar to the performance of
SoHC. Overall, because ESoHC is still able to quickly findolution when one is

needed, it is able to effectively reduce queuing time for neyetsr The performance of

122

Arrival interval

1

1

1

2

2

2

9

5

5

Life Span

10

50

200

10

50

200

10

50

200

Density

Stable Cycles

0.4

0.00

0.00

0.00

2.76

0.00

0.00

451.29

0.77

0.75

0.6

661.87

699.16

697.00

635.58

698.59

694.63

943.46

672.62

682.82

0.8

944.64

944.13

945.28

746.10

942.43

942.65

980.91]

936.02

932.93

1.0

979.85

980.03

979.92

641.67

974.96

974.95

989.85

972.24

972.21

Ideal

990.00

990.00

990.00

995.00

990.00

990.00

998.00

990.00

990.00

Awverage Queue Time

0.4

50.62

240.74

756.35

49.90

252.97

742.24

33.74

233.73

692.59

0.6

11.45

56.37

228.16

12.09

56.26

226.85

10.38

55.82

224.50

0.8

10.21

51.09

205.07

10.52

50.94

204.43

10.06

50.56

202.85

1.0

10.08

50.40

201.91

10.24

50.27

201.28

10.04

50.15

200.70

Ideal

10.00

50.00

200.00

10.00

50.00

200.00

10.00

50.00

200.00

Requests Satisfied

0.4

209.82

40.33

6.36

223.36

37.62

6.52

183.07

40.97

7.39

0.6

870.22

172.51

39.61

495.95

171.98

39.65

199.00

171.16

39.35

0.8

970.33

189.90

40.00

495,93

189.84

40.00

199.00

187.97

40.00

1.0

983.44

190.00

40.00

495.78

190.00

40.00

199.00

190.00,

40.00

Ideal

990.00

190.00

40.00

499.00

190.00

40.00

199.00

190.00

40.00

Table 6.2. Results of GSoHC on the Sensor

settings

Tracking Problem over all parameter

Arrival interval 1

1

1

2

2

2

5

5

5

Life Span

10

50

200

10

50

200

10

50

200

Density

Stable Cycles

0.4

0.00

0.00

0.00

0.00

0.00

0.00

476.36

0.65

0.58

0.6

710.03

703.98

694.51

605.59

720.63

729.83

948.84

698.44

727.4]]

0.8

951.95

951.51,

952.42

679.28

948.74

947.86

984.89

936.80,

937.48

1.0

983.19

983.05

983.16

611.53

976.38

976.39

989.14

972.27

972.23

Ideal

990.00

990.00

990.00

995.00,

990.00

990.00

998.00

990.00

990.00

Awverage Queue Time

0.4

46.06

217.59

684.06

42.61

218.80

659.24

46.06

204.99

629.64

0.6

11.20

56.20

227.52

11.78

55.63

223.28

11.20

55.19

219.89

0.8

10.18

50.92

204.31

10.48

50.81

203.86

10.18

50.54

202.50

1.0

10.05

50.29

201.34

10.25

50.21

201.03

10.05

50.15

200.69

Ideal

10.00

50.00

200.00

10.00]

50.00

200.00

10.00

50.00

200.00

Requests Satisfied

0.4

230.51

41.54

6.66

237.71

40.57

7.48

185.89

44.50

7.23

0.6

886.19

173.12

39.52

495,88

173.96

39.86

199.00

173.09

39.86

0.8

973.65

189.96

40.00

495.85

189.95

40.00

199.00

188.12

40.00

1.0

985.42

190.00

40.00

495,78

190.00

40.00

199.00

190.00

40.00

Ideal

990.00

190.00

40.00

499.00]

190.00

40.00

199.00

190.00

40.00

Table 6.3. Results of ESOHC on the Sensor Tracking Problem over all parameter

settings

123

ESoHC is not statistically different from that of SOHC wilaesmall life span is assigned
to the targets, but when the life span increases to 2@&iaes ESoHC becomes
significantly better than either SoHC or GSoHC.

When comparing the number of requests satisfied (targets stuthyegacked for a
fixed number of iterations), SOHC performs slightly better tthenother two methods,
with the exception, again, of when the problem is the easiEStHC is closely behind
SoHC, as their performances are statistically similastnod the time. Consequently,
factoring in the number of stable cycles, the average queuing dimdethe number of
requests satisfied in 1000 iterations, ESOHC and SoHC aregboth choices as their
performances are statistically similar in many cases.

SoDSA, GSoDSA, and ESoDSA were also implemented to sdlgetracking
problem. The results are shown in Tables 6.5 to 6.7. The valueva$ chosen to be
0.1, since this would guarantee that no more than 3 agentshaiibe their values at the
same time. It is very obvious that this problem is not easyhierDSA variations.
SoDSA, GSoDSA, and ESoDSA barely keep up with the performain8eHC, and the

GEPs at a communication density of 1.0. As the communication yiehséduced, the

Avrrival interval 1 1] 1 2 2 2 5 5 5
Life Span 10 50 200 10 50| 200 10 50 200
Stable Cycles
SoHC 0.00 0.00 0.00 0.06 0.00] 0.00 280.85 1.23 1.23
GSoHC 0.00 0.00 0.00 2.76 0.00] 0.00 451.29 0.77 0.75
ESoHC 0.00 0.00 0.00 0.00 0.00] 0.00 476.36 0.65 0.58
IAverage Queue Time
SoHC 42.96| 221.68 759.35 44.22| 227.04] 760.21] 42.69| 217.95 727.70
GSoHC 50.62[240.74] 756.35 49.90] 252.97| 742.24] 33.74| 233.73] 692.59
ESoHC 46.06| 217.59] 684.06| 42.61] 218.80| 659.24 46.06] 204.99| 629.64
Requests Satisfied
SoHC 247.68| 42.95 7.04] 242.09 41.96 6.62 177.25| 45.15 7.78
GSoHC 209.82| 40.33 6.36] 223.36| 37.62 6.52 183.07] 40.97 7.39
ESoHC 230.51] 41.54 6.66] 237.71 40.57 7.48 185.89] 44.50 7.23

Table 6.4. Comparison of resultsfor SOHC, GSoHC, and ESoHC at a
communication density of 0.4

124

performance of the DSA variations all drop drastically. Basethese results, it seems
that the DSA variations have trouble holding onto even a semi-stabfegguration,
especially when the communication density is less than 1.

Table 6.8 shows a comparison of the 3 DSA and DSA based GERs at
communication density of 0.4. The number of stable cycles is Wrtigantifical as
none of the algorithms could maintain a stable cycle. Foratleeage queue time,
ESoDSA gives the lowest average queue time for problem settiagsesult in at least
10 simultaneous target tracking tasks for the majority of the k&f#iion test run. For
the not-so-hard problem of targets arriving every 2 iterations and staying foratiditey
GSoDSA achieves the lowest average queue time for the requbgesfor the easiest
problem setting, SODSA performs the best. The results for théeruof requests

satisfied follows the same performance trend as the average tjoee. These results

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200)
Density Stable Cycles

0.4 0.00 0.00 0.00 0.00| 0.00 0.00 0.01 0.01 0.01
0.6 0.00 0.00 0.00 0.01 0.00 0.00 0.70] 0.15 0.20)
0.8 14.94] 14.53 22.95 0.87] 12.68 19.37| 824.74 21.51 24.45
1.00 957.09] 956.53] 955.29| 664.93 954.16] 954.59| 963.56] 949.28] 950.04
Ideal] 990.00] 990.00f 990.00] 995.00| 990.00f 990.00] 998.00] 990.00] 990.00
Average Queue Time
0.4 207.95 798.13| 1000.00| 215.66/ 821.16| 1000.00[197.77| 803.18[1000.00
0.6| 51.13] 264.64] 904.09| 54.73 263.96| 896.94) 52.65 258.53| 891.98
0.8 20.30] 100.32] 400.53] 20.52] 101.44] 403.10] 11.24] 100.59| 398.10
1.00 10.17] 50.86] 204.21 10.25 50.77] 203.63] 10.05] 50.71] 203.27|
Ideall 10.00] 50.00f 200.00] 10.00f 50.00f 200.00] 10.00f 50.00] 200.00
Requests Satisfied
0.4 44.97 5.84 0.00] 44.60 4.49 0.00] 49.00 4.91) 0.00)
0.6 190.98] 32.76 3.70| 177.98| 32.60 3.89| 177.09] 32.90 3.50)
0.8 489.50] 94.70 20.37| 473.93 93.19 20.17] 199.000 93.07 20.21]
1.0l 974.85 189.99 40.00[495.86] 189.99 40.00] 199.00, 188.33 40.00
Ideall 990.00] 190.00 40.00[499.00 190.00 40.00] 199.00, 190.00 40.00]

Table 6.5. Results of SODSA (p=0.1) on the Sensor Tracking Problem over all
parameter settings
125

Arrival intenal 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200
Density Stable Cycles
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
0.6 0.00 0.00 0.00 0.01 0.01 0.01 4.21 0.19 0.16
0.8 18.05 27.29 20.51] 0.84| 20.00 21.71) 826.76] 14.01 21.63
1.00 956.02| 956.30| 956.73| 660.22| 953.93] 953.33| 964.54] 949.87| 948.82
Ideall 990.00] 990.00f 990.00] 995.00| 990.00| 990.00] 998.00f 990.00] 990.00
Average Queue Time
0.4 211.37] 791.97| 1000.00] 195.70| 827.33| 1000.00 200.30| 805.15| 1000.00
0.6| 51.44| 263.63] 899.26] 52.54| 268.30| 896.85] 52.48 261.53] 888.21
0.8 20.29] 100.56| 400.63] 20.53| 100.08] 400.26] 11.20 100.21] 405.92
1.00 10.17] 50.87] 204.06] 10.25] 50.78] 203.74] 10.05 50.70f 203.37
Ideall 10.00f 50.000 200.00f 10.00f 50.00f 200.00] 10.00f 50.00 200.00
Requests Satisfied
0.4 45.78 5.40 0.00] 49.23 4.69 0.00{ 46.83 5.06 0.00
0.6 189.27| 32.92 3.96] 186.64| 32.21 4.02| 176.62] 32.47 4.07
0.8 490.29| 95.14 20.35 474.09] 94.83 20.30] 199.00f 93.01 19.81
1.00 974.41] 189.99 40.00] 495.85| 189.98 40.00f 199.00] 188.38 40.00
Ideall 990.00[190.00 40.00] 499.00] 190.00 40.00{ 199.00f 190.00 40.00
Table 6.6. Results of GSODSA (p=0.1) on the Sensor Tracking Problem over all
parameter settings
Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200
Density Stable Cycles
0.4 0.00; 0.00; 0.00 0.00 0.00 0.00; 0.02 0.01 0.01
0.6 0.00; 0.00; 0.00 0.01 0.01 0.01] 2241 0.26) 0.23
0.8 20.98 22.96 28.56 2.63 12.11] 21.58] 904.81 17.87] 25.25
1.00 961.53] 962.31 961.79| 807.63| 955.44| 954.64] 985.84| 945.85 946.23
Ideal] 990.00] 990.00, 990.00] 995.00] 990.00 990.00] 998.00] 990.00] 990.00
Average Queue Time
0.4 196.72] 639.69 996.25 235.87| 646.76| 996.18] 202.94| 646.10f 997.21
0.6 58.33] 289.33] 861.19] 58.73| 289.61| 870.83] 56.25| 284.36| 867.64
0.8 2273 112.15 445.02] 23.01] 113.45] 444.83] 10.70] 113.13] 444.21
1.0 10.14 50.72] 203.47| 10.22] 50.73] 203.56] 10.03] 50.78 203.64
Ideall 10.00] 50.00 200.00] 10.00] 50.00{ 200.00] 10.00] 50.00] 200.00
Requests Satisfied
0.4 46.28 5.72 0.03 38.40 4.97 0.02l 44.75 4.67 0.02
0.6] 166.82| 29.26 2.99| 164.44(29.33 255 164.53| 29.44 2.41
0.8 439.44 84.96| 17.93| 425.82 83.01] 17.85 199.00 82.27] 17.48
1.0 977.03] 189.97] 40.00] 495.99] 189.95 40.00 199.00] 188.05 40.00
Ideall 990.00] 190.00f 40.00] 499.00] 190.00 40.00] 199.00f 190.00 40.00

Table 6.7. Results of ESODSA (p=0.1) on the Sensor Tracking Problem over all
parameter settings

126

show that the more dynamic the problem, the tougher it is for ESODSA and #rathstt
for GSODSA. They also show that SODSA is still the better choice for easy problems.
A quick look at Table 6.9 which provides a direct comparison betwez=mdBA,
DSA, and the various GEPs shows that ESoOHC and SoHC arthetltlest choices for
the problem. As the table shows, the mdBA and dBA based GERPsaay times more

effective than the DSA and DSA based GEPs.

6.7. Conclusion

These results show that ESoHC performs the best when it conmasaintaining
stable cycles, as it is able to find solutions faster thay of the other algorithms.
However, SOHC may be a better choice when the communication ydeesits the
critical density, as it is able to satisfy more requasts reduces queue times better than
either ESOHC or GSoHC. The DSA and DSA based GEPs wer@bleoto perform as
well as either the SOHC or dBA based GEPs as they haveulliffimaintaining a stable

solution when multiple agents are changing their values simultaneously.

Arrival intenal 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200
Density Stable Cycles
SoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01] 0.01 0.01
GSoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01] 0.01 0.01
ESoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01
Average Queue Time
SoDSA 207.95 798.13] 1000.00] 215.66] 821.16] 1000.00] 197.77| 803.18[1000.00
GSoDSA 211.37| 791.97| 1000.00] 195.70] 827.33] 1000.00] 200.30] 805.15(1000.00
ESoDSA 196.72| 639.69| 996.25| 235.87| 646.76| 996.18| 202.94{ 646.10 997.21
Requests Satisfied
SoDSA 44.97 5.84 0.00 44.60 4.49 0.00[49.00 4.91 0.00
GSoDSA 45.78 5.40 0.00] 49.23 4.69 0.00[46.83 5.06 0.00
ESoDSA 46.28 5.72 0.03 38.40 4.97 0.02 44.75 4.67 0.02

Table 6.8. Comparison of SODSA, GSoDSA, and ESoDSA at communication
density 0.4

127

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200
Density Stable Cycles
SoHC 0.00 0.00 0.00 0.06 0.00 0.00] 280.85 1.23 1.23
GSoHC 0.00 0.00 0.00 2.76 0.00 0.00] 451.29 0.77 0.75
ESoHC 0.00 0.00 0.00 0.00 0.00 0.00] 476.36 0.65 0.58
SoDSA 0.00 0.00 0.00 0.00 0.00 0.00, 0.01 0.01 0.01
GSoDSA 0.00 0.00 0.00 0.00 0.00 0.00, 0.01 0.01 0.01
ESoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01
Average Queue Time
SoHC 42.96| 221.68| 759.35 44.22| 227.04 760.21] 42.69 217.95 727.70
GSoHC 50.62[240.74] 756.35 49.90] 252.97| 742.24] 33.74] 233.73 692.59
ESoHC 46.06] 217.59] 684.06) 42.61 218.80] 659.24] 46.06] 204.99] 629.64
SoDSA 207.95/ 798.13[1000.00] 215.66| 821.16| 1000.00| 197.77| 803.18 1000.00
GSoDSA 211.37| 791.97[1000.00] 195.70] 827.33] 1000.00| 200.30] 805.15/ 1000.00
ESoDSA 196.72| 639.69] 996.25 235.87| 646.76] 996.18 202.94 646.10] 997.21
Requests Satisfied
SoHC 247.68 42.95 7.04 242.09] 41.96 6.62| 177.25 45.15 7.78
GSoHC 209.82] 40.33 6.36] 223.36) 37.62 6.52| 183.07 40.97 7.39
ESoHC 230.51] 41.54 6.66] 237.71) 40.57 7.48| 185.89] 44.50 7.23
SoDSA 44,97 5.84 0.00] 44.60 4.49 0.00] 49.00 4.91 0.00,
GSoDSA 45.78 5.40 0.00f 49.23 4.69 0.00] 46.83 5.06 0.00,
ESoDSA 46.28 5.72 0.03 38.40 4.97, 0.02] 44.75 4.67 0.02

Table6.9. The Comparison of the six algorithms/protocols at communication
density 0.4

128

CHAPTER 7

THE SENSOR SHARING PROBLEM

7.1. Introduction

This chapter, discusses the implementation, testing, and rdsulthe sensor
sharing problem. As before, the dBA based GEPs will be compared to the DSA and DSA
based GEPs. Along with the testing of the sensor sharing probteme theoretical

analysis will also be presented for the sensor sharing problem as well.

