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Processor speed has been growing at an exponential  rate over the past 50 years.

Computers are getting smaller,  cheaper and faster.   Over the past  30 years,  with the

growth of the internet, new forms of decentralized distributed computing architectures

have emerged.  The emergence of distributed architectures has led to the creations of

distributed computing systems and a new field of research.

Distributed  computing studies  the coordination  of  computers,  processors, and/or

processes that are physically distributed but work towards a common goal.  Many of the
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fundamental issues involved with distributed computing have been thoroughly researched

in the past, for example, synchronization, point-to-point communication, deadlock issues,

etc.   To  date,  there  is  a growing need for  the development  of  applications  that  can

effectively utilize the underlying architecture to solve complex distributed optimization

problems.   To  this  end,  one  can  either  create  a  new  algorithm  specifically  for  the

architecture or modify existing techniques to run on the new architecture.  In this work,

the latter approach is adopted.  

Evolutionary computation (EC) has been shown to be capable of solving complex

problems where traditional methods fail to yield satisfactory  results.  However, to date

there has been no research into creating true distributed ECs with distributed genomes.

This dissertation presents a set of  genetic and evolutionary protocols (GEPs), which are

ECs modified to solve distributed problems.  To assess their performance of GEPs, we

will be testing GEPs on distributed constraint satisfaction problems, where the variables

and constraints  are  geographically distributed  among various  entities/agents  within  a

distributed  system.   We will  also  apply these GEPs to  the sensor  network  tracking

problem, and the sensor network sharing problem.
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CHAPTER 1

INTRODUCTION

1.1. Distributed Architecture and Resource Allocation

Processor speed has been growing at an exponential rate over the past 50 years and

computers are becoming smaller, cheaper and faster [152].  Over the past 30 years, with

the  growth  of  the  Internet,  new  forms  of  decentralized,  distributed  computing

architectures have begun to emerge [13, 22], which has led to the creation of distributed

computing systems and a new field of research [13]

Distributed  computing studies  the coordination  of  computers,  processors, and/or

processes that are physically separated but work towards a common goal [14, 16, 19, 116,

148].   Examples  of  distributed  systems  include multi-processor  systems  [16],  server

clusters [16],  multi-agent systems [19] and sensor networks [1, 11, 150, 176].  Many of

the  fundamental  issues  involved  with  distributed  computing  have  been  thoroughly

researched in the past, for example, synchronization [148], point-to-point communication

[148], deadlock issues [16], etc.  For applications running on distributed systems, the

main concern is how to effectively utilize the available resources to complete the task.

Thus,  distributed  resource  allocation  problems  (DisRAP)  are  central  to  research  in

distributed computing [5, 14, 16, 19, 160].

Distributed  resource  allocation  involves  the assignment  of  resources  to  separate

entities/agents  such that  they can complete individual  tasks or  help the system,  as a

1



whole,  accomplish specific goals [14, 16, 19].  As there are different types of distributed

systems, the resources that need to be distributed may vary from being shared among all

agents [16] to being separately owned by individual agents [19].  Problems often arise

due to the lack of centralized control and the existence of constraints on resources within

and/or between agents [7, 30, 38, 122].  The lack of centralized control and distributed

constraints mean that DisRAPs cannot be solved with traditional optimization or search

techniques.   Typically,  DisRAPs  are  solved  through  negotiation/compromise  based

techniques [19, 86, 95, 160] or queueing and scheduling techniques [14, 16, 20, 116]

depending on the architecture of the system.  It has been shown that DisRAPs can be

modelled as distributed constraint satisfaction problems (DisCSP) [54].  This makes it

possible to solve DisRAPs with the solution methods that were originally developed for

DisCSP [54].

1.2. Sensor Networks

A sensor network is a collection of wirelessly connected, low cost pods that contain

a number of sensing devices and are deployed over a specific geographical region for any

number  of  purposes  [1,  11,  151,  176].   A  sensor  network  can  also be viewed as  a

multiagent system [19].  There are many problems related to the usage and set up of a

sensor network [1, 11, 151, 176].  However, this research focuses on two application

problems of the sensor network: the fundamental sensor network tracking problem [3, 7,

30, 87, 99, 130] and the new sensor sharing problem [38].

The sensor network tracking problem involves monitoring and following moving

targets within the coverage area of a network of stationary autonomous sensing devices
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[3, 7, 30, 87, 99, 130].  Each sensor pod has a Doppler radar that is only capable of

detecting the relative distance and general direction of a target from itself [3, 7, 30, 87,

99,  132].   Thus,  k sensor  pods  must  work  together  and share  distance  and relative

direction information to be able to triangulate and accurately pinpoint the actual position

of the target [7].  To effectively track a target,  k of all sensor pods that can detect the

target must be assigned to follow it, but at the same time these k sensor pods must also be

able to communicate directly with each other to share the relative position data [7].  A

target is said to be k-trackable [7] if, out of all the pods that are able to detect it, k pods

that are capable of directly communicating with each other can be assigned to track it.

The  sensor  network  sharing  problem  involves  the  allocation  of  limited  sensor

resources to satisfy as many user requests for sensors as possible [38].  Each sensor pod

contains m different sensors, and each pod is capable of turning on or off any number of

the  m sensors that it has.  However, in order to reduce the power consumption of the

individual pods, assume that only one of the m sensors can be turned on in a sensor pod at

any given time.  Thus, any user can request up to n sensors from the sensor network to

collect data [38], where n is the number of pods in the network.  Each request will also

have a time value (life span) associated with it that specifies how much sensor time must

be allocated to the request to completely satisfy it.  When a user places a request for x

sensors, the network would then need to assign  x  pods to have the specified sensors

turned on [38].  In addition to satisfying the user's sensor needs, the network must also

satisfy a series of constraints in the form of internal allocations policies for each pod [38].

As more users make requests (and old requests are completed), the network must be able
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to dynamically reassign sensors among the pods so as to satisfy as many user requests as

possible without violating any of the internal allocation policies.  

1.3. Evolutionary Computation

Evolutionary  computation  (EC)  is  the  study  of  algorithms  and problem solving

techniques inspired by the processes of natural evolution [29, 32, 49, 51, 52, 142].  ECs

have been shown to find good solutions for relatively hard problems where traditional

methods were not able to provide satisfactory results [49].  However, up to now ECs have

mainly been used to solve centralized problems.  The concept of distributed computing

has generally been used as a method to speed up ECs through parallelization of the

algorithm with the use of a parallel population [8, 61, 96, 137].  This study presents two

new ECs,  genetic  and evolutionary protocols  (GEPs)  [41].   The GEPs were created

through the addition of distributed crossover and mutation operators to the current best

distributed method for solving DisCSPs, Yokoo's distributed breakout algorithm (dBA)

[164, 165, 166, 170].   Unlike traditional  distributed ECs [8,  61, 96, 137],  GEPs use

distributed  candidate  solutions  to  solve  DisCSPs  [164,  165,  166,  170]  in a  truly

distributed manner.  In order to compare the performance of GEPs to known methods for

solving DisCSPs, the GEPs will be tested on randomly generated distributed asymmetric

constraint satisfaction problems (DisACSPs) [36, 37], as well as on the sensor network

tracking [3, 7, 30, 87, 99, 130] and the sensor network sharing problem[38].
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1.4. Outline

The remainder of this dissertation is arranged as follows.  In Chapter 2, an in-depth

discussion of resource allocation problems, DisRAPs, constraint satisfaction problems,

DisCSPs,  and some known methods for  solving them will  be  presented.  Chapter  3

describes the creation of the GEPs from a known good solution method for DisCSPs,

dBA.  Chapter 4 presents and discusses the results obtained from testing the GEPs on

randomly generated DisACSPs.  Chapter 5 illustrates the architecture and issues involved

with the sensor network, along with detailed explanations and examples of the sensor

tracking and sharing problems.  Chapters 6 and 7 present the results obtained from testing

the GEPs on the sensor tracking and sharing problems.  Finally, Chapter 8 summarizes

the study, lists its conclusions, and suggest directions for possible future research.
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CHAPTER 2

RESOURCE ALLOCATION AND CONSTRAINT SATISFACTION

2.1. Introduction

The  applications  used  to  demonstrate  the  effectiveness  of  the  genetic  and

evolutionary protocols (GEPs) are both instances of the dynamic distributed resource

allocation problem, namely the sensor network tracking problem [3, 7, 30, 87, 99, 130]

and the sensor  sharing  problem [38].   To gain  a better  understanding of  distributed

resource allocation problems, centralized resource allocation problems will be presented

first.   Since  resource  allocation  problems  can  be  modeled  as  constraint  satisfaction

problems [54], this research will be focused on solving the sensor tracking [3, 7, 30, 87,

99,  130]  and  sharing  problems  [38]  modeled  as  distributed  constraint  satisfaction

problems [7].

2.2. Resource Allocation

Resource  allocation  problems  (RAPs)  involve  the  assignment  or  distribution  of

limited resources to a series of tasks, while at the same time optimizing an objective

function [17, 62, 65, 70, 79, 132, 143].  Given that resources are limited, the sum of all

allocated resources must not exceed the amount available.  So, given an RAP with  n

variables  x1, x2,..., xn , the solution must satisfy the constraint  ∑ x j≤N  [68].  Some

RAPs may require that all available resources be allocated, which means a solution must
6



satisfy ∑ x j=N  [67, 70, 132, 143].  Also, since it is not possible to allocate negative

resources, all RAPs have a non-negativity constraint such that none of the variables are

assigned  negative  values.   Additional  constraints  may  be  added  to  specify  certain

allocation patterns (policies) or guarantee a minimum amount of resources to a certain

variable/task [48, 56, 57, 67, 70, 82, 85, 88, 89, 92].

There are two major types of RAP, continuous and discrete [65, 70, 132, 143].  The

difference is mainly in the domain type of the variables involved.  Discrete RAPs have

discrete variable domains, while continuous RAPs have continuous variable domains.

RAPs can further  be divided based on  two characteristics  in  the objective  function,

separability and convexity.  An objective function is considered separable if the overall

fitness is the sum of the independent local partial fitnesses [65, 70, 132, 143].  Formally,

a separable function is one where

 
f x1, x2,... , xn=∑

i =1

n

f i xi 

Convexity is the property where given any objective function f(x) and two values i and j,

f'(i) < f'(j) if, and only if, i < j , where f'(x) is the first order derivative of f(x).  Separability

and convexity are the two most  exploited objective function properties  in operations

research [65, 70, 132, 143], for formulating solution methods for RAPs.

The  field  of  Operations  Research  (OR)  has  developed  a  number  of  numerical

methods, such as the simplex method [27, 65, 69, 77, 118, 132, 133, 135, 143, 153, 154,

158, 169], the interior point algorithm [65, 72], the branch and bound method [65, 70,

112, 157], and gradient-based methods [10, 47], that can be used to solve RAPs.  To

apply these methods, the RAP must first be formulated into either a linear programming
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[27, 65, 70, 72, 118, 132, 135], integer programming [65, 70, 132, 134, 157], dynamic

programming [9, 42, 65, 111, 159], or nonlinear programming problem [6, 10, 47, 65, 78,

158].  It should be noted that although the word “programming” is used, this has nothing

to do with computer implementations, but rather,  the word “programming” is used to

refer to “planning” [65, 70, 111, 157].  These four problem formulation techniques are

discussed in turn below, along with some techniques and strategies that are commonly

used to solve the programming problems.

2.3. Linear Programming

Linear programming [65, 70, 72, 118, 135] is an indispensable tool for operations

research  and has been used to  solve  a wide variety of  problems, including resource

allocation problems.  It should be noted that linear programming is not a problem solving

method, but rather a standard model by which a problem can be formulated [65, 70, 72,

118, 135].  However, not all problems can be formulated using linear programming (LP).

LP works on a specific class of problems, where the fitness/objective function is linear

[65, 70, 72, 118, 135].  This linear restriction also applies to all the constraints that may

exist [65, 70, 72, 118, 135, 156].  It  is also assumed that all  resources are separable,

meaning variables must have a continuous domain [65, 70, 72, 118, 135, 156], unlike a

separable objective function.  Mathematically, an LP problem is modeled as follows  [65,

70, 118]:
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maximize f X =C⋅X
subject to: AXT≤BT ,

xi≥0 ∀ xi∈X

where : X= x1, x2, , xn∈ℝn

C=c1,c2, , cn∈ℝn

B=b1,b2, ,bm∈ℝn

A=[
a11 ⋯ a1n

⋮ ⋱ ⋮
am1 ⋯ amn

] ∀ aij ∈ℝ

                            (2.3.1)

where  X is the vector of all the variables,  C is the corresponding coefficients of each

variable in the objective function f, A is a matrix of coefficients for each variable within

the set  of  m constraint  inequalities,  and  B is  the set  of  upper bound values for each

constraint inequality.  Expanding the model, the objective function is clearly separable

and can be rewritten as:

f X =∑
i =1

n

ci xi

 The m linear constraint inequalities created from AXT 
≤ BT can be expanded as follows:

a11⋅x1⋯a1m⋅xm≤b1

⋮
am1⋅x1⋯an1⋅xm≤bm

This is known as the standard LP model [65, 70, 72, 118, 135, 156] and contains  m

constraints and n variables.  

The most common method used to solve a LP problem is the simplex method [65,

69, 70, 77, 118, 133, 135, 153, 154], which exploits the property that the optimal solution

is a corner point of the feasible space.  Because the feasible space is enclosed by the

boundaries created by the constraints, a corner point is the point at which two or more

constraint boundaries intersect. The simplex method starts from any arbitrary corner point

9



feasible (CPF) solution and moves the candidate solution from one CPF solution to a

better neighboring one until the optimal solution is found [70, 118, 154].  The simplex

method has been shown to have a worst case exponential time complexity, but an average

polynomial time complexity [77, 133].  

Another method for solving a LP problem is known as the interior point method [65,

72].  As with the simplex method, the interior point method is an iterative improvement

method [65, 72], but rather than starting from a CPF solution, the interior point method

starts from a random point within the space of feasible solutions and iteratively moves in

the direction that will most improve the objective function until an optimal solution is

found [65, 72].  Computationally, per iteration the interior point method is more complex

than  the  simplex  method  [65].   However,  it  has  been  shown  that  the worst  case

performance of the interior point method is polynomial time [77, 133].  

2.4. Non-Linear Programming

Though LP is a powerful tool for operations research and solving resource allocation

problems, it is limited by the linear requirement placed on the objective function and

constraints [65, 70, 118].  The formulation of problems using non-linear programming

(NLP) is the same as LP with the exception that the constraints and objective function do

not need to be linear  [6,  10, 47, 65, 78, 158].   Though the general  form of NLP is

nontrivial to solve [6], solution methods have been found for specific classes of NLP

problems.  Examples of NLP problem classes that have known solution strategies include

linearly  constrained  optimization,  quadratic  programming,  convex  programming,  and

separable programming [6, 10, 47, 65, 78, 158].
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Linearly constrained optimization problems are similar  to LP problems with the

exception that the objective function is nonlinear [65].  These problems can usually be

solved with a modified version of the simplex method used for LP [65].  The interior

point method also makes an ideal solution strategy as it does not assume that the optimal

solution will be a CPF solution, like the simplex method [6, 65, 72, 158].  

Quadratic programming problems [65, 117] are a subclass of linearly constrained

optimization problems where the objective function is quadratic (of order 2), while the

constraints  stay linear  [6,  65,  117].   Unlike  general  nonlinear  objective  functions,  a

quadratic objective function is much easier to work with because the global optimal will

also be the only local optimal.  Quadratic programming problems are preferably solved

with barrier and interior point methods [6, 65], but can also be solved with a modified

simplex method [6, 65, 117].  

Convex  programming  [63,  129,  140]  covers  a  wide  range  of  problem  types.

Problems  falling  under  convex  programming  must  satisfy  the  requirements  that  the

objective function be convex and the constraints be concave [65, 132, 143].  A concave

function  is  the  opposite  of  a  convex  function  and  must  satisfy  the  constraint  that

∀ i , j∈ℝ ,i j  f ' i  f '  j  , where f ' i   and f '  j   are first order derivatives of

the  function  f  [65,  70,  132,  143].   As  with  quadratic  programming  problems,  the

characteristics of the convex programming problem guarantees that there will only be one

local  optimal,  which  will  also  be  the  gobal  optimal  and  unique  solution.   Convex

programming problems can be solved with gradient algorithms [65, 70, 132, 143] or a

modified simplex method [169].  

11



Separable  programming  [62,  65,  78  132,  143]  is  a  special  type  of  convex

programming  problem  with  the  additional  property  that  the  objective  function  is

separable.   Separable  programming  problems  are  easier  to  solve than  convex

programming problems, as the objective function can be approximated by any number of

linear functions.  This can only be done with separable programming problems because

of the objective function's separability.  Separability implies that it is possible to break

the objective function into a series of single variable functions, which makes it possible

to perform linear approximations on each individual variable function.  Separability also

guarantees that the combined optimal of the individual partial objective functions will be

the global optimal.  By breaking a nonlinear function into a series of linear functions, the

simplex method can be used.  Since a series of linear functions are used to approximate

the  original  nonlinear  objective  function,  the  accuracy  of  the  approximation  can  be

increased simply by using more linear functions.

As  these  four  examples  demonstrate,  solutions  to  NLP  problems  are  highly

dependent on the characteristics of the objective function and constraints and tend to be

iterative improvement methods.  With the wide range of possible problem types for NLP

problems, no single solution method or strategy can be used to consistently obtain a

solution.  

2.5. Integer Programming

Up to this point, solution methods for continuous RAPs have been considered, but

many practical problems are discrete.  For such situations, integer programming (IP) [65,

70, 132, 134, 157] must be used.  Integer programming can be further divided into pure
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IP, where all variables require integer value assignments, and mixed IP, where only some

of the variables have integer domains [70, 157].  It has been shown that all IP problems

can be relaxed and/or transformed into the LP standard form [65].  The main difference is

the additional constraint that all or some variables must be assigned integer values.

Pure IP problems may look simpler than LP problems due to the reduction in search

space  from  being  continuous  (infinite)  to  discrete  (finite).   However,  typically  IP

problems are harder to solve than LP problems [65, 70, 157].  The finite search space of a

pure  IP  does  not  make the problem any  easier  to  solve,  as  the number of  feasible

solutions can still grow exponentially with problem size.  It should be noted that for an

LP problem, the feasible search space is infinite, but only a relatively small subset of this

search space is of  interest,  namely the corner  point  feasible (CPF) solutions that  the

simplex method targets [65, 70, 118, 154].

The most common strategy for solving an IP problem is to transform it into standard

LP form [157], ignore the integer requirements, and solve it as an LP type problem with

the simplex method [65, 70, 118, 132, 154, 157].  This is also known as LP relaxation

[65].  However, it is not often that the solution to an LP relaxation will also be integral.

If the solution found by the simplex method is not integral, then the cutting plane method

[157] can be used to add a new constraint to the transformed IP problem to eliminate any

non-integer  optimal  solution.   After  the  constraint  is  added,  the  simplex  method  is

reapplied  to  the new problem.  The repeated  process  of  finding a solution with  the

simplex method and adding a new constraint  is  performed until  the optimal  solution

found by the simplex method also satisfies the integer requirements [70, 157].   This

procedure is known to be finite [70, 154].  
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Another approach to solving an IP problem is the branch and bound method [65, 70,

111, 157].  The branch and bound method breaks the problem down into a number of

subproblems by selecting a variable and assigning a different value from its domain for

each  subproblem  (branch).  Each  subproblem  is  run  through  the  simplex  method  to

estimate the objective function's upper bound.  Based on the estimates, the subproblem

with the most promise is then further divided.  This is repeated until an optimal set of

variable assignments is found.  In many ways, the branch and bound method is similar to

the graph search algorithm A* [127]; where A* uses a distance heuristic to guide its

search, the branch and bound method uses the estimate for the objective function's upper

bound for each subproblem to guide its search.

As  IP  problems  become  larger  and  more  complex,  there  is  no  guaranteed

deterministic method for solving them [65, 70, 157].  Transforming the IP problem into

the LP standard form and applying the simplex method will  not guarantee an integer

solution [65, 70, 157].  The cutting plane method [70, 157] works, but as the number of

cutting planes increase,  the problem becomes more complex due to the newly added

constraints.  The branch and bound method also has its faults, as it is very possible for the

branching tree to grow exponentially and consume large amounts of memory [65, 70,

111, 157].  Recently, there have been developments in efficient near optimal heuristics

that identify better solutions in shorter amounts of time than LP relaxation and other

methods that utilize the simplex method for IP [65, 70, 111, 132, 143, 157].  Some of

these  new solution  methods  include  the  use  of  algorithms  and  meta-heuristics  from

evolutionary computation [63, 82, 90].
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2.6. Dynamic Programming

Dynamic programming [9, 42, 65, 111, 159] is a solution strategy that is often used

for solving decision problems.  Specifically, the problem must consist of stages where a

variable is assigned a value or a decision is made at each stage [9, 42, 65, 111, 159].  A

common example of this type of problem is the problem of finding the shortest path

between two points through a number of intermediate points [9] otherwise known as the

traveling salesman problem (TSP) [65, 132, 143].  Unlike LP, where a standard form bis

used to formulate the problem, dynamic programming (DP) does not have a standard

form [9, 42, 65, 111, 159].  Thus, formulating a problem in DP form often requires some

ingenuity [65].

DP  can  be  further  subdivided  into  deterministic  dynamic  programming  and

probabilistic (stochastic) dynamic programming [9, 42, 65, 111, 159].  Deterministic DP

is used to solve problems where the choice at a specific stage will lead to a specific result,

as with the aforementioned path finding problem [9, 111].  Probabilistic (stochastic) DP

is used to solve problems where specific choices will probabilistically lead to varying

outcomes [114].  In these cases, the goal would be to optimize the expected outcome [65,

114].  The branch and bound method is the primary solution algorithm for solving DP

problems [9, 42, 65, 111, 159].

2.7. Resource Allocation and Evolutionary Computation

Though the deterministic methods presented above are useful and generally provide

good results, they are extremely limited as to the types of problems they can address.  In

the case of  DP, the strategy itself  does not  scale well  to larger  problems [42,  159].
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Though  LP  has  a  general  solution  method,  the  simplex  method,  many  practical

application problems cannot be formulated into the LP standard form [6, 10, 47, 65, 78,

158].  In the case of NLP, there is no unique solution method for the general form, as

with the simplex method for LP [6, 65, 70, 78, 132, 143, 158].  

Evolutionary computation is the study of algorithms and problem solving techniques

that are inspired by the processes of natural evolution [29, 49, 142].  The most widely

used evolutionary computations (ECs) include genetic algorithms (GA) [29, 142, 107],

evolution strategies (ES) [4, 51, 126], evolutionary programming (EP) [50-53], genetic

programming (GP) [51, 80], particle swarm optimization (PSO) [74, 75], ant  systems

(AS) [32, 34], and ant colony optimization (ACO) [32, 33].  Recent research has shown

that  ECs are  often  able  to  find  solutions to  complex  problems for  which  traditional

methods are unsatisfactory [29, 49, 142].

2.8. Constraint Satisfaction 

Resource allocation problems can be modeled as constraint satisfaction problems

(CSP) [108, 109], which are composed of a set of variables, X, a set of domains, D, for

each variable,  and a set of  constraints,  C, limiting the assignments of values to each

variable.   The goal  is  to find a set  of  value assignments for  X from  D such that no

constraints  in  C are  violated  [28,  39,  40,  43,  94,  106,  125,  129,  141,  161].   The

constraints  in  C may  come  in  many  different  forms,  possibly  constraining  multiple

variables simultaneously [28, 161].  However, all constraints can be decomposed into a

set of binary constraints, where a binary constraint is one that involves only two variables

[28].  With binary constraints, a CSP can be illustrated as a graph, a constraint network

16



[28, 161].  In a constraint network, all variables in X are vertices in the graph, while the

edges between vertices represent constraints [28, 161].  Thus, for a constraint network

G(V, E) containing the set of vertices  V and the set of edges  E,  XV = , an edge  Ei,  j

between Vi and Vj exists if, and only if, ∃C i , j∈C . 

There  are  two  additional  properties  of  a  CSP,  namely  constraint  density  and

constraint tightness [28, 39, 40, 92, 161].  The constraint density is the ratio between the

number of constraints in the network and the total number of possible constraints.  The

constraint  tightness  represents  the  probability  that  a  value  assignment  pair  of  two

variables is not allowed if there exists a constraint arc (edge) between the two variables

(vertices).  The constraint density can be calculated by dividing the number of existing

edges by the total number of possible edges, which isnn�1/2  where n is the number

of vertices in the graph.  Given two variables xi and xj and their corresponding domains di

and dj, the constraint tightness is found by dividing the number of no-goods between xi

and xj by sized i ×sized j  .  

In  the constraint  network definition described so far,  it  should be noted that all

constraints are symmetric in nature.  Each arc (edge) imposes a constraint on both the

vertices  it  is  connected  to.   Symmetric  constraints  are  considered public,  since both

variables involved know of the existence of the constraints.  An example of a constraint

network with symmetric constraints is given in Figure 2.1.

Constraints  may  also  be  asymmetric.   A  constraint  network  with  asymmetric

constraints  is  shown in  Figure  2.2,  where asymmetric  constraints are  represented  by

directional arcs (directed edges) connecting vertices within the constraint network.  The

directional  arcs  represent imposed constraints.   Thus, in Figure 2.2,  node B imposes
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constraints on the values of A and C.  However, since the arcs are directional, vertices A

and C have no knowledge of such constraints.  This type of constraint is also known as a

private constraint [52], since only the variable imposing the constraints has knowledge of

them.  CSPs with asymmetric constraints are known as asymmetric CSPs (ACSPs).  In

general,  ACSPs are harder to solve than CSPs because of the presence of the private

constraints [36, 54].

Not all CSPs are solvable [93, 139].  It  is possible that a CSP can become over

constrained,  causing  it  to  have  no  solution  [139].   For  CSPs,  the  boundary  where

problems  have  on  average  one  solution  and  beyond  which  problems  may  have  no

solution is called the phase transition [139].  It has been shown that the phase transition

can be defined by the constraint tightness in terms of the number of variables, domain

size, and constraint density [139].  The equation for the phase transition [139] is defined

as follow, where n is the number of variables, m is the domain size, p1 is the constraint

density, and p2crit S
 is the constraint tightness for the phase transition:
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This can be derived from the following equation that estimates the number of possible

solutions (S) in a randomly generated CSP [93]:

S=mn1� p2p1⋅n⋅n�1 /2                                                  (2.8.2)

The phase transition for the value p2 in terms of n, m, and p1 is when S = 1.  So, solving

for p2 for the case S = 1 will result in 2.8.1.   The phase transition given in 2.8.1 is for

symmetric CSPs.  For asymmetric CSPs, since the total number of possible arcs between

nodes for a graph with n nodes is n⋅n�1  rather than n⋅n�1/2 , the equation used to

estimate the number of possible solutions becomes:

S=mn1� p2p1⋅n⋅n�1                                                   (2.8.3)

From this equation, it can be derived that the phase transition for ACSPs is as follow,

where p2crit a
 is the constraint tightness for the phase transition [37]:
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                                                                                (2.8.4)

2.9. Solving Constraint Satisfaction Problems

CSPs have been shown to be NP complete [164], so solving large CSPs is nontrivial.

There are a variety of algorithms that can be used to solve CSPs [39, 40, 43, 106, 125,

129,  141,  164],  including  two  classes  of  deterministic  methods,  namely  iterative

improvement and backtracking algorithms  [39, 40, 43, 106, 125, 129, 141, 164].  

Backtracking algorithms are initiated by putting all the variables in a specific order

and, starting with the first variable,  iteratively assigning values to the variables while

trying not to violate any constraints with variables that have already been assigned values
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[164].   When  a  variable,  Xk, cannot  be  assigned  a  value  that  does  not  violate  any

constraints with previously assigned variables, X1 to Xk-1, backtracking is triggered.  The

algorithm will try to change the value of the previously assigned variable, Xk-1.  If no new

value can be found, then the algorithms rolls back again until a variable is found that can

be changed.  A backtracking algorithm is a depth first search of all the possibilities and is

thus complete [127].  If a solution exists, it will find the solution, and if one does not

exist, it will be able to determine that [164].

Backtracking  searches  can  suffer  from  thrashing,  where  an  earlier  variable

assignment creates a situation where there is no feasible value assignment for a variable

later in the search.  However, in order to identify and change the variable that is causing

the conflict, a large number of backtracks and unnecessary searches must be performed.

To remedy this problem, arc-revision and arc-consistency algorithms [127, 164] can be

added to backtracking to eliminate the infeasible values from domains of unassigned

variables and thus reduce the amount of wasted searches and backtracking [84, 164, 167].

The order by which variables are assigned values can also be changed based on how

constrained each variable is [84, 164, 167].  

Iterative improvement algorithms start with an arbitrary set of variable assignments

(a candidate solution) that may contain multiple constraint violations.  The algorithm then

iteratively  changes  the  value  assignment  of  the  variables  to  reduce the  number  of

constraint  violations [39, 42, 43, 106, 125, 129, 141].   These algorithms are usually

incapable of determining whether a feasible solution actually exists [39, 40, 43, 106, 125,

129, 141].  One example of an iterative improvement algorithm is the min conflict Hill-

climber [165].
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There is also a hybrid method, the weak commitment search [164, 165 166].  As

with to bracktracking algorithms, this builds solutions one variable-value assignment at a

time.  However, like iterative improvement algorithms all variables are given an initial

random value.  If the initial assignment contains no conflicts, then that is the solution.

Variables are chosen based on the number of conflicts their assigned initial value has

with other variable assignments.  The variable with the most conflicts will be chosen first,

assigned a new value that minimizes the conflicts and placed into a partial solution.  Any

new  variable-value  pair  placed  into  the  partial  solution  must  also  not  conflict  with

variable-value pairs already in the partial solution set.  When no more variables can be

assigned a new value that does not conflict with those already in the partial solution, then

backtracking occurs.  Instead of simply removing the variable-value pair that was last

placed into the partial solution set like normal backtracking, the entire partial solution is

discarded and the process  starts  over.   However,  though all  variable-value pairs  are

discarded  from the  partial  solution  set,  they  become  the  initial  values  for  the  next

iteration.   So,  iteratively,  the  initial  solution  used  to  build  the  partial  solution  will

improve after each backtrack.  In this sense, it is very much like an iterative improvement

algorithm.

ECs have also been sutilized to solve CSPs with great success [39, 40, 43, 106, 125,

129, 141].  Some of the ECs used include genetic algorithms [43 64], ant colonies [129,

141],  and evolutionary/arc-consistency  hybrids  [40],  as well  as  evolutionary  iterative

improvement hybrids [39].
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2.10. Distributed Resource Allocation Problems

With the development of distributed architectures,  one of the first  problems that

arises on the application level is how to utilize the available resources, either shared or

privately owned, to accomplish the given task [14, 16, 19, 20, 95, 108, 109, 116, 121,

160].  The acquisition of resources required to complete tasks, while competing with

other processes for the limited resources, is one of the main issues that affect distributed

RAPs [14, 108, 109, 160].  One of the primary characteristic of the distributed RAP

(DisRAP) is  the lack of centralized control  [14,  108, 109, 160].   A DisRAP can be

formalized as a problem having a set of agents, a set of resources that are either shared or

distributed  among  agents,  and  a  set  of  tasks/requests  for  resources  that  need  to  be

satisfied [108, 109].  The goal is to formulate an assignment of resources to specific

agents or tasks to satisfy the given requests.

There are three types of DisRAP: those studied in multi-agent systems [19], those

studied in distributed and parallel computing [16], and those studied in systems such as

sensor networks [7].   They differ by whether the resources are owned by individual

agents or shared between groups of agents and whether the tasks/processes are internal to

the agent or external.  A task is considered to be internal to an agent when the completion

of the task is the sole responsibility of the specific agent, and to accomplish this it must

acquire resources that are owned by other agents or shared with other agents.  A task is

external when it is one that is shared among or assigned to all agents, and the agents

strive to complete this task cooperatively.  

The  primary  focus  for  multi-agent  systems  (MAS)  [19]  has  been generally  on

problems where resources are owned by the individual agents and the tasks are internal to
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an agent [160].  For DisRAPs studied in distributed and parallel  computing [16], the

resources are shared among overlapping groups of agents, with each agent striveing to

complete its own internal tasks by gathering all the necessary resources as fast as possible

[116].  This problem is best summarized by the formulation of the so-called drinking

philosopher problem [16].  The problems of interest here,  namely the sensor network

sharing [38] and tracking problems [7, 30, 108], both belong to the type where tasks are

external, with the agents each possessing their own resources [108, 109].  A possible

fourth type of DisRAP is where agents share resources and respond to external requests.

However,  this  scenario  cannot  be  considered  a  true  DisRAP  as  it can  be  easily

reformulated as a centralized problem.

2.11. Solving Distributed Resource Allocation Problems

For the first type of DisRAP with MAS, Wu et al [160] gives a thorough review of

the many deterministic methods for solving these DisRAPs from a production research

point  of  view.   They divide  the solutions  methods into three  types:  (1)  market,  (2)

compensation, and (3) coalition formation.  The market based approach views the various

resources as marketible commodities on the market that are valued by their importance

and quantity.   The processes needing the resources then bid for  the resources.  This

approach has the specific drawback of requiring a single location to keep track of all

resource costs, which creates an inherent bottleneck.  The compensation approach has

processes that provide some sort of compensation to the provider of the resource.  This

approach assumes that it is the individual agents that are seeking the resources.  The

coalition formation approach encourages agents to form beneficial coalitions for more
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efficient  and  profitable  usage  of  their  resources.   These  approaches  have  all  been

successfully used in many real life applications [160], but are quite different from the EC

based approach that will be adopted for this research.

For DisRAPs on distributed and parallel computing systems, the solution methods

have generally focused on queueing methods [16, 20, 116].  The main issues that need to

be resolved for any solution on such systems is the prevention of deadlock and starvation

[16, 20, 116].  Deadlock is created when multiple processes obtain part of the resources

they need and the must wait for other resources to become available.  This creates the

possiblity of a cyclic wait, where process A waits for process B to release the required

resources, while B is also waiting for A to rekease the resources it needs [16, 20, 116].

Starvation occurs when a process never gets the resources it needs, either because none of

the required resources is ever available or because the process is constantly being pre-

empted by other processes [16, 20, 116].  Any solution method must at least prevent these

two situations from acurring and, at the same time, reduce the wait time needed to gain

access to all required resources to complete a task [16, 20, 116].

For the third type of DisRAP, which can be used for sensor networks, it has been

shown  in  [7],  [108]  and  [109]  that  they  can  be  mapped  to  distributed constraint

satisfaction problems and solved as DisCSPs.  More details on DisCSPs and solution

methods for DisCSPs will be presented in the  next solution.

2.12. Distributed Constraint Satisfaction Problems

Just  as  RAPs  can  be  reformulated  as  CSPs,  DisRAPs  can  be reformulated  as

DisCSPs [108, 109].  DisCSPs are CSPs with the addition of a set of agents  A among
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which the variables, domains and constraints from X, D and C are distributed [164, 165,

166].   The  distributed  CSP is  a  type  of  problem and  should  not  be  confused  with

distributed/parallel methods that may be employed to solve CSPs.  Thus, the goal, as with

a standard CSP, is to create a value assignment for each agent/variable such that no

constraints are violated.  Due to the distributed nature of the problem, this will have to be

accomplished through message passing among agents [164, 165, 166].  

Typically,  in  a DisCSP, each agent  holds exactly one variable [164,  165, 166].

However, the cases where an agent holds multiple variables can be easily handled by

either finding the set of solutions to the local CSP and using that as the variable domain

for the local agent or by simply creating virtual local agents to handle one variable each

[164].  With the distribution of one variable per agent, the asymmetric version of the CSP

can be modeled much more accurately, since the private constraints can now be stored on

a per agent basis [54].

2.13. Solving Distributed Constraint Satisfaction Problems

Distributed CSPs must be solved through the use of message passing among agents.

Two  algorithms  that  we  used  for  solving  standard  CSPs  can  be  modified  to  solve

DisCSPs, Leading to the asynchronous backtracking (ABT) algorithm [164, 167] and the

asynchronous weak commitment  (AWC) search  [164,  167].   Unlike their  centralized

counterparts,  which  assign  values  to  variables  one  at  a  time,  these  two  algorithms

assigned values to all variables simultaneously.  After the values are assigned, they are

sent to all neighbors to check for constraint violations.  The assignment and reassignment

process  of  the  variables  takes  place  asynchronously  as  the  agents  pass  relevant
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information among each other.  The asynchronous weak commitment search has been

shown to greatly outperform asynchronous backtracking [164].

Distributed breakout [164, 166] (dBA) is an iterative improvement method used for

solving DisCSPs that is based on Morris' breakout method [112].  The dBA starts by

assigning random values to all  the variables.   During,  each iteration,  a variable will

communicate  its  value  with  its  neighbors  to  calculate  the  number of  conflicts  and

possible improvements, which is also communicated with its neighbors.  Based on this

information, the variable that can resolve the most conflicts will be allowed to change.  In

terms of computational complexity, dBA is more computationally intensive than either

ABT or AWC.  However, it has been shown that dBA is capable of performing better

than AWC and ABT on critical problems [164].  The dBA approach will be discussed in

more  detail  in  the  next  Chapter,  as  it  is  the  basis  for  the  genetic  and  evolutionary

protocols that will be presented.

The distributed stochastic algorithm (DSA) is a recently developed algorithm for

solving DisCSPs [170, 171].  In some ways it is similar to the dBA, except with the

distinct property that more than one variable may change value in each iteration [170,

171].  It also has a slightly lower communication overhead compared to the dBA.  Once

again, DSA is an iterative improvement method.  Starting from a random initial set of

variable  assignments,  the  agents  communicate  values  and  calculate  conflicts  and

improvements.  Each variable that is capable of changing its value to reduce the number

of local conflicts is allowed to change with a probability  p.  This makes it possible for

multiple variables to change at the same time and then possibly escape from any local

optimum.  Here,  genetic  and evolutionary protocols based on DSA will  be the main
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competitor to the genetic and evolutionary protocols created from dBA.  The results will

show that DSA's ability to have multiple variables change at once initially gives it an

advantage over dBA, but this becomes a weakness as the problems become harder.
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CHAPTER 3

GENETIC AND EVOLUTIONARY PROTOCOLS

3.1. Introduction

This  chapter  introduces  and  describes  the  genetic  and  evolutionary  protocols

(GEPs).  Yokoo's distributed breakout algorithm (dBA) [164, 165, 166, 170, 171] will be

discussed in depth, along with the modifications performed to enhance its performance.

The Society of Hill-Climbers (SoHC) [35, 37], which is a further modification to the

dBA,  will  also  be  discussed.   Afterwards,  the  distributed  crossover  and  mutation

operators  [36,  41]  used to  create  the GEPs from the SoHC will  be described.   The

distributed stochastic algorithm (DSA) [171, 172] will also be presented, along with the

modifications needed to create GEPs with DSA as a basis rather than dBA.

3.2. Distributed Breakout Algorithm (dBA)

The dBA was developed by Yokoo [164, 165, 166, 170, 171] to solve distributed

constraint satisfaction problems (DisCSP).  The dBA uses message passing to implement

a distributed steepest descent hill-climber [164].  In order to prevent the hill-climber from

becoming trapped at a local optimum, the breakout method [112] is used to modify the

fitness space such that the search can escape from any local optimum.

Each agent begins by randomly choosing a value from the given domain for the

variable it holds, which is sent to all neighbors of the agent.  The agent then waits to
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receive the values sent out by its neighbors to build an agent view.  Based on the agent

view,  the  agent  can  then  calculate  how  many  constraint  violations,  plus  breakout

violations, it is currently in, along with the most constraint violations it can resolve by

changing its value, which is also known as the gain.  When calculating the gain, the value

from the domain that can resolve the most constraint conflicts is also found.  This value is

referred to here as the next best value.  After calculating the local conflicts and gain,

these two values are sent to all the neighbors.  The agent then once more waits to receive

the conflicts and gains of its neighbors in order to build its conflict and gain view.  Based

on the gain view, if the local agent can resolve the most conflicts, then it is allowed to

change to its  next best  value.  If  none of the agents  can resolve any of the existing

conflicts, then it is assumed that a local minimum has been reached and breakout entries

are  created  and/or  incremented.   All  agents  then  send  their  current  value  to  their

neighbors again and the whole process continues until all conflicts have been resolved.

Thus, each iteration of the algorithm consists of two communication cycles.  The pseudo-

code for  the  dBA can  be seen  in  Figure  3.1.   This  code  is  executed  on  all  agents

simultaneously.

The  breakout  management  mechanism (BMM)  stores  a  list  of  breakout  entries.

Each entry is composed of a 4-tuple and a weight or penalty value.  The 4-tuple in a

breakout  entry  stores  a  no-good,  which  is  composed  of  the  two variables  and their

corresponding  values  that  are  considered  a  no-good.   Thus,  a  breakout  entry of

〈vari , var j , valuei , valuej〉 ,1  adds an extra penalty of 1 for violating the no-good where

vari is  assigned  valuei and  varj is  assigned  valuej.   The  breakout  list  is  stored  in  a

distributed manner, allowing each distributed agent to store the entries related to its own
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no-goods.  Thus, when an agent needs to create breakouts, it creates a breakout entry for

each no-good that its value is currently violating.  If an entry already exists, the weight is

incremented instead.   In  this  manner,  the weight/penalty for each breakout  alters  the

fitness space such that searches can escape or avoid any local optima.

Modifications have been made to dBA to enhance its performance [164].  One of

Yokoo's modification was the use of broadcasting [164].  With broadcasting, each agent

does  not  just  send  information  to  its  direct  neighbors,  but  also  to all  other  agents.

Broadcasting has the added benefit of letting each agent calculate the global fitness.  The

dBA with broadcasting (dBA+BC) has been shown to perform better than the standard

dBA on critical problems [164], although on sparse problems dBA+BC performs worse

than dBA [160].  A major downside of dBA+BC is the added communication overhead.

