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Abstract 

Tropical cyclones recurrently batter the coastal regions of Bangladesh. It causes a lot of 

damage in the less resilient regions, especially the cities. This study aims to pinpoint the areas 

that are both physically and socially susceptible to tropical cyclones using the Analytical 

Hierarchy Process (AHP), Principal Component Analysis (PCA), and various geospatial 

techniques. The results indicated higher social vulnerability in the western and central regions of 

coastal Bangladesh. In addition, the areas near the Bay of Bengal exhibited higher overall social 

and physical risk than others. However, throughout time, the central coast showed the maximum 

risk level among all. Additionally, the Sundarbans mangrove forest located in the Indian territory 

showed poor health and degraded forest, which suggests that tropical cyclones might have 

disrupted the forests. The findings obtained in this study will be beneficial to the emergency 

responders and policymakers in coastal area management and disaster risk reduction.
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CHAPTER 01 

INTRODUCTION 

 

 

1.1 Background 

Natural hazards have always been an integral part of the Earth’s system, causing damage 

and devastation to the environment (Agrawal, 2018; FEMA, 2023; WMO, 2022a). The 

frequency of natural disasters has grown five times between 1970 to 2021, with the most 

significant increase attributed to hydrometeorological disasters, such as storms and floods 

(WMO, 2021). Tropical cyclones (TCs) are also referred to as typhoons and hurricanes, 

depending on their forming locations on the globe (Shultz et al., 2014). TCs are one of the most 

catastrophic and deadliest hydrometeorological natural disasters in tropical and sub-tropical 

latitudes (Hoque et al., 2018; Regnier & Harr, 2006). Even in their initial period of development, 

TCs batter many shore and sea-surrounded regions across the world (Hoque et al., 2018; Peduzzi 

et al., 2012; WMO, 2022b). The intensity and impact of this natural disaster are alarming. Often 

tropical cyclones are accompanied by multi-hazards such as gusty winds, torrential rainfall 

triggering floods and landslides, and intensive storm surges that mainly hit the coastal regions 

(UNDRR, 2017; WMO, 2022b; Zhou et al., 2018). They have the ability to collapse the 

communication network and cause many causalities and massive property and environmental 

damages (Dube et al., 2009; Gaona et al., 2018; Hoque et al., 2018; Peduzzi et al., 2012; Zhou et 

al., 2018). TCs are low-pressure weather systems, and warm tropical oceans are one of the key 

prerequisites (Fig 1.1) for the formation of these storms that can cause terrible damage when they 

make landfall (Mohapatra et al., 2014). As illustrated in Fig. 1.1, additional key formation factors 
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include atmospheric instability and pre-existing near-surface disturbance, moderately moist air, a 

vertical wind speed of roughly 23 mph, and the Coriolis force (Gray, 1998). 

 

 

 

Fig 1.1: Tropical cyclone formation conditions 

TCs are the second most prevalent global disaster, representing 17% of all disasters 

(WMO, 2021). It is documented that, over the past five decades (1970 – 2019), they have 

consistently taken a toll on human lives, accounting for 779,324 or 38% of disaster-related 

mortality (Hoque et al., 2016;  Pielke et al., 2008; WMO, 2021). Moreover, a financial loss of 

about 1.4 trillion USD was caused by 1,942 TCs during the same period (WMO, 2022b). 
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Worldwide, oceans in tropical latitudes produce 80 to 90 tropical cyclones per year on average; 

however, only around 40 to 50 of them make landfall with a wind speed of at least 33 ms-1, 

which correspondents to the strength of hurricanes, typhoons, or severe TCs (Frank & Young, 

2007). From 1970 to 2019, economic losses in North America, Central America, and the 

Caribbean region reached a peak (Fig. 1.2), while Asia recorded the highest number of cyclonic 

mortality and frequency (WMO, 2021). 

 

Fig 1.2: Casualties caused by tropical cyclones from 1970 to 2019 (adapted from WMO (2021) 

Bangladesh and India - two South Asian nations are at grave risk of tropical cyclones in 

the North Indian Ocean (NIO), which is also recognized as one of the breeding grounds for 

cyclogenesis activity (Mohapatra et al., 2014; Wahiduzzaman & Yeasmin, 2019). The Bay of 

Bengal (BoB), which is a sub-basin in the eastern part of the NIO, is one of the deadliest TCs 
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hotspots, with an average of 4 out of 5 TCs originating every year, putting coastal nations at risk 

of cyclonic mortality (Mohapatra et al., 2014; Sharma et al., 2022). It forms around 5.5% of 

global TCs, and Bangladesh is struck by approximately 1% of them (Alam & Dominey-Howes, 

2015; Rahman & Rahman, 2015). Despite experiencing relatively fewer TCs than its neighboring 

country India (Fig. 1.3), Bangladesh alone encountered 60% of the global mortality caused by 

TCs from 1990 to 2010 (Rahman & Rahman, 2015; Rana, 2013; WMO, 2021). According to the 

chronological records, among the ten deadliest TCs, seven were in South Asia, where  

 

Fig 1.3: Tropical cyclone frequencies around the globe from 1970-2023 (Source: EM-DAT) 

Bangladesh was the most vulnerable country, with more than half a million cyclonic deaths 

attributed to only two tropical cyclones from 1970 to 2008 (Defu et al., 2013). Overpopulation, 

flat coastal terrain, deltaic systems, and inadequate disaster preparedness exacerbate disaster 

damage in the NIO basin, even though TCs are relatively rare compared to other basins. Whether 
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climate change will increase the number of TCs is still up for debate; however, a positive trend 

with regard to TCs intensity and extreme cyclonic flooding might be possible in the future 

(Mitchell et al., 2022; Woodruff et al., 2013). 

Bangladesh is in the Ganges-Brahmaputra-Meghna (GBM) delta, which is highly 

vulnerable to disasters due to the concentrated population and its exposure to environmental 

challenges like natural hazards (Gain et al., 2022; Rahman et al., 2020). Moreover, Bangladesh is 

at the frontline of the battle against climate change. According to the long-term global climate 

risk index (CRI) 2020, Bangladesh ranked seventh among the ten most affected countries from 

2000-2019 regarding extreme weather events (Eckstein et al., 2021). Nevertheless, Bangladesh 

has implemented and emphasized mitigation strategies that have cut cyclone-related mortality 

down by over 100-folds in the past 38 years (Haque et al., 2012). This is exemplified by the 

differences in mortality in the 1970 Bhola cyclone, which experienced 500,000 deaths, compared 

to the Sidr cyclone in 2007, which experienced 4234 deaths. However, cyclone Sidr, a category-

4 storm with a high tidal surge, left millions of people homeless despite the fact that a large-scale 

evacuation of about 3 million people was carried out prior to its landfall (Haque et al., 2012). 

It also caused long-term damage, like salinity intrusion, and destroyed millions of acres of crops 

and livestock (Haque et al., 2012). The damages escalate in these regions mainly because of 

inaccurate warning systems and poor city planning (Quader et al., 2017). 

Catastrophic disturbances, such as TCs, can damage the structure and function of coastal 

forests, which serve as a key component in attenuating storm intensity and protecting coastal 

communities (Alongi, 2008; Everham & Brokaw, 1996; Hochard et al., 2019; Xi, 2015). 

Globally, the extent of mangroves has decreased by approximately 524,524 ha between 1996 and 

2020, and studies showed that tropical cyclones over six decades are responsible for around 45% 
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of the reported global mangrove destruction (Bunting et al., 2022; Sippo et al., 2018). The 

Sundarbans mangrove forest, rich in biodiversity and a UNESCO World Heritage Site, is one of 

the areas most affected by TCs in Southeast Asia. This is the world’s largest continuous 

mangrove forest (~3861 sq mi), covering around 2323 sq mi areas of Bangladesh and 1358 sq mi 

areas in India (West Bengal) (BFD, 2023; Ghosh et al., 2015; Mahmood et al., 2021). Super 

cyclone Sidr alone damaged around 21% of the total area of the Sundarbans mangrove forest, 

where around 965 sq mi areas of Bangladesh’s Sundarbans were impacted (Bhowmik & Cabral, 

2013; Khan, 2016). After cyclone Sidr, approximately 618 sq mi of Sundarbans forest were 

damaged by cyclone Amphan (Sen, 2020). Not only are the mangroves resourceful for the 

economy, but they also act as a natural barrier, reducing the intensity of natural calamities like 

TCs and tsunamis which in turn protect the coastal communities.   

1.2 Goal and Objectives 

This research focused on two main components of disaster management: place-based risk 

assessment and the health of the mangrove forest. The specific objectives of this study are the 

following:  

A. The first research objective is to develop a social vulnerability map for the coastal regions 

of Bangladesh emphasizing TCs.  

The tasks performed to create the risk map are-  

i. Developing an index to assess social vulnerability focusing on (a) demographic, (b) socio-

economic, and (c) special need criteria. 

B. The second research objective is to develop a physical vulnerability and TCs risk map for  

the coastal regions of Bangladesh. 

The steps were followed to develop the risk map -  
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i. Assessing physical vulnerability considering (a) elevation, (b) slope, (c) population density, 

(d) land cover, (e) proximity to cyclone track, and (f) proximity to the coastline. 

ii. Analyzing hazard by (a) TCs frequency, (b) TCs wind speed, (c) storm surge height, and (d) 

rainfall. 

iii. Observing mitigation capacity with the proximity to (a) cyclone shelter, (b) health facility, 

and (c) paved road network 

iv. Preparing a cyclone risk map by integrating physical and social vulnerability parameters 

C. The third research objective is to analyze the vegetation and degradation status of the 

Sundarbans Mangrove forests. 

The tasks performed to analyze these are-  

i. Analyzing short-term pre and post-cyclone periods and long-term yearly average NDVI to 

monitor the changes in the forest’s vegetation health caused by the disaster. 

ii. Observing the immediate disturbance of tropical cyclones in the forest by using the modified 

Radar Forest Degradation Index (mRFDI) 

1.3 Study Area 

The 19 coastal districts (Fig 1.4) of Bangladesh account for 32 percent of the country’s 

geographic area and occupy approximately 18224 sq miles which is the residence of around 35 

million people, or 28% of the country’s population (BBS, 2011; Moslehuddin et al., 2015; World 

Bank, 2019). This entire coastal zone of Bangladesh is divided into two distinct regions 

considering the proximity to the Bay of Bengal. The most vulnerable coastal region to climate 

change is the exposed coastal region (Fig 1.4) which includes 12 coastal districts and 48 local  

government territories or upazilas (counties) and converges with the sea directly. On the other 

hand, 67% of upazilas (counties) are in the interior region (Fig 1.4), that is impacted by tidal 
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functions, and do not meet the sea or lower estuary directly (Moslehuddin et al., 2015; Parvin et 

al., 2010). Based on their geomorphic and topographic criteria, both exposed and interior coastal 

areas are further subdivided into western, central, and eastern parts (Fig 1.4) (Quader et al., 

2017).  

 

Fig 1.4: Study Area Map 

The western region or western deltaic coast is highly vulnerable to natural disasters such 

as cyclonic storms associated with tidal floods because of several reasons, such as its exposure to 

the Bay of Bengal, a relatively low elevation with an average of 1.5 m, primarily located in the 

 

 

 

 central estuarine coast 

western deltaic coast 
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Ganges Tidal Floodplain, and higher rates of poverty (Murshed et al., 2022). In addition, with a 

range of coastal features including tidal flats, mangrove swamps, natural levees, and the 

Sundarbans mangrove forest in the southwest of the area, this semi-active delta extends from 

Jashore to Pirojpur districts (Fig. 1.4) (Akter et al., 2019; Brammer, 2012; Murshed et al., 2022). 

The central coastal region or the central estuarine coast covers the areas from Barishal to 

Feni districts (Fig. 1.4), and most of them fall under the highly active Meghna Estuarine 

Floodplains (Brammer, 2012; Murshed et al., 2022; Rahman & Rahman, 2015). This region is 

characterized by a narrow strip of land with geomorphological active offshore islands. Unlike the 

western part, this region does not have any mangrove forest; therefore, it suffers the direct 

impacts of storm surges and cyclones (Murshed et al., 2022; Quader et al., 2017). 

The Chattogram and Cox's Bazar districts are included in the eastern region, often known 

as the eastern cliff coast (Fig. 1.4), which is mostly part of the Chittagong Coastal Plains 

(Brammer, 2012; Murshed et al., 2022). The eastern part of this region contains the Chittagong 

Hill Tracts, which makes this region the steepest among the three coastal regions by reaching a 

maximum elevation of 327 meters above the mean sea level (Murshed et al., 2022). Due to 

socioeconomic conditions and geophysical qualities, the southern part of the eastern coast is 

highly susceptible to tropical cyclones (Quader et al., 2017).   