7.2. Problem Implementation

For the tracking problem, the domain space of each sensor gwdsrtesponding
target it is tracking. In the sensor sharing problem, howeanstead of each pod
possessing one sensing device, each pod now holds a toteteparate sensors. The
domain space here for each pod is the sensor that is curtamihg ton (activated). In
the tracking problem, a target must be tracked by ex&cthensor pods. Thus, the
tracking of a target can be seen as a request for 3 sensahpbdatisfy the conditions
that they can directly communicate with each other andldecta detect the target. In
contrast, a request for sensors in the sensor sharing problewaigatased on the
number of sensors that are needed. The sensor sharing problemd ioktbeing
concerned with the allocation of pods, is concerned with tloeadibn of sensors to

specific tasks.
129

Each of the pods in the sensor network used for the sharing probdeam fvaternal
allocation policy that limits how sensor resource can be afidcaind they are modeled
as DiISACSPs. Since the variable domains here now represesgetiGc sensor that is
currently active, a value &f indicates that the sensor of typés currently turned on in
the pod. The value of O is reserved to represent the situaterewll the sensors in the
pod have been turned off. Pods with all sensors turned off canndittcaith another

pod's internal allocation policy.

7.3. The Requests

For testing purposes, it will be assumed that all requests angit form, meaning
that each request will be for exactly one sensor. As defindide problem statement,
since only one sensor can be turned on for each pod, the netwaskrea® at mosh
unit requests at any given time, wheres the number of pods. In addition to arriving at
specific intervals, each request has a specific life shahyeépresents the amount of time
the request must be satisfied for it to be considered compléibds, if a request for
sensors requires 100 iterations worth of sensor time, this means thHetast one pod
must be assigned to have sersturned on for exactly 100 iterations. Note that though a
request may require 100 iterations of sensor data, there is nwagansn the fact that
the 100 iterations of data must be collected in consecutiveiotesa Thus, it will be
assumed that a request for 100 iterations of data will need 100 iteratidghsofvdata, no
matter where and when the data is collected.

As with the tracking problem, requests are automaticallyeplac a queue as they
arrive. Since all pods send information towards a base st#tisnassumed that the

130

complete request queue is stored on a base station and broadcast to the pods ag needed.
is also assumed that a sensor starts collecting dataoasas it is turned on. This
collected data is forwarded to the base station.

The pods in the sensor network only know about the rirgtquests queued at the
base station, whemreis the number of pods in the network. The network reassigns active
sensors in its pods until it can satisfy both these requeststs internal allocation
policies. As sensors start collecting and forwarding datmas as they are turned on, it
is very possible that the base station will be sent sensor tHataexceeds the
requirements of the firgt queued request(s). In these cases, the sensor data is passed
down to the next request in the queue that needs it, on adirs-first-serve basis. It is
therefore possible for a queued request to be satisfied befasertber network actively

tries to satisfy it, based solely on the extra sensor data that is gdnerate

7.4. Testing

The metrics used to test the GEPs on the sensor sharing pratgderry similar to
those used for the sensor tracking problem. A total of 30 pods wsexd and each pod
carried 6 distinct sensors for a domain size of 6. The constraintydfemghe allocation
policy was kept constant at 1, while the constraint tightnessvaréesd from 0.01 to 0.06
as for the random DisACSPs, and the policies were randomly ¢esheaaecordingly.
The intervals by which the requests arrives was set to {150 while the life span of
the requests was {10, 50, 200}. As before, a population size of 3@sedsfor the dBA
based GEPs, SoHC, SoDSA, and DSA based GEPs. The sensorknegain ran for
1000 iterations.

131

7.5. Theoretical Discussion

As discussed in Chapter 2, not all CSPs and ACSPs are sylaalol at the phase
transition any randomly generated CSP is only expected we bae solution. The
question then arises as to whether such a phase transitgis fxithe sensor sharing
problem that can be used to predict whether or not there ibla stdution that satisfies
both internal allocation policies and external requests.

First, examine once again the equation used to calculatevéitaga number of
feasible solutions for a randomly generated DisACSP, first given in Chapter

S=m"(1- p2)Prr-v (2.8.3)
The primary characteristic of this equation is that it is actuallyemgo of two parts. The
first part, m", represents the number of possible value assignments for \theables,
which are referred to as the number of candidate solutions. s@tend part of the
equation is the probability that any given candidate solution saitisfy all random
constraints. Hence, the number of candidate solutions multiplied Ipyabability that a
given candidate solution satisfies all constraints will give theagdenumber of feasible
solutions that will satisfy all constraints. Using this dsaais, a similar equation for the
sensor network sharing problem can be constructed.

One of the defining differences between the randomly generas&dCBP and the
sensor sharing problems is the solution needed. For the randendyated DisACSP,
the requirement is to simply satisfy the constraints, anddtis is therefore on the
second part of the equation, and any solution that does not violat®mstyaints will be
acceptable. For the sensor sharing problem, however, a solutidtralsmsatisfy any

external requests. Thus, a very specific solution is neededh wiii limit the number

132

of candidate solutions in the first part of the equation. So, giv@moblem withn
variables and a domain size of the number of candidate solutions for randomly
generated DiSACSPs that have no constraints is simplyGiven the same number of
variables and domain size, a sensor sharing problem, withlowatadn restrictions,
dealing with an external request fosensors of typewill only have

_ n!
Cn'k_k!(n—k)!

candidate solutions to work with. This assumes that the request is for s#rithersame

(7.4.1)

type, which turns the problem into a one target sensor trackoidepn where the target
needs to bé&-trackable. If the request is f&rsensors of type andk; sensors of typ¢

then the number of feasible solutions is:

| n—k)! |
Co i Cookn n: (n—k) n: (7.4.2)

TR I(n—k)U K T(n—k—K;)! KK, !(n—k—kK,)!

From this example, it can be seen that how hard a problemgsettfor the sensor
sharing problem is highly dependent on the type of external requéstabds to be
satisfied. This is because the external requests are tharprimiting factor that
reduces the number of candidate solutions. The worst case sdsnahien a request
asks fom sensors of the same type, wheiis the number of sensor pods in the network.
Lacking any allocation restrictions, there is only one candidatation for such a
request, which means that there will be a low probability of a feasddlition if there are
any allocation policies or restrictions.

The examples above, 7.4.1 and 7.4.2, calculate the number of candidate solutions for
the sensor sharing problem and are not complete without a considesétinternal

allocation policies, which will give the probability that avem candidate solution is

133

feasible. Given that each pod carmesensor types, there are a totahgiods and the
number of sensors requested of each type is denot&dtbyk,, the complete equation

for finding the number of candidate solutioSsis as follows:

S=C C . X =2k A,
n,Xi];l[(X—Zikj),k‘ - (743)
This can be expanded to:
I (| I
O TIT e R (7.4.4)
[Tk H(ki!)[m— km] o
i=1 i=1 i=1

In the case wherezm: k;=n, the equation will be reduced t6=(n!)/[ﬁ ki!] . In the
i=1 i=1
worst case scenario wharesensors of one type are requested, Shenl
Before considering the other half of the equation, which deals thétrallocation

policies, it should be noted once again that sensor pods that amssigpted a specific
sensor to turn on will stay off and thus not be in any constcaintiicts with the other
pods. This means that when calculating the probability thah@idzte solution is also
feasible, only the pods that have been assigned sensors (turnedl @e) eonsidered.
Taking into consideration the existing internal constraints iridima of a DiSACSP with

a constraint densityp;, and a constraint tightness, the equation used to approximate

the number of feasible solutions for the sensor sharing problem becomes as follows:

s=— I (1- pz)plik'.[(ik)_l] (7.4.5)

I_I ki!(n'_:E: ki)

i=1 i=1

The second part of this equation is slightly different from the us®sl to estimate the

number of feasible solutions for randomly generated DiSACSPs, Ar&&ad of using

134

(1- pz)pf”'m'l) , n is replaced With; k., which is the total number of sensors being

requested, because the only concern is constraint satisfactithro$er pods that need to
be assigned a sensor. Then solving for the constraint tighgnedenS = 1, the single

solution point, gives the following:

i=1

Thus, 7.4.5 reveals several things about the sensor sharing problestly, Ee
smaller the number of sensors requested, the higher the condaasitty and tightness
can be, while at the same time maintaining the presenceasible solutions. As the
number of sensors requested approachdse number of sensors of each type requested
becomes more of a factor. Based on 7.4.5, the hardest problethesmavhere all the
sensors requested are of one type, while if the requestprase £venly among all the
available sensor types, the problem becomes easier. It shoulotdzkthat since the
requests for sensors are random, 7.4.5 does not really give us @ gdeeof where the
phase transition for the problem is, as this is highly dependenheomumber and
distribution of sensor requests among the available sensor tjo@gever, it can give us
a best and worst case upper and lower bound of the constraint tgyhahes, where the
problem is expected to have only one solution (Figure 7.1).

For testing, both uniform and non-uniform distributions of resquests arieng
sensor types will be tested. For the first part, a uniform random numberagerwill be
used to generate the sensor requests, which should evenlg gpaaquests among all

available sensor types. For the second part a Gaussian randdrer gemnerator is used
135

0.9

1

0.8
0.7
0.6
0.5
0.4
0.3
0.2
lV———"—— "= [

0 \ \ \ \ \

0 6 12 18 24 30
Number of Sensors Requested

"\ Diverse "\ Concentrated

Figure 7.1. Upper and Lower bound for constraint tightnessfor
the Sensor Sharing Problem

Constraint Tightness S

to generate senosr requests from a normal distribution witln rBé&a and standard
deviations of 1.0 and 0.5. All numbers generated from the Gaussidanmanumber
generator is rounded to the nearest integer in the set [1TBls, the probability of
requesting a specific sensor type is listed in Table 7.1.

As the results reveal, since the requests are queued and hewe e span, the
performance is primarily affected by the number of active requests ghaamytime. So,
for example, when the requests arrive at an interval of dtiderand have a life span of
10 iterations, then the expected maximum number of requests in the netaoykgaten
time will be 10, which is much lower than the 30 sensor pods hwhiit be used for the
test. As the number of active requests at any given tims tieamumber of pods and

becomes greater than the number of pods, the problem becomes very hard amdesbec

Standard Deviation
Values 1.0 0.5
0.022750| 0.000032
0.135905| 0.022718
0.341345| 0.477250
0.341345| 0.477250
0.135905| 0.022718
0.022750| 0.000032

Table 7.1. Probability of a requesting a sensor of a specific type
given a Gaussian random number generator with mean 3.5

136

S| WIN|F

almost impossible to establish stable cycles, as distdiggler in the next section. The
results also show that the clustering of sensor requests furthiee problems more

difficult.

7.6. Results (Uniform Distribution)

Table 7.2 gives the results for SOHC, GSoHC, ESoHC, SoDSADGA, and
ESoDSA for the sensor sharing problem where the requests arriie i®ration and
have a life span of 10 iterations. The setting for the armtatval and life span of the
unit requests implies that there are effectively 10 requestsehsors in the network at
any given time. Based on 7.4.6, with 10 unit requests for sertisersghtness at which
the problem is expected to have one solution is ar@ubhd4 to 0.28 depending on how
spread out the requests are among the sensor t@msequently, this problem setting is
not very hard. All the algorithms tested achieved similarages queue times and were
able to satisfy the same amount of requests. The differdratesgen the algorithms
therefore lie solely in the number of stable cycles, whereS%oénd DSA based GEPs
once again fall behind by a large margin. Due to the more dynamic natheepybblem
(requiring more active reassigning of tasks) as opposed treldevely static tracking
problem used in the previous chapter, SoOHC is able to outperform G8o#i ESOHC
when it comes to maintaining a stable solution. With only 100680 possible pods
allocated at any given time, the problem never really gets very haBbHC, though the
performance does decrease with increasing constraint tightness, astexpecte

Table 7.3 shows the results for all the algorithms on the sensor sparyiigm with

external requests arriving every iteration and having aspén of 50. The longer life

137

span of the requests implies two things. Firstly, theimam of 30 sensor requests will
constantly be active, thus making the problem harder. Secondlpnter life span of
the requests implies that fewer reconfiguration steps willl nedoe taken, which is why
the number of stable cycles are greater than those showible 7.2. The DSA based
GEPs are still incapable of maintaining stable cycles, ththugy do not fall far behind
when considering the average queue time for requests and the numiszuests
satisfied. However, this is due to allowing the sensorsrid eat data even when they
are in a constraint conflict.

With the maximum number of requests for sensors active anatthe problems
become hard very fast, as neither SOHC, GSoHC, or ESoHC egnakstable cycle

when the constraint tightness increases beyond 0.03. Based onhé4&idigte solution

Constraint Tightness
001 002f 003 004 005 006

Stable Cycles
SoHC 115.80 100.90| 87.74| 75.44] 63.60] 51.84
GSoHC 111.95] 97.37] 82.74) 69.10, 55.33 43.13
ESoHC 111.24) 95.97] 82.13| 59.88 44.23 31.58
SoDSA 9.44 5.42 3.24 1.85 1.13 0.63
GSoDSA 6.14 3.44 2.01 1.14 0.72 0.45
ESoDSA 6.30 3.49 2.07 1.22 0.73 0.48
Requests Satisfied
SoHC 995.00] 995.00f 995.00[994.95| 994.95 994.89
GSoHC 990.00] 989.99] 989.97[989.96] 989.96] 989.94
ESoHC 990.00] 990.00f 990.00[989.99] 989.97] 989.92
SoDSA 990.28] 990.25| 990.17[990.13] 990.07] 990.04

GSoDSA 990.35] 990.29] 990.24| 990.18] 990.14] 990.06
ESoDSA 990.33] 990.28] 990.24| 990.22] 990.14] 990.08
Average Queue Time

SoHC 10.83] 10.85 10.87] 10.90] 10.93 10.97
GSoHC 10.83] 10.84 10.86| 10.89] 10.92 10.97
ESoHC 10.83] 10.85 10.86| 10.90] 10.95 11.01
SoDSA 10.77) 10.81] 10.84| 10.88] 10.92 10.95

GSoDSA 10.75] 10.79] 10.82] 10.86/ 10.90] 10.94
ESoDSA 10.75] 10.79] 10.83] 10.86] 10.90] 10.94
Table 7.2. Results of all algorithms on the Sensor Sharing Problem with arrival
intervalsat 1iteration and life span of 10 iterations

138

point for this problem lies between 0 and 0.0514, depending on how spre#uke out
requests are among the sensor types. Since the requests mexegagkewith a uniform
random number generator, the assumption is that the requests wowdthbevienly
spread out among the sensor types, and the tightness where tleenpredlly gets hard
should be around 0.05, which is supported by the results. The biggastesinere is
that GSoHC actually performs slightly better than either S@HE&SoHC. ESoHC's
performance is expected, as it uses the highest level of exploitavhich keeps the
population concentrated around the region where the current solutionS@HC's
performance is affected by the harder problem, while GSoHCchwfalls between
ESoHC and SoHC in terms of exploration and exploitation, pegf@lightly better as it
is able to explore more possibilities.

Table 7.4 shows the results for the test with requests arrgxiagy iteration and a
life span of 200 iterations. The longer life span of the recuésimatically translates to
a higher number of stable cycles, as seen earlier. The longegydifeatso helps the DSA
based GEPs lock onto a stable solution for a while. One poirdtéois that SODSA is
actually able to maintain almost 4 times more stabléesythan ESoODSA or GSoDSA.
This is mainly due to the higher level of exploitation perfedniby the DSA when the
number of remaining constraint violations drop to a certain lagekeen in chapter 4.
Here, there is also a significant drop in performance by ESoH@ a®hstraint tightness
increases, while SOHC clearly performs the best in termremqiests satisfied, average
queue time and stable cycles. Once again, the maximum 30r segsiests that are
active at all times makes problems with a constraint tightoE€s4 and greater much
harder.