The  dBA+BC  algorithm  was  further  modified  by  Dozier  [35]  to  enhance  its

performance.  Sliding was added to the dBA to improve its performance and further help

it escape from a local optimum.  Sliding allows a random variable to change its value
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1.  address = LOCAL_ADDRESS()

2. value = RANDOM(Domain)

3. ∀ i∈neighborsdo SENDvalue , i

4. WAIT()

5. ∀ i∈neighborsdo RECEIVEi , agent_viewi 

6. conflict=CALCULATE_CONFLICTBREAKOUTS_VIOLATED

7. gain=CALCULATE_GAIN 

8. ∀ i∈neighborsdo SENDconflict , gain , i

9. WAIT()

10. ∀ i∈neighborsdo RECEIVEi , conflict_viewi ,gain_viewi

11. ∀ i∈neighbors If gaingain_viewi  then do

If gain0 then value=NEXT_BEST_VALUE

else INCREMENT_BREAKOUT
12. Do Step 3 – 11 Until conflict = 0

Figure 3.1. dBA Pseudo-code



when the search is stuck at a local optimum.  This improves performance by allowing

variables that may not be involved in any conflicts to change their value and possibly

move out of the current local optimum.  A random search through the variable domain

was also implemented when looking for the next best value and maximum gain in order

to prevent possible cycling of the search.

3.3. Society of Hill-Climbers (SoHC)

The dBA can be considered as using a distributed candidate solution to implement a

distributed hill-climber.  The logical representation of the distributed candidate solution

(dCS) can be seen in Figure 3.2  Each agent carries its own breakout list stored within a

Breakout Management (BMM) structure.  Even with this breakout mechanism, however,

to gradually escape from a local optimum, dBA still suffers from the same problem as a

normal hill-climber: If the initial starting point for the hill-climber is far from the actual

solution,  it  will  take more time to  find the solution.   The breakout mechanism only

guarantees that the search will eventually escape a local optimum, but how long this takes

depends on the local optimum.  These two factors greatly affect the performance of the

dBA.
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Figure 3.2. A Distributed Candidate Solution
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The society of hill-climbers (SoHC) [33, 35] increases the performance of the dBA

by overcoming these two problems.   Instead  of  using a  single  distributed  candidate

solution (dCS), SoHC uses a population of dCSs.  This effectively creates a distributed

population, as shown in Figure 3.3.  Each agent now carries a total of k instances of the

variable they hold, where k is the population size.  This is equivalent to having k copies

of the dBA, or in this case the modified dBA+BC (mdBA) [35], running in parallel.  The

biggest difference here from running k mdBAs in parallel is that all instances share the

same BMM.  This  is  clearly  seen in  the figure,  where although each agent  holds  k

instances  of  the  variable  Xi,  each  agent  still  has  only  one  breakout  management

mechanism.

The population-based approach spreads the search out and prevents the search from

being trapped in a local optimum for too long.  This approach also makes it possible to

identify  many  local  optima  in  parallel.   The  shared  BMM  facilitates  the  indirect
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Figure 3.3. A Distributed Population
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communication of known local optima, and no-goods associated with many local optima

will be penalized more severely within a shorter amount of time.  This helps individuals

trapped in a local optimum to escape more quickly.

There  are  definite  overheads  involved  with  such  a  modification.   First  the

computation time required locally on each agent is increased by a factor of k.  Though the

number of packets sent is still the same, more information is included in each packet;

instead  of  sending one local  value,  one conflict  count,  and one maximum gain,  the

packets must now contain k values, k conflict counts and k gain values.  Given the overall

increase in performance, these drawbacks are acceptable and minimal.  The increase in

the amount of information per packet also increases link utilization.

3.4. Genetic and Evolutionary Protocols (GEPs)

GEPs are further modifications of the SoHC algorithm based on the addition of

genetic and evolutionary operators [36, 40].  The successful application of the distributed

genetic and evolutionary operators in GEPs makes two system assumptions, namely that

a global view is available and that each agent has a random number generator that is

seeded in exactly the same way and is used the same number of times.

The genetic operator was added to SoHC to create GSoHC, the genetic protocol.

The genetic operator is a combination of distributed genetic crossover and mutation.  The

form of genetic crossover used is a uniform crossover.  Research has also been carried

out with single point, two point, and multi-point crossover [41], but the results show no

significant difference in performance.  Uniform crossover is therefore used as it is the

simplest to implement and all crossover operations can be decided and executed locally
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for an agent.  For each iteration, once the conflict view has been built (after step 10 in

Figure  3.1)  the  fitness  for  each individual  dCS can be calculated  by adding  up  the

corresponding conflict views.  Based on the calculated fitness, the distributed individuals

with better than average fitness will perform the normal hill-climbing routine while the

remainder execute the genetic operator and are replaced with recombinations of the best

individual.   Thus,  only  half  the  population  effectively  performs  hill-climbing  each

iteration.

When the genetic operator is invoked, the agent will take the variable instance of the

invoking dCS and replace it  with the value of  the dCS with the best fitness with a

probability pc.  The variable instance will take on a random value from the domain with

probability  pm.   Finally,  the value of  the variable  instance will  stay unchanged with

probability 1� pcpm .  

The evolutionary operator is triggered in a similar way to the genetic operator.  The

evolutionary operator was added to SoHC to create ESoHC (evolutionary protocol), and

does not use crossover, but only mutation.  Thus, a dCS with below average fitness will

trigger the evolutionary operator (after Step 10 in Figure 3.1).  Once triggered, the agent

will  take  the value  of  the  variable  instance  of  the  dCS that  called  the evolutionary

operator and replace it with the value of the dCS with the best fitness with probability 1 –

pm.  With probability pm, the value is replaced by a random value from the domain.  

The  GEPs  greatly  improve  the  performance  of  SoHC  by  adding  elements  of

exploitation.   Exploration  and exploitation  are  behaviors  that  were  added  to  the ant

colony optimization (ACO) [32] to either diversify the search into un-searched regions or

concentrate the search around regions that are known to be good.  Here, the terms are
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used as qualitative meassures in order to describe the search behavior of the algorithms

(protocols).  An algorithm that uses more exploration will have a more diverse population

of candidate solutions that are more spread out in the search space, while an algorithm

that uses more exploitation will  have a population that is more concentrated around a

region known to be good with relatively higher fitness.  For example, comparing the two

approaches,  SoHC uses  the  most  exploration,  while  ESoHC uses  more  exploitation.

ESoHC can be seen as having half the population performing exploration and the other

half  exploiting  the  best  candidate  solution.   It  should  be  noted  that the  size  of  the

population used also affects the level of exploration performed, as a larger population is

able to diversify the search more than a smaller population.

By  adding  elements  of  exploitation  to  SoHC  with  genetic  and  evolutionary

operators, it becomes much easier for candidate solutions to escape from a local optimum

or areas of less promise.  GSoHC does not perform as much exploitation as ESoHC, as

each variable in the below average individuals only has a  pc chance of taking on the

corresponding value of the best individual, while staying unchanged with a chance of pc.

ESoHC exploits the current best solution more than GSoHC by intensifying the search

closer to the best individual, as each agent of the below average candidates takes on the

value of the best with probability 1 –  pm,  where  pm is usually a relatively small value.

Thus, even though GSoHC and ESoHC only have half their population doing an actual

hill-climbing  move,  they  are  capable  of  finding  solutions  faster  on critically  hard

problems.

Other modifications of SoHC have also been explored in the past [55].  The ant-like

society of  hill-climbers [55]  (ASoHC) was one modification that  specifically tried to
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reduce the space complexity created by the BMM for hard problems.  Apart from the

possible space complexity of the BMM, the other concern was that the breakout entries

may effectively partition the fitness space into portions, making it difficult for the search

to jump from one region to another.  The primary modification for ASoHC was the use of

a decaying breakout penalty for each entry.  The breakout penalty decay mimics the local

and global update rules of the ant colony optimization (ACO) [32, 33].  The same decay

was also added to ESoHC and GSoHC resulting in a lower space complexity and a

generally shorter breakout list with no significant change in performance [55].  

3.5. Distributed Stochastic Algorithm (DSA)

The distributed stochastic algorithm was developed by Weixiong Zhang [171, 172]

to  solve  distributed  resource  allocation  and  constraint  satisfaction  problems.   DSA's

primary characteristic is its inherent parallelism, which allows multiple agents to change

their value in a given iteration [171, 172].  In many ways, it is similar to dBA because it

also uses communication to negotiate value changes towards a satisfactory solution.  Like

the original dBA, each agent running DSA only sends the value currently assigned to the

agent to its neighbors.  Where dBA also sends the number of constraint conflicts and the

maximum gain to its neighbors, DSA keeps these values local.  Thus, on the packet count

level, DSA only sends half the amount of packets as dBA.  The pseudo-code for DSA is

given in Figure 3.4.

The pseudo-code shows that DSA is similar to dBA up to step 6.  When  gain  is

calculated, the next best value is also found, similar to dBA.  In dBA, the conflict  and

gain are sent to the neighbors, while in the DSA, the conflict and gain are used, instead,
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to determine whether value will be changed to the next best value.  Whether the next best

value  is  assigned  to  value is  also  determined  by  p,  which  specifies  the  degree  of

parallelism, or more simply,  the probability that  value will  be changed.  Five models

were presented to show the different conditions under which  value is changed.  These

models are presented in Figure 3.5.  For DSA-A, value is changed with probability p if

gain is greater than 0.  For DSA-B, value is changed with probability p if either gain or

conflict is greater than 0.  For DSA-C, value is changed with probability p no matter what

the  gain and  conflict are.  DSA-D has  value change if  gain  is greater than 0, or, else,

value will change with probability  p if  conflict  is greater than 0.  Finally, DSA-E has

value change when gain is greater than 0, or else, value will change with probability p.

Tests on graph coloring problems, carried out by Weixiong Zhang have shown that DSA-

B is the most stable and best performer of the five models [172].

What the p value implies is that multiple agents are capable of changing their values

simultaneously.  As will be shown later, this property works both to the DSA's advantage

and disadvantage.  The ability to have multiple agents change their values also explains

why DSA does not need a mechanism similar to the breakout method used by the dBA to

escape local optima.  The algorithm is capable of probabilistically jumping out of a local

optimum when multiple agents choose to change their values.  However, this also means
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1. value = RANDOM(Domain)
2. ∀ i∈neighbors do Send i ,value
3. Wait....∀ i∈neighbors Receivevaluei , i 
4. conflict = CALCULATE_CONFLICT()
5. gain = CALCULATE_GAIN()
6. value = ASSIGN_NEW_VALUE(p, conflict, gain)
7. Repeat steps 2 – 7 until all conflicts resolved

Figure 3.4. DSA Pseudo-Code



that the algorithm is capable of probabilistically jumping away from promising solution

regions.  Thus, on critically hard problems, the DSA may not converge very well.  As the

performance of DSA is determined by the p value, its performance may improve if the p

value is varied with time.  This possibility will also be explored in the testing phase of

this study.

3.6. Modifications to DSA

As dBA was used in comparison to DSA in [171], DSA will be compared to the

various dBA modifications created for this study, namely SoHC, GSoHC, and ESoHC.

However,  since SoHC, ESoHC, and GSoHC have an automatic population advantage

[35, 36, 37, 39, 55], similar modifications will be made to the DSA in order to match

those changes made in the dBA to create the GEPs.  Since DSA-B is the best performing

algorithm of the five models, based on  [172], this will be used as the basis for the DSA

based GEPs created for this study.

First, as for dBA, the simple DSA was given a distributed population.  Unlike the

SoHC, the distributed individuals  in the society  of  DSA (SoDSA)  do not  share  any

information with each other about the search.  Also, even though the original DSA did
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Model gain > 0 conflict > 0; gain = 0 conflict = 0; gain = 0

DSA-A value with p -- --

DSA-B value with p value with p --

DSA-C value with p value with p value with p

DSA-D vvalue value with p --

DSA-E vvalue value with p value with p

Figure 3.5.  Differing Models for DSA [172]



not need a global view, a global view was added to facilitate the process of determining

whether a distributed individual has found the solution.  This global view also requires

that at least the  conflict, which is calculated, also be broadcast so that each agent can

calculate the fitness for each distributed individual.  The communication of the calculated

conflict by each agent also makes it possible for DSA to support asymmetric constraints,

and these constraints will be the focus of this study.  To date, DSA has primarily been

used to solve problems with symmetric constraints [171, 172].  Though this may be seen

as a retarding factor for DSA to have to send an extra packet each iteration and create a

global view, the results show that DSA also benefits from the population based approach

as well.  

The genetic and evolutionary operators were then added to the SoDSA to create the

genetic and evolutionary SoDSA (GSoDSA and ESoDSA).  The two operators were not

changed and were implemented similarly to those used in GSoHC and ESoHC.  The

inclusion of the two operators further necessitates the need for a global view.  The next

chapter  will  compare  the  performance  of  mdBA,  SoHC,  GSoHC,  ESoHC,  DSA-B,

SoDSA, GSoDSA, and ESoDSA by applying them to the problem of randomly generated

asymmetric constraint satisfaction problems (DisACSPs).
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CHAPTER 4

SOLVING DISTRIBUTED ASYMMETRIC CONSTRAINT SATISFACTION

PROBLEMS USING GENETIC AND EVOLUTIONARY PROTOCOLS

4.1. Introduction

In  order  to  assess  the  performance  of  the  Genetic  (GSoHC)  and  Evolutionary

(ESoHC) Protocols (GEPs), they will first be tested on randomly generated distributed

asymmetric constraint satisfaction problems (DisACSP).  Their overall performance will

be compared to those of the mDBA and Society of Hill-Climbers (SoHC) to see how

much of an improvement is gained.  The GEPs will also be compared to the Distributed

Stochastic Algorithm (DSA) and the DSA based GEPs created for this research.

4.2. Randomly Generated DisACSP

A randomly generated DisACSP can be defined by four parameters: the number of

variables/agents (n), domain size (m), constraint density (p1), and constraint tightness (p2)

[36, 37, 164].  The problem parameters can be expressed as a 4-tuple <n, m, p1, p2>.  As

mentioned in Chapter 2, not all CSPs are solvable.  Thus, the best indicator of problem

difficulty is how close it is to the phase transition [93, 140]; the hardest problems will be

at the phase transition [140].  In previous work [36, 37], we have shown that randomly

generated ACSPs with parameters <30, 6, 1, 0.01> - <30, 6, 1, 0.06> are good indicators
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of performance.  Thus, these will be the problems primarily used to test the dBA based

GEPs, mDBA, SoHC, DSA and DSA based GEPs.

In randomly generated DisACSPs, a constraint, or no-good, can be represented by a

4-tuple, <var1, var2, val1, val2>, composed of the two variables and their corresponding

value assignments.  Since the constraints are asymmetric, given two no-goods <x, y, a, b>

and <y, x, b, a>, if x≠y , then the two no-goods are not equivalent and are considered to

be separate constraints.  It should be noted that x will never be equal to y, thus <x, y, a, b>

and <y, x, b, a> will never be equivalent when asymmetric constraints are used.  The no-

good <x, y, a, b> can then be interpreted as “if x is assigned the value a, then y cannot be

assigned the value b.”  

4.3. Testing

When  testing  algorithms  for  solving  randomly  generated  DisACSPs,  a  primary

concern  is  whether  the  algorithm  can  solve  the  problem within  a  given  number  of

iterations.   The  primary  metric  for  performance  is  the  percentage  of  problems  an

algorithm can  solve.   In  a  situation  where  two algorithms  perform similarly  on  the

percentage of problems solved, the algorithm that can find a solution in fewer iterations is

judged to be better.

For these tests, each algorithm was given 2000 iterations to solve the given problem.

If a solution was not found within 2000 iterations, then the algorithm was terminated, the

problem  was  marked  as  being  unsolved  and  2000  was  recorded  as  the  number  of

iterations for that problem [37, 37, 55].  The average number of iterations needed to solve

a problem will therefore also include the runs where no solution was found.  Thus, if an
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algorithm was unable to find a solution for any of the problems, then the average number

of iterations for that algorithm would be 2000.

4.4. Results: mdBA vs SoHC

Tables 4.1 and 4.2, show the results for SoHC on a total of 600 randomly generated

problems with 100 problems for each parameter set, <30, 6, 1, 0.01>, <30, 6, 1, 0.02>,

<30, 6, 1, 0.03>, <30, 6 1, 0.04>, <30, 6, 1, 0.05>, and <30, 6, 1, 0.06>.  A total of 30

trial runs were performed on each randomly generated problem for each parameter set.

The results are therefore averaged over 3000 runs per population and tightness setting.

As  described  earlier,  the  only  difference  between  a  SoHC  and mdBA  is  the

population  based  approach  of  the  SoHC.   Consequently,  when  a  SoHC has  only  a

population size of 1, it becomes a mdBA.  As the results in the tables show, the general

trend is that as the problem gets harder it becomes exponentially harder to find a solution

within 2000 iterations.  However, the larger the population size, the more likely it is that

the algorithm will find a solution and it will do so faster.

Though problems with a tightness of 0.01 are relatively easy to solve, the results

show that there is still a 0.5% chance that the mdBA will fail to identify a solution within

2000 iterations.  As there were 100 different problems generated, 30 runs performed on

each, and a failure rate for the mdBA of 0.5%, this indicates that there were problems

where the mdBA was not able to solve consistently in the 30 trial runs.  Since each trial

run differs  by only the initial  random candidate solution,  this highlights  the possible

impact the initial starting candidate solution has on the performance of the algorithm.  As

the problems become harder, SoHC also begins to suffer from this consistency problem if
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the population size is not large enough; for example with a SoHC of populations size 2

(SoHC-2) at a tightness of 0.02, SoHC-4 at 0.03, and SoHC-8 at 0.04.

At a tightness of 0.05, the problem is considerably harder for both SoHC and mdBA,

and  even  SoHC-32  was  not  able  to  solve  50% of  the  problems.   However,  it  still

performed  much  better  than  the  mdBA,  which  was  only  able  to  solve  5.4% of  the

problems.  At the phase transition tightness of 0.06 where there may only be one solution,

mdBA, SoHC-2, SoHC-4, and SoHC-8 were not able to find any solutions within 2000

iterations, while SoHC-16 was able to solve only 0.03% (1 out of 3000) of the problems

and SoHC-32 solved 0.23% (7 out of 3000) of the problems.  Based on the two-tailed t-

test for the difference in mean with a = 0.05, the performance difference between SoHC-

16 and SoHC-32 is not significant.

To assess the significance of the results, an ANOVA test was performed over each

problem tightness to show that the change in performance, seen in Table 4.2, caused by

the population increase is significant.  The one-factor ANOVA test was performed and
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Table 4.1. Percentage of problems solved within 2000 iterations

Table 4.2. Average number of iterations to find a solution

SoHC Population Size
Tightness 1 2 4 8 16 32

0.01 99.50 100.00 100.00 100.00 100.00 100.00
0.02 91.50 99.20 100.00 100.00 100.00 100.00
0.03 80.53 95.97 99.77 100.00 100.00 100.00
0.04 70.93 89.50 98.23 99.77 100.00 100.00
0.05 5.40 9.40 16.17 24.80 35.47 49.73
0.06 0.00 0.00 0.00 0.00 0.03 0.23

SoHC Population Size
Tightness 1 2 4 8 16 32

0.01 17.80 6.11 4.87 3.83 2.98 2.28
0.02 187.52 31.76 13.09 11.28 9.73 8.55
0.03 437.11 121.58 34.97 23.57 19.60 17.11
0.04 891.44 527.94 261.78 139.42 83.40 53.67
0.05 1945.43 1898.77 1814.74 1702.74 1542.41 1334.73
0.06 2000.00 2000.00 2000.00 2000.00 1999.49 1997.79



the results are presented in Table 4.3.  Given that the F value for dfn = 5, dfd = 17,994 and

p = 0.01 is 3,  the results presented in Table 4.2 is clearly significant and the population

size does have a significant affect on performance.

It  can  be  argued  that  the  direct  comparison  of  performance  between  varying

population sizes is inherently unfair as the larger population sizes will gain an automatic

advantage, since they tend to search through more candidate solutions per iteration.  One

method used to equalize this performance difference is to look at the total number of

fitness function evaulations,  which corresponds to the number of  candidate solutions

searched  before  finding  a  solution.   Here,  instead  of  averaging  fitness  function

evaulations,  the average  number of  constraint  checks  made before  finding a  feasible

solution is used for comparison.  The results are presented in Table 4.4.  It  should be

noted that in a distributed problem, the most time consuming process is message passing

among  the  agents.   This  is  the  main  reason  why,  in  this  research,  iterations  of  an

algorithm is used as a primary benchmark.

Table 4.4 shows the average number of constraint  checks for instances where a

feasible solution was found, which is why there are no results for population sizes of 1, 2,

4, and 8 when the constraint  tightness is 0.06.  At the same constraint  tightness, the

averages for the remaining population sizes of 16 and 32 should not be regarded as being

significant either as they are averages over the very small set of runs that actually found a
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Table 4.3. One Factor ANOVA test Results over the Average
Iterations to find a Solution for SoHC where dfn = 5 and dfd = 17,994

Tightness F-value
0.01 30.522196
0.02 269.509278
0.03 655.380354
0.04 1660.770074
0.05 528.006735
0.06 3.387420



feasible solution within 2000 iterations.  In all cases, the increase of constraint checks,

percentage-wise, is greater than the decrease in the average number of iterations to solve

a problem.  The decrease in the average number of iterations to solve a problem as the

population grows does contribute to the result that the average constraint checks does not

grow linearly with the population size.  

As the problems get harder, it becomes harder for the many variations of SoHC to

find  a  solution  within  2000  iterations.   This  makes  it  more  difficult  to  see  the

performance difference between differing population sizes.  To solve this problem, the

number of  constraint  violations at  the end of 2000 iterations for  those runs where a

feasible solution was not found is recorded and averaged.  The results are presented in

Table 4.5.   To put  the numbers in  Table 4.5 into perspective,  Table 4.6 divides the

numbers in Table 4.5 by the maximum number of constraints that were generated given

the problem tightness to show the average percentage of the total constraints that were

not resolved at the end of 2000 iterations when no solution was found.

One of the biggest difference between SoHC and a standard hill-climber is the use of

the breakout list to penalize known no-goods.  The purpose of the breakout list is to

modify the fitness such that the search can move out of a local optimal.  This should be

considered when examining and interpreting the results presented in Tables 4.5 and 4.6.

The tables simply show the remaining constraint conflicts after 2000 iteration when no
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Table 4.4. Average number of Constraint Checks to find a feasible solution 

Population Size
Tightness 1 2 4 8 16 32

0.01 14,266 24,604 43,460 76,397 134,174 236,889
0.02 36,852 65,940 117,897 215,881 395,503 732,900
0.03 102,988 161,884 259,480 443,567 793,935 1,460,071
0.04 779,021 1,266,325 1,702,760 2,121,342 2,822,877 3,976,789
0.05 2,209,501 4,199,550 7,861,272 14,935,237 27,019,787 51,316,213
0.06 23,053,840 96,982,649



solution is found and does not factor in the possible penalty placed on these constraints or

the surrounding search space by the breakout mechanism.  Thus, generally, neither the

ending fitness value nor the number of remaining constraints can indicate how close a

search is to finding a feasible solution as there is no real way of telling whether the search

ended the 2000 iterations stuck at a local optimal or in the process of moving out of one.

However,  the  tables  do  show that  when  the  problem gets  harder,  with  a  constraint

tightness of 0.05 and 0.06, where there are a large number of local optima, the increase in

population size helps find relatively better sub-optimal solutions within the same 2000

iterations.  This is especially seen for problems with a constraint tightness of 0.06 where

less than 1% of the problems were solved within 2000 iterations.

One of the concerns about SoHC that was addressed in a previous study [55] was the

issue of space complexity.  The question was whether the breakout list would become too

long and take up a significant amount of memory.  Table 4.7 shows the average length of

the breakout list at the end of each run.  As expected, increasing the population size
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Table 4.5. Average number of unresolved constraints when no solution was
found within 2000 iterations

Table 4.6. Percentage of total constraints unresolved after 2000 iterations

SoHC Population Size
Tightness 1 2 4 8 16 32

0.01 1.07
0.02 1.28 1.25
0.03 1.66 1.76 3.00
0.04 3.86 3.83 3.90 3.50
0.05 11.22 9.87 8.72 7.47 6.80 6.22
0.06 16.91 15.06 13.79 12.81 11.90 11.18

SoHC Population Size
Tightness 1 2 4 8 16 32

0.01 0.34%
0.02 0.20% 0.20%
0.03 0.18% 0.19% 0.32%
0.04 0.31% 0.31% 0.31% 0.28%
0.05 0.72% 0.63% 0.56% 0.48% 0.43% 0.40%
0.06 0.90% 0.80% 0.73% 0.68% 0.63% 0.60%



increased the length of the breakout list, especially for harder problems.  For problems

with a tightness of no more than 0.03, SoHC was usually able to solve the problem before

many breakouts were placed.  This can be seen as the average ending length of the list

decreased  with  population  size.   As  the  problems  become  harder,  increasing  the

population size increased the chance of finding a local optimum, which in turn increased

the average length of the breakout list.  It is interesting to see that at the phase transition,

SoHC actually placed fewer breakouts than when at a tightness of 0.05.  This highlights

one of the weaknesses of the breakout method, where if there is a large clustering of local

optima, then the search may oscillate between the many local optima until the penalty

weights have accumulated to the point of escaping the entire cluster.  Thus, at the phase

transition, SoHC was not able to find as many local optima as it could at a tightness of

0.05, which is why the breakout list is significantly shorter.  In general, the breakout list

length scales logarithmically with the population size.

Based on these results, there is no doubt that SoHC performs better than mdBA, and

this  performance  difference  can  be  attributed  to  SoHC's  population  based  approach.

However,  neither  was  able  to  solve  a  significant  number  of  problems at  the  phase

transition.  Next the effect on performance of adding the genetic operator to SoHC will be

considered.
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Table 4.7. Average Ending BreakOut List Length

Population Size
Tightness 1 2 4 8 16 32

0.01 0.04 0.01 0.01 0.00 0.01 0.01
0.02 1.05 0.69 0.43 0.32 0.27 0.24
0.03 8.69 8.45 6.77 5.23 4.06 3.60
0.04 77.03 96.65 102.61 99.91 99.82 91.96
0.05 150.92 230.84 332.83 444.53 556.26 652.11
0.06 122.84 189.06 276.30 385.83 512.95 654.64



4.5. Results: Genetic Protocol (GSoHC)

The distributed genetic operator has two parameters, namely the probability that the

variable  randomly  chooses  a  value  from  the  domain,  the  mutation  rate  pm,  and  the

probability that the variable takes on the value of the best instance, the crossover rate pc.

Since the genetic operator uses uniform crossover, the value of pc will be 0.5.  However,

because mutation and crossover are performed in the same step, the parameter constraint

2⋅pc pm=1  needs to be satisfied.   Based on this constraint,  the mutation rate was

selected as the determining factor for the crossover rate.  In previous works, the mutation

rate was set at 6% with a crossover rate of 47%, but here the results obtained by varying

the mutation rate will be explored.  These results are based on the average performance

over the same 600 problems used for testing SoHC.  Each variation of GSoHC was run

once on each of the 600 problems.

Tables 4.8 and 4.9 present the number of problems solved and the average iterations

to solve a problem for each mutation and problem setting.  To show the significance of

the results,  a one factor  ANOVA test  was performed to show whether  changing  the

mutation  rate  has  a  significant  affect  on  the  average  number  of iterations  to  find  a

solution.  The F-values for the ANOVA tests are presented in Table 4.10, while the sets

of results that are significant are highlighted in Tables 4.8 and 4.9.

Table 4.8 shows that the mutation rate does not affect the performance at a tightness

of 0.01.  This is supported by the results in table 4.10 as the performance of varying

mutation rates is not significant.  At a tightness of 0.02, the GSoHC with no mutation and

a population size of 2 (GsoHC-0.00-2) and 4 (GsoHC-0.00-4) are the only algorithms that

were not able to solve all the problems.  The performance difference starts to show at a

48



tightness of 0.03, where no mutation and too much mutation are both detrimental  to

GSoHC performance.  However, an increase in population size can still make up for the

performance variation due to mutation.  At a tightness of 0.04, GSoHC-0.06 and GSoHC-

0.12  appear  to  perform better  than  the other  candidates.   At  a  tightness  of  0.05,  it

becomes clear that a mutation rate of 0.24 or more is too much as the two variations fall

behind.  GSoHC-0.12 falls slightly behind GSoHC-0.06 here, but the most interesting

result is that GSoHC-0.00 is actually able to beat GSoHC-0.06 at population sizes less

than 16.  This is due to the higher level of exploitation in plain crossover than crossover

with mutation.  However, GSoHC-0.06-32 performs significantly better than GSoHC-

0.00-32.  At a tightness of 0.06, none of the variations perform significantly better than

the others.

Table  4.9  shows the  average  number  of  iterations  that  were  needed  to  solve  a

problem.  The numbers further reinforce the performance advantage of GSoHC-0.06 as,

taking into consideration the percentage of problems solved, GSoHC-0.06 was able to

solve more problems faster than the other variants.  These results also show that at a

tightness  of  0.01,  where  the  problem is  easy,  the  choice  of  mutation rate  is  not  as

important, but as the problem gets harder it becomes clear that too much mutation is not

good for the search.  Tables 4.11 and 4.12 shows the detailed results for GSoHC-0.06

over the same set of 600 problems, except with each problem run 30 times.

With the chosen mutation rate of 0.06 for GSoHC, Tables 4.13 and 4.14 Present the

average  number  of  remaining  constraints  when  no  solution  was  found  within  2000

iterations, along with the percentage of overall constraints.  Overall, the trend in average

remaing  constraints  is  the  same as  SoHC,  except  GSoHC averages  fewer  remaining
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constraints than SoHC.  The reduction of  remaining constraints  with the increase of

population size is still true.

Table 4.15 presents the average number of constraint checks to solve a problem,

when a solution was found within  2000 iterations.   The numbers show that  GSoHC

requires a lot fewer constraint checks on average to find a solution.  This is mainly due to

the fact that GSoHC finds solutions faster than SoHC and is capable of solving nearing

twice as many problems as SoHC, in some cases.  This affect is especially apparent as the
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Table 4.8. Percentage of problems solved for GSoHC with varying
mutation rates

Tightness
Population Size

2 4 8 16 32

0.01

0.00 100.00 99.00 100.00 100.00 100.00
0.06 100.00 100.00 100.00 100.00 100.00
0.12 100.00 100.00 100.00 100.00 100.00
0.24 100.00 100.00 100.00 100.00 100.00
0.50 100.00 100.00 100.00 100.00 100.00

0.02

0.00 95.00 99.00 100.00 100.00 100.00
0.06 100.00 100.00 100.00 100.00 100.00
0.12 100.00 100.00 100.00 100.00 100.00
0.24 100.00 100.00 100.00 100.00 100.00
0.50 100.00 100.00 100.00 100.00 100.00

0.03

0.00 92.00 97.00 100.00 100.00 100.00
0.06 100.00 100.00 100.00 100.00 100.00
0.12 100.00 100.00 100.00 100.00 100.00
0.24 100.00 100.00 100.00 100.00 100.00
0.50 96.00 100.00 100.00 100.00 100.00

0.04

0.00 73.00 90.00 99.00 100.00 100.00
0.06 92.00 100.00 100.00 100.00 100.00
0.12 89.00 100.00 100.00 100.00 100.00
0.24 80.00 98.00 100.00 100.00 100.00
0.50 78.00 96.00 99.00 100.00 100.00

0.05

0.00 14.00 31.00 64.00 82.00 81.00
0.06 11.00 29.00 53.00 87.00 95.00
0.12 7.00 29.00 45.00 70.00 91.00
0.24 7.00 16.00 32.00 41.00 68.00
0.50 6.00 13.00 17.00 30.00 43.00

0.06

0.00 0.00 0.00 0.00 1.00 2.00
0.06 0.00 0.00 0.00 0.00 0.00
0.12 0.00 0.00 1.00 1.00 1.00
0.24 0.00 0.00 0.00 1.00 1.00
0.50 0.00 1.00 0.00 1.00 1.00

Mutation 
Rate
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Table 4.9. Average number of Iterations required to solve a problem for GSoHC
with varying Mutation Rates

Table 4.10. F-values from running the one Factor ANOVA test on the results from
Table 4.9 over the varying mutation rate

(dfn = 4, dfd = 495 and for p = 0.05, F = 2.39)

Tightness
Population Size

2 4 8 16 32

0.01

0.00 5.49 24.00 3.31 2.63 2.05
0.06 5.52 4.30 3.53 2.71 1.93
0.12 5.66 4.22 3.46 2.69 1.92
0.24 5.56 4.02 3.39 2.56 2.00
0.50 5.71 4.64 3.41 2.60 2.10

0.02

0.00 113.96 31.76 9.20 8.13 7.07
0.06 16.29 12.68 9.61 8.27 6.89
0.12 16.54 11.78 9.86 8.48 7.21
0.24 19.47 12.95 10.19 8.93 7.83
0.50 19.67 12.59 10.90 8.94 7.97

0.03

0.00 190.54 96.72 18.59 15.07 13.06
0.06 52.34 25.48 19.96 16.25 13.43
0.12 64.31 36.39 21.25 17.16 14.60
0.24 91.07 37.74 24.73 18.23 15.20
0.50 163.56 39.44 25.89 19.13 16.78

0.04

0.00 696.22 316.25 94.71 45.71 28.95
0.06 521.88 157.76 86.13 46.42 32.81
0.12 710.50 212.85 90.13 55.20 39.34
0.24 764.71 325.97 132.28 78.06 44.84
0.50 839.82 406.14 185.61 111.76 64.53

0.05

0.00 1861.76 1641.81 1084.19 727.98 685.31
0.06 1874.73 1622.95 1328.67 619.98 404.85
0.12 1945.84 1677.73 1347.86 989.11 563.74
0.24 1928.33 1809.71 1622.62 1438.58 1054.31
0.50 1939.65 1886.31 1828.13 1614.08 1500.40

0.06

0.00 2000.00 2000.00 2000.00 1983.69 1963.63
0.06 2000.00 2000.00 2000.00 2000.00 2000.00
0.12 2000.00 2000.00 1991.06 1982.00 1981.68
0.24 2000.00 2000.00 2000.00 1988.26 1984.88
0.50 2000.00 1981.87 2000.00 1983.22 1987.87

Mutation 
Rate

GSoHC Population Size
Tightness 2 4 8 16 32

0.01 0.5310 0.9720 0.4532 0.2508 0.4152
0.02 4.8267 0.9489 7.5559 5.4176 10.1112
0.03 4.5569 3.2745 13.7172 16.6609 23.4597
0.04 4.9642 7.5421 7.5939 20.5739 19.8019
0.05 1.0338 4.2327 19.9734 43.7507 50.9842
0.06 0.0000 1.0000 1.0000 0.2777 1.0184



population size increases.  At a population size of 32 and problems with a tightness of

0.05, GSoHC requires, on average, less than half the number of constraint checks to solve

a problem as compared to SoHC.
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Table 4.11. Percentage of Problems Solved for GSoHC with Mutation
rate of 0.06

Table 4.12. Average Cycles to Solve a Problems for GSoHC with
Mutation rate of 0.06

Table 4.13. Average number of unresolved constraints when no solution
was found within 2000 iterations

Table 4.14. Percentage of total constraints unresolved after 2000
iterations

Population Size
Tightness 2 4 8 16 32

0.01 100.00 100.00 100.00 100.00 100.00
0.02 100.00 100.00 100.00 100.00 100.00
0.03 99.97 100.00 100.00 100.00 100.00
0.04 95.10 99.90 100.00 100.00 100.00
0.05 8.20 29.90 61.23 84.50 93.93
0.06 0.00 0.23 0.80 1.10 2.30

Population Size
Tightness 2 4 8 16 32

0.01 5.69 4.26 3.38 2.63 2.00
0.02 16.90 11.74 9.62 8.22 7.12
0.03 52.53 28.60 20.14 16.15 13.70
0.04 493.54 167.14 77.83 46.06 32.36
0.05 1912.67 1655.58 1186.17 692.19 392.25
0.06 2000.00 1997.69 1989.41 1982.33 1966.50

GSoHC Population Size
Tightness 2 4 8 16 32

0.01
0.02
0.03 2.67
0.04 5.23 4.67
0.05 10.81 8.47 6.83 5.29 3.59
0.06 15.98 13.34 11.35 9.66 8.06

GSoHC Population Size
Tightness 2 4 8 16 32

0.01
0.02
0.03 0.28%
0.04 0.42% 0.37%
0.05 0.69% 0.54% 0.44% 0.34% 0.23%
0.06 0.85% 0.71% 0.60% 0.51% 0.43%



4.6. Results: Evolutionary Protocol (ESoHC)

Unlike GSoHC, ESoHC depends on mutation only.  Thus, if the mutation rate drops

to 0, ESoHC becomes similar to SoHC.  The only difference would be that in ESoHC

with a mutation rate of 0 (EsoHC-0), the below average half of the population, fitness-

wise,  will  become exact  copies of  the  best  individual.   The impact  of  changing the

mutation rate on the performance of ESoHC is first considered.  It should be noted that

given the mutation rate pm, below average individuals in ESoHC will become variations

of the best individual.  

Similar to GSoHC, a one-factor ANOVA test was performed on the results to see if

the variation in the average iterations to solve a problem is significant over the various

mutation rates.  The results of this is presented in Table 4.18, and the significant sets of

results are highlighted accordingly in Tables 4.16 and 4.17.

As shown in Table 4.16 a mutation rate of 0.06 and 0.12 appears to offer the best

performance, with the lower mutation rate edging the other out slightly in the number of

problems solved.  At a problem tightness of 0.05, where the problem gets significantly

harder, it is interesting to see that a mutation rate of 1 for a population size of 2 actually

performs quite well compared to lower mutation rates, although this performance does

not scale with population size.   Ultimately,  the determining factor  appears to be the
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Table 4.15. Average number of Constraint Checks to find a feasible solution

GSoHC Population Size
Tightness 2 4 8 16 32

0.01 22,812 38,133 66,924 117,543 207,926
0.02 66,244 102,653 179,313 322,166 586,382
0.03 193,616 240,468 373,757 639,234 1,136,351
0.04 1,622,238 1,277,302 1,279,050 1,648,906 2,505,111
0.05 4,435,264 7,620,302 11,859,729 15,837,771 20,138,056
0.06 9,889,704 13,278,653 15,976,856 42,034,304



balance  between  exploration  and  exploitation;  with  a  lower  mutation,  there  is  more

exploitation, while higher mutation rates create more exploration.  At low population

sizes, a high level of exploration can help the algorithm, but at higher population sizes, a

lower mutation rate, and greater exploitation must be used to obtain better results as the
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Table 4.16 Percentage of Problems solved by ESoHC with varying
Mutation rate

Tightness
Population size

2 4 8 16 32

0.01

0.06 100 100 100 100 100
0.12 100 100 100 100 100
0.25 100 100 100 100 100
0.50 100 100 100 100 100
0.75 100 100 100 100 100
1.00 100 100 100 100 100

0.02

0.06 100 100 100 100 100
0.12 100 100 100 100 100
0.25 100 100 100 100 100
0.50 100 100 100 100 100
0.75 100 100 100 100 100
1.00 99 100 100 100 100

0.03

0.06 100 100 100 100 100
0.12 100 100 100 100 100
0.25 100 100 100 100 100
0.50 96 100 100 100 100
0.75 98 100 100 100 100
1.00 96 100 100 100 100

0.04

0.06 97 100 100 100 100
0.12 91 100 100 100 100
0.25 91 99 100 100 100
0.50 80 98 100 100 100
0.75 80 95 99 100 100
1.00 75 97 100 100 100

0.05

0.06 10 33 66 88 92
0.12 7 26 61 84 94
0.25 6 24 36 72 88
0.50 5 17 23 37 53
0.75 4 8 17 31 42
1.00 12 11 16 21 44

0.06

0.06 0 0 2 0 3
0.12 0 0 0 1 3
0.25 0 0 0 1 2
0.50 0 0 0 1 0
0.75 0 0 0 0 1
1.00 0 0 1 0 0

Mutation 
rate



population itself contributes a certain level of exploration to the search.  This is supported

by the data in Table 4.17.

The results show that ESoHC performs best at a mutation rate of around 0.06 to

0.12.  It is interesting to see how that at lower population sizes, ESoHC-0.06 is actually

able to slightly outperform EsoHC-0.12 even though the lower mutation rate leads to

higher levels of exploitation.  However, as population size increases, the performance

margin is reduced and ESoHC-0.12 outperforms ESoHC-0.06 at a population size of 32.

To take a closer look at the performance of ESoHC-0.12 and EsoHC-0.06, we took the

100 randomly generated problems used earlier and run each ESoHC variation on each

problem 30 times, producing the results in Tables 4.19 and 4.20.

The results in Tables 4.19 and 4.20 show that, for the most part, ESoHC-0.06 and

ESoHC-0.12 perform the same except for when the problem tightness is at 0.05, where

there is a definite discrepancy in the performance of the two ESoHC's.  Based on the

statistical test for the difference of means, the performance difference is significant.  As

mentioned earlier, ESoHC-0.06 does not scale well with population size as ESoHC-0.12

performs better at a population size of 32, while the percentage of problems solved by

ESoHC-0.06 did not increase a statistically significant amount when the population size

increased from 16 to 32.  As this study uses a population size of 32 in the application

tests in later chapters, ESoHC-0.12 will be used in this work.

Tables 4.21 and 4.22 presents the average number of remaining constraints when a

solution  was  not  found within  2000 iterations,  along  with  the  percentage  of  overall

constraints.   Compared  to  GSoHC,  ESoHC is  able  to  further  reduce  the  number  of

remaining constraints if a solution was not found within 2000 iterations.  The reduction
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of remaining conflicts with the increase of population size is also much greater than

either SoHC or GSoHC.