1.4 Significance of this Research 

Coastal areas are highly populated across the world, and around 37% of the global 

inhabitant was documented in 2017 within 100 km of the coastline (UNEP, 2023). Climate 

change will have a substantial impact in the future, posing a threat to coastal lives, resources, and 

ecosystems, and Bangladesh will not be spared. Bangladesh is subjected to several natural 

disasters on a regular basis. Multiple environmental hazards, including hydro-meteorological 
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natural disasters like cyclones, storm surges, flooding, etc., exert mounting pressure on the 

coastal communities of Bangladesh. It is augmented by the country’s geographical location, 

agrarian economy, and huge population (McGranahan et al., 2007). Despite a significant decline 

in cyclone fatalities, Bangladesh continues to struggle protecting livelihood and property among 

vulnerable coastal populations, making economic damage evident. Though the government has 

improved the early warning systems, evacuation before a cyclone is still challenging due to key 

issues like illiteracy, inadequate cyclone shelter, awareness, and poor communication (Haque et 

al., 2012). 

Protecting a region or community fully from disaster attacks is not possible, but it is 

important to build disaster-resilient communities to withstand and recover from the disaster. 

Therefore, identifying location-based potential risks and the vulnerable population along with 

their mitigation capacity through an appropriate risk assessment approach is essential. An 

effective risk assessment must consider several components, such as exposure, population 

sensitivity to hazards, and the community's ability to fight back against the casualty (Cutter, 

2011; Dewan, 2013). Cutter et al. (2003) pointed out that socially disadvantaged individuals are 

subjected to get the severe brunt of disasters since they have a lower likelihood of recuperating 

and a higher likelihood of dying. By understanding social vulnerability effectively, it is possible 

to protect the communities without disrupting livelihood and damaging properties (Flanagan et 

al., 2011). Besides evaluating physical and social vulnerability, it is important to seek the status 

of the highly threatened mangrove forest since it plays a vital role in mitigating the disaster 

damage.  

The primary purpose of this research is to show the current degree of susceptibility and 

risk of the coastal areas and communities to TCs impacts, as well as the condition of the 
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mangrove, which has been shielding the coast by obstructing the powerful cyclonic wind and 

storm surges for years. Several studies have been carried out on coastal cyclone vulnerability, but 

studying physical and social vulnerability in detail and integrating them still needs to be popular 

among researchers. Furthermore, the immediate impact on the Sundarbans mangrove forests 

using optical remote sensing data in most of the studies has been noticed, which can give an 

inaccurate result of the vegetation health due to a number of factors. In order to avoid significant 

data gaps in the presence of high cloud cover before and after the cyclones, this research also 

analyzed radar data to observe the forest disturbance, which is not found in other researchers’ 

work. This study developed and evaluated a spatial multi-criteria approach using the AHP 

method for comprehensively mapping physical vulnerability to tropical cyclones and risk. This 

study also analyzed social vulnerability using the social vulnerability index (SoVI) and created 

risk maps for the entire coast. The major findings of the research will aid in depicting the 

existing scenario and predicting the foreseeable impact of tropical cyclones in the coastal regions 

and the mangrove forest. The research will also be helpful in developing risk management 

strategies and policies to make a better and climate-adaptive future. 
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CHAPTER 2 

Social Vulnerability Assessment of the Coastal Communities of Bangladesh using the Social 

Vulnerability Index (SoVI) 

 

 

2.1 Background 

Globally, natural hazards are becoming more frequent, with the year 2021 alone 

experiencing 13% more natural disasters compared to the year 1991 (UNDRR, 2022). Advanced 

disaster preparedness strategies have helped individuals to defend themselves through time; 

however, the economic loss rocketed by 80%, exerted financial pressure on the affected people 

and made their life difficult (UNDRR, 2022). Hydrometeorological disasters were attributed to 

50% of all disasters in the past 50 years (1970-2019), and more than 91% of the 45% of disaster 

mortality occurred in developing countries (WMO, 2021). Based on recent statistical data, Asia 

emerged as the forefront region in terms of disaster-induced fatality, with the highest number of 

disasters struck there in 2021, including around 60% of deaths caused by 78% of 

hydrometeorological disasters, notably floods and storms (UNDRR, 2022). There has been a 

wide range of effects on society due to disasters, depending on factors such as poverty, 

education, income and so forth (Cutter et al., 2003). Rudimentary facilities which could 

safeguard individuals and their assets from disaster damage are often lacking in deprived poor 

communities. Furthermore, access to recovery assets by these groups is limited, a phenomenon 

that can be seen throughout developing and developed countries (Fothergill & Peek, 2004). 

Hazards accelerate poverty in poor communities, rendering them more susceptible to the next 
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disaster. For instance, hurricane Stan in 2005 compelled children from 7.3% of affected 

households in Guatemala to engage in child labor instead of attending school (GFDRR, 2023).

When a community or group of people have potential exposure to threats, whether natural 

or anthropogenic disasters or disease epidemics, it is termed social vulnerability (CDC, 2020; 

FEMA, 2023). A crucial determining factor for social vulnerability is the resilience of such a 

group (Cutter & Finch, 2008). Therefore, assessing social vulnerability is essential in identifying 

communities in need of assistance before or after a disaster to limit disaster damages. To define 

and evaluate socioeconomic disparities, a number of social vulnerability indices have been 

developed within the framework of disaster vulnerability, which are still being debated in order 

to establish best practices for determining how disasters can turn into societal catastrophe and 

validating their outcomes (Goodman et al., 2021; Rufat et al., 2019). The social vulnerability 

index (SoVI) is widely used, reliable, and frequently cited by researchers and governmental 

organizations (Enderami & Sutley, 2022).  

As a place-based technique, the SoVI approximates social vulnerability within a 

particular geographic area by integrating several variables into a single score that is indicative of 

the probability that a community is more vulnerable than others around the country in terms of 

social vulnerability (Cutter & Finch, 2008; Goodman et al., 2021; FEMA, 2023; Flanagan et al., 

2011; Wilson, 2019). The SoVI score is proportional to the community’s vulnerability, with the 

upper and lower scores of the index corresponding to the highest and lowest levels of 

vulnerability (FEMA, 2023; Spielman et al., 2020). Since Cutter et al. (2003) developed SoVI 

for the US, it has been modified and adapted for many studies to analyze and present different 

aspects of spatiotemporal vulnerabilities (Cutter & Finch, 2008; Goodman et al., 2021; Rabby et 

al., 2019). However, the standard inductive approach to reduce dimensionality in SoVI is 
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Principal Component Analysis (PCA), because of the ambiguity of the relationship between the 

variables and vulnerability (Bucherie et al., 2022; Heß, 2017; Mavhura et al., 2017; Rabby et al., 

2019; Tasnuva et al., 2021).  

Worldwide coastal communities are prone to natural hazards, specifically 

hydrometeorological hazards such as cyclones, floods, and storm surges (Bathi & Das, 2016). In 

addition to physical vulnerability to potential hazards, socioeconomic factors may affect coastal 

communities' resilience. According to a study conducted by the United States Census Bureau, 

based on the social vulnerability index and multidimensional deprivation index, coastal areas are 

more deprived and at higher risk than inland areas (Glassman & Devore, 2023). This mounting 

vulnerability and societal inequality are common in the global south.  

Storms are the one of major natural disasters in Bangladesh, which recurrently inflict 

damage on human lives and livelihoods. Coastal communities in developing countries like 

Bangladesh confront serious consequences during tropical cyclones due to a range of factors, 

including poverty, poor infrastructure, and lack of access to resources (Haque et al., 2012). 

Although cyclonic mortality decreased in this country, the maximum economic loss climbed by 

approximately 57 times, skyrocketing from 86 million in the 1970s to 4942 million US dollars in 

the 2000s (ADB, 2015). Cyclones Sidr (2007) and Aila (2009) devastated coastal Bangladesh, 

resulting in a 44% decrease in average income and a rise in poverty (Roy & Sultana, 2010). In a 

world where natural disasters are becoming more prevalent because of changing climate and 

increased population, studying socioeconomic vulnerability is becoming immensely important 

because risk multiplies proportionally as population increases in vulnerable areas (Gu, 2019).  

Despite the impacts mentioned above, relatively few studies were conducted on social 

vulnerability assessment in the coastal areas of Bangladesh. For quantifying social vulnerability, 
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academics previously relied on questionnaire surveys and focus group discussions (Mallick et al., 

2011; Mudasser et al., 2020). A social vulnerability index was calculated by Rabby et al. (2019) 

at the Union level covering the entire coastal areas of Bangladesh. Tasnuva et al. (2021), on the 

other hand, examined a small area at the Ward level using this index. Both of them used more 

than 25 indicators to construct the index. Alternatively, Miah et al. (2020) assigned only four 

demographic and socioeconomic factors to the Chittagong district to determine social 

vulnerability. However, they have done it for overall natural hazards, whereas vulnerability is 

hazard-specific (Cardona et al., 2012). For this reason, a composite index for emergency 

response must consider variables that might exacerbate the condition caused by a natural 

disaster, as changes in variable and geographical scale might ultimately have a profound effect 

on the outcome (Bucherie et al., 2022; Tate & Emrich, 2021). The variables were selected at the 

upazila or county level considering a particular hazard- TCs to construct SoVI for the entire 

coastal zone of Bangladesh. The index can prove beneficial for cyclone-related disaster 

preparedness, emergency responders during tropical cyclones, and during cyclonic recovery 

actions.  

2.2 Materials and Methods  

2.2.1 Data Required 

SoVI is constructed using census data at various scales (national, county, union, ward) 

around the world (Flanagan et al., 2011; Rabby et al., 2019; Tasnuva et al., 2021). To conduct 

this study, the most recent Population and Housing Census of 2011 at the upazila (county) level 

was used, which was provided by the Bangladesh Bureau of Statistics (BBS). The study 

employed 19 variables, many of which are related to vulnerability. Researchers have modified 

this index depending on geographical conditions, hazard context, and data availability. However, 
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Cutter et al. (2003) assessed the country's social vulnerability at the same geographic scale 

(county) as this study.  

2.2.2 Rationale of Variable Selection 

Factors are crucial in the execution of SoVI and possess the potential to alter the outcome 

in the same catastrophic setting. From a vast database of the BBS 2011 census, 19 variables (as 

shown in Table. 2.1) were taken into account for 131 upazilas (county) across 19 coastal 

districts. Demographic, economic, social, housing structure, composition, and facilities were 

some of the main themes of these indicators.     

Table 2.1: SoVI variables and other information 

 

Theme Cardinality Variance  

Explaine

d (%) 

Variables Description Loading 

Demography, 

Dependent 

population, 

Ethnic, 

Marital 

Status, 

Education, 

Housing 

structure and 

facilities, 

Employment 

status 

 

 

 

 

 

 

 

 

+ 

 

 

 

 

 

 

 

 

52.416 

 

 

% of total rural population 0.938 

% of total female population 0.908 

% age below 5 years (0-4) 0.900 

% of total disabled population 0.903 

% of total ethnic population 0.499 

% of total widowed and divorced 

population aged 10 years and above) 

0.911 

% of literacy of population aged 7 years 

& above 

0.858 

% of total kacha and jhupri household  0.805 

% of total household without safe 

drinking source  

0.454 

% of total household without electricity 0.944 

% of total household with non-sanitary 

and no toilet 

0.828 
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As part of the demographic analysis, rural and female population proportions were 

included. The rural population tends to be more vulnerable because of their limited access to 

basic facilities, disaster resources, and reliance on agriculture. As a result of social, cultural, and 

economic inequalities, along with their involuntary evacuation behavior, women are more 

susceptible to cyclones than men, particularly in developing nations like Bangladesh. Women's 

mortality rates during cyclone Gorky (1991) resulted in 14 times higher than men's, followed by 

five times higher mortality rates during cyclone Sidr (2007) (Rahman & Rahman, 2015). Hence, 

including these demographic variables can provide a better understanding of the social 

vulnerability to cyclones in the coastal areas of Bangladesh. Coastal areas are highly populated, 

which increases vulnerability. Therefore, the total population was included as a variable.  

The percentage of people under five years (0-4) and above 65 years old for each county 

was incorporated in this study. The inclusion of these variables was justified by the fact that 

% of total population looking for work 

and don't work (10 years & above) 

0.872 

% of total Population works in primary 

sector (10 years & above)  

0.960 

% of total Population works in service 

sector and industry (10 Years & above) 

0.703 

Vulnerable 

Population 

+ 15.532 % of total homeless population 0.893 

% of total rented household  0.899 

Total 

population, 

Aged 

population, 

and Housing 

composition 

 

+ 

 

14.368 

% of total population  0.831 

% of age 65 and over 0.864 

% of total households more than 5 

people  

0.820 
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people dependent on others are more vulnerable in the event of a disaster (Martin, 2015). 

