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ABSTRACT 

 

This study was conducted to explore the application of non-invasive, rapid advanced 

technological enhancements and to combine big data analytics methods to detect muscle quality 

issues such as woody breast (WB), white striping (WS), and spaghetti meat (SM) conditions that 

arise in fast-growing broilers within the poultry industry. Results obtained from the rapid 

identification of myopathies in chicken breast fillets experiments using BIA (Hand-held and 

plate BIA) collected data analyzed with supervised and unsupervised machine learning 

algorithms (Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-

nearest neighbor (k-NN), Fuzzy C Means (FCM) clustering and K-means clustering) have shown 

that model developed with SVM separated WB with a higher accuracy of 71.0% for normal , 

59.9% for moderate, 81.4% for severe WB. Compared to SVM, the BPNN training model 

accurately (100%) separated normal WB fillets with and without SM demonstrating the ability of 

BIA to detect SM. While on the other hand, the modified BIA showed better detection ability for 

normal chicken breast fillets than the probe BIA setup. In the plate BIA setup, fillets were 80.0% 

for normal, 66.6% for moderate, and 85.0 % for severe WB. However, hand-held BIA showed 

77.78%, 85.71%, and 88.89% for normal, moderate, and severe WB. Plate BIA setup is more 

effective in detecting WB myopathies and could be installed without slowing the processing line. 

Breast fillet detection on the processing line can be significantly improved using a modified 

automated plate BIA.  

Radio wave frequencies were also used in detection of these myopathic conditions. 

Results obtained from this experiment indicates that pre-processed data (False discovery rate, 
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predictor screening, and variable clustering) with identified signature frequencies were used to 

develop classification-based models using Back Propagation Neural Network (BPNN) and 

Support vector machines (SVM). The BPNN model effectively predicts bird myopathies with 

varying accuracy in stages: Live Birds (83% variance, 87.5%-100% accuracy), Pre-Chill WOG 

(78% variance, 87.5%-100% accuracy), Post-Chill WOG (91% variance, 69.7%-100% 

accuracy), Deboned Fillets (85% variance, 66.7%-100% accuracy). It remains sensitive despite 

26% misclassification rates. Conversely, the SVM model shows lower sensitivity and specificity 

(54.8%-69.7% accuracy). BPNN surpasses SVM in predicting myopathies across processing 

stages. 

Keywords: Support Vector Machines, Backpropagation Neural Networking, Woody breast, 

Meat myopathies, Spaghetti meat, Bio-electrical impedance analysis, Machine learning, 

Artificial intelligence 
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1.1 ABSTRACT 

Food industry have seen a rapid growth in different advancements in the past two decades, and 

advancement in technologies have created huge amount of data with a rapid rate including 

variability, and variety in these collected data. This rapid expansion in volume of data had led the 

current food industry to explore the option of big data analytics approaches including 

multivariate analysis, and machine learning based algorithms to solve this problem. Analysis of 

different format of data which includes multimedia data, rapid identification technological 

equipment data became possible by machine learning approaches such as support vector 

machines, Neural network, decision tree, K-means clustering, K-nearest neighbor, and Natural 

language processing etc. In this presented state of art literature review paper, we have tried to 

collect information from different food sectors especially from food safety, food processing and 

food quality and tried to provide one informational document that covers above mentioned field 

collectively. In spite of the fact that many of these applications are still in their infancy, general 

and domain related problems and issues linked with machine learning have started to be 

identified and handled. These are essential to the projected usage and eventual integration of 

massive datatypes and their related machine learning techniques for food safety, food processing, 

and food quality evaluation applications.  

Keywords: Big data analytics, Machine learning, Natural language processing, Support Vector 

Machines 
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1.2 INTRODUCTION 

Food is the most basic urgent need for growing population around the world and access to 

enough, safe and nutritious food is a necessity. The most important task of food industry is to 

ensure that food is highly nutritious and safe for consumers. Currently, the food sector is facing 

challenges in developing and implementing systems ensuring food quality, safety, and supply 

(Manufuture, 2006). To solve these complex challenges, effective, affordable, and 

environmentally sustainable innovative approaches are needed for the food sector's new 

processes, products, and tools. 

Big data analytics (BDA) is gaining attention and becoming a vital tool for the food industry 

in addressing the predicted increase in global demand caused by population growth and rising 

incomes in emerging nations (Gupta et al. 2019). Big data analytics may improve food 

processing processes in the food industry, resulting in goods with improved qualities and 

additional functionality. Big data analytics can also help to minimize food waste and keep stores 

from running out of food by closely looking at inventory levels [Dubey et al. 2020; Gupta et 

al.2019; Manufuture, 2006). Big data analytics employ several techniques to analyze big data 

sets, such as machine learning, artificial intelligence (backpropagation neural network, natural 

language processing, and deep learning), data mining, exploratory data analysis, and graphical 

and visual approaches (Deshpande and Kumar, 2018).  

Total investment in big data and AI increased from 27% in 2018 to 33.9% in 2019 (Cision 

PR newswire, 2020). The global BDA valued the sector at $169 billion in 2018 and is expected 

to reach $274 billion in 2022 (Statista, 2022). The increased capital investment has promoted 

research into big food data and use of BDA in food has significantly increased by $35.8 billion 

from 2010 to 2019 (Ag-funder Agri-food tech, 2019).  
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A quick search of "big data analytics in the food" yielded over 700 articles as of 2022 in the 

Journal of Food Science alone. There are hundreds of researches that have been published in 

other scholarly journals. Big data analytics have potential applications in all aspects of the food 

chain, including food quality, safety, and processing. Information on the BDA in food sectors is 

synthesized from published literature (Margaritis et al. 2022). There have been several studies on 

the feasibility and necessity of big data in the food sector, but not in depth. This paper mainly 

discusses the three areas of food sectors i. e., food safety, quality, and processing in depth. The 

main aim of this paper is to synthesize a wealth of information into a single document.  

1.3 DEFINITION AND CHARACTERISTICS OF BIG DATA 

Big data is a term coined in the 1990s by the computer industry and is now used as a catch-

all term for anything negative or positive about the twenty-first-century technological society. 

Interestingly, before the 2000s, big data was considered a problem (Russom, 2011). Since the 

advent of computers, a tremendous quantity of data has been produced at an increasingly rapid 

rate. This condition serves as the primary impetus for both the ongoing and upcoming horizons 

of research (Bryant et al. 2008).  Mobile devices, digital sensors, communications, computation, 

and storage have all advanced in recent years, which has made it possible to collect data 

(Russom, 2011). Industrial Development Corporation (IDC) has mentioned that the total amount 

of world data has expanded nine times in the past five years (Gantz and Reinsel, 2011), and Chen 

and Liu (2014) have mentioned that this generated will get doubled in the next two years. The 

necessity for massive corporations like Yahoo, Google, and Facebook to examine large volumes 

of data gave rise to the relatively new concept known as "big data" (Garlasu et al. 2013). 

The term "big data" has been defined in a number of different ways, ranging from the 3V 

model of Volume, Variety, and Velocity to the 4V model of Volume, Velocity, Variety, and 
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Veracity (Garlasu et al. 2013; Chen and Liu, 2014; Mazahua et al. 2016). The amount of the 

information is referred to as its volume, the pace at which it is received and transmitted is 

referred to as its velocity, and the sources of the data and the sorts of data are referred to as its 

variety (Mauro et al. 2015). The definition of "big data" was expanded by IBM and Microsoft to 

include "veracity" or "variability" as the fourth "V." The unpredictability and dependability of 

data are what is meant by the term "veracity."(Al-Sai et al. 2019). In order to characterize big 

data, McKinsey & Company included value as the fourth V. The term "value" alludes to the 

significance of the insights that are buried inside large amounts of data (Chen and Zhang, 2014). 

A detailed description of the 4 V’s is given below for a better understanding of data analytics 

dependencies used in current scenarios (Katal et al. 2013):  

i. Volume: The data that is currently being stored is measured in petabytes, which is 

troublesome in and of itself; it is expected that during the next few years, it will expand to 

zettabyte (ZB). This is mostly attributable to the increased utilization of smartphones and 

social media networking platforms. 

ii. Velocity: The term "velocity" can refer to either the rate at which data is collected or the 

rate at which it is transferred. The increased reliance on live data presents difficulties for 

the more conventional methods of data analysis because the data is both too extensive 

and constantly shifting. 

iii. Variety: Because the data that is collected does not come from a certain set category or 

from a primary source, it comes in many different raw data forms. These formats can be 

obtained through the internet, texts, sensors, emails, and other sources, and they can be 

either structured or unstructured. The sheer magnitude of the problem renders obsolete 

conventional analytical approaches useless for handling big data. 
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iv. Veracity: It is the central objective in this category, and the primary source of difficulty 

within the dataset is often noise or anomalies well within data. 

Big data analytics approaches comprises many different approaches such as supervised 

learning approaches, unsupervised approaches, Artificial intelligence based approaches, and 

decision based approaches, and machine learning (ML) along with data dimensionality reduction 

techniques (DRT) including linear discriminant Analysis (LDA) (Figure   1) and Principle 

component analysis (Rashidi et al. 2019).  

Machine learning (ML) can be defined as sub-branch of artificial intelligence that is based on 

computer algorithms and is significantly used in predictive analysis models which can handle 

large amounts of data and specific trends and patterns (Rashidi et al. 2019; Khan et al. 2022). 

Popular ML methods such artificial neural network, support vector machines (Figure   2), 

backpropagation neural network (Figure   3), decision tree, random forest, k-means clustering 

(Figure   4), k-nearest neighbor are used in the vast engineering areas for data categorization, 

data clustering regressive predictive modeling, ensemble methods, clustering, transfer learning, 

image processing, feature extraction, reinforcement learning, natural language processing, and 

deep learning. Based on learning approaches there are three types of machine learning methods: 

supervised, semi-supervised, and unsupervised learning (Rashidi et al. 2019; Zhang et al. 2019; 

Khan et al. 2022). 

1.4 SOURCES OF BIG DATA IN THE FOOD SECTOR 

The most common sources of big food data pertaining to food industries (from harvesting to 

restaurants), government sectors, health care (Misra et al. 2020), and media posts include news, 

video, pictures, and audio. An analysis of big data with a high level of quality can contribute to 

the growth of the food industry (Zhang et al. 2019; Misra et al. 2020).  
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1.4.1 Food regulatory agencies’ data 

The federal regulatory agencies play a big role in providing big data related to food activities 

(Metcalf and Crawford, 2016; Misra et al. 2020). Four major food safety regulatory agencies are 

the Food and Drug Administration (FDA) Department of Health and Human Services (DHHS), 

the Food Safety and Inspection Service (FSIS) U.S. Department of Agriculture (USDA), the 

Environmental Protection Agency (EPA) and the National Marine Fisheries Service (NMFS) 

Department of Commerce. Food Safety and Applied Nutrition (CFSAN) that a part of the FDA 

ensures that the quality of foods is safe for human consumption (Johnson, 2012; (Metcalf and 

Crawford, 2016; Misra et al. 2020). Food safety activities consumed around $1.6 billion of the 

FDA budget in 2021 (President’s FY 2022 Budget Request, 2022).  

The Food Safety Inspection Services (FSIS) system is used by the US government to share 

food sample analysis reports (Johnson, 2012). Data about food consumption habits and patterns 

from across the European Union can be found in the EFSA database (Merten et al. 2010). The 

PulseNet (Swaminathan et al. 2001), the National Antimicrobial Resistance Monitoring System 

(NARMS)(Gupta et al. 2004), FoodNet (Scallan and Mahon, 2012), and the National Outbreak 

Reporting System are all examples of the governmental level in the United States (Hall et al. 

2013). Rapid Alert System of Food and Feed (RASFF) is a popular online health and safety 

repository (EU) for industrial and research work (Postolache, 2020). The other food-related 

database includes the Import Rejection Report (IRR), Inspection Classification Database (ICD) 

(U.S), and the State Administration for Market Regulation (SAMR) (China). The inclusion of 

genetic data on food safety activities has increased the amount of data acquired by several of 

these networks in the last several years. Whole-genome sequencing (WGS) has largely driven an 

eruption of freely accessible information in new systems like GenomeTrakr (Jackson et al. 2016; 
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Timme et al. 2018), EnteroBase (Zhou et al. 2020), and the National Center for Biotechnology 

Information's Pathogen Detection (Sayers et al. 2021). The widespread application of WGS in 

public health microbiology has spawned the data-driven field of genomic epidemiology (Deng et 

al. 2021). 

Furthermore, Moy and Vannoort (2013) have mentioned that in 1976, the World Health 

Organization (WHO) founded the Global Environmental Monitoring System (GEMS/Food), in 

which active participation organizations submit information about food pollutant concentration 

levels and develop data centers to assist authorities. In 2015, the WHO combined data from 

agriculture, food, public health, and economics to create a big data digital infrastructure for food 

safety vulnerability assessments (Marvin et al. 2017). Although, the building of an intelligent 

supervisory system for the food supply chain is helped by the collaboration and exchange of data 

across the authorities and organizations that are responsible for the regulation of food (Martinez 

et al. 2007; Moy and Vannoort, 2013; Marvin et al. 2017) but still there are several obstacles to 

overcome. Some of the challenges are limited data share, and lack of the standard (Wieczorek  et 

al. 2012). Multiple analysis of the same product by different departments, and agencies had led 

to a concerning problem of waste of resources and increased operating costs. Specific global 

standard, proper sharing of real time data within the department and between departments and in 

between nations for import and export purposes could be a possible area to explore which might 

be useful in decreasing some of waste of resources and time. There should be development of 

data mining and classification models that can easily categorize the same product with different 

names which are also a point of problem in development of network inspection models (Tao et 

al. 2021).  
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1.4.2 Food industries data 

The food industry is closely linked to agriculture, fisheries, poultry, dairy, processing, 

and restaurants. All these sectors use modern machinery to increase operational control and 

performance (Willemson, 2011 Freudenthal and Willemson, 2017; Snow et al. 2021). 

Interconnected food supply chains can be created using cloud computing, Wireless sensor 

Networks, blockchain technologies, and the internet of things (Lezoche et al. 2020). Agricultural 

production and business management are made more efficient with the use of translational active 

technologies (Lasi et al. 2014). Sensors and drone robotics are used to collect data on 

precipitation, topography, animal science, nutrition, agricultural planting, and enhanced growth 

cycles to assist farmers in optimizing these processes. Smart sensors and developed models can 

collect data that can be use and make real-time decisions that reduce unplanned equipment 

downtime (Lasi et al. 2014; Mondino and Andújar; 2019; Lezoche et al. 2020).  

In recent years, studies on the Internet of Things (IoT) in food manufacturing have 

encouraged the expansion of the IoT platform in order to fulfill market needs (Choi et al. 2018; 

Lee et al. 2018), diverse monitoring models, and unbalanced energy usage (Lasi et al. 2014; 

Lezoche et al. 2020). Applications that integrate the Internet of Things will assist food industries 

in the creation of new data sources (Da Xu et al. 2014). Not only does Industry 4.0 encourage the 

rapid agricultural evolution 4.0, but it also makes it possible for businesses to send real-time data 

in order to recognize and fulfill the shifting stakeholder requirements (Da Xu et al. 2014; Lasi et 

al. 2014; Choi et al. 2018; Lee et al. 2018; Mondino and Andújar; 2019; Lezoche et al. 2020). 

According to a Eurostat report use of smart agriculture will help in the reduction of 

agricultural costs by 4-6% and will increase profitability by 3% by 2026 (Brookings, 2019)[52]. 

Implementation of these approaches will help industries the industries to tackle the food 
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production problems and facilitates the lowing of raw materials. It encourages smart agriculture, 

which saves resources like water, maintains soil, limits carbon pollution, and improves 

productivity (Ayaz et al. 2019; Brookings, 2019). Smart agriculture enables producers, network 

operators, the administration, as well as other stakeholders to exchange their insights enhancing 

the agro value chain for sustainable development (Lasi et al. 2014; Lee et al. 2018; Mondino and 

Andújar; 2019). These big data analytics approaches have several challenges including data 

fairness, process traceability, reusability of shared data, and lack of standard information. The 

lack of well-developed defined protocols has generated inconsistencies among data managerial 

platforms (Da Xu et al. 2014; Lasi et al. 2014; Choi et al. 2018; Lee et al. 2018; Mondino and 

Andújar; 2019; Lezoche et al. 2020). Insecure IoT nodes inside the global food supply also pose 

a threat and might weaken the system. Many firms employ cloud computing, but its application 

to massive data on food safety is relatively new (Mondino and Andújar; 2019). Durability, data 

equality, information security, and legal difficulties remain unresolved (Choi et al. 2018). 

Blockchain technology could make the food production process safer and much more accessible, 

but it's underdeveloped and complicated to use (Rana et al. 2021). Currently, blockchain's 

product safety usage is confined to traceability (Tan et al. 2022). Data validation and information 

management still need exploration (Da Xu et al. 2014; Lasi et al. 2014; Choi et al. 2018; Lee et 

al. 2018; Ayaz et al. 2019; Brookings, 2019; Mondino and Andújar; 2019; Lezoche et al. 2020; 

Rana et al. 2021; Tan et al. 2022). 

1.4.3 Interactive media data 

Different social media platforms are also one of the important factors in collection big 

data and data generation. There are 4.65 billion users in 2022 which is equal to 57.8% global 

population (Data Reportal, 2022). Consumer interacts with foods somewhere at end of the food 
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distribution chain, such through transactions, consumption, evaluation, and exchange of 

experiences, generating a massive volume of information (Blackwell and Blackwell, 2014). 

These generated data are progressively being disseminated and made accessible using digital 

media such as social networking sites, search histories, user ratings, and comments, as well as 

repositories of sales revenue and usage records (Blazquez and Domenech, 2018). Data mining 

approaches are well versed in the collection of these data and generate valuable information 

(Cios et al. 2012; Blazquez and Domenech, 2018).  

There is a steady stream of clips, articles, as well as other types of material being 

disseminated on social networking sites (Blackwell and Blackwell, 2014).  The food-related data 

is also acquired from Facebook and post it on social media (Klassen et al. 2018). Using online 

data, Fried et al. (2014) have used three million Twitter posts to predict population 

characteristics, and were also able to design and implemented a real-time online system for the 

query and visualization of collected datasets. Authors in this study found that their developed 

model outperformed other baseline existing models for the same work (Fried et al. 2014). In the 

food industry, Singh et al. (2018) uncovered supply chain management issues by analyzing 

Twitter data. However, data collected from different media sources and social networking sites 

have their own set of challenges that are needed to be taken care of in order to improve food 

safety issues. In this aspect, there are several points that needed to be addressed such as 

multisource data (Soon, 2020). There is a strong need for an algorithm that can take up all the 

information and fuse it together and direct it to one source (Widom, 1995). The development of 

these kind of central point source will ultimately help in decreasing the chance of social media 

rumors and will be useful in increases the chance of public security and safety. As BDA 

approaches are still in developmental stage, the technology that currently exists is completely 
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based on simulation. In order to stop rumors in time, it will be required to analyze administration 

are required to analyze social networking sites, and web pages for the establishment of an 

effective and authoritative integrated component. These research activities and interactions on 

social networking sites can utilized to investigate how to promote and influence the public's 

perspective, attitude, and conduct on rumors pertaining to food, healthcare, or other areas of 

research (Young et al. 2017). 

There is a massive quantity of data pertaining to food both within and without the food 

system, and the collecting and analysis of this data can encourage businesses to extend their 

market share (Wang et al. 2016). Financial information gives an accurate history of consumer 

food consumption records and has been shown to support, enhance, and even reinforce 

traditional exploration methods in description-based hypotheses about the main causal food 

vehicle in the process of investigation, and/or identifying the area of contamination in 

department stores or restaurants and at other in the food distribution chain.  

Machine learning algorithms could be used to analyze pooled sales data, and the 

application of this data in epidemic surveillance and outbreak investigations has been 

demonstrated in a few situations (Sarker, 2021; Singh and Singh, 2021). Food products with 

sales data that are more similar to the outbreak spread are thought to be the triggering agent 

(Todd et al. 2007). A probabilistic model of purchases and maximum-likelihood prediction is 

used in the methodology to determine a group of potentially contaminated commodities 

(Cameron, 1988; Todd et al. 2007). The product selection method is a theory-driven probabilistic 

model; however, classification design learning methods are being used to quantify the approach's 

efficiency and discover patterns in its effectiveness (Liu et al. 2020). Unsupervised classification 

algorithms are applied to comparable product spatial spread patterns to identify categories of 
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food products that are difficult to differentiate (ElMasry and Nakauchi, 2016). Kaufman et al. 

(2014) tested the approach using weekly sales Figures of 580 grocery items in Germany using 

artificial (simulated) foodborne epidemic characteristics. This method has been adjusted to 

compensate for time, customer movement, and noise, and has been tested on a real-life epidemic 

in Norway (Kaufman et al. 2014; Norström et al. 2015).  

1.4.4 Food-related text data 

In machine learning approaches, text data can be compared as “oil” for the algorithms 

systems to run these ML based models. Commercial and sales data are attractive but have limited 

early validated uses. Text data are generally unprocessed and contains natural-language texts 

capable of providing real-time information about food safety contamination occurrences or 

hazards (Greis and Nogueira, 2017).  Text data providers include customer status updates or 

assessment sites, webpage data such as media outlets or professional organizations portals, and 

private corporation web-based data (Greis and Nogueira, 2017; Toa et al. 2021). 

Online data mining, text mining, pattern recognition and natural language processing (NLP) 

have been employed to enhance the standard monitoring systems using notifications alert for 

foodborne diseases or food safety issues (Toa et al.al. 2021). Text data from consumer posts 

encompass posts on Twitter (Harris et al. 2017; Devinney et al. 2018; Harrison and Johnson, 

2019; Tao et al. 2021), Facebook, Yelp (Effland et al. 2018), and Amazon (Maharana et al. 

2019). These text data can contain private content like company comment boards, public forums, 

and blog posts and query data like Google search history (Harris et al. 2017). Food safety ML 

based applications can mine and analyze post data. A post's text may comprise natural language 

writing, a title, and customer hashtags. Articles published through traditional news outlets, as 

well as websites maintained by academic or professional organizations, are examples of types of 
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content that can be found on the internet (Riff et al. 2014). Web data are often used to develop 

food safety hazard monitoring systems (e.g., outbreaks, recalls) that analyze, integrate, and 

evaluate relevant material and terms across various websites and geographical locations (Chen 

and Zhang, 2014). 

Oldroyd et al. (2018) and Tao et al. (2021) provided thorough assessments of user data 

for foodborne disease monitoring systems and a broad sense of text data that is used in the field 

of food science. Important features of these online channels over conventional data feeds are that 

the data is available almost immediately, unlike government statements of illness or outbreaks, 

which can be pushed back by weeks, and that the data has a wide coverage, which is particularly 

helpful for getting reports from online generations, who are heavily represented on social 

networking sites but underreported in nationwide foodborne illness outbreak survey results 

(Oldroyd et al. 2018). This helps solve the important problem of the underrepresentation of 

foodborne diseases (Scallan and Mahon, 2012; Oldroyd et al. 2018).  

Over a decade text data is being used to monitor and detect food safety issues. Effland et al. 

(2018) and Harris et al. (2017) started to look at tweets done in Chicago, St. Louis, Las Vegas, 

and New York City.  In a creative and unique approach, integration of ML algorithm and the 

analysis of text data can be seen in study reported by Sadilek et al. (2018). In this study, a team 

made up of Google researchers and the health departments of Chicago and Las Vegas integrated 

the Google keyword used to search feedback along with smartphone location to find restaurants 

that were having lower reviews to find anomaly (Sadilek et al. 2018). Authors have emphasized 

that this approach was almost three times better than Twitter-based systems at finding places that 

might be breaking health codes and regulations. In addition to these approaches, Maharana et al. 

(2018) used text classification model through coupled with Amazon reviews data for identifying 
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food safety issues in food products using consumer feedback (Maharana et al. 2018). As a result, 

several of these systems have been created to spot epidemics that might otherwise go unnoticed.  

While traditional surveillance methods have did miss a few minor incidents of foodborne 

disease outbreaks, there is initial evidence that big outbreaks involving national eatery chains are 

being detected on a broad scale (Kuehn, 2014). Its primary use has been in spotting 

establishments at risk of foodborne illness, even if an outbreak has not yet occurred. Systems that 

engage with signage to acquire supplementary details about the foodborne outbreaks being 

reported, including timestamp of the foodborne illness incidence, restaurant specifics, and use of 

personal details, have also been employed in the past (Kuehn, 2014; Harris et al.2017). A ML 

based predictive investigative approach of consumers' food assessments (benefits and drawbacks, 

reliability, and nutritional content) from social networks like Facebook, Twitter, and Instagram 

will enables businesses to anticipate future issues and improve the quality of their products and 

services. 

1.5 APPLICATIONS OF BIG DATA ANALYTICS IN THE FOOD SAFETY  

  Infectious diseases that are spread through food continue to be a significant and 

persistent threat to public health. Foodborne illnesses are responsible for 128,000 

hospitalizations and 3,000 fatalities per year in the United States. According to the World Health 

Organization (WHO), foodborne pathogens are responsible for the illness of 600 million 

individuals and the deaths of 420,000 people every single year (WHO, 2015). 

Campylobacteriosis has been the most common foodborne illness in Europe, according to the 

European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and 

Control (ECDC), followed by salmonellosis, yersiniosis, Shiga toxin-producing Escherichia coli-



 31 

STEC infections, and listeriosis. In 2020, listeriosis had the largest portion of hospitalization in 

foodborne illness cases (Authority, 2021).  

Early detection of harmful organisms and microbial load could improve food safety and 

prevent foodborne outbreaks. The current "gold-standard" methodology for characterizing 

foodborne pathogens in food products is reliable, but time-consuming and labor-intensive, 

restricting food services companies to releasing their commodity to customers first rather than 

getting entire microbiological information on a specific lot or batch (especially in fresh 

products). There are several approaches for diagnosing foodborne pathogens in food products, 

with each having its own advantages and disadvantages in terms of ease of use, consistency of 

results, schedule and cost effectiveness, etc. Rapid alternatives like spectroscopic technology 

have been around for more than a decade, however there remain barriers to replacing 

conventional pathogen identification methodologies (Gracias and McKillip, 2004; Authority, 

2021). The major reasons for these difficulties are the necessity for qualified staff, relatively 

expensive equipment and pre-analysis procedures for some approaches, such as DNA-based 

procedures (Gracias and McKillip, 2004; Vanegas et al. 2017). 