Table 4.23 shows the average constraint checks required to solve a problem.  In

comparison to SoHC and GSoHC, the average number of constraint checks is the lowest,

56

Table 4.17. Average Number of Cycles to Solve a Problem with
varying problem Tightness and Mutation Rate

Tightness
Population size

2 4 8 16 32

0.01

0.06 5.62 4.12 2.95 2.37 1.69
0.12 5.75 4.17 2.96 2.32 1.69
0.25 5.79 4.11 3.06 2.42 1.62
0.50 5.97 4.20 3.31 2.57 2.05
0.75 5.73 4.60 3.48 2.70 2.20
1.00 6.07 4.35 3.43 2.72 1.94

0.02

0.06 15.75 11.09 8.38 6.97 5.99
0.12 16.36 11.21 8.71 6.89 5.95
0.25 19.54 11.97 9.93 7.78 6.30
0.50 24.72 12.79 10.78 8.48 7.59
0.75 20.78 13.19 10.72 8.98 8.11
1.00 42.47 12.58 11.01 9.25 8.21

0.03

0.06 51.27 25.06 19.82 12.95 11.83
0.12 49.09 29.81 19.63 13.96 12.01
0.25 73.76 29.13 20.96 16.72 13.75
0.50 154.81 35.31 23.80 17.53 15.43
0.75 114.76 40.06 25.41 20.23 16.65
1.00 152.33 46.98 26.84 19.14 16.85

0.04

0.06 422.44 157.72 66.63 45.53 28.30
0.12 581.63 188.95 68.76 41.01 31.13
0.25 738.75 220.54 87.60 55.49 33.56
0.50 782.46 329.43 181.25 98.75 51.36
0.75 796.24 415.04 206.88 103.54 67.40
1.00 816.11 408.84 180.05 121.05 70.15

0.05

0.06 1869.31 1616.81 1079.15 584.67 496.54
0.12 1944.60 1699.69 1109.38 747.35 398.95
0.25 1948.38 1706.74 1558.01 984.08 550.96
0.50 1939.80 1780.64 1727.08 1496.23 1303.10
0.75 1951.03 1908.91 1844.79 1579.07 1454.74
1.00 1881.10 1893.87 1835.21 1726.75 1530.74

0.06

0.06 2000.00 2000.00 1977.03 2000.00 1955.90
0.12 2000.00 2000.00 2000.00 1981.89 1976.29
0.25 2000.00 2000.00 2000.00 1982.08 1967.15
0.50 2000.00 2000.00 2000.00 1983.00 2000.00
0.75 2000.00 2000.00 2000.00 2000.00 1980.49
1.00 2000.00 2000.00 1998.13 2000.00 2000.00

Mutation 
rate
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Table 4.18. F-values from running the one Factor ANOVA test on the results
from Table 4.14 over the varying mutation rate

(dfn = 5, dfd = 594 and for p = 0.05, F = 2.23)

Table 4.19. Comparison of Percentage of Problems Solved for ESoHC-0.06 and
ESoHC-0.12

Table 4.20. Comparison of Average Iterations to Solve a Problem for ESoHC-
0.06 and ESoHC-0.12

ESoHC Population Size
Tightness 2 4 8 16 32

0.01 0.3394 1.2380 3.9514 2.5037 7.1414
0.02 1.4319 4.8906 21.2557 30.8899 45.2767
0.03 3.5733 4.1276 7.3808 36.1806 42.1127
0.04 5.6627 9.2503 14.4472 14.7535 18.8872
0.05 1.4520 4.9716 30.6146 46.7359 63.3445
0.06 0.0000 0.0000 1.9364 0.6005 0.9879

Population Size
Tightness 2 4 8 16 32

0.01
0.06 100.00 100.00 100.00 100.00 100.00
0.12 100.00 100.00 100.00 100.00 100.00

0.02
0.06 100.00 100.00 100.00 100.00 100.00
0.12 100.00 100.00 100.00 100.00 100.00

0.03
0.06 99.80 100.00 100.00 100.00 100.00
0.12 99.83 100.00 100.00 100.00 100.00

0.04
0.06 95.87 99.87 100.00 100.00 100.00
0.12 94.10 99.80 100.00 100.00 100.00

0.05
0.06 11.37 33.30 69.13 89.83 90.63
0.12 7.40 28.50 64.30 87.37 95.40

0.06
0.06 0.13 0.40 0.67 1.47 3.07
0.12 0.13 0.43 0.70 1.33 2.70

Mutation 
Rate

Population Size
Tightness 2 4 8 16 32

0.01
0.06 5.60 4.11 3.11 2.32 1.72
0.12 5.50 4.11 3.07 2.32 1.68

0.02
0.06 16.41 10.93 8.48 6.95 5.75
0.12 16.69 11.32 8.82 7.09 5.89

0.03
0.06 53.08 26.66 17.76 13.70 11.24
0.12 61.73 28.55 18.71 14.36 11.71

0.04
0.06 449.80 156.21 69.59 40.84 28.59
0.12 548.64 174.58 75.59 41.67 28.26

0.05
0.06 1876.80 1605.17 1071.15 596.87 486.41
0.12 1919.95 1675.00 1131.62 634.82 349.35

0.06
0.06 1998.89 1994.99 1990.11 1980.83 1956.59
0.12 1998.10 1995.09 1988.67 1980.96 1961.25

Mutation 
Rate



especially at larger populations.  It is interesting to note that at a population size of 2,

ESoHC performs  more constraint  checks  to  solve  a  problem than GSoHC.  This  is

attributed  to  characteristics  of  the  algorithm itself  that  will  be discussed in  the next

section.

4.7. Results: mdBA vs SoHC vs GSoHC vs ESoHC

After determining the best  parameter settings for GSoHC and ESoHC, it is now

possible to compare the performance of mdBA, SoHC, GSoHC, and ESoHC to see the

affect of the distributed crossover and mutation operators.  Table 4.24 lists the percentage

of problems solved by each algorithm.  For GSoHC, the mutation rate was set to 0.06
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Table 4.21. Average number of unresolved constraints when no solution was
found within 2000 iterations

Table 4.22. Percentage of total constraints unresolved after 2000 iterations

Table 4.23. Average number of Constraint Checks to find a feasible solution

ESoHC Population Size
Tightness 2 4 8 16 32

0.01
0.02
0.03 2.00
0.04 6.08 2.75
0.05 11.01 8.60 6.25 4.39 2.09
0.06 16.34 13.16 10.65 8.13 4.86

ESoHC Population Size
Tightness 2 4 8 16 32

0.01
0.02
0.03 0.21%
0.04 0.49% 0.22%
0.05 0.70% 0.55% 0.40% 0.28% 0.13%
0.06 0.87% 0.70% 0.57% 0.43% 0.26%

ESoHC Population Size
Tightness 2 4 8 16 32

0.01 21,732 35,576 59,737 102,979 178,961
0.02 65,024 95,987 157,701 267,324 468,051
0.03 215,580 232,026 330,249 534,828 913,065
0.04 1,819,121 1,294,928 1,175,971 1,392,709 2,017,939
0.05 4,414,477 7,630,448 10,968,302 14,227,463 17,108,391
0.06 3,295,741 8,533,629 7,079,017 20,599,088 41,263,427



with a the crossover rate of 0.47.  For ESoHC, the mutation rate was set at 0.12.  Once

again, it should be noted that SoHC with a population size of 1 is mDBA.  

The  mDBA  quickly  falls  behind  on  the  percentage  of  problems  solved  as  the

problem gets harder, which is expected.  At a population size of 2, it is interesting to see

that there is no significant performance difference between SoHC, GSoHC, and ESoHC

when comparing the percentage of prob lems solved.  Unlike SoHC, at a population size

of 2 GSoHC and ESoHC have only one individual doing plain hill-climbing.  Thus, the

advantage of the distributed crossover and mutation is not as obvious.  As the population

size increases, the effectiveness of these two operators starts to show as the GSoHC and

ESoHC are able to solve more problems even with only half the population hill-climbing.

When comparing the percentage of problems solved, the performances of GSoHC and

ESoHC are not significantly different, even at the phase transition.
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Table 4.24. Comparison of Percentage of Problems Solved between
mDBA, SoHC, GSoHC, and ESoHC

Population Size
Tightness 1 2 4 8 16 32

0.01
SoHC 99.50 100.00 100.00 100.00 100.00 100.00

GSoHC 100.00 100.00 100.00 100.00 100.00
ESoHC 100.00 100.00 100.00 100.00 100.00

0.02
SoHC 91.50 99.20 100.00 100.00 100.00 100.00

GSoHC 100.00 100.00 100.00 100.00 100.00
ESoHC 100.00 100.00 100.00 100.00 100.00

0.03
SoHC 80.53 95.97 99.77 100.00 100.00 100.00

GSoHC 99.97 100.00 100.00 100.00 100.00
ESoHC 99.83 100.00 100.00 100.00 100.00

0.04
SoHC 70.93 89.50 98.23 99.77 100.00 100.00

GSoHC 95.10 99.90 100.00 100.00 100.00
ESoHC 94.10 99.80 100.00 100.00 100.00

0.05
SoHC 5.40 9.40 16.17 24.80 35.47 49.73

GSoHC 8.20 29.90 61.23 84.50 93.93
ESoHC 7.40 28.50 64.30 87.37 95.40

0.06
SoHC 0.00 0.00 0.00 0.00 0.03 0.23

GSoHC 0.00 0.23 0.80 1.10 2.30
ESoHC 0.13 0.43 0.70 1.33 2.70



Table 4.25 compares the average number of cycles needed to find a solution with

each  of  the  algorithms.   Based  on  the  one factor  ANOVA test with  p =  0.05,  the

performance differences between the varying algorithms is significant in all cases.  The

importance of exploitation and exploration can clearly be seen in the results: at the same

population size, SoHC has the lowest level of exploitation, followed by GSoHC, then

ESoHC.  Thus, at a population size of 2, SoHC is able to match GSoHC and ESoHC,

which have very little exploration at this small a population size, in performance and find

a solution at least as fast as GSoHC and ESoHC.  As the population size increases, the

population gives GSoHC and ESoHC the level of exploration that they lack and SoHC

falls behind due to the lack of exploitation.  Though the performance of ESoHC and

GSoHC are fairly similar, ESoHC, with its higher level of exploitation, is able to perform

better at larger population sizes.  Ultimately, ESoHC is the better performing algorithm

by a small margin, especially with a large population.As mentioned earlier, the average

number of remaining conflicts when a solution was not found within 2000 iterations

cannot be used as an indication as to how close the algorithm is to solving a problem, but

can be used to compare, which algorithm is able to end up with the better sub-optimal

solution given the same amount of run time.  The results are compiled in Table 4.26.  The

results show the affect of the population in ending with better solutions, especially for the

hard problems with a constraint tightness of 0.05 and 0.06.  For problems with a tightness

of 0.06, none of the algorithms could solve a significant number of the 100 test problems,

however, Table 4.26 clearly shows that even though no solution could be found for the

majority of test runs, ESoHC clearly ends its run on a better sub-optimal given the same

2000 iterations of run time.
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Table 4.25. Comparison of Average number of Cycles to Solve a Problem between
mDBA, SoHC, GSoHC, and EsoHC

Table 4.26. Average Remaining Conflicts when no solution was found within 2000
Iterations

Population Size
Tightness 1 2 4 8 16 32

0.01
SoHC 17.80 6.11 4.87 3.83 2.98 2.28

GSoHC 5.69 4.26 3.38 2.63 2.00
ESoHC 5.50 4.11 3.07 2.32 1.68

0.02
SoHC 187.52 31.76 13.09 11.28 9.73 8.55

GSoHC 16.90 11.74 9.62 8.22 7.12
ESoHC 16.69 11.32 8.82 7.09 5.89

0.03
SoHC 437.11 121.58 34.97 23.57 19.60 17.11

GSoHC 52.53 28.60 20.14 16.15 13.70
ESoHC 61.73 28.55 18.71 14.36 11.71

0.04
SoHC 891.44 527.94 261.78 139.42 83.40 53.67

GSoHC 493.54 167.14 77.83 46.06 32.36
ESoHC 548.64 174.58 75.59 41.67 28.26

0.05
SoHC 1945.43 1898.77 1814.74 1702.74 1542.41 1334.73

GSoHC 1912.67 1655.58 1186.17 692.19 392.25
ESoHC 1919.95 1675.00 1131.62 634.82 349.35

0.06
SoHC 2000.00 2000.00 2000.00 2000.00 1999.49 1997.79

GSoHC 2000.00 1997.69 1989.41 1982.33 1966.50
ESoHC 1998.10 1995.09 1988.67 1980.96 1961.25

Population Size
Tightness 1 2 4 8 16 32

0.01
SoHC 1.07
GSoHC
ESoHC

0.02
SoHC 1.28 1.25
GSoHC
ESoHC

0.03
SoHC 1.66 1.76 3.00
GSoHC 2.67
ESoHC 2.00

0.04
SoHC 3.86 3.83 3.90 3.50
GSoHC 5.23 4.67
ESoHC 6.08 2.75

0.05
SoHC 11.22 9.87 8.72 7.47 6.80 6.22
GSoHC 10.81 8.47 6.83 5.29 3.59
ESoHC 11.01 8.60 6.25 4.39 2.09

0.06
SoHC 16.91 15.06 13.79 12.81 11.90 11.18
GSoHC 15.98 13.34 11.35 9.66 8.06
ESoHC 16.34 13.16 10.65 8.13 4.86



On  the  other  side  of  the  average  remaining  conflicts,  there  is  the  number  of

constraint checks to solve a problem, which is presented in Table 4.27.  As the problems

get harder, both GSoHC and ESoHC perform fewer constraint checks to find a solution

compared to SoHC.  This is especially true with larger population sizes where GSoHC

and ESoHC really  performs  better.   The difference  between  GSoHC and ESoHC is

slightly smaller than that of SoHC.  This difference is most likely caused by the fewer

number of iterations that ESoHC needs to find a solution as compared to GSoHC.  

Table 4.28 shows a comparison of the average ending breakout list length for SoHC,

GSoHC, and ESoHC.  In general, ESoHC required the least number of breakouts.  This is

simply due to the fact that the below average half of the population will become 88%

copies of  the best  individual,  which results in a concentrated search around the best

individual.   Thus,  fewer  local  optima are  found,  as  compared to  the wider  searches

performed by GSoHC or SoHC.  The increase in space requirement is not linear to the

population size, but, rather, logarithmic.  Thus, space complexity is not a concern when

scaling SoHC, GSoHC, and ESoHC in terms of population size.

4.8. Results: Distributed Stochastic Algorithm (DSA) and Society of DSA

In many ways, the DSA is very similar to dBA as it was also designed to solve

DisCSPs.  The main difference lies in that DSA is more asynchronous when it comes to

deciding which agent changes its value.  For the mdBA, only one agent will change its

value per  iteration,  while for  DSA, agents  that  are allowed to change,  do so with  a

probability  P.  Based on the DSA-B model used in these tests, an agent is allowed to
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change if it is able to reduce the number of conflicts or if it is currently in a conflict, but

cannot reduce the number of conflicts.
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Table 4.27. Average Constraint Checks to solve a problem within 2000 Iterations

Table 4.28. Comparison of Average Ending BreakOut List Length

Population Size
Tightness 1 2 4 8 16 32

0.01
SoHC 14,266 24,604 43,460 76,397 134,174 236,889
GSoHC 22,812 38,133 66,924 117,543 207,926
ESoHC 21,732 35,576 59,737 102,979 178,961

0.02
SoHC 36,852 65,940 117,897 215,881 395,503 732,900
GSoHC 66,244 102,653 179,313 322,166 586,382
ESoHC 65,024 95,987 157,701 267,324 468,051

0.03
SoHC 102,988 161,884 259,480 443,567 793,935 1,460,071
GSoHC 193,616 240,468 373,757 639,234 1,136,351
ESoHC 215,580 232,026 330,249 534,828 913,065

0.04
SoHC 779,021 1,266,325 1,702,760 2,121,342 2,822,877 3,976,789
GSoHC 1,622,238 1,277,302 1,279,050 1,648,906 2,505,111
ESoHC 1,819,121 1,294,928 1,175,971 1,392,709 2,017,939

0.05
SoHC 2,209,501 4,199,550 7,861,272 14,935,237 27,019,787 51,316,213
GSoHC 4,435,264 7,620,302 11,859,729 15,837,771 20,138,056
ESoHC 4,414,477 7,630,448 10,968,302 14,227,463 17,108,391

0.06
SoHC 23,053,840 96,982,649
GSoHC 9,889,704 13,278,653 15,976,856 42,034,304
ESoHC 3,295,741 8,533,629 7,079,017 20,599,088 41,263,427

Population Size
Tightness 1 2 4 8 16 32

0.01
SoHC 0.04 0.01 0.01 0.00 0.01 0.01
GSoHC 0.02 0.01 0.01 0.01 0.00
ESoHC 0.02 0.01 0.00 0.01 0.00

0.02
SoHC 1.05 0.69 0.43 0.32 0.27 0.24
GSoHC 0.77 0.34 0.24 0.23 0.17
ESoHC 0.70 0.35 0.24 0.20 0.17

0.03
SoHC 8.69 8.45 6.77 5.23 4.06 3.60
GSoHC 6.28 4.39 3.31 2.71 2.46
ESoHC 7.48 4.08 2.86 2.25 1.90

0.04
SoHC 77.03 96.65 102.61 99.91 99.82 91.96
GSoHC 70.50 46.53 36.47 31.31 30.14
ESoHC 75.87 45.26 31.58 24.03 20.16

0.05
SoHC 150.92 230.84 332.83 444.53 556.26 652.11
GSoHC 162.07 254.00 295.01 267.86 227.35
ESoHC 158.07 247.03 271.93 228.96 167.32

0.06
SoHC 122.84 189.06 276.30 385.83 512.95 654.64
GSoHC 130.22 237.65 362.34 483.11 573.63
ESoHC 124.49 227.68 349.87 456.55 478.81



Once again the DisACSPs generated to test SoHC, GSoHC, and ESoHC were used

to test DSA and SoDSA.  Because DSA has an extra parameter,  P, the value of P was

varied from 0.1 to 0.9 to test the affect on the results.  Each randomly generated problem

was run 30 times for each set of parameter settings.  It should once again be noted that at

a population size of 1, the SoDSA becomes a DSA.  

Table 4.29 and Table 4.30 show the results for DSA and SoDSA on problems with a

tightness  of  0.01.  At  a problem tightness  of  0.01,  the  problem is  easy enough that

SoDSA is  able  to  solve  the problems 100% of  the time and the  P value makes no

difference when it comes to the percentage of problems solved.  DSA is at least able to

solve 99.5% of all the problems, which shows that, like dBA, the initial starting position

also affects the outcome of DSA.  In terms of the average number of iterations needed to

find a solution, at a population size of 1 a P value of 0.8 seems to be the fastest.  Based

on a one factor ANOVA test with p = 0.05, the performances of DSA with P = 0.3 to 0.9

are not significantly different.  This is highlighted in Table 4.30.  The same ANOVA test

performed on the results for SoDSA with population sizes 2 to 32 show that varying the

P value has a significant affect on performance.  In terms of population size, a population

size of 32 is able to find solutions faster.  Thus, though DSA is able to come very close to

the performance of SoDSA in terms of the percentage of problems solved, SoDSA-32 is

able to solve problems the fastest.  For problems of tightness 0.01, a P value of 0.9 gives

the best performance.

Tables 4.31 and 4.32 shows the results for DSA and SoDSA for problems with a

tightness of 0.02.  DSA quickly falls behind in performance without the advantage of a

population.   Comparing  the  percentage  of  problems  solved for  DSA,  only  P =  0.6
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performs significantly worse, but not by much.  Comparing average iterations to solve a

problem, P = 0.8 once again seem to perform the best, while the performance for P = 0.3

to 0.9 are not significantly different, based on the one factor ANOVA test.  Looking at

the  performance  of  SoDSA-2,  though  not  100% of  all  problems can  be  solved,  the

performance variance across P values is not significant.  Comparing average iterations to

solve a problem, P = 0.6 performs the best while the performance variations between P =

0.4 to 0.9 are not significant.  For larger population sizes of 4 to 32, P = 0.9 continues to

perform significantly better than all of the other values, although the problem is still not

hard  enough  to  draw  a  conclusion  about  possible  performance  trends  for  DSA and

SoDSA.  The only consistent conclusion seems to be that with a large enough population

size, P = 0.9 will perform the best.
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Table 4.29. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.01

Table 4.30. Average Iterations to Solve a Problem for DSA
and SoDSA on problems with Constraint Tightness of 0.01

Population Size

P 1 2 4 8 16 32

0.1 99.67 100.00 100.00 100.00 100.00 100.00

0.2 99.67 100.00 100.00 100.00 100.00 100.00

0.3 99.63 100.00 100.00 100.00 100.00 100.00

0.4 99.57 100.00 100.00 100.00 100.00 100.00

0.5 99.67 100.00 100.00 100.00 100.00 100.00

0.6 99.50 100.00 100.00 100.00 100.00 100.00

0.7 99.67 100.00 100.00 100.00 100.00 100.00

0.8 99.70 100.00 100.00 100.00 100.00 100.00

0.9 99.50 100.00 100.00 100.00 100.00 100.00

Population Size

P 1 2 4 8 16 32

0.1 36.99 21.95 16.88 13.30 10.59 8.52

0.2 21.50 11.08 8.49 6.88 5.63 4.67

0.3 17.00 7.42 5.78 4.78 4.01 3.39

0.4 15.68 5.47 4.39 3.71 3.14 2.75

0.5 12.12 4.32 3.61 3.06 2.65 2.34

0.6 14.33 3.60 3.02 2.59 2.32 2.07

0.7 10.33 3.05 2.59 2.29 2.06 1.88

0.8 9.08 2.61 2.28 2.04 1.88 1.74

0.9 12.69 2.30 2.03 1.85 1.71 1.59



Tables  4.33  and  4.34  shows  the  results  for  problems with  a  tightness  of  0.03.

Similar to tables 4.30 and 4.32, the sets of  P values for each population that do not

contribute significant performance variations, based on the ANOVA test, are highlighted

in Table 4.34.  At a tightness of 0.03, the problems are starting to become hard enough to

reveal the performance difference due to the differing population sizes, and DSA falls

farther behind in all respects.  The P value still does not have a significant impact on the

percentage of problems solved, although it still impacts the number of iterations needed

to find a solution.  For DSA,  P = 0.7 gives the best results, though only  P = 0.1 is

significantly worse.  For SoDSA-2 and SoDSA-4, the percentage of problems solved,

though not 100%, is not significantly different when varying P.  Interestingly, the best P

value for speed is still 0.7 for SoDSA-2 and SoDSA-4.  As the population size increases,

66

Table 4.31. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.02

Table 4.32. Average Iterations to Solve a Problem for DSA
and SoDSA on problems with Constraint Tightness of 0.02

Population Size

P 1 2 4 8 16 32

0.1 90.60 99.30 100.00 100.00 100.00 100.00

0.2 90.80 99.30 100.00 100.00 100.00 100.00

0.3 90.80 98.87 100.00 100.00 100.00 100.00

0.4 90.63 99.00 100.00 100.00 100.00 100.00

0.5 91.50 98.87 100.00 100.00 100.00 100.00

0.6 89.80 99.27 99.93 100.00 100.00 100.00

0.7 90.37 99.10 100.00 100.00 100.00 100.00

0.8 91.73 98.97 100.00 100.00 100.00 100.00

0.9 90.33 98.97 100.00 100.00 100.00 100.00

Population Size

P 1 2 4 8 16 32

0.1 238.91 56.86 32.46 26.15 21.79 18.71

0.2 209.34 35.19 16.33 13.22 11.26 9.70

0.3 201.09 36.81 10.88 9.11 7.71 6.72

0.4 199.89 30.55 8.23 6.86 5.93 5.25

0.5 179.85 30.92 6.69 5.58 4.85 4.33

0.6 211.96 21.60 6.93 4.81 4.19 3.76

0.7 199.78 23.87 4.79 4.15 3.69 3.35

0.8 171.16 25.83 4.28 3.71 3.34 3.03

0.9 198.41 25.21 3.85 3.36 3.03 2.77



the performance variations become more statistically significant.  Though the differences

in performance are slight and not seemingly significant, as the problem gets harder, the P

value needs to be smaller for smaller population sizes and increases with population size.

Population size is still  the most significant  factor  when comparing the percentage of

problems solved.

The results for DSA and SoDSA on problems with a constraint tightness of 0.04 is

shown in Tables 4.35 and 4.36.  The problems here are considerably harder, and even

SoDSA-32 is barely able to solve 100% of the problems.  The effect of the  P value is

slightly more apparent and low values of P do not perform as well.  The best performance

in terms of  the percentage  of  problems solved and the average  iterations  to solve  a
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Table 4.33. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.03

Table 4.34. Average Iterations to Solve a Problem for DSA
and SoDSA on problems with Constraint Tightness of 0.03

Population Size

P 1 2 4 8 16 32

0.1 67.43 88.57 98.60 100.00 100.00 100.00

0.2 69.37 89.20 98.70 99.93 100.00 100.00

0.3 67.73 87.73 98.73 99.93 100.00 100.00

0.4 67.70 89.33 98.83 99.97 100.00 100.00

0.5 65.20 88.53 98.63 100.00 100.00 100.00

0.6 67.47 88.40 98.37 100.00 100.00 100.00

0.7 67.63 88.73 99.03 100.00 100.00 100.00

0.8 67.23 88.63 98.23 99.93 100.00 100.00

0.9 67.33 87.57 98.67 99.97 100.00 100.00

Population Size

P 1 2 4 8 16 32

0.1 759.46 341.25 115.45 56.38 43.22 34.99

0.2 669.43 274.89 68.40 29.49 21.71 18.20

0.3 682.04 283.53 54.77 20.74 14.85 12.45

0.4 674.72 243.75 45.21 15.40 11.33 9.55

0.5 717.31 254.15 44.86 11.90 9.30 7.84

0.6 669.47 251.40 47.33 10.15 7.89 6.79

0.7 662.99 241.98 32.44 8.57 7.00 5.98

0.8 668.46 242.53 46.73 9.24 6.31 5.47

0.9 665.17 261.93 36.79 7.92 5.86 5.06



problem is still seen when P is closer to 0.9.  Based on the ANOVA test results, any P

value greater than 0.5 tend to have similar performances with insignificant variance.  The

general trend that the higher the population the better the performance still holds.

Closer  to  the  phase  transition,  with  a  problem  tightness  of  0.05,  a  general

performance trend appears in the results, as seen in Tables 4.37 and 4.38.  The affect of

the P value is more apparent here as the best performance is achieved with P = 0.4 to 0.5.

The best performances are highlighted in Table 4.37 and 4.38, along with the neighboring

values  that  are  not  significantly  different.   When comparing  the average  number  of

iterations to solve a problem, the clustering becomes tighter around 0.4 and 0.5 as the

population size increases.  Finally, at the phase transition tightness of 0.06, as seen in

Tables 4.39 and 4.40, neither the DSA nor SoDSA are able to solve a significant number
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Table 4.35. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.04

Table 4.36. Average Iterations to Solve a Problem for DSA
and SoDSA on problems with Constraint Tightness of 0.04

Population Size

P 1 2 4 8 16 32

0.1 38.07 52.50 74.37 91.63 98.27 99.70

0.2 40.60 60.13 82.57 95.50 99.27 100.00

0.3 41.47 62.67 82.93 96.47 99.53 99.90

0.4 41.87 64.37 84.00 96.33 99.53 99.97

0.5 41.43 62.93 84.03 96.43 99.67 100.00

0.6 43.67 64.10 84.87 96.57 99.43 100.00

0.7 42.93 64.63 84.57 96.13 99.57 99.87

0.8 40.93 65.13 87.03 96.10 99.53 99.93

0.9 44.37 64.20 83.90 96.60 99.60 99.97

Population Size

P 1 2 4 8 16 32

0.1 1455.48 1263.43 894.93 544.77 298.36 171.68

0.2 1358.54 1047.84 640.29 332.87 159.59 87.30

0.3 1305.26 952.54 564.16 248.04 112.26 63.93

0.4 1275.89 873.10 502.93 216.80 92.68 45.70

0.5 1271.45 879.46 467.86 188.22 74.11 38.85

0.6 1226.70 849.75 450.86 171.91 72.19 36.78

0.7 1237.51 840.83 449.49 176.79 67.64 37.04

0.8 1265.26 828.82 406.49 185.29 74.47 36.37

0.9 1210.63 854.37 468.78 185.49 80.61 38.23



of problems within the allotted 2000 iterations.  However, SoDSA-32 is still able to solve

significantly more problems than DSA.

Based on the results presented in Tables 4.29 – 4.40, several conclusions can be

drawn.  DSA, like dBA, gains a significant performance increase with a population based

approach, like SoDSA.  The logical trend of better performance with larger population

size holds.   The affect  of  P on the percentage of  problems solved does not  become

significant until the tightness increases to 0.04, where the problem starts getting harder.

When comparing the average number of iterations needed to solve a problem, if  the

problem is relatively easy, then a larger value of P is preferable, especially when using

larger populations.  As the problems get harder, a P value of around 0.4 to 0.5 becomes

more preferable,  regardless of population size.  This trend can also be seen, to some

extent, in the results at the phase transition, although it is not significant.

Tables  4.41  to  4.46  presents  the average  remaining  constraint  conflicts  when a

solution was not found within 2000 iterations.  For the simpler problems with a constraint

tightness of 0.01 to 0.03, there is very little dignificant variation between the average

number of remaining conflicts when varying the  P value.  The difference starts to be

significant starting with problems of tightness 0.04 to 0.06.  Tables 4.44 to 4.46 has the P

values with the lowest remaining conflicts and others that do not perform significantly

worse highlighted.  As can be seen when comparing the results in Tables 4.41 to 4.46 to

those in Tables 4.29 to 4.40, having the fewest remaining conflicts when a solution was

not found does not correlate to being able to solve more problems.  The results, however,

do  reinforce  certain  performance  characteristics  of  DSA  and  SoDSA.   When  the

problems get very hard, with a tightness of 0.05 and 0.06, the value of P that yields the
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Table 4.37. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.05

Table 4.38 Average Iterations to Solve a Problem for DSA and
SoDSA on problems with Constraint Tightness of 0.05

Table 4.39. Percentage of Problems Solved for DSA and
SoDSA on problems with Constraint Tightness of 0.06

Table 4.40. Average Iterations to Solve a Problem for DSA and
SoDSA on problems with Constraint Tightness of 0.06

Population Size

P 1 2 4 8 16 32

0.1 7.03 8.13 11.27 14.60 19.50 21.83

0.2 8.77 10.40 13.67 18.47 20.83 27.90

0.3 8.47 11.50 15.07 19.43 22.97 32.13

0.4 8.70 11.60 15.13 21.60 22.63 33.97

0.5 9.13 11.43 15.47 20.57 28.83 31.93

0.6 8.70 11.60 14.53 13.00 28.00 28.30

0.7 8.53 10.53 13.33 17.77 23.40 25.77

0.8 7.70 9.17 11.73 15.87 20.70 20.53

0.9 7.13 7.97 9.90 13.00 15.90 14.60

Population Size

P 1 2 4 8 16 32

0.1 1867.02 1857.65 1824.65 1787.57 1734.42 1740.55

0.2 1853.56 1829.12 1801.02 1741.12 1754.82 1649.18

0.3 1849.77 1818.69 1783.40 1724.63 1720.67 1587.02

0.4 1848.29 1816.30 1771.72 1686.63 1719.21 1548.72

0.5 1844.81 1816.42 1772.94 1697.64 1588.93 1569.27

0.6 1847.46 1817.68 1785.14 1843.27 1595.94 1615.86

0.7 1850.45 1823.16 1794.26 1741.07 1656.13 1656.69

0.8 1860.88 1844.30 1813.78 1758.31 1685.57 1726.44

0.9 1865.11 1858.80 1834.03 1797.75 1760.81 1806.90

Population Size

P 1 2 4 8 16 32

0.1 0.00 0.03 0.00 0.13 0.10 0.30

0.2 0.00 0.00 0.17 0.10 0.20 0.47

0.3 0.00 0.03 0.07 0.20 0.17 0.60

0.4 0.07 0.03 0.07 0.23 0.23 0.67

0.5 0.03 0.07 0.07 0.17 0.20 0.40

0.6 0.00 0.03 0.07 0.10 0.13 0.50

0.7 0.00 0.03 0.00 0.13 0.13 0.13

0.8 0.00 0.00 0.03 0.03 0.10 0.17

0.9 0.00 0.00 0.00 0.00 0.00 0.00

Population Size

P 1 2 4 8 16 32

0.1 2000.00 1999.38 2000.00 1998.38 1999.34 1996.39

0.2 2000.00 2000.00 1998.11 1999.04 1997.80 1994.52

0.3 2000.00 1999.35 1999.06 1996.83 1998.28 1992.95

0.4 1999.48 1999.91 1998.88 1997.40 1998.49 1993.04

0.5 1999.69 1999.31 1999.01 1998.08 1997.40 1994.63

0.6 2000.00 1999.47 1999.60 1999.13 1999.34 1992.59

0.7 2000.00 1999.79 2000.00 1998.35 1998.21 1998.83

0.8 2000.00 2000.00 1999.95 1999.82 1998.25 1998.19

0.9 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00



fewest remaining conflicts when a solution was not found is actually 0.1, which is the

lowest of all the tested values.  In reference to Tables 4.37 and 4.39, it can be seen that a

P value  of  0.1  actually  produces  the  worst  results  when  it  comes  to percentage  of

problems solved.  This is mainly because with a  P value of 0.1, DSA and SoDSA are

very prone to being stuck at  a local  optima as a minimum number of individuals in

conflicts has a chance of changing their value each turn.  The original motive for having

multiple individuals change their values with a given probability is the hope that enough

individuals will change their values simultaneously and move the search out of any local

optima without the use of a breakout list like dBA.  However, if too few individuals

change their  values each iteration,  then the chance of the search moving out  a local
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Table 4.41. Average Remaining Conflicts when a solution was not found
within 2000 iterations for problems with tightness of 0.01

Table 4.42. Average Remaining Conflicts when a solution was not found
within 2000 iterations for problems with tightness of 0.02

Population Size
P 1 2 4 8 16 32

0.1 1.00 0.00 0.00 0.00 0.00 0.00
0.2 1.00 0.00 0.00 0.00 0.00 0.00
0.3 1.00 0.00 0.00 0.00 0.00 0.00
0.4 1.00 0.00 0.00 0.00 0.00 0.00
0.5 1.00 0.00 0.00 0.00 0.00 0.00
0.6 1.00 0.00 0.00 0.00 0.00 0.00
0.7 1.00 0.00 0.00 0.00 0.00 0.00
0.8 1.00 0.00 0.00 0.00 0.00 0.00
0.9 1.00 0.00 0.00 0.00 0.00 0.00

Population Size
P 1 2 4 8 16 32

0.1 1.06 1.00 0.00 0.00 0.00 0.00
0.2 1.05 1.00 0.00 0.00 0.00 0.00
0.3 1.04 1.00 0.00 0.00 0.00 0.00
0.4 1.04 1.00 0.00 0.00 0.00 0.00
0.5 1.04 1.00 0.00 0.00 0.00 0.00
0.6 1.04 1.00 1.00 0.00 0.00 0.00
0.7 1.05 1.03 0.00 0.00 0.00 0.00
0.8 1.06 1.00 0.00 0.00 0.00 0.00
0.9 1.08 1.00 0.00 0.00 0.00 0.00



optima  becomes  none.   More  on  this  will  be  discussed  in  the  next  section  as  the

performance of DSA and SoDSA is analyzed.

Lastly,  the  average  constraint  checks  required  to  find  a  solution  within  2000

iterations is presented in Tables 4.47 to 4.52.  The results show that being able to find a
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Table 4.43. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.03

Table 4.44. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.04

Table 4.45. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.05

Population Size
P 1 2 4 8 16 32

0.1 1.21 1.07 1.03 0.00 0.00 0.00
0.2 1.22 1.05 1.02 1.00 0.00 0.00
0.3 1.22 1.05 1.00 1.00 0.00 0.00
0.4 1.22 1.05 1.04 1.00 0.00 0.00
0.5 1.22 1.06 1.00 0.00 0.00 0.00
0.6 1.21 1.03 1.02 0.00 0.00 0.00
0.7 1.19 1.06 1.00 0.00 0.00 0.00
0.8 1.26 1.08 1.06 1.00 0.00 0.00
0.9 1.24 1.10 1.03 1.00 0.00 0.00

Population Size
P 1 2 4 8 16 32

0.1 3.09 1.80 1.24 1.08 1.02 1.00
0.2 2.16 1.40 1.10 1.01 1.00 0.00
0.3 1.74 1.24 1.06 1.02 1.13 1.00
0.4 1.72 1.22 1.05 1.02 1.00 1.00
0.5 1.61 1.22 1.08 1.05 1.00 0.00
0.6 1.62 1.22 1.09 1.08 1.08 0.00
0.7 1.63 1.21 1.06 1.03 1.00 1.00
0.8 1.72 1.30 1.10 1.06 1.00 1.33
0.9 1.98 1.31 1.10 1.05 1.00 1.00

Population Size
P 1 2 4 8 16 32

0.1 14.21 11.13 9.05 7.08 5.39 4.24
0.2 14.25 11.59 9.10 7.15 5.45 4.11
0.3 14.77 11.76 9.42 7.41 5.69 4.43
0.4 15.35 12.67 10.10 8.02 6.25 4.79
0.5 16.12 13.40 11.08 8.94 7.26 5.42
0.6 17.50 14.67 12.38 10.29 8.22 6.60
0.7 19.23 16.72 14.17 12.00 9.86 8.31
0.8 21.36 18.64 16.32 14.26 12.30 10.49
0.9 23.96 21.51 19.18 17.24 15.44 13.56



solution faster does not guarantee that more of the problems can be solved especially

when matched up with results from Tables 4.29 to 4.40.  However, the results do support

the trend that for easy problems, a P of 0.9 is capable of finding a solution faster.  As the

problems get harder, the value of  P that can find a solution faster gradually decreases.

The increase in population size has little to no affect on the optimal P value.  More about

the behavior of DSA and SoDSA based on these results will be discussed in the following

section.
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Table 4.46. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.06

Population Size
P 1 2 4 8 16 32

0.1 22.89 19.93 17.71 15.60 14.04 12.68
0.2 23.70 21.24 18.80 16.84 15.39 13.87
0.3 24.70 22.26 20.00 18.23 16.57 15.04
0.4 25.97 23.58 21.31 19.61 18.01 16.54
0.5 27.25 25.08 22.97 21.31 19.51 18.23
0.6 28.92 26.91 25.00 23.27 21.59 20.11
0.7 31.02 29.02 27.15 25.64 23.82 22.56
0.8 33.60 31.39 29.87 28.17 26.73 25.33
0.9 36.66 34.72 33.15 31.52 30.25 28.69

Table 4.47. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.01

Population Size
P 1 2 4 8 16 32

0.1 41,685 65,740 105,760 176,341 297,063 508,054
0.2 20,931 33,235 56,464 95,962 165,764 293,084
0.3 14,193 23,341 40,131 69,510 122,623 219,751
0.4 10,815 17,905 31,386 55,917 101,298 185,324
0.5 8,748 14,896 26,478 47,639 87,791 164,322
0.6 7,266 12,740 23,192 42,503 78,813 148,412
0.7 6,389 11,178 20,399 38,247 72,145 137,219
0.8 5,527 10,089 18,635 35,424 67,138 128,769
0.9 4,989 9,212 17,275 32,927 63,140 122,411



4.9. Performance Analysis of DSA and SoDSA

As mentioned earlier, the primary difference between the dBA and DSA is in that

exactly one agent changes its value per iteration for dBA while a number of agents may

probabilistically change their values in DSA.  The P value determines this probability of
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Table 4.48. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.02

Table 4.49. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.03

Table 4.50. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.04

Population Size
P 1 2 4 8 16 32

0.1 86,919 139,098 226,117 391,216 689,928 1,228,311
0.2 43,364 70,891 118,292 203,861 365,618 660,315
0.3 29,074 47,885 80,408 142,589 257,036 470,370
0.4 21,834 36,676 63,142 112,275 203,059 378,377
0.5 17,647 30,236 51,638 93,783 172,951 322,183
0.6 15,340 25,793 45,109 81,694 152,425 285,120
0.7 12,952 23,167 39,888 73,333 137,512 260,195
0.8 11,697 20,661 36,498 67,440 126,992 242,672
0.9 10,377 18,906 33,958 63,224 119,856 229,029

Population Size
P 1 2 4 8 16 32

0.1 256,549 406,027 600,091 863,054 1,420,850 2,465,145
0.2 133,667 210,828 304,376 450,904 730,207 1,289,255
0.3 89,595 148,621 207,276 310,585 514,120 908,315
0.4 66,529 108,046 160,070 240,069 400,827 717,769
0.5 58,510 88,966 129,819 204,270 336,525 602,268
0.6 45,160 74,597 111,059 174,661 295,864 532,329
0.7 40,168 65,244 98,844 153,526 269,789 484,582
0.8 35,660 57,667 87,048 143,971 249,641 456,520
0.9 33,251 59,110 84,299 137,809 238,890 436,341

Population Size
P 1 2 4 8 16 32

0.1 1,185,962 2,159,166 3,814,223 6,058,160 8,158,710 11,095,129
0.2 885,914 1,536,605 2,461,745 3,776,954 4,767,772 5,825,573
0.3 687,533 1,202,676 1,972,869 2,669,788 3,270,514 4,109,543
0.4 580,197 1,009,777 1,621,180 2,167,323 2,616,436 3,386,825
0.5 542,240 881,336 1,420,254 1,932,303 2,397,269 2,819,954
0.6 534,785 870,588 1,343,411 1,777,263 2,140,710 2,640,954
0.7 501,859 783,004 1,238,076 1,736,596 2,145,547 2,526,749
0.8 497,755 850,363 1,391,140 1,916,964 2,206,104 2,621,437
0.9 577,536 992,885 1,596,807 2,229,644 2,701,790 3,065,091



change.  Examining the rules by which an agent is allowed to change for DSA-B in

Figure 3.5, it can be concluded that as long as an agent is involved in a conflict, then that

agent will be allowed to change its value with probability P.  The other rule, where agents

are allowed a chance to change if they can reduce the number of conflicts, is ignored

because it will never be triggered unless the agent is currently in a constraint conflict.

This is due to the nature of asymmetric constraints.

It  is tempting to assume that the number of agents that change their  value each

iteration is equal to total_agents×P , however this is not true.  Based on the rules, only

agents that are involved in a conflict can change with a probability.  When the search first

starts, most of the agents are likely to be involved in a constraint conflict,  making it
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Table 4.51. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.05

Table 4.52. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.06

Population Size
P 1 2 4 8 16 32

0.1 2,325,052 4,328,498 9,170,672 18,590,982 34,692,857 66,021,711
0.2 2,310,771 4,580,092 9,468,491 17,515,021 31,836,127 58,624,391
0.3 2,332,829 4,708,799 8,377,293 16,451,018 30,736,035 59,254,702
0.4 2,291,876 4,406,440 8,711,331 16,039,103 31,136,762 58,211,324
0.5 2,605,810 4,779,735 8,281,816 16,271,251 30,799,112 56,490,934
0.6 2,216,820 4,839,562 8,226,317 16,664,668 29,440,260 59,474,756
0.7 2,190,048 4,749,221 9,381,499 17,467,788 30,556,004 61,914,500
0.8 2,622,188 4,936,391 9,937,838 18,615,795 33,850,608 63,897,159
0.9 2,509,306 5,038,406 10,823,231 19,877,491 36,606,913 70,720,779

Population Size
P 1 2 4 8 16 32

0.1 733,555 17,773,339 60,698,015 74,809,270
0.2 9,825,664 24,759,523 42,431,858 77,215,742
0.3 269,555 7,277,405 10,086,828 45,439,114 78,835,952
0.4 3,840,760 10,766,250 4,034,625 21,628,304 65,141,250 92,230,027
0.5 3,499,285 6,234,638 6,270,380 21,777,927 36,011,523 65,147,014
0.6 2,652,630 18,402,965 30,049,993 76,339,491 54,381,032
0.7 8,711,890 19,080,695 35,744,929 119,338,806
0.8 26,412,040 41,709,105 14,515,950 103,706,929
0.9



highly likely that many agents will change their value each iteration.  However, as the

conflicts are resolved the number of agents that are expected to change their values drops.