139

Constraint Tightness

0.0 002 003 004 005 0.06

Stable Cycles
SoHC 474.12] 324.09] 36.02 0.64 0.14 0.05
GSoHC 514.97| 331.90, 50.53 0.80 0.17 0.15
ESoHC 469.11] 206.07] 18.82 0.32 0.17 0.19
SO0DSA 3.91 0.37] 0.27 0.25 0.22 0.19
GSoDSA 1.44 0.29 0.23 0.21 0.21 0.17
ESoDSA 1.34 0.27] 0.22 0.23 0.17 0.17

Requests Satisfied
SoHC 584.52] 579.49] 562.27| 537.35] 513.60] 490.80
GSoHC 570.91] 568.81] 554.78| 539.79] 531.54] 522.61
ESoHC 569.98] 557.65| 536.52| 510.35] 492.57] 485.01
SoDSA 560.88] 550.95 541.21| 529.50] 517.86] 505.48
GSoDSA 555.03] 546.48] 537.49| 526.54] 515.76] 504.41
ESoDSA 555.02] 546.47] 537.59| 526.53] 515.75 504.51

Average Queue Time
SoHC 218.59| 221.12| 228.52| 239.39| 249.73] 258.86
GSoHC 232.57| 236.05(243.03| 249.62| 253.58| 258.23
ESoHC 234.32| 240.27] 251.50| 262.80[270.05) 275.69
SOoDSA 241.28| 246.47| 251.15| 256.31 262.24] 268.59
GSoDSA 24421 248.29| 252.91| 257.84| 263.38| 269.04
ESoDSA 244.23| 248.27 252.90| 257.82[263.41 269.06

Table 7.3. Results of all algorithms on the Sensor Sharing Problem with arrival

intervalsat 1iteration and life span of 50 iterations

Table 7.5 shows the results for the test with requests arrivery €0 iterations and
a life span of 10 iterations. The long inter-arrival time and short life span metosltha
1 sensor request for 1 sensor will be active at all tim&his makes the problem
relatively easy and the constraint tightness for the allocationgmhas a minimal affect
on performance. The performances for SoHC, GSoHC, and ESoHG@irarally
identical. The DSA based GEPs still lag behind, but not bydgahe problem is very
easy. It should be noted that the highly convergent ESoDSA performs significately bet

than SODSA or GSoDSA as it is able to find a solution verykfithus maintaining

more stable cycles.

Tables 7.6 to 7.10 show the results for testing requests that axrery 10 and 50

iterations with life spans of 10, 50, and 200. In comparison talibee scenarios, these

140

Constraint Tightness
0.0] 002] 0.03 0.04 005 0.06

Stable Cycles
SoHC 873.17] 841.55 516.62 11.74 0.05 0.15
GSoHC 872.34| 821.16] 409.12| 11.52 0.18 0.17
ESoHC 861.62[581.76[139.19 1.88 0.17| 0.15
SoDSA 120.34 1.13 0.28 0.24 0.19 0.20
GSODSA 33.07 0.42] 0.25 0.21 0.18 0.15
ESoDSA 36.03 0.53 0.23 0.20 0.20 0.13
Requests Satisfied
SoHC 135.47] 135.10] 135.00] 130.85] 123.90] 117.70
GSoHC 120.35| 120.26] 120.10] 119.22] 117.84] 116.14
ESoHC 120.18] 119.89] 115.15] 109.14] 106.83] 105.34
SoDSA 125.96] 125.12] 122.39] 120.61] 118.67| 114.88

GSOoDSA 126.71] 124.54 122.11] 120.25| 117.82] 114.55
ESoDSA 126.74] 124.531 122.10| 120.29] 117.81] 114.50
lAverage Queue Time

SoHC 442.63| 442.47| 449.53| 465.00] 469.000 470.23
GSoHC 457.57| 458.50 468.29| 486.08] 491.89| 494.44
ESoHC 457.47| 468.01] 481.27| 488.08] 499.04] 503.49
SoDSA 486.52| 493.94] 492.97| 496.93] 501.50 500.37

GSoDSA 494.07| 495.53 495.20(498.72| 501.43| 501.44
ESoDSA 494,08 495.50 495.23| 498.80| 501.43| 501.65

Table 7.4. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 1iteration and life span of 200 iterations

problems are much easier and the results reflect thisheAsumber of active requests at
any given time does not exceed 20, these problems do not pose a challenge foCthe SoH
GSoHC and ESoHC, whose performances are identical in all buprobdem. The
hardest problem among these is shown in Table 7.7 where requastseaery 10
iterations with a life span of 200, where the tightness for only feasible solution is
around 0.11. The performance of ESOHC quickly drops as the tightness increases. SoHC
still performs better than either GSOHC or ESoHC in maiirigi stable cycles. As
described in the previous chapter, a dynamic environment favors metitbdgreater
population diversity, which is why SoHC performs slightly betfBne DSA based GEPs

are able to keep up somewhat with these easier problemgmuautg them, ESoDSA
performs the best and this can also be seen in the resdtsigiTable 7.7. ESoDSA's

performance advantage lies in its ability to converge towardtution faster than either
141

Constraint Tightness
0.0] 002] 0.03 0.04 009 0.06

Stable Cycles
SoHC 902.12| 901.32 900.27| 898.62[897.55 895.99
GSoHC 900.85| 899.47| 898.22| 897.06| 895.92| 894.59
ESoHC 901.14(900.28(899.45[898.74| 898.01] 897.30
SODSA 713.60] 711.80] 710.29| 709.22| 706.96| 705.60
GSoDSA 650.53| 649.69| 645.93| 643.53[641.71] 638.76
ESoDSA 755.36| 754.49] 754.22| 753.25| 752.49| 751.87

Requests Satisfied
SoHC 99.00] 99.00] 99.00] 99.00] 99.00] 99.00
GSoHC 99.00] 99.00] 99.00] 99.00] 99.00 99.00
ESoHC 99.00] 99.00] 99.00] 99.00] 99.00 99.00
SoDSA 99.00] 99.00f] 99.00] 99.00] 99.00 99.00
GSoDSA 99.00] 99.00f 99.00] 99.00] 99.00 99.00
ESoDSA 99.00] 99.00f] 99.00] 99.00] 99.00 99.00

lAverage Queue Time
SoHC 10.84 10.84] 10.84 10.84; 10.84; 10.84
GSoHC 10.86| 10.86| 10.86] 10.86| 10.86/ 10.86
ESoHC 10.86| 10.86 10.86| 10.86| 10.86/ 10.86
SoDSA 10.88 10.88(10.89|] 10.89 10.89] 10.89
GSODSA 10.89| 10.89 10.89|] 10.89 10.90| 10.90
ESoDSA 10.90f 10.90f 10.90] 10.90f 10.90] 10.90

Table 7.5. Results of all algorithms on the Sensor Sharing Problem with arrival
intervalsat 10 iteration and life span of 10 iterations

SoDSA and GSoDSA, but because of the properties of DSA this convengeactually

better for ESoDSA in dynamic environments, especially when pieblem gets

progressively harder.

7.7. Results (Normal Distribution)

Tables 7.11 to 7.19 present the results of the sensor sharing prabkemthe

requests for sensors are generated based on a normal distribution swddal staviation

of 1. The probability of requesting a specific sensor type is showable 7.1. With a

standard deviation of 1, the probability of requesting sensors ofltyrel 6 are fairly

small, while the majority of requests should be for sensors of type 3 and 4.

As mentioned in section 7.5, the number of feasible solutions faethsor sharing

problem drops as the sensor requests become more clustered arouficl Spesor
142

Constraint Tightness
001 002 003 004 005 0.06

Stable Cycles
SoHC 896.49| 891.22| 886.74| 882.32| 878.20| 873.79
GSoHC 896.63| 891.75| 886.20| 880.47| 874.38| 867.53
ESoHC 896.15| 891.22| 886.40| 882.12| 877.97| 874.20
SoDSA 737.38| 722.57] 704.64| 683.69| 660.05 634.92

GSoDSA 672.23| 648.25] 620.34| 589.94| 558.30] 522.00
ESoDSA 760.12| 756.39] 749.98| 742.49| 733.02 720.58
Requests Satisfied

SoHC 95.00] 95.00] 95.00] 95.00] 95.000 95.00
GSoHC 95.00] 95.00] 95.00] 95.00f 95.00 95.00
ESoHC 95.00] 95.00] 95.00] 95.00f 95.00f 95.00
SoDSA 95.00] 95.00] 95.00] 95.00f 95.00f 95.00

GSoDSA 95.00] 95.00] 95.00] 95.00] 95.000 95.00
ESoDSA 95.00] 95.00] 95.00] 95.00] 95.000 95.00
Average Queue Time

SoHC 50.88| 50.88 50.88| 50.88 50.88 50.88
GSoHC 50.87 50.88 50.88[50.89| 50.91] 50.93
ESoHC 50.87 50.87] 50.87| 50.87 50.88 50.88
SoDSA 51.04 51.05(51.07f 51.10f 51.13 51.16
GSoDSA 51.09] 51.12f 51.15| 51.19|] 51.23(51.28
ESoDSA 51.14| 51.14) 51.14| 51.14 51.15 51.16

Table 7.6. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 10iteration and life span of 50 iterations

Constraint Tightness
001 002 003 004 0.05 0.06

Stable Cycles
SoHC 889.64| 877.25 863.29] 852.44| 841.14] 744.30
GSoHC 890.44| 872.89| 846.93| 793.60 676.16| 457.79
ESoHC 890.70| 876.58 862.80| 767.06| 493.87| 242.96
SODSA 574.83| 245.34] 127.62| 93.75| 80.49| 72.67

GSOoDSA 400.35| 157.72 97.24] 77.67| 67.82] 61.10
ESoDSA 773.44) 717.60| 623.82| 464.86| 299.22| 181.12
Requests Satisfied

SoHC 80.00] 80.00f 80.00] 80.00] 80.00] 80.00
GSoHC 80.00] 80.00 80.00f 80.00] 80.00] 79.94
ESoHC 80.00] 80.00f 80.00 79.99] 79.73] 79.05
SoDSA 80.00f 80.00f 80.00] 80.00] 80.00p 79.99

GSoDSA 80.00] 80.00] 80.00] 80.00] 79.99] 79.96
ESoDSA 80.00] 80.00] 80.00] 80.00] 80.00] 80.00
Average Queue Time

SoHC 200.89| 200.90] 200.95] 201.04] 201.13| 202.01
GSoHC 200.92[200.96(201.06] 201.37] 202.30] 204.51
ESoHC 200.92(200.94f 200.99| 201.60] 205.18] 211.68
SODSA 201.99| 202.90] 204.10] 205.45| 206.86| 208.27

GSoDSA 202.70[204.02] 205.36| 206.72| 208.12| 209.52
ESoDSA 201.80[201.77 201.81f 202.01] 202.38] 202.92

Table 7.7. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 10iteration and life span of 200 iterations

143

Constraint Tightness
001l 0.02f 003 004 005 0.06

Stable Cycles
SoHC 981.00] 981.00] 981.00f 981.00[981.00[981.00
GSoHC 981.00] 981.00] 981.00f 981.00[981.00f 981.00
ESoHC 981.00 981.00] 981.00[981.00[981.00[981.00

SoDSA 936.24| 936.19 936.40[936.17| 936.20| 936.42
GSoDSA 925.06| 924.92] 924.75| 924.87| 924.62| 924.61
ESoDSA 944.49| 944.76| 944.60| 944.66(944.69| 944.80
Requests Satisfied

SoHC 20.00] 20.000 20.00f 20.000 20.000 20.00
GSoHC 20.00f 20.00f 20.00f 20.00f 20.00, 20.00
ESoHC 20.00f 20.00f 20.00f 20.00f 20.00, 20.00
SoDSA 20.00] 20.00p 20.00f 20.00 20.00 20.00

GSoDSA 20.00f 20.00f 20.000 20.000 20.000 20.00
ESoDSA 20.00f 20.00f 20.000 20.000 20.000 20.00
Average Queue Time

SoHC 10.95] 10.95] 10.95 10.95] 10.95 10.95
GSoHC 10.95] 10.95] 10.95 10.95 10.95 10.95
ESoHC 10.95| 10.95 10.95] 10.95 10.95 10.95
SODSA 10.99] 10.99 10.99] 10.99] 10.99] 11.00

GSoDSA 11.00] 11.000 11.00] 11.00] 11.00] 11.00

ESoDSA 10.99] 11.000 10.99] 10.99] 10.99 11.00

Table 7.8. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 50 iteration and life span of 10 iterations

Constraint Tightness
0.0 0.02] 0.03 004 0.05 0.06
Stable Cycles

SoHC 980.30] 980.10] 979.89| 979.62| 979.55] 979.15
GSoHC 980.81| 980.69] 980.53| 980.34| 980.23] 979.99
ESoHC 981.00] 981.00] 981.00| 981.00 981.00] 981.00
SoDSA 948.47| 948.73] 948.72| 948.51| 948.14| 948.05
GSoDSA 940.49| 940.45] 940.15| 940.03| 939.30] 939.71
ESoDSA 956.37| 955.55] 955.66| 954.88| 954.04| 953.81
Requests Satisfied
SoHC 19.00] 19.00f 19.00] 19.00f] 19.00, 19.00
GSoHC 19.00] 19.00] 19.00] 19.00f 19.00, 19.00
ESoHC 19.00] 19.00] 19.00] 19.00f 19.00, 19.00
SoDSA 19.00] 19.00] 19.00] 19.00f 19.00, 19.00
GSoDSA 19.00] 19.00] 19.00] 19.00f 19.00, 19.00
ESoDSA 19.00] 19.00f 19.00] 19.00f 19.00, 19.00
IAverage Queue Time
SoHC 50.83| 50.83] 50.83| 50.83] 50.83 50.83
GSoHC 50.74 50.74 50.74 50.74 50.74 50.74
ESoHC 50.74 50.74 50.74 50.74 50.74 50.74
SOoDSA 50.77 50.78[50.78[50.78| 50.78 50.78
GSoDSA 50.78| 50.78 50.78| 50.78| 50.78 50.78
ESoDSA 50.78| 50.78 50.78| 50.78| 50.78 50.78

Table 7.9. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 50 iteration and life span of 50 iterations

144

Constraint Tightness
0.01] 0.02] 0.03] 0.04 0.05 0.06
Stable Cycles

SoHC 980.00] 979.20] 978.67| 977.65[977.25 976.80
GSoHC 981.35] 980.58[979.90| 979.21f 978.51] 977.85
ESoHC 981.36] 980.72[980.17| 979.63[978.99| 978.46
SoDSA 954.14| 953.34(952.77| 951.90[950.91f 950.22

GSoDSA 946.28| 944.97] 943.11| 941.59| 940.43] 938.49
ESoDSA 956.34| 954.30] 950.92| 946.93| 945.34] 938.57
Requests Satisfied

SoHC 17.000 17.00f 17.00)] 17.00f 17.00f 17.00
GSoHC 17.000 17.00f 17.00) 17.00f 17.00f 17.00
ESoHC 17.000 17.00f 17.00) 17.00f 17.00, 17.00
SoDSA 16.88] 16.90] 16.91] 16.90] 16.91 16.90
GSoDSA 16.90] 16.89] 16.91] 16.90] 16.91] 16.91
ESoDSA 16.90] 16.88] 16.90] 16.91] 16.91] 16.92
IAverage Queue Time
SoHC 200.78| 200.78] 200.78| 200.78| 200.78] 200.78
GSoHC 200.80] 200.80] 200.80| 200.80| 200.80| 200.81
ESoHC 200.80] 200.80] 200.80| 200.80| 200.80| 200.80
SoDSA 200.99| 200.98] 200.98| 200.98| 200.98] 200.99

GSoDSA 201.00f 201.00f 201.00| 201.01f 201.01f 201.02
ESoDSA 200.98(200.99(201.00[201.02| 201.02| 201.04

Table 7.10. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 50 iteration and life span of 200 iterations

types. This implies that as more sensor requests are imadepmes harder to find a
feasible solution as compared to when sensor requests weraripitistributed among
all available sensor types. This is seen in Table 7.11 asuthber of stable cycles drop
slightly as compared to the results in Table 7.2.