1.5.1 Data analytics approaches in Food spoilage and Pathogen detection 

The difficulty in converting these big data sets stems from the fact that the measurements 

obtained by different sources contain multiple sources of variability, necessitating the use of 

varied statistical methods to analyze the data. Multivariate analytics is based on the combined 

analysis of numerous response variables versus many explanatory variables, allowing for a more 

comprehensive view of the gathered data and causes of unpredictability in a single run (Granato 

et al. 2018). When the observations involve large amounts of data, a typical multivariate analysis 

consists of two steps: (i) data pre-treatment and (ii) modeling (Kemsely et al. 2019). Principal 
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components analysis (PCA), cluster analysis (CA), linear discriminant analysis (LDA), and 

partial least squares (PLS) are the most used multivariable approaches for evaluating these huge 

variable-associated datasets (Sârbu et al. 2012). Multivariate statistics (MS) is a subfield of 

statistics. Even in distinct domains, the ML and MS ideas currently often overlap because of 

their abilities to analyze high-dimensional datasets, sometimes focusing much more on 

fundamental relationships between variables (multivariate statistics) as well as the algorithms 

and their implications (probabilistic statistics) (machine learning) (Sârbu et al. 2012). 

For the determination of meat spoilage, Pu et al. (2013) have used fluorescent 

spectroscopy on the meat samples stored at 4 and 15 oC with an excitation wavelength of 340 

nm. The data was then collected and processed using Multivariate Curve Resolution with 

Alternating Least-Squares (MCR-ALS) to get statistical information that was connected to 

fluorescence fluctuations and primarily ascribed to NADH content (Pu et al. 2013).  

Based on Laser-Induced Breakdown Spectroscopy (LIBS) and Backpropagation Neural 

Networks, Marcos-Martinez et al. (2011) developed a technique for identifying Pseudomonas 

aeroginosa, E. coli, and S. Typhimurium isolates. For this experiment, authors have first 

cultivated above mentioned cultures in three distinct agar plates, and a base spectrum database 

was first generated. The spectra were taken in the 200–1000 nm region. Then, using a back-

propagation (BP) technique for the training method a three-layer Multilayer Perceptron model 

was constructed, tested with basic measurements such as sensitivity and specificity, and then 

externally evaluated. The approach correctly identified both known and unknown samples with 

an accuracy of 100 % regardless of the culture media; nevertheless, the limited sample size used 

to create the technique was emphasized (Marcos-Martinez et al. 2011).  
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A method for the subjective and statistical detection of four bacterial species/strains, 

including one Staphylococcus aureus strain, one S. Typhimurium strain, and two E. coli strains 

were developed by Liao et al. (2018). The method is based on the conjunction of Three-

Dimensional Surface-Enhanced Raman Scattering (3D SERS) and Laser-Induced Breakdown 

Spectroscopy (LIBS). For quality diagnosis, the 3D SERS approach was used, while LIBS was 

used for quantitation. Principal Components Analysis (PCA) and Hierarchical Cluster Analysis 

(HCA) were used to evaluate the spectral data, which resulted in correct classification in all 

situations. The LIBS method was then applied to the spectral band 200–800 nm, and the most 

prominent emission spectra band was at 279.5 nm and related to intracellular magnesium ions, 

was chosen for detection. The spectrum data were examined for this technique by fitting the 

emission spectrum to a Voigt profile (a probability distribution) to decrease noise, and then using 

log-log linear regression to make quantitative estimates between fitted peak area and bacterial 

concentrations. The quantification limit was estimated to be around 5x103 CFU/mL and the 

correlation of reliability R2 was found to be >0.97 (Liao et al. 2018). 

 Argyri et al. (2010) for the very first time showed that Raman spectroscopy can be a 

potential rapid approach for the detection of meat spoilage. The method involved analyzing meat 

samples directly with Raman spectroscopy and conventional microbiological techniques were 

used to construct a quantitative model following data processing for relationship. During this 

study, pH variations and organoleptic quality evaluation were also performed and a subjective 

framework with three classes (fresh, semi-fresh, spoil) was constructed. Half-out cross-validation 

models were used in association with multivariate analysis techniques and ML algorithms. The 

statistical results for Raman Spectroscopy analysis were promising and showed that the Radial 

basis function of support vector machines (SVM), support vector regression (SVR) and support 
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vector machines regression sigmoid function (SVRP) achieved a 70% accuracy rate for all 

counts. However, genetic algorithm artificial neural network (GA-ANN) analysis showed 

improved classification results with no classification issues on fresh, semi-fresh, and spoiled 

meat samples (Argyri et al. 2010).  

Lu et al. (2020) have developed a method for the identification of 14 microbial species at 

different growth stages using convolution neural network (CNN) and Laser Tweezers Raman 

Spectroscopy (LTRS). They have shown that their model was useful in classifying all 14 

microbial strains with an overall average classification accuracy of 95.64%. Although their 

method was capable enough for classification-based study, the relatively high cost of equipment 

sure limits its commercial use in the field of food microbiology and its related areas (Lu et al. 

2020).  

Several studies have employed Fourier-Transform Infrared Spectroscopy (FTIR) to 

identify microbial deterioration in various food products. Fengou et al. (2019) and Spyrelli et al. 

(2021) used the same concept as Argyri et al. (2010) evaluated FTIR for its ability to estimate 

surface spoilage in fish and chicken breast fillets using a combination of conventional and 

advanced analytics approaches to develop a model for spoilage prediction. Both of the 

aforementioned studies used partial least square regression (PLS-R) models to evaluate 

quantitative predictions. Fengou et al. (2019) showed that FTIR might be an effective technique 

for predicting the total count in fish samples (both whole and fillets), with the root mean square 

error (RMSE) of the constructed model estimated to be 0.717 log CFU/g [60]. The results of the 

Spyrelli et al. (2021) chicken breast fillets study indicated that using the PLS-R model and 

SoftML online platform algorithms, reliable quantitative predictions for the total count and 
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Pseudomonas spp. at chicken breast fillets could be made using FTIR and Multispectral image 

analysis (MSI). 

Hyperspectral imaging (HSI) is similar to MSI in terms of principles, with the distinction 

being the number of bands used. Because of the continuous high bandwidth detected by HSI, it 

has a better spectral resolution but a poorer spatial resolution (Feng et al. 2020). The higher the 

number of bands, the more in-depth details and precise fingerprints of samples can be obtained. 

Michael et al. (2019) used HSI to establish a method for rapidly distinguishing isolated 

Cronobacter sakazakii, Salmonella spp., E. coli, L. monocytogenes, and S. aureus. The procedure 

entailed isolating various strains of the aforementioned bacteria and immobilizing them in a 

microscope slide, which was then studied with HSI to build a database. Multivariate approach 

and data analytics approaches were used to develop classification models including principal 

component analysis (PCA), and k-nearest neighbor (k-NN) after selecting a wavelength range of 

425.57 to 753.84 nm. In the results, authors have shown than classification accuracy of various 

strains within genera such as C. sakazakii, Salmonella spp., and E. coli was found to be 100 % 

classified with the exception of strain BAA-894 in C. sakazakii and strains O26, O45, and O121 

in E. coli had 66.67% classification accuracy. When evaluated together, only C. sakazakii P1, E. 

coli O104, O111, and O145, S. Montevideo, and L. monocytogenes showed 100% classification 

accuracy, whereas E. coli O45 and S. Tennessee showed 0.00% classification accuracy in the 

developed model.  

Bonah et al. (2021) examined variable selection techniques for detecting E. coli O157:H7 

and S. aureus in pork samples using Vis-NIR hyperspectral imaging utilizing Variable 

Combination Population Analysis (VCPA), informative variables (IRIV), and Genetic Algorithm 

(GA). Before collecting the Vis-NIR HIS spectrum, pork samples were inoculated with pathogen 
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culture. Spectral data were processed and cleaned with "noise-reducing methods," including 

Savitzky–Golay filtration techniques, Second derivatives, and Standard Normal Variate (SNV). 

They also have investigated six wavelengths selection method and their combinations to 

determine representative factors. Root mean square errors of measurement, cross validation, and 

forecasting on the prediction dataset were used to evaluate the algorithms' prediction accuracy. 

Based on the results authors have emphasized that Vis-NIR HSI may be a good set of 

instrumentation along with BDA approaches for detecting foodborne pathogens (Bonah et al. 

2020; Bonah et al. 2021). Same authors have also developed detection methods for S. 

Typhimurium in minced pork using electronic nose for different inoculation levels (102, 104, 

and 107 CFU/gm). For qualitative classification of infected samples, principal components 

analysis (PCA) was performed, while SVM techniques were used to build the model for 

computational predictions. SVM regression models with and without improved hyper parameters 

were also created (Bonah et al. 2021). In machine learning, hyper parameters are frequently used 

to design the basic training procedure (Wu et al. 2020). The results showed that SVM with 

optimal parameters performed well and could be used to estimate S. Typhimurium in pork 

samples quantitatively, whereas PCA can be employed for subjective discrimination analysis 

(Bonah et al. 2020).  

An electronic tongue was applied by Al Ramahi et al. [106] in order to differentiate 

between E. coli, S. aureus, and P. aeruginosa that were suspended in nutritional broth. They used 

principal components analysis (PCA) to analyze the outcomes of their investigation, and they 

placed a great emphasis on the fact that the created approach was able to effectively differentiate 

the three isolates after 15 hours of incubation. Ghrissi et al. [107] followed the same 

methodology as the previous investigation (Ramahi and Khalaf, 2019). In aqueous dilutions, the 
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authors employed e-tongue to distinguish and measure Enterococcus faecalis, S. aureus, E. coli, 

and P. aeruginosa. Sensors were expected to interact chemically with bacterial cell membrane in 

this investigation. The authors of this paper developed a model for microbe discrimination using 

linear discriminant analysis and a simulated annealing technique for variable selection (LDA-

SA). They also employed multiple linear regression combined with a simulated annealing 

technique (MLRSA) to create the quantifying model by selecting the most appropriate sensory 

data. Leave-one-out cross-validation was used to verify both designs (LOOCV) (Ghrissi et al. 

2021). 

Due to the incidences of foodborne outbreak, rapid detection of different food products 

are in the great need to be implemented in food industry. Examples provided in the above 

paragraphs clearly reflects that there has been some work done by authors to develop rapid 

detection methods for microbial pathogen detection but at the same time it seems that either 

these methods are still in developmental stages, very naïve, and new concept in research. Some 

of the methods needs pre-processing steps to perform these techniques which will require 

resources and trained personnel to complete the data collection and analysis. New approaches 

such as use of sensors are still in concept phase, on the other hand, spectroscopic techniques have 

shown an intermediate status. New ideas are needed to reduce the pre-processing steps, sample 

preparation and direct implementation of BDA in industry so that time, and resources can be 

saved and quality of detection can improve.  

1.6 BIG DATA ANALYTICS IN FOOD PROCESSING 

 The term "food processing" refers to a variety of processes, some of which include 

evaporation, boiling, toasting, freezing, bottling, extruding, encapsulating, fermenting, and 

modified environment packaging. These techniques are used to increase shelf life and quality of 
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food (Ghoshal, 2018). Because of its enormous economic potential, the food processing industry 

has grown rapidly (Rabbinge, 1993; Ghoshal, 2018). It is the largest segment of the world’s food 

sector, and is expected to grow even more in the near upcoming near future. According to 

published reports in 2019, food processing industries are valued at $ 11.7 trillion in 2019, and it 

is predicted to rise at a compound annual growth rate (CAGR) of 5% from 2020 to 2027 (Size, 

2020). This increase in food processing industry is connected to increase in human population, 

life style changes, pandemic situation, and improved food quality (Pelto and Pelto, 1983). 

Although it is a growing field, processing industries are not completely problem free, there are 

many issues related to time, increased raw material cost, increase energy cost, and decline in 

product quality due to unexpected hurdle in processing plants. Inadequate optimized parameters, 

erroneous sensors, and not well trained workers, and unidentified patterns cause these challenges 

in food processing plants (Leistner and Gould, 2002). Many researchers had also developed 

modelling techniques that can be implemented in of food manufacturing, but due to their 

dependencies on raw ingredient, final product and involved processes limits the use in practical 

applicability (Jomaa and Puiggali, 1991; Kiranoudis et al. 1997). To solve these applicability 

issues, researchers have developed semi-physical and entirely theoretical models such as multi-

phase models, and single-phase diffusion models (Jomaa & Puiggali, 1991; Kiranoudis et al. 

1997; Leistner and Gould, 2002; Putranto et al. 2011; Mabrouk et al. 2012). Although there are 

benefits of using these fundamental basic model, there are several key challenges associated to it 

due to the nature of food system which in heterogeneous, porous, and perishable in nature. 

Conventional modeling is computationally demanding compared to the advance analytical 

models. Several investigators have used conventional statistical models, such as Page models 

(Page, 1949), the Henderson and Pabis model (Hendorson, 1961), the Lewis model (Lewis, 
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1921) and the Newton model, to anticipate humidity transport during evaporation and roasting 

(Campos et al. 2018) for frying, and response–surface technique for optimization of canning 

(Afoakwa et al. 2006). These is no doubt that these models are simple, easy to fit, and relatively 

cost - effective, but analyzing and maintaining large and complicated datasets is challenging.  

Observation-based, classification data-driven models like machine learning (ML) have 

potential for food manufacturing (Sablani and Rahman; 2008). Using ML-based modeling can 

help in explaining the nonlinearity in the data, inter-relationship of food manufacturing processes 

that are difficult to address with conventional modeling.  

1.6.1 Big data analytics in different processing steps  

Hernandez-Perez et al. (2004) have employed ML-based algorithms that can be used to 

calculate and determine evaporation rate and moisture spread in samples during the drying 

process of mango and cassava. Authors have mentioned that good quality simulation of drying 

process is obtained using artificial neural network and also emphasized that ANN can be 

implemented in online estimation of the product drying process.  

Generally, baking is a simple method yet involve complex inter-relationship of physical 

(Heat, time, size of oven) and chemical properties (water content, protein content, fat content and 

others) to develop a good quality baked product. The main challenge that this part of processing 

industry is to increase production with improved quality of baked food. Several studies have 

been conducted to solve above mentioned issues using mathematical based models (Standing, 

1974; Zanoni et al. 1993; ÖZILGEN and Heil, 1994; Sablani et al. 1998). But due to the 

complexity of these model and intensive computational process involvement, implementation of 

these models to the baking industry is not practical. On the other hand, simplicity and ability of 

ML predictive approaches researchers have tried to use these in the industries such as baking of 
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soft cake (Goyal and Goyal, 2011), milk cake (Emerald, 2020), and Bread (Banooni et al. 2009).  

Broyart and Trystram (2003) developed two neural networks models to forecast the changes in 

biscuit texture and color during baking process. Overall average moisture content and 

temperature, thickness, and surface color throughout the length of the oven as a factor of baking 

process was considered as output. Inductive modeling techniques based on ANN models have 

the ability to accurately forecast product thickness and color changes.  

Sablani et al. (2002) used an ANN-based prediction model to assess the thermal 

conductivity of several bread commodities. The ANN model with two hidden layers containing 

six neurons in each hidden layer design yielded better results with a 10% mean relative error 

(MRE). Based on the observed results, authors have showed that to forecast thermal conductivity 

values there developed model might be useful in bread baking industry. 

Extrusion is an effective approach to transform raw food resources into finished food 

products with a specific cross-sectional shape and design. Because this technology is cost-

effective, simple, energy-efficient, and environmentally friendly, it has attracted a lot of attention 

and has grown in popularity over the last two decades. Extrusion is used to make various 

products such as cereals, pasta, noodles, and nuggets (Aksenova and  Alexeev, 2020). 

Controlling feed material, raw component quality, water content, total proteins, pH value, and 

characteristics like feed rate, extruder length, and screw geometry are the industry's key issues. 

Above-mentioned parameters affect extruded product quality (Bhagya Raj and Dash, 2022). 

There is no developed mathematical model exists that allows predictive modeling to regulate 

these parameters to improve product quality by optimizing process. Expensive equipment, and 

changing settings for specific product types is difficult, therefore optimizing parameters with the 

same settings can improve product quality. Optimal process parameters are crucial for the 



 41 

development of these product. Optimizing feed rate, temperature, and pace can enhance color, 

appearance, and textural quality (Alam et al. 2016; Alemayehu et al. 2019). There have been 

several studies reported in which authors have used ANN to predict product quality. Shihani et 

al. (2006) used an ANN and RSM model with several inputs (temperature, moisture content, and 

screw speed) and outputs (water solubility, water absorption, specific mechanical energy, 

sensory scores, and expansion ratio) to characterize extruded goods. Authors compared RSM and 

ANN models to characterize extruded goods. ANN models forecast extruded products with less 

inaccuracy than RSM models. Fan et al. (2013) used a feedforward ANN model to solve 

hardness and gumminess in rice flour-based products. Unknown relationships between input and 

output factors complicate extrusion operations. Authors employed a multilayer feedforward 

ANN model to solve complicated food processing prediction problems. The network was trained 

using BPNN with input and output vectors. The created BPNN model has shown great prediction 

accuracy and promising outcomes, but these results may be erroneous when interior variables 

like as moisture content, ripeness, and flavor are considered for the model development and 

predictive analytics work (Fan et al. 2013).  

A low cost, color-based ANN model was developed by León-Roque et al. (2016) to 

estimate the ratio between fermented and non-fermented products total free amino acids in 120 

cocoa beans. Authors in this study have collected the Red Green Blue (RGB) color of the 

fermented cocoa beans from the surface and central region, in the absorption spectrum range 

from 400 to 450 nm. The predicted results showed excellent classification results for the 

classification of fermented beans.  

Zhu et al. (2019) have develop a rapid method for the detection of fermentation in black 

tea using electrical properties and used several ML-based model using multilayer perception 
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(MLP), random forest (RF), and support vector machines (SVM) along with PCA and 

hierarchical clustering analysis to predict the quality attributes of the fermentation process of 

black tea. Based on prediction accuracy results multilayer perception, random forest, and SVM 

are 88.90%, 100%, and 76.92%, respectively, indicated that the random forest was the most 

appropriate algorithm for predicting the degree of fermentation of black tea. 

Canning is a unique process not only in food processing but also important from food 

safety prospective. In this process food is sealed in a container and subjected to a heating 

procedure to increase its shelf life (ranging from 1 to 5 years). The quality of canned food is 

directly and indirectly affected by a variety of elements, including the kind of solution, 

concentrations, soaking duration of food items, and processing parameters (temperature and 

time; container material; and the characteristics of food material, such as moisture content, pH, 

and thermal diffusivity)(Yildiz, 1994). Increasing the shelf life of canned foods while improving 

their quality and safety can be accomplished by optimizing these various manufacturing 

parameters. Various statistical models for forecasting the canning process and optimizing the 

canning process parameters have been proposed and applied. However, due to the complicated 

nature of mathematical expressions and direct application in canning operations, no theoretical or 

purely mechanical model for anticipating canning operations has been produced to date. ML-

based technology, such as an ANN prediction-based approach, might be a good way to keep 

track of the process and improve the many quality parameters. ANN model developed by 

Kseibat et al. (2004) to predict the operating temperature, duration, and basic minimum 

deterioration during canning. The authors in this study employed beginning temperature, can 

size, microorganism sensitivity indicator, and sensitive indicator of quality as input factors, and 

temperature, duration, and basic minimum deterioration as output components of the model. The 
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model's results demonstrated that the ANN-developed model can accurately forecast the 

temperature, time, and quality degradation of the canning process with MREs of 0.2 %, 3.9 %, 

and 1.5%, respectively. Based on the model's findings, authors have concluded that the initial 

food temperature had little impact on the output parameters used to forecast responses Kseibat et 

al. 2004). 

Zhang et al. (2019) for the first time showed the implementation of a generic hybrid 

mechanistic modeling and machine learning approach to design new food products. In this study, 

authors have explained the mechanism for mechanistic models for estimation of food 

characteristics while the machine learning model predicts the sensory characteristics of the 

developed product. Mittal and Zhang (2000a;2000b;2000c) have intensively investigated the 

used of predictive modelling approach for deep-frying process, prediction of moisture and 

temperature content, and for the prediction of freezing point for different food products using 

neural network algorithmic model. 

In this study, frying duration, moisture of the product and surface, product thickness, oil 

temperature, food's initial temperature, and other product parameter are used as input for the 

input layer of ANN. Also, a big dataset using four level ANN networks is used to predict more 

accurate frying process and validated it with experimental data for forecasting meatball deep-

frying process. A backpropagation neural network was developed using initial moisture, relative 

humidity, average temperature of smoke house were used as input variables and dry basis 

moisture content, center temperature of product, and average temperature of product were 

considered as output desired labels. Authors have noticed that shrinkage rate as input variable 

improved the prediction accuracy. For predicting the effect of several modified pre-treatment 

processes before frying and its effect on end product on the moisture as well as oil concentration 
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of fried mushrooms, Mohebbi et al. (2011) developed a coupled algorithm employing ANN- and 

genetic algorithms (GA) using frying temperature, time, osmotic condition, and gum-coating 

parameters as inputs to the model, with moisture and oil content as outputs. With a goodness of 

fit (R2) of 0.93 and 96 % prediction accuracy was obtained. In another study to predict the 

textural features of potato chips during deep-fat frying, Gouyo et al.(2020) have used ensemble 

learner to develop a decision tree (DT) based algorithm. In this, study, the deep-fat-fried potato 

chips were found to be crispier than the air-fried chips. This was most likely owing to the 

differences in water transport pathways between deep-fat and air frying. 

Although these models contributed to a better understanding of the frying, baking, 

canning, extrusion, and freezing for different food product, they were unable to determine the 

underlying cause of contraction of food during deep-fat frying. Although crust generation is a 

common occurrence in frying process, this key factor was overlooked when developing the 

models. All the aforementioned studies have used ANN-based algorithms in almost every case, 

there is a vast gap of studies to show the use of other predictive modelling approaches such as 

support vector machine, k-nearest neighbor, random forest and fuzzy set classification and 

decision making process. There is also a strong need of studies which can shed some light on the 

combination of multivariate analysis techniques along with big data analytic specifically in 

image processing techniques for supervised and unsupervised approaches to solve issues related 

to different food processing steps. 

1.7 BIG DATA ANALYTICS IN FOOD QUALITY AND AUTHENTICITY  

Different big data analytics approaches in current world are being used in every aspect of 

food industry. As seen in above section different ML techniques, big data analytics approaches 

have been used in different areas of food safety, and in different food processing steps. ML based 
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models have been used in inspection of various food ranging from fresh produce to stored food 

products. Food quality has also been seen as an important factor that influences the cost of final 

product starting from initial raw ingredients till reaching to the consumers at retailer stores 

(Trienekens and Zuurbier, 2008). Before the technological advancements in the assessment of 

food quality in any field including fresh produce, dairy, fisheries and poultry was labor intensive, 

more prone to false positive results, and requires experienced employee to complete the task and 

based on employee experiences lot of quality defects goes unnoticed.   

Quality evaluation of food is basically consist of grading the food product based on 

external feature, morphological character and visual sensory attributes such as color, texture and 

appearance (Patel et al. 2012). Considering the current demand of food industry there is a great 

need to explore the use of non-invasive sensor during inline, and online food quality detection 

systems (Dixit et al. 2021). To solve this problem, different researchers have explored the ideas 

to use rapid quality detection techniques such as cameras (Sun, 2016), sensors (Ruiz et al. 2010), 

near-infrared (Pasquini, 2018), hyperspectral imaging, radio-frequency waves, and Fourier 

transformation infrared techniques (Xu et al. 2015) in the quality evaluation of food product in 

different food matrixes.  

Although, these detection system are proved to be helpful but their practical application 

gets limited due to complex and large dataset generation. Use of BDA in unwinding these 

complex data sets for data pattern identification and analysis will provide a great insight to the 

food industry which will be helpful in maintaining and improving the quality. There have been 

number of studies which focused on these quality parameters for the grading of food products 

based physical, and chemical attributes and even sometimes combination of these with ML based 

models (Ruiz et al. 2010; Xu et al. 2015; Sun, 2016; Pasquini, 2018; Dixit et al. 2021). Rapid 
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detection methods for these quality attributes generates huge datasets but there is always a 

chance to getting redundant, noisy and inappropriate information associated to the data. This 

noisy and uncleaned large volume of data has been a major concern for feature extraction that 

can relate to the problem directly in solving food quality issues.  

1.8  DATA ANALYTICS IN FOOD QUALITY 

Computer based image analysis system has been used for classification of various fruits 

and vegetables such as grading of apples using multilayer perceptron model, grading of 

strawberries using image processing using k-means clustering, Low cost tomatoes grading 

system coupled with machine learning techniques has been reported by Ireri et al. (2019) have 

showed that grading of tomatoes were done on the basis of color, size and weight. In this study 

SVM, ANN, and random forest algorithms were developed for the grading of tomatoes based 

RBG image analysis. Based on the analysis of collected image data SVM showed 91.26 to 

94.67% of classification, ANN have showed 92.99 to 95.83% classification, for the decision tree 

analysis 91.08 to 94.12% of classification accuracy (Ireri et al. 2019).  

Kanade and Shaligram (2018) have reported the use of k-nearest neighbor model in the 

classification of guava fruits (k-NN) into four different classes of green, ripe, overripe and 

spoiled. Authors have reported about 90% of classification accuracy. Before the development of 

analytic approaches, classification of corn seed was a challenging task, the process was labor 

intensive and need experts to do these quality evaluations.  

Prakasa et al. (2017) have developed automated image classification system based on 

region of interest (ROI) and k-means clustering for the classification of corn seed. Results in this 

study showed that 90% of the accurate classification. Septiarini et al. (2019) have used SVM 

along with image processing techniques for the classification oil palm fruit based on level of 
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ripeness and color processing for red, green, blue and gray. Results obtained from this 

experiments showed that developed model was tested on 160 images with an accuracy of 92.5%. 

Authors have also reported that error percentage was found to be less than 2.4% and color 

features is the dominant factor in the analysis. Aiadi et al.(2019) have used Gaussian Mixture 

Model (GMM), and Expectation-Maximization (EM) algorithm was used for parameters 

estimation and Davies-Bouldin index was used to automatically and precisely estimate the 

number of components (i.e., appearances) for the classification of 11 different types of dates. 

Results obtained from the experimental data showed that developed model had high 

identification rate of 98.65%.  

Yu et al. (2018) have demonstrated that using stacked auto-encoder on visible and near-

infrared hyperspectral imaging (HSI) generated data were able to combined classify shrimp 

based on assigned label of freshness in determining their total volatile basic nitrogen (TVB-N) 

contents. Addition to calibration set of data 116 samples were used in the experiments. Results 

obtained in the experiment showed that 93.97% of classification accuracy based of desired 

output grade of Shrimp. Yu et al. (2019) used successive projections algorithm (SPA) and deep-

learning-based stacked auto-encoders algorithms to for the prediction of TVB-N content in 

Pacific white shrimp. Authors in the study used combination of multivariate analysis and BDA 

approaches for the prediction and found that results obtained in the study showed that model 

prediction coefficient had a R2 value of 0.92.  