The worst case comes when only one agent is involved in a constraint conflict, which is

very likely for DisACSPs.  For normal DisCSPs, since the constraints are symmetric, at

least 2 agents will be in a constraint conflict near the end of the search.  With only one

agent in a constraint conflict, if P is a small value, like 0.1, then it becomes likely that the

search will stay in the same location for multiple iterations.  With only one agent in a

conflict and  P = 0.1, the search may stay at the same position for up to 10 iterations

before the agent in the conflict will change its value.  This shows that a relatively small P

value will significantly slow down the search when there are only a few conflicts left to

resolve.  Consequently, for easier problems a higher P value will actually help the search

converge faster.  This is supported by the results in Tables 4.41 to 4.43 and 4.47 to 4.49.

From an exploration versus exploitation point of view, the P value determines the

amount of exploration at the beginning of the search and the amount of exploitation as

the number of conflicts is reduced.  This supports the results for the easier problems.

Since  there  is  a  larger  number  of  feasible  solutions,  extensive exploration  at  the

beginning  of  the  search  can  easily  lead  to  or  near  a  feasible  solution.   With  high

exploitation, once close to a solution, the search will converge to it fairly quickly.  This is

why the results for the easier problems favor a P of 0.7 to 0.9.  As the problems increase

in difficulty, high levels of exploration at the beginning of the search may not guarantee

that the candidate solutions will improve, which is why a P of 0.4 to 0.5 become more

favorable.  This P value is low enough that the expected number of agents changing each

iteration is small, and as the search nears a feasible solution and the number of conflicts
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decreases, the P value is high enough that the search does not get stuck in one position

for too long.

4.10. Results of the Genetic Operator on SoDSA

This section examines the results of the genetic SoDSA (GSoDSA) created from the

addition of the distributed genetic operator to the SoDSA.  The crossover and mutation

rates for the distributed genetic operator is kept the same as GSoHC.  The results are

presented in Tables 4.53 – 4.64.

The results for problems with a constraint tightness of between 0.01 and 0.03 are not

far from expectations as the P value's effect on performance is not very apparent when it

comes  to  percentage  of  problems  solved,  and  the  differences  are  not statistically

significant.   When looking at  the average  number of cycles to solve a problem, the

maximum  tested  P value  still  performs  the  best  overall,  along  with  the  scaling  of

performance with population size.  

As the problems get harder and closer to the phase transition, a very distinct shift of

performance begins to appear, as shown in Tables 4.59 to 4.62, and the value of P that

produces better performance starts to get smaller   At a tightness of 0.04, a P value of

around 0.6 and 0.7 produces the best results, though the performance of P between 0.5

and 0.8  are statistically similar.  At a problem tightness of 0.05, the range of  P that

produces better performance is reduced to 0.2 to 0.4.  This distinct drop of the optimal

range of P can be attributed to the genetic operator, which produces a larger amount of

exploration than the original  SoDSA.   Consequently,  in  order  to compensate for  the

added level of exploration by the genetic operator, the amount of exploration SoDSA
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Table 4.53. Percentage of Problems Solved for GSoDSA
on problems with Constraint Tightness of 0.01

Table 4.54. Average Iterations to Solve a Problem for
GSoDSA on problems with Constraint Tightness of 0.01

Table 4.55. Percentage of Problems Solved for GSoDSA
on problems with Constraint Tightness of 0.02

Table 4.56. Average Iterations to Solve a Problem for
GSoDSA on problems with Constraint Tightness of 0.02

Population Size
P 2 4 8 16 32
0.1 100.00 100.00 100.00 100.00 100.00
0.2 100.00 100.00 100.00 100.00 100.00
0.3 100.00 100.00 100.00 100.00 100.00
0.4 100.00 100.00 100.00 100.00 100.00
0.5 100.00 100.00 100.00 100.00 100.00
0.6 100.00 100.00 100.00 100.00 100.00
0.7 100.00 100.00 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00
0.9 100.00 100.00 100.00 100.00 100.00

Population Size
P 2 4 8 16 32
0.1 15.09 9.16 6.59 5.22 4.21
0.2 8.02 5.64 4.42 3.52 2.91
0.3 5.53 4.13 3.20 2.65 2.15
0.4 4.10 3.15 2.52 2.07 1.69
0.5 3.20 2.53 2.00 1.65 1.39
0.6 2.62 2.07 1.68 1.40 1.20
0.7 2.14 1.68 1.38 1.17 1.00
0.8 1.78 1.39 1.17 0.99 0.85
0.9 1.41 1.16 0.99 0.83 0.71

Population Size
P 2 4 8 16 32
0.1 98.57 99.97 100.00 100.00 100.00
0.2 98.90 99.97 100.00 100.00 100.00
0.3 99.40 100.00 100.00 100.00 100.00
0.4 99.00 100.00 100.00 100.00 100.00
0.5 99.03 100.00 100.00 100.00 100.00
0.6 98.90 100.00 100.00 100.00 100.00
0.7 98.97 100.00 100.00 100.00 100.00
0.8 98.80 99.93 100.00 100.00 100.00
0.9 98.97 100.00 100.00 100.00 100.00

Population Size
P 2 4 8 16 32
0.1 61.93 22.29 16.59 13.44 11.40
0.2 40.85 13.27 10.07 8.41 7.15
0.3 24.60 8.85 7.24 6.11 5.30
0.4 29.02 6.95 5.65 4.83 4.14
0.5 26.59 5.64 4.59 3.96 3.42
0.6 28.07 4.73 3.90 3.32 2.87
0.7 25.65 3.97 3.30 2.86 2.50
0.8 28.78 4.77 2.89 2.51 2.21
0.9 24.93 3.09 2.58 2.23 1.98



performs  needs  to  be  reduced  for  better  performance.   With  problems at  the  phase

transition, as shown in Tables 4.63 and 4.64, the performance of GSoDSA is not very

impressive, though GSoDSA-32 is able to solve significantly more problems than the

other population sizes, but, when p = 0.9, GSoDSA-32 cannot find a solution to any of

the given problems.

Next, the average number of remaining constraint conflicts when a solution was not

found within 2000 iterations is shown in Tables 4.65 to 4.70.  The tables show that the

average number of remaining conflicts for GSoDSA follow the same trend as those for

SoDSA.  Population size is one major factor that the remaining conflicts are lower, while

the p value's contribution is similar to that of SoDSA.  Overall, GSoDSA found better
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Table 4.57. Percentage of Problems Solved for GSoDSA on
problems with Constraint Tightness of 0.03

Table 4.58. Average Iterations to Solve a Problem for
GSoDSA on problems with Constraint Tightness of 0.03

Population Size
P 2 4 8 16 32
0.1 86.47 97.63 100.00 100.00 100.00
0.2 88.07 98.63 99.97 100.00 100.00
0.3 89.77 98.87 99.93 100.00 100.00
0.4 89.87 98.60 99.90 100.00 100.00
0.5 89.97 98.57 99.93 100.00 100.00
0.6 89.77 98.57 100.00 100.00 100.00
0.7 89.57 98.27 99.97 100.00 100.00
0.8 89.23 98.40 99.93 100.00 100.00
0.9 88.57 98.60 99.97 100.00 100.00

Population Size
P 2 4 8 16 32
0.1 384.69 117.11 43.94 31.21 25.14
0.2 301.88 67.94 24.32 18.46 15.10
0.3 249.44 50.53 18.84 13.10 10.77
0.4 242.00 49.58 15.48 10.35 8.57
0.5 236.67 46.95 12.41 8.49 7.06
0.6 233.09 44.82 9.46 7.29 6.01
0.7 235.20 50.49 8.76 6.23 5.34
0.8 237.88 44.05 8.86 5.67 4.77
0.9 250.86 40.59 7.34 5.28 4.43
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Table 4.59. Percentage of Problems Solved for GSoDSA on
problems with Constraint Tightness of 0.04

Table 4.60. Average Iterations to Solve a Problem for
GSoDSA on problems with Constraint Tightness of 0.04

Table 4.61. Percentage of Problems Solved for GSoDSA on
problems with Constraint Tightness of 0.05

Table 4.62. Average Iterations to Solve a Problem for
GSoDSA on problems with Constraint Tightness of 0.05

Population Size
P 2 4 8 16 32
0.1 50.77 73.67 87.97 96.40 98.97
0.2 61.10 81.50 93.53 98.00 99.47
0.3 66.57 85.33 95.63 98.90 99.77
0.4 68.30 87.23 96.47 99.37 99.90
0.5 68.53 89.80 97.30 99.50 99.90
0.6 71.77 89.73 97.93 99.73 99.93
0.7 71.87 90.33 97.90 99.60 99.87
0.8 70.83 89.30 97.77 99.47 99.97
0.9 69.50 88.53 97.03 99.60 100.00

Population Size
P 2 4 8 16 32
0.1 1291.11 851.48 499.38 246.40 127.38
0.2 1053.66 639.52 330.04 159.63 78.30
0.3 920.85 520.93 246.09 111.89 56.61
0.4 851.21 462.32 212.11 91.16 44.88
0.5 835.67 406.77 186.52 80.06 40.30
0.6 774.90 391.58 166.74 75.73 39.82
0.7 775.91 388.67 168.60 77.66 39.60
0.8 815.64 412.31 180.48 82.13 42.11
0.9 849.86 441.89 213.80 91.29 45.79

Population Size
P 2 4 8 16 32
0.1 4.03 9.27 17.67 26.67 37.07
0.2 6.70 13.70 22.13 34.53 44.90
0.3 7.10 13.60 22.47 35.07 45.93
0.4 6.53 11.90 21.27 32.87 42.83
0.5 5.80 11.63 17.63 27.17 38.63
0.6 5.67 8.70 15.07 22.97 32.63
0.7 3.70 7.37 12.10 18.20 26.17
0.8 3.67 5.93 8.73 12.87 19.17
0.9 2.40 3.80 6.23 9.33 12.00

Population Size
P 2 4 8 16 32
0.1 1959.01 1900.23 1779.13 1640.21 1472.41
0.2 1927.32 1843.01 1721.30 1525.79 1340.06
0.3 1923.60 1839.05 1727.47 1515.99 1325.24
0.4 1926.64 1857.62 1735.02 1574.87 1387.45
0.5 1932.82 1862.20 1778.57 1647.19 1476.29
0.6 1938.00 1894.38 1813.77 1701.82 1557.05
0.7 1955.71 1914.69 1845.71 1763.74 1648.41
0.8 1959.65 1928.04 1894.71 1833.70 1739.07
0.9 1974.90 1959.06 1928.72 1882.94 1840.73



sub-optimal solutions than SoDSA when a feasible solution was not found within 2000

iterations.

Lastly,  Tables  4.71  to  4.76  shows  the  average  number  of  constraint  checks

performed when a solution was found within the 2000 iterations.  The first noticeable

difference between the results for GSoDSA and SoDSA is how fast  the  p value that

requires the fewest constraint checks to solve a problem decreases for GSoDSA.  At a

problem tightness of 0.05, the p value that was able to find the solution with the fewest

constraint checks is around 0.5 to 0.6 for SoDSA and around 0.1 to 0.2 for GSoDSA.

This is due to the affect that the genetic operator has on the search, which is give it more

exploration.  Thus, the optimal  P value decreases to increase exploitation.  More about

this will be discussed when comparing the results for SoDSA, GSoDSA and ESoDSA.
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Table 4.63. Percentage of Problems Solved for GSoDSA
on problems with Constraint Tightness of 0.06

Table 4.64. Average Iterations to Solve a Problem for
GSoDSA on problems with Constraint Tightness of 0.06

Population Size
P 2 4 8 16 32
0.1 0.00 0.00 0.03 0.17 0.43
0.2 0.00 0.00 0.03 0.00 0.40
0.3 0.00 0.00 0.03 0.03 0.30
0.4 0.00 0.00 0.00 0.00 0.50
0.5 0.00 0.00 0.00 0.00 0.47
0.6 0.00 0.00 0.00 0.00 0.63
0.7 0.00 0.00 0.00 0.00 0.37
0.8 0.00 0.00 0.00 0.00 0.20
0.9 0.00 0.00 0.00 0.00 0.00

Population Size
P 2 4 8 16 32
0.1 2000.00 2000.00 1999.85 1998.96 1993.96
0.2 2000.00 2000.00 1999.58 2000.00 1994.71
0.3 2000.00 2000.00 1999.54 1999.59 1994.63
0.4 2000.00 2000.00 2000.00 2000.00 1992.80
0.5 2000.00 2000.00 2000.00 2000.00 1992.17
0.6 2000.00 2000.00 2000.00 2000.00 1993.84
0.7 2000.00 2000.00 2000.00 2000.00 1997.05
0.8 2000.00 2000.00 2000.00 2000.00 1998.17
0.9 2000.00 2000.00 2000.00 2000.00 2000.00
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Table 4.65. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.01

Table 4.66. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.02

Table 4.67. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.03

Table 4.68. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.04

Population Size
P 2 4 8 16 32

0.1 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.00 0.00
0.7 0.00 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00

Population Size
P 2 4 8 16 32

0.1 1.60 1.21 1.07 1.03 1.00
0.2 1.30 1.10 1.08 1.02 1.00
0.3 1.19 1.08 1.02 1.06 1.00
0.4 1.20 1.06 1.08 1.00 1.00
0.5 1.15 1.05 1.04 1.00 1.00
0.6 1.11 1.05 1.02 1.00 1.00
0.7 1.19 1.05 1.01 1.00 1.00
0.8 1.18 1.06 1.01 1.00 1.00
0.9 1.36 1.05 1.04 1.00 0.00

Population Size
P 2 4 8 16 32

0.1 1.00 1.00 0.00 0.00 0.00
0.2 1.02 1.00 0.00 0.00 0.00
0.3 1.00 0.00 0.00 0.00 0.00
0.4 1.00 0.00 0.00 0.00 0.00
0.5 1.03 0.00 0.00 0.00 0.00
0.6 1.00 0.00 0.00 0.00 0.00
0.7 1.03 0.00 0.00 0.00 0.00
0.8 1.00 1.00 0.00 0.00 0.00
0.9 1.06 0.00 0.00 0.00 0.00

Population Size
P 2 4 8 16 32

0.1 1.05 1.04 0.00 0.00 0.00
0.2 1.03 1.00 1.00 0.00 0.00
0.3 1.03 1.00 1.00 0.00 0.00
0.4 1.03 1.00 1.00 0.00 0.00
0.5 1.03 1.00 1.00 0.00 0.00
0.6 1.03 1.00 0.00 0.00 0.00
0.7 1.03 1.00 1.00 0.00 0.00
0.8 1.03 1.08 1.00 0.00 0.00
0.9 1.04 1.00 1.00 0.00 0.00



4.11. Results of the Evolutionary Operator on SoDSA (ESoDSA)

The  distributed  mutation  operator  can  now be  applied  to  SoDSA to reveal  its

possible impact on performance.  The mutation rate for the operator is kept the same as

ESoHC, pm = 0.12, and the same test suit as before will be used.  Because of the lack of a

crossover operator, the mutation alone has a high level of exploitation, which impacts the

performance of SoDSA in a slightly different way, especially in the optimal range of P.

Tables 4.77 – 4.82 present the results for ESoDSA on problems with a constraint

tightness  of  0.01  to  0.03.   These  results  once  again  fall  into  similar  performance

expectations to those seen earlier, where the problems are simply not hard enough to

show any affect of the mutation operator.
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Table 4.69. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.05

Table 4.70. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.06

Population Size
P 2 4 8 16 32

0.1 8.49 4.84 3.12 2.18 1.74
0.2 9.70 6.30 3.91 2.81 2.00
0.3 11.01 7.69 5.43 3.73 2.51
0.4 12.22 9.24 6.93 5.27 3.80
0.5 13.28 10.51 8.52 6.67 4.88
0.6 15.01 12.13 9.96 8.25 6.30
0.7 16.65 14.30 11.87 9.78 8.00
0.8 19.01 16.77 14.33 12.35 10.06
0.9 21.52 19.41 17.08 15.30 13.32

Population Size
P 2 4 8 16 32

0.1 17.89 13.56 10.25 7.97 6.37
0.2 20.18 16.71 14.01 11.57 9.76
0.3 21.91 19.06 16.59 14.46 12.61
0.4 23.54 20.93 18.70 16.69 15.14
0.5 25.25 22.70 20.82 19.18 17.36
0.6 27.20 24.97 22.99 21.16 19.83
0.7 29.16 27.40 25.50 23.78 22.34
0.8 31.81 29.91 28.21 26.64 25.24
0.9 34.96 33.34 31.53 29.99 28.71
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Table 4.71. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.01

Table 4.72. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.02

Table 4.73. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.03

Table 4.74. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.04

Population Size
P 2 4 8 16 32

0.1 42,546 57,967 92,888 160,227 284,336
0.2 25,915 40,503 69,775 124,310 225,624
0.3 19,619 32,654 57,941 104,430 191,212
0.4 16,035 27,803 50,095 91,551 170,471
0.5 13,791 24,358 44,438 82,380 154,854
0.6 12,166 21,956 40,513 76,110 144,178
0.7 10,877 19,981 37,652 70,637 135,233
0.8 9,970 18,490 35,188 66,519 128,457
0.9 9,172 17,238 32,929 63,150 122,033

Population Size
P 2 4 8 16 32

0.1 102,566 145,857 237,461 411,906 733,971
0.2 57,211 90,503 157,333 281,920 514,864
0.3 44,094 69,843 122,615 222,657 407,743
0.4 33,976 57,130 102,065 186,849 347,583
0.5 29,047 48,892 87,895 164,146 306,926
0.6 24,836 43,376 79,084 147,910 278,000
0.7 23,549 39,398 72,251 136,086 256,060
0.8 20,527 36,577 67,019 127,032 241,345
0.9 19,313 33,756 63,246 120,028 228,468

Population Size
P 2 4 8 16 32

0.1 363,380 427,246 589,690 933,469 1,604,005
0.2 203,002 251,855 361,039 599,891 1,049,869
0.3 147,786 191,279 275,402 457,794 814,457
0.4 121,919 154,437 225,647 376,971 674,967
0.5 108,915 131,849 191,576 326,989 585,819
0.6 95,033 115,437 168,313 291,768 524,849
0.7 81,784 110,627 156,852 269,447 486,328
0.8 83,470 97,092 145,060 251,344 455,404
0.9 75,314 92,664 140,255 239,688 436,742

Population Size
P 2 4 8 16 32

0.1 1,745,151 2,517,435 3,620,975 4,674,241 6,146,909
0.2 1,319,736 1,925,526 2,561,595 3,236,842 4,146,459
0.3 1,170,564 1,661,341 2,094,692 2,483,850 3,297,897
0.4 1,029,465 1,472,869 1,946,699 2,288,040 2,809,025
0.5 991,445 1,458,829 1,830,966 2,050,615 2,625,208
0.6 986,464 1,464,432 1,833,424 2,130,577 2,427,032
0.7 1,067,161 1,492,505 1,948,996 2,188,829 2,583,201
0.8 1,117,592 1,633,978 2,110,944 2,349,707 2,789,906
0.9 1,239,523 1,926,397 2,520,491 2,726,721 3,234,453



As the problems get harder, the range of P that produces better performance begins

to appear, as seen earlier for GSoDSA. However, the difference lies in the optimal value

range of P.  For GSoDSA, at a problem tightness of 0.04, the optimal range was around

0.6 to 0.7, while for ESoDSA this range is slightly higher at around 0.7 to 0.9.  This is

also true for problems with a tightness of 0.05.  Where GSoDSA had an optimal range of

around 0.2 to 0.3, ESoDSA's range is slightly higher at around 0.3 to 0.4.  Once again,

the performance of ESoDSA at the phase transition is still not very impressive, though

ESoDSA-32 does perform significantly better than the others.

Tables 4.89 to 4.94 present the average number of remaining constraint conflicts for

ESoDSA when a solution was not found within 2000 iterations.  The results can best be

described as extreme.  In  the worst  case, ESoDSA performs worse than SoDSA, but

much better than GSoDSA in the best cases.  This is especially seen when the problem
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Table 4.75. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.05

Table 4.76. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.06

Population Size
P 2 4 8 16 32

0.1 3,593,778 6,329,153 10,751,783 18,053,987 29,752,111
0.2 3,663,114 6,231,130 10,513,397 18,371,181 30,798,587
0.3 4,106,944 6,738,343 11,346,353 19,685,627 35,854,586
0.4 4,176,077 6,646,806 12,844,431 22,844,991 40,812,985
0.5 4,423,049 8,130,322 12,908,288 24,962,242 45,062,051
0.6 4,458,580 8,331,941 14,357,599 25,769,490 51,494,768
0.7 5,156,076 8,474,265 16,745,830 27,800,473 53,428,556
0.8 5,186,621 10,006,428 18,197,907 30,699,647 60,136,035
0.9 5,934,815 11,362,293 20,762,531 39,277,046 66,188,174

Population Size
P 2 4 8 16 32

0.1 12,369,032 34,312,158 62,741,138
0.2 6,109,140 16,283,334 39,000,375
0.3 2,737,999 14,966,864 23,235,259
0.4 16,560,794
0.5 44,527,776
0.6 68,852,839
0.7 103,312,926
0.8 105,794,349
0.9
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Table 4.77. Percentage of Problems Solved for ESoDSA on
problems with Constraint Tightness of 0.01

Table 4.78. Average Iterations to Solve a Problem for  ESoDSA
on problems with Constraint Tightness of 0.01

Table 4.79. Percentage of Problems Solved for ESoDSA on
problems with Constraint Tightness of 0.02

Table 4.80. Average Iterations to Solve a Problem for  ESoDSA
on problems with Constraint Tightness of 0.02

Population Size
P 2 4 8 16 32
0.1 100.00 100.00 100.00 100.00 100.00
0.2 100.00 100.00 100.00 100.00 100.00
0.3 100.00 100.00 100.00 100.00 100.00
0.4 100.00 100.00 100.00 100.00 100.00
0.5 99.97 100.00 100.00 100.00 100.00
0.6 100.00 100.00 100.00 100.00 100.00
0.7 100.00 100.00 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00
0.9 100.00 100.00 100.00 100.00 100.00

Population Size
P 2 4 8 16 32
0.1 12.47 6.16 4.01 2.97 2.30
0.2 6.65 4.23 3.07 2.44 1.91
0.3 4.69 3.25 2.51 2.03 1.64
0.4 3.69 2.71 2.08 1.73 1.46
0.5 3.59 2.24 1.81 1.50 1.27
0.6 2.44 1.86 1.55 1.30 1.10
0.7 2.01 1.59 1.31 1.11 0.94
0.8 1.70 1.34 1.13 0.95 0.81
0.9 1.42 1.17 0.96 0.81 0.70

Population Size
P 2 4 8 16 32
0.1 98.37 99.97 100.00 100.00 100.00
0.2 98.30 100.00 100.00 100.00 100.00
0.3 98.60 100.00 100.00 100.00 100.00
0.4 98.90 100.00 100.00 100.00 100.00
0.5 98.77 100.00 100.00 100.00 100.00
0.6 99.10 100.00 100.00 100.00 100.00
0.7 99.13 99.97 100.00 100.00 100.00
0.8 98.97 100.00 100.00 100.00 100.00
0.9 98.80 99.97 100.00 100.00 100.00

Population Size
P 2 4 8 16 32
0.1 62.95 18.53 12.47 9.59 7.82
0.2 50.35 10.96 8.28 6.83 5.69
0.3 39.39 8.04 6.43 5.36 4.60
0.4 30.50 6.42 5.16 4.38 3.81
0.5 31.51 5.30 4.34 3.71 3.26
0.6 23.83 4.52 3.72 3.21 2.79
0.7 22.29 4.54 3.23 2.81 2.45
0.8 25.59 3.41 2.86 2.46 2.20
0.9 27.80 3.71 2.55 2.23 1.98
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Table 4.81. Percentage of Problems Solved for ESoDSA on
problems with Constraint Tightness of 0.03

Table 4.82. Average Iterations to Solve a Problem for  ESoDSA
on problems with Constraint Tightness of 0.03

Table 4.83. Percentage of Problems Solved for ESoDSA on
problems with Constraint Tightness of 0.04

Table 4.83. Average Iterations to Solve a Problem for  ESoDSA
on problems with Constraint Tightness of 0.04

Population Size
P 2 4 8 16 32
0.1 83.10 97.47 99.87 100.00 100.00
0.2 85.77 97.70 99.97 100.00 100.00
0.3 87.70 98.10 99.90 100.00 100.00
0.4 88.67 98.03 99.93 100.00 100.00
0.5 88.77 98.50 99.97 100.00 100.00
0.6 88.53 98.73 99.97 100.00 100.00
0.7 89.27 98.57 100.00 100.00 100.00
0.8 89.17 98.50 99.90 100.00 100.00
0.9 89.17 98.50 100.00 100.00 100.00

Population Size
P 2 4 8 16 32
0.1 447.01 116.47 38.81 24.82 19.18
0.2 352.40 83.00 21.98 15.65 12.79
0.3 292.74 64.71 17.81 12.01 9.94
0.4 263.45 59.07 13.91 9.81 8.09
0.5 255.24 47.30 11.24 8.18 6.84
0.6 255.91 40.87 10.06 7.10 5.97
0.7 239.19 43.10 8.28 6.34 5.25
0.8 241.61 42.57 9.40 5.79 4.80
0.9 239.97 43.22 7.05 5.27 4.41

Population Size
P 2 4 8 16 32
0.1 47.07 66.90 84.50 94.17 98.27
0.2 57.50 74.13 91.37 97.20 98.83
0.3 62.47 83.00 94.00 97.67 98.93
0.4 65.53 83.10 94.17 98.47 99.70
0.5 68.50 86.87 96.00 98.83 99.83
0.6 68.60 85.63 96.67 98.97 99.90
0.7 68.30 89.00 96.43 99.40 99.83
0.8 70.60 90.27 97.73 99.43 99.90
0.9 70.23 88.77 96.60 99.47 99.90

Population Size
P 2 4 8 16 32
0.1 1312.89 944.16 540.41 278.99 133.41
0.2 1091.57 718.80 338.06 156.15 77.69
0.3 960.71 523.94 258.34 123.99 68.17
0.4 879.19 507.35 232.04 99.11 47.33
0.5 814.16 430.57 196.95 87.31 42.24
0.6 813.62 450.75 180.20 83.95 36.25
0.7 824.90 398.08 188.74 78.04 39.71
0.8 801.59 393.25 168.26 79.56 42.31
0.9 836.74 450.20 219.56 93.44 47.80
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Table 4.84. Percentage of Problems Solved for ESoDSA on
problems with Constraint Tightness of 0.05

Table 4.86. Average Iterations to Solve a Problem for ESoDSA
on problems with Constraint Tightness of 0.05

Table 4.87. Percentage of Problems Solved for ESoDSA on
problems with Constraint Tightness of 0.06

Table 4.88. Average Iterations to Solve a Problem for  ESoDSA
on problems with Constraint Tightness of 0.06

Population Size
P 2 4 8 16 32
0.1 4.63 10.57 16.97 23.60 33.23
0.2 6.77 14.93 22.90 32.57 41.73
0.3 7.47 16.63 25.77 35.83 45.17
0.4 7.00 15.03 24.97 36.90 46.17
0.5 6.20 12.10 22.07 34.40 45.10
0.6 5.73 10.53 18.43 27.47 39.07
0.7 3.87 8.20 13.43 20.50 28.43
0.8 3.00 6.07 9.57 13.63 19.43
0.9 2.20 3.47 5.67 9.50 13.63

Population Size
P 2 4 8 16 32
0.1 1949.09 1877.26 1783.94 1665.63 1490.03
0.2 1928.13 1815.48 1684.95 1507.86 1325.57
0.3 1911.12 1787.13 1651.71 1466.52 1270.28
0.4 1921.66 1812.52 1674.90 1466.29 1269.07
0.5 1926.06 1853.92 1711.94 1521.42 1321.96
0.6 1934.86 1876.34 1767.20 1640.10 1458.31
0.7 1955.72 1902.67 1831.69 1733.80 1606.67
0.8 1969.13 1930.05 1874.81 1822.35 1739.93
0.9 1976.11 1963.11 1929.04 1881.21 1815.97

Population Size
P 2 4 8 16 32
0.1 0.00 0.00 0.03 0.07 0.37
0.2 0.00 0.03 0.03 0.23 0.63
0.3 0.00 0.00 0.03 0.10 0.50
0.4 0.00 0.00 0.00 0.00 0.13
0.5 0.00 0.00 0.00 0.00 0.20
0.6 0.00 0.00 0.00 0.00 0.57
0.7 0.00 0.00 0.00 0.00 0.63
0.8 0.00 0.00 0.00 0.00 0.17
0.9 0.00 0.00 0.00 0.00 0.17

Population Size
P 2 4 8 16 32
0.1 2000.00 2000.00 1999.70 1999.16 1994.98
0.2 2000.00 1999.80 1999.65 1997.20 1992.61
0.3 2000.00 2000.00 1999.83 1999.18 1992.98
0.4 2000.00 2000.00 2000.00 2000.00 1997.60
0.5 2000.00 2000.00 2000.00 2000.00 1996.54
0.6 2000.00 2000.00 2000.00 2000.00 1991.60
0.7 2000.00 2000.00 2000.00 2000.00 1991.75
0.8 2000.00 2000.00 2000.00 2000.00 1998.29
0.9 2000.00 2000.00 2000.00 2000.00 1997.96



tightness is 0.05 and 0.06.  Another aspect of note is that ESoDSA performs worse than

GSoDSA especially at low population sizes of 2 and 4.

Finally, Tables 4.95 to 4.99 shows the average number of constraint checks when a

solution was found within 2000 iterations.  The results for when the tightness is 0.06 is

omitted, since ESoDSA was not able to solve a significant number of problems at the

phase transition.  Again, like GSoDSA, the advantage of the mutation operator does not

show until the population size increases to a certain level.  And when a solution is found,

ESoDSA is capable of finding it faster than GSoDSA or SoDSA in the best case.
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Table 4.89. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.01

Table 4.90. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.02

Population Size
P 2 4 8 16 32

0.1 1.00 0.00 0.00 0.00 0.00
0.2 1.00 1.00 0.00 0.00 0.00
0.3 1.00 0.00 0.00 0.00 0.00
0.4 1.00 0.00 0.00 0.00 0.00
0.5 1.00 0.00 0.00 0.00 0.00
0.6 1.00 1.00 0.00 0.00 0.00
0.7 1.00 0.00 0.00 0.00 0.00
0.8 1.00 0.00 0.00 0.00 0.00
0.9 1.00 0.00 0.00 0.00 0.00

Population Size
P 2 4 8 16 32

0.1 1.00 1.00 1.00 1.00 0.00
0.2 1.02 1.00 1.00 0.00 0.00
0.3 1.01 1.00 1.00 0.00 0.00
0.4 1.00 1.00 0.00 0.00 0.00
0.5 1.01 1.00 1.00 0.00 0.00
0.6 1.00 1.00 1.00 0.00 0.00
0.7 1.00 1.00 1.00 0.00 0.00
0.8 1.01 1.00 1.00 0.00 0.00
0.9 1.00 1.00 1.00 0.00 0.00
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Table 4.91. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.03

Table 4.92. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.04

Table 4.93. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.05

Table 4.94. Average Remaining Conflicts when a solution was not found within
2000 iterations for problems with tightness of 0.06

Population Size
P 2 4 8 16 32

0.1 2.11 1.22 1.10 1.07 1.02
0.2 1.74 1.21 1.10 1.05 1.03
0.3 1.56 1.20 1.11 1.07 1.02
0.4 1.52 1.21 1.12 1.07 1.04
0.5 1.39 1.21 1.13 1.08 1.05
0.6 1.46 1.21 1.15 1.07 1.03
0.7 1.51 1.22 1.15 1.11 1.04
0.8 1.65 1.24 1.15 1.10 1.04
0.9 2.20 1.23 1.18 1.13 1.07

Population Size
P 2 4 8 16 32

0.1 11.96 5.76 2.56 1.87 1.76
0.2 12.81 6.60 2.75 1.93 1.74
0.3 13.64 7.35 2.97 1.98 1.79
0.4 14.99 8.41 3.53 2.20 1.84
0.5 16.73 9.71 4.09 2.29 1.95
0.6 19.04 12.07 5.48 2.71 2.09
0.7 22.46 15.09 7.82 3.24 2.21
0.8 29.43 20.20 11.53 4.93 2.60
0.9 40.60 28.10 18.17 9.11 3.86

Population Size
P 2 4 8 16 32

0.1 20.67 15.01 9.89 6.42 5.16
0.2 22.31 17.31 12.54 8.24 5.91
0.3 23.89 19.55 14.97 10.42 7.08
0.4 26.18 21.99 17.67 12.94 9.03
0.5 29.32 24.94 20.63 15.90 11.49
0.6 34.31 28.93 24.41 19.56 14.62
0.7 42.29 34.50 29.39 24.34 18.82
0.8 53.10 43.88 36.93 30.15 23.77
0.9 68.14 56.46 45.49 36.81 29.09

Population Size
P 2 4 8 16 32

0.1 1.07 1.03 1.01 1.03 1.00
0.2 1.06 1.03 1.02 1.00 1.00
0.3 1.06 1.03 1.01 1.00 1.00
0.4 1.05 1.03 1.00 1.00 1.00
0.5 1.06 1.02 1.00 1.00 1.00
0.6 1.06 1.02 1.00 1.00 1.00
0.7 1.06 1.03 1.01 1.00 1.00
0.8 1.06 1.02 1.02 1.00 1.00
0.9 1.08 1.04 1.00 1.00 1.00
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Table 4.95. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.01

Table 4.96. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.02

Table 4.97. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.03

Population Size
P 2 4 8 16 32

0.1 140,478 188,066 269,129 407,524 647,854
0.2 82,259 114,680 175,409 282,221 481,523
0.3 58,183 85,008 133,677 226,519 397,381
0.4 47,736 68,732 111,406 193,585 344,046
0.5 39,849 58,930 97,230 169,804 309,668
0.6 34,038 51,291 86,431 153,448 281,672
0.7 29,715 46,326 78,529 141,860 261,447
0.8 26,880 42,165 73,529 132,349 246,278
0.9 24,379 39,452 69,080 125,677 234,688

Population Size
P 2 4 8 16 32

0.1 51,892 71,469 103,708 153,509 242,228
0.2 32,709 48,484 75,745 122,887 210,058
0.3 24,435 38,446 62,464 106,211 186,485
0.4 19,836 31,761 53,900 93,528 169,369
0.5 16,687 27,748 47,418 85,681 156,289
0.6 14,532 24,495 43,032 78,489 145,851
0.7 12,826 21,985 39,766 73,395 137,261
0.8 11,535 20,290 37,077 69,033 129,935
0.9 10,432 18,747 34,943 65,267 123,964

Population Size
P 2 4 8 16 32

0.1 490,941 576,642 721,104 971,414 1,436,113
0.2 319,558 340,934 410,327 598,006 965,864
0.3 226,022 234,933 309,589 463,902 751,986
0.4 183,932 180,563 252,899 383,209 636,965
0.5 154,179 152,739 212,260 336,571 564,299
0.6 130,332 136,513 193,864 304,470 516,776
0.7 127,100 125,044 176,449 280,225 484,164
0.8 107,225 115,884 166,426 264,076 458,330
0.9 100,447 107,446 154,786 255,330 444,390



4.12. Performance Comparison of DSA, SoDSA, GSoDSA, ESoDSA

Table 4.100 shows the best possible results for SoDSA, GSoDSA, and ESoDSA

over the percentage of problems solved for any given  P.  Not considering the possible

affects of P on the results makes it possible to collect the best results in order to compare

the impact of the genetic and evolutionary operators.  For the relatively easier problems

with constraint tightnesses of 0.01 to 0.03, there is no distinct difference between the

performance of the three algorithms, SoDSA, GSoDSA, and ESoDSA.  At a tightness of

0.04, SoDSA-2 falls slightly behind the performance of GSoDSA-2 and ESoDSA-2, but

is able to catch up as the population size increases.  
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Table 4.98. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.04

Table 4.99. Average Number of Constraint Checks to solve a problem when a
solution was found within 2000 Iterations for problems with tightness 0.05

Population Size
P 2 4 8 16 32

0.1 2,355,099 2,726,528 3,520,206 4,773,925 7,073,629
0.2 1,889,058 1,824,803 2,139,780 2,829,185 3,992,412
0.3 1,563,163 1,405,081 1,520,078 1,911,209 2,842,228
0.4 1,435,519 1,131,554 1,175,373 1,606,677 2,142,501
0.5 1,291,574 978,213 1,027,035 1,355,630 1,993,144
0.6 1,189,639 877,986 1,014,372 1,236,056 1,706,210
0.7 1,157,601 825,882 854,445 1,111,234 1,618,174
0.8 1,257,572 856,753 810,371 1,107,536 1,533,351
0.9 1,478,347 978,806 876,916 1,072,485 1,572,602

Population Size
P 2 4 8 16 32

0.1 4,629,642 7,770,018 11,647,125 17,903,560 27,920,933
0.2 5,247,980 6,750,838 9,547,754 14,850,556 23,674,069
0.3 4,457,469 6,952,846 9,199,942 14,126,160 21,407,914
0.4 4,259,277 6,601,637 8,730,343 12,138,217 18,882,487
0.5 5,486,227 7,277,284 8,258,080 12,042,307 19,197,504
0.6 5,716,990 6,917,400 9,197,221 11,749,542 19,888,730
0.7 6,397,717 7,836,249 10,206,255 12,972,664 19,968,623
0.8 5,852,732 9,904,828 10,942,930 15,644,613 21,342,322
0.9 5,476,070 12,228,213 14,668,554 16,358,605 27,548,492



At a tightness of 0.05 and population sizes 2 and 4, SoDSA performs better than

either GSoDSA and ESoDSA.  This performance difference may be attributed to the fact

that GSoDSA and ESoDSA have only half  the population performing the DSA step,

while  the  other  half  is  applying  either  the  genetic  or  evolutionary operator.   At  a

population size of 8, GSoDSA and ESoDSA catches up to the performance of SoDSA as

the benefits  of  the genetic  and evolutionary operators  become more apparent.   At  a

population size of  32,  both GSoDSA and ESoDSA perform significantly better  than

SoDSA.

At the phase transition,  the performance of  SoDSA seems to be slightly ahead,

though not by a significant margin.  The lead is taken over by GSoDSA and ESoDSA at a

population size of 32, though still not by a significant amount.

  Table 4.101 shows the best average number of iterations to solve a problem for

SoDSA, GSoDSA, and ESoDSA.  For the easier problems with tightnesses of 0.01 to
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Table 4.100. Best Possible results for SoDSA, GSoDSA, and ESoDSA given any
value of P (Percentage of Problems Solved)

Population Size
Tightness 1 2 4 8 16 32

0.01
SoDSA 99.70 100.00 100.00 100.00 100.00 100.00

GSoDSA 100.00 100.00 100.00 100.00 100.00
ESoDSA 100.00 100.00 100.00 100.00 100.00

0.02
SoDSA 91.73 99.30 100.00 100.00 100.00 100.00

GSoDSA 99.40 100.00 100.00 100.00 100.00
ESoDSA 99.13 100.00 100.00 100.00 100.00

0.03
SoDSA 67.73 89.33 99.03 100.00 100.00 100.00

GSoDSA 89.97 98.87 100.00 100.00 100.00
ESoDSA 89.27 98.93 100.00 100.00 100.00

0.04
SoDSA 44.37 65.13 87.03 96.60 99.67 100.00

GSoDSA 71.87 90.33 97.93 99.73 100.00
ESoDSA 70.60 90.27 97.73 99.47 99.90

0.05
SoDSA 9.13 11.60 15.47 21.60 28.83 33.97

GSoDSA 7.10 13.70 22.47 35.07 45.93
ESoDSA 7.47 16.63 25.77 36.90 46.17

0.06
SoDSA 0.07 0.13 0.10 0.13 0.51 0.53

GSoDSA 0.00 0.00 0.03 0.17 0.63
ESoDSA 0.00 0.03 0.03 0.23 0.63



0.03,  the  performances  of  the three are  fairly  similar.   As would be expected,  both

GSoDSA and  ESoDSA were  able  to  find  solutions  faster  on  average  than  SoDSA.

Interestingly,  at  a  tightness  of  0.04,  GSoDSA  is  slightly  slower  than  SoDSA  and

ESoDSA at finding a solutions with a population size of 32.  At a tightness of 0.05, the

performance differences fall back in line with those of the percentage of problems solved,

where SoDSA performs better at lower populations and GSoDSA and ESoDSA perform

better at higher populations.