The primary point of interest of the results in Table 7.11 is B®oHC actually
performs better than GSoHC when it comes to the number of staties, while SoHC
performs slightly better than ESoHC. This result is duééouse of sensor requests that
are normally distributed among the various sensor types. Basdge pobabilities in
Table 7.1, a sensor request for a sensor of type 3 or 4 occleasatonce every 3
requests. This implies that even though it is harder to dirfdasible solution with

normally distributed sensor requests, once a feasible solutionns, there is a higher

145

probability that a reassignment of sensor tasks is not necesémy a request is
complete and a new one arrives. With sensor requests arriving omgetenagion, there

is a very high probability that a feasible solution at any rgiteration will be very

similar to a feasible solution at a fairly recent previdagtion. Thus, ESoHC, with its
high level of exploitation around the current best solution, perforrtterbeecause it
takes longer to move from one area of promise to another. Indk®ys section, this
was ESoHC's weakness, while here, it becomes ESoHC's btreé3gftiC, with its higher
level of exploration, is still able to out perform ESoHC slightlince its members will
separately lock onto different areas of promise, which iexaetly the opposite of what
ESoHC does for this problem. GSoHC falls behind because it dobavethe level of

exploitation to keep its search in one region, while alsdhaving enough exploration to
move quickly to other regions of promise.

The general performance difference between the dBA based &HEHF3SA based
GEPs are still present. The DSA based GEPs just arahhtto stay on a feasible
solution long enough to have any stable cycles. The number of tegatisfied are
fairly similar for the two different types of GEPs, whilee DSA based GEPs have
significantly longer queuing times for requests.

Table 7.12 presents the results for when sensor requests arnyeitekagion and
have a life span of 50 iterations. Here, the sensor network is push&dximum load
of trying to satisfy an average of 30 sensor requests atiaey tme. As mentioned
earlier, the hardest problems are when the requests are catextrground a specific
sensor type. Based on the probability distribution in Table idlthat the current
problem deals with a maximum of 30 sensor requests at one timdiatdest set of

146

Constraint Tightness

001 0.02] 003 004 o005 006

Stable Cycles
SoHC 103.71] 90.34| 78.99] 68.07| 56.81 45.68
GSoHC 102.16| 87.17 74.20 62.04f 49.73] 38.05
ESoHC 103.28| 89.52| 77.01f 65.28] 53.37| 42.19
SoDSA 3.60 1.50 0.71 0.35 0.22 0.12
GSoDSA 2.55 1.00 0.48 0.26 0.15 0.09
ESoDSA 2.48 1.02 0.43 0.23 0.13 0.09

Requests Satisfied
SoHC 989.98(989.95| 989.93] 989.90] 989.86| 989.79
GSoHC 989.98| 989.94| 989.90| 989.86(989.80| 989.75
ESoHC 989.97| 989.95| 989.91] 989.88[989.83] 989.79
SoDSA 988.07| 988.10| 988.16] 988.19| 988.22| 988.20
GSoDSA 088.14| 988.17| 988.24] 988.25(988.23| 988.20
ESoDSA 088.13| 988.20 988.25| 988.26(988.22| 988.22

Average Queue Time
SoHC 10.83] 10.85] 10.87] 10.89] 10.92] 10.96
GSoHC 10.83] 10.86| 10.88] 10.91] 10.95] 10.99
ESoHC 10.83] 10.85] 10.87] 10.89] 10.93 10.97
SoDSA 12.96| 12.89] 12.85 12.82] 12.81] 12.83
GSoDSA 12.86| 12.79] 12.75 12.74] 12.76] 12.80
ESoDSA 12.86 12.79 12.75 12.74 12.76 12.80

Table 7.11. Results of all algorithmson the Sensor Sharing Problem with
arrival intervalsat 1iteration and life span of 10 iterations and normal
distribution with standard deviation of 1
requests that is likely to appear is one for 4 sensors of tgmel 5, 11 sensors of type 3
and 4, and none of type 1 and 6. Plugging this into 7.4.6 and sdbrirthe single
solution point will give 0.0375 for constraint tightness. Then lookirthemost diverse
set of feasible requests, which is a set of requests fensos of type 1 and 6, 4 sensors
of type 2 and 5, and 10 sensors of type 3 and 4, and plugging #.#6 to solve for the
single solution point gives a constraint tightness of 0.0428. So, gmneeprobability
distribution of sensor requests among sensor types and combinint ith&iequation

7.4.6, it can be estimated that the constraint tightness for which there is only onedxpect

feasible solution for the sharing problem is between 0.0375 and 0.0428& isThi

supported in the results.

147

Here, the performance advantage of ESOHC becomes more clear as thepgatlem
harder. At full load, the performance of SOHC drops quickly asdhstraint tightness
increases and closes in on the single solution point. And itgitihigher level of
exploitation than SoHC, GSoHC is able to come second in perfoendriee DSA based
GEPs are not even able to hold 1 stable cycle. The numbequésts satisfied and the
average queue time further favor the dBA based GEPs. In coompaith the results in
Table 7.3, dBA based GEPs are able to keep more stable sytlply because of the
slightly lower probability of needing to reassign sensor duty waenold request
completes and a new one arrives.

Table 7.13 shows that as the life span of the request incréaSes{C gains a
significant advantage over ESOHC when nearing the single solmiot. The results
show ESoHC having a slight advantage until the constraint tightnessases to 0.03
where GSoHC performs slightly better. At a tightness of 0.08oH&E widens the
margin. SoHC, on the other hand, quickly drops behind as the tigmeassthe single
solution point. The results clearly show that, even though ESolHGrpe better when
the problems are easy and request life spans are shorter,thehg@noblem does get
harder and the life span of the request increases, GSoHC has a slight edge.

Tables 7.14 to 7.19 show the remaining results. The longer intervaldmeteguest
arrivals keep the problems simple and the results in line twiitbe previously obtained
from using uniformly distributed requests. With the easieblems, the dBA based
GEPs perform nearly identically. On the DSA based GHEiRs SoDSA does slightly
better when the arrival interval is at 10 iterations wihhigher level of exploitation near
the solution. GSoDSA and ESoDSA do slightly better when tlneabimterval is at 50

148

Constraint Tightness
0.0 0.02 003 004 005 0.06
Stable Cycles

SoHC 497.27| 348.84 42.50 0.52 0.19 0.19
GSoHC 502.49| 349.24] 76.33 1.58 0.18 0.17
ESoHC 505.05 373.20] 94.39 1.39 0.16 0.18
SoDSA 0.26 0.15 0.12 0.14 0.12 0.11
GSoDSA 0.17 0.14 0.09 0.08 0.10 0.12
ESoDSA 0.18 0.14 0.12 0.10 0.09 0.10
Request Satisfied
SoHC 570.00| 568.21] 551.60, 524.81| 500.71| 478.68
GSoHC 570.00| 568.39| 555.85 542.44| 534.26| 527.21
ESoHC 570.00| 569.08| 557.73] 546.18| 540.75| 535.70
SoDSA 548.05 533.21] 518.45 502.16| 486.06| 469.46

GSoDSA 548.84| 533.78| 518.67| 502.08| 485.63| 469.13
ESoDSA 548.80| 533.81] 518.64] 502.10| 485.70| 469.19
Awerage Queue Time

SoHC 233.96| 237.81] 245.31] 256.66| 266.83| 277.35
GSoHC 233.75| 237.43] 242.87] 249.30[253.01] 256.62
ESoHC 233.67| 236.96| 242.23] 247.84| 250.38| 252.81
SoDSA 258.10] 262.79] 268.46] 274.96| 281.95| 290.11

GSoDSA | 258.05] 262.95 268.73 275.38] 282.26] 290.26
ESoDSA | 258.03] 262.90 268.71| 275.35| 282.28| 290.17
Table 7.12. Results of all algorithms on the Sensor Sharing Problem
with arrival intervalsat 1 iteration and life span of 50 iterations and
normal distribution with standard deviation of 1

iterations where the problems are less dynamic because lafdke interval between the
arrival of sensor requests. However, SoDSA is slowly abkedain the performance
lead as the problem tightness increases when the life span increases t@ag00dter
Next, Tables 7.20 to 7.28 present the results for the sensor shasivigm when
sensor requests are normally distributed around 3.5 with a statelaation of 0.5. The
lower standard deviation implies that the requests for senstirbemurther clustered
around types 3 and 4, as seen in Table 7.1. Based on thethabiequests for sensor
types 1 and 6 will almost never show up. Using the same methbefore, based on
7.4.6, the constraint tightness for the single solution point is nkaty Mithin the range

0.0214 to 0.0275. This is supported by the results in 7.21 and 7.22.

149

Constraint Tightness
001 0.02 o003 004 0.05 006
Stable Cycles

SoHC 873.22| 836.29| 427.32 5.47 0.22 0.17
GSoHC 874.17| 834.70| 614.88 54.55 0.88 0.17
ESoHC 874.25| 839.10| 613.49| 46.24 0.78 0.16
SoDSA 0.68 0.18 0.14 0.13 0.11 0.09
GSoDSA 0.27 0.12 0.11 0.09 0.08 0.07
ESoDSA 0.82 0.13 0.12 0.09 0.09 0.09
Request Satisfied
SoHC 120.24| 120.10] 119.91] 117.40 111.97[107.00
GSoHC 120.23] 120.10] 120.01] 119.30f 118.83] 118.17
ESoHC 120.22| 120.12| 120.01] 119.48(119.25] 119.08
SoDSA 120.45| 118.65| 115.91] 112.70f 109.20| 105.30

GSoDSA 120.31] 118.46| 115.70| 112.42| 109.20| 105.22
ESoDSA 120.33] 118.49| 115.79| 112.42| 109.22| 105.20
Average Queue Time

SoHC 457.44| 458.02| 467.43] 489.04 495.11f 501.33
GSoHC 457.39| 458.01| 462.74] 477.33[486.61] 490.97
ESoHC 457.33| 457.97| 462.56] 476.31| 481.89| 485.10
SoDSA 524.46| 520.77) 518.42| 517.19| 516.43| 516.70

GSoDSA | 523.72| 520.60| 518.69] 517.00| 516.77| 516.39
ESoDSA | 523.78] 520.77| 518.81] 516.96] 516.89| 516.34
Table 7.13. Results of all algorithmson the Sensor Sharing Problem with
arrival intervalsat 1 iteration and life span of 200 iterations and nor mal
distribution with standard deviation of 1

The further clustering of sensor requests around 2 specific senestitigpeases the
probability that no sensor reassignment is needed when a newtrsguesle. As seen
in Table 7.11, an increase in clustering of sensor requestspaicdic type increases the
number of stable cycles as there are times when no senseigreaent is needed to
satisfy the new request. This is also seen in Table 7.20a@er degree as the standard
deviation is dropped by half and increasing the clustering. pom¢ of interest is that
the DSA based GEPs also benefit greatly from this tigtitestering as the number of
stable cycles for the DSA based GEPs jump significantlynwdoenparing Table 7.11 to

Table 7.20. Similar to Table 7.11, SoHC still performs slighuyter, followed by

150

Constraint Tightness
001 o002 003 004 005 006

Stable Cycles
SoHC 902.91] 901.72] 900.360 899.60[898.20| 897.10
GSoHC 902.85 901.67| 900.51 899.60(898.64| 897.39
ESoHC 902.90 901.62] 900.46/ 899.59| 898.45| 897.17
SoDSA 701.30] 699.83] 698.44 697.00] 695.43| 694.74

GSoDSA 684.58| 682.48 681.08 680.87] 679.67| 680.73
ESoDSA 684.55(683.01] 681.98 680.40] 679.81| 680.82
Request Satisfied

SoHC 99.000 99.000 99.000 99.00f 99.00] 99.00
GSoHC 99.000 99.000 99.000 99.00f 99.00] 99.00
ESoHC 99.000 99.000 99.000 99.00f 99.00] 99.00
SoDSA 99.000 99.000 99.000 99.00f 99.00] 99.00

GSoDSA 99.000 99.000 99.000 99.00f 99.00] 99.00
ESoDSA 99.000 99.000 99.000 99.00f 99.00] 99.00
Awerage Queue Time

SoHC 10.84/ 10.84 10.84] 10.84] 10.84] 10.84
GSoHC 10.84/ 10.84 10.84] 10.84] 10.84] 10.84
ESoHC 10.84/ 10.84 10.84] 10.84f 10.84] 10.84
SoDSA 10971 10.98 10.98 10.98] 10.99] 10.99

GSoDSA 10.96] 10.97] 10.97] 10.98] 10.99] 10.99
ESoDSA 10.96] 10.960 10.97] 10.98] 10.99] 10.99
Table 7.14. Results of all algorithms on the Sensor Sharing Problem with arrival
intervalsat 10 iteration and life span of 10 iterations and normal distribution with
standard deviation of 1

Constraint Tightness
001 0.02 003 004 005 0.06

Stable Cycles
SoHC 898.51| 895.17| 892.09| 889.07| 885.82] 883.05
GSoHC 898.94| 895.47| 892.47| 889.05| 885.64| 882.60
ESoHC 898.92| 895.40| 892.04| 888.60| 885.59 882.64
SoDSA 726.99] 710.06| 689.62| 661.90] 629.21] 586.55
GSoDSA 688.87| 662.90] 627.62| 581.90] 528.38] 464.15
ESoDSA 688.44| 662.44| 627.12| 582.49] 526.92| 464.28

Request Satisfied
SoHC 95.00] 95.00f 95.00] 95.00f 95.00] 95.00
GSoHC 95.00 95.00(95.00] 95.00f 95.00f 95.00
ESoHC 95.00] 95.00f 95.00] 95.00f 95.00] 95.00
SoDSA 95.00 95.00(95.00] 95.00f 95.00] 95.00
GSoDSA 95.00f 95.00] 95.00f 95.00] 95.00 94.99
ESoDSA 95.00 95.00f 95.00] 95.00f 94.99| 95.00

Average Queue Time
SoHC 50.76| 50.76] 50.76] 50.76| 50.76| 50.76
GSoHC 50.76| 50.77 50.77] 50.78 50.78/ 50.79
ESoHC 50.76] 50.77] 50.77| 50.77| 50.78 50.78
SoDSA 52.59| 52.72 52.87] 53.08/ 53.34| 53.68
GSoDSA 53.16] 53.35] 53.62] 53.99] 54.47| 55.06
ESoDSA 53.18] 53.36 53.63] 54.000 54.46| 55.06

Table 7.15. Results of all algorithms on the Sensor Sharing Problem with arrival
intervalsat 10 iteration and life span of 50 iterations and normal distribution with
standard deviation of 1

151

Constraint Tightness
001 002 003 004 0.05 0.06

Stable Cycles
SoHC 891.97| 879.95 868.00] 858.45| 846.31| 720.00
GSoHC 888.85 875.58 864.80] 854.62| 835.14| 735.99
ESoHC 889.57| 876.46) 865.77| 855.00| 831.88| 727.09
SoDSA 89.73] 69.77] 58.91] 51.94| 46.61| 42.76
GSoDSA 74.61 60.19 51.20, 45.51 41.90 38.74
ESoDSA 74.67| 59.64 51.73 45.66 41.86 38.09

Request Satisfied
SoHC 80.00f, 80.00f 80.000 80.00] 80.00[79.99
GSoHC 80.00f 80.00f 80.000 80.00] 80.00[79.99
ESoHC 80.000 80.00f 80.000 80.00] 80.00[79.98
SoDSA 74.98 74.98 74.99 74.98 74.95 74.83
GSOoDSA 74.84 74.94 74.95 74.91 74.88 74.69
ESoDSA 74.84 74.93 74.94] 74.91 74.87 74.71

Awverage Queue Time
SoHC 200.89| 200.90, 200.94| 201.00] 201.10| 202.31
GSoHC 200.92| 200.95 200.98 201.04| 201.21| 202.16
ESoHC 200.91f 200.93 200.97| 201.03] 201.22| 202.20
SoDSA 247.73| 248.01 248.46) 248.65| 249.30[250.49
GSoDSA 250.19| 249.44| 249.61) 249.92| 250.60(251.97
ESoDSA 250.17| 249.45 249.58 249.89| 250.59| 251.94