Children are particularly vulnerable due to their physical and physiological vulnerability, which 

increase their risk of mortality (UNICEF, 2021). In Bangladesh, the average life expectancy was 

72 years in 2020 and was around 68 years in 2011 (BBS, 2011; World Bank, 2023). Persons 

aged 60 or above are considered elderly in Bangladesh, and those over 65 are deemed more 

susceptible to cyclones because of their reduced physical strength and weakened mental capacity 

(Hossain, 2016; Malak et al., 2020). The same reasoning is applicable to the disabled population.  

The ethnic community, also referred to as the tribal or indigenous community, is very 

small in Bangladesh, sharing only 1.25% of this country’s population (Macdonald, 2021). This 

variable was considered because, often, they can amplify social vulnerability. For example, 

evidence shows that since the community lacks access to fundamental rights and disaster 

awareness, ethnic women are more vulnerable (The Business Standard, 2020). Thus, including 

this variable is crucial for identifying and considering vulnerable populations that might 

otherwise go unnoticed. 

The populations of widowed and divorced people were considered under marital 

characteristics. Cvetkovic (2016) studied how married individuals perceive disaster preparedness 

differently than divorced and widowed ones. His finding showed that married persons exhibit  

greater liability towards their family and community, whereas a dilemma was noticed in taking 

precautions among divorced people.    

Households with more than five members were considered due to their effectiveness in 

responding to and recovering from the crisis together with higher capital (Rabby et al., 2019). 

Moreover, literacy is another factor that might reduce sensitivity. A positive relationship exists 

between literacy and adaptive capacity, a vulnerability attribute capable of attenuating social 
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vulnerability. It allows people to make decisions at their discretion, respond to warning systems, 

and promote positive behavior toward evacuation (Samhsa, 2017). Although there is debate 

regarding the effectiveness of formal education versus the traditional method in cyclonic disaster 

preparedness, education is more likely to indirectly pave the path to employment, giving 

individuals more control over disaster impact (Muttarak & Lutz, 2014; Sharma et al., 2013). In 

this case, the literacy rate of men and women aged 7 years and above is included in the literacy 

variable. 

For employment, three types were added: the unemployed community, people who work 

in primary sectors, and people engaged in service sectors and industries. The first two categories 

are assumed to be increasing vulnerability as they do not have any money or little money to 

recover and reconstruct (Hallegatte et al., 2017). Conversely, people with solvency who work in 

the third category have better control over recovery and strategies. The unemployed population 

includes the percentage of people from 10 years old looking for a job or who do not work. 

Variables within the category of housing structures and types were used to build SoVI. 

Traditional houses or low-cost housing like Kutcha and Jhupri houses are constructed with 

substandard and unsustainable materials such as mud, bamboo, straws, and CI sheets. Alam et al. 

(2017) investigated 300 houses in their study, of which around 147 dwellings had very low 

structural quality. In coastal Bangladesh, the majority of homes are substandard and non-

engineered. The rationale behind selecting this variable is that kutcha and jhupri houses are not 

physically sound enough to withstand the strong winds and downpours that accompany TCs, 

which can heighten the casualties during the disaster. In addition, rented homes are also notably 

at risk of cyclones and other natural hazards. Tenants might not have the standard level of 

building protection which is common in areas with poor law enforcement (Lee & van Zandt, 
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2019). Moreover, people experiencing homelessness in the coastal regions are often exposed to 

vulnerability because of their ignorance of impending storms, as well as a lack of permanent 

housing and amenities, such as healthcare, sanitation, and clean drinking water.  

In the realm of housing facilities, no electricity, inaccessibility to safe drinking water, and 

non-sanitary toilets were considered. Having no power connection in a dwelling unit restricts 

people's networks and makes their lives more difficult. Households without safe drinking water 

included people who use sources like the pond, which is highly exposed to contamination during 

cyclonic flooding, leading to water-borne diseases. Regarding toilet facilities, the household 

percentage using non-sanitary toilets and no toilets were derived from the census. These are 

signs of poor sewage facilities, which might hasten the spread of illness following a natural 

disaster. 

2.2.3 Data Preparation  

Prior to computing the complex matric, SoVI, it is essential to check the suitability of 

data. To this end, this study followed the steps shown in Fig. 2.1 to preprocess the dataset for 

factor analysis. First, the analysis of the selected variables was conducted using the Statistical 

Package for Social Science (SPSS) software. Next, all variables were converted to percentages to 

normalize the data. The next step involves the verification of data accuracy by scrutinizing the 

minimum and maximum values, along with the mean and standard deviation. In this dataset, 

there were three missing values for Sanagazi upazila under Feni District, which were substituted 

by the mean value.  
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Fig. 2.1: Flowchart of Data pre-processing for PCA analysis 

Since all variables do not have the same scale, standardizing the data is essential. All 

variables are uniformly rescaled with an average of 0 and a standard deviation of 1 after z-score 

standardization (Dinc et al., 2014). To calculate the z score, a following equation (1) was used: 

𝑧 =
𝑅𝑎𝑤 𝑉𝑎𝑙𝑢𝑒−𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
      (1) 

In this study, SoVI was constructed using the methods used by Rabby et al. (2019) and Tasnuva 

et al. (2021).  

2.2.4 Calculation of PCA and SoVI  

PCA is done to simplify a large multidimensional dataset into a simple index. Fig. 2.2 

shows a scree plot of the eigenvalues and only the components with an eigenvalue greater than 

one are kept for further analysis.   
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Fig. 2.2: Scree plot with eigenvalue of the studied variables 

The variables that passed the Kaiser-Meyer-Olkin (KMO) test for sample adequacy were 

reduced by performing a varimax rotation with 100 iterations.  Based on the recommendation of  

Kaiser (1974), a range of values (Fig. 2.3a) was employed to verify the quality of the solution 

and interpretability of the result. A value below 0.50 indicates the futility of factor analysis.  

       

   (a)             (b) 

                         

Fig. 2.3: KMO score (a) Kaiser’s (1974) sampling suitability table (b) Present study’s result 

https://www.statisticshowto.com/kaiser-meyer-olkin/
https://www.statisticshowto.com/kaiser-meyer-olkin/
https://www.statisticshowto.com/kaiser-meyer-olkin/
https://www.statisticshowto.com/kaiser-meyer-olkin/
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By examining the maximum factor loadings, variables from the rotated component matrix 

were grouped and given a cardinality. For this study, all three groups increased vulnerability, so 

a positive sign was used to execute the additive approach to construct SoVI. Finally, the formula 

(2) below was used to calculate the composite SoVI scores for each county:  

SoVI = Factor 1 + Factor 2 + Factor 3      (2) 

2.2.5 Mapping Social Vulnerability  

An effective mapping can provide direct attention to people as well as provide 

information on geographic differences (Rabby et al., 2019). ArcGIS Pro was used to depict the 

spatial distribution of the SoVI score (Raduszynski & Numada, 2023). To facilitate the 

illustration of communities with varying levels of vulnerability, the standard deviation 

classification method was used to create four distinct classes. In Figure 2.4, areas with extremely 

high to extremely low levels of vulnerability are identified with a value ranging from less than    

-0.5 to over 1.5 standard deviation.      

2.3 Result and Discussions  

Of the 19 variables examined in this study, only three variables had an eigenvalue greater 

than 1, explaining approximately 82% of the total variance in the dataset (Table. 2.1). KMO 

score of 0.898 (Fig. 2.3b) indicates that subsequent factor analysis would be highly suitable for 

the dataset generated by this study. Table 2.1 shows that the maximum loading in the first 

component or Factor 1 was 0.960, and the minimum was 0.454. This group contained 

demographic characteristics, dependent population, ethnic community, marital and employment 

status, education, housing structure, and facilities. Vulnerable populations in terms of housing 

possession were grouped together in Factor 2, where the loading varied from 0.893 to 0.899 
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(Table 2.1). According to Table 2.1, Factor 3's loading values ranged from 0.820 to 0.864, which 

includes the percentage of the aged population, the percentage of the total population, and the 

percentage of the housing composition. A total of 14 variables are in Factor 1, two in Factor 2, 

and three in Factor 3, which explained 52.416%, 15.532%, and 14.368% of data variance, 

respectively (Table 2.1). All the values, except the percentage of the total household without safe 

drinking source and the percentage of the total ethnic population, have a very high loading which 

indicates a strong influence of these variables on their components (Burstyn, 2004). 

Fig. 2.4 shows the spatial distribution of social vulnerability of the coastal community of 

Bangladesh where the maximum composite SoVI score was assigned to Feni upazila (11) in Feni 

district, and the minimum was attributed to Chittagong Metro in the Chittagong district (-1.59). 

The entire eastern coast, encompassing Chittagong and Cox’s Bazar districts, showed a very low 

to low vulnerability (<-0.50 Std. Dev.) (Fig. 2.4).  

The central estuarine coast exhibited considerable variability in the spatial distribution of 

social vulnerability score, varying from very high (>1.5 Standard Deviation) to very low (<-0.50 

Standard Deviation) (Fig. 2.4). Feni district close to the eastern coast, demonstrates moderate to 

high vulnerability, apart from Feni Sadar Upazila which exhibits very high social vulnerability 

(Fig. 2.4). Exposed coasts showed mostly higher vulnerability on the central coast (Fig. 2.4). 

Among the 12 districts investigated, only the entire Barisal and Noakhali districts showed lower 

vulnerability. On the other hand, the remaining ten districts exhibited low to very highly 

vulnerable communities. Notably, the maximum number of very highly vulnerable communities 

were concentrated in the central region. Feni upazila in Feni district, Amtali and Barguna upazila 

in Barguna district, Chandpur upazila in Chandpur district, Charfasson and Bhola upazila in 

Bhola district (Fig. 2.4) need immediate attention from the disaster resilience authorities because 
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of their latent ability to change TCs strike into a social catastrophe.      

 
 

Fig. 2.4: Spatial distribution of social vulnerability at the county level 

In this study, the maximum vulnerability on the western coast was noticed in Narail, 

Kalia, and Lohagara upazila in Narail district and Satkhira upazila in Satkhirra district (Fig. 2.4).  

Moderate vulnerability predominates near West Bengal, India, which is a frequent TCs landfall 

area. Most of the upazilas in the Khulna district demonstrate very low to low vulnerability 

whereas the adjacent district Bagerhat showed high vulnerability (Fig. 2.4). Among 131 counties 

across the coast, 26 counties were susceptible to high and very high social vulnerability (Fig. 

2.4), where ten upazilas were the Sadar or metropolitan cities of the districts. Cutter et al. (2003) 



33  

also found metropolitan cities highly vulnerable in their study. Other researchers assessed social 

vulnerability on the Bangladesh coast using different parameters and geographic scales which 

makes it impossible to compare this study’s result with theirs. One of the major limitations of 

this study is that all the data used to construct SoVI was from Population and Housing Census 

2011 because the 2021 census data has not yet been published. The total population increased by  

 

Fig. 2.5: Change in total population from 2011 to 2020 

around 26% in 2020 from 2011, which was extracted from World Pop raster layers. Fig. 2.5 

shows that almost all over the coast population increased, including the areas with very low 

vulnerability. It is assumed that with the increasing population, social vulnerability will increase 

too.  
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2.4 Conclusion  

Studying social vulnerability is essential in the context of Coastal Bangladesh because 

although Bangladesh has touched the milestone in reducing disaster-related death, it is lagging in 

terms of economic loss, and the number keeps rising. The population increased rapidly since 

2011 on the coast, which will eventually change the current vulnerability from this study’s 

findings. However, keeping this data limitation aside, the study provides valuable insights into 

the areas at higher risk of cyclones in the future. The study highlights the exposed central coastal 

areas as particularly vulnerable, and their proximity to the Bay of Bengal influences their socio-

economic condition. Another significant outcome of the study is that the metropolitan areas, 

which are highly populated areas, are at higher risk. The findings of this study will help decision-

makers in implementing disaster preparedness measures in high-risk zones also, the low-risk 

areas, which are in touch with highly vulnerable areas, should be taken under consideration for 

increasing social resiliency and adaptive capacity. As the population in Bangladesh continues to 

grow and socio-economic conditions evolve, it is essential to conduct regular and updated 

assessments of social vulnerability to ensure that disaster management efforts remain effective. 

Ultimately, this study contributes to ongoing efforts to increase social resiliency and adaptive 

capacity in Bangladesh and similar regions worldwide.   
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CHAPTER 3 

Physical Vulnerability and Tropical Cyclones Risk Assessment in the 

Coastal Areas of Bangladesh 

 

 

 

3.1 Background 

 

The widespread impact of climate-related disasters is apparent around the world. There is 

no doubt that TCs are the most destructive of all the climate-related disasters, taking a heavy toll 

on lives and livelihoods (Mansour, 2019; Quader et al., 2017; Sahoo & Bhaskaran, 2018). The 

Global Climate Risk Index 2021 identifies Bangladesh as among the most vulnerable countries 

to climate change's adverse effects (Eckstein et al., 2021). Bangladesh is a cyclone-prone region, 

and TCs frequently occur in the coastal areas of the country between April and May, and 

October and November (Dasgupta et al., 2010). Since this region has a dense population, many 

communities along the coast of the BoB increase the propensity of being affected by cyclones. 