Big data analytics approaches have also been used in meat and poultry processing 

industry to maintain the quality of fresh raw poultry, beef, lamb and goat. For classification of 

poultry meat based on quality such as normal fillets, and myopathic fillets. Barbon et al. (2018) 

have used a SMV model tell the difference between normal and pale meat. They have shown that 



 48 

SVM can be used to classify breast fillets with muscle myopathies. The classification accuracy 

for normal breast fillets was 53.4 %, while it was 72% for pale breast fillets. Geronimo et al. 

(2019) have used a machine vision system and SVM to categorize fillets images. They have 

observed that developed model from SVM algorithm for WB classified 91.83 % fillets correctly. 

These researchers also used multilayer perceptron (MLP) to classify the data set. For WB fillets, 

the classification performance of model was 90.67% [164]. Yang et al. (2021) analyzed images 

derived from the expressible fluid to classify WB using SVM and deep learning (DL) algorithms. 

These researchers found high classification accuracy for both training (100%) and testing set 

(93.3%). Morey et al (2020) have implanted linear discriminate analysis technique for the 

classification of normal fillets from the myopathic fillets using electrical sensor. They have 

observed that these sensor when coupled with LDA techniques were able to classify these fillets 

up to an accuracy of 68.69% for normal fillets and 57.75% for WB fillets. In another study 

conducted by Siddique et al (2021a) have showed that use of SVM and backpropagation neural 

network algorithms performed well in classification these normal and myopathic fillets. Authors 

have found that SVM model was able to classify 73.28% of normal fillets and 81.48% of WB 

fillets. Siddique et al. (2021b) have also demonstrated that use of singular value decomposition 

(SVD) analysis method in the determination of quality of fillets through collection of amplitude 

and phase. Authors in this study have observed that SVD classified 100% normal fillets and 78% 

WB fillets based on radio-frequency wave analysis data.  

Penning et al (2020) have used eight different ML algorithm for the determination of beef 

quality attributes using image analysis and mass-spectroscopy data. They have observed that 

PCA-FS and LDA classified 82% beef for quality grade, FS, and SVM Linear classified 99% of 

meat for production background, PCA-FS, and SVM—Radial classified 85% for breed type, and 
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FS and XGBoost classified 91% for muscle tenderness. Alaiz-Rodríguez and Parnell (2020) have 

used ML algorithms in the detection of lamb meat quality, authors have used decision tree and 

SVM and compared these model with Partial Least Square (PLS) model and Principal 

Component Analysis (PCA) regression methods. Results have shown that SVM was able to 

classify 91.80% of the collected fat data as compared to PCA analysis.  

Tampering or adulteration of food is also one of the big problems in the area of food 

quality area in food industry and accounts for $15-40 billion every year to the food industry such 

as temperament with food quality, labelling of the food product use of cheap quality ingredients 

in food processing. We have provided a very small related information about these issues and 

recent developments to tackle this evolving situation. For example, Al-Sarayreh et al. (2020) 

have used support vector machines (SVM) and deep convolution neural networks (CNN) 

algorithm to evaluate the level adulteration in red-meat by using Hyperspectral imaging 

technique (HIS). Based on the analysis and obtained results from their study, authors have 

confirmed that the CNN model has the best prediction power with a classification accuracy of 

94.4%.  

Farah et al (2021) have used differential scanning colorimetry with random forest (RF), 

gradient boosting machine (GBM) and multilayer perceptron in identification and detection 

adulterant added for quality evaluation of raw milk. Authors have found that all the developed 

model for MLP, RF and GBM classified 100% adulterated samples with 100% prediction 

capability for GBM and MLP and 88.5% prediction capabilities with RF developed models. 

Fabris et al. (2010) have used RF and SVM based detection model for quality evaluation 

of cheese during processing. In this study authors have tried to establish a relationship between 

the storage condition of milk and final quality of cheese. The results in their study have showed 
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that PCA when coupled with SVM showed better quality identification in cheese samples made 

in different seasons (summer vs winter). Dankowska and Kowalewski (2019) have studied the 

classification of olive oil based on shelf life and type (refined/extra virgin) using SVM and k-NN 

coupled with multivariate analytics approaches (PCA) by analyzing fluorescent data collected 

from synchronous fluorescence spectroscopic measurements. Authors have found that k-NN and 

SVM were the best optimized model for the classification of data based on labels. The k-NN and 

SVM model classified 94.60% and 94.4% labeled data respectively in their assigned groups.  

1.9 CONCLUSIONS 

The food sector and most of its aspects are expanding rapidly. According to Pitchbook's 

annual financial report, venture capitalists made an investment of more than $39.3 billion in 

2021. The global pandemic of COVID-19 is thought to have a big impact on this trend. 

Companies and government agencies have spent $6 billion on improving product quality, 

ingredients, research, food waste, and traceability (Pitch’s Book annual report; 2022). 

Understanding food system is difficult because it is a sophisticated system with a range of 

characteristics that are always inter-related and completely reliant on each component of food. 

For example, moisture influences the texture of food, and it also encourages the growth of 

microorganisms.  Big data analytics ML models may be better suited to solving problems 

relating to the food business if these connections are better understood. 

In the field of food sciences, big data analytics (BDA) is still in a very preliminary phase 

and has a lot of room to grow. As new, innovative techniques have been made, the amount of 

data has grown at a faster rate and become more complicated. Using big data analytics in the 

food industry (processing, safety, and quality) is a new way to make sure that products are of 

better quality and that people's health is better. But it is complicated to develop a BDA-based 
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model for food processing, quality, and safety applications as it take a lot of scientific 

experimentation work to use this new technology in the food industry today. In this paper, we 

have tried to provide a review of the current state of the art of BDA-based modeling approaches 

up to some extent and a wide range of applications in the food industry. Developing a BDA 

model to solve problems and improve food quality is dependent on many aspects of food 

(moisture, protein, fat, physical texture, and appearance), organizations, governmental agencies, 

multimedia, and relationship between different countries.  

Nevertheless, as of right now, the vast majority of the necessary features cannot be 

obtained because it is difficult to explore these properties through experimental investigation 

alone. This paper also gives useful information about numerous ML-based models used in food 

safety, processing, and quality applications. It also shows that extra care may be needed when 

choosing input and output parameters for ML-based modeling, especially for artificial neural 

network modeling, image processing, data mining from different sources, and SVM modeling. 

This is because taking into account too many input parameters that are not needed could make 

the model building too challenging to solve, which might lead to inaccurate results due to 

overfitting and under fitting issues. This paper also talked about the different neural network 

algorithms, SVM, multivariate data analysis classifier, pattern recognition, different sensors, 

rapid detection techniques, and their limitations, so that a reader could learn more about which 

algorithms would work best toward their own concerns and experimental objectives. Most 

classification-based problems have been solved with ANN by different authors in different fields 

(Processing, quality, and safety) However, ANN has some limitations because it works like a 

black box with no information on analysis to the user. Even so, researchers have tried to solve 

this problem by using hybrid approaches that combine neural networks, fuzzy logic, DTs, RF, 
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multivariate analysis, or any combination of these things. More effort should be put into 

understanding the ANN system and its decision ability for given outputs so that these models can 

be used on their own, since they are based on human model. When combined with data 

dimensionality reduction techniques, BDA-based modeling has a lot of potential for use in food 

industry in reducing the unnecessary data that might affects that overall output of ML based 

model. It is hoped that the knowledge and information in this paper will significantly improve 

the understanding of how ML-based approaches can be used in different food sectors. 

 

 

 

 

 

 



53 

 

1.10 REFERENCES 

Afoakwa, E. O., Yenyi, S. E., & Sakyi-Dawson, E. (2006). Response surface methodology for

 optimizing the pre-processing conditions during canning of a newly developed and

 promising cowpea (Vigna unguiculata) variety. Journal of Food Engineering, 73(4), 346

 357. 

Ag-funder Agri-food tech (2019). Investing report. https://agfunder.com/research/agfunder

 agrifood-tech-investing-report-2019/ Accessed on June 14th 2022 

Aiadi, O., Kherfi, M. L., & Khaldi, B. (2019). Automatic Date Fruit Recognition Using Outlier

 Detection Techniques and Gaussian Mixture Models. ELCVIA Electronic Letters on

 Computer Vision and Image Analysis, 18(1), 52-75. 

Aksenova, O. I., & Alexeev, G. V. (2020). The Effect of the Concentration of the Fish

 Processing Offal Powder, of the Humidity Level and of the Cross-Sectional Area of the

 Die Molding Channel on the Technological Parameters of the Extrusion Process and on

 the Quality Characteristics of Potato Snacks. In IOP Conference Series: Materials

 Science and Engineering (Vol. 753, No. 8, p. 082006). IOP Publishing. 

Alaiz-Rodríguez, R., & Parnell, A. C. (2020). A machine learning approach for lamb meat

 quality assessment using FTIR spectra. IEEE Access, 8, 52385-52394. 

Alam, M. S., Pathania, S., & Sharma, A. (2016). Optimization of the extrusion process for

 development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and

 cauliflower trimmings. LWT, 74, 135-144. 

Alemayehu, H., Emire, S. A., & Henry, C. (2019). Effects of extrusion process parameters on the

 quality properties of ready-to-eat pulse-based snacks. Cogent Food & Agriculture, 5(1),

 1641903. 

https://agfunder.com/research/agfunder%09agrifood-tech-investing-report-2019/
https://agfunder.com/research/agfunder%09agrifood-tech-investing-report-2019/


54 

 

Al-Sai, Z. A., & Abdullah, R. (2019). Big data impacts and challenges: a review. In 2019 IEEE

 Jordan International Joint Conference on Electrical Engineering and Information

 Technology (JEEIT) (pp. 150-155). IEEE. 

Al-Sarayreh, M., Reis, M. M., Yan, W. Q., & Klette, R. (2020). Potential of deep learning and

 snapshot hyperspectral imaging for classification of species in meat. Food Control, 117,

 107332. 

Argyri, A. A., Panagou, E. Z., Tarantilis, P. A., Polysiou, M., & Nychas, G. J. (2010). Rapid

 qualitative and quantitative detection of beef fillets spoilage based on Fourier transform

 infrared spectroscopy data and artificial neural networks. Sensors and Actuators B:

 Chemical, 145(1), 146-154. 

Authority, E. F. S. (2021). The European Union one health 2019 zoonoses report. Efsa Journal,

 19(2). 

Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. H. M. (2019). Internet-of

 Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access, 7,

 129551-129583. 

Banooni, S., Hosseinalipour, S. M., Mujumdar, A. S., Taherkhani, P., & Bahiraei, M. (2009).

 Baking of flat bread in an impingement oven: modeling and optimization. Drying

 Technology, 27(1), 103-112. 

Barbon, S., Costa Barbon, A. P. A. D., Mantovani, R. G., & Barbin, D. F. (2018). Machine

 learning applied to near-infrared spectra for chicken meat classification. Journal of

 Spectroscopy, 2018. 



55 

 

Bhagya Raj, G. V. S., & Dash, K. K. (2022). Comprehensive study on applications of artificial

 neural network in food process modeling. Critical Reviews in Food Science and

 Nutrition, 62(10), 2756-2783. 

Blackwell, R. D., & Blackwell, K. S. (2014). Creating consumer-driven demand chains in food

 service. Quick Service Restaurants, Franchising, and Multi-Unit Chain Management,

 137. 

Blazquez, D., & Domenech, J. (2018). Big Data sources and methods for social and economic

 analyses. Technological Forecasting and Social Change, 130, 99-113. 

Bonah, E., Huang, X., Aheto, J. H., Yi, R., Yu, S., & Tu, H. (2020). Comparison of variable

 selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative

 monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles.

 Infrared Physics & Technology, 107, 103327. 

Bonah, E., Huang, X., Hongying, Y., Aheto, J. H., Yi, R., Yu, S., & Tu, H. (2021). Detection of

 Salmonella Typhimurium contamination levels in fresh pork samples using electronic

 nose smellprints in tandem with support vector machine regression and metaheuristic

 optimization algorithms. Journal of Food Science and Technology, 58(10), 3861-3870. 

Brookings. Eurostats (2019). https://www.brookings.edu/research/chinas-influence-on-the

 global-middle-class/ Accessed on 06/09/2022 

 

Broyart, B., & Trystram, G. (2003). Modelling of heat and mass transfer phenomena and quality

 changes during continuous biscuit baking using both deductive and inductive (neural

 network) modelling principles. Food and Bioproducts Processing, 81(4), 316-326. 

https://www.brookings.edu/research/chinas-influence-on-the%09global-middle-class/
https://www.brookings.edu/research/chinas-influence-on-the%09global-middle-class/


56 

 

Bryant, R., Katz, R. H., & Lazowska, E. D. (2008). Big-data computing: creating revolutionary

 breakthroughs in commerce, science and society. 

Cameron, T. A. (1988). A new paradigm for valuing non-market goods using referendum data:

 maximum likelihood estimation by censored logistic regression. Journal of environmental 

economics and management, 15(3), 355-379. 

Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and

 technologies: A survey on Big Data. Information sciences, 275, 314-347. 

Chen, M. M. S., & Liu, Y. (2014). Big Data: A Survey Mobile Networks and Application. 

Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2018). Secure IoT framework and 2D

 architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521-3535. 

Cios, K. J., Pedrycz, W., & Swiniarski, R. W. (2012). Data mining methods for knowledge

 discovery (Vol. 458). Springer Science & Business Media. 

Cision PR newswire, 2020. The Global Big Data Analytics Market, 2027: A $105+ Billion

 Opportunity Assessment. https://www.prnewswire.com/news-releases/the-global-big

 data-analytics-market-2027-a-105-billion-opportunity-assessment-301014418.html

 Accessed on 06/09/2022 

Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions

 on industrial informatics, 10(4), 2233-2243. 

Dankowska, A., & Kowalewski, W. (2019). Comparison of different classification methods for

 analyzing fluorescence spectra to characterize type and freshness of olive oils. European

 Food Research and Technology, 245(3), 745-752. 

Data Reportal. Kepios 2022. https://datareportal.com/social-media-users Accessed on

 06/07/2022 

https://www.prnewswire.com/news-releases/the-global-big%09data-analytics-market-2027-a-105-billion-opportunity-assessment-301014418.html%09Accessed%20on%2006/09/2022
https://www.prnewswire.com/news-releases/the-global-big%09data-analytics-market-2027-a-105-billion-opportunity-assessment-301014418.html%09Accessed%20on%2006/09/2022
https://www.prnewswire.com/news-releases/the-global-big%09data-analytics-market-2027-a-105-billion-opportunity-assessment-301014418.html%09Accessed%20on%2006/09/2022
https://datareportal.com/social-media-users


57 

 

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and

 a review of key research topics. In AIP conference proceedings (Vol. 1644, No. 1, pp. 97

 104). American Institute of Physics. 

de Oliveira Campos, B. L., da Costa, A. O. S., de Souza Figueiredo, K. C., & da Costa Junior, E.

 F. (2018). Performance comparison of different mathematical models in the simulation of

 a solar desalination by humidification-dehumidification. Desalination, 437, 184-194. 

Deng, X., Cao, S., & Horn, A. L. (2021). Emerging applications of machine learning in food

 safety. Annual Review of Food Science and Technology, 12(1), 513-538. 

Deshpande, A., & Kumar, M. (2018). Artificial intelligence for big data: Complete guide to

 automating big data solutions using artificial intelligence techniques. Packt Publishing

 Ltd. 

Devinney, K., Bekbay, A., Effland, T., Gravano, L., Howell, D., Hsu, D. & Gutelius, B. (2018).

 Evaluating twitter for foodborne illness outbreak detection in New York city. Online

 Journal of Public Health Informatics, 10(1). 

Dixit, Y., Hitchman, S., Hicks, T. M., Lim, P., Wong, C. K., Holibar, L.,& Reis, M. M. (2021).

 Non-invasive spectroscopic and imaging systems for prediction of beef quality in a meat

 processing pilot plant. Meat Science, 181, 108410. 

Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C.,& Hazen, B.

 T. (2020). Big data analytics and artificial intelligence pathway to operational

 performance under the effects of entrepreneurial orientation and environmental

 dynamism: A study of manufacturing organisations. International Journal of Production

 Economics, 226, 107599. 



58 

 

 Effland, T., Lawson, A., Balter, S., Devinney, K., Reddy, V., Waechter, H.,& Hsu, D. (2018).

 Discovering foodborne illness in online restaurant reviews. Journal of the American

 Medical Informatics Association, 25(12), 1586-1592. 

ElMasry, G. M., & Nakauchi, S. (2016). Image analysis operations applied to hyperspectral

 images for non-invasive sensing of food quality–A comprehensive review. Biosystems

 engineering, 142, 53-82. 

Emerald, F., Pushpadass, H. A., Manjunatha, M., Manimala, K., Dejey, D., Salish, K., & Nath,

 B. S. (2020). Modelling approaches for predicting moisture transfer during baking of

 chhana podo (milk cake) incorporated with tikhur (Curcuma angustifolia) starch. Journal

 of Food Measurement and Characterization, 14(6), 2981-2997. 

Fabris, A., Biasioli, F., Granitto, P. M., Aprea, E., Cappellin, L., Schuhfried, E., & Endrizzi, I.

 (2010). PTR‐TOF‐MS and data‐mining methods for rapid characterisation of agro

 industrial samples: influence of milk storage conditions on the volatile compounds profile

 of Trentingrana cheese. Journal of mass spectrometry, 45(9), 1065-1074. 

Fan, F. H., Ma, Q., Ge, J., Peng, Q. Y., Riley, W. W., & Tang, S. Z. (2013). Prediction of texture

 characteristics from extrusion food surface images using a computer vision system and

 artificial neural networks. Journal of Food Engineering, 118(4), 426-433. 

Farah, J. S., Cavalcanti, R. N., Guimarães, J. T., Balthazar, C. F., Coimbra, P. T., Pimentel, T.

 C., & Cruz, A. G. (2021). Differential scanning calorimetry coupled with machine

 learning technique: An effective approach to determine the milk authenticity. Food

 Control, 121, 107585. 



59 

 

Feng, X., He, L., Cheng, Q., Long, X., & Yuan, Y. (2020). Hyperspectral and multispectral

 remote sensing image fusion based on endmember spatial information. Remote Sensing,

 12(6), 1009. 

Fengou, L. C., Lianou, A., Tsakanikas, P., Gkana, E. N., Panagou, E. Z., & Nychas, G. J. E.

 (2019). Evaluation of Fourier transform infrared spectroscopy and multispectral imaging

 as means of estimating the microbiological spoilage of farmed sea bream. Food

 microbiology, 79, 27-34. 

Freudenthal, M., & Willemson, J. (2017). Challenges of federating national data access

 infrastructures. In International Conference for Information Technology and

 Communications (pp. 104-114). Springer, Cham. 

Fried, D., Surdeanu, M., Kobourov, S., Hingle, M., & Bell, D. (2014). Analyzing the

 language of food on social media. In 2014 IEEE International Conference on Big Data

 (Big Data) (pp. 778-783). IEEE. 

Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC iview, 1142(2011), 1-12. 

 Garlasu, D., Sandulescu, V., Halcu, I., Neculoiu, G., Grigoriu, O., Marinescu, M., & Marinescu,

 V. (2013, January). A big data implementation based on Grid computing. In 2013 11th

 RoEduNet International Conference (pp. 1-4). IEEE. 

Geronimo, B. C., Mastelini, S. M., Carvalho, R. H., Júnior, S. B., Barbin, D. F., Shimokomaki,

 M., & Ida, E. I. (2019). Computer vision system and near-infrared spectroscopy for

 identification and classification of chicken with wooden breast, and physicochemical and

 technological characterization. Infrared Physics & Technology, 96, 303-310. 

 



60 

 

Ghoshal, G. (2018). Emerging food processing technologies. In Food processing for increased

 quality and consumption (pp. 29-65). Academic Press. 

Ghrissi, H., Veloso, A. C., Marx, Í. M., Dias, T., & Peres, A. M. (2021). A potentiometric

 electronic tongue as a discrimination tool of water-food indicator/contamination bacteria.

 Chemosensors, 9(6), 143. 

Gouyo, T., Mestres, C., Maraval, I., Fontez, B., Hofleitner, C., & Bohuon, P. (2020). Assessment

 of acoustic-mechanical measurements for texture of French fries: Comparison of deep-fat

 frying and air frying. Food Research International, 131, 108947. 

Goyal, S., & Goyal, G. K. (2011). Simulated neural network intelligent computing models for

 predicting shelf life of soft cakes. Global Journal of Computer Science and Technology,

 11(14), 29-33. 

Gracias, K. S., & McKillip, J. L. (2004). A review of conventional detection and enumeration

 methods for pathogenic bacteria in food. Canadian journal of microbiology, 50(11), 883

 890. 

Granato, D., Putnik, P., Kovačević, D. B., Santos, J. S., Calado, V., Rocha, R. S.,&

 Pomerantsev, A. (2018). Trends in chemometrics: Food authentication, microbiology,

 and effects of processing. Comprehensive Reviews in Food Science and Food Safety,

 17(3), 663-677. 

Greis, N. P., & Nogueira, M. L. (2017). A data-driven approach to food safety surveillance and

 response. In Food protection and security (pp. 75-99). Woodhead Publishing. 

Gupta, A., Nelson, J. M., Barrett, T. J., Tauxe, R. V., Rossiter, S. P., Friedman, C. R.,&

 NARMS Working Group. (2004). Antimicrobial resistance among campylobacter strains,

 United States, 1997–2001. Emerging infectious diseases, 10(6), 1102. 



61 

 

Gupta, S., Chen, H., Hazen, B. T., Kaur, S., & Gonzalez, E. D. S. (2019). Circular economy and

 big data analytics: A stakeholder perspective. Technological Forecasting and Social

 Change, 144, 466-474. 

Hall, A. J., Wikswo, M. E., Manikonda, K., Roberts, V. A., Yoder, J. S., & Gould, L. H. (2013).

 Acute gastroenteritis surveillance through the national outbreak reporting system, United

 States. Emerging infectious diseases, 19(8), 1305. 

Harris, J. K., Hawkins, J. B., Nguyen, L., Nsoesie, E. O., Tuli, G., Mansour, R., & Brownstein, J.

 S. (2017). Research brief report: Using twitter to identify and respond to food poisoning

 The food safety stl project. Journal of Public Health Management and Practice, 23(6),

 577. 

Harrison, S., & Johnson, P. (2019). Challenges in the adoption of crisis crowdsourcing and social

 media in Canadian emergency management. Government Information Quarterly, 36(3),

 501-509. 

Hendorson, S. M. (1961). Grain drying theory (I) temperature effect on drying coefficient.

 Journal of agricultural engineering research, 6(3), 169-174. 

Hernandez-Perez, J. A., Garcıa-Alvarado, M. A., Trystram, G., & Heyd, B. (2004). Neural

 networks for the heat and mass transfer prediction during drying of cassava and mango.

 Innovative Food Science & Emerging Technologies, 5(1), 57-64. 

Ireri, D., Belal, E., Okinda, C., Makange, N., & Ji, C. (2019). A computer vision system for

 defect discrimination and grading in tomatoes using machine learning and image

 processing. Artificial Intelligence in Agriculture, 2, 28-37. 

Jackson, B. R., Tarr, C., Strain, E., Jackson, K. A., Conrad, A., Carleton, H.,& Gerner-Smidt, P.

 (2016). Implementation of nationwide real-time whole-genome sequencing to enhance



62 

 

 listeriosis outbreak detection and investigation. Reviews of Infectious Diseases, 63(3),

 380-386. 

Johnson, R. (2012). The federal food safety system: a primer. Congressional Research Service. 

Jomaa, W., & Puiggali, J. R. (1991). Drying of shrinking materials: modellings with shrinkage

 velocity. DRYING TECHNOLOGY,, 9(5), 1271-1293. 

Kanade, A., & Shaligram, A. (2018). Prepackaging Sorting of Guava Fruits using Machine

 Vision based Fruit Sorter System based on K-Nearest Neighbor Algorithm. International

 Journal of Scientific Research in Computer Science, Engineering and Information

 Technology, 3(3), 2456-3307. 

Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: issues, challenges, tools and good

 practices. In 2013 Sixth international conference on contemporary computing (IC3) (pp.

 404-409). IEEE. 

Kaufman, J., Lessler, J., Harry, A., Edlund, S., Hu, K., Douglas, J.,& Filter, M. (2014). A

 likelihood-based approach to identifying contaminated food products using sales data:

 performance and challenges. PLoS computational biology, 10(7), e1003692. 

Kemsley, E. K., Defernez, M., & Marini, F. (2019). Multivariate statistics: Considerations and

 confidences in food authenticity problems. Food Control, 105, 102-112. 

Khan, M. I. H., Sablani, S. S., Joardder, M. U. H., & Karim, M. A. (2022). Application of

 machine learning-based approach in food drying: Opportunities and challenges. Drying

 Technology, 40(6), 1051-1067.  

Kiranoudis, C. T., Tsami, E., & Maroulis, Z. B. (1997). Microwave vacuum drying kinetics of

 some fruits. Drying technology, 15(10), 2421-2440. 



63 

 

Klassen, K. M., Borleis, E. S., Brennan, L., Reid, M., McCaffrey, T. A., & Lim, M. S. (2018).

 What people “like”: Analysis of social media strategies used by food industry brands,

 lifestyle brands, and health promotion organizations on Facebook and Instagram. Journal

 of medical Internet research, 20(6), e10227. 

Kseibat, D. S., Mittal, G. S., & Basir, O. A. (2004). Predicting safety and quality of thermally

 processed canned foods using a neural network. Transactions of the Institute of

 Measurement and Control, 26(1), 55-68. 

Kuehn, B. M. (2014). Agencies use social media to track foodborne illness. JAMA, 312(2), 117

 118. 

Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business &

 information systems engineering, 6(4), 239-242. 

Lee, J., Park, G. I., Shin, J. H., Lee, J. H., Sreenan, C. J., & Yoo, S. E. (2018). SoEasy: A

 software framework for easy hardware control programming for diverse IoT platforms.

 Sensors, 18(7), 2162. 

Lee, K. M., Runyon, M., Herrman, T. J., Phillips, R., & Hsieh, J. (2015). Review of Salmonella

 detection and identification methods: Aspects of rapid emergency response and food

 safety. Food control, 47, 264-276. 

Leistner, L., & Gould, G. W. (2002). Hurdle Technologies: Combination Treatments for Food

 Stability, Safety and Quality: Combination Treatments for Food Stability, Safety, and

 Quality. Springer Science & Business Media. 

León-Roque, N., Abderrahim, M., Nuñez-Alejos, L., Arribas, S. M., & Condezo-Hoyos, L.