Table 7.16. Results of all algorithms on the Sensor Sharing Problem with arrival
intervalsat 10 iteration and life span of 200 iterations and normal distribution
with standard deviation of 1

Constraint Tightness
001 002 003 004 005 0.06

Stable Cycles
SoHC 986.00| 986.00] 986.00] 986.00] 986.00, 986.00
GSoHC 986.00| 986.00] 986.00] 986.00] 986.00, 986.00
ESoHC 986.00] 986.00] 986.00] 986.00] 986.00] 986.00
SoDSA 946.13| 946.42| 946.52| 946.48| 946.56| 946.50
GSoDSA 951.21| 951.26[951.27[951.28| 951.45 951.45
ESoDSA 951.28| 951.44 951.25(951.26| 951.28 951.51

Request Satisfied
SoHC 20.00, 20.00f 20.00] 20.000 20.00, 20.00
GSoHC 20.00 20.00 20.00 20.00] 20.00, 20.00
ESoHC 20.00 20.00 20.00 20.00] 20.00, 20.00
SoDSA 20.00 20.00 20.00 20.00] 20.00, 20.00
GSoDSA 20.00 20.00 20.00 20.00] 20.00, 20.00
ESoDSA 20.00 20.00 20.00, 20.00] 20.00, 20.00

Average Queue Time
SoHC 10.70 10.70 10.70 10.70 10.70 10.70;
GSoHC 10.70 10.70 10.70 10.70 10.70 10.70;
ESoHC 10.70 10.70 10.70 10.70 10.70 10.70;
SoDSA 10.79 10.79 10.79 10.79 10.80 10.79
GSoDSA 10.78] 10.78] 10.78] 10.78] 10.78] 10.78
ESoDSA 10.78 10.78 10.78 10.78| 10.79 10.78

Table 7.17. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 10 iterations and normal distribution with
standard deviation of 1

152

Constraint Tightness
001 002 003 004 005 006

Stable Cycles
SoHC 981.83] 981.62] 981.42 981.28| 981.11| 980.98
GSoHC 981.84) 981.63] 981.44f 981.31| 981.15| 980.95
ESoHC 0981.84) 981.61] 981.46| 981.29| 981.14| 980.92
SoDSA 940.29| 940.30] 940.11] 939.78| 939.54| 939.20
GSoDSA 945.38] 945.03] 944.85(944.62| 944.23| 944.11
ESoDSA 045.35| 945.19] 944.79] 944.52| 944.34| 944.20|

Request Satisfied
SoHC 20.00 20.00, 20.00f 20.00] 20.00] 20.00
GSoHC 20.00 20.00, 20.00] 20.00] 20.00| 20.00
ESoHC 20.00f 20.00, 20.00f 20.00] 20.00] 20.00
SoDSA 20.00f 20.00, 20.000 20.00] 20.00] 20.00
GSoDSA 20.000 20.00, 20.00] 20.00] 20.00] 20.00
ESoDSA 20.00] 20.00, 20.00] 20.00] 20.00| 20.00

Awerage Queue Time
SoHC 50.75 50.75| 50.75 50.75 50.75 50.75
GSoHC 50.75 50.75| 50.75 50.75 50.75 50.75
ESoHC 50.75 50.75, 50.75 50.75 50.75 50.75
SoDSA 50.89] 50.89] 50.88) 50.90, 50.89| 50.90
GSOoDSA 50.86] 50.87] 50.87] 50.88/ 50.89| 50.89
ESoDSA 50.86] 50.87] 50.87] 50.87] 50.89| 50.89

Table 7.18. Results of all algorithmson the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 50 iterations and normal distribution with
standard deviation of 1

Constraint Tightness
0.01] 002 0.03 004 0.05 0.06

Stable Cycles
SoHC 979.32| 978.59| 977.85| 977.24| 976.56| 976.03
GSoHC 979.30| 978.61| 977.85| 977.20| 976.59| 975.97
ESoHC 979.33| 978.63| 977.82| 977.18| 976.53] 975.93
SoDSA 926.09] 924.69| 922.89] 921.34| 919.09] 916.92

GSoDSA 927.06] 924.03] 920.29| 914.79| 909.08 900.64
ESoDSA 927.15] 923.69| 920.32| 914.99| 908.20] 901.31
Request Satisfied

SoHC 16.00, 16.00] 16.00f 16.00f 16.00 16.00
GSoHC 16.00f 16.00] 16.00f 16.00f 16.00 16.00
ESoHC 16.00 16.00 16.00f 16.00f 16.00 16.00
SoDSA 16.00 16.00 16.00 16.00 16.00 16.00
GSoDSA 16.00 16.00 16.00 16.00 16.00 16.00
ESoDSA 16.00 16.00 16.00 16.00 16.00 16.00
Average Queue Time
SoHC 200.88| 200.88| 200.88] 200.88] 200.88] 200.88,
GSoHC 200.88| 200.88| 200.88] 200.88] 200.88] 200.88,
ESoHC 200.88] 200.88] 200.88] 200.88] 200.89] 200.89
SoDSA 202.53] 202.61] 202.71) 202.82] 202.95] 203.04

GSoDSA 202.71f 202.84| 202.97| 203.15 203.36] 203.60
ESoDSA 202.71] 202.86] 202.98 203.18 203.37| 203.58

Table 7.19. Results of all algorithmson the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 200 iterations and normal distribution
with standard deviation of 1

153

ESoHC and GSoHC. For the DSA based GEPs, SoDSA is able tamainghtly more
stable cycles than GSoDSA and ESoDSA.

With requests arriving every iteration and having a life spfab0 iterations, Table
7.21 shows the results where the network is at full load constahike before, the
increase in clustering of the requests makes it possible to mambagnstable cycles, but
at the same time, a sudden drop in stable cycles is seegeldeproblems with constraint
tightness of 0.02 and 0.03. As predicted by equation 7.4.5, this iegioe where the
problem goes from having multiple feasible solutions to having ks 1 feasible
solution. With the relatively small value of the single soltpoint, the performance of
the DSA based GEPs are abysmal as even problems withteagurtgghtness of 0.01 is
slightly harder than before due to how close it is now from thglesisolution point.
Table 7.21 also shows that apart from being able to maintain staiske cycles, ESoOHC
is also able to keep queue time down and the number of requests satisfied up even beyond
the single solution point. Overall, ESoOHC and GSoHC perform rbetier than SoHC
with ESoHC being the best.

The results for a request arrival time of 1 iteration afeddpan of 200 iterations
shown in Table 7.22 follow the same performance trend as thdsr@sulable 7.13.
Both ESoHC and GSoHC perform better than SoHC and are neckedo when
comparing stable cycles and average queue time. However, Efaft£ms slightly
better in the number of requests satisfied. The extended life spafuateting of sensor
types requested help out the DSA based GEPs slightly as they ate ral@tain quite a

few more stable cycles.

154

Constraint Tightness
001 002 003 004 005 006

Stable Cycles
SoHC 160.99| 146.54] 133.79| 123.55| 113.36| 103.53
GSoHC 154.93] 140.49] 127.55| 115.76| 104.37| 93.24
ESoHC 157.24| 144.12(131.39| 120.66| 109.24(98.64
SoDSA 14.17 6.52 2.91 1.26 0.67 0.34
GSoDSA 10.10] 4.60 1.98 0.81 0.36 0.19
ESoDSA 10.25 4.53 191 0.89 0.39 0.20
Requests Satisfied
SoHC 990.00| 990.00, 990.00| 990.00[990.00f 990.00
GSoHC 990.00] 990.00 990.00] 990.00[990.00f 989.97
ESoHC 990.00] 990.00 990.00] 990.00[989.99[989.96
SoDSA 988.63] 988.67| 988.66| 988.70| 988.70| 988.59

GSoDSA 988.64] 988.67| 988.68| 988.63| 988.51| 988.51
ESoDSA 988.65| 988.71 988.67| 988.61| 988.56| 988.46
Average Queue Time

SoHC 10.69] 10.71 10.73] 10.75] 10.77] 10.79
GSoHC 10.71) 10.73] 10.76] 10.78] 10.81] 10.84
ESoHC 10.70 10.72] 10.74] 10.76] 10.79] 10.82
SoDSA 12.43] 12.41) 12.40] 12.40] 12.41] 12.48
GSoDSA 12.41) 12.38 12.36] 12.38] 12.43] 1251
ESoDSA 12.41) 12.37] 12.36] 12.39] 12.43] 1251

Table 7.20. Results of all algorithmson the Sensor Sharing Problem with
arrival intervalsat 1iteration and life span of 10 iterations and normal
distribution with standard deviation of 0.5

Constraint Tightness
001 002 003 004 0.05 0.0

Stable Cycles
SoHC 532.79| 183.87 2.69 0.28 0.23 0.23
GSoHC 551.56| 285.26] 14.57 0.22 0.26 0.28
ESoHC 554.34] 293.900 14.35 0.20 0.26 0.25
SoDSA 0.49 0.14 0.13 0.14 0.09 0.09
GSoDSA 0.61 0.11 0.09 0.10 0.08 0.04
ESoDSA 0.61 0.13 0.08 0.09 0.06 0.04
Requests Satisfied
SoHC 570.50| 556.99| 519.59| 472.14] 439.05 409.22
GSoHC 570.86| 562.77| 538.81 515.34] 501.43 489.58
ESoHC 570.89| 563.17| 541.95 526.53 518.84] 512.20
SoDSA 531.67| 516.59| 498.19| 475.00| 453.67| 430.33

GSoDSA 52458 512.82| 497.11f 476.51] 457.40 457.40
ESoDSA 524.54| 512.80| 497.03[476.45(457.30] 435.90
Average Queue Time

SoHC 234.46| 242.66] 261.45 283.66[297.47 309.59
GSoHC 233.98] 239.55] 251.89] 261.62] 267.58 272.80
ESoHC 233.86] 239.28] 250.17] 256.33] 259.96| 263.53
SoDSA 263.70] 268.53] 276.07] 286.42] 296.22 306.92

GSoDSA 268.23] 271.01 277.19] 285.67] 294.64) 304.82
ESoDSA 268.19] 271.06] 277.16] 285.73] 294.75 304.80

Table 7.21. Results of all algorithmson the Sensor Sharing Problem with
arrival intervalsat 1iteration and life span of 50 iterations and normal
distribution with standard deviation of 0.5

155

Tables 7.23 and 7.24 present the results for when requests arrivevangelO
iterations and have life spans of 10 and 50 iterations. The pearicenof the dBA based
GEPs are as expected and not too surprising. For the DSA based GEPs, SoDS# is able
perform better than GSoDSA and ESoDSA because of its highdéeabloitation near
the solution. These results follow a performance trend sitoildrose in Table 7.14, but
slightly different from those in Table 7.5. The primary de#fece lies in that SODSA
actually performs better than ESoDSA here where in TabletZvsithe opposite. This
is attributed to the change from generating requests fronf@mndlistribution to that of
a normal distribution which increased the amount of clusterisgmsor types requested.
So, two elements changed for the problem. Firstly, the prebleanome harder with

clustering as predicted with equation 7.4.6. Secondly, the ircieagustering affects

Constraint Tightness
001 002 003 004 005 006

Stable Cycles
SoHC 876.56 497.53 15.62 0.26 0.29 0.33
GSoHC 880.39] 597.02 69.41 0.44 0.26 0.24
ESoHC 880.48 595.60, 71.16 0.35 0.27 0.24
SoDSA 4.90 0.16 0.13 0.13 0.09 0.13
GSoDSA 3.65 0.12 0.09 0.08 0.06 0.07
ESoDSA 3.00 0.11 0.07 0.08 0.06 0.07
Requests Satisfied
SoHC 121.00] 119.20; 111.88| 103.85| 98.44| 93.23
GSoHC 121.00 119.97| 116.51| 112.58| 110.21| 108.62
ESoHC 121.00 119.97| 117.44| 115.41] 114.16| 113.19
SoDSA 119.88) 117.36] 112.19| 106.65| 101.46| 96.95

GSoDSA 119.39] 117.13 112.66| 106.85| 102.22| 102.22
ESoDSA 119.41 117.12) 112.71| 106.81| 102.26 97.57
Awerage Queue Time
SoHC 460.13] 463.71| 473.52| 484.12 492.26| 499.07
GSoHC 460.08| 462.51| 472.81| 479.73| 482.50| 485.93
ESoHC 460.07| 462.52| 473.18| 479.30[481.16| 483.28
SoDSA 523.42| 518.53] 512.66| 509.90| 507.42| 509.47
GSoDSA 528.71) 521.77| 516.19| 509.92| 507.69| 507.79
ESoDSA 528.70| 521.84| 516.29| 509.74| 507.83| 507.87

Table 7.22. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 1 iteration and life span of 200 iterations and normal
distribution with standard deviation of 0.5
156

the probability that a new sensor request will cause a reassignnsemisof tasks. These
two factors together contribute to the gain in performanceSfDSA that makes it
perform slightly better here than ESoDSA.

Table 7.25 contains the results for the third hardest problem amoogédkdested
here. With an request arrival time of 10 iterations antéapan od 200 iterations, there
are on average 20 sensor requests to satisfy at any given Based on the previous
method for predicting where the hard problems are, the constiglmihdss here for
problems that are only expected to have one solution is around 0.074.83%d7. This
accounts for the drop in performance seen starting from a amdightness of 0.05.

SoDSA still is able to perform better than the other DSA based GEPs.

Constraint Tightness
0.01] 002 003 004 005 0.06

Stable Cycles
SoHC 917.41) 916.71] 916.15(915.36| 914.74] 914.19
GSoHC 917.42] 916.75 916.22| 915.48] 914.95] 914.36
ESoHC 917.43] 916.74| 916.17| 915.48] 914.95| 914.30
SoDSA 773.15] 771.91) 771.45| 770.54] 769.87| 768.96

GSoDSA 743.60| 742.57| 741.52| 741.03 740.60[740.76
ESoDSA 744.21 742.57| 741.09| 740.54) 740.41 740.91
Requests Satisfied

SoHC 99.00f 99.00f 99.00f 99.00f 99.00] 99.00
GSoHC 99.00f 99.00f 99.00f 99.00f 99.00] 99.00
ESoHC 99.00f 99.00f 99.00f 99.00f 99.00] 99.00
SoDSA 99.00f 99.00f 99.00f 99.00f 99.00] 99.00

GSoDSA 99.00 99.00f 99.00 99.000 99.00, 99.00
ESoDSA 99.00 99.00f 99.00 99.000 99.00, 99.00
Awerage Queue Time

SoHC 10.66] 10.66 10.66] 10.66] 10.66| 10.66
GSoHC 10.66] 10.66 10.66] 10.66/ 10.66| 10.66
ESoHC 10.66] 10.66 10.66] 10.66/ 10.66| 10.66
SoDSA 10.75 10.75 10.75 10.75 10.75 10.76
GSoDSA 10.74] 10.75 10.75 10.75 10.75 10.76
ESoDSA 10.74] 10.74) 10.75 10.75 10.75 10.76

Table 7.23. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 10 iteration and life span of 10 iterations and normal
distribution with standard deviation of 0.5

157

Constraint Tightness
001 002 003 004 005 0.06

Stable Cycles
SoHC 906.30 903.70| 900.88| 898.21| 895.90| 893.40
GSoHC 906.49| 903.86 901.07| 898.42| 895.73] 892.90
ESoHC 906.43| 903.78] 900.94| 898.02| 895.44| 892.80
SOoDSA 789.97| 778.78 762.70(742.51| 718.05| 685.97
GSoDSA 742.97) 722.75 693.50(659.18| 614.77| 563.72
ESoDSA 742.92| 723.23] 692.66| 657.46| 614.80] 562.78

Requests Satisfied
SoHC 95.00] 95.00, 95.00(95.00] 95.00[95.00
GSoHC 95.00] 95.00, 95.00[95.00f 95.00[95.00
ESoHC 95.00, 95.00, 95.00(95.00f 95.00[f 95.00
SoDSA 95.00] 95.00] 95.00(95.00f 95.00[95.00
GSoDSA 95.00] 95.00, 95.00(95.00f 95.00[95.00
ESoDSA 95.00] 95.00, 95.00[95.00f 95.00[f 95.00

Awverage Queue Time
SoHC 50.67] 50.67| 50.67 50.67] 50.67| 50.67
GSoHC 50.67| 50.67| 50.68 50.68/ 50.69| 50.70
ESoHC 50.67| 50.68 50.68 50.68/ 50.69| 50.69
SOoDSA 51.76 51.82, 51.90 52.02 52.15 52.35
GSoDSA 52.24 52.32 52.47 52.65 52.93 53.26
ESoDSA 52,23 52.32] 52.48| 52.68 5293 53.28

Table 7.24. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 10 iteration and life span of 50 iterations and normal
distribution with standard deviation of 0.5

Tables 7.26 to 7.28 contain the last batch of results. The longer time betvirsn a
of requests help ESoDSA and GSoDSA perform slightly better $o®SA for request
life spans of 10 and 50 iterations, which are relatively shompared to the time
between requests. However, as the problem gets harder witmges life span of 200
iterations, SoDSA is able to regain its performance leadha problem's constraint

tightness increased.