The BoB, also known as a hotbed of TCs, is witnessing a six-fold surge in the catastrophic 

potential of TCs (Murty et al., 2016). In addition, an uptick in cyclone size and maximum 

sustained wind speed was also observed compared to the previous decadal records (Sahoo & 

Bhaskaran, 2016). Historical data indicates that Bangladesh is hit by severe cyclones every three 

years (Ahammad et al., 2013; MoEF, 2009). This is why it is vital that a systematic spatial 

assessment is conducted to identify the potentially vulnerable areas along the coast. 

Natural hazards are increasing globally, and a growing interest in quantifying risk and 

vulnerability has been observed among researchers over time. Vulnerability is a concept that 

refers to a group or region’s propensity to experience numerous stressors, such as social and 
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environmental stresses, and their inability to cope with the stresses (Adger, 2006; Kelman et al., 

2016). It was introduced within the discourse of hazard and disaster in the late seventies 

(Flanagan et al., 2011; Wisner et al., 2003). Vulnerability is a multidimensional notion composed 

of several components like exposure, sensitivity, potential impact, and adaptive capacity (Fig. 

3.1), where a change in one factor can influence another (Thomas et al., 2019). Exposure is the 

extent to which individuals or assets are susceptible to injury or unfavorable results (Viner et al., 

2020). There are many factors that influence stress exposure, such as region, demographics, and 

socioeconomic status (Nikkanen et al., 2021; UNDRR, 2017). It is important to note that 

exposure does not always equate to vulnerability, as highlighted by Cardona et al. (2012).  

The ability of a system to respond to a particular stress without undergoing a significant 

change is referred to as sensitivity (Adger, 2006; Engle, 2011; Füssel & Klein, 2006). Adaptive 

capacity, on the other hand, refers to the system’s capability to endure stress, cope with it, and 

lessen the negative impact by adjusting exposure and sensitivity (Adger, 2006; Füssel & Klein, 

2006). This can be influenced by various factors, such as education, access to information, 

resources, technology, and wealth. Adaptive capacity of a system is inversely related to 

susceptibility. Susceptibility decreases as adaptive capacity increases (Engle, 2011; Thomas et 

al., 2019). Risk is defined as the exposure of vulnerable elements to hazards or extreme events 

which have the potential to damage, while hazards are the events that can potentially affect lives 

and livelihoods (Dewan, 2013;  Hoque et al., 2017; Zhu et al., 2022). 
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Fig 3.1: Principal components of vulnerability adapted from Engle (2011) and Glick et al. (2011) 

Quantifying risk and vulnerability are the groundwork for promoting community 

resilience and building disaster mitigation strategies. In the past few decades, satellite imagery 

and geospatial techniques have made it easier to assess and map the vulnerability of cyclones 

(Pathak et al., 2020; Rana et al., 2010; Yin et al., 2013). In the field of hazard analysis, 

researchers around the world employed numerous single and multi-criteria approaches. It is, 

however, necessary to use the latter approach in order to understand the spatial distribution of 

risk in a comprehensive manner (Hoque et al., 2019; Mansour, 2019; Rana et al., 2010; Sahoo & 

Bhaskaran, 2018). In order to map TCs risks, one of the most popular and efficient ways to do so 

is to integrate multi-criteria risk evaluations of individual risk components and combine them 

into a spatial decision-making process (Hoque et al., 2018a; Rahman et al., 2019). Saaty (1977) 

introduced the Analytical Hierarchy Process (AHP) for this purpose. A number of researchers 

(Mondal et al., 2021; Murali et al., 2013; Rahman et al., 2019; Rajakumari et al., 2022; Sinaga et 
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al., 2011; Tempa, 2022) used this method to evaluate complex decisions, where hierarchical 

structures were used to assign weights based on the priorities of the user (Mahapatra et al., 2015; 

Tempa, 2022).  

Bangladesh’s coast is one of the major cyclone-prone areas. Approximately 30 

catastrophic TCs have made landfall on this country’s coast from 1960 to 2017, causing massive 

damage (Quader et al., 2017). Nevertheless, there are few studies on assessing vulnerability and 

risk in depth. Most of the researchers focused on one section of the coast to assess cyclone 

vulnerability and risk. Hoque et al. (2018 and 2019) analyzed the spatial distribution of cyclone 

risk using the AHP method. Their study primarily focused on the physical vulnerability of one 

upazila (county) and the eastern coast of Bangladesh. As for wind speeds, both studies focused 

on only one cyclone, which might bias the overall results of coastal vulnerability as a result of 

TCs. Hoque et al. (2021) assessed the socioeconomic and physical vulnerability on the western 

coast of Bangladesh. However, they used different parameters from studies mentioned above, 

and the weighting method was also different, which was fuzzy AHP. A major surge 

amplification region, the Meghna estuarine region, is overlooked in their study (Dasgupta et al., 

2010). In addition, the population density of 2011, which increased sharply from 2011 to 2020, 

has been used in all studies (WorldPop, 2023). Mallick et al. (2017) studied southwestern coastal 

communities’ experience and their strategies for dealing with cyclones. The entire coast was 

examined for tropical cyclone vulnerability by Quader et al. (2017), with a major focus on the 

social aspects of vulnerability. Despite this, they ignored a number of key factors that make 

tropical cyclones destructive, such as the height of storm surges, the speed of the cyclonic wind, 

and the amount of rainfall in the affected area (Hoque et al., 2019; Swain, 2022). Furthermore, 

the allocation of equal weighting to all indicators during an overlay analysis is a significant 
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limitation in their study. As far as assessing risk and vulnerability is concerned, not all variables 

are equally important. For instance, population density is more critical compared to land cover 

for cyclone vulnerability assessment. Considering cyclones, the study addresses the void and 

prepares a comprehensive risk map. The purpose of this study is to evaluate the risk of TCs along 

the Bangladesh coast through a multi-criteria and geospatial techniques.  

3.2 Materials and Methods 

 

3.2.1 Dataset and Sources  

 

A well-prepared spatial assessment can provide valuable insights to offset the damage. 

Based on a literature review, the parameters of three principal risk components have been 

chosen: hazard, vulnerability, and mitigation capacity (Hoque et al., 2018 and 2021; Quader et 

al., 2017; Zhou et al., 2021). In this study, a wide range of sources, including local and global 

datasets, have been used (Table 3.1).  

Table 3.1: Dataset Information 

 

Name Source Spatial 

Resolution 

 

Time Data Layer Data 

Format 

DEM WARPO 50m  Elevation, 

Slope 

Raster 

Population 

Density 

World Pop 1 km 2020 Population 

Density 

Raster 

Cyclone Tracks IBTrACS - 1970-

2022 

Proximity to 

cyclone 

tracks, 

Frequency of 

cyclone 

Vector 



46  

Coastline International 

Steering 

Committee for 

Global Mapping 

- 2016 Coastline 

proximity 

Vector 

Land Cover 

 

ESRI 10 m 2022 Land Cover 

Classification 

 

Raster 

Cyclone 

Frequency 

 

IBTrACS - 1970-

2022 

Cyclone 

frequency 

Vector 

Cyclone Wind 

Speed 

IBTrACS - 1970-

2022 

Cyclone 

Wind Speed 

Vector 

Storm Surge 

Height 

Reports - 1970-

2020 

Storm Surge 

Height 

Report 

Rainfall Dewan et al. 

(2022) 

1 km 1901- 

2018 

Rainfall 

Intensity 

NetCDF 

Cyclone Shelter Bangladesh 

Bureau of 

Statistics (BBS) 

- Until 

2009 

Cyclone 

Shelter 

proximity  

Vector 

Health Centers LGED - - Health 

Center 

proximity 

Vector 

Road Type LGED - - Proximity to 

Paved Road  

Vector 

 

 

Before analysis, all layers were projected onto the WGS 1984 datum and a UTM zone 45 

N coordinate system. In order to classify the layers, natural break and manual interval methods 
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were used, based on published studies and user judgment, to classify them into five classes 

ranging from very low to very high (Hoque et al., 2019; Zhou et al., 2021).  

3.2.2 Methods  

3.2.2.1. Vulnerability and Exposure Mapping 

Topography plays a significant role in influencing disaster vulnerability (Westen et al., 

2008). Low-elevated land territories on the coast are likely to be less disaster-resilient to hydro-

meteorological disasters, particularly TCs, sea level rise, etc., compared to high lands (Murali et 

al., 2013). The digital representation of the surface or Digital Elevation Model (DEM) is an 

important feature for spatial modeling, which was collected from WARPO (Table 3.1). However, 

the original DEM data contained several data voids, mostly in the mountainous regions, which 

were corrected using the Inverse Distance Weighted (IDW) algorithm (Qiu et al., 2019). Later 

the corrected DEM data was processed using the geospatial tool (clip) and raster calculator for 

this study. Likewise, elevation, a flat slope is more susceptible to flooding than a steep slope (Li 

& Li, 2013; Mullick et al., 2019). The degree of the slope was calculated using the corrected 

DEM data in ArcGIS Pro. While elevation and slope are susceptible to cyclonic flooding, 

similarly mountainous regions with a high elevation and slope are vulnerable to landslides 

because of tropical rainstorms (Antinao & Farfán, 2013; Rahman et al., 2019; Zhuang et al., 

2022). In the context of disaster vulnerability analysis, population plays an important role. In 

2000, about 49% of Bangladesh's total population lived in the low-elevated coastal zones, 

making it the highest in Eastern, South-Central, and South-Eastern Asia (Neumann et al., 

2015). Coasts are exposed to extreme climatic events, and densely populated areas tend to 

intensify the risk (Nicholls et al., 2007). The Government of Bangladesh last conducted a census 

to measure population density in 2011. However, the WorldPop Hub's most recent population-
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gridded data was used in this study, which was obtained from https://hub.worldpop.org/. 

For the assessment of physically vulnerability to TCs, factors such as proximity to 

cyclone tracks and coastal areas have been considered because these factors intensify the 

vulnerability (Alam et al., 2020). The tracks of cyclones and coastline were obtained from the 

International Best Track Archive for Climate Stewardship (IBTrACS) and the Princeton 

University Library (available at: https://maps.princeton.edu/catalog/stanford-rz344pd6047), 

respectively. For both criteria, multiple buffer zones were created using a geoprocessing tool in 

ArcGIS Pro to map the proximity to the tracks and coastline. The risk of TCs varies according to 

land cover, where certain types likely to increase the vulnerability (Hoque et al., 2021). Hence, 

knowing the coastal regions’ land cover is essential to map vulnerability. The raster layer of 

landcover was downloaded from ESRI (available at: https://livingatlas.arcgis.com/landcover/), 

which had nine classes and an average accuracy of 85% at the global level (Karra et al., 2021). 

Further, the image was clipped according to the shapefile of coastal Bangladesh and reclassified 

into five classes.  

3.2.2.2 Hazard Mapping  

Around 30 category-one to five hurricanes passed through the coastal area of Bangladesh 

from 1970-2021, with numerous in the tropical storm category. Observing the pattern of the 

destructive nature of cyclones, notably wind speed, storm surge, and precipitation, are an 

essential criterion in evaluating vulnerable areas (Emanuel et al., 2006; Hoque et al., 2016; 

Mansour, 2019). With the information available in the IBTrACS attribute, cyclone frequency 

was calculated at the district level, and the natural break method was followed to classify them 

into five classes. The wind data was processed using the IDW data interpolation method and 

clipped in accordance with the area of interest. By analyzing the pattern of major TCs, storm 

https://hub.worldpop.org/
https://maps.princeton.edu/catalog/stanford-rz344pd6047
https://livingatlas.arcgis.com/landcover/
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/wind-velocity
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surge altitude was mapped and classified into five classes using the corrected DEM data (UN-

Spider, 2023). The gridded monthly rainfall data from 1901-2018 was used to observe the 

precipitation trend.  

3.2.2.3. Adaptive Capacity Mapping  

The key plan to mitigate the possible adverse impact of such a hazard is reflected in the 

adaptive capacity of that place and the community (Mansour, 2019). A variety of structural 

mitigation measures were assessed in this study including distance to cyclone shelters, health 

infrastructures, and road networks. In the wake of cyclone disasters, a cyclone shelter serves as 

an ideal infrastructural mitigation measure for cyclone-affected communities to provide 

temporary shelter (Mallick, 2014). Furthermore, emergency health care for individuals affected 

by cyclones is supported by health infrastructure (Ali et al., 2020). Health center data included 

only hospital and clinic locations, whereas road networks analyzed paved roads only. For this 

study, these data were collected from the Local Government Engineering Department (LGED). 