 (2016). Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on

 color measurement and artificial neural networks. Talanta, 161, 31-39. 



64 

 

Lewis, W. K. (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry,

 13(5), 427-432. 

Lezoche, M., Hernandez, J. E., Díaz, M. D. M. E. A., Panetto, H., & Kacprzyk, J. (2020). Agri

 food 4.0: A survey of the supply chains and technologies for the future agriculture.

 Computers in industry, 117, 103187. 

Liao, W., Lin, Q., Xie, S., He, Y., Tian, Y., & Duan, Y. (2018). A novel strategy for rapid

 detection of bacteria in water by the combination of three-dimensional surface-enhanced

 Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS).

 Analytica Chimica Acta, 1043, 64-71. 

Liu, X., Wang, G. A., Fan, W., & Zhang, Z. (2020). Finding useful solutions in online

 knowledge communities: A theory-driven design and multilevel analysis. Information

 Systems Research, 31(3), 731-752. 

Lu, W., Chen, X., Wang, L., Li, H., & Fu, Y. V. (2020). Combination of an artificial intelligence

 approach and laser tweezers Raman spectroscopy for microbial identification. Analytical

 Chemistry, 92(9), 6288-6296. 

Mabrouk, S. B., Benali, E., & Oueslati, H. (2012). Experimental study and numerical modelling

 of drying characteristics of apple slices. Food and Bioproducts Processing, 90(4), 719

 728. 

Maharana, A., Cai, K., Hellerstein, J., Hswen, Y., Munsell, M., Staneva, V.,& Nsoesie, E. O.

 (2019). Detecting reports of unsafe foods in consumer product reviews. JAMIA open,

 2(3), 330-338. 

Manufuture. (2006). Vision 2020 and Strategic Research Agenda of the European Agricultural

 Machinery Industry and Research Community for the 7th Framework Programme for



65 

 

 Research of the European Community, Brussels, Belgium.

 http://www.manufuture.org/documents/AET%20Vision%20and%20SRA1.pdf Accessed

 06/09/2022. 

Marcos-Martinez, D., Ayala, J. A., Izquierdo-Hornillos, R. C., de Villena, F. M., & Caceres, J.

 O. (2011). Identification and discrimination of bacterial strains by laser induced

 breakdown spectroscopy and neural networks. Talanta, 84(3), 730-737. 

Margaritis, I., Madas, M., & Vlachopoulou, M. (2022). Big Data Applications in Food Supply

 Chain Management: A Conceptual Framework. Sustainability, 14(7), 4035. 

Martinez, M. G., Fearne, A., Caswell, J. A., & Henson, S. (2007). Co-regulation as a possible

 model for food safety governance: Opportunities for public–private partnerships. Food

 Policy, 32(3), 299-314. 

Marvin, H. J., Janssen, E. M., Bouzembrak, Y., Hendriksen, P. J., & Staats, M. (2017). Big data

 in food safety: An overview. Critical reviews in food science and nutrition, 57(11), 2286

 2295. 

Merten, C., Ferrari, P., Bakker, M., Boss, A., Hearty, A., Leclercq, C.,& Arcella, D. (2011).

 Methodological characteristics of the national dietary surveys carried out in the European

 Union as included in the European Food Safety Authority (EFSA) Comprehensive

 European Food Consumption Database. Food Additives & Contaminants: Part A, 28(8),

 975-995. 

Metcalf, J., & Crawford, K. (2016). Where are human subjects in big data research? The

 emerging ethics divide. Big Data & Society, 3(1), 2053951716650211. 

http://www.manufuture.org/documents/AET%20Vision%20and%20SRA1.pdf


66 

 

Michael, M., Phebus, R. K., & Amamcharla, J. (2019). Hyperspectral imaging of common

 foodborne pathogens for rapid identification and differentiation. Food Science &

 Nutrition, 7(8), 2716-2725. 

Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020).

 IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet of

 Things Journal. 

Mittal, G. S., & Zhang, J. (2000a). Prediction of temperature and moisture content of frankfurters

 during thermal processing using neural network. Meat Science, 55(1), 13-24. 

Mittal, G. S., & Zhang, J. (2000b). Prediction of freezing time for food products using a neural

 network. Food Research International, 33(7), 557-562. 

Mittal, G. S., & Zhang, J. (2000c). Use of artificial neural network to predict temperature,

 moisture, and fat in slab‐shaped foods with edible coatings during deep‐fat frying. Journal 

of Food Science, 65(6), 978-983. 

Mohebbi, M., Shahidi, F., Fathi, M., Ehtiati, A., & Noshad, M. (2011). Prediction of moisture

 content in pre-osmosed and ultrasounded dried banana using genetic algorithm and neural

 network. Food and Bioproducts Processing, 89(4), 362-366. 

Mondino, P., & González-Andújar, J. L. (2019). Evaluation of a decision support system for crop

 protection in apple orchards. Computers in Industry, 107, 99-103. 

Morey, A., Smith, A. E., Garner, L. J., & Cox, M. K. (2020). Application of bioelectrical

 impedance analysis to detect broiler breast filets affected with woody breast myopathy.

 Frontiers in Physiology, 11, 808. 

Moy, G. G., & Vannoort, R. W. (Eds.). (2013). Total diet studies (pp. 169-177). New York, NY,

 USA:: Springer. 



67 

 

Norström, M., Kristoffersen, A. B., Görlach, F. S., Nygård, K., & Hopp, P. (2015). An adjusted

 likelihood ratio approach analysing distribution of food products to assist the

 investigation of foodborne outbreaks. PloS one, 10(8), e0134344. 

Oldroyd, R. A., Morris, M. A., & Birkin, M. (2018). Identifying methods for monitoring

 foodborne illness: review of existing public health surveillance techniques. JMIR public

 health and surveillance, 4(2), e8218. 

ÖZILGEN, M., & Heil, J. R. (1994). Mathematical modeling of transient heat and mass transport

 in a baking biscuit. Journal of food processing and preservation, 18(2), 133-148. 

Page, G. E. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin

 layers. Purdue University. 

Panetto, H., & Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and

 technologies for the future agriculture. Computers in industry, 117, 103187. 

Pasquini, C. (2018). Near infrared spectroscopy: A mature analytical technique with new

 perspectives–A review. Analytica chimica acta, 1026, 8-36. 

Patel, K. K., Kar, A., Jha, S. N., & Khan, M. A. (2012). Machine vision system: a tool for quality

 inspection of food and agricultural products. Journal of food science and technology,

 49(2), 123-141. 

Pelto, G. H., & Pelto, P. J. (1983). Diet and delocalization: dietary changes since 1750. The

 Journal of interdisciplinary history, 14(2), 507-528. 

Penning, B. W., Snelling, W. M., & Woodward-Greene, M. J. (2020). Machine learning in the

 assessment of meat quality. IT Professional, 22(3), 39-41. 

PitchBook’s annual report. Food drive (2022). https://www.fooddive.com/news/food-tech-saw

 393b-in-vc-investments-last-year-says-pitchbook/618916/ Accessed on 06/10/2022 

https://www.fooddive.com/news/food-tech-saw%09393b-in-vc-investments-last-year-says-pitchbook/618916/
https://www.fooddive.com/news/food-tech-saw%09393b-in-vc-investments-last-year-says-pitchbook/618916/


68 

 

Postolache, A. N., Chelmu, S. S., Ariton, A. M., Ciorpac, M. I. T. I. C. Ă., Pop, C., Ciobanu, M.

 M., & Creangă, Ș. T. E. O. F. I. L. (2020). Analysis of RASFF notifications on

 contaminated dairy products from the last two decades: 2000-2020. Romanian

 Biotechnological Letters, 25(2), 1396-1406. 

Prakasa, E., Rosiyadi, D., Ni'mah, D. F. I., Khoiruddin, A. A., Lestriandoko, N. H., Suryana, N.,

 & Fajrina, N. (2017). Automatic region-of-interest selection for corn seed grading. In

 2017 International Conference on Computer, Control, Informatics and its Applications

 (IC3INA) (pp. 23-28). IEEE. 

President’s FY 2022 Budget Request: Key Investments for Food Safety

 https://www.fda.gov/about-fda/what-we-do-cfsan/presidents-fy-2022-budget-request

 key-investments-food-safety 

Pu, Y., Wang, W., & Alfano, R. R. (2013). Optical detection of meat spoilage using fluorescence

 spectroscopy with selective excitation wavelength. Applied Spectroscopy, 67(2), 210-

213. 

Putranto, A., Chen, X. D., Devahastin, S., Xiao, Z., & Webley, P. A. (2011). Application of the

 reaction engineering approach (REA) for modeling intermittent drying under time

 varying humidity and temperature. Chemical Engineering Science, 66(10), 2149-2156. 

Rabbinge, R. (1993). The ecological background of food production. In Crop protection and

 sustainable agriculture. Ciba Found. Symp. 177, John Wiley & Sons, Chicester (pp. 2

 29). 

Rana, R. L., Tricase, C., & De Cesare, L. (2021). Blockchain technology for a sustainable agri

 food supply chain. British Food Journal. 

https://www.fda.gov/about-fda/what-we-do-cfsan/presidents-fy-2022-budget-request%09key-investments-food-safety
https://www.fda.gov/about-fda/what-we-do-cfsan/presidents-fy-2022-budget-request%09key-investments-food-safety


69 

 

Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial

 intelligence and machine learning in pathology: the present landscape of supervised

 methods. Academic pathology, 6, 2374289519873088. 

Riff, D., Lacy, S., & Fico, F. (2014). Analyzing media messages: Using quantitative content

 analysis in research. Routledge. 

Rodríguez-Mazahua, L., Rodríguez-Enríquez, C. A., Sánchez-Cervantes, J. L., Cervantes, J.,

 García-Alcaraz, J. L., & Alor-Hernández, G. (2016). A general perspective of Big Data:

 applications, tools, challenges and trends. The Journal of Supercomputing, 72(8), 3073

 3113. 

Rowa'Al Ramahi, A. N. Z., & Abu-Khalaf, N. (2019). Evaluating the potential use of electronic

 tongue in early identification and diagnosis of bacterial infections. Infection and Drug

 Resistance, 12, 2445. 

Ruiz-Altisent, M., Ruiz-Garcia, L., Moreda, G. P., Lu, R., Hernandez-Sanchez, N., Correa, E. C.,

 & García-Ramos, J. (2010). Sensors for product characterization and quality of specialty

 crops—A review. Computers and Electronics in agriculture, 74(2), 176-194. 

Russom, P. (2011). Big data analytics. TDWI best practices report, fourth quarter, 19(4), 1-34. 

Sablani, S. S., & Rahman, S. (2008). Fundamentals of food dehydration. In Food drying: Science

 and technology (pp. 1-42). DEStech Publications, Inc., Pennsylvania, USA. 

Sablani, S. S., Baik, O. D., & Marcotte, M. (2002). Neural networks for predicting thermal

 conductivity of bakery products. Journal of Food Engineering, 52(3), 299-304. 

Sablani, S. S., Marcotte, M., Baik, O. D., & Castaigne, F. (1998). Modeling of simultaneous heat

 and water transport in the baking process. LWT-Food Science and Technology, 31(3),

 201-209. 



70 

 

Sadilek, A., Caty, S., DiPrete, L., Mansour, R., Schenk, T., Bergtholdt, M.,& Gabrilovich, E.

 (2018). Machine-learned epidemiology: real-time detection of foodborne illness at scale.

 NPJ digital medicine, 1(1), 1-7. 

Sârbu, C., Naşcu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A., & Namieśnik, J.

 (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate

 analysis of chromatographic and spectroscopic data. Food Chemistry, 130(4), 994-1002. 

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research

 directions. SN Computer Science, 2(3), 1-21. 

Sayers, E. W., Beck, J., Bolton, E. E., Bourexis, D., Brister, J. R., Canese, K., ... & Sherry, S. T.

 (2021). Database resources of the national center for biotechnology information. Nucleic

 acids research, 49(D1), D10. 

Scallan, E., & Mahon, B. E. (2012). Foodborne Diseases Active Surveillance Network

 (FoodNet) in 2012: a foundation for food safety in the United States. Clinical Infectious

 Diseases, 54(suppl_5), S381-S384. 

Septiarini, A., Hamdani, H., Hatta, H. R., & Kasim, A. A. (2019). Image-based processing for

 ripeness classification of oil palm fruit. In 2019 5th International Conference on

 Science in Information Technology (ICSITech) (pp. 23-26). IEEE. 

Shihani, N., Kumbhar, B. K., & Kulshreshtha, M. (2006). Modeling of extrusion process using

 response surface methodology and artificial neural networks. Journal of engineering

 science and Technology, 1(1), 31-40. 

Siddique, A., Freeman, R., and Morey, A., (2021b). Microwave analysis of broiler breast meat in

 conjunction with singularity value decomposition to categorize myopathic fillets. Poultry

 sciences association abstract book pp.223 



71 

 

Siddique, A., Shirzaei, S., Smith, A. E., Valenta, J., Garner, L. J., & Morey, A. (2021a).

 Acceptability of Artificial Intelligence in Poultry Processing and Classification

 Efficiencies of Different Classification Models in the Categorisation of Breast Fillet

 Myopathies. Frontiers in Physiology, 1472. 

Singh, A., Shukla, N., & Mishra, N. (2018). Social media data analytics to improve supply chain

 management in food industries. Transportation Research Part E: Logistics and

 Transportation Review, 114, 398-415. 

Singh, R., & Singh, R. (2021). Applications of sentiment analysis and machine learning

 techniques in disease outbreak prediction–A review. Materials Today: Proceedings. 

Size, G. M. (2020). Share & Trends Analysis Report By Source (Biodiesel, Fatty Acids, Fatty

 Alcohols, Soap), by Type (Crude, Refined) By End Use (Food & Beverage,

 Pharmaceutical). By Region, And Segment Forecasts, 2027. 

 

Snow, V., Rodriguez, D., Dynes, R., Kaye-Blake, W., Mallawaarachchi, T., Zydenbos, S., &

 Stevens, D. (2021). Resilience achieved via multiple compensating subsystems: The

 immediate impacts of COVID-19 control measures on the agri-food systems of Australia

 and New Zealand. Agricultural Systems, 187, 103025. 

Soon, J. M. (2020). Consumers' awareness and trust toward food safety news on social media in

 Malaysia. Journal of food protection, 83(3), 452-459. 

 

Spyrelli, E. D., Ozcan, O., Mohareb, F., Panagou, E. Z., & Nychas, G. J. E. (2021). Spoilage

 assessment of chicken breast fillets by means of fourier transform infrared spectroscopy

 and multispectral image analysis. Current research in food science, 4, 121-131. 



72 

 

Standing, C. N. (1974). Individual heat transfer modes in band oven biscuit baking. Journal of

 Food Science, 39(2), 267-271. 

Statista Research Department (SRD), (2022). Big data market size revenue forecast worldwide

 from 2011 to 2027 https://www.statista.com/statistics/254266/global-big-data-market

 forecast/ 

Sun, D. W. (Ed.). (2016). Computer vision technology for food quality evaluation. Academic

 Press. 

Swaminathan, B., Barrett, T. J., Hunter, S. B., Tauxe, R. V., & Force, C. P. T. (2001). PulseNet:

 the molecular subtyping network for foodborne bacterial disease surveillance, United

 States. Emerging infectious diseases, 7(3), 382. 

Tan, A., Gligor, D., & Ngah, A. (2022). Applying blockchain for halal food traceability.

 International Journal of Logistics Research and Applications, 25(6), 947-964. 

Tao, Q., Ding, H., Wang, H., & Cui, X. (2021). Application research: big data in food industry.

 Foods, 10(9), 2203. 

Timme, R. E., Rand, H., Leon, M. S., Hoffmann, M., Strain, E., Allard, M., & Baugher, J. D.

 (2018). GenomeTrakr proficiency testing for foodborne pathogen surveillance: an

 exercise from 2015. Microbial genomics, 4(7). 

Todd, E. C., Greig, J. D., Bartleson, C. A., & Michaels, B. S. (2007). Outbreaks where food

 workers have been implicated in the spread of foodborne disease. Part 3. Factors

 contributing to outbreaks and description of outbreak categories. Journal of food

 protection, 70(9), 2199-2217. 

https://www.statista.com/aboutus/our-research-commitment
https://www.statista.com/statistics/254266/global-big-data-market%09forecast/
https://www.statista.com/statistics/254266/global-big-data-market%09forecast/


73 

 

Trienekens, J., & Zuurbier, P. (2008). Quality and safety standards in the food industry,

 developments and challenges. International journal of production economics, 113(1),

 107-122. 

Vanegas, D. C., Gomes, C. L., Cavallaro, N. D., Giraldo‐Escobar, D., & McLamore, E. S.

 (2017). Emerging biorecognition and transduction schemes for rapid detection of

 pathogenic bacteria in food. Comprehensive reviews in food science and food safety,

 16(6), 1188-1205. 

Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in

 logistics and supply chain management: Certain investigations for research and

 applications. International journal of production economics, 176, 98-110. 

WHO. WHO Estimates of the Global Burden of Foodborne Diseases; WHO: Geneva,

 Switzerland, 2015; ISBN 9789241565165. 

Widom, J. (1995, December). Research problems in data warehousing. In Proceedings of the

 fourth international conference on Information and knowledge management (pp. 25-30). 

Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R. & Vieglais, D.

 (2012). Darwin Core: an evolving community-developed biodiversity data standard. PloS

 one, 7(1), e29715. 

Willemson, J. (2011, August). Pseudonymization service for X-road eGovernment data exchange

 layer. In International Conference on Electronic Government and the Information

 Systems Perspective (pp. 135-145). Springer, Berlin, Heidelberg. 

Wu, J., Chen, S., & Liu, X. (2020). Efficient hyperparameter optimization through model-based

 reinforcement learning. Neurocomputing, 409, 381-393. 



74 

 

Xu, J. L., Riccioli, C., & Sun, D. W. (2015). An overview on nondestructive spectroscopic

 techniques for lipid and lipid oxidation analysis in fish and fish products. Comprehensive

 Reviews in Food Science and Food Safety, 14(4), 466-477. 

Yang, Y., Wang, W., Zhuang, H., Yoon, S. C., Bowker, B., Jiang, H., & Pang, B. (2021).

 Evaluation of broiler breast fillets with the woody breast condition using expressible fluid

 measurement combined with deep learning algorithm. Journal of Food Engineering, 288,

 110133. 

Yildiz, F. (1994). Initial preparation, handling, and distribution of minimally processed

 refrigerated fruits and vegetables. In Minimally Processed Refrigerated Fruits &

 Vegetables (pp. 15-65). Springer, Boston, MA. 

Young, W., Russell, S. V., Robinson, C. A., & Barkemeyer, R. (2017). Can social media be a

 tool for reducing consumers’ food waste? A behaviour change experiment by a UK

 retailer. Resources, Conservation and Recycling, 117, 195-203. 

Yu, X., Tang, L., Wu, X., & Lu, H. (2018). Nondestructive freshness discriminating of shrimp

 using visible/near-infrared hyperspectral imaging technique and deep learning algorithm.

 Food analytical methods, 11(3), 768-780. 

Yu, X., Wang, J., Wen, S., Yang, J., & Zhang, F. (2019). A deep learning based feature

 extraction method on hyperspectral images for nondestructive prediction of TVB-N

 content in Pacific white shrimp (Litopenaeus vannamei). Biosystems Engineering, 178,

 244-255. 

Zanoni, B., Peri, C., & Pierucci, S. (1993). A study of the bread-baking process. I: A

 phenomenological model. Journal of food engineering, 19, 389-389. 



75 

 

Zhang, X., Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food product design: a hybrid

 machine learning and mechanistic modeling approach. Industrial & Engineering

 Chemistry Research, 58(36), 16743-16752. 

Zhang, Z., Zhao, Y., Liao, X., Shi, W., Li, K., Zou, Q., & Peng, S. (2019). Deep learning in

 omics: a survey and guideline. Briefings in functional genomics, 18(1), 41-57. 

Zhou, Z., Alikhan, N. F., Mohamed, K., Fan, Y., Achtman, M., Brown, D.,& Agama Study

 Group. (2020). The EnteroBase user's guide, with case studies on Salmonella

 transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity.

 Genome research, 30(1), 138-152. 

Zhu, H., Liu, F., Ye, Y., Chen, L., Liu, J., Gui, A., & Dong, C. (2019). Application of machine

 learning algorithms in quality assurance of fermentation process of black tea--based on

 electrical properties. Journal of food engineering, 263, 165-172. 

 

 

 

 

 

 

 

 

 

 

 



76 

 

Table 1.1: Summary table of research conducted in food sciences combined with data analytics 

Authors Used Technique  Work 

Afoakwa et al. 2006 Stepwise multiple regression analysis Optimization of pre-processing conditions during 

canning 

Aiadi et al. 2019 Outlier Detection Techniques and Gaussian 

Mixture Models 

Automatic Date fruit recognition technique 

Aksenova and Alexeev, 2020. Kinetics based study with response surface 

methodology 

Fish powder and Potato snack 

Alaiz-Rodríguez and Parnell, 

2020 

Neural network classifiers and different 

dimensionality reduction techniques 

Lamb meat quality assessment 

Alam et al. 2016 Multiple regression with response surface 

methodology 

Ready to eat high fibre soybean rice snack 

Alemayehu et al. 2019 Central Composite Rotatable design (CCRD) with 

Regression and RSME 

Ready-to-eat pulse-based snacks 

Al-Sarayreh et al. 2020 Deep Learning Classification of species in meat 

Argyri et al. 2010 Artificial Neural network Spoilage in beef fillets 

Banooni et al. 2009 Artificial Neural network Baking of flat bread  

Barbon et al. 2018 Decision tree and Support Vector machines Chicken meat classification 

Bonah et al. 2020 variable combination population analysis with 

genetic algorithm 

Quantitative monitoring and visualization of bacterial 

foodborne pathogens in fresh pork muscles 

Bonah et al. 2020 Detection of Salmonella Typhimurium 

contamination levels in fresh pork samples using 

electronic nose 

support vector machine regression and metaheuristic

 optimization algorithms 

Broyart and Trystram, 2003 Neural Network Modelling of heat and mass transfer phenomena and 

quality changes during continuous biscuit baking 

Cameron, 1988 maximum likelihood estimation by censored 

logistic regression 

valuing non-market goods using referendum data 

Dankowska and Kowalewski, 

2019 

Principle component Analysis followed by LDA, 

QDA, RDA, KNN, SVM and Random Forest 

Characterize type and freshness of olive oils 

de Oliveira Campos, 2018 Different mathematical models Simulation of a solar desalination by humidification-

dehumidification 

Devinney et al. 2018 Text mining Algorithms Foodborne illness outbreak detection in New York 

city using tweets 
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Dixit et al. 2021 Multivariate Analysis Prediction of beef quality 

Effland et al. 2018 Text mining Discovering foodborne illness in online restaurant 

reviews 

Emerald et al. 2020 Neural network with Fuzzy Inference System Predicting moisture transfer during baking of

 milk cake incorporated with starch 

Fabris et al. 2010 Random forest (RF),Penalized discriminant 

analysis (PDA), Support vector machine (SVM), 

Discriminant partial least squares(DPLS) 

Influence of milk storage conditions on the volatile 

compounds profile of Trentingrana cheese 

Fan et al. 2013 Artificial Neural network (ANN) Prediction of texture characteristics from extrusion 

food surface 

Farah et al. 2021 Random forest,  

gradient boosting machine, and multilayer 

perceptron 

Determination of the milk authenticity 

Fengou et al. 2019 Partial least square regression Analysis (PLSR) Microbiological spoilage of farmed sea bream 

Fried et al. 2014 Text mining Social media data on food 

Geronimo et al. 2019 Decision Tree Modeling (DT) Classification of woody breast chicken fillets 

Gouyo et al. 2020 Principle component Analysis with Decision tree Comparison of deep fat frying and air frying 

Goyal and Goyal 2011 Neural Networks (NN) Soft cake shelf life prediction 

Greis and Nogueira, 2017 North Carolina Foodborne Events Data Integration 

and Analysis (NCFEDIA) system 

Food safety surveillance and response 

Harris et al. 2017 Text mining Using twitter to identify and respond to food 

poisoning 

Hernandez-Perez et al. 2004 Neural network (NN) Heat and mass transfer prediction during drying of 

cassava and mango 

Ireri et al. 2019 Support Vector Machines, Artificial neural 

network, Random Forest 

Grading of tomatoes 

Kanade and Shaligram, 2018 k-Nearest Neighbor model Prepackaging Sorting of Guava Fruits 

Kaufman et al. 2014 likelihood-based approach  Contaminated food products idendification using 

sales data 

Kemsley et al. 2019 Multivariate Analysis Food authenticity 

Kseibat et al. 2004 Neural network (NN) Predicting safety and quality of thermally

 processed canned foods 

Kuehn, 2014 Text mining (TM) Social media to track foodborne illness 
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León-Roque et al. 2016 Artificial Neural Network (ANN) Prediction of fermentation index of cocoa beans 

Lu et al. 2020 Artificial Neural Network (ANN) Microbial Identification 

Mabrouk et al. 2012 Mathematical Modeling (MM) Drying of apple slices 

Marcos-Martinez et al. 2011 Neural network (NN) Identification and discrimination of bacterial strains 

Michael et al. 2019 Principle component Analysis and ANN Rapid identification and differentiation for foodborne 

pathogens 

Mittal and Zhang, 2000a Neural networks Prediction of temperature and moisture content of 

frankfurters during thermal processing 

Mittal and Zhang, 2000b Neural networks Prediction of freezing time for food products 

Mittal and Zhang, 2000c Neural networks Prediction of temperature, moisture, and fat in slab‐
shaped foods with edible coatings during deep‐fat 

frying 

Mohebbi et al. 2011 Genetic Algorithm (GA) and Neural network (NN) Prediction of moisture content in pre-osmosed and 

ultrasounded dried banana 

Mondino and Andújar, 2019 Decision and Support system (DSS) Crop protection in apple orchards 

Morey et al. 2020 Linear Discriminant Analysis (LDA) Woody breast Identification in chicken 

Norström et al. 2015 Adjusted likelihood ratio Distribution of food products to assist investigation 

of foodborne outbreaks 

Penning et al. 2020 Partial least square analysis, SVM, RF, k-NN, 

PDA, XGBoost, LogitBoost, LDA 

Beef meat quality assessment  

Pu et al. 2013 Multivariate Curve  

Resolution with Alternating Least-Squares (MCR-

ALS) 

Optical detection of meat spoilage 

Ramahi and Khalaf, 2019 Principle component Analysis Early identification and diagnosis of bacterial 

infections using electronic tongue 

Sablani et al. 2002 Neural Network Predicting thermal conductivity of bakery products 