7.8. Conclusions
The results show that as expected, the difficulty of a probletetesrmined by the
ratio between the arrival interval of requests and the fifa ©f the constraints, which

defines how many active requests will be present at any given and the distribution

158

Constraint Tightness
001 002 003 004 005 0.06

Stable Cycles
SoHC 897.47| 887.53| 876.53] 838.16| 705.16] 415.43
GSoHC 895.04| 883.41 871.56| 845.54| 734.10 507.79
ESoHC 895.30] 884.35| 872.29 843.16] 724.75 482.91
SoDSA 117.48 78.18 65.00] 57.33 51.56| 47.60
GSoDSA 89.91] 64.02] 54.40, 47.96] 42.900 39.98
ESoDSA 89.65 64.76] 54.30] 47.38 43.33] 39.83

Requests Satisfied
SoHC 80.00f 80.00f 80.00f 79.88 79.47| 78.50
GSoHC 80.00, 80.00] 80.00, 79.97] 79.71] 79.31
ESoHC 80.00, 80.00] 80.00, 79.95 79.69] 79.31
SoDSA 74.97 74.99 75.02 74.94 74.67 74.02
GSoDSA 74.35 74.48 74.49 74.42 74.06 74.06
ESoDSA 74.33 74.46 74.51 74.43 74.05 73.30

Average Queue Time
SoHC 200.84| 200.84] 200.89 201.10] 202.14] 206.29
GSoHC 200.86] 200.89] 200.94] 201.11] 201.92| 204.06
ESoHC 200.86| 200.88] 200.92| 201.10] 201.96| 204.03
SoDSA 240.63| 242.17| 242.28| 242.72| 244.09| 247.24
GSoDSA 244,90 245.39| 245.30) 245.66) 246.95 250.25
ESoDSA 244.92| 245.44] 245.25(245.69 246.94| 250.23

Table 7.25. Results of all algorithms on the Sensor Sharing Problem with arrival
intervalsat 10 iteration and life span of 200 iterations and normal distribution

with standard deviation of 0.5

Constraint Tightness
001 002 003 004 005 0.06

Stable Cycles
SoHC 988.00] 988.00] 988.00| 988.00| 988.00| 988.00
GSoHC 988.00] 988.00] 988.00| 988.00] 988.00| 988.00
ESoHC 988.00] 988.00 988.00| 988.00| 988.00| 988.00
SoDSA 953.94] 954.05| 953.86| 954.01] 954.04| 953.99
GSoDSA 958.23] 958.10| 958.24| 958.28| 958.40[958.47
ESoDSA 958.19] 958.17| 958.20] 958.20] 958.31) 958.26

Requests Satisfied
SoHC 20.000 20.000 20.00] 20.00f 20.00[20.00
GSoHC 20.000 20.000 20.00f 20.00f 20.00[f 20.00
ESoHC 20.000 20.000 20.00] 20.00f 20.00[f 20.00
SoDSA 20.000 20.000 20.00f 20.00f 20.00[20.00
GSoDSA 20.000 20.000 20.00f 20.00f 20.00[20.00
ESoDSA 20.000 20.00f 20.00] 20.00f 20.00[20.00

Average Queue Time
SoHC 10.60] 10.60; 10.60[10.60| 10.60| 10.60
GSoHC 10.60] 10.60; 10.60[10.60| 10.60| 10.60
ESoHC 10.60] 10.60; 10.60[10.60f 10.60| 10.60
SoDSA 10.68] 10.68 10.68(10.68] 10.68| 10.68
GSoDSA 10.67 10.67 10.67 10.67 10.67 10.67
ESoDSA 10.67 10.67 10.67 10.67| 10.67 10.67

Table 7.26. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 10 iterations and normal distribution
with standard deviation of 0.5

159

Constraint Tightness
001 002 003 004 005 006

Stable Cycles
SoHC 984.90, 984.80] 984.70, 984.59 984.50 984.40
GSoHC 984.90, 984.80] 984.70, 984.61 984.52| 984.41
ESoHC 984.90, 984.80] 984.69] 984.60, 984.50| 984.42
SoDSA 949.58) 949.45| 949.36| 949.26| 949.04| 948.92
GSoDSA 953.46| 953.47| 953.23] 953.11] 952.93] 952.83
ESoDSA 953.52| 953.36] 953.24| 953.13] 952.90| 952.79

Requests Satisfied
SoHC 20.00f 20.00f 20.00f 20.000 20.00 20.00
GSoHC 20.00, 20.00] 20.00, 20.00f 20.000 20.00
ESoHC 20.00, 20.00] 20.00, 20.00f] 20.000 20.00
SoDSA 20.000 20.00] 20.00] 20.00f 20.000 20.00
GSoDSA 20.000 20.00] 20.00f 20.00f 20.000 20.00
ESoDSA 20.000 20.00] 20.00f 20.00f 20.000 20.00

Average Queue Time
SoHC 50.60, 50.60] 50.60, 50.60, 50.60| 50.60
GSoHC 50.60, 50.60] 50.60, 50.60f 50.60| 50.60
ESoHC 50.60] 50.60] 50.60] 50.60f 50.60 50.60
SoDSA 50.70| 50.70] 50.69] 50.69] 50.70/ 50.71
GSoDSA 50.68| 50.68 50.69 50.69] 50.69 50.69
ESoDSA 50.68/ 50.69| 50.68/ 50.69] 50.69 50.69

Table 7.27. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 50 iteration and life span of 50 iterations and normal
distribution with standard deviation of 0.5

Constraint Tightness
0.0] 002 003 004 005 0.06

Stable Cycles
SoHC 979.45 978.86) 978.35(977.82| 977.40, 976.85
GSoHC 979.43] 978.89) 978.36| 977.76| 977.35 976.86
ESoHC 979.43] 978.89| 978.27[977.75| 977.25| 880.48
SoDSA 932.500 931.94] 930.77[930.02| 928.34| 926.35

GSoDSA 932.71f 930.18 925.90] 921.51] 914.95| 907.06
ESoDSA 932.72] 929.92] 926.08| 921.05] 915.23] 907.24
Requests Satisfied

SoHC 16.000 16.00, 16.00(16.00, 16.00] 16.00
GSoHC 16.000 16.00, 16.00(16.00, 16.00] 16.00
ESoHC 16.000 16.00, 16.00(16.00, 16.00] 16.00
SoDSA 16.00 16.00, 16.00(16.00 16.00| 16.00
GSoDSA 16.00 16.00, 16.00(16.00 16.00| 16.00
ESoDSA 16.00, 16.00, 16.00(16.00 16.00| 16.00
Awverage Queue Time
SoHC 200.88 200.88 200.88| 200.88] 200.88| 200.88
GSoHC 200.88 200.88 200.88| 200.88] 200.88| 200.88
ESoHC 200.88 200.88 200.88| 200.88] 200.88| 200.89
SoDSA 202.03] 202.06] 202.13] 202.21] 202.26] 202.35

GSoDSA | 202.14] 202.20] 202.31] 202.41] 202.59] 202.73
ESoDSA | 202.14 202.23 202.30] 202.42] 202.58] 202.74
Table 7.28. Results of all algorithms on the Sensor Sharing Problem with
arrival intervalsat 50 iteration and life span of 200 iterations and normal
distribution with standard deviation of 0.5

160

of sensor requests among the differing sensor types. The thesaumber of active
requests approaches the maximum of 30, the harder the problem beespezsally
when the constraint tightness on the allocation policies isasete As for the problems
with requests arriving every interation with life spans ofab@ 200, the performance
drops dramatically around the constraint tightness where theoalysone feasible
solution. The results reflect the prediction of where the hard problems woulddzbdra
equation 7.4.6.

For the first portion of the test, assuming that the uniform randonber generator
used to randomly generate the unit requests is truly uniforcanitboe expected that the
30 randomly generated unit requests that are active at any gime will be evenly
spread out among the different sensor types. If this is tlee tteen based on equation
7.4.6 with 30 external requests evenly distributed among the dowadires, the
constraint tightness at which the expected number of feasiblgoss drops to 1 is 0.05.
This explains why it is so hard to maintain a stable cydien the tightness increases
above 0.03.

For the second portion of the test, the Gaussian random numbertgenset to
generate requests for sensors created a situation wherentte $/pes being requested
were clustered. This made the problem harder, as predicted’wi6, because of the
reduction in the number of feasible solutions. However, the dlugtalso made the
sensor sharing problem less dynamic, requiring less frequemtr seassignment, which
helped boost the performance of ESOHC and GSoHC along with SoDSA.

Overall, depending on the distribution of requests among sensor ligpength of
time between the arrival of request and the life span of requests carielusions can be

161

drawn. SoHC, with its greater diversity in population, perforbetter than either
GSoHC or ESoHC when the requests are more evenly distributed aaosgr types.
When the requests are not uniformly distributed among the sensorthypegrformance
of SoHC drops while ESOHC and GSoHC performs much better. Agn&aHC will
perform better when the problem is more dynamic. For the BxX3&d GEPs, the results
are slightly different, as ESoDSA has a slight edge wherligtgbution of requests is
more uniform, while SoDSA performs slightly better with non-umiforequests.
ESoDSA performs the best for easier problems, while SoDSA rpesfbetter on the
harder problems, especially with non-uniform requests. However, obtiee DSA

based GEPs is able to perform acceptably on harder problems.

162

CHAPTER 8

CONCLUSIONS AND FURTHER RESEARCH

With the growing popularity and usage of distributed architestim computing,
distributed resource allocation and distributed constraint faeticn problems will
become much more common. As noted earlier, a great deal bfhnastbeen devoted to
solving the traditional centralized resource allocation and conssatisfaction problems
and good solution methods and strategies have been found. Howedmstributed
architecture poses a new challenge for traditional methods wifueinequirements,
specifically decentralized control. Even when adapted to shbebuted problems, the
methods only produce good results for fairly easy problems, fanmea distributed
asynchronous backtracking or asynchronous weak commitment searches.

This research demonstrated the use of genetic and evolutionapggiso(GEPS)
that utilize a truly distributed genome for candidate solutiormgawith distributed
genetic and evolutionary operators, to solve distributed constsaitéfaction and
resource allocation problems. The tests on randomly geneafistedbuted asymmetric
constraint satisfaction problems (DisSACSPs) showed that GE®ssuperior to the
current best known algorithms, the distributed breakout algorithmA)(diBhd the
distributed stochastic algorithm (DSA).

The results also showed that dBA and DSA can both be modiftacavpopulation

based approach (SoHC and SoDSA) to increase performancenitl linear increase
163

in overhead. The genetic and evolutionary operators used to mt¢heagerformance of
SoHC can also be used to improve performance for other siatgarithms. However,
this direct implementation of the genetic and evolutionary opertaneate DSA based
GEPs still has room for improvement.

The sensor network tracking and sharing problems presented intgpragplication
test beds for GEPs. GEPs performed well for the sensdirngaproblem, since the
problem is fairly static and reassignment of sensor duty dodsamnetto take place very
often. However, for the sensor sharing problem, where the exteauatsts are more
varied and there is a much more dynamic scenario with fregeassignments of sensor
duty, GEPs did not perform as well as plain SoHC. As menti@ater, this is
completely due to the lack of population diversity caused by the ubke afossover and
mutation operators, which help GEPs find solutions faster tis#fCSbut increase the
time they need to adapt to changes in the problem.

In summary, this dissertation presented and demonstrated tfoem@nce and
advantages of a new type of distributed EC utilizing geneiicewvolutionary protocols.
The genetic and evolutionary protocols easily outperformed the best lkadgarnthms in
solving distributed constraint satisfaction and resource altoctairoblems and show
great potential. The distributed genetic and evolutionary apserased here can also be
applied to other distributed methods and are likely to improve their performances.

For further research, the possibility of creating a DSA aithadaptivep value that
can increase its performance is an avenue to explore. matynrials in this work did

not yield good results, but were generally inconclusive. Theatststhe open question

164

of whether a breakout list will help DSA. It could very wedl that other DSA models
are more suitable for such modifications.

Also, the implementation of the sensor tracking problem use@$ting GEPs was
fairly simplistic, as the focus was to show that GEPs lparutilized to solve such
problems and get preliminary results to assess the perfoemdrie next step would be
to move towards a more realistic model of the sensor tracking prolifer example, the
removal of the assumption of perfect visibility would change dhtre problem and
make it harder. Topology considerations can also be added te cneae realistic
ommunication models.

Further more, in this work, unit requests were used for the sensor shaidhgnpto
simplify the testing and to help discover more about the gehelalvior of GEPs when
there is a need to satisfy both external and internal camstrai However, more
realistically, more tests need to be performed using blegkests of varying sizes to
further explore the nature of the sensor sharing problem.

Lastly, the approach towards the sensor tracking and sharingmpeoliehis work
is at a very high level, which opens up the possibility of peifogriower level analysis
to determine the impact of GEPs on the power consumption of ediefdual pod and

the general communication latency required to create global views.

165

[1]
[2]

[3]

[4]

[5]
[6]
[7]

[8]
[9]

[10]
[11]
[12]

[13]

[14]

BIBLIOGRAPHY

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Caykci*Wireless Sensor
Networks: a Survey.Computer Network¥ol. 38, pg. 393-422, 2002.

Angeline, P. “Adaptive and Self-Adaptive Evolutionary Computations
Computational Intelligence: A Dynamic Systems PerspedleE Press, ppl52-
163, 1995.

Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, &¢d Rus, D.
“Tracking a Moving Object with a Binary Sensor NetworkProceedings of
SenSys 'Q3

Back, T., Hoffmeister, F. and Schwefel, H.-P. “A SurveyEoblution Strategies.
In Proceedings of the Fourth International Conference on Genetic Algorith@s
San Mateo, CA 1991.

BarNoy, A. et al. “On Chromatic Sums and Distributeds®uirce Allocation.”
Information and Computatigivol. 140, No. 2, pp183-202, 1998.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. MNonlinear Programming:
Theory and AlgorithmsJohn Wiley & Sons, Inc., 1993.

Bejar, R., Krishnamachari, B., Gomes, C., and SelmanDitributed Constraint
Satisfaction in a Wireless Sensor Tracking Systeriorkshop on Distributed
Constraint Reasoning, International Conference on Artificial Intellige2681.
Belding T. C. “The Distributed Genetic Algorithm Revisited?troceedings of the
Sixth Intl. Conf. on Genetic Algorithmsages 114--121, San Mateo, CA, 1995.
Bellman, R. “Some Applications of the Theory of Dynamic Paogming-A
Review.” Journal of the Operations Research Society of AmeNed 2, No. 3
(Aug., 1954), pp. 275-288.

Bertsekas, D. P..Nonlinear Programming Athena Scientific. Massachusetts,
1995.

Bharathidasan, A., Ponduru, V. A. S. “Sensor Networks: An \@awr” |IEEE
INFOCOM '04.

Bhuvaneswaran, R. S., Bordim, J. L., Cui, J. T., and Nak&no,"Fundamental
Protocols for Wireless Sensor Networks.” IPDPS, April 2001.