The key factor to consider when comparing the results of SoDSA, GSoDSA, and

ESoDSA  is  the  balance  of  exploration  and  exploitation.   As  with  the  ant  colony

optimization  [31]  and  all  other  forms  of  search  algorithms,  the  proper  balance  of

exploration and exploitation can have a major impact on the overall performance.  Too

much exploration and the search may not converge towards a solution, while too much

exploitation and the search may get stuck at a local optimum.  
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Table 4.101. Best Possible results for SoDSA, GSoDSA, and ESoDSA given any
value of p (Average Number of Iterations to Solve a Problem)

Population Size
Tightness 1 2 4 8 16 32

0.01
SoDSA 9.08 2.30 2.03 1.85 1.71 1.59

GSoDSA 1.41 1.16 0.99 0.83 0.71
ESoDSA 1.42 1.17 0.96 0.81 0.70

0.02
SoDSA 171.16 21.60 3.85 3.36 3.03 2.77

GSoDSA 24.60 3.09 2.58 2.23 1.98
ESoDSA 22.29 3.41 2.55 2.23 1.98

0.03
SoDSA 662.99 241.98 32.44 7.92 5.86 5.06

GSoDSA 233.09 40.59 7.34 5.28 4.43
ESoDSA 239.97 40.87 7.05 5.27 4.41

0.04
SoDSA 1210.63 828.82 406.49 171.91 67.64 36.37

GSoDSA 774.90 388.67 166.74 75.73 39.60
ESoDSA 801.59 393.25 168.26 78.04 36.25

0.05
SoDSA 1844.81 1816.30 1771.72 1686.63 1588.93 1548.72

GSoDSA 1923.60 1839.05 1721.30 1515.99 1325.24
ESoDSA 1911.12 1787.13 1651.71 1466.29 1269.07

0.06
SoDSA 1999.48 1998.48 1998.65 1998.49 1992.35 1994.56

GSoDSA 2000.00 2000.00 1999.54 1998.96 1992.17
ESoDSA 2000.00 1999.80 1999.65 1997.20 1991.60



DSA/SoDSA is special in that the amount of exploration performed by the search

decreases over time.  At the beginning of the search, when many agents are in constraint

conflicts, a high value of  P gives the search a decent amount of exploration and it is

capable of possibly resolving multiple conflicts in one iteration as multiple agents change

their values.  A relatively small P in the beginning will slow exploration, but can turn out

to be a conservative way of resolving conflicts.  This is because as the problems get

harder, having multiple agents change their values simultaneously is likely to create even

more constraint conflicts.  However, as the number of agents in constraint conflicts is

reduced,  the amount  of  exploration  performed by DSA is  also  reduced,  since fewer

agents are expected to change their value each iteration.  No matter how hard the problem

is, when the number of agents in conflicts drops to a certain level, it becomes favorable to

have a higher  P, in order to maintain a certain level of exploration, because if  P is too

small  the search will  actually stagnate.   Thus, for best results,  a value of  P must be

chosen such that the exploration in the very beginning of the search is not too wide, and

at the same time, the search is prevented from stagnating too quickly near the end.  As

discussed  earlier,  the  optimal  range  of  P for  SoDSA near  the phase transition,  at  a

problem tightness of 0.05, is 0.4 to 0.5.

The addition of the genetic and evolutionary operators created a shift in this optimal

P range by adding more exploration and some exploitation to SoDSA.  The evolutionary

operator, which uses mutation only, contributes a higher level of exploitation to SoDSA

at the beginning of the search, but when the number of agents in conflicts drops below a

certain point, the mutation operator actually helps exploration.  For example, given that P

= 0.5, when the number of agents in conflicts drops to 4, then for every iteration, the
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number  of  agents  expected  to  change  their  value  is  2.   However,  a  below average

individual  that  invokes the mutation operator  will  become an 88% copy of  the best

individual,  which  in  the  current  case  with  30  agents,  means  that  it  is  equivalent  to

changing 3 to 4 agents' values in one iteration.  This behavior helps ESoDSA find a

solution faster than SoDSA as it is able to search much more effectively around an area

of promise than SoDSA.  Thus, by denoting the number of agents in constraint conflicts

as  agentC and the total number of agents as  agentT,  then the point beyond which the

evolutionary  operator  starts  contributing  exploration  to  the  search  is  when

agentT⋅pmagentC⋅P .  The genetic operator adds even more exploration to SoDSA, as

the below average individuals effectively become 47% copies of the best individual.  This

exploration is much wider than that used by the evolutionary operator, which though still

good at finding a solution, does not work as fast.

4.13. Final Comparison

Finally, it is useful to combine all the results for mdBA, SoHC, GSoHC, ESoHC,

DSA, SoDSA, GSoDSA, and ESoDSA and compare their performance.  Table 4.102

presents the percentage of problems solved for dBA and dBA based GEPs alongside the

best of the DSA and DSA based GEPs.  For problems with constraint tightnesses of 0.01

and 0.02, the problems are easy enough that the difference between the 6 algorithms are

minimal.  The most obvious result is how soon the performance of dBA and DSA starts

to lag behind.  The effect of population size is very obvious; at a problem tightness of

0.03, the DSA based GEPs are already lagging behind at a population size of 2.  The

performance  gap  widens  as  the  problems'  constraint  tightness  increases  to  0.04.
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However, as the population size increases, ESoHC and GSoHC are able to solve about

twice as many problems as SoHC, SoDSA, GSoDSA, and ESoDSA.  The performance

advantage continues to show at the phase transition with population sizes of 16 and 32,

where  ESoHC  and  GSoHC  solve  at  least  twice  as  many  problems  as  the  other  4

algorithms.
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Table 4.102. Comparison of Percentage of Problems Solved between the
dBA and DSA variations

Population Size
Tightness 1 2 4 8 16 32

0.01

SoHC 99.50 100.00 100.00 100.00 100.00 100.00
GSoHC 100.00 100.00 100.00 100.00 100.00
ESoHC 100.00 100.00 100.00 100.00 100.00
SoDSA 99.70 100.00 100.00 100.00 100.00 100.00

GSoDSA 100.00 100.00 100.00 100.00 100.00
ESoDSA 100.00 100.00 100.00 100.00 100.00

0.02

SoHC 91.50 99.20 100.00 100.00 100.00 100.00
GSoHC 100.00 100.00 100.00 100.00 100.00
ESoHC 100.00 100.00 100.00 100.00 100.00
SoDSA 91.73 99.30 100.00 100.00 100.00 100.00

GSoDSA 99.40 100.00 100.00 100.00 100.00
ESoDSA 99.13 100.00 100.00 100.00 100.00

0.03

SoHC 80.53 95.97 99.77 100.00 100.00 100.00
GSoHC 99.97 100.00 100.00 100.00 100.00
ESoHC 99.83 100.00 100.00 100.00 100.00
SoDSA 67.73 89.33 99.03 100.00 100.00 100.00

GSoDSA 89.97 98.87 100.00 100.00 100.00
ESoDSA 89.27 98.93 100.00 100.00 100.00

0.04

SoHC 70.93 89.50 98.23 99.77 100.00 100.00
GSoHC 95.10 99.90 100.00 100.00 100.00
ESoHC 94.10 99.80 100.00 100.00 100.00
SoDSA 44.37 65.13 87.03 96.60 99.67 100.00

GSoDSA 71.87 90.33 97.93 99.73 100.00
ESoDSA 70.60 90.27 97.73 99.47 99.90

0.05

SoHC 5.40 9.40 16.17 24.80 35.47 49.73
GSoHC 8.20 29.90 61.23 84.50 93.93
ESoHC 7.40 28.50 64.30 87.37 95.40
SoDSA 9.13 11.60 15.47 21.60 28.83 33.97

GSoDSA 7.10 13.70 22.47 35.07 45.93
ESoDSA 7.47 16.63 25.77 36.90 46.17

0.06

SoHC 0.00 0.00 0.00 0.00 0.03 0.23
GSoHC 0.00 0.23 0.80 1.10 2.30
ESoHC 0.13 0.43 0.70 1.33 2.70
SoDSA 0.07 0.13 0.10 0.13 0.51 0.53

GSoDSA 0.00 0.00 0.03 0.17 0.63
ESoDSA 0.00 0.03 0.03 0.23 0.63



Table 4.103 presents the average number of iterations needed to solve a problem.

Here, the DSA and DSA based GEPs have the distinct advantage of speed for problems

with constraint tightnesses of 0.03 or less.  The ability of DSA and DSA based GEPs to

change more than one variable per iteration works to their advantage, making them up to

twice as fast as the dBA and dBA based GEPs when finding a solution.  However, this

speed becomes a handicap as the problems get harder.  With harder problems, it becomes

less desirable to simultaneously change more than one variable each iteration, as this can

create more new conflicts than it resolves.

Another possible reason for the poor performance of the DSA and DSA based GEPs

when  the  problem  gets  harder  is  the  algorithm's  inability  to  slide.   DSA  is  solely

dependent on the chance that more than one agent will change its value to escape from a

local optimum.  However, for DisACSPs, it is very likely that the search will reach a

point where only one agent is in a constraint conflict.  Thus, based on the rules of DSA-

B, only that agent is allowed the option of changing.  However, if no value in that agent's

domain causes another agent to be in a constraint conflict or resolve the one it is in, then

the search becomes trapped in a local  optimum.  In  these situations, the mdBA will

simply “slide” and have a random variable change its value while laying down breakouts.

The added population approach, used by SoDSA, helps resolve this situation somewhat,

and the addition of the genetic and evolutionary operators further  help to reduce the

possibility of such a situation occurring.  

Though the genetic and evolutionary operators are able to enhance the performance

of DSA on harder  problems,  it  is  still  insufficient  to beat the consistency of  SoHC,
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ESoHC, and GSoHC.  However, when the problems are relatively simple, the DSA and

DSA based GEPs offer a faster alternative to SoHC, GSoHC, and ESoHC.
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Table 4.103. Comparison of Average Number of Iterations to Solve a Problem
between dBA and DSA variations

Population Size
Tightness 1 2 4 8 16 32

0.01

SoHC 17.80 6.11 4.87 3.83 2.98 2.28
GSoHC 5.69 4.26 3.38 2.63 2.00
ESoHC 5.50 4.11 3.07 2.32 1.68
SoDSA 9.08 2.30 2.03 1.85 1.71 1.59

GSoDSA 1.41 1.16 0.99 0.83 0.71
ESoDSA 1.42 1.17 0.96 0.81 0.70

0.02

SoHC 187.52 31.76 13.09 11.28 9.73 8.55
GSoHC 16.90 11.74 9.62 8.22 7.12
ESoHC 16.69 11.32 8.82 7.09 5.89
SoDSA 171.16 21.60 3.85 3.36 3.03 2.77

GSoDSA 24.60 3.09 2.58 2.23 1.98
ESoDSA 22.29 3.41 2.55 2.23 1.98

0.03

SoHC 437.11 121.58 34.97 23.57 19.60 17.11
GSoHC 52.53 28.60 20.14 16.15 13.70
ESoHC 61.73 28.55 18.71 14.36 11.71
SoDSA 662.99 241.98 32.44 7.92 5.86 5.06

GSoDSA 233.09 40.59 7.34 5.28 4.43
ESoDSA 239.97 40.87 7.05 5.27 4.41

0.04

SoHC 891.44 527.94 261.78 139.42 83.40 53.67
GSoHC 493.54 167.14 77.83 46.06 32.36
ESoHC 548.64 174.58 75.59 41.67 28.26
SoDSA 1210.63 828.82 406.49 171.91 67.64 36.37

GSoDSA 774.90 388.67 166.74 75.73 39.60
ESoDSA 801.59 393.25 168.26 78.04 36.25

0.05

SoHC 1945.43 1898.77 1814.74 1702.74 1542.41 1334.73
GSoHC 1912.67 1655.58 1186.17 692.19 392.25
ESoHC 1919.95 1675.00 1131.62 634.82 349.35
SoDSA 1844.81 1816.30 1771.72 1686.63 1588.93 1548.72

GSoDSA 1923.60 1839.05 1721.30 1515.99 1325.24
ESoDSA 1911.12 1787.13 1651.71 1466.29 1269.07

0.06

SoHC 2000.00 2000.00 2000.00 2000.00 1999.49 1997.79
GSoHC 2000.00 1997.69 1989.41 1982.33 1966.50
ESoHC 1998.10 1995.09 1988.67 1980.96 1961.25
SoDSA 1999.48 1998.48 1998.65 1998.49 1992.35 1994.56

GSoDSA 2000.00 2000.00 1999.54 1998.96 1992.17
ESoDSA 2000.00 1999.80 1999.65 1997.20 1991.60



4.14. An Adaptive SoDSA and the BreakOut List

As mentioned earlier, varying the value of P for the DSA and DSA based GEPs may

possibly increase the performance and remove one parameter from consideration when

implementing the algorithm.  It is interesting to briefly look at possible ways of adapting

the p value throughout the search process to see if the performance can be increased.  The

possibility and impact of adding the breakout management mechanism from SoHC into

SoDSA is also considered.

To see if performance can be increased for the SoDSA by having an adaptive  P

value, a version of SoDSA can be created with an adaptive p value based on a simple rule

and then tested on the same set of randomly generated DisACSPs.  The main objective of

implementing this adaptive P value is to keep the search from stagnating or remaining in

one location too long due to the low probability of change and to try and mimic the

behavior of dBA and SoHC, to a certain extent, they are known to perform well.  So, for

this test, simply let P equal the inverse of the number of agents currently in a constraint

conflict.  This guarantees that, on average, at least one agent will change its value every

iteration, even when only one agent is in a constraint conflict.  This effectively makes

DSA behave similarly to dBA.  The P value is updated every iteration after the number of

conflicts are communicated.  For a population, every distributed individual possesses its

own P value.  For comparison, the results from SoDSA with a fixed P value of 0.5 were

arbitrarily selected.  The percentage of problems solved can be seen in Table 4.104.

The results  show that  adaptive  SoDSA (ASoDSA)  can only,  at  best,  match the

performance of the SoDSA with a fixed  P value.  At a problem tightness of 0.05, the

SoDSA with fixed P value performs significantly better than ASoDSA at all population
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sizes.  Table 4.105 shows the average number of iterations needed to find a solution and

further reinforces the performance edge of the fixed SoDSA.  With the exception of when

the  problem tightness  is  0.01  and  the  population  size  is  greater  than  2,  SoDSA is

significantly faster than ASoDSA when it comes to finding a solution.

The adaptive P value becomes both an advantage and a disadvantage to ASoDSA.

Near the end of the search, when the number of agents in conflict is relatively small,

ASoDSA will converge or move around much faster than the standard SoDSA, since at

least 1 agent will change its value each iteration.  However, the way selected to adapt the
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Table 4.104. Comparison of Adaptive SoDSA and Fixed SoDSA (p=0.5)

Table 4.105. Comparison of Average Number of Iterations to Solve a problem
between Adaptive-SoDSA and fixed SoDSA (p=0.5)

Population Size
Tightness 1 2 4 8 16 32

0.01
Adaptive 99.78 100.00 100.00 100.00 100.00 100.00

Fixed 99.67 100.00 100.00 100.00 100.00 100.00

0.02
Adaptive 89.67 99.11 100.00 100.00 100.00 100.00

Fixed 91.50 98.87 100.00 100.00 100.00 100.00

0.03
Adaptive 67.00 88.22 98.33 100.00 100.00 100.00

Fixed 65.20 88.53 98.63 100.00 100.00 100.00

0.04
Adaptive 36.78 55.11 80.00 94.67 99.44 99.78

Fixed 41.43 62.93 84.03 96.43 99.67 100.00

0.05
Adaptive 2.22 4.00 8.56 11.78 20.56 30.22

Fixed 9.13 11.43 15.47 20.57 28.83 31.93

0.06
Adaptive 0.00 0.11 0.00 0.22 0.44 0.56

Fixed 0.07 0.07 0.10 0.13 0.30 0.53

Population Size
Tightness 1 2 4 8 16 32

0.01
Adaptive 11.14 4.90 3.56 2.74 2.07 1.58

Fixed 12.12 4.32 3.61 3.06 2.65 2.34

0.02
Adaptive 222.85 32.30 11.87 9.61 8.10 6.89

Fixed 179.85 30.92 6.69 5.58 4.85 4.33

0.03
Adaptive 700.13 275.42 67.04 25.08 20.48 17.36

Fixed 717.31 254.15 44.86 11.90 9.30 7.84

0.04
Adaptive 1450.11 1160.72 706.15 379.65 172.75 108.18

Fixed 1271.45 879.46 467.86 188.22 74.11 38.85

0.05
Adaptive 1977.89 1962.34 1909.23 1871.73 1767.32 1629.25

Fixed 1844.81 1816.42 1772.94 1697.64 1588.93 1569.27

0.06
Adaptive 2000.00 1998.71 2000.00 1997.84 1995.67 1994.79

Fixed 1999.61 1999.23 1998.65 1998.49 1998.12 1996.00



P value  also  effectively  impacts  the  amount  of  exploration  that  can  be  performed

compared to  the fixed  P value implementation.   The inability  for  multiple agents  to

change their values slows down the search at the beginning, which is why for easier

problems the standard SoDSA is faster at finding a solution.  For slightly harder problems

(tightness  of  0.04),  the  adaptive  P value  creates  a  situation  that  is  the  opposite  of

expectations.  

The way the P value is adapted effectively turns DSA into a simple hill-climber in

the average case.  This means that it will lock onto a gradient towards the closest local

optimum and go straight towards it.  Then, once the search progresses beyond the point

where the number of agents in conflict reduces to a certain level, there is no way for the

ASoDSA to escape the local optimum.  Consequently, for an ASoDSA, each dCS will

shoot for the closest local optimum and effectively get stuck there.  For the standard

SoDSA, the ability for multiple agents to change their values simultaneously means that

it has a higher probability of avoiding this result, although ultimately the search will end

in the same way.   The result is that the standard SoDSA has a higher probability of

finding a local optimum that is the global optimum, when compared to ASoDSA.

The next question therefore becomes whether a breakout list will help improve the

performance of SoDSA and ASoDSA, since this implementation of ASoDSA seems to

have run into the same problem many iterative improvement algorithms suffer from of

being trapped at a local optimum.  The addition of a breakout list would also mean that

the distributed individuals will actually share some information about the search space

instead of searching independently.   The testing is primarily focused on problems of
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tightness 0.04 to 0.06, as these problems are hard enough for a breakout list to make a

difference.

Tables 4.106 and 4.107 show the results from the test runs on standard SoDSA with

and without a breakout list.  Statistical analysis was performed on the results to determine

if the differences were significant, but the differences between SoDSA with and without a

breakout list were not statistically significant except for when the problem tightness was

0.06  and the  population  size  16  and  32.   In  the  two exception  cases,  SoDSA with

breakout performed better.  However, in general, the performance remained unchanged.

Moving on to the performance differences between ASoDSA with and without a

breakout list, the results are shown in Tables 4.108 and 4.109.  The differences between

the performances are even closer than the differences between SoDSA with and without

breakout.   Statistically,  adding  a  breakout  list  does  not  change  the performance  of

ASoDSA.
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Table 4.106. Comparison of SoDSA, with and without a breakout list, over the
percentage of problems solved within 2000 iterations with p=0.5

Table 4.107. Comparison of SoDSA, with and without a breakout list, over the
average number of cycles to solve a problem with p=0.5

Population Size
Tightness BreakOut 1 2 4 8 16 32

0.04
With 37.33 60.11 82.33 93.00 98.67 99.78

Without 41.43 62.93 84.03 96.43 99.67 100.00

0.05
With 4.22 9.22 15.33 22.89 31.22 35.78

Without 9.13 11.43 15.47 20.57 28.83 31.93

0.06
With 0.11 0.00 0.00 0.33 1.44 1.89

Without 0.07 0.07 0.10 0.13 0.30 0.53

Population Size
Tightness BreakOut 1 2 4 8 16 32

0.04
With 1346.12 939.17 497.04 254.20 96.18 46.99

Without 1271.45 879.46 467.86 188.22 74.11 38.85

0.05
With 1954.93 1898.81 1822.47 1711.27 1579.58 1450.77

Without 1844.81 1816.42 1772.94 1697.64 1588.93 1569.27

0.06
With 1999.22 2000.00 2000.00 1995.77 1983.01 1976.06

Without 1999.61 1999.23 1998.65 1998.49 1998.12 1996.00



The reason a breakout list does not significantly improve the performance of DSA

(SoDSA) is due to the way DSA chooses the agent to change its value, especially at local

optima.  Unlike mdBA, which supports “sliding,” the DSA only allows agents in conflicts

to change.  Because DSA is designed to actively reduce and resolve conflicts, a behavior

similar  to  thrashing  in  backtrack  algorithms  can  occur,  especially  when  solving

DisACSPs.  Because an agent in a constraint conflict can only actively try to change its

own value to resolve it, a situation may occur where the value assignment of agent Xi is

creating conflicts with other agents, but locally it sees no conflict as the constraints are

asymmetric.  Thus, the other agents try to resolve the conflicts among themselves until

either they find a solution or a value assignment in another agent triggers a constraint

conflict in  Xi, which finally causes it to change its value and resolve other outstanding

constraint conflicts.  This is less likely to happen for a mdBA, as agent Xi has a chance of

changing its value whenever the search hits a local optimum.  Because of the difference
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Table 4.108. Comparison of ASoDSA, with and without a breakout list, over the
percentage of problems solved within 2000 iterations with p=0.5

Table 4.109. Comparison of ASoDSA, with and without a breakout list, over the
average number of cycles to solve a problem with p=0.5

Population Size
Tightness BreakOut 1 2 4 8 16 32

0.04
With 40.67 64.89 81.67 92.11 96.78 99.11

Without 36.78 55.11 80.00 94.67 99.44 99.78

0.05
With 2.22 2.78 8.22 11.44 17.44 25.00

Without 2.22 4.00 8.56 11.78 20.56 30.22

0.06
With 0.11 0.00 0.00 0.11 0.56 0.78

Without 0.00 0.11 0.00 0.22 0.44 0.56

Population Size
Tightness BreakOut 1 2 4 8 16 32

0.04
With 1387.54 1004.09 674.11 387.92 220.09 119.33

Without 1450.11 1160.72 706.15 379.65 172.75 108.18

0.05
With 1979.11 1971.63 1908.31 1874.20 1788.28 1684.05

Without 1977.89 1962.34 1909.23 1871.73 1767.32 1629.25

0.06
With 1998.89 2000.00 2000.00 1998.70 1992.04 1995.38

Without 2000.00 1998.71 2000.00 1997.84 1995.67 1994.79



in behavior at a local optimum, the breakout list has less of an affect or no affect on the

performance of DSA/SoDSA than it does for mdBA/SoHC.

Though there are many other ways of modifying and utilizing the breakout list and

the adaptive P value that could potentially improve the performance of DSA and SoDSA,

it is beyond the scope of this research, which is more concerned with the implementation

of genetic and evolutionary operators. 
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CHAPTER 5

THE SENSOR NETWORK

5.1. Introduction

This chapter, presents the sensor network and its architecture.  Some issues related

to the usage and implementation of a sensor network, like energy efficiency [1, 11, 25,

44, 71, 81, 104, 128, 138, 149, 163, 178] and packet routing [1, 11, 12, 68, 71, 138, 150,

151, 175, 178],  will also be discussed.  The sensor network tracking [3, 7, 30, 46, 87, 99,

132] and sharing problems [38] will then be stated in greater detail.  

  

5.2. A Sensor Network 

A sensor network can best be described as a collection of wirelessly connected, low

cost  pods  containing  various  sensing  devices  that  can  be  deployed  over  a specific

geographical region for any number of purposes [1, 11, 151, 176].  Examples of sensor

network applications include monitoring small localized changes in the environment [1,

11, 151, 176], target tracking [3, 7, 30, 46, 87, 99, 132, 176], and general data collection

[1, 11, 151, 176].  A sensor network, as a tool, is scalable, robust, and can be highly

efficient [1, 11, 151, 176].

Each sensor pod within the sensor network usually contains a wireless transceiver,

multiple sensors, and some sort of power supply [1, 11, 151, 176].  This simplicity of
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construction makes them small and low in cost.  However, this also limits the tasks they

can  perform.   Individually,  each  pod  cannot  collect  much  data,  but  as  a  collective

network, the sensor network can collect large amounts of fine grain data as sensor pods

are usually densely deployed [1, 11, 151, 176].  Pods communicate through the use of

wireless  communication,  primarily  broadcasting  [1,  11,  151,  176].   All  data  that  is

collected is forwarded from one pod to the next until it reaches the sink or base station,

set up to collect and analyze all the information.  

The  sensor  network's  scalability  comes  from  the  fact  that  pods  can  be  added

indefinitely to further increase the granularity of the data collected.  The density of pods

and the use of data forwarding makes the network robust and tolerant to pod failures,

which usually occur frequently due to possible mechanical or power failure.  The hopping

of data from one pod to the next instead of sending information directly to the base

station is much more power efficient [1, 11, 25, 68, 151, 176], as the power requirement

for  sending  data  directly  from  one  node  to  another,  without  going  through any

intermediate nodes, increases exponentially in relation to the physical distance between

the two nodes.

The study of sensor networks is currently a promising field of research because of

the potential it offers as a tool and the various issues that arise from its applications [176].

The problems range from the implementation  of  software  to  the construction  of  the

hardware.  There are power issues [1, 11, 25, 44, 71, 81, 104, 128, 138, 149, 163, 178],

networking issues [1, 11, 12, 100, 119, 128, 140, 155, 161, 176, 177, 178], and, more

practically, issues involved with adapting it for specific applications [176].  This research

focuses on  problems that arise at the application layer pertaining to the software that runs
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on the  sensor  network.   Software  solutions  to  the  sensor  network  sharing  [38]  and

tracking [3, 7, 30, 46, 87, 99, 130, 176]  problems will be explored using the new genetic

and evolutionary protocols.

5.3. Sensor Network Issues

Power is the primary constraint limiting a sensor network [1, 11, 151, 176].  Since

each sensor pod usually carries nothing more than a battery with a fixed life span, the

problem has been how to conserve energy while maintaining an acceptable performance.

The single most power consuming task a sensor pod needs to perform is communication

[1, 11, 151, 176], and topology and connectivity are the two primary factors affecting

power consumption for communication [100, 119, 128, 155, 160, 178].

The problem of minimizing power use for communication can be solved by reducing

the effective communication radius [155] of the pod and/or reducing the amount of traffic

passing through the pod. Though reducing the communication radius is an effective way

of reducing power consumption, there is the concern of losing network connectivity.  The

fear is that one pod failure may sever communications between a group of pods and the

base station.  Also, a pod whose failure will cause the network to lose connectivity will

also be inherently more prone to failure, as more traffic will pass through it to reach the

base station.  These concerns make the problem of finding an energy efficient topology,

that minimizes the power requirement for sending a packet between any two given nodes

in the network nontrivial.  It has also been shown that such a topology will be a minimum

spanning tree and thus is an NP-hard problem [68].
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Broadcasting is not the most energy efficient way of communicating data [1, 11,

151, 176] as the amount of packet traffic generated is O(n2), which is why various other

routing methods have been devised for more energy efficient routing.  These methods

include direct diffusion [1, 11, 151, 176] and rumor routing [1, 11, 151, 176].  The two

main strategies either call for a pod to ignore a packet completely if the pod is not on the

packet's  direct/established  path  towards  the  base  station,  or  require  it  to  aggregate

information from multiple incoming packets into a single outgoing packet to reduce the

number of active packets while ensuring the same amount of information is propagated.

5.4. The Sensor Tracking Problem

The tracking of mobile objects with a sensor network is a fundamental application

[176].  Though this is often approached as a sensor network problem [3, 7, 30, 46, 87, 99,

130, 176], here it will be examined from a distributed CSP point of view, as formalized

by Bejar et al [7], who referred to it as SensorCSP.  

The  sensor  tracking  problem involves  the  monitoring  and  following  of  moving

targets within the coverage area by a network of stationary autonomous sensing devices

[7, 108, 176].  Each sensor pod has a Doppler radar that is only capable of detecting

relative distance and the general direction of a target from itself [108].  Thus,  k sensor

pods must work together and share distance and relative direction information to be able

to triangulate and accurately pinpoint the actual position of the target.  To effectively

track a target, k of all sensor pods that can detect the target must be assigned to follow the

target,  but  at  the  same  time,  these  k sensor  pods  must  also  be  able  to  directly

communicate with each other to share the relative position data [7, 108].  A target is said
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to be  k-trackable [7],  if,  out of all the pods that are able to detect it,  k pods that are

capable of direct communication can be assigned to track it.

The sensor tracking problem is a distributed resource allocation problem, since the

data that is collected about the target is distributed among multiple sensor pods.  Along

with resource requirements to accurately track an object, there are also communication

constraints among sensors.  Bejar et al [7] showed that the SensorCSP formulation of the

sensor tracking problem is NP-complete and suggested the use of distributed CSP solvers

such as asynchronous backtracking or distributed backtracking [7] to solve it.

To  further  illustrate  the sensor  tracking problem,  Figure  5.1 presents  a tracking

scenario.  The figure shows a total of 9 sensor pods and lines are used to represent the

communication links between the pods.  Note that not all pods can communicate directly

with  each  other.   Assuming  that  the  sensing  distance  of  a  pod  is  equivalent  to  its

communication distance, target A can then be detected by pods 4, 5, 7, and 8, while target

B can be detected by pods 1, 2, 4, and 5.  If 4 sensor pods must be able to detect a target

and  directly  communicate  with  each  other  in  order  to  properly  track  a  target  (a  4-

trackable configuration), then a problem arises where targets A and B cannot be tracked

simultaneously.  However, if a 3-trackable solution is all that is needed, then a possible

solution would have target A tracked by pods 5, 7, and 8 and target B tracked by pods 1,

2, and 4.

This research focuses on solving a specific version of the SensorCSP problem where

targets need to be 3-trackable using the new evolutionary and genetic protocols.  For

testing purposes, assume that all sensors have perfect visibility and can detect anything

within  their  area  of  deployment.   Whether  two  pods  can  directly  communicate  is
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randomly determined based on a set communication density.  The actual implementation

and the results obtained will be presented in the next chapter.

5.5. The Sensor Sharing Problem

In  general,  there  are  three  models  for  sensor  network  operations  [150],  namely

continuous,  event-driven, and user-initiated.   A sensor  network under the continuous

model will start collecting data as soon as it is deployed and continue until all pods fail.

An event-driven sensor network will idle until a specific phenomenon occurs or condition

is  met.   At  this point,  the network starts collecting information until  the event  ends

(sensor tracking).  A user-initiated sensor network will idle until a user manually starts

the data collection process and will continue collecting data until the user tells it to stop.

The sensor network sharing problem arises from a user-initiated model.  

The sensor network sharing problem [38] involves the allocation of limited sensor

resources to satisfy as many user  requests  for sensors as possible.   Each sensor pod

contains m different sensors and is capable of turning on or off any one of the m sensors.
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However, to reduce power consumption of the individual pods, assume that only one of

the m sensors can be turned on in a sensor pod at any given time.  Thus, users can request

up to n sensors from the sensor network to collect data, where n is the number of pods in

the network  [25].   Each request  will  also  have  a  time value  associated  with  it  that

specifies how much sensor time must be allocated to the request to completely satisfy it.

When a user places a request for x sensors, the network would then need to assign x pods

to have the specified sensors turned on [38].  In addition to satisfying the user's sensor

needs, the network must also satisfy sensor constraints in the form of internal allocation

policies of each pod [38].  As more users make requests (and old requests are completed),

the network will need to dynamically reassign sensors among pods so as to satisfy as

many user requests as possible while not violating any of the internal allocation policies

of the sensor pods.  

For  example,  assume a sensor  network  with  nine sensor  pods,  where each pod

carries  the same three types  of  sensor.   When there  are  no outstanding  requests  for

sensors, all pods are inactive and all the sensors are turned off.  When a user makes a

request for sensors, the request is broadcast from the sink to all the pods in the network.

Upon reception of the request, the pods will  “wake up” and negotiate a set of sensor

assignments to satisfy the requests.  Since each pod can only have one sensor active at

any given time, with a sensor network of nine pods, a maximum of nine sensors can be

requested by a user.  A request for sensors  made by a user can be represented by a sensor

request vector, where the number of components of the vector is equivalent to the number

of  types  of  sensors  that  are  available,  m.   Each  component  of  the  vector  will  then

represent the number of sensors of that specific type required.  So, a vector of <1, 3, 0>
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represents a request for 1 sensor of type 1, 3 sensors of type 2 and none of type 3.  To

satisfy this sensor request vector, a total of four sensor pods must become active and turn

on the proper sensor.  Along with the sensor request vector, each request also contains a

duration value, t, which specifies how long the sensor(s) requested must stay turned on.

Assuming that t = 10, the full user request here would then be {<1, 3, 0>, 10}.  Once the

sensor and duration requirements are met, the request completes and expires.  If there are

no more requests active, then all sensor pods return to their original inactive state.  Since

there are only nine sensors pods, a sensor request like <5, 2, 3> cannot be accepted.

One of the benefits of a user-initiated sensor network is its inherently longer life

span.  When there are no user requests for resources, the entire network remains dormant,

thus requiring each pod to expend little  to no power.   Once a request  is  issued, the

network wakes up and the pods negotiate a means of satisfying the request.  When a set

of sensor assignments that satisfies the request is found, the rest of the podswho are not

assigned to have an active sensor can once again idle.  This is true mainly for those not

on the forwarding path of data from the active pods to the sink.  

The sensor sharing problem can be seen as a general form of the sensor tracking

problem.  Instead of tracking specific targets, the sharing problem involves the allocation

of sensor resources for more general purposes.  Similarly, the sensor sharing problem can

also be modelled as a DisCSP.
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CHAPTER 6

THE SENSOR TRACKING PROBLEM

6.1. Introduction

This chapter presents the implementation and testing of the sensor tracking problem.

Specifically, the genetic and evolutionary protocols are tested by using them to solve the

3-trackable problem.  For comparison, the modified DSA and the DSA based GEPs from

Chapter 4 will  also be used.  Before the results are presented, it is first necessary to

discuss  the  details  of  the  implementation,  the  mapping  of  genetic  and  evolutionary

protocols to the problem, and the testing methodology.

6.2. Problem Implementation

The details  of the sensor tracking problem have been discussed several  times in

previous chapters.  Here, the focus is on the details of the implementation, along with the

assumptions made for the testing of the GEPs.

As mentioned in the previous chapter, the sensor tracking problem is treated as a

DisCSP, as formulated by Bejar [7].  The first assumption is that all the pods are capable

of detecting everything within their region of deployment.  However, though pods have

perfect visibility,  direct communication between pods is not guaranteed.  As with the

asymmetric constraints used in Chapter 4, the communication between pods will also be

asymmetric.  Given two pods A and B, they can directly communicate with each other if,
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and  only  if,  A can  communicate  with  B and  B can  communicate  with  A.   The

communication arcs used to determine whether pods can communicate will be generated

based on an arc density, which is equivalent to the constraint density used in Chapter 4.  

When a pod is not tracking a target, its radar will be switched to the off state to

conserve energy.  To accommodate this, the value 0 is reserved in the variable domain to

represent the off  state.  The values in a variable's  domain will  thus represent  the ID

number of the target currently being tracked.  So, with a domain size of 6, excluding 0,

the network as a whole can track up to 6 targets simultaneously.

6.3. The Targets

Since all the sensor pods are assumed to have perfect visibility, where the virtual

target is placed physically is not considered.  It  is assumed that the target is inserted

within the region of deployment of the sensor network.  The targets will appear at fixed

intervals and will remain until they have been tracked for a specified amount of time.

The arrival time between targets and the tracking time required for each target are varied.

Note  that  a  target  is  being  tracked  if,  and  only  if,  exactly  3  pods that  can  directly

communicate with each other are assigned to monitor it.

6.4. Theoretical Analysis

Since  the  question  of  whether  two  pods  can  communicate  with  each other  is

determined probabilistically by a communication density, there exists a communication

density at which there is no possible configuration by which a target can be successfully

tracked.  Similar to the way the phase transition is calculated for the general randomly
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generated DisACSP, the process starts by estimating the number of possible solutions, S.

For only one target that must be 3-trackable, the number of possible ways of tracking this

target with n sensor pods, assuming all pods can directly communicate with each other,

would be:

S=Cn,3=
n!

3! n�3!
(6.3.1)

This, however, does not take into consideration the probability that two pods may not be

able to communicate with each other.  Assuming that the probability that any pod A can

communicate with pod B is α and assuming that this communication is asymmetric, the

probability of having 3 pods that can directly communicate with each other is  α3⋅3�1 .

Note that  if  the communication links  between pods were  to  be symmetric,  then the

probability would instead be  α
3⋅3�1 /2

.  Combining this with 6.3.1 gives the expected

number of ways to track a target  with exactly 3 sensor pods, with the probability of

communication between two pods being α.

S=Cn,3α
33�1=

n!
3! n�3!

⋅α6
    (6.3.2)

Based on 6.3.2, this can then be extended to cover the case where instead of one target,

two targets need to be tracked.  Once again, the communication density is ignored.  If all

pods can directly communicate with each other, then the number of ways to track two

targets in a 3-trackable configuration with n sensor pods is:

S=Cn, 3⋅Cn�3,3 (6.3.3)

Next, again consider the communication density.  The formulation of 6.3.2 reveals that

the probability of any set of three randomly chosen pods being able to communicate

directly  with  each  other  is  α6 ,  where  α is  the  probability  that  pod  A can  directly
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communicate with pod  B.  So, to obtain the average number of configurations,  S, for

tracking two targets in a 3-trackable manner, α
6  must be factored in for every three pods

chosen, giving the following:

S=Cn,3α
6⋅Cn�3,3α

6=
n!

3! 3! n�6!
α

12
      (6.3.4)

Based on 6.3.2 and 6.3.4,  it  is  then possible to deduce that  the expected number of

solutions, S, for tracking x targets with n sensors pods and a communication density of α,

in a k-trackable configuration is as follows:

S=
n!

k !x [n� x⋅k ]!
α

x⋅k⋅k�1
(6.3.5)

 Based on 6.3.5, the communication density at which there is only one expected feasible

solution would be:

α=[ n!
k ! ! [n� x⋅k  ]! ]

�1
x⋅k⋅k�1

(6.3.6)

Equation 6.3.6 predicts that the communication density at which the problem is toughest

for  tracking  10  targets  in  a  sensor  network  of  30  sensor  pods  and  in  a  3-trackable

configuration is around 0.388.  This will be supported by the test results presented next.

6.5. Test Method

A total of 30 sensor pods were used to test the sensor tracking problem.  Since the

focus here is on the 3-trackable problem and 30 sensors pods can track a maximum of 10

targets, the domain size was therefore increased from the previous size of 6 to 10.  The

communication arc density varied between [0.4, 1.0] and the arc was generated using the

same method as the random DisACPs in Chapter 4, with the exception that the constraint

tightness was 0 and the constraint density was equal to the arc density.
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The virtual targets were inserted into the network at fixed intervals and each had a

specific life span.  The time unit used was the cycles/iterations of the algorithm being

executed.   The target  drop interval  used for  testing was  {1,  2,  5}, so,  a new target

appeared every 1, 2,  or 5 iterations.   The amount of time that a target  needed to be

tracked also varied and was set to either {10, 50, 200}, which specifies the number of

iterations  that  a  target  needed  to  be  successfully  tracked  before  disappearing.   The

protocols being tested ran a total of 1000 iterations.  

Based on the differing combinations of arrival times and life spans, it was possible

for more than 10 targets to be inserted into the network.  In such cases, it was assumed

that the first 10 targets in the queue would be active while the rest were on standby, in the

queue.  Thus, queuing time was also being meassured, and was intended to be as short as

possible.  Given the presence of queuing, the insertion of targets into a network becomes

similar to placing a explicit tracking request into the network.  Thus, the number of target

tracking requests that could be satisfied during the 1000 iteration execution time also

serves as a very important metric.

The thrid metric that was measured and collected was the number of stable cycles

within the 1000 iterations.  A stable cycle is defined as one where all active targets (up to

10) are being tracked successfully.  This also implies that any two sensor pods that are

assigned to track the same target will be able to directly communicate with each other.  A

stable cycle has the benefit of saving energy as no reconfiguration or reassignment of

sensor pods needs to be performed.  Ideally, a reassignment of tracking tasks should only

occur  when  either  a  new  target  becomes  active  or  when  an  active  target  has  been

satisfied.  
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The  protocols  and  algorithms  that  were  tested  on  the  sensor  tracking  problem

included the dBA based GEPs, SoHC, SoDSA, and DSA based GEPs.  The population

size  was  set  to  32,  as  this  gave  the best  results.   For  the genetic  and evolutionary

operators used, the settings for crossover and mutation rates were the same as those used

in Chapter 4.  For the DSA and DSA based GEPs,  p was set to 0.1 as this permits no

more than 3 agents to change their value each iteration.

6.6. Results

The results from using SoHC on the sensor tracking problem are presented in

Table 6.1.  As expected, when the communication density drops, the number of stable

cycles  decreases,  the average queue time for  a request  increases,  and the number of

satisfied tracking requests decreases.  The ideal number (maximum number) of stable

cycles,  average  queue  time  and  number  of  requests  satisfied  are  also  included  as

reference metrics for the performance.  The maximum number of stable cycles is based

on the ideal  assumption that  each  new tracking  request  can  be resolved in  a  single

iteration.  Based on the fact that the sensors are target agnostic, as long as the number of

targets  that  need  tracking  stays  the  same,  the  network  requires  no  reconfiguration.

Consequently,  the ideal  number of  stable cycles  is  simply  1000�[MIN 10,T L/T A] ,

where TL represents the life span of a target and TA is the arrival interval for the requests.

The minimum average queue time is simply the interval between each new request, while

the number of requests satisfied is also a function of TL.  

For the parameter settings that eventually have at least 10 (the maximum) tracking

tasks in the queue, the number of stable cycles is fairly similar.  Since any set of sensors
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can track any target, once a stable configuration is found swapping out one target for

another will not affect the stability of the network as this does not require a reassignment

of tracking tasks.  As the results show, however, this is only true for parameters that have

a life span to arrival time ratio of 10 or above.  The number of total iterations subtracted

by the maximum number of possible stable cycles gives the average number of iterations

needed to set up the initial configuration for tracking the maximum 10 targets with the

network.  So, for SoHC, at a communication density of 1.0 it takes about 20 iterations to

find a stable configuration to track 10 targets.  At a communication density of 0.8, the

number of iterations increases to around 60, while at 0.6, the number of iterations varies

from 300 – 400 iterations.  Approaching the point where only one feasible solution is

expected at a communication density of around 0.388, SoHC is unable to maintain a

stable cycle except for when the average number of active targets in the queue drops

below 10.  This supports the previous prediction that the hard problems will be when the

communication  density  gets  close  to  0.388.   It  should  be  noted  that,  based  on  the

definition of a stable cycle, not being able to maintain a stable cycle does not mean that

no 3-trackable configuration for a target exists.  Rather, it implies that no 3-trackable

configuration  can  be  found  such  that  the  current  set  of  targets  can  be  tracked

simultaneously.

The parameter setting with the worst performance, in terms of stable cycles, is when

the arrival intervals of the targets is 2 iterations and the targets have a life span of 10

iterations.  The low number of stable cycles is due to the constant need to reconfigure

sensor assignments.  Since SoHC is only able to change the assignment of one agent in

any given iteration, this implies that it would take at least 3 iterations to find a 3-trackable
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configuration for any target.  This, in combination with the arrival interval of the targets

and their life spans, creates a situation where for the majority of the 1000 iterations, the

number of targets that must be tracked fluctuates between 5 to 8.  The constant need to

reassign  a  sensor  creates  the  large  number  of  unstable  cycles.   In  contrast,  for  the

parameter setting with arrival intervals of 5 and life spans of 10,  the number of targets

being tracked at  any given  time is  much fewer  and more  constant,  which  makes  it

possible to maintain a much larger number of stable cycles.