Afterward, proximity analysis was performed.  

3.2.2.4 Data Standardization  

In order to achieve a composite result from a multi-criteria decision-making approach, all 

data layers must be scored at the same level (Yin et al., 2013). All raster layers were converted to 

10 m spatial resolution. According to equation (1), a linear scale transformation was used to 

convert the alternative ranking values into a conventional range from 0 to 1 (Hoque et al., 2019): 

𝑝 =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
          (1) 

Here a dataset's standardized score is indicated by p, while its individual cell value is indicated 



50  

by x, and its maximum and minimum values are indicated by min and max, respectively.  

3.2.2.5. Weight Calculation using AHP Method  

To weigh the parameters of risk components, the AHP method was used as a multicriteria 

decision-making approach. The hierarchy's overall priorities were developed by aggregating and 

integrating pair-wise comparison matrices (Sinaga et al., 2011). In this case, the scale ranges 

from 1 to 9, where 1 corresponds to equal importance and 9 corresponds to the utmost 

importance of the issue (Saaty, 1977). The weights for each criterion were then calculated by 

normalizing the pairwise comparison matrixes. The consistency ratio (CR) in the AHP technique 

aids in comprehending how consistently the user's judgment was used when constructing the 

pair-wise matrices. Using equations (2) and (3), the consistency index (CI) as well as the 

consistency ratio (CR) have been calculated (Mondal et al., 2021): 

CI =
λ max −𝑛

𝑛−1
                              (2) 

Where λmax represents the highest or principal eigenvalue of the matrix and n is the total number 

of variables (Khan et al., 2021).   

CR =
𝐶𝐼

𝑅𝐼
                       (3) 

In this case, RI represents the random index calculated by the matrix order (n) that Saaty (1980) 

determined. CR value over 10% indicates that the weights of the parameters cannot be used for 

further analysis, and the entire process should be redone (Hoque et al., 2021; Tempa, 2022). The 

AHP method was found to be effective in this type of complex decision-making aspect.   

3.2.2.6. Overall Coastal Risk Assessment for TCs 

 

Using the AHP method, a pair-wise comparison matrix was built for vulnerabilities, 
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exposures, and mitigations criteria. Then, the weighted overlay was conducted to get the overall 

physical vulnerability of the coast by assigning weight. Finally, social vulnerability output, 

which is discussed in Chapter 2, was rasterized for overall risk analysis. The following formula 

(4) was employed in the raster calculator with and without integrating social vulnerability to 

calculate risk in the coast of Bangladesh, which gives the spatial distribution of coastal 

vulnerability for tropical cyclones. 

𝑅𝑖𝑠𝑘 =
𝐻𝑎𝑧𝑎𝑟𝑑 x 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛
       (4) 

3.3 Results and Discussion  

3.3.1 Physical Vulnerability Mapping 

Physical vulnerability was achieved by integrating six parameters: elevation, slope, 

population density, land cover, proximity to cyclone track, and coastline. A majority of the 

landmass in the coastal region is very low-elevated, with only 41% having an elevation higher 

than 6.5 feet (Fig. 3.2a). Most of the landmass (~45%) is occupied by the 6.5-16.5 feet elevation 

range. Based on Hoque et al. (2021)’s findings, 42% of coastal regions are classified as very high 

or highly vulnerable zones, with elevations up to 8 feet in the western coastal region. Almost all 

the regions in the western and central coasts showed this low elevation, putting these regions and 

communities at grave risk of cyclonic flooding. The north-western part, mainly the Jessore 

district and a small part of the central coast, showed a rise in elevation where the value ranged 

from 16.5 to 26.5 feet (Fig. 3.2a). The hilly region with an elevation of approximately 40 to 959 

feet is mainly seen on the eastern coast, indicating low to very low vulnerability. However, the 

entire eastern cliff region is not out of cyclone risk; as seen in Fig. 3.2a, the areas near the Bay of 

Bengal have a lower elevation. Besides, the slope is proportionally related to elevation. Almost 
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the entire western and central coast had a flat slope, mostly attributed to less than 3 percent rise 

in the slope. In contrast, the eastern cliff coast shows variation in their slope, with a maximum 

slope of approximately 489 percent gradient (Fig 3.2b). 

A glimpse of the concentrated population on the coast of Bangladesh can be visible in 

Fig. 3.2c. This is the result of the latest dataset on Bangladesh population density provided by the 

WorldPop research program (WorldPop, 2023). On the western coast of Bangladesh, Jessore, 

Khulna, and Satkhira districts showed a dense population, and the southern part of the west coast 

showed minimum population density because of the presence of Sundarbans mangrove forest 

(Fig. 3.2c). In terms of population density, the eastern coast is highly vulnerable because of the 

spatial distribution of high population density close to the coast (Fig. 3.2c). Besides, Chandpur, 

Noakhali, Lakhsmipur, and Feni districts in the central coast are highly vulnerable because of 

massive population density despite being inland. Based on reports and newspaper articles, 

cyclonic mortality was highest in the Noakhali district on the central coast from 1970-2009. 

According to UNEP (2002), the high population density in Asia is likely a contributor to the 

larger death toll caused by extreme events. 

Dense vegetation has the ability to offset the intensity of tropical cyclones by working as 

a shield. Here in this study, dense vegetation includes forests and large patches of trees. Except 

for the Meghna estuarine coast, the majority of the other two coasts are guarded by dense 

vegetation, such as mangrove forests and hill forests, exposing the central coast to higher risk. 

The western part of the coast is characterized by low-lying deltaic plains dominated by wide 

rivers and estuaries, making it susceptible to flooding when cyclonic storm surges occur, which  
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Fig.3.2. Vulnerability and exposure parameters: a) elevation, b) slope, c) population density, d) 

land cover, e) proximity to cyclone track, and f) proximity to coastline 
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is seen in Fig 3.2a and 3.2d (Barua, 1991; Karim & Mimura, 2008). Agricultural land or flooded 

vegetation has little resistance to cyclones’ destructive impact. Fig. 3.2d represents that most of 

the coastal zone belongs to agricultural land, with the maximum share in the western districts.  

TCs are a frequent event on the Bangladesh coast. Cyclones passed through almost all 

over the coastal districts from 1970-2022, making this entire zone highly vulnerable (Fig. 3.2e). 

Tropical cyclones mainly originate over the warm ocean; thus, proximity to the coastline should 

be measured. Eastern Cliff is in alarming condition because of their location, mostly within 20 

miles of the coastline. A very low vulnerability was observed only in some regions in the north, 

particularly Jessore and Narial districts (Fig. 3.2f).            

The consistency ratio (CR) for vulnerability and exposure criteria using the AHP 

technique was 0.06, which is below 0.10 and makes the judgment acceptable for this study. The 

maximum priority was given to coastline proximity, followed by cyclone track proximity, 

elevation, population density, slope, and land cover (Fig. 3.3). These weights were then assigned 

to build a composite vulnerability and exposure map using the weighted overlay tool.    
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Fig. 3.3: Vulnerability and Exposure criteria weight 

The composite result of vulnerability and exposure using these six parameters shows that 

almost the entire exposed coast was at risk. Vulnerability mostly varied from high (~50%) to 

very high (~3%) in this area (Fig. 3.4). Very high vulnerability was exhibited mainly in the 

Noakhali district on the central and Cox’s Bazar and Chittagong districts on the eastern coast. 

This indicates the role of Sundarbans as a shield for offsetting the vulnerability on the western 

coast. The inland areas are within moderate vulnerability. Low vulnerability belongs to only 

0.7% of the areas, whereas very low vulnerable areas were absent on the coast. 
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Fig. 3.4 Spatial distribution of Vulnerability and Exposure 

3.3.2. Hazard Mapping 

For understanding TCs patterns, four parameters were taken into account under the 

Hazard component: precipitation, TC cyclone frequency, TC wind speed, and storm surge height 

(Fig. 3.5) (Zhou et al., 2021). The western coast shows (Fig 3.5a) that higher rainfall was noticed 

in the districts with very high to high cyclone frequency (Fig 3.5b). However, the eastern coast 

and parts of the central coast do not follow this. After examining historical data from 1970 to 

2022, it was revealed that although the western zone had the highest frequency of TCs (Fig. 

3.5b), it also had the lowest cyclonic wind speed (Fig. 3.5c). The Sundarbans mangrove forest's 

ability to reduce wind speed may be one factor contributing to this low wind speed.
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Fig.3.5. Hazard parameters: a) rainfall, b) TCs frequency, c) TCs wind speed, and d) Storm surge 

height 

Storm surge is considered as the most destructive attribute of tropical cyclones in coastal 

Bangladesh (Rana et al., 2010). Records show that the highest number of cyclone fatalities in 

Bangladesh have been caused by storm surges (Alam et al., 2020). The height map in Fig 3.4d 

shows the areas that will be flooded when the storm surge reaches a certain altitude. Fig 3.5d 

shows the landmass that will be inundated when the storm surge will reach a certain altitude. 

More than half (~58%) of the coastal areas will be inundated if the storm surge height reaches 3 

meters, including most of the western coast (Fig. 3.5d). Based on historical data, storm surge 

height caused by severe cyclones ranged from 1.5 to 9 meters (Dasgupta et al., 2010). Therefore, 
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except for the hilly region on the eastern coast, almost all the areas are vulnerable to cyclonic 

flooding. Only around 7% of areas on the eastern coast and ~3% of areas on the western coast 

have respectively very low and low vulnerability in terms of cyclonic flooding (Fig. 3.5d). This 

study supports the findings of Alam et al. (2020) that Ukhia and Ramu would suffer a lesser 

impact from a surge of ten meters.  

The consistency ratio (CR) for Hazard criteria using the AHP technique was 4%. The 

maximum priority was given to storm surge height, followed by TCs frequency and windspeed, 

and rainfall (Fig. 3.6). These weights were then assigned to build a composite map for hazard.    

 

 

Fig 3.6: Weightage for Hazard criteria 

The area with a moderate hazard category account for 22.08% of the total area, mainly 

distributed in the south-central exposed coast and eastern coast. The hazard map (Fig. 3.7) 
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reveals that the hazard level is relatively low in the western zone compared to the eastern and 

central coasts. The areas with moderate hazard levels (Fig. 3.7) strongly correlate with the highly 

vulnerable areas (Fig 3.4). 

 

Fig. 3.7: Spatial distribution of Hazard  

3.3.3 Adaptive Capacity Mapping   

 

Nearly all of the exposed coastal areas, as shown in Fig. 3.8, are located 4 miles or less 

from the cyclone shelters. Around 45% of the landmass is within 1 mile of the shelter. After the 

deadly consequence of the Bhola cyclone in 1970, about 2,500 cyclone shelters were constructed 

along the coast to protect the coastal community (Faruk et al., 2018). The result of these 



60  

enormous number of cyclone shelters is reflected in the recent data where the death rate 

decreased by more than 100 times than in 1970. In addition, healthcare facilities are necessary 

for the management of the aftermath of extreme events. However, most people live outside the 4 

miles buffer of health centers. Only around 27% are within one mile of the facilities, which 

makes the community highly vulnerable during and after a disaster. In Fig 3.8b, improper 

allocation of health centers can also be seen in which the eastern zone is less accessible to nearby 

healthcare facilities. 

 

Fig. 3.8. Mitigation parameters: a) Cyclone Shelter, b) Health Center, and c) Road Network 

In both the evacuation phase before a disaster and the rescue, relief, and recovery phase 
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afterwards, roads play a vital role (Amin et al., 2019; Zhu et al., 2022). Non-paved roads were 

discarded from the analysis as cyclones often bring rainfall, and that type of road will make 

transportation harder. Some parts of the central coasts, exposed to the Bay of Bengal, do not 

have access to paved roads in their proximity which puts the community in the very highly 

vulnerable group (Fig 3.8c).  

The consistency ratio (CR) in the AHP model for mitigation criteria was 0.03, illustrates 

the validity of the user's choice to create a pairwise comparison matrix. The maximum priority 

was given to cyclone shelters, followed by coastal vegetation, health centers, and road networks 

(Fig. 3.9). These weights were then assigned to build a composite mitigation map using the 

weighted overlay tool.    

 

Fig 3.9: Weightage for Adaptive Capacity indicators 

The map (Fig. 3.10) of the adaptive capacity shows that poor mitigation capacity was 
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found in the central and western zone. Almost all the coasts were highly adaptive to TCs in terms 

of the given parameters. The eastern district showed less preparedness compared to the western 

and central zones. The western part's high mitigation level was around the Sundarbans mangrove 

forest. (Fig. 3.10).   