Carter, R. L., Louis, D. St., and Andert, E. P. Jr. s®&®e&ce Allocation in a
Distributed Computing Environment."Proceedings of Digital Avionics Systems
Conference1998.

Burghart, T.. “Distributed Computing Overview.” QUOIN Inc., June, 1998.

166

[15] Cassandras, C. G. and Julka, V. “Descent Algorithms facmie Resource
Allocation Problems.” Proceedings of the 33 Conference on Decision and
Control, 1994.

[16] Chandy, K. M. and Misra, J. “The Drinking Philosophers Proble ACM
Transactions on Programming Languages and Syst&a&s!.

[17] Charnes, A. and Cooper, W. W. “The Theory of Search: Optiligtnibution of
Search Effort.”Management Scienc¥ol. 5,No. 1 (Oct., 1958) , pp. 44-50

[18] Chellapilla, K. and Fogel, D. B. “Exploring Self-Adaptiveeiods to Improve the
Efficiency of Generating Approximate Solutions to TravelirmjeSman Problems
using Evolutionary Programming.” Evolutionary Programming VI Springer,
Berlin (1997) 361-371.

[19] Chevaleyre, Y. et la. “Issues in Multiagent Resourcledation.” Informaticg
30:3-31, 2006

[20] Choy, M. and Singh, A. K.. “Efficient Fault-Tolerant Algthms for Distributed
Resource Allocation.” ACM Transactions on Programming Languages and
SystemgsVol. 17, No. 3, pp535-559, 1995.

[21] Commander, C. W. “A Survey of the Quadratic Assignment Broplwith
Applications.” Morehead Electronic Journal of Applicable Mathematilssue 4,
2005.

[22] Coffman, K. G. and Odlyzko, A. M.. “Growth of the InternetOptical Fiber
Telecommunications IV B: Systems and Impairménis Kaminowand T. Li, eds.,
pp. 17-56, Academic Press, 2002.

[23] Coit, D. W. and Smith, A. E.. “Solving the Redundancy Allocatiombem Using
a Combined Neural Network/Genetic Algorithm Approach.Computers &
Operations Researcluly 1995.

[24] Coit, D. W. and Liu, J. “System Reliability Optimizatiowith k-out-of-n
Subsystems.” International Journal of Reliability, Quality, and Safety
Engineering Vol. 7, No. 2, pp129-142, 2000.

[25] Coleri, S., Puri, A., and Varaiya, P. “Power EfficieBystem for Sensor
Networks.” Eighth |EEE International Symposium on Computers and
Communication Proceedings. (ISCC 2003uly 2003.

[26] Day, R. O., Kleeman, M. P., and Lamont, G. B. “Solving Mhdti-Objective
Quadratic Assignment Problem Using a Fast Messy Genetic ifNgot
Proceedings of CEC'03

[27] Debeau, D. E. “Linear Programming Isn't Always the Aasiv Operations
ResearchVol. 5, No. 3 (Jun., 1957) , pp. 429-433

[28] Dechter, R. “Constraint Networks.” Encyclopedia of Artificial Intelligence
second edition, pp276-295, Wiley and Sons, 1992.

[29] DeJdong, K. and Spears, W. (1993). “On the State of Evolutic@angputation.”
Proceedings of the Fifth ICGA18-623. Kaufmann, San Mateo, CA.

[30] Dodin, P., Verliac, J., and Nimier, V. “Analysis of the Msdinsor Multitarget
Tracking Resource Allocation Problem,” iProceedings, 3rd International
Conference on Information Fusip2000, pp. WeC1—17—22.

[31] Dorigo, M and Di Caro, G. “Ant Algorithms for Discretgptnization.” Artificial
Life, Vol 5, No. 3, pp137-172, 1999.

167

[32] Dorigo, M., Bonabeau, E., and Theraulaz, G.. (199Warm Intelligence: From
Natural to Artificial System<Oxford University Press.

[33] Dorigo, M. and Gambardella, L. M. “Ant Colony System: A Coopeegatearning
Approach to the Traveling Salesman Problem.1lEEE Transactions on
Evolutionary Computatigrivol 1., No. 1, 1997.

[34] Dorigo, M., Maniezzo, V., and Colorni, A. “Ant System: Optimipatby a Colony
of Cooperating AgentsIEEE Transactions on Systems, Man and Cybernd&iag
B, Volume: 26 , Issue: 1, Pages:29 — 41, Feb. 1996.

[35] Dozier, G. “Distributed Constraint Satisfaction vi&aciety of Hill-Climbers.” In
Proceedings of the 2002 World Automation Conference(International Symposium
on Soft Computing with Industrial Application§)lando Florida, June 9-13.

[36] Dozier, G. “Solving Distributed Asymmetric ConstrainttiS@action Problems
Using an Evolutionary Society of Hill-ClimbersProceedings of Genetic and
Evolutionary Computation Conference (GECCO-2003).

[37] Dozier, G. and Rupela, V. “Solving Distributed Asymrnee@SPs via a Society of
Hill-Climbers.” Proc. Of IC-AI'02,pp. 949-953, CSREA Press.

[38] Dozier , G. “Sharing the Sensor Web via Recurrent Disied Meta-Evolutionary
Constraint Satisfaction.Proceedings of the 2003 Conference on Space Mission
Challenges for Information Technology (SMC-IT 2008p. 153-160 , July 13-16 ,
Pasadena , CA.

[39] Dozier, G., Bowen, J., and Bahler, D. “Solving Randomly Geerd Constraint
Satisfaction Problems Using a Micro-Evolutionary Hybrid thatolizes a
Population of Hill-Climbers.” Proceedings of the 2nd IEEE Conference on
Evolutionary Computatigrpages 614-619, 1995.

[40] Dozier, G., Bowen, J., and Homaifar, A. “Solving Constra8sdtisfaction
Problems Using Hybrid Evolutionary SearcHEEE Transactions on Evolutionary
ComputationVol. 2, No. 1, April 1998.

[41] Dozier, G. V., Cunningham, H., Britt, W., and Zhang, F. “DistiouConstraint
Satisfaction, Restricted Recombination, and Hybrid Genetarch.” GECCO
2004 1078-1087.

[42] Dreyfus, S. E. “Computational Aspects of Dynamic Progrargrh Operations
ResearchVol. 5, No. 3 (Jun., 1957) , pp. 409-415.

[43] Eiben, A. E., Raue, P-E., and Ruttkay, Zs. “Solving Constr8atisfaction
Problems Using Genetic Algorithms.The 1st IEEE Conference on Evolutionary
Computationpp. 542-547. 1994.

[44] V. Ekanayake, C Kelly, IV, and R ManoharArf Ultra-Low Power Processor for
Sensor Networks Proceedings of ASPLOS '04.

[45] Fabiunke, M. “Parallel Distributed Constraint Satisfacti In Proc. Intern. Conf.
on Parallel and Distributed Processing Techniques and Application®TRE99)
pages 1585-1591, 1999.

[46] Fang, Q., Zhao, F., and Guibas, L. “Counting Targets: BuildingMadaging
Aggregates in Wireless Sensor Networks.” Xerox Palo Atsearch Center
(PARC) Technical Report, June 2002.

168

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]
[56]
[57]
[58]
[59]
[60]

[61]

[62]

[63]

[64]

Fiacco, A. V. and McCormick, G. PNonlinear Programming: Sequential
Unconstrained Minimization TechniquesSociety for Industrial and Applied
Mathematics, Philadelphia, 1990.

Fitzpatrick, S. and Meertens, L. “An Experimental Assesnt of a Stochastic,
Anytime, Decentralized, Soft Colourer for Sparse Graphs.Prbt. 1st Symp. on
Stochastic Algorithms: Foundations and Applicatigmsges 49-64, 2001.

Fogel, D. B. “The Advantages of Evolutionary ComputatioriRtfoceedings of
Biocomputing and Emergent Computatia897.

Fogel, D. B. and Chellapilla, K. “Revisiting Evolutionary Pramming.” SPIE
Aerosense98, Applications and Science of Computational Intellig€nt@ndo,
FL, pp. 2-11, 1998.

Fogel, D. B. Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence.lEEE Press, New York, 2000.

Fogel, L. J., Owens, A. J.,, & Walsh, M. Artificial Intelligence Through
Simulated EvolutionNew York: Wiley Publishing, 1966.

Fogel, L. J., Angeline, P. J., and Fogel, D. B. (1995). “Bwolutionary
Programming Approach to Self-Adaptation on Finite State Muesshi
Proceedings of the Fourth International Conference on Evolutionary
Programming 355—365.

Freuder, E. C., Minca, M., and Wallace, R. J. “Privatii¢giency Tradeoffs in
Distributed Meeting Scheduling by Constraint-Based AgentSistributed
Constraint Reasoningp. 63-70, 2001.

Fu, S. and Dozier, G. V. *“Solving Distributed Constrebattisfaction Problems
with an Ant-Like Society of Hill-Climbers.”IC-Al 2003 263-269.

Galinier, P. and Hao, J-K.. “Hybrid Evolutionary Agloriterfor Graph Coloring.”
Journal of Combinatorial Optimization, 379-397 (1999)

Galstyan, A., Krishnamachari, B., Lerman, K. “Resourtiecation and Emergent
Coordination in Wireless Sensor NetworksAmerican Association of Artificial
Intelligence 2004.

Glover, F. and Laguna, MTabu Search Springer, 1998.

Glover, F., Talllard, E., and D. de Werra. “A User’s Guide to Tabu Seakecimals
of Operation Researcvol. 41, pp. 3-28, 1993.

Glover, F., Laguna, M. and Marti, R. “Fundamentals of t8céearch and Path
Relinking.” Control and Cybernetic229/3 (2000), 653-684.

Gorges-Schleuter, M. “ASPARAGOS An Asynchronous Pdralig@enetic
Optimization Strategy.”Proceedings of the 3rd International Conference on
Genetic Algorithmspages 422-427, 1989.

de Guenin, J. “Optimum Distribution of Effort: An Extensiohthe Koopman
Basic Theory.” Operations Resear¢Nol. 9, No. 1 (Jan. - Feb., 1961) , pp. 1-7
Hadj-Alouane, A. B., and Bean, J. C. “A Genetic Algorition the Multiple-
Choice Integer Program.Operations Resear¢ciVol. 45, No. 1 (Jan. - Feb., 1997) ,
pp. 92-101.

Handa, H., Katai, O., Baba, N., and Sawaragi, T. “Sol@ogstraint Satisfaction
Problems by Using Coevolutionary Genetic AlgorithmsProceedings of 1998
IEEE Internation Conference on Evolutionary Computatjgm 21-26.

169

[65] Hillier, F. S. and Lieberman, G. Jatroduction to Operations ResearcMcGraw-
Hill Inc. New York, 1995.

[66] Hinterding, R., Michalewicz, Z. and Eiben, A. E. “Adaptation in Evolutionary
Computation: A Survey.'Proceedings of the IEEE Conference on Evolutionary
Computation 1997.

[67] Horng, J-T. et la. “Resolution of Quadratic Assignmenbblrms Using an
Evolutionary Algorithm.”Proceedings of CEC'00

[68] Hubaux, J.P. and Enz, C. “Minimum Energy Broadcast ililleless Networks:
NP-Completeness and Distribution IssuesProceedings of MOBICOM '02
September, 2002.

[69] Hung, M. S. “A Polynomial Simplex Method for the Assignmd#ioblem.”
Operations Resear¢iol. 31, No. 3 (May - Jun., 1983) , pp. 595-600

[70] Ibaraki, T. and Katoh, N.Resource Allocation Problems: Algorithmic Approach
The MIT Press, Massachusetts, 1988.

[71] Kang, I. and Poovendran, R. “A Novel Power-Efficient Br@sicRouting
Algorithm Exploiting Broadcast Efficiency.” Proceedings of IEEE Vehicular
Technology Conferencpp. 2926-2930, Orlando, FL, Oct. 6-9, 2003.

[72] Karmarkar, N. “A New Polynomial-time Algorithm for hear Programming.”
Combinatoricavol. 4, issue 4, pp. 373-395, 1994.

[73] Karush, W. “A General Algorithm for the Optimal Distrimr of Effort.”
Management Scienc¥ol. 9, No. 1 (Oct., 1962) , pp. 50-72.

[74] Kennedy, J. “The Behavior of Particles?roceedings of the 7th International
Conference on Evolutionary Programming Mip. 581-589, 1998.

[75] Kennedy, J. and Eberhart, R. C. “Particle Swarm Opétion.” Proc. |IEEE int'l
conf. on neural networkgol. IV, pp. 1942-1948. IEEE service center, Piscataway,
NJ, 1995.

[76] Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P. “@ptation by Simulated
Annealing” Readings in Computer Vision: Issues, Problems, Principles, and
Paradigms pp.606 — 615, Morgan Kaufmann Publishers Inc., 1987.

[77] Klee, V. and Minty, G. J. “How Good is the Simplex Aldbm?” In O. Shisha,
editor,Inequalities 11} pages 159-175. Academic Press, New York, NY, 1972

[78] Kodialam, M. S. and Luss, H. “Algorithms for Separablenhhear Resource
Allocation Problems.” Operations Research/ol. 46, No. 2 (Mar. - Apr., 1998) ,
pp. 272-284.

[79] Koopman, B. O. “The Optimum Distribution of EffortJournal of the Operations
Research Society of Amerjo#ol. 1, No. 2 (Feb., 1953) , pp. 52-63.

[80] Koza, J. RGenetic ProgrammingVIT Press, 1992.

[81] Kubisch, M., Karl, H., Wolisz, A., Zhong, L. C., and Rabaey, “Distributed
Algorithms for Transmission Power Control in Wireless Sensetwlrks.”
Wireless Communications and Networking (WCNGC'0rch 2003.

[82] Kulturel-Konak, S., Smith, A. E., and Coit, D. W. “Efeeitly Solving the
Redundancy Allocation Problem Using Tabu Seardle Transactions2003.

[83] Kulturel-Konak, S., Norman, B. A., Coit, D. W., and Smith, A. E. “Exploiting Tabu
Search Memory in Constrained Problem&NFORMS Journal of Computiny/ol.
16, No. 3, pp.241-254, Summer 2004.

170

[84]
[85]

[86]

[87]
[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Kumar, V. “Algorithms for Constraint Satisfaction ProbEnmA Survey.” Al
Magazine 1992.

Kuo, W. and Prasad, V. R. “An Annotated Overview of SysReliability
Optimization.” IEEE Transactions on Reliability#9/2 (2000), 176-187.
Kuwabara, K., Ishida, T., Nishibe, Y., and Suda, T. “An Eigatory Market-
Based Approach for Distributed Resource Allocation and Its Aaiptin to
Communication Network Control.” Fromdarket-Based Control: A Paradigm for
Distributed Resource AllocatioiVorld-Scientific, Singapore, 1995.

Li, D., Wong, K. D., Hu, Y. H., and Sayeed, A. M. “Detecii Classification, and
Tracking of Targets.”IEEE Signal Processing Magazindarch 2002.

Liang, Y-C., Kulturel-Konak, S., and Smith, A. E. “Meta Wiistics for the
Orienteering Problem.Proceedings of CEC'Q2002.

Liang, Y-C. and Smith, A. E. “An Ant System Approach Redundancy
Allocation.” Proceedings of CEC'99.999.

Liang, Y-C. and Smith, A. E. “Ant Colony Optimization fd€onstrained
Combinatorial Problems.”Proceedings of % International Conference on
Industrial Engineering2000.

Liang, Y-C. and Smith, A. E. “An Ant Colony Optimizatighigorithm for the
Redundancy Allocation Problem (RAP).IEEE Transactions on Reliability/ol.
53, No. 3, 2004.

Eliane M. L., et al. “An Analytical Survey for the Quatic Assignment
Problem.” To appear iBuropean Journal of Operations Research

Macintyre, E., Prosser, P., Smith, B., and Walsh, Rarfdom Constraint
Satisfaction: Theory Meets Practic&he Proc. Of CP-98pp. 325-339, Springer-
Verlag.

Mackworth, A. K. (1977). “Consistency in the Networks of Reftss”. Artificial
Intelligence, 8 (1)pp. 99-118.

Mailer, R. and Lesser, V. “Cooperative Negotiation fgsti@ized Distributed
Resource Allocation in Soft-Real-Time."Proceedings of Second International
Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2003)
ACM Press, pp. 576-583. July 2003.