Sablani et al. 1998 Mathematical modeling Modeling of simultaneous heat and water transport in 

the baking process 

Sârbu et al. 2012 Multivariate Analysis Classification and fingerprinting of kiwi and pomelo 

fruits 

Scallan and Mahon, 2012 FoodNet Foodborne Diseases Active Surveillance Network 

Septiarini et al. 2019 Support Vector Machines (SVM) Ripeness classification of oil palm fruit 
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Shihani et al. 2006 Response surface methodology and Artificial 

Neural Networks 

Wheat flour and wheat–black soybean blend 

Siddique et al. 2021a Support Vector Machines (SVM) and Back 

Propagation Neural Network (BPNN) 

Classification of woody breast chicken breast fillets 

Siddique et al. 2021b Singular Value decomposition (SVD) Classification of woody breast chicken fillets  

Spyrelli et al. 2021 SVM, RF, ANN, k-NN, PCA, Least-angle 

regression 

Spoilage assessment of chicken breast fillets 

Swaminathan et al. 2001 PulseNet Foodborne bacterial disease surveillance 

Tan et al. 2022 Block chain Halal food traceability 

Timme et al. 2018 GenomeTrakr Proficiency testing for foodborne pathogen 

surveillance 

Yang et al. 2021 Deep learning Algorithm Evaluation of broiler breast fillets with the woody 

breast condition 

Yu et al. 2018 Deep learning Algorithm Shrimp freshness 

Yu et al. 2019 Deep Learning Algorithm For nondestructive prediction of TVB-N content in 

Pacific white shrimp 

Zhang, X. et al. 2019  Hybrid machine learning and mechanistic 

modeling approach 

Development of cookie ingredients 

Zhang, Z. et al. 2019 Deep learning Algorithm Omics studies 

Zhu et al. 2019 PCA, Clustering, SVM, RF, and MLP Quality assurance of fermented black tea 

   

 

  



80 

 

 

 

 

Figure   1-1: Linear discriminant analysis taken from Siddique et al. [167], adopted from Fisher (1986). Two class data in dimensional 

space for LDA analysis to maximize the classifiable data on the hyper-plane. 
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Figure   1-2: Support vector machines adopted from Siddique et al. [167], red dot represents class A data in the front space and blue 

dot represents class B data behind the shaded gray area (hyperplane) 
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Figure   1-3: Backpropagation neural network from Siddique et al [167] 
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Figure   1-4: General diagrammatic representation of k-means clustering for cluster formation from Siddique et al. 2022 
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2.1 ABSTRACT 

Breast meat from modern fast-growing big-birds is affected with myopathies such as 

woody breast (WB), white striping (WS) and spaghetti meat (SM). The detection and separation 

of the myopathy affected meat can be carried out at processing plants using technologies such as 

the bioelectrical impedance analysis (BIA). However, BIA data from myopathy affected raw is 

extremely complicated, especially due to the overlap of these myopathies in individual breast 

fillets and the human error associated with the assignment of fillet categories. Previous research 

has shown that traditional statistical techniques such as ANOVA and regression, among others, 

are insufficient in categorizing fillets affected with myopathies using BIA. Therefore, more 

complex data analysis tools can be used such as, support vector machines (SVM) and 

backpropagation neural network (BPNN) to classify raw poultry breast myopathies using their 

BIA patterns, such that the technology can be beneficial for the poultry industry in detecting 

myopathies. Freshly deboned (3-3.5 h post-slaughter) breast fillets (n=100 x 3 flocks) were 

analyzed by hand-palpation for WB category (0-normal; 1-mild; 2-moderate; 3-Severe) and SM 

(presence and absence). BIA data (resistance and reactance) was collected on each breast fillet, 

the equipment’s algorithm calculates protein and fat index. Data were analyzed using linear 

discriminant analysis (LDA), SVM, and BPNN with 70:30 :: training : test data set. Compared to 

LDA analysis, SVM separated WB with a higher accuracy of 71.04% for normal (data for 

normal and mild merged), 59.99% for moderate, 81.48% for severe WB. Compared to SVM, the 

BPNN training model accurately (100%) separated normal WB fillets with and without SM 

demonstrating the ability of BIA to detect SM. Supervised learning algorithms such as SVM and 
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BPNN can be combined with BIA and successfully implemented in poultry processing to detect 

breast fillet myopathies. 

Keywords: Support Vector Machines, Backpropagation Neural Networking, Woody breast, 

Meat myopathies, Spaghetti meat, Bioelectrical impedance analysis, Machine learning, Artificial 

intelligence 

2.2 INTRODUCTION 

Globally, consumers are choosing meat and meat products for their higher nutritional 

value, especially protein (Heinz and Hautzinger, 2009). There has been a drastic increase in 

consumption of these products worldwide in the last couple of decades. In developing countries, 

the per capita consumption of poultry has increased from 1.2 kg in the 1960s to 10.5 kg in the 

2000s and will reach up to 14.0 kg by 2030 (FAO, 2003). In the US, more than 9 billion broilers 

were raised in 2018, with a total live weight of 27.1 billion kg and in 2020 per capita 

consumption of chicken was 44.23 kg (National Chicken Council, 2020). Chicken is a popular 

consumer choice because of the various physicochemical and sensorial attributes of texture, 

color, and flavor (Petracci et al. 2013). To supply the increasing demand for breast meat, 

breeders have increased growth rate of the birds through genetics, in turn increasing total carcass 

yield (Petracci and Cavani, 2012).  Markets are continuously changing due to consumer’s 

preference and demands, which is presently driving the market towards cut-up chicken parts and 

further processed products. Fast-growing chickens with increased breast meat yield, have 

developed breast muscle myopathies, leading to the meat quality defects, such as woody breast 

(WB).  In the past 10 years, WB has been more prominently found in heavier birds (Zampiga et 

al. 2020). Woody breast affected fillets are characterized by an intricate and dull appearance 

(Sihvo et al. 2014; Kuttappan et al. 2017), and tough texture due to collagen deposition (Soglia et 
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al. 2016). These breast myopathies also affect meat quality parameters such as pH, color, water 

holding capacity (WHC), proximate composition, cook loss, and texture, which ultimately 

influence the quality of further processed products (Kuttappan et al. 2012). Due to the lower 

meat quality, WB meat is sorted out at the processing plants using manual hand-palpation 

(Figure   2-4) and different grading scales based on severity levels (Table 2.1) , however, this 

method is unreliable and subjective leading to potential misclassification of the breast meat 

(Morey et al. 2020).  By setting specific standards to accurately separate WB fillets, poultry 

processors will be able to reduce fillet misclassification and ultimately losses related to it.   

We investigated bioelectrical impedance analysis (BIA) as a potential objective method 

to detect WB fillets. Bioelectrical impedance analysis technology has been used in many species 

to measure physical composition and properties including, body water content and fat content. 

Nyboer et al. (1950) and Hoffer et al. (1969) introduced the four-electrode, whole body, 

bioelectrical impedance methods in clinical studies for the measuring bodily fluid from hand to 

foot. Since its inception, the use of BIA has expanded beyond clinical studies. In the food sector, 

BIA parameters can be calibrated to specific species and has been used in fish for rapid detection 

of proximate composition and the pre-harvest condition of fish (Cox et al. 2011). Morey et al. 

(2020) demonstrated that BIA can be successfully used to detect WB fillets as an alternative to 

hand-palpation which can reduce classification errors. Further, BIA can potentially detect other 

overlapping breast muscle myopathies such as spaghetti meat which is affecting the poultry 

industry. 

Classification accuracies of BIA data can be improved through the use of modern data 

analytics techniques such as machine learning (ML), which includes data mining, artificial neural 

networks (ANN), deep learning (DL), and artificial intelligence (AI; Tufféry, 2011). Machine 
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learning is a complex field with a wide range of frameworks, concepts, approaches, or a 

combination of these methods.  Machine learning is commonly used in the manufacturing sector 

for process optimization, tracking and management applications in production and predictive 

maintenance (Alpaydin, 2010; Gardner and Bicker, 2000). These techniques have been widely 

applied to enhance quality control in production processes (Apte et al. 1993), particularly in 

complex production processes where predicting the causes of problems is challenging (Kusiak, 

2006). Over the last few decades, automated product inspection systems incorporating ML have 

been used in a wide variety of food industries such as potato and apple (Tao et al. 1995), oil palm 

fruit (Abdullah et al. 2002), rice and grains (Carter et al. 2005), beef fat (Chen et al. 2010) and 

color in bakery applications (Nashat et al. 2011).    

 The use of machine learning models has increased in recent years due to circumstances 

such as, the availability of complex data with little accountability (Smola and Vishwanathan, 

2008) and will become more critical in the future. Although several ML algorithms are available, 

such as ANN, support vector machines (SVM), and distributed hierarchical decision trees, their 

ability to deal with large data sets varies significantly (Bar-Or et al. 2005; Do et al. 2010). In the 

production sector, only specific ML algorithms are capable of handling high-dimensional data 

sets and having the ability to deal with high dimensionality is considered a benefit of using ML 

in the processing industry. One of the main benefits of ML algorithms is finding previously 

unknown (hidden) information and recognizing its associations in large data sets. The available 

information criteria can depend mainly on the ML algorithm’s characteristics 

(supervised/unsupervised or Reinforcement Learning [RL]). Nevertheless, the ML method’s 

general process of producing outcomes in a production environment has been conclusively 

proven (Alpaydin, 2010; Filipič and Junkar, 2000; Guo et al. 2008; Kala, 2012). The use of BIA 
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in poultry processing provides complex data with high dimensionality which can be used to train 

the SVM algorithms for classification of WB (based on severity) and SM fillets. Support vector 

machines (SVM), with a kernel-based procedure, has emerged in machine learning, as one 

strategy for sample classification (Pardo and Sberveglieri, 2005). The implication of SVM in 

machine learning as a supervised learning technique provides good generalization ability and 

more minor overfitting tendencies. Using kernel functions in SVM’s makes the original input 

values linearly separable in higher-dimensional space. Moreover, SVMs can simultaneously 

reduce estimation errors and model dimensions (Singh et al. 2011). The main objective of this 

research was to determine the accuracy of linear discriminant analysis (LDA), SVM and 

backpropagation neural networks (BPNN) to classify WB and SM using the multi-dimensional 

BIA data. The LDA, SVM and BPNN methods are discussed in detail, their accuracies were 

compared and the reasons for the differences in the classification accuracies are discussed. The 

research will help the poultry industry, technology companies and scholars to investigate into the 

use of ML to analyze WB and other myopathy/meat quality related complex datasets.   

2.3 MATERIAL AND METHODS 

2.3.1 Data Collection 

Freshly deboned breast filets from 56-day old broilers (Ross 708) were analyzed in a 

commercial poultry processing facility after deboning. Breast fillets (n=300, 3 replications or 

flocks) were randomly selected from the processing line 3 to 3.5 hours post slaughter. Deboned 

breast fillets were analyzed for WB incidence through hand palpation by an experienced team 

member (Figure   2-4). Breast fillets were classified into normal, mild (for data analysis mild 

was grouped with normal), moderate, and severe WB fillets (Tijare et al. 2016) and SM presence 

was evaluated by observing the turgor in the cranial-ventral portion of the breast fillets with a 
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decrease in turgor indicating a presence of SM and an increase in turgor representing an absence 

of SM. Collected chicken breast fillets from the processing line were subjected to BIA by 

utilizing a hand-held CQ Reader (Seafood Analytics, Clinton Town, MI, United States; Morey et 

al. 2020), equipped with 4 spring-loaded electrodes (RJL Systems, Detroit, MI, United States). 

All 4 electrodes were placed to make contact with the ventral surface of the breast fillet. Once 

the electrodes were in contact with the breast fillets, the circuit was complete and linked. Then 

the device measured the data for resistance, reactance, fat index, and protein index and the stored 

data was downloaded for analysis later (Seafood Analytics Certified Quality Reader, Version 

3.0.0.3, Seafood Analytics, MI, United States). Individual weights of fillets were also collected 

by using weighing balance (OHAUS Corporation, Pine Brook, New Jersey, United States) for 

the analysis and used to train the SVM and BPNN models. 

2.3.2 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is one of the conventional data mining algorithms 

used in supervised and unsupervised learning contemplated by Fischer (1936) for resolving the 

issue related to flower classification (Xanthopoulos et al. 2013). The LDA model is used to 

project an imaginary hyper-plane that minimizes the interclass variance and maximizes the 

distance between class means. Additionally, it produces a transformation in the data that is 

discriminative in some data cases (Fukunaga, 2013). LDA is more appropriate for data where 

unequal within-class frequencies are given, and their classification performances have been 

randomly examined on generated test data. This approach maximizes the ratio of between-class 

variance to within-class variance with maximum separability. Data sets used in LDA analysis 

can be transformed, and related test vectors can be classified in the imaginary hyper-plane by 

class-dependent transformation and class independent transformation (Balakrishnama and 
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Ganapathiraju, 1998). The class-dependent transformation approach maximizes the ratio 

between-class variance to within-class variance. This kind of class transformation helps in 

maximizing class separability (Tharwat et al. 2017). The main objective for implementing LDA 

analysis is to create a subspace of lower-dimensional data points compared to the sample data 

set, in which the original data points from the data set can be easily separable (Figure   2; Fisher, 

1936). Data analytics and statistical analysis classifiable can be defined as the measure of mean 

value and variance. The use of LDA provides a solution that can be implemented in a 

generalized eigenvalue system which provides huge and fast data optimization. The original 

LDA algorithm was used to solve binary classification taxonomic problems, however, Rao 

(1948) had also proposed multi-class generalizations. In this paper, both class classification and 

multi-class case classification derivation were provided to better understand the concept from the 

simple two-class case (Xanthopoulos et al. 2013).  

Let “a1,..., ap ∈ Rm ” be a set of “q” data sets related to the two separate classes, A and B. 

For each class defined sample means are: 

aA = INA∑a ∈ Aa,, a̅B = 1NB∑a ∈ Ba.                                 (1.1) 

NA, NB is the total number of samples in data set A and set B. Scatter matrices for the data set by 

the equations: 

SA = ∑a ∈ A(a − a̅A)(a − a̅A)
T, SB = ∑aϵB(a − a̅B) (a − a̅B)

T.           (1.2) 

Each of these matrices mentioned above is used for the imaginary hyper-plane, which is 

defined by the vector (φ), the variance for the calculation is minimal and can be explained by the 

equation:  

Min φ(φTsAφ+ φ
TsBφ) = min φφ

T(sA + sB)φ = minφφ
Tsφ.                           (1.3)    
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Where S =SA+SB by definition and from equation 1.2, the scatter matrix for supposed two 

matrixes for the two classes are: 

                                                   sAB = (a̅A − a̅B)(a̅A − a̅B)
T.                                    (1.4) 

According to Fisher's projection on LDA for a hyper-plane is the expression to maximize 

the distance between the means and to minimize the variance of each considered class. 

Mathematically this can be described by Fisher’s criterion equation as: 

                                              MaxφJ(φ) = max φφTsABφφ
TSφ.                             (1.5)  

There could be several solutions for the optimization-related problem with the same function 

value. For a solution φ,∗ all the vectors c·φ∗ will give the same value, and considering no loss in 

generality, we select only one best possible solution by substituting the denominator with an 

equality constraint. Then the problem becomes: 

Max φφTSABφ,                                                                 (1.6a) 

s. t ⋅ φTsφ = 1 .                                                            (1.6b) 

The Lagrangian mechanism associated with this problem is: 

                                            LLDA(a,λ) = φ
TSABφ− λ(φTSφ − 1)                          (1.7)  

where λ is the LaGrange multiplier associated with the equation 1.6b. Since SAB is positive and 

the nature of the problem is convex, and the global minimum will be at the point for which:       

                                    ∂LLDA(x,λ) ∕ ∂x = 0 ⇔ SABφ− λSφ = 0 .                          (1.8) 

The optimal φ obtained as the eigenvector that corresponds to the smallest value for the 

generalized eigensystem: 

                                                                SABφ = λSφ.                                               (1.9) 

Multi-class LDA is only the extension of the two-class classification problem. Given x 

classes, the matrices will be redefined, and the intra-class matrix becomes:  
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                                                   S = S1 + S2 +⋯ . Sn,                                              (1.10) 

while the inter-class scatter matrix is annotated by, 

S1,…n = nΣi = 1pi(a̅i − a̅)(a̅i − a̅)
T,                                (1.11) 

where the number of samples (pi) in the ith class, ̄ai is the mean, and  ̄a is mean vector given in 

equation,  

̄a = 1pn∑i = 1pi ̄ai. 

The linear transformation φ can be achieved by solving the above equation: 

S1, . . . , n φ = λSφ. 

To achieve a better classification by projection hyper-plane. Once the transformation φ 

achieved, the class of a new point “y” is determined by:  

                                       class(y) = arg minn{d(yφ, ̄ anφ)},                             (1.12) 

where  ̄an is the centroid of nth class. The calculation reflects that all classes' centroids were 

defined first and the unknown points on the subspace defined by φ and the closest class 

concerning D. 

2.3.3 Support Vector Machines  

Vapnik (2013) first contemplated the support vector machine in 1995, and recently it has 

enticed an enormous level of endeavor in the machine learning applications community. Several 

studies have mentioned that the SVM has immense performance in classification accuracy 

compared to other data classification algorithm methods (Maji et al. 2008; Shao et al. 2012; 

Vijayarani et al. 2015).  SVM generates a line between the two or more classes known as a 

hyper-plane for data set classification. Input data Q that can fall on either side of the hyper-plane 

(QT•W– b) > 0 are labeled as +1, and those that fall on the other side, (QT•W– b) < 0, are 
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labeled as -1 (Figure   1A; Lee and To, 2010); let {Qi, yi} ∈ Rn be training data set, yi ∈ {1, -1}, 

i = 1, 2, …, n.  

There exits hyper-plane, 

                                              P =  {Q ∈  Rn｜QT •W +  b =  0}.  (2) 

The equation for the training data set can be written as: 

QiT W +  b ≥ 1, yi = 1,                                           (2.1) 

QiT W +  b ≥ −1, yi = −1. 

Above mentioned equations can be written as: 

yi  (QiT W +  b –  1 )  ≥  0.  

Another definition for the hyper-plane considering P- and P+, let {Qi, yi} ∈ Rn be training 

data set, y iÎ {1, -1}, i = 1, 2,…, n,                                                                                                                                

P+ = {Q ∈  Rn ｜ QTi W +  b = 1},                                      (2.2) 

P− = {Q ∈  Rn ｜ QTi W +  b = −1}. 

The optimization mentioned above is a form non-convex optimization problem that relies 

on absolute value of |W| and is difficult to solve than convex optimization problems. The 

equation for W's absolute value can be replaced by using 1/ 2 | |W| |2 without having any change 

in the final solution. So, the representation of the SVM related problem in quadratic 

programming (QP) form is as follows (Osuna et al. 1997): 

Min 1/ 2 | |W| |2, 

s t. yi(Qi
TW+b) − 1 ≥ 0,1 ≤ i ≤ n .                                (2.3) 

After solving the SVM optimization problem using Lagrange multipliers (ai), the Wolfe 

dual of the optimization problem was achieved (Craven, 1989): 

L(w, b) =
1

2
‖w‖2 − ∑ aiyi[(Qi

TW+ b) − 1].n
i=1                     (2.4) 
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After solving for the value for W and b,                                                                                                                                                                                                                                        

  ∂L(w,b)

∂w
= 0,

∂L(w,b)

∂b
= 0,                                         (2.5) 

the solution in (2.5) is the following condition, 

w = ∑ αiyi
n
i=1 Qi,                                                         (2.6) 

∑ αiyi
n
i=1 = 0, 

putting the value of 2.6 into equation 2.4, we get the dual form of SVM, 

W(a) = ∑ αii=1 − (∑ αiαj yiyj(Qi ⋅ Qj)
n

i=1
) ∕ 2, 

s t.∑ αiyi(Qi ⋅ Qj)
n

i=1
= 0,                      (2.7) 

0 ≤ ai ≤ c, i = 1,2, . . . . . n. 

The number of variables in the equation derived is equivalent to the total number of data cases 

(n). The training set data with ai > 0 represents the position of support vectors for the 

classification, and Qi p+ or Qi p-. 

The equation for hyper-plane decision can be written as (Pontill and Verri, 1998): 

f(x) = ±(∑ αi
∗yi(q ⋅ qi)

n

i=1
− b∗).                            (2.9) 

Where q is the unknown input data that need to be classified. SVM has been employed in a 

considerable range of real-world problems associated with the different field of automation, 

forensics, biotechnology, agriculture statistics, and now is being in the food sciences for the 

classification of bakery products, fresh produce, and meat product classifications (Liu et al. 

2013; Asmara et al. 2017; Chen et al. 2017; Arsalane et al. 2018). It has been proven that SVMs 

are persistently most appropriate for diverse supervised learning methods. Despite this, the 

performance of SVM is very receptive to the cost parameter, and kernel frameworks are set. As a 
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result, research industries want to conduct ample cross-validation to determine the most 

influential parameter setting (Durgesh and Lekha, 2010). 

2.3.4 Backpropagation Neural Networking 

According to Lippmann (1987), here were no practical algorithms available for 

interconnecting weight values to achieve an overall minimum training error in multilayer 

networks. Rumelhart et al. (1986) proposed a generalized rule for backpropagation neural 

networking, an iterative, gradient descent training procedure. The input data, in the form of the 

vector, is a pattern to be learned, and the desired output is in the form of a vector produced by the 

network, upon recall of the input training pattern (Paola and Schowengerdt, 1995). The training’s 

main aim is to minimize the overall error between the test set data and training set data outputs of 

the network (Paola and Schowengerdt, 1995). Multilayer perceptions are also recognized as 

BPNN, one of the multiple layers forward neural networks. BPNN comprises of one input layer, 

one or more hidden layers, and one output layer (Bharathi and Subashini, 2011; Lui et al. 2013). 

Consideration of distinct factors plays a fundamental role when developing a BPNN that consists 

of the structure of network, initialization, and switch functions in each hidden and output layer, 

the training way and algorithm, the learning rate, the error-goal (ε), and preprocessed input data. 

BPNN has some advantages, such as easy architecture, ease of assembling the mannequin, and 

fast calculation speed. However, BPNN have some issues, such as (i) possible to contain in local 

extremum, (ii) poor generalization ability, (iii) lack of strict format packages with a theoretical 

foundation, and (iv) challenging to manage the learning and training method (Yao, 1999).  

In spite of these problems, BPNN has been successfully implemented in a range of fields. 

Users have applied their experiences and prior knowledge during designing a BPNN to 

overcome these problems (Lui et al. 2013). A supervised BPNN learning algorithm consists of an 



98 

 

input layer, one or more hidden layers, an output layer, and the nodes of hidden layers primarily 

affect the neural network's classification efficiency (Figure   3). Parameters that are required to 

be defined by the users are learning rate (0 < ƞ <1) and momentum (0 < ƞ <1).  

BPNN program training procedure (Lee and To, 2010; Yang et al. 2011):  

1. Design and input for network.  

2. Normalize the initial input weights W and threshold values (θ).   

3. Define the training and testing data set and input the training matrix X and output 

matrix Y.  

4. Estimate the output vector of each neural synaptic unit. 

(a) Evaluate the output vector (Z) for the hidden layer: 

nⅇtk = Σwikxi − θk,                                             (3.1) 

Zk =  f (nⅇt k),                                                    (3.2) 

nⅇtj = ΣwkjZi − θj,                                                (3.3) 

Yj = f (net j).                                                               (3.4) 

(b) The root of the mean square: 

RMS = √
∑(yj−Tj)

2

n
 .                                                  (3.5) 

5. Estimate distance δ for the output layer and hidden layer from the equation (3.6) and 

(3.7): 

δj = (Tj − yi) − f(nⅇtj),                                                (3.6) 

       δk = (∑ δjwkj
j

) − f ′(nⅇtj).                                                    (3.7) 
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6. Evaluate modifications for initial weights (W) and distance (δ) (ƞ is the learning rate, α 

is the momentum) for both output layer (equation 3.8, and 3.9) and hidden layer 

(equation 3.10, and 3.11): 

Δwkj(n) = ηδjzk + αΔwKj(n − 1),                                        (3.8)  

Δθj(n) = −ηδj + αΔθj(n − 1),                                    (3.9) 

Δwik(n) = ηδjXi + αΔwik(n − 1),                                       (3.10) 

Δθk(n) = −ηδk + αΔθk(n − 1).                                     (3.11) 

7. Redefine initial weight (W) and the threshold value (θ), redefine W and θ of the output 

and hidden layer: 

wkj(p) = wkj(P − 1) + Δwkj,                           (3.12) 

 θj(p) = θj(p − 1) + Δθj,                                                    (3.13) 

 wik(p) = wik(P − 1) + Δwik,                                                 (3.14) 

 θk(p) = θk(p − 1) + Δθk.                                                   (3.15) 

After modifying output and hidden layer, the steps will be renewed, and the step from 3-7 

will be repeated until converge. 

BPNN program-testing process (Lee and To, 2010, Yang et al. 2011): 

1. Input parameters related to the network. 

2. Input the initial weights (W) and the threshold value (θ). 

3. Unknown data entry for data matrix X. 

4. Evaluate output vector (Z) for the output and hidden layer: 

nⅇtk = ΣWikxi − θk,                                             (3.16) 

zk = f(nⅇtk),                                                          (3.17) 

   nⅇtj = Σwkj̇zi − θj,                                                (3.18) 
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Yj = f(nⅇtj).                                                           (3.19) 

 

2.4 STATISTICAL ANALYSIS 

The collected data were analyzed using SAS software (Version 9.4) for linear 

discriminant analysis using proc discrim to classify data. For the analysis SVM and BPNN of 

collected data, R software (Version 4.0.0, Arbor Day) was used by using the caret package in the 

analysis to classify various chicken breast fillet myopathies. The data sets collected for the 

different conditions were divided into 70::30 training set and testing set. The caret package 

algorithm calculated the best-suited tuning parameter or value of cost (C) for both training and 

test data sets. A seed value was set for 3,000 for the SVM analysis. For BPNN classification of 

fillets, Neural net and BBmisc packages were used to classify the collected data sets (WB and 

SM), and the data sets were divided into 70::30 training and testing data sets. Low learning rate 

(0.01), the threshold value (0.01), number of maximum steps (10,000), and 4 hidden layers were 

used in the BPNN classification algorithm for the analysis. 