The results of applying the GEPs (GSoHC and ESoHC) to the tracking problem

using the same parameters are shown in Tables 6.2 and 6.3.  As seen in Chapter 4, on

randomly generated DisACSPs, ESoHC is able to find solutions faster  than GSoHC,

which in turn is faster than SoHC.  The same trend is seen here for the number of stable

cycles.  ESoHC is able to maintain a higher number of stable cycles since it is able to find
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Table 6.1. Results of SoHC on the Sensor Tracking Problem over all parameter
settings

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
0.4 0.00 0.00 0.00 0.06 0.00 0.00 280.85 1.23 1.23
0.6 640.38 606.18 623.83 561.52 673.30 597.71 933.68 643.32 640.75
0.8 931.00 932.51 932.65 645.14 931.85 932.09 977.89 929.44 930.52
1.0 970.97 970.96 970.96 724.63 970.96 970.97 989.00 970.97 970.96

Ideal 990.00 990.00 990.00 995.00 990.00 990.00 998.00 990.00 990.00
Average Queue Time

0.4 42.96 221.68 759.35 44.22 227.04 760.21 42.69 217.95 727.70
0.6 11.44 58.23 231.49 11.98 56.25 232.83 10.35 56.34 226.83
0.8 10.28 51.41 206.62 10.63 51.10 205.19 10.07 50.63 202.92
1.0 10.15 50.78 203.72 10.23 50.45 202.12 10.04 50.15 200.72

Ideal 10.00 50.00 200.00 10.00 50.00 200.00 10.00 50.00 200.00
Requests Satisfied

0.4 247.68 42.95 7.04 242.09 41.96 6.62 177.25 45.15 7.78
0.6 869.75 167.86 39.02 495.84 172.18 38.68 199.00 169.88 39.20
0.8 963.83 189.44 40.00 495.85 189.47 40.00 198.99 187.68 40.00
1.0 975.76 190.00 40.00 495.86 190.00 40.00 199.00 190.00 40.00

Ideal 990.00 190.00 40.00 499.00 190.00 40.00 199.00 190.00 40.00



a solution faster.  However, the results for a communication density of 0.4 reveal that

SoHC actually performs better in terms of the average queue time and number of requests

satisfied.  The reason for this lies in the issue of population diversity.  SoHC has a more

diverse population than either ESoHC or GSoHC.  The use of genetic and evolutionary

operators, due to their emphasis on exploitation, causes half the population to be largely

focused around a single solution.  This becomes a problem when a different solution

needs to be found.  For the GEPs, their population is not as diverse, especially when a

solution is found, which makes it difficult for GEPs to move from the previous solution

to a new one as fast  when the requirements change.  SoHC, however,  with its more

diverse population is not as prone to this weakness.

A closer look at the performance of SoHC and the GEPs at a communication density

of 0.4 in Table 6.4, reveals some interesting results.  The differences in the number of

stable  cycles  for  the  three  algorithms  are  either  non-existant or  not  statistically

significant, with the exception of the parameter setting for arrival interval and life span of

(5, 10), which is the simplest of all the parameter settings.  At a setting of (5, 10) ESoHC

has an edge due to its  ability to quickly find a solution.   GSoHC does not perform

significantly worse than ESoHC and is much more stable than SoHC.

When comparing the average queuing time for tracking tasks, GSoHC is only able to

perform significantly better on the easiest problem setting.  In general, the performance

of GSoHC improves as the life span of a target  increases and its performance when

targets have a life span of 200 iterations is statistically similar to the performance of

SoHC.  Overall,  because ESoHC is still  able to quickly find a solution when one is

needed, it is able to effectively reduce queuing time for new targets.  The performance of
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Table 6.2. Results of GSoHC on the Sensor Tracking Problem over all parameter
settings

Table 6.3. Results of ESoHC on the Sensor Tracking Problem over all parameter
settings

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
0.4 0.00 0.00 0.00 2.76 0.00 0.00 451.29 0.77 0.75
0.6 661.87 699.16 697.00 635.58 698.59 694.63 943.46 672.62 682.82
0.8 944.64 944.13 945.28 746.10 942.43 942.65 980.91 936.02 932.93
1.0 979.85 980.03 979.92 641.67 974.96 974.95 989.85 972.24 972.21

Ideal 990.00 990.00 990.00 995.00 990.00 990.00 998.00 990.00 990.00
Average Queue Time

0.4 50.62 240.74 756.35 49.90 252.97 742.24 33.74 233.73 692.59
0.6 11.45 56.37 228.16 12.09 56.26 226.85 10.38 55.82 224.50
0.8 10.21 51.09 205.07 10.52 50.94 204.43 10.06 50.56 202.85
1.0 10.08 50.40 201.91 10.24 50.27 201.28 10.04 50.15 200.70

Ideal 10.00 50.00 200.00 10.00 50.00 200.00 10.00 50.00 200.00
Requests Satisfied

0.4 209.82 40.33 6.36 223.36 37.62 6.52 183.07 40.97 7.39
0.6 870.22 172.51 39.61 495.95 171.98 39.65 199.00 171.16 39.35
0.8 970.33 189.90 40.00 495.93 189.84 40.00 199.00 187.97 40.00
1.0 983.44 190.00 40.00 495.78 190.00 40.00 199.00 190.00 40.00

Ideal 990.00 190.00 40.00 499.00 190.00 40.00 199.00 190.00 40.00

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
0.4 0.00 0.00 0.00 0.00 0.00 0.00 476.36 0.65 0.58
0.6 710.03 703.98 694.51 605.59 720.63 729.83 948.84 698.44 727.41
0.8 951.95 951.51 952.42 679.28 948.74 947.86 984.89 936.80 937.48
1.0 983.19 983.05 983.16 611.53 976.38 976.39 989.14 972.27 972.23

Ideal 990.00 990.00 990.00 995.00 990.00 990.00 998.00 990.00 990.00
Average Queue Time

0.4 46.06 217.59 684.06 42.61 218.80 659.24 46.06 204.99 629.64
0.6 11.20 56.20 227.52 11.78 55.63 223.28 11.20 55.19 219.89
0.8 10.18 50.92 204.31 10.48 50.81 203.86 10.18 50.54 202.50
1.0 10.05 50.29 201.34 10.25 50.21 201.03 10.05 50.15 200.69

Ideal 10.00 50.00 200.00 10.00 50.00 200.00 10.00 50.00 200.00
Requests Satisfied

0.4 230.51 41.54 6.66 237.71 40.57 7.48 185.89 44.50 7.23
0.6 886.19 173.12 39.52 495.88 173.96 39.86 199.00 173.09 39.86
0.8 973.65 189.96 40.00 495.85 189.95 40.00 199.00 188.12 40.00
1.0 985.42 190.00 40.00 495.78 190.00 40.00 199.00 190.00 40.00

Ideal 990.00 190.00 40.00 499.00 190.00 40.00 199.00 190.00 40.00



ESoHC is not statistically different from that of SoHC when a small life span is assigned

to  the  targets,  but  when  the  life  span  increases  to  200  iterations  ESoHC  becomes

significantly better than either SoHC or GSoHC.

When comparing the number of requests satisfied (targets successfully tracked for a

fixed number of iterations), SoHC performs slightly better than the other two methods,

with the exception, again, of when the problem is the easiest.  ESoHC is closely behind

SoHC, as their performances are statistically similar most of the time.  Consequently,

factoring in the number of stable cycles, the average queuing time, and the number of

requests satisfied in 1000 iterations, ESoHC and SoHC are both good choices as their

performances are statistically similar in many cases.

SoDSA,  GSoDSA,  and  ESoDSA  were  also  implemented  to  solve  the  tracking

problem.  The results are shown in Tables 6.5 to 6.7.  The value of p was chosen to be

0.1, since this would guarantee that no more than 3 agents will change their values at the

same time.  It  is  very  obvious that  this  problem is  not  easy for  the DSA variations.

SoDSA, GSoDSA, and ESoDSA barely keep up with the performance of SoHC, and the

GEPs at a communication density of 1.0.  As the communication density is reduced, the
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Table 6.4. Comparison of results for SoHC, GSoHC, and ESoHC at a
communication density of 0.4

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Stable Cycles
SoHC 0.00 0.00 0.00 0.06 0.00 0.00 280.85 1.23 1.23
GSoHC 0.00 0.00 0.00 2.76 0.00 0.00 451.29 0.77 0.75
ESoHC 0.00 0.00 0.00 0.00 0.00 0.00 476.36 0.65 0.58

Average Queue Time
SoHC 42.96 221.68 759.35 44.22 227.04 760.21 42.69 217.95 727.70
GSoHC 50.62 240.74 756.35 49.90 252.97 742.24 33.74 233.73 692.59
ESoHC 46.06 217.59 684.06 42.61 218.80 659.24 46.06 204.99 629.64

Requests Satisfied
SoHC 247.68 42.95 7.04 242.09 41.96 6.62 177.25 45.15 7.78
GSoHC 209.82 40.33 6.36 223.36 37.62 6.52 183.07 40.97 7.39
ESoHC 230.51 41.54 6.66 237.71 40.57 7.48 185.89 44.50 7.23



performance of the DSA variations all drop drastically.  Based on these results, it seems

that  the DSA variations  have trouble  holding onto even a  semi-stable  configuration,

especially when the communication density is less than 1.

Table  6.8  shows  a  comparison  of  the  3  DSA  and  DSA  based  GEPs  at a

communication density of 0.4.  The number of stable cycles is virtually identifical as

none of  the  algorithms could maintain  a stable  cycle.   For  the average  queue time,

ESoDSA gives the lowest average queue time for problem settings that result in at least

10 simultaneous target tracking tasks for the majority of the 1000 iteration test run.  For

the not-so-hard problem of targets arriving every 2 iterations and staying for 10 iterations,

GSoDSA achieves the lowest average queue time for the requests, while for the easiest

problem setting,  SoDSA performs  the best.   The results  for  the  number  of  requests

satisfied follows the same performance trend as the average queue time. These results
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Table 6.5. Results of SoDSA (p=0.1) on the Sensor Tracking Problem over all
parameter settings

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
0.6 0.00 0.00 0.00 0.01 0.00 0.00 0.70 0.15 0.20
0.8 14.94 14.53 22.95 0.87 12.68 19.37 824.74 21.51 24.45
1.0 957.09 956.53 955.29 664.93 954.16 954.59 963.56 949.28 950.04

Ideal 990.00 990.00 990.00 995.00 990.00 990.00 998.00 990.00 990.00
Average Queue Time

0.4 207.95 798.13 1000.00 215.66 821.16 1000.00 197.77 803.18 1000.00
0.6 51.13 264.64 904.09 54.73 263.96 896.94 52.65 258.53 891.98
0.8 20.30 100.32 400.53 20.52 101.44 403.10 11.24 100.59 398.10
1.0 10.17 50.86 204.21 10.25 50.77 203.63 10.05 50.71 203.27

Ideal 10.00 50.00 200.00 10.00 50.00 200.00 10.00 50.00 200.00
Requests Satisfied

0.4 44.97 5.84 0.00 44.60 4.49 0.00 49.00 4.91 0.00
0.6 190.98 32.76 3.70 177.98 32.60 3.89 177.09 32.90 3.50
0.8 489.50 94.70 20.37 473.93 93.19 20.17 199.00 93.07 20.21
1.0 974.85 189.99 40.00 495.86 189.99 40.00 199.00 188.33 40.00

Ideal 990.00 190.00 40.00 499.00 190.00 40.00 199.00 190.00 40.00
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Table 6.6. Results of GSoDSA (p=0.1) on the Sensor Tracking Problem over all
parameter settings

Table 6.7. Results of ESoDSA (p=0.1) on the Sensor Tracking Problem over all
parameter settings

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
0.6 0.00 0.00 0.00 0.01 0.01 0.01 4.21 0.19 0.16
0.8 18.05 27.29 20.51 0.84 20.00 21.71 826.76 14.01 21.63
1.0 956.02 956.30 956.73 660.22 953.93 953.33 964.54 949.87 948.82

Ideal 990.00 990.00 990.00 995.00 990.00 990.00 998.00 990.00 990.00
Average Queue Time

0.4 211.37 791.97 1000.00 195.70 827.33 1000.00 200.30 805.15 1000.00
0.6 51.44 263.63 899.26 52.54 268.30 896.85 52.48 261.53 888.21
0.8 20.29 100.56 400.63 20.53 100.08 400.26 11.20 100.21 405.92
1.0 10.17 50.87 204.06 10.25 50.78 203.74 10.05 50.70 203.37

Ideal 10.00 50.00 200.00 10.00 50.00 200.00 10.00 50.00 200.00
Requests Satisfied

0.4 45.78 5.40 0.00 49.23 4.69 0.00 46.83 5.06 0.00
0.6 189.27 32.92 3.96 186.64 32.21 4.02 176.62 32.47 4.07
0.8 490.29 95.14 20.35 474.09 94.83 20.30 199.00 93.01 19.81
1.0 974.41 189.99 40.00 495.85 189.98 40.00 199.00 188.38 40.00

Ideal 990.00 190.00 40.00 499.00 190.00 40.00 199.00 190.00 40.00

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01
0.6 0.00 0.00 0.00 0.01 0.01 0.01 22.41 0.26 0.23
0.8 20.98 22.96 28.56 2.63 12.11 21.58 904.81 17.87 25.25
1.0 961.53 962.31 961.79 807.63 955.44 954.64 985.84 945.85 946.23

Ideal 990.00 990.00 990.00 995.00 990.00 990.00 998.00 990.00 990.00
Average Queue Time

0.4 196.72 639.69 996.25 235.87 646.76 996.18 202.94 646.10 997.21
0.6 58.33 289.33 861.19 58.73 289.61 870.83 56.25 284.36 867.64
0.8 22.73 112.15 445.02 23.01 113.45 444.83 10.70 113.13 444.21
1.0 10.14 50.72 203.47 10.22 50.73 203.56 10.03 50.78 203.64

Ideal 10.00 50.00 200.00 10.00 50.00 200.00 10.00 50.00 200.00
Requests Satisfied

0.4 46.28 5.72 0.03 38.40 4.97 0.02 44.75 4.67 0.02
0.6 166.82 29.26 2.99 164.44 29.33 2.55 164.53 29.44 2.41
0.8 439.44 84.96 17.93 425.82 83.01 17.85 199.00 82.27 17.48
1.0 977.03 189.97 40.00 495.99 189.95 40.00 199.00 188.05 40.00

Ideal 990.00 190.00 40.00 499.00 190.00 40.00 199.00 190.00 40.00



show that the more dynamic the problem, the tougher it is for ESoDSA and the better it is

for GSoDSA.  They also show that SoDSA is still the better choice for easy problems.

A quick look at Table 6.9 which provides a direct comparison between the mdBA,

DSA, and the various GEPs shows that ESoHC and SoHC are still the best choices for

the problem.  As the table shows, the mdBA and dBA based GEPs are many times more

effective than the DSA and DSA based GEPs.  

6.7. Conclusion

These results show that ESoHC performs the best when it  comes to maintaining

stable  cycles,  as  it  is  able  to  find solutions  faster  than any of  the other  algorithms.

However,  SoHC may be a  better  choice  when  the communication density  nears  the

critical density, as it is able to satisfy more requests and reduces queue times better than

either ESoHC or GSoHC.  The DSA and DSA based GEPs were not able to perform as

well as either the SoHC or dBA based GEPs as they have difficulty maintaining a stable

solution when multiple agents are changing their values simultaneously.  
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Table 6.8. Comparison of SoDSA, GSoDSA, and ESoDSA at communication
density 0.4

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
SoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
GSoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
ESoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01

Average Queue Time
SoDSA 207.95 798.13 1000.00 215.66 821.16 1000.00 197.77 803.18 1000.00
GSoDSA 211.37 791.97 1000.00 195.70 827.33 1000.00 200.30 805.15 1000.00
ESoDSA 196.72 639.69 996.25 235.87 646.76 996.18 202.94 646.10 997.21

Requests Satisfied
SoDSA 44.97 5.84 0.00 44.60 4.49 0.00 49.00 4.91 0.00
GSoDSA 45.78 5.40 0.00 49.23 4.69 0.00 46.83 5.06 0.00
ESoDSA 46.28 5.72 0.03 38.40 4.97 0.02 44.75 4.67 0.02
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Table 6.9.  The Comparison of the six algorithms/protocols at communication
density 0.4 

Arrival interval 1 1 1 2 2 2 5 5 5
Life Span 10 50 200 10 50 200 10 50 200

Density Stable Cycles
SoHC 0.00 0.00 0.00 0.06 0.00 0.00 280.85 1.23 1.23
GSoHC 0.00 0.00 0.00 2.76 0.00 0.00 451.29 0.77 0.75
ESoHC 0.00 0.00 0.00 0.00 0.00 0.00 476.36 0.65 0.58
SoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
GSoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
ESoDSA 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01

Average Queue Time
SoHC 42.96 221.68 759.35 44.22 227.04 760.21 42.69 217.95 727.70
GSoHC 50.62 240.74 756.35 49.90 252.97 742.24 33.74 233.73 692.59
ESoHC 46.06 217.59 684.06 42.61 218.80 659.24 46.06 204.99 629.64
SoDSA 207.95 798.13 1000.00 215.66 821.16 1000.00 197.77 803.18 1000.00
GSoDSA 211.37 791.97 1000.00 195.70 827.33 1000.00 200.30 805.15 1000.00
ESoDSA 196.72 639.69 996.25 235.87 646.76 996.18 202.94 646.10 997.21

Requests Satisfied
SoHC 247.68 42.95 7.04 242.09 41.96 6.62 177.25 45.15 7.78
GSoHC 209.82 40.33 6.36 223.36 37.62 6.52 183.07 40.97 7.39
ESoHC 230.51 41.54 6.66 237.71 40.57 7.48 185.89 44.50 7.23
SoDSA 44.97 5.84 0.00 44.60 4.49 0.00 49.00 4.91 0.00
GSoDSA 45.78 5.40 0.00 49.23 4.69 0.00 46.83 5.06 0.00
ESoDSA 46.28 5.72 0.03 38.40 4.97 0.02 44.75 4.67 0.02



CHAPTER 7

THE SENSOR SHARING PROBLEM

7.1. Introduction

This  chapter,  discusses  the  implementation,  testing,  and  results for  the  sensor

sharing problem.  As before, the dBA based GEPs will be compared to the DSA and DSA

based GEPs.  Along with the testing of the sensor sharing problem, some theoretical

analysis will also be presented for the sensor sharing problem as well.  

7.2. Problem Implementation

For the tracking problem, the domain space of each sensor pod is the corresponding

target  it  is  tracking.   In  the  sensor  sharing  problem,  however,  instead  of  each  pod

possessing one sensing device, each pod now holds a total of  m separate sensors.  The

domain space here for each pod is the sensor that is currently turned on (activated).  In

the tracking problem, a target  must be tracked by exactly 3 sensor  pods.  Thus, the

tracking of a target can be seen as a request for 3 sensor pods that satisfy the conditions

that they can directly communicate with each other and are able to detect the target.  In

contrast,  a request  for  sensors  in  the sensor  sharing problem can vary  based on the

number  of  sensors  that  are  needed.   The  sensor  sharing  problem,  instead  of  being

concerned with the allocation of pods, is concerned with the allocation of sensors to

specific tasks.      
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Each of the pods in the sensor network used for the sharing problem has an internal

allocation policy that limits how sensor resource can be allocated, and they are modeled

as DisACSPs.  Since the variable domains here now represent the specific sensor that is

currently active, a value of s indicates that the sensor of type s is currently turned on in

the pod.  The value of 0 is reserved to represent the situation where all the sensors in the

pod have been turned off.  Pods with all sensors turned off cannot conflict with another

pod's internal allocation policy.

7.3. The Requests

For testing purposes, it will be assumed that all requests are in unit form, meaning

that each request will be for exactly one sensor.  As defined in the problem statement,

since only one sensor can be turned on for each pod, the network can service at most n

unit requests at any given time, where n is the number of pods.  In addition to arriving at

specific intervals, each request has a specific life span, that represents the amount of time

the request must be satisfied for it to be considered completed.  Thus, if a request for

sensor  s requires 100 iterations worth of sensor time, this means that at least one pod

must be assigned to have sensor s turned on for exactly 100 iterations.  Note that though a

request may require 100 iterations of sensor data, there is no constraint on the fact that

the 100 iterations of data must be collected in consecutive iterations.  Thus, it will be

assumed that a request for 100 iterations of data will need 100 iterations worth of data, no

matter where and when the data is collected.

As with the tracking problem, requests are automatically placed in a queue as they

arrive.  Since all pods send information towards a base station, it is assumed that the
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complete request queue is stored on a base station and broadcast to the pods as needed.  It

is  also assumed that  a sensor starts collecting data as soon as it  is  turned on.  This

collected data is forwarded to the base station.  

The pods in the sensor network only know about the first n requests queued at the

base station, where n is the number of pods in the network.  The network reassigns active

sensors in  its  pods until  it  can  satisfy both these requests  and its internal  allocation

policies.  As sensors start collecting and forwarding data as soon as they are turned on, it

is  very  possible  that  the  base  station  will  be  sent  sensor  data that  exceeds  the

requirements of the first  n queued request(s).  In these cases, the sensor data is passed

down to the next request in the queue that needs it, on a first-come-first-serve basis.  It is

therefore possible for a queued request to be satisfied before the sensor network actively

tries to satisfy it, based solely on the extra sensor data that is generated.

7.4. Testing

The metrics used to test the GEPs on the sensor sharing problem are very similar to

those used for the sensor tracking problem.  A total of 30 pods were used and each pod

carried 6 distinct sensors for a domain size of 6.  The constraint density for the  allocation

policy was kept constant at 1, while the constraint tightness was varied from 0.01 to 0.06

as for the random DisACSPs, and the policies were randomly generated accordingly.

The intervals by which the requests arrives was set to {1, 10, 50}, while the life span of

the requests was {10, 50, 200}.  As before, a population size of 32 was used for the dBA

based GEPs, SoHC, SoDSA, and DSA based GEPs.  The sensor network again ran for

1000 iterations.   
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7.5. Theoretical Discussion

As discussed in Chapter 2, not all CSPs and ACSPs are solvable, and at the phase

transition any randomly generated  CSP is  only expected  to  have one solution.   The

question then arises as to whether such a phase transition exists for the sensor sharing

problem that can be used to predict whether or not there is a stable solution that satisfies

both internal allocation policies and external requests.

First,  examine once again the equation used to calculate the average number of

feasible solutions for a randomly generated DisACSP, first given in Chapter 2:

S=mn1� p2p1⋅n⋅n�1 (2.8.3)

The primary characteristic of this equation is that it is actually made up of two parts.  The

first part,  mn, represents the number of possible value assignments for the  n variables,

which are  referred to as the number of candidate solutions.   The second part  of  the

equation is  the  probability  that  any given  candidate  solution  will satisfy  all  random

constraints.  Hence, the number of candidate solutions multiplied by the probability that a

given candidate solution satisfies all constraints will give the expected number of feasible

solutions that will satisfy all constraints.  Using this as a basis, a similar equation for the

sensor network sharing problem can be constructed.

One of the defining differences between the randomly generated DisACSP and the

sensor sharing problems is the solution needed.  For the randomly generated DisACSP,

the requirement is to simply satisfy the constraints, and the focus is therefore on the

second part of the equation, and any solution that does not violate any constraints will be

acceptable.  For the sensor sharing problem, however, a solution must also satisfy any

external requests.  Thus, a very specific solution is needed, which will limit the number
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of candidate solutions in the first  part  of  the equation.   So, given a problem with  n

variables  and  a  domain  size  of  m,  the  number  of  candidate  solutions  for  randomly

generated DisACSPs that have no constraints is simply mn.  Given the same number of

variables  and domain size,  a sensor  sharing problem, with  no allocation restrictions,

dealing with an external request for k sensors of type i will only have

 Cn ,k=
n!

k ! n�k!
                            (7.4.1)

candidate solutions to work with.  This assumes that the request is for sensors of the same

type, which turns the problem into a one target sensor tracking problem where the target

needs to be k-trackable.  If the request is for ki sensors of type i and kj sensors of type j,

then the number of feasible solutions is: 

Cn ,k i
Cn�ki , k j

=
n !

ki ! n�ki !

n�ki !

k j ! n�ki�k j !
=

n !
k i ! k j ! n�k i�k j !

       (7.4.2)

From this example, it  can be seen that how hard a problem setting is for the sensor

sharing problem is highly dependent on the type of external  request  that  needs to be

satisfied.   This  is  because  the  external  requests  are  the primary  limiting  factor  that

reduces the number of candidate solutions.  The worst case scenario is when a request

asks for n sensors of the same type, where n is the number of sensor pods in the network.

Lacking  any  allocation  restrictions,  there  is  only  one  candidate  solution  for  such  a

request, which means that there will be a low probability of a feasible solution if there are

any allocation policies or restrictions.

The examples above, 7.4.1 and 7.4.2, calculate the number of candidate solutions for

the sensor  sharing problem and are  not  complete without  a consideration of  internal

allocation policies,  which will  give the probability that  a given candidate solution is
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feasible.  Given that each pod carries m sensor types, there are a total of n pods and the

number of sensors requested of each type is denoted by k1 to km, the complete equation

for finding the number of candidate solutions, S, is as follows:

S=Cn, X∏
i=1

m

C
 X�∑

j=1

i�1

k j , ki

; X =∑
i=1

m

ki  (7.4.3)

This can be expanded to:

S=
n !

X ! n�X  !
Ẋ !

∏
i=1

m

ki !

=
n !

∏
i=1

m

ki ! [n�∑
i=1

m

k i ! ]       (7.4.4)

In the case where ∑
i=1

m

ki=n , the equation will be reduced to S=n! /[∏
i =1

m

k i ! ] .  In the

worst case scenario where n sensors of one type are requested, then S = 1.  

Before considering the other half of the equation, which deals with the allocation

policies, it should be noted once again that sensor pods that are not assigned a specific

sensor to turn on will stay off and thus not be in any constraint conflicts with the other

pods.  This means that when calculating the probability that a candidate solution is also

feasible, only the pods that have been assigned sensors (turned on) will be considered.

Taking into consideration the existing internal constraints in the form of a DisACSP with

a constraint density,  p1, and a constraint tightness, p2, the equation used to approximate

the number of feasible solutions for the sensor sharing problem becomes as follows:

S=
n !

∏
i =1

m

k i ! n�∑
i=1

m

k i !

1� p2
p1⋅∑

i=1

m

ki⋅[∑i=1

m

k i�1]
 (7.4.5)

The second part of this equation is slightly different from the one used to estimate the

number of feasible solutions for randomly generated DisACSPs, 2.8.3.  Instead of using
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1� p2
p1⋅n⋅n�1

,  n is replaced with  ∑
i=1

m

ki , which is the total number of sensors being

requested, because the only concern is constraint satisfaction for those pods that need to

be assigned a sensor.  Then solving for the constraint tightness p2 when S = 1, the single

solution point,  gives the following:

p2=1�[∏i=1

m

ki ! n�∑
i=1

m

k i !

n !
]

1

p1∑
i=1

m

ki∑
i=1

m

ki�1
  (7.4.6)

Thus, 7.4.5 reveals several things about the sensor sharing problem.  Firstly,  the

smaller the number of sensors requested, the higher the constraint density and tightness

can be, while at the same time maintaining the presence of feasible solutions.  As the

number of sensors requested approaches n, the number of sensors of each type requested

becomes more of a factor.  Based on 7.4.5, the hardest problems are those where all the

sensors requested are of one type, while if the requests are spread evenly among all the

available sensor types, the problem becomes easier.  It  should be noted that since the

requests for sensors are random, 7.4.5 does not really give us a general idea of where the

phase  transition  for  the  problem is,  as  this  is  highly  dependent  on  the  number  and

distribution of sensor requests among the available sensor types.  However, it can give us

a best and worst case upper and lower bound of the constraint tightness value, where the

problem is expected to have only one solution (Figure 7.1). 

For  testing,  both uniform and non-uniform distributions of  resquests  among the

sensor types will be tested.  For the first part, a uniform random number generator will be

used to generate the sensor requests, which should evenly spread the requests among all

available sensor types.  For the second part a Gaussian random number generator is used
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to  generate  senosr  requests  from  a  normal  distribution  with  mean  3.5  and standard

deviations of 1.0 and 0.5.  All numbers generated from the Gaussian random number

generator is rounded to the nearest integer in the set [1, 6].  Thus, the probability of

requesting a specific sensor type is listed in Table 7.1.  

As the results reveal, since the requests are queued and have a fixed life span, the

performance is primarily affected by the number of active requests at any given time.  So,

for example, when the requests arrive at an interval of 1 iteration and have a life span of

10 iterations, then the expected maximum number of requests in the network at any given

time will be 10, which is much lower than the 30 sensor pods, which will be used for the

test.  As the number of active requests at any given time nears the number of pods and

becomes greater than the number of pods, the problem becomes very hard and it becomes
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Figure 7.1. Upper and Lower bound for constraint tightness for
the Sensor Sharing Problem
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Table 7.1. Probability of a requesting a sensor of a specific type
given a Gaussian random number generator with mean 3.5

Standard Deviation
Values 1.0 0.5

1 0.022750 0.000032
2 0.135905 0.022718
3 0.341345 0.477250
4 0.341345 0.477250
5 0.135905 0.022718
6 0.022750 0.000032



almost impossible to establish stable cycles, as discussed further in the next section.  The

results  also show that  the clustering of  sensor  requests  further make problems more

difficult.

7.6. Results (Uniform Distribution)

Table  7.2 gives the results  for  SoHC, GSoHC, ESoHC, SoDSA,  GSoDSA, and

ESoDSA for the sensor sharing problem where the requests arrive every iteration and

have a life span of 10 iterations.  The setting for the arrival interval and life span of the

unit requests implies that there are effectively 10 requests for sensors in the network at

any given time.  Based on 7.4.6, with 10 unit requests for sensors, the tightness at which

the problem is expected to have one solution is around 0.174 to 0.28 depending on how

spread out the requests are among the sensor types.  Consequently, this problem setting is

not very hard.  All the algorithms tested achieved similar average queue times and were

able to satisfy the same amount of requests.  The differences between the algorithms

therefore lie solely in the number of stable cycles, where SoDSA and DSA based GEPs

once again fall behind by a large margin.  Due to the more dynamic nature of the problem

(requiring more active reassigning of tasks) as opposed to the relatively static tracking

problem used in the previous chapter, SoHC is able to outperform GSoHC and ESoHC

when it comes to maintaining a stable solution.  With only 10 out of 30 possible pods

allocated at any given time, the problem never really gets very hard for SoHC, though the

performance does decrease with increasing constraint tightness, as expected.

Table 7.3 shows the results for all the algorithms on the sensor sharing problem with

external requests arriving every iteration and having a life span of 50.  The longer life
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span of the requests implies two things.  Firstly, the maximum of 30 sensor requests will

constantly be active, thus making the problem harder.  Secondly, the longer life span of

the requests implies that fewer reconfiguration steps will need to be taken, which is why

the number of stable cycles are greater than those shown in Table 7.2.  The DSA based

GEPs are still incapable of maintaining stable cycles, though they do not fall far behind

when  considering  the  average  queue  time  for  requests  and  the  number  of requests

satisfied.  However, this is due to allowing the sensors to send out data even when they

are in a constraint conflict.  

With the maximum number of requests for sensors active at all times, the problems

become hard very fast, as neither SoHC, GSoHC, or ESoHC can keep a stable cycle

when the constraint tightness increases beyond 0.03.  Based on 7.4.6, the single solution
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Table 7.2. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 1 iteration and life span of 10 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 115.80 100.90 87.74 75.44 63.60 51.84
GSoHC 111.95 97.37 82.74 69.10 55.33 43.13
ESoHC 111.24 95.97 82.13 59.88 44.23 31.58
SoDSA 9.44 5.42 3.24 1.85 1.13 0.63
GSoDSA 6.14 3.44 2.01 1.14 0.72 0.45
ESoDSA 6.30 3.49 2.07 1.22 0.73 0.48

Requests Satisfied
SoHC 995.00 995.00 995.00 994.95 994.95 994.89
GSoHC 990.00 989.99 989.97 989.96 989.96 989.94
ESoHC 990.00 990.00 990.00 989.99 989.97 989.92
SoDSA 990.28 990.25 990.17 990.13 990.07 990.04
GSoDSA 990.35 990.29 990.24 990.18 990.14 990.06
ESoDSA 990.33 990.28 990.24 990.22 990.14 990.08

Average Queue Time
SoHC 10.83 10.85 10.87 10.90 10.93 10.97
GSoHC 10.83 10.84 10.86 10.89 10.92 10.97
ESoHC 10.83 10.85 10.86 10.90 10.95 11.01
SoDSA 10.77 10.81 10.84 10.88 10.92 10.95
GSoDSA 10.75 10.79 10.82 10.86 10.90 10.94
ESoDSA 10.75 10.79 10.83 10.86 10.90 10.94



point  for  this problem lies between 0 and 0.0514, depending on how spread out  the

requests are among the sensor types.  Since the requests were generated with a uniform

random number generator,  the assumption is that the requests would be fairly evenly

spread out among the sensor types, and the tightness where the problem really gets hard

should be around 0.05, which is supported by the results.  The biggest surprise here is

that GSoHC actually performs slightly better than either SoHC or ESoHC.  ESoHC's

performance is expected, as it uses the highest level of exploitation, which keeps the

population  concentrated  around  the  region  where  the  current  solution  is.   SoHC's

performance  is  affected  by  the  harder  problem,  while  GSoHC,  which  falls  between

ESoHC and SoHC in terms of exploration and exploitation, performs slightly better as it

is able to explore more possibilities.

Table 7.4 shows the results for the test with requests arriving every iteration and a

life span of 200 iterations.  The longer life span of the request automatically translates to

a higher number of stable cycles, as seen earlier.  The longer life span also helps the DSA

based GEPs lock onto a stable solution for a while.  One point to note is that SoDSA is

actually able to maintain almost 4 times more stable cycles than ESoDSA or GSoDSA.

This is mainly due to the higher level of exploitation performed by the DSA when the

number of remaining constraint violations drop to a certain level, as seen in chapter 4.

Here, there is also a significant drop in performance by ESoHC as the constraint tightness

increases, while SoHC clearly performs the best in terms of requests satisfied, average

queue time and stable cycles.   Once again,  the maximum 30 sensor requests that are

active at all times makes problems with a constraint tightness of 0.4 and greater much

harder.  
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Table 7.5 shows the results for the test with requests arriving every 10 iterations and

a life span of 10 iterations.  The long inter-arrival time and short life span means that only

1  sensor  request  for  1  sensor  will  be  active  at  all  times.   This  makes  the problem

relatively easy and the constraint tightness for the allocation policies has a minimal affect

on  performance.   The  performances  for  SoHC,  GSoHC,  and  ESoHC  are virtually

identical.  The DSA based GEPs still lag behind, but not by far as the problem is very

easy.  It should be noted that the highly convergent ESoDSA performs significantly better

than SoDSA or GSoDSA as it is able to find a solution very quickly, thus maintaining

more stable cycles.

Tables 7.6 to 7.10 show the results for testing requests that arrive every 10 and 50

iterations with life spans of 10, 50, and 200.  In comparison to the above scenarios, these
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Table 7.3. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 1 iteration and life span of 50 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 474.12 324.09 36.02 0.64 0.14 0.05
GSoHC 514.97 331.90 50.53 0.80 0.17 0.15
ESoHC 469.11 206.07 18.82 0.32 0.17 0.19
SoDSA 3.91 0.37 0.27 0.25 0.22 0.19
GSoDSA 1.44 0.29 0.23 0.21 0.21 0.17
ESoDSA 1.34 0.27 0.22 0.23 0.17 0.17

Requests Satisfied
SoHC 584.52 579.49 562.27 537.35 513.60 490.80
GSoHC 570.91 568.81 554.78 539.79 531.54 522.61
ESoHC 569.98 557.65 536.52 510.35 492.57 485.01
SoDSA 560.88 550.95 541.21 529.50 517.86 505.48
GSoDSA 555.03 546.48 537.49 526.54 515.76 504.41
ESoDSA 555.02 546.47 537.59 526.53 515.75 504.51

Average Queue Time
SoHC 218.59 221.12 228.52 239.39 249.73 258.86
GSoHC 232.57 236.05 243.03 249.62 253.58 258.23
ESoHC 234.32 240.27 251.50 262.80 270.05 275.69
SoDSA 241.28 246.47 251.15 256.31 262.24 268.59
GSoDSA 244.21 248.29 252.91 257.84 263.38 269.04
ESoDSA 244.23 248.27 252.90 257.82 263.41 269.06



problems are much easier and the results reflect this.  As the number of active requests at

any given time does not exceed 20, these problems do not pose a challenge for the SoHC,

GSoHC and ESoHC, whose performances are identical  in all  but  one problem.  The

hardest  problem among these is  shown in  Table  7.7 where requests  arrive  every 10

iterations with a life span of 200, where the tightness for only one feasible solution is

around 0.11.  The performance of ESoHC quickly drops as the tightness increases.  SoHC

still  performs better than either GSoHC or ESoHC in maintaining stable cycles.   As

described in the previous chapter, a dynamic environment favors methods with greater

population diversity, which is why SoHC performs slightly better.  The DSA based GEPs

are able to keep up somewhat with these easier problems, but among them, ESoDSA

performs the best and this can also be seen in the results given in Table 7.7.  ESoDSA's

performance advantage lies in its ability to converge towards a solution faster than either
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Table 7.4. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 1 iteration and life span of 200 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 873.17 841.55 516.62 11.74 0.05 0.15
GSoHC 872.34 821.16 409.12 11.52 0.18 0.17
ESoHC 861.62 581.76 139.19 1.88 0.17 0.15
SoDSA 120.34 1.13 0.28 0.24 0.19 0.20
GSoDSA 33.07 0.42 0.25 0.21 0.18 0.15
ESoDSA 36.03 0.53 0.23 0.20 0.20 0.13

Requests Satisfied
SoHC 135.47 135.10 135.00 130.85 123.90 117.70
GSoHC 120.35 120.26 120.10 119.22 117.84 116.14
ESoHC 120.18 119.89 115.15 109.14 106.83 105.34
SoDSA 125.96 125.12 122.39 120.61 118.67 114.88
GSoDSA 126.71 124.54 122.11 120.25 117.82 114.55
ESoDSA 126.74 124.53 122.10 120.29 117.81 114.50

Average Queue Time
SoHC 442.63 442.47 449.53 465.00 469.00 470.23
GSoHC 457.57 458.50 468.29 486.08 491.89 494.44
ESoHC 457.47 468.01 481.27 488.08 499.04 503.49
SoDSA 486.52 493.94 492.97 496.93 501.50 500.37
GSoDSA 494.07 495.53 495.20 498.72 501.43 501.44
ESoDSA 494.08 495.50 495.23 498.80 501.43 501.65



SoDSA and GSoDSA, but because of the properties of DSA this convergence is actually

better  for  ESoDSA  in  dynamic  environments,  especially  when  the problem  gets

progressively harder.

7.7. Results (Normal Distribution)

Tables 7.11 to  7.19 present  the results  of  the sensor  sharing problem when the

requests for sensors are generated based on a normal distribution and a standard deviation

of 1.  The probability of requesting a specific sensor type is shown in Table 7.1.  With a

standard deviation of 1, the probability of requesting sensors of type 1 and 6 are fairly

small, while the majority of requests should be for sensors of type 3 and 4.