 

 

Fig. 3.10: Spatial distribution of Adaptive Capacity  

3.3.4 Risk Assessment   

Physical and social components are the two most important disciplines of vulnerability 

that are crucial to disaster risk assessment (Roberts et al., 2009). In order to generate the 

composite risk map for TCs, layers such as hazard, physical vulnerability, social vulnerability, 
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and adaptive capacity were incorporated into it. As shown in Fig. 3.11, a larger part of the central 

exposed coast and inland coast are at high to very high risk. Almost the entire Bhola district's 

risk varied from very high to high, which was also evident in the study of Quader et al. (2017).  

 
 

Fig. 3.11: Spatial distribution of overall TCs risk integrating social and physical vulnerability 

On the other side, the eastern part is not in the high-risk zone, and this zone exhibited very low to 

moderate risk levels where most of the areas share low risk (Fig 3.11). The north-western part of 

the Satkhira district is at very high risk of tropical cyclones, whereby more than half of the 

Sundarbans Forest shows very low vulnerability. In addition, most parts of the Barguna district
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showed a higher cyclonic risk, which also came out in the study by Hoque et al. (2021).    

Its limitations include the use of 2011 data on housing and population because the latest 

census data for 2021 has not yet been published. This study tried to incorporate the most recent 

available data, but the social vulnerability layer includes information from 2011. Fig. 2.5 in 

Chapter 2 shows that almost all over the coast's population increased, including the areas with 

very low vulnerability in Fig. 3.11. It is assumed that with the increasing population, social 

vulnerability increased too. Hence, using social vulnerability data to show the overall coastal risk 

will influence the result significantly. To avoid the biasness, this study prepared a physical risk  

 

Fig. 3.12: Spatial distribution of TCs physical risk 
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map by excluding social vulnerability, shown in Fig. 3.12. Where the spatial distribution in Fig 

3.11 marked the eastern coast as a high-risk area, Fig. 3.12 shows the opposite, where most of 

the areas are at high or very high risk of TCs. Noakhali occupies the most extensive area in the 

high risk level, followed by Laksmipur on the inland central coast, where the population density 

was also very high (Fig. 3.1c). Quader et al. (2017) found that the exposed coast of the Noakhali 

district was at very high physical risk, which is also displayed in Fig. 3.12. They also found 

Chandpur, Noakhali, and Feni districts in the western part of the central coast at low risk, which 

is ultimately the opposite of this study's finding, where it demonstrates very high to moderately 

high risk. However, Quader et al. (2017) analyzed physical risk based on only six parameters, 

while this study used 13 parameters. These disparity may be due to the inclusion of additional 

parameters in this study. Some areas near the Sundarbans mangrove forest show very risk (Fig 

3.12), which matches their study. Khulna district in the western tidal plain exhibits high- or very 

high-risk levels near the Sundarbans area. This is one of the zones that are frequently hit by 

tropical cyclones (Fig 3.1e). Hoque et al. (2018) found very low to very high cyclonic risk for 

Sarankhola upazila in the Bagerhat district, which is also evident in this study (Fig 3.12). Almost 

all parts of the Swandip upazila in the Chittagong district demonstrates high cyclonic risk, which 

aligns with the finding of Hoque et al. (2019). 

3.4 Conclusion 

 

An overall cyclone risk map for the coastal region of Bangladesh was prepared in this 

study in order to assess the vulnerability of the country to tropical cyclones. Physical 

vulnerability assessment considered 13 variables under three broad categories: vulnerability and 

exposure, hazards, and mitigation. In addition, 19 socioeconomic and demographic indicators 

were selected to prepare the social vulnerability layer. The result indicates that vulnerability 
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along the coast increases without employing social vulnerability. Regardless of whether or not 

social vulnerability is considered, areas on the central coast are more susceptible to the negative 

effects of TCs. Compared to the western coast, where mangrove forest is abundant, and the 

eastern coast which is mainly high elevated land, the central coast is more vulnerable. Since 

other researchers assess risk and vulnerability differently, it becomes more challenging to 

compare the results with theirs since variables are selected differently and analyzed differently. 

A precise comparison was not possible for this study due to a lack of empirical research. 
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CHAPTER 4 

Tropical Cyclone’s Impact on Sundarbans Mangrove Forest: 

A Case Study on Cyclone Amphan 

 

 

 

4.1 Background 

 

The mangrove forest is dominated by salt-tolerant halophytes, notably trees and shrubs, 

which are most commonly found between 30° N and 30° S latitude along the tropical and 

subtropical coastlines (Baishya et al., 2020; Donato et al., 2011; Lima et al., 2021; Reef & 

Lovelock, 2015). As of 2020, 14.8 million ha of the earth’s surface was covered by mangrove 

forests which were distributed across 113 nations and territories (FAO, 2020). Asia was home to 

more than 37% of the world’s mangrove forest, followed by Africa (~22%), North and Central 

America (~17%), South America (~14%), and Oceania (~9%) (FAO, 2020). These coastal 

biomes are of utmost significance as they are rich in biodiversity and provide a broad array of 

services, with a global annual value estimated to be approximately US $1.9 billion (Andersen, 

2023). Aside from the economic worth of these forest resources, mangroves are a promising 

carbon sink that is capable of sequestering three to five times more carbon than traditional 

tropical forests (NOAA, 2023b). Due to its unique characteristics, the forest contributes to the 

stabilization of the shoreline by reducing erosion (Menéndez et al., 2020; Winterwerp et al., 

2020). Furthermore, mangroves serve as a natural blockade against natural hazards like TCs, 

floods, and storm surges, and protect the community living near the sea and offshore islands 

(Hochard et al., 2019).  

Mangrove protects more than 18 million global population from flooding annually and 
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saves 16% of global economic contraction (Beck et al., 2018). Although this coastal defense is 

rich in resources, it is paradoxical to say that it has been identified as one of the most endangered 

ecosystems in the world because of climate change-induced phenomena such as sea level rise, 

natural hazards, and human interference such as overexploitation of resources, aquaculture, and 

coastal development (Alongi, 2002; Feller et al., 2017; Friess et al., 2019). As a consequence, 

more than 1 out of 6 mangroves are in danger (Carugati et al., 2018; Ellison, 2015; IUCN, 

2010a; Rahman et al., 2010; Segaran et al., 2023). Worldwide the mangrove forest coverage has 

shrunk by over 6% from 1990 to 2020, a reduction to around 14717 sq. ha from around 15759 

sq. ha (FAO, 2020). While the greatest proportion of global mangroves was found in South and 

Southeast Asia, the highest (~13%) decline was also documented in this region over the past 31 

years (1990-2020) (FAO, 2020).  

TCs greatly threaten human lives and properties because of their association with high-

velocity wind, tidal surge, and torrential rain (Krauss & Osland, 2019). Researchers project that 

tropical cyclones will become more intense, with an anticipated rise in category 4 and 5 

cyclones, notwithstanding the lack of agreement on whether or not there will be an increase in 

tropical cyclone frequency as a result of climate change (Chand et al., 2022; C2ES, 2023; 

Knutson et al., 2021; Kossin et al., 2020). However, the physical structure of mangrove forests, 

specifically the canopy structure and deep aerial rooted network, help to attenuate the wind 

speed, wave actions, and storm surges height (Dutta et al., 2015; Massel et al., 1999; Zhang et 

al., 2012). As per the study of Spalding et al. (2014), Approximately 5-50 cm of storm surge can 

be reduced by a kilometer of mangroves, a significant amount that can prevent flooding of low-

lying areas. Beck & Menéndez (2020) highlighted that the mangroves' presence protects lives in 

Southeast Asian countries such as Vietnam, India, and Bangladesh. In contrast, developed 
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countries like the United States, China, and Taiwan faces less economic damage because of 

mangrove forest. In spite of this, mangrove forests are particularly susceptible to disturbance by 

tropical cyclones regularly and globally due to their location along low-lying coastlines. 

 A UNESCO world heritage site, the Sundarbans mangrove forest is the largest 

continuous mangrove forest on earth (Dutta et al., 2015). Located in the Ganges, Brahmaputra, 

and Meghna delta, this mangrove shares the boundary of two countries- Bangladesh and India, 

extending between 21º 30′ to 22º 40′ N, 88º 05′ to 89º 55′ E, where approximately 60% is in 

Bangladesh and the remainder in India (Dutta et al., 2015; Gopal & Chauhan, 2006; Halder et al., 

2021). Sundarbans fringing the BoB, a hotbed of tropical cyclones, recurrently confront severe 

tropical cyclones. From 1970 to 2021, 45 tropical cyclones traversed within 55 miles buffer zone 

of this mangrove area, among which 28 were in the tropical depression category, four were in 

 

 

Fig. 4.1: Tropical cyclone tracks within 55 miles buffer zone of Sundarbans mangrove forest 

(Data derived from (NOAA, 2023b)) 
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tropical storms, and 7 were hurricanes ranging from category 1 to category 4 (Fig 4.1). Among 

these, five of the seven tropical storms in the hurricane category crossed across the mangrove 

forest, and many slammed the forest. For instance, in Bangladesh, Sidr, a category four intensity 

storm of November 15, 2007, struck the eastern section of Sundarbans and caused severe damage 

to 30, 000 ha and partially damaged 80, 000 ha of the forest (Bhowmik& Cabral, 2013; Khan et 

al., 2016; MoEF, 2010). In accordance with Dutta et al. (2015), cyclone Sidr impacted more 

severely the Bangladeshi portion of the Sundarbans, near Bagerhat and Pirojpur, than the Indian 

portion. On the other hand, cyclone Ayla (category 1), which made landfall on May 25, 2009, 

adversely affected the social-economic condition of the coastal communities by rendering the 

agricultural land unproductive long term or for an extended period or permanently, which led to 

more exploitation and damage of the mangrove forest (Rahman & Khanum, 2017). After Sidr, 

cyclone Amphan wrought significant destruction to Sundarbans. Kumar & Kumar (2021) stated 

that around 3704 square km of forestland was impacted, among which ~37 km2 of mangrove 

forest faced severe to very high degrees of damage from cyclone Amphan. 

Despite being jeopardized, mangroves protect lives and properties in vulnerable coastal 

areas. As exemplified by Dasgupta et al. (2019), Valle et al. (2019), and Zhang et al. (2012), 

many researchers have attempted to demonstrate the contribution of mangrove forests to 

reducing storm surges and wind speeds during cyclones. Sundarbans mangrove also protected 

the coastal community by lowering the wind speed of cyclone Bulbul, a category- 2 hurricane, 

by 18km/hr from 148 km/h to 130 km/h (Gupta et al., 2019; Reliefweb, 2019). In order to 

determine the extent of damage caused by hazards in protected forest areas and inaccessible 

forest areas, a reliable evaluation of the disturbance regime is necessary for effective forest 

management (Dutta et al., 2015). A widespread and feasible method of monitoring changes in 
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mangrove ecosystems has emerged through remote sensing. With the availability of high-

resolution remote sensing data and historical records, mangrove forests have been characterized, 

mapped, and monitored to a greater extent (Buitre et al., 2019; Giri, 2021). A number of indices 

have been developed that can be used to extract relevant information from satellite imagery to 

provide insight. This research uses optical and radar imagery to assess short-term and long-term 

changes in the Sundarbans mangrove forest in the wake of cyclone Amphan. 

4.2 Materials and Methods 

4.2.1 Data Required 

The European Union Earth observation mission, Sentinel-2A Level-1C product, was used 

because of its high spatial and spectral resolution and frequent revisit time (ESA, 2023). The 

mission's multi-spectral instrument (MSI) comprises 13 spectral bands, including the range of 

visible, near-infrared, and short-wavelength infrared wavelengths, where visible bands and the 

near-infrared bands can be used to monitor vegetation health (Drusch et al., 2012; Guo et al., 

2017; SentinelHub, 2023). On May 16, 2020, super cyclone Amphan formed over BoB and 

subsequently hit West Bengal, India, after landfall on May 20, 2020 (Ahmed et al., 2021). The 

normalized difference vegetation index (NDVI) was assessed for 21 days during the pre-Amphan 

period (80 images), from March 25, 2020, to April 15, 2020. For the post-Amphan period (58 

images), images from October 25, 2020, to November 15, 2020, were collected for NDVI 

analysis. These were the closest sentinel 2A images available with less than 10% could coverage. 

A total of 241 and 232 images were collected to analyze the NDVI for 2019 and 2021, 

respectively.   

Mangroves are mainly found in tropical and subtropical regions, which are cloud-cover-

intensive regions, particularly during the monsoon season (Mitchell et al., 2017). Although 
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Sentinel-2A satellite has a shorter revisit time, getting cloud-free optical images is challenging 

for all seasons, especially during and after cyclones (Mondal et al., 2022). Radar data offers a 

benefit over optical imagery to overcome this issue as they can collect weather-independent 

imagery 24/7 (Kellndorfer, 2019; Thomas et al., 2017). In addition, the Sentinel-1 captures 

Earth’s data in the C-radar band, and its polarity and dual-polarization capability allow quick 

data transmission from the satellite to the ground station (Sharifi et al., 2022). In this study, 

Sentinel 1C band data with vertical–vertical (VV) and vertical–horizontal (VH) in 

Interferometric Wide swath (IW) mode were used to assess the immediate change (Torres et al., 

2012). First, it was downloaded from Copernicus Data Hub, available 

at https://scihub.copernicus.eu/dhus/#/home and later, the data was processed in SNAP software 

according to Çolak et al. (2021). Finally, ArcGIS Pro software was used for area calculation and 

mapping the output for both images (Segarra et al., 2022). 