2.5 RESULTS 

The classification experiment was conducted on two different data sets containing WB 

fillets classified as normal, moderate, severe, and the data containing a classification of normal 

fillets with and without SM. All data sets were analyzed by LDA, SVM and BPNN algorithms 

for classification of WB and SM conditions. In SVM classification experiments, 10-fold cross-

validation with 3 replications was used to determine the best-suited value of cost (C), linear 

kernel function, and various combinations of these parameters defined the data classification 

problem-related prediction accuracy. The results obtained from the SVM classification algorithm 
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(Table 2.2) showed that the percent accuracy for the classification of normal WB fillets in the 

training data was 63.86% and in the test data set was 71.04%, for moderate fillet classification 

the training set showed an accuracy of 49.88% and 59.99% accuracy for test data set, and 

classification accuracy for the severe WB fillets for the training set was 71.78% and the test data 

set was 81.48%. Compared to SVM, the results obtained from BPNN classification analysis 

showed many misclassified data points (lower classification accuracy) for different WB severity 

levels (Table 2.2). However, the BPNN classification analysis of the SM data show a 

classification accuracy of 100% in the training set (Table 2.2). Due to fewer observations, the 

test data set classifications only show a 52.94% accuracy for normal without SM fillets and a 

75% classification accuracy for normal with SM fillets (Table 2.2). Results obtained from LDA 

(Table 2.2) classification, the training set data showed a classification efficiency of 72.31% for 

normal, 43.75% for moderate, and 75% for severe WB breast fillets, and the validation (or test) 

set of data underperformed and showed lower classification efficiency for normal (52.63%), 

moderate (29.41%), and severe WB breast fillets (59.09%). 

2.6 DISCUSSION 

Using only visual and hand palpation characteristics to identify WB and SM muscle 

myopathies poses various challenges when classification is performed on a processing line, such 

as misclassifications, processing inefficiencies and an increase in labor costs. Woody breast is 

found primarily in the superficial area of the breast fillet and many times includes the visual 

presence of surface hemorrhages, a light-yellow surface appearance, a rigid bulged fillet, and by 

mechanically palability of the muscle (Figure   2-5; Mazzoni et al. 2015; Mudalal et al. 2015). 

Additionally, normal breast fillets have smaller cross-sectional areas as compared to WB fillets 

(Huang and Ahn, 2018), with higher collagen content and elevated post processing pH (Petracci 
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et al. 2015; Chatterjee et al. 2016; Clark and Velleman, 2016; Soglia et al. 2016).  SM, on the 

other hand, is related to immature intramuscular connective tissues in the breast meat, and it has 

a lower muscular cohesion that breast meat from unaffected fillets (Figure   2-6; Bowker and 

Zhuang, 2016; Radaelli et al. 2017; Sihvo et al. 2017). The thickness of connective tissues in the 

breast fillets showing SM decreases gradually in the endomysium and perimysium, causing the 

different muscle fibers to deteriorate or have mushy texture (Baldi et al. 2018). Therefore, using 

an assortment of already available complex data, we were able to make improvements to the 

classification of fillets among the WB and SM myopathies. 

Results obtained by training accuracy for LDA (70::30) classification was 72.31%, 

43.75%, and 75.00% for normal, moderate and severe WB (Table 2.2) fillet classification, 

respectively using the BIA and fillet weight data set (n=300).  The testing set was lower in 

accuracy than our training set with only 52.63% normal classified, 29.41% moderate classified, 

and 59.09% severe WB classified (n=300; Table 2.2).  The testing set data was lower in 

accuracy compared to the training set data, possibly due to low sample size and non-linear data 

set.  The non-linear data is likely due to human error during the manual hand-palpation of the 

breast fillets, however, in future studies larger data sets could be implemented to increase the 

accuracy of the BIA method combined with conventional algorithms.  Morey et al. (2020) also 

used LDA (60::40) with a BIA data set (n=120) and reported 68.69 – 70.55% accuracy for 

normal fillets and 54.42 – 57.75% accuracy for severe WB fillets classification in the testing set.  

Wold et al. (2019) analyzed a near infrared spectroscopy (NIR) data set (n=102) using a LDA 

(50::50) classification algorithm with 100% accuracy for fillet classification in the training set 

and 96% accuracy in the testing set, for a rapid on-line detection method for the WB myopathy 

in processing plants. LDA is a well-recognized technique to reduce the dimensionality of data in 
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a dataset. However, LDA can only be used for single-label multi-class categorizations and 

cannot explicitly be extended to multi-label multi-class classification systems. The LDA 

technique is used to convert high-dimensional data into a low-dimensional data space, 

maximizing the ratio of between-class variation to within-class variance, thereby ensuring 

optimal class separation (Pan et al. 2014). The LDA technique works by projecting the initial 

data matrix onto a lower-dimensional region. For the dimensionality reduction, three steps were 

required: (i) the inter-class difference or between-class matrix is used to measure the separability 

across multiple categories (i.e., the distance between the means of different classes), (ii) the 

within-class variance, also known as the within-class matrix, is calculated as the difference 

between the mean and the class samples, and (iii) the creation of a lower-dimensional space that 

maximizes between-class variance while minimizing within-class variance (Mandal et al. 2009). 

In our current research and Morey et al. (2020), the low performance of data collected and 

analyzed using LDA compared to the data collected may have two key factors: small sample size 

and data linearity issues. Su et al. (2017) also found low performance in data sets with small 

sample size and non-linear data.   

The LDA technique is used to find a linear transformation that discriminates between 

various groups. However, LDA cannot find a lower-dimensional space if the groups are non-

linearly separable. In other words, where discriminatory knowledge is not in the means of 

classes, LDA fails to locate the LDA space. One of the significant issues with the LDA 

methodology is the singularity, also known as small sample size or under-sampling. This issue 

arises due to high-dimensional trend classification problems or a low number of training samples 

available for each class compared to the sample space's dimensionality (Huang et al. 2002; Lu et 

al. 2005; Zhuang and Dai, 2005; Su et al. 2017; Tharwat et al. 2017). 
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The ML theory lays the groundwork for SVM, this algorithm has gained widespread 

attention because of its unique performance efficiency, ability to accomplish pinpoint accuracy, 

and managing high-dimensional, multi-variate data sources. Cortes and Vapnik (1995) 

implemented SVMs as a new ML technique for two-group classification problems. Researchers 

have reported that SVMs are economical, sensitive, and easy to use classifier that can be 

implemented in organized evaluation assignments. Inspection of large collected data sets during 

production is a significant application of SVM (Burbidge et al. 2001; Chinnam, 2002). SVM is 

frequently used in various food production environments, including a product monitoring 

systems, mechanical fault detection, and dimensional accuracy (Ribeiro, 2005; Azadeh et al. 

2013; Salahshoor et al. 2011; Çaydaş and Ekici, 2012). SVMs are used in different processing 

areas, including drug designing and discovery, surgery, and cancer treatment, in addition to the 

food product processing industry (Vapnik, 2013). Product quality control (Borin et al. 2006), 

polymer recognition, and other applications are also possible (Li et al. 2009) areas that SVM can 

be incorporated. These examples from different industries demonstrate that the SVM algorithms 

have a broad range of applicability and versatility (Kotsiantis et al. 2007). Present research 

demonstrates the ability for the implementation of SVM and BPNN in combination with BIA 

and fillet weight data to classify WB and SM fillets.  

Statistical Learning Theory (SLT) is a robust and an appropriate supervised learning 

algorithm for production research problems. Under SLT, the algorithmic learning allows it to use 

an achieving function, representing the relationship between different components without being 

directly connected (Evgeniou et al. 2000). The algorithm enquires about the problem concerning 

how well the selected method resolves the problem, and accuracy prediction performance for 

previously unknown inputs, is the subject of SLT (Evgeniou et al. 2000). A few more realistic 
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techniques, such as autoencoders, SVM, and Bayesian optimization, are based on the theories of 

SLT (Battiti et al. 2002). SVM is considered a mathematical expression in its most basic form, a 

method (or algorithm) for optimizing alphanumeric equations, with a given set of data (Noble, 

2006).  

The fundamental idea of SVM algorithmic expression can be easily understood by four 

fundamental concepts: (i) the imaginary hyper-plane, (ii) the margin of hyper-plane, (iii) the soft 

margin, and (iv) the kernel function (Tharwat, 2019). A solid line splits the region in half in two 

dimensions (Figure   2-1A), but we require a hypothetical plane to split the area into three 

dimensions. A hyper-plane is a collective term for a straight line in a high-dimensional region, 

and the dividing hyper-plane is the line that separates the pieces of data (Kecman, 2001; 

Tharwat, 2019). The SVM, on the other hand, differs from other hyper-plane-based classifiers 

based on how the hyper-plane is chosen. Consider the grouping shown in Figure   2-1. By 

implementing SLT, it is easier to find the best possible plane to create the hyper-plane that will 

be used in the data classification (Vapnik, 1963). The capability of the SVM to classify the 

correct data points between given classes can be improved by using an imaginary hyper-plane in 

the space. The SLT theorem implies that the data used to train the SVM originates from the same 

data set as the data used to test it. For example, if a SVM algorithm is trained on sensory 

property of product cannot be used to train the data collected for subjective response of 

consumers. Furthermore, we cannot expect the SVM to work well if training is conducted with a 

SM breast fillet data set, but a WB data set is used for testing.  At the same time, the SLT 

principle does not assume two data sets came from the same class of distributions. For example, 

an SVM does not assume that the training data values follow a normal distribution.  
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For better understanding of SVM and its function, we have concluded an imaginary data 

that for classes A and B which can be divided using a straight line. When the values in a data set 

are closer together or intersected (Figure   2-1B), the SVM will manage this overlapping of data 

by inserting a soft margin. In essence, this causes specific data points to pass across the dividing 

hyper-plane's margin, without influencing the outcome. Use of the soft margin provides the 

solution to the problem of misclassification (shown in Figure   2-1B) by considering the data 

point as outlier (shown in Figure   2-1C). Another essential function for the SVM classification 

is the kernel function (shown in Figure   2-1D and 2-1E), a mathematical trick that allows the 

SVM to perform a two-dimensional classification of a one-dimensional data set. In general, a 

kernel function projects data from a low-dimensional space to a space of higher dimension.  

SVM classification efficiency (Table 2.2) for the separation of high dimensionality data 

showed better classification efficiency for normal (training efficiency 63.86%, testing efficiency 

71.04%), moderate WB (training efficiency 49.88 %, testing efficiency 59.99%), and severe WB 

(training efficiency 71.78%, testing efficiency 81.48 %) compared to the LDA algorithm used by 

Morey et al. (2020). The BIA and fillet weight data set used in training the SVM performed well 

due to the higher dimensionality of the data set. When data is highly dimensional and the sample 

sets are relatively small, SVM analysis is more accurate to classify data and has been used by 

other authors to help classify multi-dimensional data. Barbon et al. (2018) used a relatively small 

data set (n=158) of NIR results combined with SVM (75::25) to classify normal and pale meat as 

it relates to pale, soft and exudative poultry breast meat. They demonstrated the use of SVM as a 

classification tool for breast fillets with muscle myopathies where classification accuracy for 

normal fillets was 53.4% and 72.0% for pale fillets. Geronimo et al. (2019) using an NIR system 

equipped with an image acquisition system found 91.83% classification efficiencies (fillet 
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images) using SVM to analyze a WB fillet sample set (sample size is unclear) using a 70::30 

model. These researchers also used multilayer perceptron (a feed forward network differing from 

the back propagation network in BPNN) to classify the data set and classification accuracy was 

90.67% for WB. Yang et al. (2021) analyzed images derived from expressible fluid of breast 

meat to classify WB using SVM (training and testing ratio is unreported) and DL (training to 

testing is 2 to 1).  These researchers found fewer classification efficiencies for SVM algorithms 

in the testing set (38.25 - 63.89%), compared to the training set (40.41 - 81.94%) for 3 out of the 

4 SVM classification methods used. In their DL classification (a type of ANN) to classify WB 

and reported 100% accuracy in the training set 100% and 93.30% accuracy in the testing set 

Connection of random different nodes or units in a computing system to solve the 

problems that are impossible to solve by conventional statistical methods are known as artificial 

neural network and are based on the human brain circuitry. When applied to a processor 

framework, the subconscious network can execute unique functions (perception, speech 

synthesis, image recognition), which have proven to be useful in industrial applications 

(Alpaydin, 2010). Neural networks allow an automated artificial skill to operate unsupervised 

reinforcement and classification algorithms functions (neural networks) by simulating the central 

nervous platform’s decentralized “data analysis” capabilities through neural networks (Pham and 

Afify, 2005; Corne et al. 2012). Decentralization employs many necessary, interconnected 

neurons or nodes and the capacity to process data through the complex response of these 

endpoints and their links to exogenous variables (Akay, 2011). These algorithms are crucial in 

today’s modern machine learning development (Nilsson, 2005) and can be classified into two 

categories: interpretation and algorithm. Neural networks are used in a variety of industrial 

sectors for a range of problems (Wang et al. 2005) e.g., process control emphasizing their key 
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benefit and overall predictive validity (Pham and Afify, 2005). However, ANN (similar to SVM) 

requires a large sample size to attain maximum precision (Kotsiantis et al. 2007). Overfitting, 

which is linked to high-variance implementations, is universally acknowledged as a disadvantage 

of the ANN Algorithm (Kotsiantis et al. 2007). Other difficulties with using neural networks 

include the sophistication of the generated models, the aversion for missing values, and often the 

lengthy data set training method (Kotsiantis et al. 2007; Pham and Afify, 2005).  

 For BPNN, the data was pre-processed and consisted of just two dimensions with a 

lower level of classification complexity (Panchal et al. 2011). Classification efficiencies for the 

WB fillets using BPNN (Table 2.2) shows that testing data set for normal (47.77%), and 

moderate fillets (23.33%) did not perform well, compared to the classification efficiency for 

severe WB fillets (28.88%). BPNN classification algorithm for the WB fillets did not perform 

well due to the complexity of the data after the pre-processing, and overfitting of the learning 

model due to uneven distribution of weight on the input neuron layer. The BPNN classification 

algorithm for the SM data set (Table 2.2) performed well for the training data set for normal 

(training 100%, testing 52.95%) and SM fillets (training 100%, testing 75.00%), however, due to 

the complexity of pre-processed data, overfitting of BPNN, and small data set the classification 

efficiency of the testing set was lower than the training set.  These studies all use SVM and ANN 

algorithms to classify small sample data sets, where the results always show that the accuracy in 

the training set data was higher than the testing set data, indicating that the training of the model 

is not performing well. Collection of larger data set for the supervised learning methods of 

classification provides the chances for getting lower error rates and better learning ability for the 

machine learning algorithms.  
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In BPNN, the input data vector represents the pattern to be trained, and the output data 

vector represents the optimal set of output values that the network can generate when the training 

pattern is recalled. The aim of BPNN training is to reduce the total error between the network's 

expected and real outputs (Panchal et al. 2011). To generate a reduction in error, the residual 

differences in the weights at each iteration must be unmeasurable. A learning rate metric, which 

reflects the rate of the move taken toward minimal error, must be defined in order to accomplish 

a reasonable training period. Learning will take too much time if this amount is too small, and if 

it is too high, the loss function will degenerate and errors will rise (Ganatra et al. 2011). When 

using neural networks to analyze woody breast data, overlearning or overfitting happened when 

the algorithm took too long to run, and the network was too complicated for the problem or the 

amount of data available. Whereas, to classify SM in a group of fillets, BPNN was used, and data 

is processed differently.  

 

 

2.7 CONCLUSIONS 

This project demonstrates the application of ML in poultry production processes to 

categorize chicken breast fillets into groups based on severity of myopathy. The use of SVM and 

BPNN can be combined with BIA and fillet weight data to more accurately classify breast fillet 

myopathies, such as, WB and SM from normal breast fillets in real-time on-line, compared to the 

subjective hand palpation method. With the implementation of other meat quality parameters, 

such as water content, classification accuracy of the SVM and BPNN could be improved. To 

obtain a well-trained model for classification efficiency and to reduce overfitting and underfitting 

problems related to classification, future research will include larger data sets for breast fillet 
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myopathies to avoid the overlapping of conditions caused by human error in the sorting of the 

fillets.  The innovative combination of these tools has the potential to improve poultry processing 

efficiencies and downgrades of breast fillets affected by undesirable myopathies, while reducing 

customer complaints. 

2.8 CONTRIBUTION TO THE FIELD STATEMENT: 

There has been a drastic increase in consumption of animal protein worldwide in the last 

couple of decades. Consumption per capita had increased from 10 kg in the 1960s to 26 kg in the 

2000s and is predicted to reach 37 kg by 2030. The high demand for chicken meat is due to 

physicochemical and sensory characteristics including texture, color, and taste. Hand-palpation is 

the only low cost tool for categorizing the severity of WB fillets, however, it is arbitrary, 

problematic, and has a large error in classifications. Industries must now develop strict criteria 

for improved fillet sorting in order to minimize losses due to misidentification. Machine learning 

has been used effectively in process optimization, output monitoring and control, and predictive 

maintenance. These methods of artificial intelligence have been commonly used to improve 

quality management in manufacturing processes in other sectors of the food industry.  Through 

this investigation, supervised machine learning techniques, such as, SVM and BPNN 

applications have a strong ability to accurately classify breasts fillets into myopathy categories. 
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 2 

Figure   2-1: Representation of two class data using hyper-plane for support vector machine 3 

(Siddique et al. 2021) 4 

  5 

Figure   2-2: Representation of two class data in dimensional space for LDA analysis to 6 

maximize the classifiable data on the hyper-plane. This Figure   adapted from Fisher (1963). 7 
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 10 

Figure   2-3: Back propagation neural network classification for input, hidden and output layer. 11 

This Figure   was adapted from Rumelhart et al. (1986). 12 
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 16 

Figure   2-4: Hand-palpation method for identifying severity of woody breast myopathy in breast 17 

fillets. 18 

 19 

 20 
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Figure   2-5: Spaghetti meat condition in chicken breast fillets. 23 

 24 

 25 

Figure   2-6: Severe woody breast fillet in the collected samples. 26 

 27 
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Figure   2-7: Hand-held Bioelectrical impedance device to measure the severity level of fillets 29 

 30 

 31 
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Table 2.1: Different subjective scales used for the classification of woody breast meat 

Woody Breast Subjective 

Classification Scale1 Condition Description 

2 Point Scale 
Normal No toughness or Hardness 

Severe Tough fillets 

   

3 Point Scale 

Normal No toughness or Hardness 

Moderate Medium toughness up to 50% 

Severe More than 50% toughness 

   

4 Point Scale 

Normal No toughness or hardness 

Mild Hardness at cranial region 

Moderate 

Filets extremely hard and rigid through from 

cranial region of caudal tip filets that were hard 

throughout but flexible in mid-to caudal region 

Severe More than 50% of fillet area is woody 

12 point scale (Sihvo et al. 2014), and 3 point scale (Sihvo et al. 2014), 4 point scale (Tijare et al. 2016)   
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Table 2.2: Percentage classification efficiency for various supervised machine-learning algorithms (Linear Discriminant Analysis, 

Support Vector Machines, and Back Propagation Neural Networking) for breast fillets with woody breast. 

 

Classification Method Subjective Classification 

Accuracy 

Training (%) Testing (%) 

Woody Breast Meat    

Linear Discriminant Analysis 

Normal 72.31 52.63 

Moderate 43.75 29.41 

Severe 75.00 59.09 

Support Vector Machines 

Normal 63.86 71.04 

Moderate 49.88 59.99 

Severe 71.78 81.48 

Back Propagation Neural Networking 

Normal 50.00 47.77 

Moderate 29.04 23.33 

Severe 20.95 28.88 

Spaghetti Meat    

Support Vector Machines 
Normal fillet without spaghetti 69.38 50.00 

Normal fillet with spaghetti 53.33 50.00 

Back Propagation Neural Networking 
Normal fillet without spaghetti 100.00 52.95 

Normal fillet with spaghetti 100.00 75.00 
1n=300 (Normal=148, Moderate=82, Severe=70) 

2n=84 
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3.1 ABSTRACT: 

Bioelectrical impedance analysis (BIA) was established to quantify diverse cellular 

characteristics. This technique has been widely used in various species, such as fish, poultry, and 

humans for compositional analysis. This technology was limited to offline quality 

assurance/detection of woody breast (WB); however, inline technology that could be retrofitted 

on the conveyor belt would be more helpful to processors. Freshly deboned (n = 80) chicken 

breast fillets were collected from a local processor and analyzed by hand-palpation for different 

WB severity levels. Data collected from both BIA setups were subjected to supervised and 

unsupervised learning algorithms. The modified BIA showed better detection ability for regular 

fillets than the probe BIA setup. In the plate BIA setup, fillets were 80.00% for normal, 66.67% 

for moderate (data for mild and moderate merged), and 85.00 % for severe WB. However, hand-

held BIA showed 77.78%, 85.71%, and 88.89% for normal, moderate, and severe WB. Plate BIA 

setup is more effective in detecting WB myopathies and could be installed without slowing the 

processing line. Breast fillet detection on the processing line can be significantly improved using 

a modified automated plate BIA. 

Keywords: bioelectrical impedance; hand palpation; in-line processing; supervised learning; 

unsupervised learning; woody breast  

3.2 INTRODUCTION 

Poultry is a widely consumed form of protein in the United States, followed by beef and 

pork (NCC, 2020). According to the National Chicken Council, approximately 113.58 lbs. of 

total poultry meat will be consumed per person by 2022, which is more than almost any other 

country (NCC, 2020). Consumers primarily choose poultry meat because of the nutritional and 
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functional characteristics, including consistency, appearance, and taste (Petracci et al. 2013). 

Additionally, markets are constantly shifting due to customer preferences and expectations, 

guiding the industry to produce greater volumes of trimmed chicken meat. Poultry breeders have 

boosted growth rates of birds through combination of feeding programs, genetic selections, and 

improvement in animal husbandry practices to meet the growing market pressure for white meat. 

Consumer demand for improved quality poultry white meat has increased overall carcass output 

(Petracci and Cavani, 2012). Nonetheless, fast-growing birds with greater breast meat yields 

have developed myopathies in their breast muscles, resulting in meat quality problems such as 

WB (Figure   3-1). According to Lui et al. (2020), the global occurrence of WB is estimated at 

20% and may be increasing. With many factors influencing meat quality, the most important 

factors focus on appearance, water retention capacity, color, and texture of the meat (ElMasry et 

al.2012). Fresh poultry meat characteristics can influence the sensory qualities or consuming 

behavior of a product and its acceptability by consumers (Fletcher, 2002). 

Woody breast (WB) is a myopathic condition that has plagued the broiler meat industry 

for years (Morey et al.2020). Woody breast in chicken breast fillets can be found at various 

levels of severity (Kuttappan et al. 2016). In a recent survey conducted by de Almeida Mallmann 

(2020), moderate and severe WB increased by 10% (from 25% to 35%) in chicken breeds with 

increased yield, and a 5% increase was observed (25% to 30%) in mild WB fillets (Morey et 

al.2020). Barbut (2020) have estimated that severe WB instances have detrimental to the poultry 

industry resulting in annual losses of $200 million and are estimated to reach $1 billion each year 

in North America (Barbut, 2020). Therefore, various systems have been implemented to identify, 

characterize, and classify chicken breast fillets based on WB myopathic severity (Chatterjee et 

al. 2016; Tijare et al. 2016; Petracci et al. 2019; Geronimo et al. 2019). To limit time and effort, 
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inline non-destructive identification of these myopathic conditions is needed for both small and 

large-scale poultry processors (Wold et al. 2019). There have been several studies conducted that 

evaluate different approaches for rapid and accurate identification of myopathic fillets including 

computer image recognition systems, Near-infrared (NIR) spectrographic analysis, and a 

combination of low-coherence interferometry and hyperspectral imaging (HSI) (Petracci et al. 

2019; Wold et al. 2017; Yoon et al. 2016; Kyle et al. 2004). The major advantage of these 

systems is that they can detect myopathy fillets without contacting the fillets unlike BIA wherein 

the electrodes have to touch the meat. However, computer vision systems separate myopathy 

meat based on the image of the fillet but analyzing the biochemical component of the meat 

would be a better predictor for detecting meat myopathies. Technologies such as HIS and NIR 

have shown promise as they analyze the biochemical characteristics of the breast fillets but they 

require equipment with large footprint, need complex data pre-processing prior to data analysis. 

The BIA technology used in the current study is a simple 4-electrode hand-held device which 

can be retrofitted in conveyor belts (as studied) so the device has a versatile form factor, it is 

easy to use and generates resistance and reactance data for myopathy fillet classification.  

The primary working principle of BIA is based on the resistance property of a conducting 

material or wire, which is inversely proportional to its cross-sectional area and directly 

proportional to its length. However, the differences in material attributes, such as their form, 

shape, density, and composition, alter the rate of impulse conductance (Wold et al. 2019). 

Conductivity of an electric current is determined not only by the physiological portion of the 

cytosol, but also by the frequency response used in the prediction. Thus, signals can shift due to 

minor changes in muscle anatomy (Wold et al. 2017; Kyle et al. 2004). Several recent exome 

sequencing, meta-proteomics, and proteomics investigations have discovered several variables 
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such as oxidative stress and changes in intracellular calcium that may contribute to the 

development of WB (Abasht et al. 2019; Abasht et al. 2016; Greene et al. 2019; Lee et al. 2015; 

Wang et al. 2020). 

Bioelectrical impedance analysis technology has been utilized in many species to 

determine physical composition and qualities, such as total body fluid content and fat content, by 

measuring electrical resistance or impedance. In the food industry, BIA parameters can be 

adjusted to specific species, and it has been utilized in fish for quick detection of proximate 

composition and pre-harvest conditions to improve fish quality (Nyboer et al. 1950; Hoffer et al. 

1969; Cox et al. 2011; Hartman et al. 2015). Morey et al.(2020) and Siddique et al. (2020) have 

reported that BIA may be used to successfully detect WB fillets as an alternative to hand-

palpation, reducing hand classification mistakes and increasing accuracy of detecting WB. 

Furthermore, BIA can detect other overlapping breast muscle myopathies, such as 

spaghetti meat, which is a myopathic condition impacting the chicken industry. Classification 

using BIA data can be improved using advanced data analytic technologies such as machine 

learning (ML), which includes data mining, artificial neural networks (ANN), deep learning 

(DL), and artificial intelligence (Siddique et al.2021). Siddique et al. (2021) reported that 

machine learning techniques such as Support Vector Machines (SVM) and backpropagation 

neural network (BPNN) classification algorithms could be another approach to classify the 

myopathic fillets based on severity levels (Siddique et al. 2021). 

This research aims to assess the performance of two different bioelectrical impedance 

analysis (BIA) (Figure   3-2 & 3-3) device setups as a prospective quantitative approach to 

detect WB fillets with differing severity degrees to develop an inline WB detection system. The 

presented article is divided into subsections on detailed descriptions materials and methods used 
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in section 3.3; section 3.4 describes Data analysis; section 3.5 describes results and discussion, 

and section 3.6 concludes the research. 