As mentioned in section 7.5, the number of feasible solutions for the sensor sharing

problem drops  as  the sensor  requests  become more clustered  around specific  sensor
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Table 7.5. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 10 iteration and life span of 10 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 902.12 901.32 900.27 898.62 897.55 895.99
GSoHC 900.85 899.47 898.22 897.06 895.92 894.59
ESoHC 901.14 900.28 899.45 898.74 898.01 897.30
SoDSA 713.60 711.80 710.29 709.22 706.96 705.60
GSoDSA 650.53 649.69 645.93 643.53 641.71 638.76
ESoDSA 755.36 754.49 754.22 753.25 752.49 751.87

Requests Satisfied
SoHC 99.00 99.00 99.00 99.00 99.00 99.00
GSoHC 99.00 99.00 99.00 99.00 99.00 99.00
ESoHC 99.00 99.00 99.00 99.00 99.00 99.00
SoDSA 99.00 99.00 99.00 99.00 99.00 99.00
GSoDSA 99.00 99.00 99.00 99.00 99.00 99.00
ESoDSA 99.00 99.00 99.00 99.00 99.00 99.00

Average Queue Time
SoHC 10.84 10.84 10.84 10.84 10.84 10.84
GSoHC 10.86 10.86 10.86 10.86 10.86 10.86
ESoHC 10.86 10.86 10.86 10.86 10.86 10.86
SoDSA 10.88 10.88 10.89 10.89 10.89 10.89
GSoDSA 10.89 10.89 10.89 10.89 10.90 10.90
ESoDSA 10.90 10.90 10.90 10.90 10.90 10.90
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Table 7.6. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 10 iteration and life span of 50 iterations

Table 7.7. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 10 iteration and life span of 200 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 896.49 891.22 886.74 882.32 878.20 873.79
GSoHC 896.63 891.75 886.20 880.47 874.38 867.53
ESoHC 896.15 891.22 886.40 882.12 877.97 874.20
SoDSA 737.38 722.57 704.64 683.69 660.05 634.92
GSoDSA 672.23 648.25 620.34 589.94 558.30 522.00
ESoDSA 760.12 756.39 749.98 742.49 733.02 720.58

Requests Satisfied
SoHC 95.00 95.00 95.00 95.00 95.00 95.00
GSoHC 95.00 95.00 95.00 95.00 95.00 95.00
ESoHC 95.00 95.00 95.00 95.00 95.00 95.00
SoDSA 95.00 95.00 95.00 95.00 95.00 95.00
GSoDSA 95.00 95.00 95.00 95.00 95.00 95.00
ESoDSA 95.00 95.00 95.00 95.00 95.00 95.00

Average Queue Time
SoHC 50.88 50.88 50.88 50.88 50.88 50.88
GSoHC 50.87 50.88 50.88 50.89 50.91 50.93
ESoHC 50.87 50.87 50.87 50.87 50.88 50.88
SoDSA 51.04 51.05 51.07 51.10 51.13 51.16
GSoDSA 51.09 51.12 51.15 51.19 51.23 51.28
ESoDSA 51.14 51.14 51.14 51.14 51.15 51.16

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 889.64 877.25 863.29 852.44 841.14 744.30
GSoHC 890.44 872.89 846.93 793.60 676.16 457.79
ESoHC 890.70 876.58 862.80 767.06 493.87 242.96
SoDSA 574.83 245.34 127.62 93.75 80.49 72.67
GSoDSA 400.35 157.72 97.24 77.67 67.82 61.10
ESoDSA 773.44 717.60 623.82 464.86 299.22 181.12

Requests Satisfied
SoHC 80.00 80.00 80.00 80.00 80.00 80.00
GSoHC 80.00 80.00 80.00 80.00 80.00 79.94
ESoHC 80.00 80.00 80.00 79.99 79.73 79.05
SoDSA 80.00 80.00 80.00 80.00 80.00 79.99
GSoDSA 80.00 80.00 80.00 80.00 79.99 79.96
ESoDSA 80.00 80.00 80.00 80.00 80.00 80.00

Average Queue Time
SoHC 200.89 200.90 200.95 201.04 201.13 202.01
GSoHC 200.92 200.96 201.06 201.37 202.30 204.51
ESoHC 200.92 200.94 200.99 201.60 205.18 211.68
SoDSA 201.99 202.90 204.10 205.45 206.86 208.27
GSoDSA 202.70 204.02 205.36 206.72 208.12 209.52
ESoDSA 201.80 201.77 201.81 202.01 202.38 202.92
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Table 7.8. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 50 iteration and life span of 10 iterations

Table 7.9. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 50 iteration and life span of 50 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 981.00 981.00 981.00 981.00 981.00 981.00
GSoHC 981.00 981.00 981.00 981.00 981.00 981.00
ESoHC 981.00 981.00 981.00 981.00 981.00 981.00
SoDSA 936.24 936.19 936.40 936.17 936.20 936.42
GSoDSA 925.06 924.92 924.75 924.87 924.62 924.61
ESoDSA 944.49 944.76 944.60 944.66 944.69 944.80

Requests Satisfied
SoHC 20.00 20.00 20.00 20.00 20.00 20.00
GSoHC 20.00 20.00 20.00 20.00 20.00 20.00
ESoHC 20.00 20.00 20.00 20.00 20.00 20.00
SoDSA 20.00 20.00 20.00 20.00 20.00 20.00
GSoDSA 20.00 20.00 20.00 20.00 20.00 20.00
ESoDSA 20.00 20.00 20.00 20.00 20.00 20.00

Average Queue Time
SoHC 10.95 10.95 10.95 10.95 10.95 10.95
GSoHC 10.95 10.95 10.95 10.95 10.95 10.95
ESoHC 10.95 10.95 10.95 10.95 10.95 10.95
SoDSA 10.99 10.99 10.99 10.99 10.99 11.00
GSoDSA 11.00 11.00 11.00 11.00 11.00 11.00
ESoDSA 10.99 11.00 10.99 10.99 10.99 11.00

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 980.30 980.10 979.89 979.62 979.55 979.15
GSoHC 980.81 980.69 980.53 980.34 980.23 979.99
ESoHC 981.00 981.00 981.00 981.00 981.00 981.00
SoDSA 948.47 948.73 948.72 948.51 948.14 948.05
GSoDSA 940.49 940.45 940.15 940.03 939.30 939.71
ESoDSA 956.37 955.55 955.66 954.88 954.04 953.81

Requests Satisfied
SoHC 19.00 19.00 19.00 19.00 19.00 19.00
GSoHC 19.00 19.00 19.00 19.00 19.00 19.00
ESoHC 19.00 19.00 19.00 19.00 19.00 19.00
SoDSA 19.00 19.00 19.00 19.00 19.00 19.00
GSoDSA 19.00 19.00 19.00 19.00 19.00 19.00
ESoDSA 19.00 19.00 19.00 19.00 19.00 19.00

Average Queue Time
SoHC 50.83 50.83 50.83 50.83 50.83 50.83
GSoHC 50.74 50.74 50.74 50.74 50.74 50.74
ESoHC 50.74 50.74 50.74 50.74 50.74 50.74
SoDSA 50.77 50.78 50.78 50.78 50.78 50.78
GSoDSA 50.78 50.78 50.78 50.78 50.78 50.78
ESoDSA 50.78 50.78 50.78 50.78 50.78 50.78



types.  This implies that as more sensor requests are made, it becomes harder to find a

feasible solution as compared to when sensor requests were uniformly distributed among

all available sensor types.  This is seen in Table 7.11 as the number of stable cycles drop

slightly as compared to the results in Table 7.2.  

The primary point of interest of the results in Table 7.11 is that ESoHC actually

performs better than GSoHC when it comes to the number of stable cycles, while SoHC

performs slightly better than ESoHC.  This result is due to the use of sensor requests that

are normally distributed among the various sensor types.  Based on the pobabilities in

Table 7.1,  a sensor request  for a sensor of  type 3 or 4 occurs at  least  once every 3

requests.   This  implies that  even though it  is  harder  to find a feasible  solution with

normally distributed sensor requests, once a feasible solution is found, there is a higher
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Table 7.10. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 50 iteration and life span of 200 iterations

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 980.00 979.20 978.67 977.65 977.25 976.80
GSoHC 981.35 980.58 979.90 979.21 978.51 977.85
ESoHC 981.36 980.72 980.17 979.63 978.99 978.46
SoDSA 954.14 953.34 952.77 951.90 950.91 950.22
GSoDSA 946.28 944.97 943.11 941.59 940.43 938.49
ESoDSA 956.34 954.30 950.92 946.93 945.34 938.57

Requests Satisfied
SoHC 17.00 17.00 17.00 17.00 17.00 17.00
GSoHC 17.00 17.00 17.00 17.00 17.00 17.00
ESoHC 17.00 17.00 17.00 17.00 17.00 17.00
SoDSA 16.88 16.90 16.91 16.90 16.91 16.90
GSoDSA 16.90 16.89 16.91 16.90 16.91 16.91
ESoDSA 16.90 16.88 16.90 16.91 16.91 16.92

Average Queue Time
SoHC 200.78 200.78 200.78 200.78 200.78 200.78
GSoHC 200.80 200.80 200.80 200.80 200.80 200.81
ESoHC 200.80 200.80 200.80 200.80 200.80 200.80
SoDSA 200.99 200.98 200.98 200.98 200.98 200.99
GSoDSA 201.00 201.00 201.00 201.01 201.01 201.02
ESoDSA 200.98 200.99 201.00 201.02 201.02 201.04



probability  that  a  reassignment  of  sensor  tasks  is  not  necessary when  a  request  is

complete and a new one arrives.  With sensor requests arriving once every iteration, there

is a very high probability that a feasible solution at  any given iteration will  be very

similar to a feasible solution at a fairly recent previous iteration.  Thus, ESoHC, with its

high level of  exploitation around the current  best solution, performs better because it

takes longer to move from one area of promise to another.  In the previous section, this

was ESoHC's weakness, while here, it becomes ESoHC's strength.  SoHC, with its higher

level of exploration, is still able to out perform ESoHC slightly, since its members will

separately lock onto different areas of promise, which is the exactly the opposite of what

ESoHC does for this problem.  GSoHC falls behind because it does not have the level of

exploitation to keep its search in one region, while also not having enough exploration to

move quickly to other regions of promise.

The general performance difference between the dBA based GEPs and DSA based

GEPs are still  present.  The DSA based GEPs just are not able to stay on a feasible

solution long enough to have any stable cycles.  The number of requests satisfied are

fairly similar  for the two different  types of GEPs, while the DSA based GEPs have

significantly longer queuing times for requests.

Table 7.12 presents the results for when sensor requests arrive every iteration and

have a life span of 50 iterations.  Here, the sensor network is pushed to its maximum load

of trying to satisfy an average of 30 sensor requests at any given time.  As mentioned

earlier, the hardest problems are when the requests are concentrated around a specific

sensor type.   Based on the probability  distribution in  Table  7.1 and that  the current

problem deals with a maximum of 30 sensor requests at one time, the hardest  set of

146



requests that is likely to appear is one for 4 sensors of type 2 and 5, 11 sensors of type 3

and 4, and none of type 1 and 6.  Plugging this into 7.4.6 and solving for the single

solution point will give 0.0375 for constraint tightness.  Then looking at the most diverse

set of feasible requests, which is a set of requests for 1 sensor of type 1 and 6, 4 sensors

of type 2 and 5, and 10 sensors of type 3 and 4, and plugging it into 7.4.6 to solve for the

single solution point gives a constraint tightness of 0.0428.  So, given the probability

distribution of sensor requests among sensor types and combining it with the equation

7.4.6, it can be estimated that the constraint tightness for which there is only one expected

feasible  solution  for  the  sharing  problem  is  between  0.0375  and  0.0428.   This  is

supported in the results.
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Table 7.11. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 1 iteration and life span of 10 iterations and normal

distribution with standard deviation of 1

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 103.71 90.34 78.99 68.07 56.81 45.68
GSoHC 102.16 87.17 74.20 62.04 49.73 38.05
ESoHC 103.28 89.52 77.01 65.28 53.37 42.19
SoDSA 3.60 1.50 0.71 0.35 0.22 0.12
GSoDSA 2.55 1.00 0.48 0.26 0.15 0.09
ESoDSA 2.48 1.02 0.43 0.23 0.13 0.09

Requests Satisfied
SoHC 989.98 989.95 989.93 989.90 989.86 989.79
GSoHC 989.98 989.94 989.90 989.86 989.80 989.75
ESoHC 989.97 989.95 989.91 989.88 989.83 989.79
SoDSA 988.07 988.10 988.16 988.19 988.22 988.20
GSoDSA 988.14 988.17 988.24 988.25 988.23 988.20
ESoDSA 988.13 988.20 988.25 988.26 988.22 988.22

Average Queue Time
SoHC 10.83 10.85 10.87 10.89 10.92 10.96
GSoHC 10.83 10.86 10.88 10.91 10.95 10.99
ESoHC 10.83 10.85 10.87 10.89 10.93 10.97
SoDSA 12.96 12.89 12.85 12.82 12.81 12.83
GSoDSA 12.86 12.79 12.75 12.74 12.76 12.80
ESoDSA 12.86 12.79 12.75 12.74 12.76 12.80



Here, the performance advantage of ESoHC becomes more clear as the problems get

harder.  At full load, the performance of SoHC drops quickly as the constraint tightness

increases  and  closes  in  on  the  single  solution  point.   And  with  its  higher  level  of

exploitation than SoHC, GSoHC is able to come second in performance.  The DSA based

GEPs are not even able to hold 1 stable cycle.  The number of requests satisfied and the

average queue time further favor the dBA based GEPs.  In comparison with the results in

Table 7.3, dBA based GEPs are able to keep more stable cycles simply because of the

slightly  lower  probability  of  needing  to  reassign  sensor  duty  when an  old  request

completes and a new one arrives.

 Table 7.13 shows that as the life span of the request increases, GSoHC gains a

significant advantage over ESoHC when nearing the single solution point.  The results

show ESoHC having a slight advantage until the constraint tightness increases to 0.03

where GSoHC performs slightly better.   At  a tightness of  0.04,  GSoHC widens  the

margin.  SoHC, on the other hand, quickly drops behind as the tightness nears the single

solution point.  The results clearly show that, even though ESoHC performs better when

the problems are easy and request  life spans are shorter,  when the problem does get

harder and the life span of the request increases, GSoHC has a slight edge.

Tables 7.14 to 7.19 show the remaining results.  The longer interval between request

arrivals keep the problems simple and the results in line with those previously obtained

from using uniformly distributed requests.   With the easier problems, the dBA based

GEPs perform nearly identically.  On the DSA based GEPs side, SoDSA does slightly

better when the arrival interval is at 10 iterations with its higher level of exploitation near

the solution.  GSoDSA and ESoDSA do slightly better when the arrival interval is at 50
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iterations where the problems are less dynamic because of the larger interval between the

arrival of sensor requests.  However, SoDSA is slowly able to regain the performance

lead as the problem tightness increases when the life span increases to 200 iterations.  

Next, Tables 7.20 to 7.28 present the results for the sensor sharing problem when

sensor requests are normally distributed around 3.5 with a standard deviation of 0.5.  The

lower standard deviation implies that the requests for sensors will be further clustered

around types 3 and 4, as seen in Table 7.1.  Based on the table, the requests for sensor

types 1 and 6 will almost never show up.  Using the same method as before, based on

7.4.6, the constraint tightness for the single solution point is most likely within the range

0.0214 to 0.0275.  This is supported by the results in 7.21 and 7.22.
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Table 7.12. Results of all algorithms on the Sensor Sharing Problem
with arrival intervals at 1 iteration and life span of 50 iterations and

normal distribution with standard deviation of 1

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 497.27 348.84 42.50 0.52 0.19 0.19
GSoHC 502.49 349.24 76.33 1.58 0.18 0.17
ESoHC 505.05 373.20 94.39 1.39 0.16 0.18
SoDSA 0.26 0.15 0.12 0.14 0.12 0.11
GSoDSA 0.17 0.14 0.09 0.08 0.10 0.12
ESoDSA 0.18 0.14 0.12 0.10 0.09 0.10

Request Satisfied
SoHC 570.00 568.21 551.60 524.81 500.71 478.68
GSoHC 570.00 568.39 555.85 542.44 534.26 527.21
ESoHC 570.00 569.08 557.73 546.18 540.75 535.70
SoDSA 548.05 533.21 518.45 502.16 486.06 469.46
GSoDSA 548.84 533.78 518.67 502.08 485.63 469.13
ESoDSA 548.80 533.81 518.64 502.10 485.70 469.19

Average Queue Time
SoHC 233.96 237.81 245.31 256.66 266.83 277.35
GSoHC 233.75 237.43 242.87 249.30 253.01 256.62
ESoHC 233.67 236.96 242.23 247.84 250.38 252.81
SoDSA 258.10 262.79 268.46 274.96 281.95 290.11
GSoDSA 258.05 262.95 268.73 275.38 282.26 290.26
ESoDSA 258.03 262.90 268.71 275.35 282.28 290.17



The further clustering of sensor requests around 2 specific sensor types increases the

probability that no sensor reassignment is needed when a new request is made.  As seen

in Table 7.11, an increase in clustering of sensor requests of a specific type increases the

number of stable cycles as there are times when no sensor reassignment is needed to

satisfy the new request.  This is also seen in Table 7.20 to a larger degree as the standard

deviation is dropped by half and increasing the clustering.  One point of interest is that

the DSA based GEPs also benefit greatly from this tighter clustering as the number of

stable cycles for the DSA based GEPs jump significantly when comparing Table 7.11 to

Table  7.20.   Similar  to  Table 7.11,  SoHC still  performs slightly better,  followed by

150

Table 7.13. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 1 iteration and life span of 200 iterations and normal

distribution with standard deviation of 1

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 873.22 836.29 427.32 5.47 0.22 0.17
GSoHC 874.17 834.70 614.88 54.55 0.88 0.17
ESoHC 874.25 839.10 613.49 46.24 0.78 0.16
SoDSA 0.68 0.18 0.14 0.13 0.11 0.09
GSoDSA 0.27 0.12 0.11 0.09 0.08 0.07
ESoDSA 0.82 0.13 0.12 0.09 0.09 0.09

Request Satisfied
SoHC 120.24 120.10 119.91 117.40 111.97 107.00
GSoHC 120.23 120.10 120.01 119.30 118.83 118.17
ESoHC 120.22 120.12 120.01 119.48 119.25 119.08
SoDSA 120.45 118.65 115.91 112.70 109.20 105.30
GSoDSA 120.31 118.46 115.70 112.42 109.20 105.22
ESoDSA 120.33 118.49 115.79 112.42 109.22 105.20

Average Queue Time
SoHC 457.44 458.02 467.43 489.04 495.11 501.33
GSoHC 457.39 458.01 462.74 477.33 486.61 490.97
ESoHC 457.33 457.97 462.56 476.31 481.89 485.10
SoDSA 524.46 520.77 518.42 517.19 516.43 516.70
GSoDSA 523.72 520.60 518.69 517.00 516.77 516.39
ESoDSA 523.78 520.77 518.81 516.96 516.89 516.34
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Table 7.14. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 10 iteration and life span of 10 iterations and normal distribution with

standard deviation of 1

Table 7.15. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 10 iteration and life span of 50 iterations and normal distribution with

standard deviation of 1

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 902.91 901.72 900.36 899.60 898.20 897.10
GSoHC 902.85 901.67 900.51 899.60 898.64 897.39
ESoHC 902.90 901.62 900.46 899.59 898.45 897.17
SoDSA 701.30 699.83 698.44 697.00 695.43 694.74
GSoDSA 684.58 682.48 681.08 680.87 679.67 680.73
ESoDSA 684.55 683.01 681.98 680.40 679.81 680.82

Request Satisfied
SoHC 99.00 99.00 99.00 99.00 99.00 99.00
GSoHC 99.00 99.00 99.00 99.00 99.00 99.00
ESoHC 99.00 99.00 99.00 99.00 99.00 99.00
SoDSA 99.00 99.00 99.00 99.00 99.00 99.00
GSoDSA 99.00 99.00 99.00 99.00 99.00 99.00
ESoDSA 99.00 99.00 99.00 99.00 99.00 99.00

Average Queue Time
SoHC 10.84 10.84 10.84 10.84 10.84 10.84
GSoHC 10.84 10.84 10.84 10.84 10.84 10.84
ESoHC 10.84 10.84 10.84 10.84 10.84 10.84
SoDSA 10.97 10.98 10.98 10.98 10.99 10.99
GSoDSA 10.96 10.97 10.97 10.98 10.99 10.99
ESoDSA 10.96 10.96 10.97 10.98 10.99 10.99

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 898.51 895.17 892.09 889.07 885.82 883.05
GSoHC 898.94 895.47 892.47 889.05 885.64 882.60
ESoHC 898.92 895.40 892.04 888.60 885.59 882.64
SoDSA 726.99 710.06 689.62 661.90 629.21 586.55
GSoDSA 688.87 662.90 627.62 581.90 528.38 464.15
ESoDSA 688.44 662.44 627.12 582.49 526.92 464.28

Request Satisfied
SoHC 95.00 95.00 95.00 95.00 95.00 95.00
GSoHC 95.00 95.00 95.00 95.00 95.00 95.00
ESoHC 95.00 95.00 95.00 95.00 95.00 95.00
SoDSA 95.00 95.00 95.00 95.00 95.00 95.00
GSoDSA 95.00 95.00 95.00 95.00 95.00 94.99
ESoDSA 95.00 95.00 95.00 95.00 94.99 95.00

Average Queue Time
SoHC 50.76 50.76 50.76 50.76 50.76 50.76
GSoHC 50.76 50.77 50.77 50.78 50.78 50.79
ESoHC 50.76 50.77 50.77 50.77 50.78 50.78
SoDSA 52.59 52.72 52.87 53.08 53.34 53.68
GSoDSA 53.16 53.35 53.62 53.99 54.47 55.06
ESoDSA 53.18 53.36 53.63 54.00 54.46 55.06
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Table 7.16. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 10 iteration and life span of 200 iterations and normal distribution

with standard deviation of 1

Table 7.17. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 10 iterations and normal distribution with

standard deviation of 1

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 891.97 879.95 868.00 858.45 846.31 720.00
GSoHC 888.85 875.58 864.80 854.62 835.14 735.99
ESoHC 889.57 876.46 865.77 855.00 831.88 727.09
SoDSA 89.73 69.77 58.91 51.94 46.61 42.76
GSoDSA 74.61 60.19 51.20 45.51 41.90 38.74
ESoDSA 74.67 59.64 51.73 45.66 41.86 38.09

Request Satisfied
SoHC 80.00 80.00 80.00 80.00 80.00 79.99
GSoHC 80.00 80.00 80.00 80.00 80.00 79.99
ESoHC 80.00 80.00 80.00 80.00 80.00 79.98
SoDSA 74.98 74.98 74.99 74.98 74.95 74.83
GSoDSA 74.84 74.94 74.95 74.91 74.88 74.69
ESoDSA 74.84 74.93 74.94 74.91 74.87 74.71

Average Queue Time
SoHC 200.89 200.90 200.94 201.00 201.10 202.31
GSoHC 200.92 200.95 200.98 201.04 201.21 202.16
ESoHC 200.91 200.93 200.97 201.03 201.22 202.20
SoDSA 247.73 248.01 248.46 248.65 249.30 250.49
GSoDSA 250.19 249.44 249.61 249.92 250.60 251.97
ESoDSA 250.17 249.45 249.58 249.89 250.59 251.94

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 986.00 986.00 986.00 986.00 986.00 986.00
GSoHC 986.00 986.00 986.00 986.00 986.00 986.00
ESoHC 986.00 986.00 986.00 986.00 986.00 986.00
SoDSA 946.13 946.42 946.52 946.48 946.56 946.50
GSoDSA 951.21 951.26 951.27 951.28 951.45 951.45
ESoDSA 951.28 951.44 951.25 951.26 951.28 951.51

Request Satisfied
SoHC 20.00 20.00 20.00 20.00 20.00 20.00
GSoHC 20.00 20.00 20.00 20.00 20.00 20.00
ESoHC 20.00 20.00 20.00 20.00 20.00 20.00
SoDSA 20.00 20.00 20.00 20.00 20.00 20.00
GSoDSA 20.00 20.00 20.00 20.00 20.00 20.00
ESoDSA 20.00 20.00 20.00 20.00 20.00 20.00

Average Queue Time
SoHC 10.70 10.70 10.70 10.70 10.70 10.70
GSoHC 10.70 10.70 10.70 10.70 10.70 10.70
ESoHC 10.70 10.70 10.70 10.70 10.70 10.70
SoDSA 10.79 10.79 10.79 10.79 10.80 10.79
GSoDSA 10.78 10.78 10.78 10.78 10.78 10.78
ESoDSA 10.78 10.78 10.78 10.78 10.79 10.78
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Table 7.18. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 50 iterations and normal distribution with

standard deviation of 1

Table 7.19. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 200 iterations and normal distribution

with standard deviation of 1

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 981.83 981.62 981.42 981.28 981.11 980.98
GSoHC 981.84 981.63 981.44 981.31 981.15 980.95
ESoHC 981.84 981.61 981.46 981.29 981.14 980.92
SoDSA 940.29 940.30 940.11 939.78 939.54 939.20
GSoDSA 945.38 945.03 944.85 944.62 944.23 944.11
ESoDSA 945.35 945.19 944.79 944.52 944.34 944.20

Request Satisfied
SoHC 20.00 20.00 20.00 20.00 20.00 20.00
GSoHC 20.00 20.00 20.00 20.00 20.00 20.00
ESoHC 20.00 20.00 20.00 20.00 20.00 20.00
SoDSA 20.00 20.00 20.00 20.00 20.00 20.00
GSoDSA 20.00 20.00 20.00 20.00 20.00 20.00
ESoDSA 20.00 20.00 20.00 20.00 20.00 20.00

Average Queue Time
SoHC 50.75 50.75 50.75 50.75 50.75 50.75
GSoHC 50.75 50.75 50.75 50.75 50.75 50.75
ESoHC 50.75 50.75 50.75 50.75 50.75 50.75
SoDSA 50.89 50.89 50.88 50.90 50.89 50.90
GSoDSA 50.86 50.87 50.87 50.88 50.89 50.89
ESoDSA 50.86 50.87 50.87 50.87 50.89 50.89

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 979.32 978.59 977.85 977.24 976.56 976.03
GSoHC 979.30 978.61 977.85 977.20 976.59 975.97
ESoHC 979.33 978.63 977.82 977.18 976.53 975.93
SoDSA 926.09 924.69 922.89 921.34 919.09 916.92
GSoDSA 927.06 924.03 920.29 914.79 909.08 900.64
ESoDSA 927.15 923.69 920.32 914.99 908.20 901.31

Request Satisfied
SoHC 16.00 16.00 16.00 16.00 16.00 16.00
GSoHC 16.00 16.00 16.00 16.00 16.00 16.00
ESoHC 16.00 16.00 16.00 16.00 16.00 16.00
SoDSA 16.00 16.00 16.00 16.00 16.00 16.00
GSoDSA 16.00 16.00 16.00 16.00 16.00 16.00
ESoDSA 16.00 16.00 16.00 16.00 16.00 16.00

Average Queue Time
SoHC 200.88 200.88 200.88 200.88 200.88 200.88
GSoHC 200.88 200.88 200.88 200.88 200.88 200.88
ESoHC 200.88 200.88 200.88 200.88 200.89 200.89
SoDSA 202.53 202.61 202.71 202.82 202.95 203.04
GSoDSA 202.71 202.84 202.97 203.15 203.36 203.60
ESoDSA 202.71 202.86 202.98 203.18 203.37 203.58



ESoHC and GSoHC.  For the DSA based GEPs, SoDSA is able to maintain slightly more

stable cycles than GSoDSA and ESoDSA.

With requests arriving every iteration and having a life span of 50 iterations, Table

7.21 shows the results where the network is at full load constantly.   Like before, the

increase in clustering of the requests makes it possible to maintain more stable cycles, but

at the same time, a sudden drop in stable cycles is seen between problems with constraint

tightness of 0.02 and 0.03.  As predicted by equation 7.4.5, this is the region where the

problem goes  from having  multiple  feasible  solutions to  having less than 1 feasible

solution.  With the relatively small value of the single solution point, the performance of

the DSA based GEPs are abysmal as even problems with a constraint tightness of 0.01 is

slightly harder than before due to how close it is now from the single solution point.

Table 7.21 also shows that apart from being able to maintain more stable cycles, ESoHC

is also able to keep queue time down and the number of requests satisfied up even beyond

the single solution point.  Overall, ESoHC and GSoHC perform much better than SoHC

with ESoHC being the best. 

The results for a request arrival time of 1 iteration and life span of 200 iterations

shown in Table 7.22 follow the same performance trend as the results in Table 7.13.

Both  ESoHC  and  GSoHC  perform  better  than  SoHC  and  are  neck  to  neck  when

comparing stable cycles and average queue time.  However, ESoHC performs slightly

better in the number of requests satisfied.  The extended life span and clustering of sensor

types requested help out the DSA based GEPs slightly as they are able to maintain quite a

few more stable cycles.
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Table 7.20. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 1 iteration and life span of 10 iterations and normal

distribution with standard deviation of 0.5

Table 7.21. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 1 iteration and life span of 50 iterations and normal

distribution with standard deviation of 0.5

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 160.99 146.54 133.79 123.55 113.36 103.53
GSoHC 154.93 140.49 127.55 115.76 104.37 93.24
ESoHC 157.24 144.12 131.39 120.66 109.24 98.64
SoDSA 14.17 6.52 2.91 1.26 0.67 0.34
GSoDSA 10.10 4.60 1.98 0.81 0.36 0.19
ESoDSA 10.25 4.53 1.91 0.89 0.39 0.20

Requests Satisfied
SoHC 990.00 990.00 990.00 990.00 990.00 990.00
GSoHC 990.00 990.00 990.00 990.00 990.00 989.97
ESoHC 990.00 990.00 990.00 990.00 989.99 989.96
SoDSA 988.63 988.67 988.66 988.70 988.70 988.59
GSoDSA 988.64 988.67 988.68 988.63 988.51 988.51
ESoDSA 988.65 988.71 988.67 988.61 988.56 988.46

Average Queue Time
SoHC 10.69 10.71 10.73 10.75 10.77 10.79
GSoHC 10.71 10.73 10.76 10.78 10.81 10.84
ESoHC 10.70 10.72 10.74 10.76 10.79 10.82
SoDSA 12.43 12.41 12.40 12.40 12.41 12.48
GSoDSA 12.41 12.38 12.36 12.38 12.43 12.51
ESoDSA 12.41 12.37 12.36 12.39 12.43 12.51

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 532.79 183.87 2.69 0.28 0.23 0.23
GSoHC 551.56 285.26 14.57 0.22 0.26 0.28
ESoHC 554.34 293.90 14.35 0.20 0.26 0.25
SoDSA 0.49 0.14 0.13 0.14 0.09 0.09
GSoDSA 0.61 0.11 0.09 0.10 0.08 0.04
ESoDSA 0.61 0.13 0.08 0.09 0.06 0.04

Requests Satisfied
SoHC 570.50 556.99 519.59 472.14 439.05 409.22
GSoHC 570.86 562.77 538.81 515.34 501.43 489.58
ESoHC 570.89 563.17 541.95 526.53 518.84 512.20
SoDSA 531.67 516.59 498.19 475.00 453.67 430.33
GSoDSA 524.58 512.82 497.11 476.51 457.40 457.40
ESoDSA 524.54 512.80 497.03 476.45 457.30 435.90

Average Queue Time
SoHC 234.46 242.66 261.45 283.66 297.47 309.59
GSoHC 233.98 239.55 251.89 261.62 267.58 272.80
ESoHC 233.86 239.28 250.17 256.33 259.96 263.53
SoDSA 263.70 268.53 276.07 286.42 296.22 306.92
GSoDSA 268.23 271.01 277.19 285.67 294.64 304.82
ESoDSA 268.19 271.06 277.16 285.73 294.75 304.80



Tables 7.23 and 7.24 present the results for when requests arrive once every 10

iterations and have life spans of 10 and 50 iterations.  The performance of the dBA based

GEPs are as expected and not too surprising.  For the DSA based GEPs, SoDSA is able to

perform better than GSoDSA and ESoDSA because of its high level of exploitation near

the solution.  These results follow a performance trend similar to those in Table 7.14, but

slightly different from those in Table 7.5.  The primary difference lies in that SoDSA

actually performs better than ESoDSA here where in Table 7.4, it was the opposite.  This

is attributed to the change from generating requests from a uniform distribution to that of

a normal distribution which increased the amount of clustering in sensor types requested.

So, two elements changed for the problem.  Firstly, the problems become harder with

clustering as predicted with equation 7.4.6.  Secondly, the increase in clustering affects
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Table 7.22. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 1 iteration and life span of 200 iterations and normal

distribution with standard deviation of 0.5

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 876.56 497.53 15.62 0.26 0.29 0.33
GSoHC 880.39 597.02 69.41 0.44 0.26 0.24
ESoHC 880.48 595.60 71.16 0.35 0.27 0.24
SoDSA 4.90 0.16 0.13 0.13 0.09 0.13
GSoDSA 3.65 0.12 0.09 0.08 0.06 0.07
ESoDSA 3.00 0.11 0.07 0.08 0.06 0.07

Requests Satisfied
SoHC 121.00 119.20 111.88 103.85 98.44 93.23
GSoHC 121.00 119.97 116.51 112.58 110.21 108.62
ESoHC 121.00 119.97 117.44 115.41 114.16 113.19
SoDSA 119.88 117.36 112.19 106.65 101.46 96.95
GSoDSA 119.39 117.13 112.66 106.85 102.22 102.22
ESoDSA 119.41 117.12 112.71 106.81 102.26 97.57

Average Queue Time
SoHC 460.13 463.71 473.52 484.12 492.26 499.07
GSoHC 460.08 462.51 472.81 479.73 482.50 485.93
ESoHC 460.07 462.52 473.18 479.30 481.16 483.28
SoDSA 523.42 518.53 512.66 509.90 507.42 509.47
GSoDSA 528.71 521.77 516.19 509.92 507.69 507.79
ESoDSA 528.70 521.84 516.29 509.74 507.83 507.87



the probability that a new sensor request will cause a reassignment of sensor tasks.  These

two factors  together  contribute to  the gain in  performance for  SoDSA that  makes it

perform slightly better here than ESoDSA.

Table 7.25 contains the results for the third hardest problem among the ones tested

here.  With an request arrival time of 10 iterations and a life span od 200 iterations, there

are on average 20 sensor requests to satisfy at any given time.  Based on the previous

method for  predicting where the hard problems are,  the constraint  tightness here  for

problems that are only expected to have one solution is around 0.07432 to 0.08547.  This

accounts for the drop in performance seen starting from a constraint tightness of 0.05.

SoDSA still is able to perform better than the other DSA based GEPs.

157

Table 7.23. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 10 iteration and life span of 10 iterations and normal

distribution with standard deviation of 0.5

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 917.41 916.71 916.15 915.36 914.74 914.19
GSoHC 917.42 916.75 916.22 915.48 914.95 914.36
ESoHC 917.43 916.74 916.17 915.48 914.95 914.30
SoDSA 773.15 771.91 771.45 770.54 769.87 768.96
GSoDSA 743.60 742.57 741.52 741.03 740.60 740.76
ESoDSA 744.21 742.57 741.09 740.54 740.41 740.91

Requests Satisfied
SoHC 99.00 99.00 99.00 99.00 99.00 99.00
GSoHC 99.00 99.00 99.00 99.00 99.00 99.00
ESoHC 99.00 99.00 99.00 99.00 99.00 99.00
SoDSA 99.00 99.00 99.00 99.00 99.00 99.00
GSoDSA 99.00 99.00 99.00 99.00 99.00 99.00
ESoDSA 99.00 99.00 99.00 99.00 99.00 99.00

Average Queue Time
SoHC 10.66 10.66 10.66 10.66 10.66 10.66
GSoHC 10.66 10.66 10.66 10.66 10.66 10.66
ESoHC 10.66 10.66 10.66 10.66 10.66 10.66
SoDSA 10.75 10.75 10.75 10.75 10.75 10.76
GSoDSA 10.74 10.75 10.75 10.75 10.75 10.76
ESoDSA 10.74 10.74 10.75 10.75 10.75 10.76



Tables 7.26 to 7.28 contain the last batch of results.  The longer time between arrival

of requests help ESoDSA and GSoDSA perform slightly better than SoDSA for request

life  spans  of  10  and  50  iterations,  which  are  relatively  short  compared  to  the time

between requests.  However, as the problem gets harder with the longer life span of 200

iterations,  SoDSA is  able  to  regain  its  performance  lead  as  the problem's  constraint

tightness increased.

7.8. Conclusions

The results show that as expected, the difficulty of a problem is determined by the

ratio between the arrival interval of requests and the life span of the constraints, which

defines how many active requests will be present at any given time, and the distribution
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Table 7.24. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 10 iteration and life span of 50 iterations and normal

distribution with standard deviation of 0.5

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 906.30 903.70 900.88 898.21 895.90 893.40
GSoHC 906.49 903.86 901.07 898.42 895.73 892.90
ESoHC 906.43 903.78 900.94 898.02 895.44 892.80
SoDSA 789.97 778.78 762.70 742.51 718.05 685.97
GSoDSA 742.97 722.75 693.50 659.18 614.77 563.72
ESoDSA 742.92 723.23 692.66 657.46 614.80 562.78

Requests Satisfied
SoHC 95.00 95.00 95.00 95.00 95.00 95.00
GSoHC 95.00 95.00 95.00 95.00 95.00 95.00
ESoHC 95.00 95.00 95.00 95.00 95.00 95.00
SoDSA 95.00 95.00 95.00 95.00 95.00 95.00
GSoDSA 95.00 95.00 95.00 95.00 95.00 95.00
ESoDSA 95.00 95.00 95.00 95.00 95.00 95.00

Average Queue Time
SoHC 50.67 50.67 50.67 50.67 50.67 50.67
GSoHC 50.67 50.67 50.68 50.68 50.69 50.70
ESoHC 50.67 50.68 50.68 50.68 50.69 50.69
SoDSA 51.76 51.82 51.90 52.02 52.15 52.35
GSoDSA 52.24 52.32 52.47 52.65 52.93 53.26
ESoDSA 52.23 52.32 52.48 52.68 52.93 53.28
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Table 7.25. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 10 iteration and life span of 200 iterations and normal distribution

with standard deviation of 0.5

Table 7.26. Results of all algorithms on the Sensor Sharing Problem with arrival
intervals at 50 iteration and life span of 10 iterations and normal distribution

with standard deviation of 0.5

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 897.47 887.53 876.53 838.16 705.16 415.43
GSoHC 895.04 883.41 871.56 845.54 734.10 507.79
ESoHC 895.30 884.35 872.29 843.16 724.75 482.91
SoDSA 117.48 78.18 65.00 57.33 51.56 47.60
GSoDSA 89.91 64.02 54.40 47.96 42.90 39.98
ESoDSA 89.65 64.76 54.30 47.38 43.33 39.83

Requests Satisfied
SoHC 80.00 80.00 80.00 79.88 79.47 78.50
GSoHC 80.00 80.00 80.00 79.97 79.71 79.31
ESoHC 80.00 80.00 80.00 79.95 79.69 79.31
SoDSA 74.97 74.99 75.02 74.94 74.67 74.02
GSoDSA 74.35 74.48 74.49 74.42 74.06 74.06
ESoDSA 74.33 74.46 74.51 74.43 74.05 73.30

Average Queue Time
SoHC 200.84 200.84 200.89 201.10 202.14 206.29
GSoHC 200.86 200.89 200.94 201.11 201.92 204.06
ESoHC 200.86 200.88 200.92 201.10 201.96 204.03
SoDSA 240.63 242.17 242.28 242.72 244.09 247.24
GSoDSA 244.90 245.39 245.30 245.66 246.95 250.25
ESoDSA 244.92 245.44 245.25 245.69 246.94 250.23

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 988.00 988.00 988.00 988.00 988.00 988.00
GSoHC 988.00 988.00 988.00 988.00 988.00 988.00
ESoHC 988.00 988.00 988.00 988.00 988.00 988.00
SoDSA 953.94 954.05 953.86 954.01 954.04 953.99
GSoDSA 958.23 958.10 958.24 958.28 958.40 958.47
ESoDSA 958.19 958.17 958.20 958.20 958.31 958.26

Requests Satisfied
SoHC 20.00 20.00 20.00 20.00 20.00 20.00
GSoHC 20.00 20.00 20.00 20.00 20.00 20.00
ESoHC 20.00 20.00 20.00 20.00 20.00 20.00
SoDSA 20.00 20.00 20.00 20.00 20.00 20.00
GSoDSA 20.00 20.00 20.00 20.00 20.00 20.00
ESoDSA 20.00 20.00 20.00 20.00 20.00 20.00

Average Queue Time
SoHC 10.60 10.60 10.60 10.60 10.60 10.60
GSoHC 10.60 10.60 10.60 10.60 10.60 10.60
ESoHC 10.60 10.60 10.60 10.60 10.60 10.60
SoDSA 10.68 10.68 10.68 10.68 10.68 10.68
GSoDSA 10.67 10.67 10.67 10.67 10.67 10.67
ESoDSA 10.67 10.67 10.67 10.67 10.67 10.67
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Table 7.27. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 50 iteration and life span of 50 iterations and normal

distribution with standard deviation of 0.5

Table 7.28. Results of all algorithms on the Sensor Sharing Problem with
arrival intervals at 50 iteration and life span of 200 iterations and normal

distribution with standard deviation of 0.5

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 984.90 984.80 984.70 984.59 984.50 984.40
GSoHC 984.90 984.80 984.70 984.61 984.52 984.41
ESoHC 984.90 984.80 984.69 984.60 984.50 984.42
SoDSA 949.58 949.45 949.36 949.26 949.04 948.92
GSoDSA 953.46 953.47 953.23 953.11 952.93 952.83
ESoDSA 953.52 953.36 953.24 953.13 952.90 952.79

Requests Satisfied
SoHC 20.00 20.00 20.00 20.00 20.00 20.00
GSoHC 20.00 20.00 20.00 20.00 20.00 20.00
ESoHC 20.00 20.00 20.00 20.00 20.00 20.00
SoDSA 20.00 20.00 20.00 20.00 20.00 20.00
GSoDSA 20.00 20.00 20.00 20.00 20.00 20.00
ESoDSA 20.00 20.00 20.00 20.00 20.00 20.00

Average Queue Time
SoHC 50.60 50.60 50.60 50.60 50.60 50.60
GSoHC 50.60 50.60 50.60 50.60 50.60 50.60
ESoHC 50.60 50.60 50.60 50.60 50.60 50.60
SoDSA 50.70 50.70 50.69 50.69 50.70 50.71
GSoDSA 50.68 50.68 50.69 50.69 50.69 50.69
ESoDSA 50.68 50.69 50.68 50.69 50.69 50.69

Constraint Tightness
0.01 0.02 0.03 0.04 0.05 0.06

Stable Cycles
SoHC 979.45 978.86 978.35 977.82 977.40 976.85
GSoHC 979.43 978.89 978.36 977.76 977.35 976.86
ESoHC 979.43 978.89 978.27 977.75 977.25 880.48
SoDSA 932.50 931.94 930.77 930.02 928.34 926.35
GSoDSA 932.71 930.18 925.90 921.51 914.95 907.06
ESoDSA 932.72 929.92 926.08 921.05 915.23 907.24

Requests Satisfied
SoHC 16.00 16.00 16.00 16.00 16.00 16.00
GSoHC 16.00 16.00 16.00 16.00 16.00 16.00
ESoHC 16.00 16.00 16.00 16.00 16.00 16.00
SoDSA 16.00 16.00 16.00 16.00 16.00 16.00
GSoDSA 16.00 16.00 16.00 16.00 16.00 16.00
ESoDSA 16.00 16.00 16.00 16.00 16.00 16.00

Average Queue Time
SoHC 200.88 200.88 200.88 200.88 200.88 200.88
GSoHC 200.88 200.88 200.88 200.88 200.88 200.88
ESoHC 200.88 200.88 200.88 200.88 200.88 200.89
SoDSA 202.03 202.06 202.13 202.21 202.26 202.35
GSoDSA 202.14 202.20 202.31 202.41 202.59 202.73
ESoDSA 202.14 202.23 202.30 202.42 202.58 202.74



of sensor requests among the differing sensor types.  The closer the number of active

requests approaches the maximum of 30, the harder the problem becomes, especially

when the constraint tightness on the allocation policies is increased.  As for the problems

with requests arriving every interation with life spans of 50 and 200, the performance

drops  dramatically  around  the  constraint  tightness  where  there  is  only  one  feasible

solution.  The results reflect the prediction of where the hard problems would be based on

equation 7.4.6.

For the first portion of the test, assuming that the uniform random number generator

used to randomly generate the unit requests is truly uniform, it can be expected that the

30 randomly generated unit  requests that are active at any given time will  be evenly

spread out among the different sensor types.  If this is the case, then based on equation

7.4.6  with  30  external  requests  evenly  distributed  among  the  domain  values,  the

constraint tightness at which the expected number of feasible solutions drops to 1 is 0.05.

This explains why it is so hard to maintain a stable cycle when the tightness increases

above 0.03.

For the second portion of the test, the Gaussian random number generator used to

generate requests for sensors created a situation where the sensor types being requested

were clustered.  This made the problem harder, as predicted with 7.4.6, because of the

reduction in the number of feasible solutions.  However, the clustering also made the

sensor sharing problem less dynamic, requiring less frequent sensor reassignment, which

helped boost the performance of ESoHC and GSoHC along with SoDSA.  