Manderick, B., and Spiessens, P. “Fine-grained parakgletic algorithms.”
Proceedings of the Third International Conference on Genetic Algorithages
428-433, 1989.

Maniezzo, V. and Colorni, A. “The Ant System Applied to theiaQratic
Assignment Problem.”IEEE Transactions on Knowledge and Data Engineering
Vol. 11, No. 5, 1999.

Maruyama, T., and Hirose, T., and Konagaya, A. “A Fimatid Parallel Genetic
Algorithm for Distributed Parallel Systems?roceedings of the 5th International
Conference on Genetic Algorithnmages 184-190, 1993.

McErlean, D. and Narayanan, S. “Distributed Detecaod Tracking in Sensor
Networks.” 36th Asilomar Conf. Signhals, Systems and Compl2e62.

[100] Meguerdichian, S., Koushanfar, F., Potkonjak, M., and Srivastava NCd¥etage

Problems in Wireless Ad-hoc Sensor NetworkBroceedings of IEEE Infocgm
Vol 3, pg. 139-150, April 2001.

171

[101] Men, P. and Freisleben, B. “A Comparison of Memetic Atgms, Tabu Search,
and Ant Colonies for the Quadratic Assignment Problem.Proceedings of
CEC'99

[102] Mendelson, H., Pliskin, J. S., and Yechiali, U. “A Stocltatiocation Problem.”
Operations Researcivol. 28, No. 3, Part 2 (May - Jun., 1980) , pp. 687-693.

[103] Miehle, W. “Numerical Solution of the Problem of Optimumst@bution of
Effort.” Journal of the Operations Research Society of AmeM. 2, No. 4
(Nov., 1954) , pp. 433-440.

[104] Min, R., Bhardwaj, M., Cho, S-H., Shih, E., Sinha, A., Wang, A., and
Chandrakasan, A. “Low-Power Wireless Sensor Networks."Prbteedings of
Fourteenth International Conference on VLSI DesiBangalore, India, January
2001.

[105] Min, R. and Chandrakasan, A. “Top Five Myths about the Energyu@gi®n of
Wireless Communication.” ACM Sigmobile Mobile Computing and
Communications Review (MC2Rpanuary 2003

[106] Minton, S., Johnston, M. T., Philips, A. B., and Laird, P. “Mirming Conflicts: A
Heuristic Repair Method for Constraint-Satisfaction and SchegliProblems.”
Arti.cial Intelligence 58:161-205, 1992.

[107] Mitchell, M. An Introduction to Genetic Algorithm3he MIT Press, Cambridge,
MA, 1996.

[108] Modi, P. J., Shen, W-M., and Tambe, M. “Distributed Resoukkecation:
Formalization, Complexity Results and Mapping to Distribut&P&” Principles
and Practice of Constraint Programming001.

[109] Modi, P. J. et la. “Dynamic Distributed Resource Adiiian: A Distributed
Constraint Satisfaction Approach.Pre-proceedings of the Eighth International
Workshop on Agent Theories, Architectures, and Languaged481-193, 2001.

[110] Modi, P. J., Shen, W-M., Tambe, M., and Yokoo, M. “An Asynchronous Complete
Method for Distributed Constraint Optimization.” Rroc of Autonomous Agents
and Multi-Agent System2003."

[111] Morin, T. L. and Marsten, R. E. “Branch-and-Bound Stiatedor Dynamic
Programming.” Operations Researciol. 24, No. 4 (Jul. - Aug., 1976) , pp. 611-
627.

[112] Morris, P. 1993. “The Breakout Method for Escaping from Lddaima.” In
Proceedings of the Eleventh National Conference on Atrtificial Intelligeiicéb.

[113] Nguyen, T. and Deville, Y. “A Distributed Arc Consistgn&lgorithm.” Science
and Computer Programming/ol. 30, no. 1-2, pp227-250, 1998.

[114] Norman, J. M. and White, D. J. “A Method for Approxim&elutions to
Stochastic Dynamic Programming Problems Using Expectatior@gerations
ResearchVol. 16, No. 2 (Mar. - Apr., 1968) , pp. 296-306.

[115] Owechko, Y. and Shams, S. “Comparison of Neural Network asdet®
Algorithms for a Resource Allocation Problem.1lEEE World Congress on
Computational Intelligencevol. 7, pp. 4655-4660, 1994.

[116] Page, I., Jacob, T., and Chern, E. *“Fast Algorithms fatributed Resource
Allocation.” IEEE Transactions on Parallel and Distributed Systewas. 4, no. 2,
1993.

172

[117] van de Panne, C., Whinston, A., and Beale, E. M. L. “A Coispa of Two
Methods for Quadratic ProgrammingQOperations Researc¢ivol. 14, No. 3 (May
-Jun., 1966) , pp. 422-443.

[118] Pannell, D. J.. Introduction to Practical Linear Programming John Wiley &
Sons, Inc., New York, 1997.

[119] Pishro-Nik, H., Chan, K., Fekri, F. “On Connectivity Properbéd arge-Scale
Sensor Networks.lEEE Sensor and Ad Hoc Communications and Netw20kg.

[120] Prosser, P., Conway, C., and Muller, C. “A Constraintmitésiance System for the
Distributed Constraint Satisfaction Problenmtelligent Systems Engineeringlv
n.1, p. 76-83, Autumn 1992.

[121] Prosser, P., Conway, C., and Muller, C. “A Constraint Maartee System for the
Distributed Resource Allocation Problemlhtelligent Systems Engineering 26
—83.

[122] Rabbat, M. and Nowak, R. “Distributed Optimization im&# Networks.” 3rd
International Symposium on Information Processing in Sensor NetwApkd
2004.

[123] Randall, M. “A General Meta-Heuristic Based Solver iGombinatorial
Optimization Problems.’'Computational Optimization and Applicatiqr01.

[124] Raynal, M. *“A Distributed Solution to the k-out of-m ResesrcAllocation
Problem.” Proceedings of the International Conference on Computing and
Information 1991.

[125] Riff, M-C. “Evolutionary Algorithms for Constraint Satisteon Problems.”
Proceedings of the XVIII International Conference of the Chilean Computer
Science Societppl58, 1998.

[126] Rudolph, G. “Global Optimization by Means of Distributed EviolutStrategies”
Proceedings of the First Conference on Parallel Problem Solvinmg fHature pp.
209—213.

[127] Russell, S. J. and Norvig, RArtificial Intelligence: A Modern ApproachPrentice
Hall, 2002.

[128] Salhieh, A., Weinmann, J., Kochhal, M., and Schwiebert, L. “Pdx¥fcient
Topologies for Wireless Networks.Proceedings of International Conference on
Parallel Processing2001.

[129] Schaofs, L. and Naudts, B. “Ant Colonies are Good at Solviogst@aint
Satisfaction Problems.” InProc. of the 2000 Congress on Evolutionary
Computationpages 1190-195.

[130] Schiavone, G., Wahid, P., Van Doorn, E., Palaniappan, R., ang, TratTarget
Detection and Tracking Using a UWB Sensor WehAhtennas and Propagation
Society Symposium, 2004. EEE , Volume: 2 , 20-25 June 2004 Pages: 12907 -
Vol.2.

[131] Sebag, M. and Shoemauer, M. “A Society of Hill-Climbeihe Proc. Of ICEC-
97, pp. 319-324, IEEE Press, 1997.

[132] Shamblin, J. E. and Stevens, G. T. Jdperations Research: A Fundamental
Approach McGraw-Hill Inc., New York, 1974.

[133] Shamir, R. “The Efficiency of the Simplex Method: A SurVeyManagement
ScienceVol. 33, No. 3 (Mar., 1987) , pp. 301-334.

173

[134] Shaprio, J. “Dynamic Programming Algorithm for the Intedg&nogramming
Problem I: The Integer Programming Problem Viewed as apsack Type
Problem.”Operations Research6, 103-121.

[135] Shenoy, G. V. Linear Programming: Methods and Applicationkhn Wiley &
Sons, Inc., New York, 1989.

[136] Shin, J., Guibas, L. J., and Zhao, F. “A Distributed Algorithmvfanaging Multi-
Target Identities in Wireless Ad-hoc Sensor NetworksZnd Workshop on
Information Processing in Sensor Networks (IPSN, '88)il 2003.

[137] Shonkwiler, R. Parallel Genetic Algorithms ICGA 1993 199-205.

[138] Srinivasan, V., Nuggehalli, P., and Rao, R. “Design of Optiarergy Aware
Protocols for Wireless Sensor Networks.Vehicular Technology Conference
(VTC'01). IEEE VTS 53rdVay 2001

[139] Smith, B. (1994). *“Phase Transition and the Mushy RegiorCamstraint
Satisfaction ProblemsProc. Of ECAI-94pp. 100-104, John Wiley & Sons Ltd.

[140] Sohrabi, K., Gao, J., Ailawadhi, V., and Pottie, G. J. “Protodofs Self-
Organization of a Wireless Sensor NetworkEEE Personal Communications,
October 2000.

[141] Solmon, C. (2002). “Ants can Solve Constraint Satisfactiobl®ms”, to appear
in: IEEE Transactions on Evolutionary ComputatiteEE Press.

[142] Spears, W. M., De Jong, K. A., Back, T., Fogel, D. B., éadsaris, H. (1993).
“An Overview of Evolutionary Computation,The Proceedings of the European
Conference on Machine Learningh67, pp. 442-459.

[143] Taha, H. A. Operations Research: An IntroductiorMacMillan Publishing Co.,
Inc. New York, 1971.

[144] Tanese, R. “Distributed Genetic Algorithm®roceedings of the Third
International Conference on Genetic AlgorithrRages: 434 - 439, 19809.

[145] Tardos, E. “A Strongly Polynomial Algorithm to Solve Combamet Linear
Programs.” Operations Resear¢iol. 34, No. 2 (Mar. - Apr., 1986) , pp. 250-256.

[146] Tate, D. M. and Smith, A. E. “A Genetic Approach lte Quadratic Assignment
Problem.”Computers Ops Res/ol. 22, No. 1, pp73-83, 1995.

[147] Tasgetiren, M. F. and Smith, A. E. “A Genetic Algom for the Orienteering
Problem.”Proceedings of CEC'Q@000.

[148] Tel, Gerard. Introduction to Distributed Algorithms Cambridge University
Press,1994.

[149] Tian, D. and Georganas, N. D. “Energy Efficient Routwigh Guaranteed
Delivery in Wireless Sensor NetworksWCNC 2003March 2003.

[150] Tilak, S., Abu-Ghazaleh, N. B., Heinzelman, W. “A Taxonomy of Wirelessavlicr
Sensor Network Model.” ACM SIGMOBILE Mobile Computing and
Communications Revigw002.

[151] M. Tubaishat and S. MadriaSénsor Networks: An OverviewlEEE Potentials
22, 2, 20-23, April 2003.

[152] Tuomi, I. “The Lives and Death of Moore's Law.First Monday volume 7,
number 11 (November 2002).

[153] Wagner, H. M. “A Comparison of the Original and Revisadpix Methods.”
Operations Researc¢lvol. 5, No. 3 (Jun., 1957) , pp. 361-369.

174

[154] Wagner, H. M. “The Simplex Method for Beginner®perations Research/ol.
6, No. 2 (Mar. - Apr., 1958) , pp. 190-199.

[155] Wan, P-J. and Yi, C-W. “Asymptotic Critical Transniss Radius and Critical
Neighbor Number for k-Connectivity in Wireless Ad Hoc NetworlglébiHoc,
May 2004

[156] Wattenhofer, R., Li, L., Bahl, P., Wang, Y. M. “Distributed Tmgy Control for
Power Efficient Operation in Multihop Wireless Ad hoc Netwdrk$roc. IEEE
Infocom 2001

[157] Walukiewicz, S.Integer Programming Kluwer Academic Publishers. Boston,
1991.

[158] Wolfe, P. “Some Simplex-Like Nonlinear Programming Rchoes.” Operations
ResearchVol. 10, No. 4 (Jul. - Aug., 1962) , pp. 438-447.

[159] Wong, P. J. and Luenberger, D. G. “Reducing the Memory Reqgants of
Dynamic Programming.” Operations Resear¢hVol. 16, No. 6 (Nov. - Dec.,
1968), pp. 1115-1125.

[160] Wu, T., Ye, N., and Zhang, D. “Comparison of Distributed idds for Resource
Allocation.” International Journal of Production Researd¥ol. 43, No. 3, pp515-
536, 2005.

[161] Xue, F. and Kumar, P. R. “The Number of Neighbors Neéale@onnectivity of
Wireless Networks.”"Wireless Networks 1@69-181, 2004.

[162] Yangt, C. C. and Yang, M-H. “Constraint Networks: Aingy.” |IEEE
International Conference on Systems, Man, and Cybern&tais2, pp1930-1935,
1997.

[163] Ye, W., Heidemann, J., Estrin, D. “An Energy-EfficietAC Protocol for
Wireless Sensor NetworksProceedings of INFOCOM, 2002

[164] Yokoo, M. Distributed Constraint Satisfactio8pringer-Verlag.

[165] Yokoo, M., Ishida, T., Durfee, E., and Kuwahara, K. “Distrildut@onstraint
Satisfaction for Formalizing Distributed Problem SolvingProceedings of 12
IEEE International Conference on Distributed Computing Systemspi®2614-
621.

[166] Yokoo, M., Durfee, E.,Ishida, T., and Kuwahara, K. “The [hstied Constraint
Satisfaction Problem: Formalization and Algorithms.JTEEE Transaction on
Knowledge and DATA Engineeringgl 10, No. 5, September 1998.

[167] Yokoo, M and Hirayama, K. “Algorithms for Distributed ConstteSatisfaction:
A Review.” Autonomous Agents and Multi-Agent Systerot 3, no. 2, pp. 198-
212, 2000.

[168] Yu, Y., Krishnamachari, B., and Prasanna, V. K. “Energy-Latdnadeoffs for
Data Gathering in Wireless Sensor Networkd=EE Infocom'04, 2004.

[169] Zangwill, W. I. “The Convex Simplex Method.Management Scienc¥ol. 14,
No. 3, Theory Series (Nov., 1967) , pp. 221-238.

[170] Zhang, W. and Wittenburg, L. “Distributed Breakout Revisitdd.’AAAI-2002
Edmonton Alberta Canada, 2002.

[171] Zhang, W and Xing, Z. *“Distributed Breakout vs. Distribut8tbchastic: A
Comparative Evaluation on Scan Scheduling.”AAMAS-02 Workshop on
Distributed Constraint Reasoning

175

[172] Zhang, W, Wang, G. and Wittenburg, L. “Distributed StodbaSearch for
Constraint Satisfaction and Optimization: Parallelism, Ehasansitions and
Performance”. InWorkshop on Probabilistic Approaches in Search AAAI-2002
pages 53 — 59, Edmonton Alberta Canada, July 2002.

[173] Zhang, W., Xing, Z., Wang, G., and Wittenburg, L. “An Anadyand Application
of Distributed Constraint Satisfaction and Optimization okithms in Sensor
Networks.” In Proc. AAMAS-2003pages 185 — 192, Melbourne Australia, July
2003.

[174] Zhang, W., Deng, Z., Wang, G., Wittenburg, L., and Xing, Z. “ibigted Problem
Solving in Sensor Networks.” IRroc. AAMAS-02

[175] Zhao, J. and Govindan, R. “Understanding Packet Delivery Performance & Dens
Wireless Sensor Networks.The First ACM Conference on Embedded Networked
Sensor Systems (Sensys'08)vember 2003

[176] Zhao, F. and Guibas, LWireless Sensor Networks: An Information Processing
Approach Morgan Kaufmann Publishers, 2004.

[177] Zhu, J. and Papavassiliou, S. “On the Connectivity Modelingtlamd radeoffs
Between Reliability and Energy Efficiency in Large $calVireless Sensor
Networks.”"WCNG March 2003.

[178] Zuniga, M. and Krishnamachari, B. “Optimal TransmissiadiRs for Flooding in
Large Scale Sensor NetworksProceedings of the 23rd International Conference
on Distributed Computing Systems Worksh@ee3.

176