3.3 MATERIALS AND METHODS 

For the proposed experiment, 56-day-old broilers (Ross 708) deboned chicken breast 

fillets (n = 80) were obtained from a commercial poultry processor and transported to department 

of poultry sciences at Auburn University. Chicken breast fillets were categorized (Figure   3-1) 

by an experienced team member based on WB severity (normal, moderate, and severe) using 

hand palpation. During the hand-palpation technique, an experienced team member inspected 

each chicken breast fillet based on the perceived hardness in the three WB categories. The CQ 

Reader (Seafood Analytics, Version 3.0.0.3, Clinton Town, MI, USA), with four spring-loaded 

electrodes (2 receiver probes and two electrical signals sending probes), was used to collect data 

from an inbuilt algorithm of the equipment (RJL Systems, Detroit, MI, USA). Four electrodes 

were inserted into the geometric center of each breast fillet along the ventral surface (Figure   3-

2). The device then measured the response for fat indices and protein indices data, resistance, and 

reactance and retrieved the encrypted data for assessment (Seafood Analytics Certified Quality 

Reader, Version 3.0.0.3, Seafood Analytics, MI, United States). Weighing balance (OHAUS 

Corporation, Pine Brook, New Jersey, United States) was used to measure the weight of separate 

fillets, and the acquired data was used in the analysis. 

3.3.1 k-Means Clustering (k-Means) 

Clustering is a powerful approach to information retrieval and machine learning algorithms for 

predicting and summarizing data. It has been used effectively in diverse industries, including 

product differentiation, social platform analysis, document classification, and image 
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classification in the food industry. The goal of Clustering aims to put similar observations 

together and separate dissimilar ones (Pérez et al. 2013; Wang and Fleury, 2011; Liu et al. 2011; 

Baker, 2010; Dehariya et al. 2010; McCallum et al.2010; Aliguliyev, 2009; Van and Hoijtink, 

2009; DeSarbo et al. 1988).   

Clustering algorithms are valuable for many applications, but their capabilities are 

severely constrained. If each observation is assigned to a single cluster, then the data is explained 

by all aspects of k and distinct clusters. As a rule of thumb, discontinuous data splitting is not 

always the most accurate way to represent it. It is possible to have numerous clusters in the same 

observation area (Jain, 2010). The discontinuous segmentation is not always the best 

representation of the analyzed information because the data can have a significantly larger and 

more sophisticated hidden interpretation (Mustafi and Sahoo, 2019; Celebi et al. 2013; Singh et 

al. 2013; Wu and Kumar, 2009; Jain et al. 1999). In a given a data set, k-means algorithms 

(Figure   3-5) were applied to the points in a d-dimensional space in which X = {x1; x2 . . .  xn}, 

in RD, i.e., N points (vectors) each with different D components in the data frame, partitional 

algorithms used in k-means clustering divides X into K full attributes, and mutually referenced 

clusters P= {P1, P2; . . . ; PK}, Ui−1
k Pi = X, Pi ∩ Pj = 0 for1 ≤ i ≠ j ≤ K. This algorithm 

generates the clusters by optimizing function and the sum of squared error can be explained as 

(Wu and Kumar, 2009; Singh et al. 2013):  

                                                 SSE =∑ ∑ ‖xj − Ci‖2
2

xj∈P

k

i=1

                         (1) 

 

Where ||xj-ci||
2 represents the Euclidean norm and ci = 1 ∕ |Pi|∑ xj

xj∈Pi

 denotes the cluster 

centroid (Pi), whose property of the data group is |Pi|. The minimal optimization of the above 
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equation is also well known as the problem of minimum sum of squared error (SSE) clustering. 

The resulting k-means algorithm clusters for each data point get clustered into “one and only one 

of the k partitions”. Data points with the same cluster-ID are in the same clusters and vise-versa 

(Singh et al. 2013). For the initialization of k-means clustering algorithms, the initial k value is 

needed based on prior knowledge about the data, how many clusters are needed for the whole 

data set, and the number of clusters found by exploration data analysis (EDA) (Singh et al. 

2013). The k-means algorithms represented in equation 1 start to cluster in a repetitive process in 

two alternative manners: (i) cluster-ID is assigned to each data point in the vector space, and (ii) 

updating the clusters as the data point changes in dimensional space. This process continues until 

there is no change in the data point position. The number of continuous repetitive steps may 

depend on vector points (N). Due to the linear comparison of data, the nature of k-means 

algorithms in the dimensional space also shows the linear dimensionality of data. The working 

algorithm of the k-means cluster follows these steps: 

Input: Data set (D) and initial cluster values depending on the prior knowledge, i.e., based on 

experience or exploratory data analysis. Output: Set a cluster representative P in the vector space. 

Repeat: Assign the data points to the closest cluster mean and update the cluster ID of jth point 

in the data set.  

Relocation of means: Update P so that Pj is the mean of the jth cluster until the whole algorithm 

converges in equation 1 with minimum local optima. 

3.3.2 Fuzzy c means (FCM) 

Using fuzzy logic principles makes it possible to group highly dimensional data into 

clusters, assigning each point a percentage of membership in each cluster center between 0 and 

100% (Jiang et al. 2004). Compared to typical hard-threshold clustering (k-means), in which 
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every point is allocated a clear, accurate identity, FCM could provide improved clustering 

outcomes in certain types of datasets that don’t lend themselves to traditional clustering 

approaches. This approach operates by assigning participation to each data point belonging to the 

nearest centroid on the basis of the distance between both the nearest cluster and the target value, 

calculated using a distance matrix (Swanson et al. 1998). The closer the data is to the nearest 

cluster, the greater the likelihood that it will belong to those specific centroids. The sum of each 

data point is entirely participation-based and should always be equal to one (Yong et al. 2004). 

FCM is an unsupervised clustering approach used extensively for selecting features, 

clustering, and classifier designing challenges in astronomy, chemistry, geophysics, and medical 

diagnosis (Rao and Vidhyavathi, 2010; Fix and Hodges, 1989). A clustering technique built on 

the Ruspini Fuzzy clustering concept was introduced in the 1980s due to the evolution of fuzzy 

theory (Dai et al. 2012). This technique is used to analyze the data coordinates based on their 

distance from each other. For each grouping, the centroids are constructed depending on the 

spacing amongst sample points in the original data set. Developed algorithm for the fuzzy c-

means clustering is as follows (Fix and Hodges, 1989; Dai et al. 2012): 

Step 1. Calculate the center of the given data set 

vij =∑ (uik)
mxkj

n

k=1
∑ (uij)

mn

k=1
⁄                                                           (1) 

Step 2. Calculate matrix distance (D[c,n]) 

                      Dij = (∑ (xkj − vij)
2m

j=1
)

1
2⁄

                                  (2) 

Step 3. Updating of partition matrix for nth step as  
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n−1 =
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∑ (dik
n ∕djk

n )

2
m
−1

j−1 )

 
 

                                                      (3) 

Termination of fuzzy c means the algorithm only takes place when the algorithm reaches ||U(k+1)-

U(k)||<δ, if not achieved, the algorithm returns to step 2 and re-executes until the conditions are 

being met by updating the centroid continuously (Fix and Hodges, 1989).  

3.3.3 K-Nearest Neighbor (k-NN) 

The K-nearest neighbor (k-NN) technique was developed to perform statistical 

techniques when valid parametric estimates of probability densities are unknown or difficult to 

calculate. Fix and Hodges (1989) presented a non-parametric design data classification approach 

in 1951 through an unpublished paper by the US Air Force School of Aviation Medicine, which 

had established as the k-nearest neighbor rule (Sun and Huang, 2010) and was further developed 

by Thomas Cover in 1967. A new observation is classified depending on how comparable it is to 

other observations already analyzed (Bernal et al. 2021). According to its neighboring labels, this 

classification is performed. Several industries, including cyber and information securities, 

aviation industry, valuable life forecast, defect categorization, nephropathy diagnosis in children, 

and infiltration prevention systems, have been implemented using the k-NN method (Zhang et al. 

2021; Hu et al. 2016; Vapnik, 2019; Maji et al. 2008). 

For understanding the concept and working principle of k-NN, let us suppose that we 

have a data set for different conditioned myopathic chicken breast fillets represent resistance and 

reactance (Figure   3-6, blue points represent resistance and red points represents reactance. Now 

suppose that we added a new data point for resistance and reactance  and were told that the new 

fillets value in the dataset in class is a severe woody breast (value represented by square box, 
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Figure   3-6, let’s see if the k-NN algorithm will be able to identify the class by input data. For 

the classification of new data point k-NN general rule must be followed as (Bernal et al. 2021; 

Romeo et al. 2020; Dai et al.2012; Sun and Huang, 2010).  

Step 1. Input: V, Vl, c, i.e., V = training data set, Vl = labels of data set, c = sample data point 

that needs to be classify 

Step 2. For v to training data set size do: Compute the distance between training data set and 

sample data point d (Vi, c). 

Step 3. End For loop: Select the desired number of clusters of nearest neighbors, arrange the 

computed distance in increasing order, and count the number of occurrences for each label in top 

k-neighbors.  

Step 4. Output: Assign c to the most occurring label (l) 

The k-nearest-neighbor classifier is based on the Euclidean distance between a test sample and 

the specified training samples. The Euclidean distance between sample Vi and Vl (l=1,2,…,n) is 

defined as d(Vi,Vl)= √(Vi1−Vl1)2+(Vi2−Vl2)2+⋯+(Vip−VlN)2 [51]. After the computation of 

the new data set and evaluation of distance between the original training data set and test dataset, 

we can decide based on the neighbors that where the new data point belongs to (Figure   3-6. In 

Figure   3-6 the new observation is classified as severe fillets with minimum numbers of k-

neighbors (k=2). For k=2 closest neighbors are in small circle. It can be clearly observed that if 

k=2, two of the neighbors are severe, so the new data point would also be classified as severe. 

So, for the classification of new data point added into the data set will get classified as severe 

fillet. However, this does not imply that K=2 is the highest performance quantity for the dataset; 

more additional observations should be classified with other K values to identify the quantity 

with the optimum overall performance from the data set. 
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3.3.4 Support Vector Machines (SVM) Algorithms 

Vapnik (2019) proposed the SVM method for the first time in 1995, and it has received a 

tremendous amount of attention from the machine learning applications community. Many 

studies have found that the SVM approach outperforms other data classification algorithms 

depending on the data type regarding classification accuracy compared to other methods 

(Murphy and Monteiro, 2013; Lukaski, 1987). For data set categorization, SVM generates a line 

between two or more classes, referred to as hyper-planes. SVM aims to discover a hyperplane 

that can separate two classes of provided data with a maximum margin while still offering the 

best generalization capability for a two-class linearly separable learning assignment. It provides 

highly accurate results on the training dataset and high predicting accuracy for the new dataset 

from the same population as the training dataset (Siddique et al.2021). A detailed working 

principle for SVM algorithm can be found in Siddique et al.(2021). 

3.3.5 Bioelectrical impedance Analysis 

Samples collected from local processors were placed on non-conducting surface for BIA 

analysis. The resistance and reactance qualities of myopathic conditioned fillets were measured 

with a hand-held BIA device and Plate BIA device (Seafood Analytics, Clinton Town, Michigan, 

United States) on the upper surface of the chicken breast filet. Both BIA unit is made up of four 

electrodes: two signal electrodes and two detecting electrodes. These electrodes are connected to 

an AC current of 800 µA and 50 kHz, and they are able to produce voltage fluctuations ranging 

from 3.75 V to 10.60 V (Morey et al. 2020). Electrodes that are used in the collection of data 

were made of stainless steel and are used to complete the circuit between the chicken breast 

fillets and the four electrodes (RJL Systems, Detroit, MI, United States). In hand-held BIA, 

device was held in hand to perform compression-based analysis (Figure   3-2) while on the other 
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hand samples were place on plate BIA to collect the data (Figure   3-3). As soon as the 

electrodes come into contact with the item being tested, the circuit is completed, and the 

instrument begins to take two sets of measurements. 

3.4 DATA ANALYSIS 

Data were analyzed using two different BIA configurations (Hand-held and Plate setup) 

and analyzed for descriptive summary of collected values on plate BIA for Resistance, 

Reactance, and Breast fillet weight using SAS software (Version 9.4, Cary, NC, USA) using 

Tukey HSD means value. Data collected from both BIA setups was subjected to R Software and 

jmp16 Pro (Version 16.0, Cary, NC, USA) by implementing the unsupervised (k-means 

clustering, Fuzzy c-means clustering) and supervised learning algorithms (K-nearest neighbor, 

SVM) to evaluate the accuracy of equipment for the detection of WB in chicken breast fillets. 

Clustering method was implemented in our data set to observe the identification efficiency of 

both BIA in classification of myopathic fillets without using labels or using any supervision. The 

collected data used in the analysis had 3 dimensions i.e., resistance, reactance, and weight of 

individual fillets. For k-means and FCM analysis for the BIA collected data R software (Version 

4.2.0, Vigorous Calisthenics) was used with set replicability of 3000 using set seed command.  

For the development of supervised learning algorithms using  k-NN models the data were 

randomly divided into 55::45 training and testing sets using validation options in jmp 16 

Pro.  For the SVM analysis of collected data, caret package was used in R software (Version 

4.2.0, Vigorous Calisthenics).  The caret package algorithm calculated the best-suited tuning 

parameter or cost (C) for both the training and testing data sets. A seed value (replicability) was 

set for 3,000 for the SVM analysis.  
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3.5 RESULTS AND DISCUSSION 

Table 3.1 illustrates the differences in multiple factors determined by different BIA 

setups among the different severity categories of WB meat. In Table 3.1, there are statistically 

significant differences (p < 0.05) in the resistance and reactance for normal chicken breast fillets 

and moderate breast fillets, but no there were no significant differences observed between normal 

fillets and severe WB fillets in hand-held BIA collected data (Table 3.1). Our results for plate 

BIA and hand-held BIA setup agree with the study conducted and reported by Morey et al. 

(2020), in which authors have found lower resistance and reactance value for normal chicken 

breast fillets as compared to severe chicken breast fillets and vice-versa. Reactance and 

resistance are affected by the compositional content of a product. They are measurements of a 

substance's capacity to accommodate a charge and carry or conduct electrical charges, 

respectively (Maji et al. 2008). Histological changes in growing birds can alter the water 

distribution within the muscle structure, which influences or changes the electrical properties of 

chicken breast fillets. In our presented data, there were no statistically significant differences 

observed in resistance and reactance values for normal chicken breast filets (72.89 Ω and 25.76 

Ω, respectively) compared to severe WB filets (70.60 Ω and 21.76 Ω) for hand-held BIA 

collected data. 

On the other hand, data collected from plate BIA showed that normal chicken breast 

fillets have a resistance of 103.34 Ω and severe WB fillets have an average resistance of 112.02 

Ω. Kyle et al. (2004) have mentioned that at lower frequencies, muscles and their other 

components, such as fatty tissues and peptide residues, acts as an insulator and do not allow the 

flow of electrical charges, which in results forces these electrical charges to flow from alternative 

components of the cell, i.e., extracellular fluid. Authors have also mentioned that increasing non-
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conducting suspended elements in water will also increase the resistance capacity of the fluid 

system. Severe WB fillets have a high amount of extracellular fluid. They have these non-

conducting suspended components, which ultimately increase the resistance of WB fillets as 

compared to normal chicken breast fillets (Siddique et al.2021; Morey et al. 2020; Kyle et al. 

2008; Lukaski, 1987). 

The classification experiment was conducted on two different BIA configurations 

generating data sets for WB fillets classified as normal, moderate, and severe. In the k-means 

clustering algorithm (unsupervised method), three clusters were formed using resistance, 

reactance, and weight of fillets. The k-means clustering results for the plate BIA data showed 

that the average distance value of each observation from the center of clusters one, two, and three 

ranged from 0.14 to 2.50 for normal fillets, 0.45 to 3.83 for moderate fillets, and 0.46 to 5.09 for 

severe fillets (Table 3.1). The first cluster means for the plate BIA method for resistance, 

reactance, and weight is 101.25 ± 13.13 Ω, 27.06 ± 5.67 Ω, and 426.68 ± 44.17 gm, respectively; 

the second cluster means for resistance, reactance, and weight is 109.62 ± 11.66 Ω, 34.66 ± 6.71 

Ω, and 556 ± 44.84 gm, respectively; the third cluster means for resistance, reactance, and 

weight were 143.21 ± 8.73 Ω, 56.25 ± 5.21 Ω, and 542.28 ± 67.95 gm, respectively (Table 3.5).  

Hand-held BIA cluster data classification showed that the average distance value of each 

observation from the center of clusters one, two, and three ranged from 0.04 to 4.73 for normal 

fillets, 0.07 to 2.22 for moderate, and 0.20 to 7.49 for severe fillets. The first cluster means for 

the hand-held BIA method for resistance, reactance, and weight is 64.52 ± 4.88, 19.78 ± 4.71, 

and 571.36 ± 38.29, respectively; the second cluster means for resistance, reactance, and weight 

is 81.71 ± 5.91 Ω, 31.80 ± 3.33 Ω, and 444.12 ± 52.44 gm, respectively; the third cluster means 

for resistance, reactance, and weight were 70.75 ± 3.04 Ω, 21.63 ± 4.47 Ω, and 475.26 ± 
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33.10gm, respectively (Table 3.6). Generally average distance values in clustering are not very 

informative but it can provide us with an idea that how much the clusters are separated from each 

other. More the average distance between the clusters better is the clustering results. In our 

presented data for k-means clustering results for hand-held BIA showed better average distance 

value for clusters of normal fillets and severe fillets as compared to the data collected for plate 

BIA. Data obtained from plate BIA indicates that 18.75% normal, 13.75% moderate, and 22.50% 

severe WB fillets were placed in cluster 1; 6.25% normal, 7.50% moderate, 23.75% severe fillets 

were placed in cluster 2; and 1.25% normal, 0.00% moderate, and 6.25% of severe fillets were 

placed in cluster 3 (Table 3.5).  

However, data obtained for hand-held BIA concluded that 2.50% normal, 6.25% 

moderate, and 26.25% severe WB fillets were clustered in cluster 1; 8.75% normal, 2.50% 

moderate, 6.25% severe WB fillets were clustered in cluster 2; 15.00% normal, 12.50% 

moderate, and 18.75% severe fillets were clustered in cluster 3 (Figure   3-4). Based on the 

optimal number of clusters (k=3) needed for better clustering average Silhouette Index value for 

plate BIA and hand-held BIA was 0.7688 and 0.8036, respectively. Indicating that k-means 

clustering analysis performed on both BIA data set creates dense and compact clusters with less 

overlapping between cluster data points. Separate and compact clusters clearly indicated that 

both BIA devices are capable of identifying myopathic conditions in non-labeled data with some 

degree of overlapping. 

 Fuzzy c means membership analysis showed that hand-held BIA data for chicken  breast 

fillets were clustered as 15% normal, 5% moderate, 12.5% severe in cluster one, 2.5% normal, 

5% moderate, 15% severe in cluster two, and 10% normal, 13.75% moderate, and 25% severe in 

cluster three compared to plate BIA data in which chicken breast fillets were clustered as 7.5% 
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normal, 12.5% moderate, 25% severe in cluster one, 2.5% normal, 5% moderate, 15% severe in 

cluster two and 15% normal, 5% moderate, and 12.5% severe in cluster three (Figure   3-4). 

Data analyzed for hand-held BIA showed that the probability of normal fillets in cluster 1 to 

cluster 3 ranges from 9.09% to 54.5%; probability percentage for moderate fillets in cluster 1, 2, 

and 3 ranges from 21.0% to 57.8% and severe fillets in three distinct clusters were ranged from 

23.8% to 47.6%. On the other hand, plate BIA analyzed data for FCM clustering showed that 

probability percentage for normal, moderate and severe conditioned myopathic fillets ranges 

from 10% to 60% (Table 3.2).   Fuzzy c means is a soft clustering method in which it keeps all 

the observation values in each cluster although they belong to different clusters at the same time. 

Hand-held BIA collected data showed much better separated clusters Dunn's Coefficient value 

compared to plate BIA collected value. Dunn's coefficient value for hand-held BIA data was 

0.775, and for plate BIA data was 0.741. Clusters formed by the hand-held BIA dataset 

(Supplementary file, FIGURE   3-7) showed better cluster formation than plate BIA data 

(Supplementary file, FIGURE   3-8). Cluster achieved reduction for hand-held BIA observation 

was 82.08%, and for the plate BIA data was 77.87%. Hand-held BIA data showed a better fuzzy 

Silhouette Index value at k=3 (as compared to plate BIA data (Hand-held BIA fuzzy Silhouette 

Index value = 0.803 and Plate BIA fuzzy Silhouette Index value =0.768) (supplementary file, 

FIGURE   3-9 & FIGURE   3-10). 

The k-NN is an occurrence-based classification algorithm that distinguishes a new data 

point by analyzing it with an already stored value in the system that has been employed as the 

training set to analyze it with a screening set value. As indicated in table 3.3, k-NN successfully 

classified both BIA data sets with superior efficiency in the testing set despite overlapping 

resistance, reactance, and fillets weight data displayed in density (Supplementary file, FIGURE   
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3-11, FIGURE   3-12 & FIGURE   3-13). The k-NN analysis for hand-held BIA setup showed 

better classification performance based on instance in the testing data set (normal = 50%, 

moderate = 42.90%, and severe = 87.50%) especially in comparison with the training data set 

(normal= 38.50%, moderate = 10.0%, and severe = 67.70%), and for plate BIA the 

categorization efficiency for testing set was 40.0% for normal, 25% for moderate, and 78.60% 

for severe fillets. Both classification efficiencies were reported in the k-NN algorithm. The 

trained model was observed to be efficient in classification during the testing stage. Results 

obtained by training accuracy of both BIA methods for k-NN classification were 38.50%-31.30% 

(Hand-held BIA-Plate BIA) for normal fillets, 10.00%-7.71% (Hand-held BIA-Plate BIA) for 

moderate, and 57.70% -57.10% (Hand-held BIA-Plate BIA) for severe fillets classification 

(Table 3.3), respectively using the BIA parameters and fillet weight data set (n=80). The testing 

set was found to be higher in accuracy as compared to our training set with 40.00%-50.00% 

(Plate BIA - hand-held BIA) normal classified, 25.00%-42.00% (Plate BIA - hand-held BIA) 

moderate classified, and 78.60% - 87.50% (Plate BIA - hand-held BIA) severe WB classified 

(n=80; Table 3.3). The testing set data was higher in accuracy than the training set data, possibly 

due to the nature of myopathic fillets i.e., presence of extracellular fluid in severe WB fillets and 

also the nature of algorithm used. The k-NN algorithm, which is completely based on instance-

based counting method for the number of observations used in the training set and then assigning 

the next upcoming value-based to a most voted group called as neighbors. A higher classification 

was observed in the both BIA setup for the k-NN algorithm for the testing. Normal fillets 

showed 50.00%, moderate fillets showed 42.90%, and Severe fillets showed 87.50% of 

classification than in the training set classification labels (Table 3.3).  
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The results obtained from the SVM classification algorithm showed that the percent 

accuracy for the classification of normal WB fillets in the test data set was 80.00%, for moderate 

fillet classification, the testing set showed an accuracy of 66.67%, and classification accuracy for 

the severe WB fillets for test data set was 85.00% (Table 3.4). On the other hand, the data 

collected for the hand-held BIA system, analyzed using SVM analysis, showed the following 

classification efficiency in  testing data sets for normal fillets were 77.78%, for moderate fillets 

were 85.71%, and severe fillets were 88.89% respectively (Table 3.4). Due to the nature of 

uneven random distribution of data points in training and testing split method, we have also 

performed the k-fold cross validation technique to determine the overall accuracy of the 

developed SVM model for two different BIA datasets. Our results indicated that at  the cost 

function of C=1.5, with  repeated cross-validation accuracy for the hand-held BIA data was 

92.05% (Supplementary file, FIGURE   3-14) while on the other hand for plate BIA was 93.11% 

(Supplementary file, FIGURE   3-15) with the cost function of C= 0.5. Confusion matrix table 

showed the number of test fillets correctly classified based on the labels (Table 3.7). A total 

number of 34 fillets were randomly selected for testing data set which includes 9 normal fillets, 7 

moderate fillets, and 18 severe WB fillets in hand-held BIA data while on the other hand, 6 

normal fillets, 9 moderate fillets, and 20 severe WB fillets were selected for plate BIA data. 

Confusion matrix table (Table 3.7) shows that from hand-held BIA testing data set two fillets 

were mis-classified from normal category, one fillet from moderate condition was mis-classified 

in normal category, and two fillet from severe WB condition to normal and moderate category. 

In plate BIA collected data, one fillet was mis-classified in moderate category, for moderate 

fillets, two fillets were classified in severe fillets, and one fillet was classified in normal 

category. For severe WB fillets, 3 fillets were mis-classified in normal category.  
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Based on analyzed data for hand-held BIA and plate BIA data, the sensitivity of normal, 

moderate, and severe fillets was 100%, 80%, and 100% respectively, i.e., if a breast fillet had a 

diagnosis of normal fillets, the probability that this myopathic fillet was correctly assigned to the 

normal category was 1.0. The specificity of the normal fillets classification was 94.7%, moderate 

was 100%, and for severe fillets was 100%, implying that 94.7% of the normal fillets were 

correctly classified as normal on the basis of their collected parameters such as resistance, and 

reactance. Results obtained in this  study is in agreement with Siddique et al. (2021), where the 

researchers have found that the classification efficiency of the SVM algorithm in the 

categorization effectiveness of SVM for the partitioning of high dimensionality data showed 

improved classification efficiency for normal (training performance 63.86%, testing performance 

71.04%), moderate (training performance 49.88%, testing performance 59.99%), and severe WB 

(training performance 49.88 %, testing performance 59.99%). Authors have also found that the 

results for overall repeated cross-validation accuracy percentage for hand-held BIA and plate 

BIA were above 90% which agrees with the study published by Geronimo et al. (2019), where 

authors have reported the accuracy percentage of SVM model over 90%. The lower cost function 

of the plate BIA collected data in conjunction with SVM model implies that the developed model 

can be easily implemented in the real-world scenario without much pre-processing of data. The 

architecture of the plate BIA plays a significant role in the collection and accuracy of data. Long 

separate probes in plate BIA setup allow the flow of electrical impulse throughout the fillets, 

while on the other hand-held probe BIA covers less area on fillets surface. Additionally, 

Siddique et al. (2021) found that conventional classification analysis methods such as LDA did 

not perform as well with the hand-held BIA setup, with an accuracy of 61.70% for normal 

chicken breast fillets, 31.30% for moderate WB fillets, and 68.50% for severe WB fillets in the 
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training set, compared to 75.60% normal, 33.33% moderate, and 56.30% for severe WB in 

testing data set (Siddique et al. 2021). When kernel functions are used in SVMs, the original 

input variables become axially separable in the higher-dimensional domain, allowing them to be 

classified. Furthermore, SVMs can reduce both the estimating dimension and error of the system 

simultaneously (Siddique et al. 2021). 