4.2.2. NDVI calculation  

The Normalized Difference Vegetation Index (NDVI) is a widely used method to observe 

and measure the forest condition as well as changes caused by hazards like TCs (Cortés-Ramos 

et al., 2020). Therefore, it can be used as a critical indicator for remote sensing applications 

aimed at assessing forest disturbance. In general, NDVI values range from -1 to 1. NDVI values 

closer to +1 indicates healthier or dense vegetation. Conversely, a value close to 0 signifies 

scarce, or no vegetation, and negative NDVI values correspond to water areas (Delaporte et al., 

2022). In this study, NDVI values were classified into 5 classes, also used in Aquino et al.’s 

(2018) study.   

Analysis of satellite images became much more effective and efficient with the advent of 

Google Earth Engine, a powerful cloud computing platform (Çolak et al., 2021; Gorelick et al., 

https://scihub.copernicus.eu/dhus/#/home
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2017). In this study, NDVI for Sundarbans mangrove forest was assessed in GEE using Sentinel-

2A Level 1C product (Mondal et al., 2019). All the data were prepared before conducting NDVI 

analysis via atmospheric and radiometric correction. The areas of interest were selected using 

shapefiles to calculate NDVI for the required period. The NDVI was calculated using a year-

over-year average (2019, 2021) in order to observe the gradual changes in the area of interest to 

obtain a better understanding of the health of the forest's vegetation before and after cyclone 

Amphan hit the Sundarbans. Fig. 4.2 illustrates the main steps followed in GEE where the 

required period  

 
 

Fig. 4.2: Flowchart of NDVI analysis in GEE 

images were filtered, and NDVI was performed for the Sundarbans mangrove forest using 

equation (1) (Rouse et al., 1974):   

                                                       𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅− 𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
               (1)                            

For the Sentinel 2A satellite sensor, band 8 and band 4 are the NIR (near infrared) and RED 

bands.  
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4.2.3 mRFDI Calculation 

The mRFDI is a revised version of the Radar Forest Degradation Index (RFDI), an 

approach used to track alteration in the composition and recovery in a forest (Chhabra et al., 

2022; Çolak et al., 2021). Here sentinel 1 data was used to calculate mRFDI using the SNAP 

software, an open-source software developed by European Space Agency (Moskolaï et al., 

2022). The data underwent preprocessing using the following steps in the graphic builder tool as 

depicted in Fig. 4.3. To correct the image edge noises caused by uneven topography during their 

generation; border noise was removed. Afterwards, it was calibrated in order to remove thermal 

noises and convert the data to Sigma-Not (σ°) value (Kumar, 2021). It was necessary to perform 

terrain correction in order to resolve distortion effects that were caused by the acquisition 

process. Values were converted from linear to decibel to enhance data visualization and analysis. 

Finally, the Subset tool in SNAP was selected to reduce the processing time (Fig 4.3). The 

following formula was employed for mRFDI (Çolak et al., 2021): 

 

𝑚𝑅𝐹𝐷𝐼 =
σ°(VV) − σ°(VH)

σ°(VV) + σ°(VH)
            (2) 

Here, this formula corresponds to the backscatter coefficient σ° (VV) for vertical polarization 

and the backscatter coefficient σ° (VH) for horizontal polarization.  

In this study, pre-Amphan radar image was selected for May 7, 2020 and post-Amphan period 

image was collected for May 28, around one week before and after cyclone Amphan (May 16-

21, 2020).   
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Fig 4.3: Flowchart of mRFDI analysis in SNAP 

4.3 Results  

4.3.1. Normalized Difference Vegetation Index (NDVI) in Sundarbans mangrove forest  

4.3.1.1. Pre and post-Amphan NDVI 

A composite value of 21 days was recorded for the NDVI during the pre-cyclonic period, 

ranging from -0.39 to 0.74. The northeastern part of the Sundarbans, which is located in 

Bangladesh, had reasonably healthy vegetation (0.6 <NDVI ≤ 0.8). In contrast, the majority of 

the Sundarbans in India had notably lower NDVI values even before the landfall of cyclone 

Amphan. In the Sundarbans reserve forest in India, the vegetation was found to be of low health, 

with an NDVI value ranging from 0.2 to 0.4. On the other hand, the Khulna and Bagerhat 

districts of Bangladesh had a moderately high vegetation cover, with an NDVI value ranging 
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from 0.6 to 0.8 (Fig. 4.4).   

 

Fig 4.4: Pre-Amphan (03/25/2020 – 04/15/2020) period NDVI 

 

The maximum area corresponded to Moderately Low NDVI, followed by Low NDVI, Bare Soil/ 

Water, Moderately High NDVI, and Very low NDVI (Table 4.1).    

Table 4.1: Pre-Cyclonic period NDVI class areaa 

Class Name NDVI Value Area (sq. mi.)  

Bare soil/water NDVI≤ 0 95.14 

Very Low 0 <NDVI≤ 0.2 59.93 

Low 0.2 <NDVI≤ 0.4 318.19 
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Moderately Low 0.4 <NDVI≤ 0.6 1802.28 

Moderately High 0.6 <NDVI ≤ 0.8 78.32 

Post-Amphan NDVI shows thriving vegetation in the Bangladesh part of the Sundarbans, 

mainly in the eastern part of Sundarbans (Fig 4.5). In the Indian part of the Sundarbans, although  

 
Fig 4.5: Post-Amphan (10/25/2020 – 11/15/2020) period NDVI 

some improvement in vegetation health was noticed from the pre-Amphan period, NDVI value 

was still lower compared to the eastern part (Bangladesh part) of Sundarbans. The highest 

recorded NDVI value in the post-Amphan period was 0.76, which shows an increase from the 

pre-Amphan period. However, the lowest NDVI value was -0.39, the same as before the cyclone 
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hit Sundarbans. Near the cyclone track, degradation in vegetation was apparent. Almost the 

entire Sundarbans in the Pirojpur district, moderately high NDVI predominated (Fig. 4.5). 

Table 4.2 indicates that most areas were occupied with moderately low vegetation, 

followed by moderately high, low, bare soil/water, and very low vegetation. Although a decrease 

in the area was noticed for bare soil, very low vegetation, low and moderately low vegetation, a 

sharp increase was observed in the moderately high NDVI class.    

Table 4.2: Post-cyclonic period NDVI class area 

Class Name NDVI Value Area (sq. mi.)  

Bare soil/water NDVI ≤ 0 78.29 

Very Low 0 <NDVI ≤0.2 57.08 

Low 0.2 <NDVI ≤0.4 136.52 

Moderately Low 0.4 <NDVI ≤ 0.6 1354.76 

Moderately High 0.6 <NDVI ≤0.8 754.25 

Vegetation degradation was highly noticed in the thirty-mile buffer zone from the 

cyclone track (Fig. 4.6). While most of the forest remained unchanged, there was a visible loss 

near the track and places exposed to BoB. On the other hand, the density of moderately low 

vegetation has also increased remarkably because of the increase in low vegetation NDVI value. 

However, it was primarily in the eastern part, away from the track, and not exposed to BoB (Fig. 

4.6). 
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Fig 4.6: Change in NDVI from pre-Amphan to post-Amphan period   

Table 4.3 represents the change in the area 30 miles away from the cyclone track. 

Although the results above showed that the vegetation health improved in 6 months, the overall 

damage was observed near the track. Roughly 17 sq miles of the area experienced degradation, 

and 42 sq miles of the area’s vegetation showed an improvement within 30 sq miles from the 

cyclone path. The maximum degradation was recorded in moderately low vegetation, covering 

approximately 12 sq miles. However, a noticeable improvement of about 34% was seen in the 

low NDVI class after the cyclone (Table 4.3). 
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Table 4.3: Areal change in 30 miles from pre-Amphan to post-Amphan period 

Change Type Total Area (sq. mi.) Improvement/Degradation  

Very low- Low 4.8373  

 

 

 

Improvement 

Very low- Moderately Low 0.3635 

Low- Moderately High 0.0004 

Low- Moderately Low 34.2654 

Moderately Low- Moderately High 0.2410 

Bare soil/Water- Low 0.0184 

Bare soil/Water- Very Low 2.5349 

Bare soil/Water- Moderately Low 0.0004 

Total 42.2613 

Very low- Bare soil/Water 0.4888  

 

 

 

Degradation 

Low- Very low 3.7458 

Low- Bare soil/Water 0.0669 

Moderately Low- Low 12.1084 

Moderately Low- Very Low 0.6318 

Moderately Low- Bare soil/Water 0.0172 

Moderately High- Low 0.0038 

Moderately High- Very Low 0.0003 

Moderately High- Moderately Low 0.0594 

Total 17.1224 
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4.3.1.4. Long-term Change in NDVI (2019 and 2021) 

 

The annual average NDVI was calculated for the years 2019 and 2021. In both years, 

moderately low vegetation with an NDVI value of 0.4 - 0.6 dominated in Sundarbans, followed 

by an NDVI value of 0.2 -0.4, which represents unhealthy vegetation (Fig. 4.7). Fig. 4.7 

represents that the low vegetation increased significantly. In contrast, moderately high vegetation 

showed a decline in 2021. The northeastern part of Bangladesh had moderately healthy biomass. 

However, in the later period, most of its area with an NDVI value of 0.6 - 0.8 was not 

identifiable in the NDVI map for 2021 because of a sharp decline. In both periods, Sundarbans 

mangrove was mostly moderately low NDVI dominated forest. Amphan struck this forest in 

2020, and 1 year after the cyclone, most of the Indian Sundarbans part showed a decline in 

vegetation health, shifting from moderately low to low vegetation health. 

The area coverage by different NDVI values in 2019 and 2021 are calculated and 

presented in Table 4.4. In 2019 and 2021, the largest area of the Sundarbans was attributed to 

moderately low vegetation. In 2019 moderately low NDVI was visible at 1,952 sq. mi., whereas 

in 2021, after the cyclone, it became 1,871 sq. mi. approximately (Table 4.4). An increase was 

noticed in very low and low vegetation too, after Amphan. However, a sharp decline was 

recorded in 2021, where moderately high vegetation decreased by around 93% compared to 

2019, which has likely experienced severe damage. 
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Fig 4.7: Yearly Average of NDVI (2019 and 2021) 
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Table 4.4: Annual Average of NDVI (2019 and 2021) 

Class Name NDVI Value 2019 Area (sq. mi.)  2021 Area (sq. 

mi.) 

Bare soil/water NDVI ≤ 0 80.8959 75.2760 

Very Low 0 <NDVI ≤0.2 60.2108 73.2170 

Low 0.2 <NDVI ≤0.4 271.3737 351.4841 

Moderately Low 0.4 <NDVI ≤ 0.6 1951.5958 1871.3115 

Moderately High 0.6 <NDVI ≤0.8 7.7794 0.5494 

 

4.3.2. mRFDI  

 

4.3.2.1. Pre-Amphan mRFDI 

 

As seen in Figure 4.7, the May 20, 2020, image captured that most of the Sundarbans 

mangrove forest was degraded. Furthermore, it is evident that deforestation predominated in the 

Bangladesh part of northern Sundarbans, fringing the locality (Fig 4.8). 

Table 4.5 shows that prior to when Amphan hit Sundarbans, the existing degraded forest 

area was around 1799 sq. mi., experiencing significant deforestation. A negligible portion of 

dense forest (~24%) was there within the mangrove region.  
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Fig 4.8: Pre-Amphan mRFDI  

Table 4.5: Pre-Cyclonic period mRFDI class area 

Class Name mRFDI Value Area (sq. mi.)  

Dense Forest  < 0.3 23.7874 

Degraded Forest 0.4 to 0.6 1798.9822 

Deforestation > 0.6 481.1357 

 

4.3.2.2. Post-cyclonic mRFDI 

 

Post- cyclonic index also shows a similar pattern to the pre-cyclonic period (Fig. 4.9).  
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The deforestation scenario was still existing in Bangladesh, but clusters of forested areas were 

more scattered than at the time before the cyclone hit. However, an increase in deforestation was 

observed near the cyclone's track in Figure 4.9, suggesting that the cyclone may have had a 

localized impact on the forest in that area. 