Overall, depending on the distribution of requests among sensor type, the length of

time between the arrival of request and the life span of requests, a few conclusions can be
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drawn.   SoHC,  with  its  greater  diversity  in  population,  performs  better  than  either

GSoHC or ESoHC when the requests are more evenly distributed among sensor types.

When the requests are not uniformly distributed among the sensor types, the performance

of SoHC drops while ESoHC and GSoHC performs much better.  Generally, SoHC will

perform better when the problem is more dynamic.  For the DSA based GEPs, the results

are slightly different, as ESoDSA has a slight edge when the distribution of requests is

more  uniform,  while  SoDSA  performs  slightly  better  with  non-uniform  requests.

ESoDSA performs the best for easier problems, while SoDSA performs better on the

harder  problems,  especially  with  non-uniform requests.   However,  none of  the DSA

based GEPs is able to perform acceptably on harder problems.
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CHAPTER 8

CONCLUSIONS AND FURTHER RESEARCH

With the growing popularity and usage of distributed architectures in computing,

distributed  resource  allocation  and  distributed  constraint  satisfaction  problems  will

become much more common.  As noted earlier, a great deal of work has been devoted to

solving the traditional centralized resource allocation and constraint satisfaction problems

and good  solution methods  and strategies  have been found.   However,  a distributed

architecture poses a new challenge for  traditional methods with unique requirements,

specifically decentralized control.  Even when adapted to solve distributed problems, the

methods only produce good results for fairly easy problems, for example,  distributed

asynchronous backtracking or asynchronous weak commitment searches.

This research demonstrated the use of genetic and evolutionary protocols (GEPs)

that  utilize a truly distributed genome for  candidate  solutions,  along with distributed

genetic  and  evolutionary  operators,  to  solve  distributed  constraint satisfaction  and

resource allocation problems.  The tests on randomly generated distributed asymmetric

constraint  satisfaction  problems  (DisACSPs)  showed  that  GEPs  are  superior  to  the

current  best  known  algorithms,  the  distributed  breakout  algorithm  (dBA)  and  the

distributed stochastic algorithm (DSA).

The results also showed that dBA and DSA can both be modified with a population

based approach (SoHC and SoDSA) to increase performance with only a linear increase
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in overhead.  The genetic and evolutionary operators used to increase the performance of

SoHC can also be used to improve performance for other similar algorithms.  However,

this direct implementation of the genetic and evolutionary operators to create DSA based

GEPs still has room for improvement.  

The sensor network tracking and sharing problems presented interesting application

test beds for GEPs.  GEPs performed well  for the sensor tracking problem, since the

problem is fairly static and reassignment of sensor duty does not have to take place very

often.  However, for the sensor sharing problem, where the external requests are more

varied and there is a much more dynamic scenario with frequent reassignments of sensor

duty,  GEPs did  not  perform  as  well  as  plain  SoHC.   As  mentioned earlier,  this  is

completely due to the lack of population diversity caused by the use of the crossover and

mutation operators, which help GEPs find solutions faster than SoHC, but increase the

time they need to adapt to changes in the problem. 

In  summary,  this  dissertation  presented  and  demonstrated  the  performance  and

advantages of a new type of distributed EC utilizing genetic and evolutionary protocols.

The genetic and evolutionary protocols easily outperformed the best known algorithms in

solving distributed  constraint  satisfaction and resource allocation problems and show

great potential.  The distributed genetic and evolutionary operators used here can also be

applied to other distributed methods and are likely to improve their performances.

For further research, the possibility of creating a DSA with an adaptive p value that

can increase its performance is an avenue to explore.  Preliminary trials in this work did

not yield good results, but were generally inconclusive.  There is also the open question
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of whether a breakout list will help DSA.  It could very well be that other DSA models

are more suitable for such modifications.

Also, the implementation of the sensor tracking problem used for testing GEPs was

fairly  simplistic,  as the focus  was  to  show that  GEPs can be utilized to  solve  such

problems and get preliminary results to assess the performance.  The next step would be

to move towards a more realistic model of the sensor tracking problem.  For example, the

removal  of  the assumption of perfect  visibility would change the entire problem and

make it  harder.   Topology considerations  can also be added to  create  more realistic

ommunication models.

Further more, in this work, unit requests were used for the sensor sharing problem to

simplify the testing and to help discover more about the general behavior of GEPs when

there  is  a  need  to  satisfy  both  external  and  internal  constraints.   However,  more

realistically, more tests need to be performed using block requests of varying sizes to

further explore the nature of the sensor sharing problem.

Lastly, the approach towards the sensor tracking and sharing problems in this work

is at a very high level, which opens up the possibility of performing lower level analysis

to determine the impact of GEPs on the power consumption of each individual pod and

the general communication latency required to create global views.

165



BIBLIOGRAPHY

[1] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. “Wireless Sensor
Networks: a Survey.” Computer Networks Vol. 38, pg. 393-422, 2002.

[2] Angeline,  P.   “Adaptive  and  Self-Adaptive  Evolutionary  Computations.”
Computational Intelligence: A Dynamic Systems Perspective. IEEE Press, pp152-
163, 1995.

[3] Aslam,  J.,  Butler,  Z.,  Constantin,  F.,  Crespi,  V.,  Cybenko,  G.,  and  Rus,  D.
“Tracking  a  Moving  Object  with  a  Binary  Sensor  Network.”   Proceedings  of
SenSys '03.

[4] Bäck, T., Hoffmeister, F. and Schwefel, H.-P. “A Survey of Evolution Strategies.”
In Proceedings of the Fourth International Conference on Genetic Algorithms, 2-9.
San Mateo, CA 1991.

[5] BarNoy,  A. et al.   “On Chromatic Sums and Distributed Resource Allocation.”
Information and Computation, Vol. 140, No. 2, pp183-202, 1998.

[6] Bazaraa,  M.  S.,  Sherali,  H.  D.,  and  Shetty,  C.  M..   Nonlinear  Programming:
Theory and Algorithms.  John Wiley & Sons, Inc., 1993.

[7] Bejar, R., Krishnamachari, B., Gomes, C., and Selman, B. “Distributed Constraint
Satisfaction in a Wireless Sensor Tracking System.”   Workshop on Distributed
Constraint Reasoning, International Conference on Artificial Intelligence, 2001.

[8] Belding T. C. “The Distributed Genetic Algorithm Revisited.”  Proceedings of the
Sixth Intl. Conf. on Genetic Algorithms, pages 114--121, San Mateo, CA, 1995.

[9] Bellman,  R.   “Some Applications  of  the  Theory  of  Dynamic  Programming-A
Review.”  Journal of the Operations Research Society of America, Vol. 2, No. 3
(Aug., 1954), pp. 275-288.

[10] Bertsekas,  D.  P..   Nonlinear  Programming.   Athena  Scientific.  Massachusetts,
1995.

[11] Bharathidasan, A., Ponduru, V. A. S.  “Sensor Networks: An Overview.”  IEEE
INFOCOM '04.

[12] Bhuvaneswaran, R. S., Bordim, J. L., Cui, J. T., and Nakano, K..  “Fundamental
Protocols for Wireless Sensor Networks.”  IPDPS, April 2001.

[13] Carter,  R.  L.,  Louis,  D.  St.,  and  Andert,  E.  P.  Jr.   “Resource  Allocation in  a
Distributed Computing Environment.”   Proceedings of Digital Avionics Systems
Conference, 1998.

[14] Burghart, T..  “Distributed Computing Overview.”  QUOIN Inc., June, 1998.

166



[15] Cassandras,  C.  G.  and  Julka,  V.  “Descent  Algorithms  for  Discrete  Resource
Allocation  Problems.”   Proceedings  of  the  33rd Conference  on  Decision  and
Control, 1994.

[16] Chandy,  K.  M.  and  Misra,  J.   “The  Drinking  Philosophers  Problem.”   ACM
Transactions on Programming Languages and Systems, 1984.

[17] Charnes, A. and Cooper, W. W.  “The Theory of Search: Optimum Distribution of
Search Effort.”  Management Science, Vol. 5, No. 1 (Oct., 1958) , pp. 44-50.

[18] Chellapilla, K. and Fogel, D. B. “Exploring Self-Adaptive Methods to Improve the
Efficiency of Generating Approximate Solutions to Traveling Salesman Problems
using  Evolutionary  Programming.”   Evolutionary  Programming  VI, Springer,
Berlin (1997) 361-371.

[19] Chevaleyre, Y. et la.  “Issues in Multiagent Resource Allocation.”  Informatica,
30:3-31, 2006 

[20] Choy, M. and Singh,  A. K..  “Efficient Fault-Tolerant Algorithms for Distributed
Resource  Allocation.”   ACM  Transactions  on  Programming  Languages  and
Systems, Vol. 17, No. 3, pp535-559, 1995.

[21] Commander,  C.  W.   “A  Survey  of  the  Quadratic  Assignment  Problem,  with
Applications.”  Morehead Electronic Journal of Applicable Mathematics, Issue 4,
2005.

[22] Coffman, K. G. and  Odlyzko,  A. M..  “Growth of the Internet.”   Optical Fiber
Telecommunications IV B: Systems and Impairments, I. P. Kaminowand T. Li, eds.,
pp. 17-56, Academic Press, 2002.

[23] Coit, D. W. and Smith, A. E..  “Solving the Redundancy Allocation Problem Using
a  Combined  Neural  Network/Genetic  Algorithm  Approach.”   Computers  &
Operations Research, July 1995.

[24] Coit,  D.  W. and  Liu,  J.   “System  Reliability  Optimization with  k-out-of-n
Subsystems.”   International  Journal  of  Reliability,  Quality,  and  Safety
Engineering, Vol. 7, No. 2, pp129-142, 2000.

[25] Coleri,  S.,  Puri,  A.,  and  Varaiya,  P.   “Power  Efficient  System  for  Sensor
Networks.” Eighth  IEEE  International  Symposium  on  Computers  and
Communication Proceedings. (ISCC 2003)., July 2003.

[26] Day,  R. O.,  Kleeman,  M. P., and  Lamont,  G.  B.  “Solving the Multi-Objective
Quadratic  Assignment  Problem  Using  a  Fast  Messy  Genetic  Algorithm.”
Proceedings of CEC'03.

[27] Debeau,  D.  E.   “Linear  Programming Isn't  Always  the  Answer.”   Operations
Research, Vol. 5, No. 3 (Jun., 1957) , pp. 429-433.

[28] Dechter,  R.   “Constraint  Networks.”   Encyclopedia  of  Artificial  Intelligence,
second edition, pp276-295, Wiley and Sons, 1992.

[29] DeJong, K. and Spears,  W. (1993). “On the State of Evolutionary Computation.”
Proceedings of the Fifth ICGA, 618-623. Kaufmann, San Mateo, CA.

[30] Dodin, P.,  Verliac,  J., and  Nimier,  V.  “Analysis of the Multisensor Multitarget
Tracking  Resource  Allocation  Problem,”  in:  Proceedings,  3rd  International
Conference on Information Fusion, 2000, pp. WeC1—17—22.

[31] Dorigo, M and Di Caro, G.  “Ant Algorithms for Discrete Optimization.” Artificial
Life, Vol 5, No. 3, pp137-172, 1999.

167



[32] Dorigo, M., Bonabeau, E., and Theraulaz, G.. (1999).  Swarm Intelligence: From
Natural to Artificial Systems, Oxford University Press.

[33] Dorigo, M. and Gambardella, L. M.  “Ant Colony System: A Cooperative Learning
Approach  to  the  Traveling  Salesman  Problem.”   IEEE  Transactions  on
Evolutionary Computation, Vol 1., No. 1, 1997.

[34] Dorigo, M., Maniezzo, V., and Colorni, A. “Ant System: Optimization by a Colony
of Cooperating Agents.” IEEE Transactions on Systems, Man and Cybernetics, Part
B, Volume: 26 , Issue: 1, Pages:29 – 41,  Feb. 1996.

[35] Dozier, G.  “Distributed Constraint Satisfaction via a Society of Hill-Climbers.”  In
Proceedings of the 2002 World Automation Conference(International Symposium
on Soft Computing with Industrial Applications), Orlando Florida, June 9-13.

[36] Dozier,  G.  “Solving  Distributed  Asymmetric  Constraint  Satisfaction  Problems
Using  an  Evolutionary Society  of  Hill-Climbers.” Proceedings  of  Genetic  and
Evolutionary Computation Conference (GECCO-2003).

[37] Dozier, G. and Rupela, V.  “Solving Distributed Asymmetric CSPs via a Society of
Hill-Climbers.”  Proc. Of IC-AI’02, pp. 949-953, CSREA Press.

[38] Dozier , G. “Sharing the Sensor Web via Recurrent Distributed Meta-Evolutionary
Constraint Satisfaction.”  Proceedings of the 2003 Conference on Space Mission
Challenges for Information Technology (SMC-IT 2003) , pp. 153-160 , July 13-16 ,
Pasadena , CA.

[39] Dozier, G.,  Bowen,  J., and Bahler,  D.  “Solving Randomly Generated Constraint
Satisfaction  Problems  Using  a  Micro-Evolutionary  Hybrid  that  Evolves  a
Population  of  Hill-Climbers.”   Proceedings  of  the  2nd  IEEE  Conference  on
Evolutionary Computation, pages 614-619, 1995.

[40] Dozier,  G.,  Bowen,  J.,  and  Homaifar,  A.   “Solving  Constraint  Satisfaction
Problems Using Hybrid Evolutionary Search.”  IEEE Transactions on Evolutionary
Computation, Vol. 2, No. 1, April 1998.

[41] Dozier, G. V.,  Cunningham,  H.,  Britt,  W., and Zhang,  F. “Distributed Constraint
Satisfaction,  Restricted  Recombination,  and  Hybrid  Genetic  Search.”  GECCO
2004: 1078-1087.

[42] Dreyfus, S. E.  “Computational Aspects of Dynamic Programming.”  Operations
Research, Vol. 5, No. 3 (Jun., 1957) , pp. 409-415.

[43] Eiben,  A.  E.,  Raue,  P-E.,  and  Ruttkay,  Zs.   “Solving  Constraint  Satisfaction
Problems Using Genetic Algorithms.”  The 1st IEEE Conference on Evolutionary
Computation, pp. 542-547. 1994.

[44] V. Ekanayake, C Kelly, IV, and R Manohar.  “An Ultra-Low Power Processor for
Sensor Networks.”  Proceedings of ASPLOS '04.

[45] Fabiunke, M. “Parallel Distributed Constraint Satisfaction.”  In Proc. Intern. Conf.
on Parallel and Distributed Processing Techniques and Applications (PDPTA-99),
pages 1585–1591, 1999.

[46] Fang, Q.,  Zhao,  F., and  Guibas,  L.  “Counting Targets: Building and Managing
Aggregates  in  Wireless  Sensor  Networks.”  Xerox  Palo  Alto Research  Center
(PARC) Technical Report, June 2002.

168



[47] Fiacco,  A.  V.  and  McCormick,  G.  P..  Nonlinear  Programming:  Sequential
Unconstrained  Minimization  Techniques.  Society  for  Industrial  and  Applied
Mathematics, Philadelphia, 1990.

[48] Fitzpatrick,  S. and  Meertens,  L.  “An Experimental  Assessment of  a Stochastic,
Anytime, Decentralized, Soft Colourer for Sparse Graphs.”  In Proc. 1st Symp. on
Stochastic Algorithms: Foundations and Applications, pages 49–64, 2001.

[49] Fogel,  D. B.  “The Advantages of Evolutionary Computation.”  Proceedings of
Biocomputing and Emergent Computation, 1997.

[50] Fogel,  D. B. and Chellapilla,  K.  “Revisiting Evolutionary Programming.”  SPIE
Aerosense98,  Applications and Science of  Computational  Intelligence,  Orlando,
FL, pp. 2-11, 1998.

[51] Fogel,  D. B.  Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence. IEEE Press, New York, 2000.

[52] Fogel,  L.  J.,  Owens,  A.  J.,  &  Walsh,  M.  J.  Artificial  Intelligence  Through
Simulated Evolution. New York: Wiley Publishing, 1966.

[53] Fogel,  L.  J.,  Angeline,  P.  J.,  and  Fogel,  D.  B.  (1995).  “An  Evolutionary
Programming  Approach  to  Self-Adaptation  on  Finite  State  Machines.”
Proceedings  of  the  Fourth  International  Conference  on  Evolutionary
Programming, 355—365.

[54] Freuder,  E. C.,  Minca,  M.,  and  Wallace,  R. J. “Privacy/Efficiency Tradeoffs in
Distributed  Meeting  Scheduling  by  Constraint-Based  Agents.”  Distributed
Constraint Reasoning, pp. 63-70, 2001.

[55] Fu, S. and Dozier, G. V.  “Solving Distributed Constraint Satisfaction Problems
with an Ant-Like Society of Hill-Climbers.”  IC-AI 2003: 263-269.

[56] Galinier, P. and Hao, J-K..  “Hybrid Evolutionary Aglorithms for Graph Coloring.”
Journal of Combinatorial Optimization 3, 379–397 (1999)

[57] Galstyan, A., Krishnamachari, B., Lerman, K.  “Resource Allocation and Emergent
Coordination in Wireless Sensor Networks.”   American Association of Artificial
Intelligence, 2004.

[58] Glover, F. and Laguna, M.  Tabu Search.  Springer, 1998.
[59] Glover, F., Taillard, E., and D. de Werra. “A User’s Guide to Tabu Search.” Annals

of Operation Research vol. 41, pp. 3-28, 1993.
[60] Glover, F.,  Laguna,  M. and Marti,  R.  “Fundamentals of Scatter Search and Path

Relinking.” Control and Cybernetics, 29/3 (2000), 653-684.
[61] Gorges-Schleuter,  M.  “ASPARAGOS  An  Asynchronous  Parallel  Genetic

Optimization  Strategy.”  Proceedings  of  the  3rd  International  Conference  on
Genetic Algorithms, pages 422-427, 1989.

[62] de Guenin, J.  “Optimum Distribution of Effort: An Extension of the Koopman
Basic Theory.”  Operations Research, Vol. 9, No. 1 (Jan. - Feb., 1961) , pp. 1-7.

[63] Hadj-Alouane, A. B.,  and Bean, J. C.  “A Genetic Algorithm for the Multiple-
Choice Integer Program.”  Operations Research, Vol. 45, No. 1 (Jan. - Feb., 1997) ,
pp. 92-101.

[64] Handa, H., Katai, O., Baba, N., and Sawaragi, T.  “Solving Constraint Satisfaction
Problems by Using Coevolutionary Genetic Algorithms.”   Proceedings of 1998
IEEE Internation Conference on Evolutionary Computation, pp. 21-26.

169



[65] Hillier, F. S. and Lieberman, G. J.  Introduction to Operations Research.  McGraw-
Hill Inc. New York, 1995.

[66] Hinterding, R., Michalewicz, Z. and Eiben, A. E. “Adaptation in Evolutionary
Computation: A Survey.”  Proceedings of the IEEE Conference on Evolutionary
Computation, 1997.

[67] Horng,  J-T.  et  la.   “Resolution  of  Quadratic  Assignment  Problems  Using  an
Evolutionary Algorithm.” Proceedings of CEC'00.

[68] Hubaux, J.P. and Enz, C.  “Minimum Energy Broadcast in All-Wireless Networks:
NP-Completeness  and  Distribution  Issues.”   Proceedings  of  MOBICOM  '02,
September, 2002.

[69] Hung,  M.  S.  “A  Polynomial  Simplex  Method  for  the  Assignment  Problem.”
Operations Research, Vol. 31, No. 3 (May - Jun., 1983) , pp. 595-600.

[70] Ibaraki, T. and Katoh, N.  Resource Allocation Problems: Algorithmic Approach.
The MIT Press, Massachusetts, 1988.

[71] Kang,  I.  and  Poovendran,  R.   “A  Novel  Power-Efficient  Broadcast  Routing
Algorithm  Exploiting  Broadcast  Efficiency.”   Proceedings  of  IEEE  Vehicular
Technology Conference, pp. 2926-2930, Orlando, FL, Oct. 6-9, 2003.

[72] Karmarkar,  N.  “A New Polynomial-time Algorithm for  Linear  Programming.”
Combinatorica, vol. 4, issue 4, pp. 373-395, 1994.

[73] Karush,  W.   “A  General  Algorithm  for  the  Optimal  Distribution  of  Effort.”
Management Science, Vol. 9, No. 1 (Oct., 1962) , pp. 50-72.

[74] Kennedy,  J.  “The Behavior  of  Particles.”  Proceedings  of  the  7th  International
Conference on Evolutionary Programming VII, pp. 581-589, 1998.

[75] Kennedy, J. and Eberhart, R. C. “Particle Swarm Optimization.”  Proc. IEEE int'l
conf. on neural networks Vol. IV, pp. 1942-1948. IEEE service center, Piscataway,
NJ, 1995.

[76] Kirkpatrick,  S.,  Gelatt,  C. D. Jr., and  Vecchi,  M. P. “Optimization by Simulated
Annealing”  Readings  in  Computer  Vision:  Issues,  Problems,  Principles,  and
Paradigms, pp.606 – 615, Morgan Kaufmann Publishers Inc., 1987.

[77] Klee, V. and Minty,  G. J. “How Good is the Simplex Algorithm?” In O. Shisha,
editor, Inequalities III, pages 159-175. Academic Press, New York, NY, 1972

[78] Kodialam, M.  S. and Luss,  H.   “Algorithms for  Separable  Nonlinear  Resource
Allocation Problems.”  Operations Research, Vol. 46, No. 2 (Mar. - Apr., 1998) ,
pp. 272-284.

[79] Koopman, B. O. “The Optimum Distribution of Effort.”  Journal of the Operations
Research Society of America, Vol. 1, No. 2 (Feb., 1953) , pp. 52-63.

[80] Koza, J. R. Genetic Programming. MIT Press, 1992.
[81] Kubisch,  M.,  Karl,  H.,  Wolisz,  A.,  Zhong,  L.  C.,  and  Rabaey,  J.  “Distributed

Algorithms  for  Transmission  Power  Control  in  Wireless  Sensor  Networks.”
Wireless Communications and Networking (WCNC'03), March 2003.

[82] Kulturel-Konak,  S.,   Smith,  A.  E.,  and  Coit,  D.  W.  “Efficiently  Solving  the
Redundancy Allocation Problem Using Tabu Search.”  IIE Transactions, 2003.

[83] Kulturel-Konak, S., Norman, B. A., Coit, D. W., and Smith, A. E. “Exploiting Tabu
Search Memory in Constrained Problems.”  INFORMS Journal of Computing, Vol.
16, No. 3, pp.241-254, Summer 2004.

170



[84] Kumar,  V.   “Algorithms for  Constraint  Satisfaction Problems:  A Survey.”   AI
Magazine, 1992.

[85] Kuo,  W.  and  Prasad,  V.  R.   “An  Annotated  Overview  of  System-Reliability
Optimization.”  IEEE Transactions on Reliability, 49/2 (2000), 176-187.

[86] Kuwabara, K., Ishida, T., Nishibe, Y., and Suda, T.  “An Equilibratory Market-
Based  Approach  for  Distributed  Resource  Allocation  and  Its  Application  to
Communication Network Control.”  From Market-Based Control: A Paradigm for
Distributed Resource Allocation, World-Scientific, Singapore, 1995.

[87] Li, D., Wong, K. D., Hu, Y. H., and Sayeed, A. M.  “Detection, Classification, and
Tracking of Targets.”  IEEE Signal Processing Magazine, March 2002.

[88] Liang,  Y-C.,  Kulturel-Konak,  S.,  and  Smith,  A.  E.   “Meta  Heuristics  for  the
Orienteering Problem.”  Proceedings of CEC'02, 2002.

[89] Liang,  Y-C.  and  Smith,  A.  E.  “An  Ant  System  Approach  to  Redundancy
Allocation.” Proceedings of CEC'99, 1999.

[90] Liang,  Y-C.  and  Smith,  A.  E.  “Ant  Colony  Optimization  for  Constrained
Combinatorial  Problems.”  Proceedings  of  5th International  Conference  on
Industrial Engineering, 2000.

[91] Liang, Y-C. and Smith, A. E.  “An Ant Colony Optimization Algorithm for the
Redundancy Allocation Problem (RAP).”   IEEE Transactions on Reliability, Vol.
53, No. 3, 2004.

[92] Eliane  M.  L.,  et  al.   “An  Analytical  Survey  for  the  Quadratic  Assignment
Problem.”  To appear in European Journal of Operations Research.

[93] MacIntyre,  E.,  Prosser,  P.,  Smith,  B.,  and  Walsh,  T.  “Random  Constraint
Satisfaction: Theory Meets Practice.” The Proc. Of CP-98, pp. 325-339, Springer-
Verlag.

[94] Mackworth, A. K. (1977).  “Consistency in the Networks of Relations”.  Artificial
Intelligence, 8 (1), pp. 99-118.

[95] Mailer,  R. and  Lesser,  V.   “Cooperative Negotiation for  Optimized Distributed
Resource Allocation  in  Soft-Real-Time.”   Proceedings  of  Second  International
Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2003),
ACM Press, pp. 576-583. July 2003.

[96] Manderick,  B.,  and  Spiessens,  P.  “Fine-grained  parallel  genetic  algorithms.”
Proceedings of the Third International Conference on Genetic Algorithms, pages
428-433, 1989.

[97] Maniezzo,  V.  and  Colorni,  A.  “The  Ant  System  Applied  to  the  Quadratic
Assignment Problem.”  IEEE Transactions on Knowledge and Data Engineering,
Vol. 11, No. 5, 1999.

[98] Maruyama, T., and Hirose, T., and Konagaya, A. “A Fine-Grained Parallel Genetic
Algorithm for Distributed Parallel Systems.”  Proceedings of the 5th International
Conference on Genetic Algorithms, pages 184-190, 1993. 

[99] McErlean, D. and Narayanan, S.  “Distributed Detection and Tracking in Sensor
Networks.”  36th Asilomar Conf. Signals, Systems and Computers, 2002.

[100] Meguerdichian, S., Koushanfar, F., Potkonjak, M., and Srivastava M. B. “Coverage
Problems in Wireless Ad-hoc Sensor Networks.”  Proceedings of IEEE Infocom,
Vol 3, pg. 139-150, April 2001.

171



[101] Men, P. and Freisleben, B.  “A Comparison of Memetic Algorithms, Tabu Search,
and  Ant  Colonies  for  the  Quadratic  Assignment  Problem.”    Proceedings  of
CEC'99.

[102] Mendelson, H., Pliskin, J. S., and Yechiali, U. “A Stochastic Allocation Problem.”
Operations Research, Vol. 28, No. 3, Part 2 (May - Jun., 1980) , pp. 687-693.

[103] Miehle,  W.  “Numerical  Solution  of  the  Problem  of  Optimum  Distribution  of
Effort.”  Journal  of  the Operations Research Society of America,  Vol.  2,  No. 4
(Nov., 1954) , pp. 433-440.

[104] Min,  R.,  Bhardwaj,  M.,  Cho,  S-H.,  Shih,  E.,  Sinha,  A.,  Wang,  A.,  and
Chandrakasan,  A.  “Low-Power Wireless Sensor Networks.”  In  Proceedings of
Fourteenth International Conference on VLSI Design,  Bangalore,  India,  January
2001.

[105] Min, R. and Chandrakasan, A.  “Top Five Myths about the Energy Consumption of
Wireless  Communication.” ACM  Sigmobile  Mobile  Computing  and
Communications Review (MC2R), January 2003 

[106] Minton, S., Johnston, M. T., Philips, A. B., and Laird, P. “Minimizing Conflicts: A
Heuristic  Repair  Method for  Constraint-Satisfaction  and Scheduling Problems.”
Arti.cial Intelligence, 58:161-205, 1992.

[107] Mitchell, M.  An Introduction to Genetic Algorithms. The MIT Press, Cambridge,
MA, 1996.

[108] Modi,  P.  J.,  Shen,  W-M.,  and  Tambe,  M.   “Distributed  Resource Allocation:
Formalization, Complexity Results and Mapping to Distributed CSPs.”  Principles
and Practice of Constraint Programming, 2001.

[109] Modi,  P.  J.  et  la.   “Dynamic  Distributed  Resource  Allocation:  A  Distributed
Constraint Satisfaction Approach.”  Pre-proceedings of the Eighth International
Workshop on Agent Theories, Architectures, and Languages, pp. 181-193, 2001.

[110] Modi, P. J., Shen, W-M., Tambe, M., and Yokoo, M.  “An Asynchronous Complete
Method for Distributed Constraint Optimization.”  In Proc of Autonomous Agents
and Multi-Agent Systems, 2003."

[111] Morin,  T.  L.  and  Marsten,  R.  E.   “Branch-and-Bound  Strategies  for  Dynamic
Programming.”  Operations Research, Vol. 24, No. 4 (Jul. - Aug., 1976) , pp. 611-
627.

[112] Morris, P.  1993.  “The Breakout Method for Escaping from Local Minima.”  In
Proceedings of the Eleventh National Conference on Artificial Intelligence, 40-45.

[113] Nguyen, T. and Deville, Y.  “A Distributed Arc Consistency Algorithm.” Science
and Computer Programming, Vol. 30, no. 1-2, pp227-250, 1998.

[114] Norman,  J.  M.  and  White,  D.  J.   “A  Method  for  Approximate Solutions  to
Stochastic  Dynamic  Programming  Problems  Using  Expectations.”   Operations
Research, Vol. 16, No. 2 (Mar. - Apr., 1968) , pp. 296-306.

[115] Owechko,  Y.  and  Shams,  S.   “Comparison  of  Neural  Network  and  Genetic
Algorithms  for  a  Resource  Allocation  Problem.”   IEEE  World  Congress  on
Computational Intelligence, vol. 7, pp. 4655-4660, 1994.

[116] Page,  I.,  Jacob,  T.,  and  Chern,  E.   “Fast  Algorithms for  Distributed  Resource
Allocation.”  IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2,
1993.

172



[117] van de Panne,  C.,  Whinston,  A.,  and  Beale,  E.  M.  L.  “A Comparison of  Two
Methods for Quadratic Programming.”  Operations Research, Vol. 14, No. 3 (May
- Jun., 1966) , pp. 422-443.

[118] Pannell,  D. J..   Introduction to Practical  Linear Programming.   John Wiley &
Sons, Inc., New York, 1997.

[119] Pishro-Nik, H.,  Chan,  K.,  Fekri,  F.  “On Connectivity Properties of Large-Scale
Sensor Networks.”  IEEE Sensor and Ad Hoc Communications and Networks 2004.

[120] Prosser, P., Conway, C., and Muller, C. “A Constraint Maintenance System for the
Distributed Constraint Satisfaction Problem.” Intelligent Systems Engineering, v.1
n.1, p. 76-83, Autumn 1992.

[121] Prosser, P., Conway, C., and Muller, C.  “A Constraint Maintenance System for the
Distributed Resource Allocation Problem.”  Intelligent Systems Engineering 1, 76
—83.

[122] Rabbat, M. and Nowak, R.  “Distributed Optimization in Sensor Networks.”   3rd
International  Symposium on Information Processing  in  Sensor  Networks,  April
2004.

[123] Randall,  M.   “A  General  Meta-Heuristic  Based  Solver  for Combinatorial
Optimization Problems.”  Computational Optimization and Applications, 2001.

[124] Raynal,  M.   “A  Distributed  Solution  to  the  k-out  of-m  Resources  Allocation
Problem.” Proceedings  of  the  International  Conference  on  Computing  and
Information, 1991.

[125] Riff,  M-C.   “Evolutionary  Algorithms  for  Constraint  Satisfaction  Problems.”
Proceedings  of  the  XVIII  International  Conference  of  the  Chilean  Computer
Science Society, pp158, 1998.

[126] Rudolph, G. “Global Optimization by Means of Distributed Evolution Strategies”
Proceedings of the First Conference on Parallel Problem Solving from Nature, pp.
209—213.

[127] Russell, S. J. and Norvig, P.  Artificial Intelligence: A Modern Approach.  Prentice
Hall, 2002.

[128] Salhieh,  A.,  Weinmann,  J.,  Kochhal,  M.,  and  Schwiebert,  L.   “Power Efficient
Topologies for Wireless Networks.”  Proceedings of International Conference on
Parallel Processing, 2001. 

[129] Schaofs,  L.  and  Naudts,  B.   “Ant  Colonies  are  Good  at  Solving  Constraint
Satisfaction  Problems.”   In  Proc.  of  the  2000  Congress  on  Evolutionary
Computation, pages 1190-195.

[130] Schiavone, G., Wahid, P., Van Doorn, E., Palaniappan, R., and Tracy, J.  “Target
Detection and Tracking Using a UWB Sensor Web”  Antennas and Propagation
Society Symposium, 2004. EEE , Volume: 2 , 20-25 June 2004 Pages:1287 - 1290
Vol.2.

[131] Sebag, M. and Shoemauer, M.  “A Society of Hill-Climbers.” The Proc. Of ICEC-
97, pp. 319-324, IEEE Press, 1997.

[132] Shamblin,  J.  E.  and Stevens,  G.  T.  Jr.   Operations  Research:  A  Fundamental
Approach. McGraw-Hill Inc., New York, 1974.

[133] Shamir,  R.  “The Efficiency of the Simplex Method: A Survey.”   Management
Science, Vol. 33, No. 3 (Mar., 1987) , pp. 301-334.

173



[134] Shaprio,  J.  “Dynamic  Programming  Algorithm  for  the  Integer Programming
Problem  I:  The  Integer  Programming  Problem  Viewed  as  a  Knapsack  Type
Problem.” Operations Research, 16, 103-121.

[135] Shenoy, G. V.  Linear Programming: Methods and Applications. John Wiley &
Sons, Inc., New York, 1989.

[136] Shin, J., Guibas, L. J., and Zhao, F.  “A Distributed Algorithm for Managing Multi-
Target  Identities  in  Wireless  Ad-hoc  Sensor  Networks.”  2nd  Workshop  on
Information Processing in Sensor Networks (IPSN '03), April 2003.

[137] Shonkwiler, R. “Parallel Genetic Algorithms.” ICGA 1993: 199-205.
[138] Srinivasan,  V.,  Nuggehalli,  P.,  and  Rao,  R. “Design of  Optimal  Energy Aware

Protocols  for  Wireless  Sensor  Networks.”   Vehicular  Technology  Conference
(VTC'01). IEEE VTS 53rd, May 2001 

[139] Smith,  B.  (1994).   “Phase  Transition  and  the  Mushy  Region  in  Constraint
Satisfaction Problems,” Proc. Of ECAI-94, pp. 100-104, John Wiley & Sons Ltd.

[140] Sohrabi,  K.,  Gao,  J.,  Ailawadhi,  V.,  and  Pottie,  G.  J.  “Protocols  for  Self-
Organization of a Wireless Sensor Network.”  IEEE Personal Communications, 7,
October 2000.

[141] Solmon, C. (2002).  “Ants can Solve Constraint Satisfaction Problems”, to appear
in: IEEE Transactions on Evolutionary Computation, IEEE Press.

[142] Spears, W. M., De Jong, K. A., Bäck, T., Fogel, D. B., and de Garis, H. (1993).
“An Overview of Evolutionary Computation,” The Proceedings of the European
Conference on Machine Learning, v667, pp. 442-459.

[143] Taha, H. A.  Operations Research: An Introduction.  MacMillan Publishing Co.,
Inc.  New York, 1971.

[144] Tanese, R. “Distributed Genetic Algorithms.” Proceedings of the Third
International Conference on Genetic Algorithms, Pages: 434 - 439, 1989.

[145] Tardos,  E.   “A  Strongly  Polynomial  Algorithm to Solve Combinatorial  Linear
Programs.”  Operations Research, Vol. 34, No. 2 (Mar. - Apr., 1986) , pp. 250-256.

[146] Tate, D. M. and Smith, A. E.  “A Genetic Approach to the Quadratic Assignment
Problem.” Computers Ops Res., Vol. 22, No. 1, pp73-83, 1995.

[147] Tasgetiren,  M. F. and Smith, A. E.  “A Genetic Algorithm for the Orienteering
Problem.” Proceedings of CEC'00, 2000.

[148] Tel,  Gerard.  Introduction  to  Distributed  Algorithms.  Cambridge  University
Press,1994.

[149] Tian,  D.  and  Georganas,  N.  D.   “Energy  Efficient  Routing  with  Guaranteed
Delivery in Wireless Sensor Networks.”  WCNC 2003, March 2003.

[150] Tilak, S., Abu-Ghazaleh, N. B., Heinzelman, W.  “A Taxonomy of Wireless Micro-
Sensor  Network  Model.”  ACM  SIGMOBILE  Mobile  Computing  and
Communications Review, 2002.

[151] M. Tubaishat and S. Madria. “Sensor Networks: An Overview.” IEEE Potentials,
22, 2, 20-23, April 2003.

[152] Tuomi,  I.  “The  Lives  and Death  of  Moore's  Law.”   First  Monday,  volume 7,
number 11 (November 2002).

[153] Wagner,  H. M.  “A Comparison of the Original and Revised Simplex Methods.”
Operations Research, Vol. 5, No. 3 (Jun., 1957) , pp. 361-369.

174



[154] Wagner, H. M.  “The Simplex Method for Beginners.”  Operations Research, Vol.
6, No. 2 (Mar. - Apr., 1958) , pp. 190-199.

[155] Wan, P-J. and  Yi,  C-W.  “Asymptotic Critical Transmission Radius and Critical
Neighbor Number for k-Connectivity in Wireless Ad Hoc Networks.” MobiHoc,
May 2004 

[156] Wattenhofer, R., Li, L.,  Bahl, P., Wang, Y. M. “Distributed Topology Control for
Power Efficient Operation in Multihop Wireless Ad hoc Networks.”  Proc. IEEE
Infocom 2001.

[157] Walukiewicz,  S.  Integer  Programming.  Kluwer  Academic  Publishers.  Boston,
1991.

[158] Wolfe, P.  “Some Simplex-Like Nonlinear Programming Procedures.”  Operations
Research, Vol. 10, No. 4 (Jul. - Aug., 1962) , pp. 438-447.

[159] Wong,  P.  J.  and  Luenberger,  D.  G.   “Reducing  the Memory Requirements  of
Dynamic  Programming.”   Operations  Research,  Vol.  16,  No.  6  (Nov.  -  Dec.,
1968), pp. 1115-1125.

[160] Wu, T., Ye, N., and Zhang, D.  “Comparison of Distributed Methods for Resource
Allocation.” International Journal of Production Research, Vol. 43, No. 3, pp515-
536, 2005.

[161] Xue, F. and Kumar, P. R.  “The Number of Neighbors Needed for Connectivity of
Wireless Networks.”  Wireless Networks 10, 169–181, 2004.

[162] Yangt,  C.  C.  and  Yang,  M-H.   “Constraint  Networks:  A  Survey.”  IEEE
International Conference on Systems, Man, and Cybernetics, Vol. 2, pp1930-1935,
1997.

[163] Ye,  W.,  Heidemann,  J.,  Estrin,  D.   “An  Energy-Efficient  MAC  Protocol  for
Wireless Sensor Networks.”  Proceedings of INFOCOM, 2002.

[164] Yokoo, M.  Distributed Constraint Satisfaction, Springer-Verlag.
[165] Yokoo,  M.,  Ishida,  T.,  Durfee,  E.,  and  Kuwahara,  K.  “Distributed  Constraint

Satisfaction for Formalizing Distributed Problem Solving.”   Proceedings of 12th

IEEE International Conference on Distributed Computing Systems ’92,  pp. 614-
621.

[166] Yokoo, M., Durfee, E.,Ishida, T., and Kuwahara, K. “The Distributed Constraint
Satisfaction  Problem:  Formalization  and  Algorithms.”   IEEE  Transaction  on
Knowledge and DATA Engineering, vol 10, No. 5, September 1998.

[167] Yokoo, M and Hirayama, K.  “Algorithms for Distributed Constraint Satisfaction:
A Review.”  Autonomous Agents and Multi-Agent Systems, vol. 3, no. 2, pp. 198-
212, 2000.

[168] Yu, Y.,  Krishnamachari,  B., and Prasanna,  V. K.  “Energy-Latency Tradeoffs for
Data Gathering in Wireless Sensor Networks.”  IEEE Infocom'04, 2004.

[169] Zangwill, W. I.  “The Convex Simplex Method.”  Management Science, Vol. 14,
No. 3, Theory Series (Nov., 1967) , pp. 221-238.

[170] Zhang,  W. and  Wittenburg,  L.  “Distributed Breakout Revisited.” In  AAAI-2002,
Edmonton Alberta Canada, 2002.

[171] Zhang,  W and  Xing,  Z.   “Distributed  Breakout  vs.  Distributed Stochastic:  A
Comparative  Evaluation  on  Scan  Scheduling.”   AAMAS-02  Workshop  on
Distributed Constraint Reasoning.

175



[172] Zhang,  W,  Wang,  G.  and  Wittenburg,  L.   “Distributed  Stochastic  Search  for
Constraint  Satisfaction  and  Optimization:  Parallelism,  Phase  Transitions  and
Performance”.  In  Workshop on Probabilistic  Approaches in Search AAAI-2002,
pages 53 – 59, Edmonton Alberta Canada, July 2002.

[173] Zhang, W., Xing, Z., Wang, G., and Wittenburg, L. “An Analysis and Application
of  Distributed  Constraint  Satisfaction  and  Optimization  Algorithms  in  Sensor
Networks.”  In  Proc. AAMAS-2003,  pages 185 – 192, Melbourne Australia, July
2003.

[174] Zhang, W., Deng, Z., Wang, G., Wittenburg, L., and Xing, Z. “Distributed Problem
Solving in Sensor Networks.” In Proc. AAMAS-02.

[175] Zhao, J. and Govindan, R.  “Understanding Packet Delivery Performance In Dense
Wireless Sensor Networks.”  The First ACM Conference on Embedded Networked
Sensor Systems (Sensys'03), November 2003 

[176] Zhao, F. and Guibas, L.  Wireless Sensor Networks: An Information Processing
Approach.  Morgan Kaufmann Publishers, 2004.

[177] Zhu, J. and  Papavassiliou,  S.  “On the Connectivity Modeling and the Tradeoffs
Between  Reliability  and  Energy  Efficiency  in  Large  Scale  Wireless  Sensor
Networks.” WCNC, March 2003.

[178] Zuniga, M. and Krishnamachari, B.  “Optimal Transmission Radius for Flooding in
Large Scale Sensor Networks.”  Proceedings of the 23rd International Conference
on Distributed Computing Systems Workshops, 2003.

176