 
Fig 4.9: Post-Amphan mRFDI  

Although the dense forest increased by ~10 sq miles and deforestation decreased by ~18%, 

around 75 sq mi. of forest were degraded in just 21 days (Table 4.6). Likewise pre-Amphan, 

most of the dominant area in the Sundarbans mangrove forest was attributed to the degraded 

forest, which was around 1874 sq. mi.    
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Table 4.6: Post-Cyclonic period mRFDI class area 

Class Name mRFDI Value Area (sq. mi.)  

Dense Forest < 0.3 34.0159 

Degraded Forest 0.4 to 0.6 1874.2471 

Deforestation > 0.6 395.8243 

 

 

4.3.2.3. Change in the Forest in mRFDI Analysis 

The north-western part of Sundarbans residing in Bangladesh showed some improvement 

in the forest condition. However, the northeastern part of Bangladesh still exhibited alarming  

 

Fig 4.9: Change in mRFDI from Pre-Amphan to Post-Amphan period  
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results. Damage was scattered throughout the Indian part of Sundarbans; however, some areas 

experienced a substantial loss after cyclone Amphan (Fig. 4.9) but most of the areas remained 

unchanged. 

From the pre-Amphan to post-Amphan period, there was some improvement in the forest, 

particularly the growth of degraded vegetation noticed in the deforested area (Table 4.7). 

However, while the deforested area showed some improvement, a decrease was also noticed in 

the existing degraded forest (Table 4.7). 

Table 4.7: Areal change in 30 miles buffer from pre-Amphan to post-Amphan period 

 

Change Type Total Area (sq. mi.) Improvement/Degradation 

Degraded - Dense 26.9353  

 

Improvement 

Deforestation - Dense 5.5868 

Deforestation - Degraded 352.5475 

Total 385.0696 

Degraded - Deforestation 270.8826  

Degradation Dense- Degraded 19.7502 

Dense- Deforestation 2.7490 

Total 293.3818 

 

4.4 Discussion  

 

4.4.1. Vegetation Health Analysis (NDVI) 

 

The closest available satellite image for the pre-Amphan period with less than 10% cloud 

was from 03/25/2020 to 04/15/2020, one month before the cyclone hit Sundarbans. The post-
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Amphan scenario showed an increase in vegetation health, and the image acquisition date was 

from 10/25/2020 to 11/15/2020, which was five months after cyclone Amphan. This significant 

time gap (6 months) is due to the unavailability of cloud-free images, which was also seen in the 

study of Mishra et al. (2021).  

NDVI (Fig. 4.4) revealed that before Amphan, major mangrove vegetation cover in 

Sundarbans was in the class range of 0.4 <NDVI≤ 0.6, which is consistent with the finding of 

Mishra et al. (2021). In addition, their study analyzed the immediate impact of Amphan on 

Sundarbans and found around 68% reduction in higher NDVI class value to lower NDVI. 

However, this study presents a contrasting result as the post-Amphan period was over four 

months compared to their post-Amphan period. Furthermore, more significant fragmentation 

happened in areas with moderately low NDVI values (Table 4.1 and 4.2), which signifies that 

sparse to less dense vegetation could not withstand the damage. Sen (2020) estimated that around 

618 sq mi of Sundarbans was damaged, which validates the NDVI analysis for this study's pre 

and post-Amphan period, where the quantified forest damage was around 649 sq mi. 

It is clearly seen from Fig. 4.6 that although there was some improvement after six 

months of the first analysis (pre-Amphan NDVI), the place near the cyclone track faced notable 

damage. A sharp increase was noticed in dense vegetation in the post-monsoon result. The 

monsoon period lasts in Bangladesh from June to October and June to September in India 

(NOAA, 2023a; World Bank, 2023). This might promote favorable conditions for regeneration. 

Gang et al. (2020) studied forest regeneration capability after several hurricanes struck, where 

they found that damaged canopy recovered after approximately one month of experiencing the 

hurricane. The season and time gap might influence the NDVI result significantly after six 

months of observing the Amphan impact on the forest.  
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The NDVI analysis is also influenced by soil moisture, which was lower during the pre-

monsoon period than the post-monsoon period. During the high tide, if the land is inundated, an 

increase in soil moisture will occur. The post-monsoon period, when the second image was 

acquired, typically has higher soil moisture levels due to increased rainfall, which can lead to 

higher NDVI values. Therefore, the vegetation health in the catchment area of the cyclone 

trajectory, mainly in the southwestern part of the study area, deteriorated severely, which 

represents the damage where the cyclone’s wind speed was 95 knot (NOAA, 2023b). Delaporte 

et al. (2022) also found a similar result where the damage was severe when the cyclonic wind 

speed was over 75 m/s and negligible at the place with 50 m/s cyclonic wind. Cortés-Ramos et 

al. (2020) found that NDVI value decreased in the heavy precipitation zone during TCs which 

can be another reason for this degradation. Figure 4.4 represents the presence of moderately high 

vegetation in Khulna and Bagerhat districts, where the tall mangrove trees are dominant and low 

NDVI dominating in the Sundarbans reserve forest in India, with canopy height ranging from 3-4 

meters. An increase in very low NDVI value near the cyclone track was noticed after the 

cyclone, which indicates fragmentation due to the cyclone.   

The long-term NDVI findings of this study reveal that the impact of cyclone Amphan 

was more evident in the long term. The year 2021 showed more abundance in low vegetation 

than the year before Amphan. A drastic decrease in healthy vegetation indicates the impact of 

cyclone Amphan. Moreover, all Indian parts of the Sundarbans showed degradation in long-term 

analysis.  

4.4.2. Forest Degradation Analysis  

 

As a prerequisite for rapid assessments, a high-resolution image from daily to monthly 

time scales is required as well as a high proportion of observations under clear skies but 



99  

Sundarbans have very high cloud cover associated with tropical climates, which is a critical 

factor (Islam, 2021). To address this challenge, the modified Radar Forest Degradation Index 

was analyzed using Sentinel 1 SAR image to detect changes due to cyclone Amphan in forest 

areas from 05/07/2020 to 05/28/2020. Both pre-and post Amphan image shows deforestation in 

northern and eastern Sundarbans in Bangladesh, which are Heritiera fomes and Excoecaria 

agallocha dominated zone, with the former being more susceptible to cyclonic wind and pressure 

than the latter in Sundarbans (Ghosh et al., 2016; Halder et al., 2021). The overall damage in 

Sundarbans was prevalent in the zones that are dominated by Heritiera fomes, Excoecaria 

agallocha, Ceriops decandra species which are overexploited because of timber, newspaper, 

match, and fuelwood, respectively (Gani, 2023; Ghosh et al., 2016). 

The decline in degraded vegetation in 21 days from the pre-Amphan period to the post-

Amphan period was noticed, which indicates the damage caused by the gusty wind, heavy 

rainfall, and storm surge of cyclone Amphan (Table 4.4 and 4.5). A positive result was noticed in 

dense forest and deforestation classes. This improvement is likely due to the monsoon season 

and less human intervention during the cyclone and COVID-19 period. No study was available 

on Sundarbans mangrove forest using mRFDI, which makes this novel, as well as challenging to 

compare the result.    

4.5 Limitations of the Study  

 

This study's approach, including the timeline, type of imagery used, and the extent of the 

study area, differs from those of other researchers who have investigated the impact of Cyclone 

Amphan on the Sundarbans mangrove forest. Consequently, it is not easy to directly compare the 

results of other studies, although many of the findings from the pre-Amphan period are 

consistent with previous research. It should be noted that validation is a critical component of 
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remotely sensed data, but in this case, ground truthing was not feasible due to time constraints. 

However, the study attempted to compare its results with those of other published studies. 

Furthermore, stating the forest was damaged solely because of cyclone Amphan is not possible 

because, before this event, many cyclones struck and damaged this forest, which will alter the 

result. Mangroves are a slow-growing ecosystem, so recovering the previous damage will take a 

considerable amount of time. 

4.6. Conclusion     

 

The Sundarbans mangrove forest not only plays a critical role in efforts to battle against 

climate change but also protects many marginalized people from extreme weather and provides 

them with a source of food and income. Unfortunately, because of its unique geographic position 

and ecological characteristics, the Sundarbans is especially susceptible to the destructive effects 

of severe storms. Throughout the study period, the Indian mangrove forest consistently displayed 

poor conditions than the Bangladesh part, which was also seen in the study of GMW, where the 

mangrove in Bangladesh has expanded by about 14 sq mi, and in India, the extent of mangrove 

shrunk by around 17 sq mi. between 2019-2020. The damage caused by Cyclone Amphan 

highlights the vulnerability of mangrove forests to tropical cyclones and the importance of 

remote sensing techniques in monitoring and assessing the damage. Even though several 

conservation planning initiatives have been undertaken by governmental organizations (e.g., the 

Bangladesh Forest Department) to protect mangrove ecosystems, Sundarbans are being 

deforested due to a lack of law enforcement in both countries. The result of mRFDI with 

Sentinel-1 SAR data can be valuable in detecting human intervention and disturbance. Using 

these approaches, sustainable development strategies can be improved, and conservation 

initiatives can be improved to lessen the impact of cyclones in the future. 
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CHAPTER 5 

 

SUMMERY AND CONCLUSION 

 

 

 

 

 

5.1 Conclusions 

TCs are a global threat, particularly for the communities residing along the coastal areas. 

The study analyzes the detailed spatial pattern of tropical cyclone risk with the most up-to-date 

available data for the entire coast of Bangladesh. The study employed a range of techniques to 

build the composite risk map, including the PCA analysis, which was used to construct a social 

vulnerability index to assess social vulnerability. The physical vulnerability was quantified by 

the AHP method and geospatial techniques to construct an integrated tropical cyclone risk map 

in the coastal areas of Bangladesh. Additionally, vegetation indices (NDVI, mRFDI) were 

performed to detect the change induced by a tropical cyclone in the Sundarbans mangrove forest 

of Bangladesh. This social and physical vulnerability assessment incorporated a wide range of 

variables.  

The significant outcomes from this research were: both the inland and exposed coast 

communities are socially vulnerable. At the county level, vulnerability varied more on the 

western and central coast than on the eastern coast. The study highlights that around 8% of 

upazilas (same as the county in the US) along the coast were in a range of high to very high 

vulnerability, and cyclonic risk all along the coast increased without considering social 

vulnerability parameters. However, with and without incorporating social vulnerability, areas on 

the central coast were at higher risk of the adverse impact of TCs, which highlights the 

contribution of Sundarbans mangrove forest as a bio-shield on the western coast. Social 
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vulnerability for Feni upazila was very high, whereas the risk considering only physical criteria 

in that place varied from moderate to very high. On the contrary, another upazila with very high 

social vulnerability, namely Narail, showed very low to low physical risk, the Indian mangrove 

forest consistently exhibited poor conditions than the Bangladesh portion, and the short-term 

radar data and long-term optical data indicated the damage done by cyclone Amphan. 

5.2 Limitations of the Study  

 

The key constraint of this study is the unavailability of the updated census data which 

was used to construct the social vulnerability index. Further, the study area lacks information 

regarding the spatial distribution of rainfall and storm surge height triggered by tropical 

cyclones. Also, the information regarding the capacity and facilities of cyclone shelters and 

health centers is not up to date. Moreover, no drone data was available for the Sundarbans 

mangrove forest which could be of great use to analyze the destruction of cyclone Amphan.  

Notwithstanding these limitations, this work certainly contributes to existing knowledge in 

the field of TCs by providing insight into the degree of individual risk components and the 

integrated spatial distribution of TCs risk in the coastal settings of Bangladesh. As far as the 

author is aware, this is the only empirical study for the entire coast that examines the 

comprehensive distribution of tropical cyclone risks with regard to both social and physical 

vulnerability using a multi-criteria decision-making technique.  

5.3 Recommendations  

 

Although this study has some limitations, it provides a realistic depiction of the existing 

vulnerability of coastal Bangladesh. The probable cyclone mitigation measure can be used to 

increase the cyclone shelter and health facility and promote afforestation initiatives in more 

vulnerable and exposed zones. Unlike the developed world, property insurances in developing 



113  

countries are not a common practice, which increases the suffering in the post-cyclone period.  

This study can help identify the risky areas to implement possible mitigation measures. The 

misery of the coastal communities of Bangladesh because of natural disasters like tropical 

cyclones can be mitigated through proper relief distribution during the post-cyclonic period. 

Unfortunately, three warehouses to store reliefs are in Khulna district (western coast), Chittagong 

district (eastern coast), and Dhaka (outside coast). This study's spatial information can help 

establish relief warehouses in the more vulnerable areas, particularly on the central coast. 

Furthermore, the findings of this study can serve as a guideline for mapping coastal vulnerability, 

and risk. Emergency responders and authorities could utilize the information in preparing 

effective cyclone mitigation plans. Future works may include more mitigation capacity indicators 

and quantitative analysis on the role of Sundarbans mangrove forest in attenuating tropical 

cyclones intensity. 

 