3.6 CONCLUSIONS 

Results from the current work demonstrated that using a plate BIA in real-time inline 

chicken production systems to classify chicken breast fillets, depending on the severity of 

myopathy, is conceivable. Plate BIA detection for muscle histopathologic classification is 

superior to a hand-held BIA device when used in conjunction with SVM and k-nearest neighbor 

analysis. Input variables can provide a more efficient separation capability than the hand 

palpation method or other unsupervised algorithms used in BIA collected data for evaluating 

chicken breast fillets.  In terms of rapid detection of woody breast myopathies in chicken breast 

fillets without having pre-processing steps for data analysis is an important part of our research. 

For the collection and analysis of our data no data pre-processing step is involved for clustering 

analysis using FCM and k-means. The results obtained in supervised learning techniques are 

following the same pattern of accuracy with an overall accuracy of 90% that are reported in 

previous research done using NIR, image analysis and HSI imaging techniques where intensive 

pre-data processing is needed before the classification of woody breast fillets can be performed.  

The overall cross validation accuracy with lower cost function indicates that the developed SVM 

model for plate BIA setup can be directly implemented in actual processing plant for 

classification of fillets without implementing intensive data pre-processing steps.  
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Future studies are needed to collect and classify larger volumes of data on myopathic 

breast fillet for conditions such as white stripping, spaghetti meat condition, fillet time, processed 

bird age, different variation in used frequencies, and fillet temperature at throughout the 

processing procedures.  In addition, the use of different variables avoids overlapping 

circumstances induced by human counterparts during the inline processing of the fillets. It is 

apparent that through use of this novel technology chicken processing efficiency and 

classification of chicken breast fillets with undesirable WB myopathy can be improved. 
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Figure   3-1: Hand palpation of fillets for manual classification based on severity level 

 

 

Figure   3-2: Hand-held BIA setup for the classification of fillets based on different myopathic  

                   conditions 
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Figure   3-3: Plate BIA device for the classification of fillets based on severity level 

 

 

 

Figure   3-4: Membership cluster percentage formed in fuzzy c means analysis for different BIA  

                   setup  
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Figure   3-5: Diagrammatic representation of k-means clustering 

 

 

 

Figure 3-6: Diagrammatic representation of steps in k- nearest neighbor clustering analysis 
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Figure 3-7: Different clusters formed for hand-held BIA data collected for different severity level 

of fillets 
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Figure   3-8: Different clusters formed for plate BIA data collected for different severity level of  

                   fillets 
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Figure   3-9: Graph for optimal number of clusters based on Silhouette Index value for handheld  

                   BIA dataset. 
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Figure   3-10: Graph for optimal number of clusters based on Silhouette Index value for plate 

BIA dataset. 
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Figure   3-11: Density graph representing average distribution and overlapping of resistance (A)  

                     based on different severity levels 
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Figure   3-12: Density graph representing average distribution and overlapping of reactance (B)  

                     based on different severity levels 
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Figure   3-13: Density graph representing average distribution and overlapping of fillets weights  

                     (Wt) based on different severity levels 
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Figure   3-14: Hand-held BIA collected data graph for repeated cross validation accuracy for 

SVM model with cost function 
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Figure   3-15: Repeated cross validation accuracy graph for plate BIA collected data in SVM 

model with cost function 
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Table 3.1: Summary table for two different bioelectrical impedance device setup for resistance, reactance and fillet weights among 

woody chicken breast fillets with varying severity levels. 

 
 

Hand-held BIA Plate BIA 

WB Type Fillet Weight (g) Resistance (R; Ω) Reactance (Xc, Ω) Resistance (R; Ω) Reactance (Xc, Ω) 

Normal 473.5454.56b 72.896.25a 25.765.50a 103.3415.89ab 31.028.91a 

Moderate 510.1057.26ab 67.886.19b 22.145.51b 101.6114.50b 28.789.02a 

Severe 514.9669.33a 

 

70.608.24ab 

 

21.766.48b 

 

112.0216.68a 33.9810.47a 

a,b Means with different superscript in columns are significantly (p< 0.05) different from each other. 

 

 

Table 3.2: Percentage probability of fillets grouped into three different cluster 

 

Fillets Type 

Cluster probability percentage for Hand-held BIA Cluster probability percentage for plate BIA 

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3 

Normal 54.5 9.09 36.3 30 10 60 

Moderate 21.0 21.0 57.8 55.5 22.2 22.2 

Severe 23.8 28.5 47.6 47.6 28.5 23.8 
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Table 3.3: K-nearest neighbor classification table for hand-held BIA, and Plate BIA collected parameters occurred with different 

severity levels of woody breast myopathies. 

  Hand-held BIA Plate BIA 

WB 

Classification 

No. of Fillets Training (%) Testing (%) Training (%) Testing (%) 

Normal 21 38.50 50.00 31.30 40.00 

Moderate 17 10.0 42.90 7.70 25.00 

Severe 42 57.70 87.50 57.10 78.60 

 

Table 3.4: Summary table of classification accuracies for hand-held BIA and plate BIA setup for normal, moderate, and severe woody 

chicken breast fillets using SVM algorithms. 

  Hand-held BIA Plate BIA 

WB 

Classification 

No. of Fillets Testing 

(%) 

No. of classified fillets/Total fillets Testing (%) No. of classified 

fillets/Total fillets 

Normal 21 77.78 7/9 80.00 4/5 

Moderate 17 85.71 6/7 66.67 6/9 

Severe 42 88.89 16/18 85.00 17/20 

*No. of classified fillets and total number of fillets are based on testing data set
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Table 3.5: Summary table for the average cluster distance values from the center of the clusters for Hand-held BIA and Plate BIA 

WB Type Cluster Number Average distance range for 

Plate BIA 

Average distance range for 

Hand-held BIA 

Normal 1 0.14-2.50 0.04-4.73 

Moderate 2 0.45-3.83 0.07-2.22 

Severe 3 0.46-5.09 0.20-7.49 

 

Table 3.6: K-means clustering table for average cluster means for 3 different clusters for conventional BIA and plate BIA collected 

parameters occurred with woody breast myopathies. 

 Hand-held BIA Plate BIA 

Clusters Resistance 

Means ±SD 

Reactance 

Means ±SD 

Weight 

Means ±SD 

Resistance 

Means ± SD 

Reactance 

Means ± SD 

Weight 

Means ± SD 

1 64.52±4.88 19.78±4.71 571.36±38.29 101.25±13.13 27.06±5.67 462.68±44.17 

2 81.71±5.91 31.80±3.33 444.12±52.44 109.62±11.66 34.66±6.71 556.27±44.84 

3 70.75±3.04 21.63±4.47 475.26±33.10 143.21±8.73 56.25±5.21 542.28±67.95 
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Table 3.7: Confusion matrix table for number of fillets classified in each labeled categories in testing data set using split data set 

method 

 

 

 

Fillets Type Hand-held BIA Plate BIA 

 Normal Moderate Severe Normal Moderate Severe 

Normal 7 1 1 4 1 0 

Moderate 1 6 0 1 6 2 

Severe 1 1 16 3 0 17 
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4.1 ABSTRACT 

A Meta-analysis review was performed to examine the different approaches for identification of 

myopathic fillets and evaluate the effects of age of bird, deboning time, different cooking and 

storage conditions on woody breast (WB) myopathic conditions in broilers deboned fillets. Data 

we collected from 20 different articles based on inclusion criteria searched and extracted from 

different databases and online resources.  Deboning time has shown significant effect (p<0.001) 

on MORS, BMORS and descriptive analysis values. This quantitative analysis identifies that 

there is a strong impact of instrumentation techniques such as Compression force, shear force 

different cooking conditions on BMORS shear force values (R2=86.80%) were observed with 

significance level ranging from 0.01 to 0.001. Deboning time showed strong evidence to have 

impact on the MORS shear force values (R= 64.03 %). There was minimal effect of deboning 

time, age of bird and cooking conditions on descriptive sensory evaluation when compared with 

woody breast fillets (Age of birds: R2=26.53 %; Cooking conditions: R2=32.57 %; Deboning 

time: R2=10.06%). The overall effect of age of birds have shown significant difference for the 

evaluated parameters on the chicken breast meat quality (Hedges’g [95% CI] =-0.72 [0.17, 1.26], 

I2 = 93%, p<0.01). Sous vide method of cooking for woody breast fillets have significant effect 

for different analyzed shear force energies and sensory descriptive sensory evaluation (Hedges’g 

[95% CI] =5.30 [-50.30, 83.40], I2 = 98%, p<0.01).  

Keywords: BMORSE, MORS, Woody breast fillets, Sous Vide 
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4.2 INTRODUCTION 

Different types of meat and meat products that are nutrient-filled are always the first and 

foremost choice for protein across the world (Heinz and Hautzinger, 2007). There is a drastic 

increase in meat and meat products consumption worldwide since the last couple of decades. Into 

which the consumption per capita had increased from 22.04 lbs  in the 1960s to 57.3 lbs  in 2000 

yearly and will reach up to 81.5 lbs  by the year 2030 (NCC, 2022). Consumption of meat-based 

protein is one of the main sources for almost every consumer in the United States as well as at 

the global level. According to National Chicken Council (NCC), nearly nine billion broilers were 

raised in U.S and as per estimates, per capita consumption of chicken is nearly 94.5 pounds of 

chicken every year in the United States (NCC, 2022). The popularity of chicken meat is in high 

demand because of different organoleptic attributes such as texture, color, and flavors (Petracci 

et al. 2013). High consumer demand of better-quality chicken breast meat is increasing which is 

having an impact on the industry to produce fast growing birds, feed efficiency, and the 

measurement of the breast muscle (Petracci and Cavani. 2012).  

To meet the excessive demands for boneless white meat, the broiler growers and 

processors have successfully incorporated and utilized better genetic breed selections which 

resulted in improvement in nutritional diet to obtain weight gain in an average chicken, increased 

growth rate and also increase in total carcass yield. In the response of continuously changing 

markets demands that is completely guided as per end users’ preferences and demands which 

inclined more towards cut-up processed chicken parts rather than whole chicken carcasses. 

Despite of having fast growing chickens and increase in white breast meat yield there has been 

an increase in the cases of breast myopathies, one of the muscle abnormalities that has been 

discovered in broiler breast meat is referred to as "woody breast" and is more dominant in bigger 
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and heavier birds. This woody breast (WB) (figure 1) condition can be easily identified by their 

faded-pale color appearance with swollen caudal part of the breast fillet which is consist of 

varying level of hard appearance . WB myopathy condition can be identified by stiffness in the 

breast muscle, which may have on its surface faded pale color and exudate (Sihvo et al. 2014; 

Kuttappan et al. 2017). Velleman et al.(2017) stated a theory on the hardness in chicken breast 

meat may be due to fibrosis which is the outcome of cross‐linked collagen fibrils accumulation. 

Soglia et al. (2016) reported that collagen may be the one of the reasons for increased firmness 

related to the development of this condition (Soglia et al. 2016). These changes in the woody 

breast muscles can also influence different physical and chemical meat quality attributes such as 

pH, color, water holding capacity (WHC), cook loss and texture profile attributes mainly 

associated with the pectoralis major muscle (Kuttappan et al. 2012). 

4.3 CLASSIFICATION ACCURACY 

In simple terms, classification accuracy can be defined as the number of right predictions 

divided by the total number of predictions highlights a categorization effectiveness of the 

models. It is the most used statistic for assessing binary classifiers (Chicco and Jurman, 2020). 

Classification models have been used in food sciences and related fields for more than a decade 

(Huang et al. 2007). There have been several classification algorithms established and are being 

used for classification-based studies such as Support Vector Machines (SVM)(Cortez et al. 2006; 

Asmara et al. 2017; Ning et al. 2020), Back Propagation Neural Networks (BPNN) (Rumelhart et 

al. 1988), Linear Discriminant Analysis (LDA) (Siddique et al. 2021). For more details on these 

classification accuracy models and their implementation, readers can refer to the article Siddique 

et al. (2021).  



 180 

4.4 COMPRESSION FORCE (CF) AND SHEAR FORCE (SF) 

Compression force (CF) can be defined as the force that is being generated by compressing 

an object or substance. In other words, when SF aligned to each other are defined as compression 

force to the object surface resulting in some degree of deformation. In the poultry processing 

industry, the textural characteristics of raw chicken breast meat are used as a set of criteria for 

WB characterization, several instrumental texture measurements have been used to evaluate the 

level of WB state in raw chicken fillets, including CF. According to published research, there 

was a substantial difference in CF between WB and regular normal fillets (Dalgaard et al. 2018; 

Sun et al. 2018). Mudalal et al. (2015) and Soglia et al. (2017) found that CF measurements of 

raw broiler breast meat when compared with the WB state were significantly greater than normal 

fillets. Since 1930’s, Shear force (SF) test has been the most widely used instrumental approach 

for measuring meat tenderness (Destefanis et al. 2008). The force (N) as a function of knife 

movement (mm) and compressed to cut off a sample of tissue is measured in this test (MPa) and 

is determined by hardness or toughness of sample (Dar and Light, 2014). Shear force denotes to 

the movement of muscle parallel towards the axis of immediate contact while applying tangential 

force on the section. Nonetheless, within the food industry, this term is widely used to describe 

any cutting technique that separates a product into smaller fragments (Berk, 2018).  

 

4.5 MEULLENET-OWENS RAZOR SHEAR (MORS) AND BLUNT MEULLENET-

OWENS RAZOR SHEAR (BMORS) 

Meullenet-Owens Razor Shear (MORS) was developed and first introduced by Cavitt et 

al.(2005) by the name of Razor Blade Shear which was renamed later as Meullenet-Owens Razor 

Shear (MORS) test. They have reported that the use of a razor blade in determination of texture 
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of cooked chicken was much easier and more efficient. In addition to shear force use of a razor 

blade on meat samples, it also provides with one more additional parameter called as “shear 

energy”. Use of MORS test on a sample reduces the chances of experimental error, no time is 

needed to prepare a sample and MORS is independent of sample size (Cavitt et al. 2005). 

Meullenet et al. (2004) have developed a modified version of MORS that provides better 

comparison between tough portions of meat (ASTM, 1992; Lee at al. 2008) . Reliability and the 

effectiveness of BMORS and MORS was demonstrated by Lee et al.(2008) on the tenderness of 

chicken breast meat. Instrumental analysis of breast meat by using BMORS test had shown much 

better correlation to the tenderness as reported by consumer panel (ASTM, 1992). 

4.6 DESCRIPTIVE SENSORY ANALYSIS 

Descriptive analysis one of the methods that elaborate the quality and intensity of specific 

end user product (Meullenet et al. 2004). A wide range of descriptive analysis techniques have 

been developed by using basic principles of sensory science. In conventional descriptive 

techniques, such as food attributes profiling methods and quantitative descriptive analysis, 

involve a trained person to objectively quantify the sensory attributes of samples (Lee et al. 

2008). Due to the versatility of tasks that were completed with descriptive sensory analysis and 

the amount of generated data, this method had become the valuable source of product 

information, not just limited to research settings, but also for further processed food product 

development industries and government agencies (ASTM, 1992). Descriptive analysis for quality 

evaluation of product was first implemented for food products and beverages (Meullenet et al. 

2004). The implementation of descriptive sensory evaluation is not only limited to evaluate 

different attributes of product, but now is also being used to monitor product lifecycle, mapping 

market graph, variety of product development, value optimization, and quality control of existing 
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line product (Meullenet et al. 2004). Descriptive sensory analysis is more importantly used in 

various product design and development when sensory data is linked to consumer response 

through hedonic data and instrumental analysis data for physico‐chemical attributes. Relative 

study of both generated data allows professionals and developers to easily understand the 

consumer preference trend which helps companies to design their product and to enhance quality 

attributes (Kemp et al.2018). As the poultry industry is a fast growing business and can also be 

considered as one of the important contributing factor in providing food to growing population, 

creating jobs, and consumer driven in nature, the presented work in this article will provide an 

insight to the readers about the important parameters to consider for designing of their research 

with set parameters as different authors have used different parameters of deboning time, storage 

conditions along with some insight on the use of big data analytic approaches for the 

classification of myopathic fillets during inline processing. This paper tries to fill the gap for the 

literature evidences that can be helpful in designing the experiments, and will also be helpful for 

the poultry processing industries to implement novel techniques for their processes and 

optimizing steps to reduce losses and increasing profitability. 

4.7 MATERIALS AND METHODS 

4.7.1 Inclusion and Exclusion criteria 

We included studies if they (1) were comparing raw chicken normal fillets with myopathic 

conditioned fillets; (2) Use of approaches such as MORS, BMORS, compression force, shear 

force; (3) Used big data analytics approaches such as Support Vector machine (SVM), 

Multilayer Perceptron (MLP), Back Propagation Neural Network (BPNN), and Linear 

discriminant analysis (LDA);(4) Used different cooking and storage conditions; (5) had used 

different processed products made from normal and myopathic fillets;(6) published in English. 
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Additionally, we excluded studies with no comparison between normal and myopathic fillets, 

papers with subjective analysis (WB scoring by hand palpation) because the subjective analysis 

is outside the aims of the present study. 

4.7.2 Databases and search criteria 

The Web of Science database, Google Scholar, and publications from Poultry Sciences 

related journals were searched for articles that had examined the detection of woody breast 

condition different cooking condition, storage conditions, and deboning time for the normal and 

woody breast chicken fillets (from January 2011 to December 2021). These databases were 

selected on the merits of having full text articles that were published in English language. The 

following search string was used to locate plausible studies on woody breast myopathic 

conditions are “woody breast” OR “woody breast myopathies” OR “muscle abnormalities” OR 

“abnormalities in fast growing broilers” OR “BMORS (Blunt Meullenet-Owens Razor Shear)” 

OR “MORS (Meullenet-Owens Razor Shear)” OR “TPA” (texture profile analysis) OR 

“compression force” OR “shear force” OR “classification accuracy” combined with different 

cooking and storage methods such as “Raw Frozen” OR “Frozen thawed”, “Cooked” OR 

“Grilled” OR “Baked” OR “Boiled”. These searches led to a total publication 630, from which 

200 duplicate articles were removed. Other information that was appeared during search process 

such as studies related to spaghetti meat, white stripping meat, and woody breast scoring by hand 

palpation have been excluded to ensure convenient search of papers related to the review 

questions of the paper. Full texts that were downloaded have been inspected in detail. A total 

number of 20 complete research articles were selected on the basis of classification accuracy, 

toughness, tenderness, and descriptive sensory evaluation parameters such as hardness, 

cohesiveness, gumminess, and chewiness as analyzed using big data analytics approaches as 
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Support Vector Machines (SVM), Back Propagation Neural Network (BPNN), Random Forest 

(RF), Multilayer Perceptron (MLP), BMORS, MORS, Textural profile analysis (TPA) by 

descriptive sensory evaluation for age of bird, deboning time, cooking methods and storage 

condition on woody breast myopathic conditions. Every selected research article for this paper 

was thoroughly reviewed by other authors (BW, TB, CH) included in this papers using standard 

procedure as described below. Complete references were collected and information that was 

extracted from the publication are crossed verified whether the collected information was 

extracted from primary experimental research, or from a review or meta-analysis (PRISMA flow 

diagram 1). 

4.7.3 Effect size calculations 

Effect size in meta-analysis can be defined as the difference between two experimentally 

created groups (control and treatment group) (Morris and DeShon, 2002) . For this paper, the 

standardized mean difference (differences in means; Hedges’ g) was used to measure the 

difference between mean values in control (normal breast fillets) and treatment group (woody 

breast fillets) relative to the pooled standard deviation. This standard statistic measures that how 

much the treatment affects the outcome on average relative to the control (Schmid et al. 1998). 

4.7.4 Publication bias 

Rosenthal’s fail, safe approach, and funnel plot analysis were used to address the potential 

publication bias that influenced the outcomes of studies (Rothstein, 2008). Rosenthal’s approach 

suggests that how many studies would need to be published before retrieving and performing 

meta-analysis data to nullify the effect size (Braver et al. 2014). This non-significant number of 

studies were calculated through logarithm using software. If this approach suggests requirement 
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of up to ten studies to void the effect, then it would be considered that true effect was 

insignificant but if it showed the higher number of studies, for example 20,000, then there would 

be little to no reason of concern. Funnel plot is generated with effect size on x-axis and variance 

on y-axis. Clusters of the larger studies generally appear on the top and smaller studies appear at 

the base of the plot. In addition, the trim and fill method was also used to estimate the number of 

missing studies (Duval and Tweedie, 2000).  

4.8 DATA ANALYSIS 

For the analysis of collected data, R language software (Version 4.2.0; Vigorous 

Calisthenics) was used. Random or mixed effect models were used because fixed effect model 

analyzes true effect size based on differences between studies other than one true effect size as 

assumed in fixed effect model. Heterogeneity was also calculated to understand the variances in 

studies. Meta-regression model was used to determine the variation in effect sizes in studies that 

attributed to differences in classification accuracy, compression force, shear force, MORS and 

BMORS due to different deboning time, and age of birds. Heterogeneity is explained by the 

moderator (QM) and ominous (QE) heterogeneity (Table1).  

 

4.9 RESULTS  

4.9.1 Effect of Deboning Time 

The overall effect of deboning time had significant impact on the different parameters 

evaluated for woody breast compared to control group using standardized mean difference 

(Hedges’g [95% CI] =1.30 [0.26, 2.34], I2 = 95%, p< 0.01) showed strong relationship between 

deboning time of chicken carcasses on different parameters analyzed .  The overall effect of 
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deboning time on BMORS values are significantly different (Hedges’g [95% CI] =0.49 [0.09, 

0.89], 2.88], I2 = 73%, p< 0.01) . The BMORS value for deboning time at 3 hours showed small 

positive effect on myopathic fillets (Hedge’s g = 0.36 [-0.23, 0.95], I2 = 71%, p<0.01), for 2-hour 

deboning (Hedge’s g = 1.11 [0.30, 1.93], I2 = NA), and for 8 hours medium positive effect 

observed (Hedge’s g = 0.60 [-0.39, 1.58], I2 = 83%, p<0.01) with 83% of heterogeneity. Overall 

standardized mean difference for MORS analysis value (Hedge’s g = 0.70 [-0.70, 2.09], I2 = 

95%, p<0.01) showed medium effect (g≥0.5) on the effect of deboning time on MORS value, 

high effect (g≥0.8) relationship was observed for 3 hour deboning time (Hedge’s g = 3.23 [-2.20, 

8.66], I2 = 92%, p<0.01) showing that MORS analysis provides better results for , negative 

medium effect (g≥0.5) relationship was observed on 6 hour deboning time (Hedge’s g = -0.71 [-

1.97, 0.55], I2 = 83%, p<0.01) and MORS value, and positive effect on 6 hour deboning time 

(Hedge’s g = 0.36 [-0.23, 0.95], I2 = 71%, p<0.01). For classification accuracy-based studies, 

analysis showed small effect (g≤0.2) (Hedges’g [95% CI] =0.20[-1.35, 1.74], I2 = 98%, p< 0.01) 

, with positive small effect (g≤0.5) for 3 hour (Hedges’g [95% CI] =0.49 [-0.67, 1.65], I2 = 82%, 

p< 0.01), indicating that techniques employed for the classification work performed well up to 

some extent for 3 hours of deboning time. Overall shear force value showed negative small effect 

(g≤0.2) for deboning time (Hedges’g [95% CI] =-0.23 [-1.43, 0.96], I2 = 97%, p< 0.01) , 3-hour 

deboning time favors 68.30% of studies for normal fillets analysis using shear force method 

(Hedges’g [95% CI] = -0.39 [-2.24, 1.45], I2 = 97%, p< 0.01). Overall, descriptive TPA analysis 

showed better meat qualities for normal fillets (g≤0.2) (Hedge’s [95% CI] = -0.11 [-2.17, 1.94], 

I2 = 79%, p< 0.01). Majority of studies (72.30%) comparing descriptive sensory analysis for 

myopathic fillets with normal fillets favored 3-hours of deboning time for normal fillets 

(Hedge’s [95% CI] = -0.41 [-3.54, 2.72], I2 = 84%, p< 0.01). Overall, textural profile analysis 
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performed on normal and woody breast fillets for the effect of deboning time showed significant 

difference in TPA values for different textural attributes (Hedges’g [95% CI] =-0.82 [-0.14, 

1.79], I2 = 83%, p<0.01). TPA values when analyzed separately for 2 hr (Hedges’g [95% CI] =-

0.04 [-0.13, 0.21], I2 = 29%, p= 0.19) was not significantly different when compared to 3hr 

(Hedges’g [95% CI] =1.11 [-0.20, 2.42], I2 = 85%, p<0.01) deboning time. 

4.9.2 Effect on the Age of Birds  

Breast fillets that are analyzed for MORS (pooled Hedges’ g  [95% CI] =0.70 [-0.70, 2.09], 

I2 = 95%, p< 0.01), BMORS (pooled Hedges’g [95% CI] =0.49 [0.09, 0.89], I2 = 73%, p< 0.01), 

shear force (pooled Hedges’g [95% CI] =-0.23 [-1.43, 0.96], I2 = 97%, p< 0.01), classification 

accuracy (pooled Hedges’g [95% CI] =0.20 [-1.35, 1.74], I2 = 98%, p< 0.01) and for the 

descriptive analysis (TPA) (pooled Hedges’g [95% CI] =-0.09 [-2.13, 1.94], I2 = 79%, p< 0.01) 

were significantly different for processing age of birds. From the analysis, large effects (g>0.8) 

were observed for compression force for all ages of birds ranging from 34 days old to 56 days 

old. Small effects (g<0.5) were observed for 56 days old birds when performed classification 

accuracy for rapid detection approaches, conventional BMORS analysis, and MORS analysis on 

the effect of age of birds. Overall, negative Hedge’s g values for shear force and descriptive 

analysis showed small effect (g<0.2), based on individual age of birds 45 days old birds showed 

large effect (g>0.8) for shear force and descriptive sensory analysis. The overall effect of age 

shows significant effect on the breast meat quality (Hedges’g [95% CI] =1.30 [0.26, 2.34], I2 = 

95%, p<0.01). When analyzed together for classification accuracy, compression force, shear 

force, BMORS, MORS and TPA (descriptive analysis), the Hedges g values for age of birds at 

34 days old (Hedges’g [95% CI] =1.43 [-2.06, 4.92], I2 = 91%, p<0.01), at 38 days old 

(Hedges’g [95% CI] =11.05 [-108.57, 132.28], I2 = 95%, p=0.58), at 42 days old birds (Hedges’g 



 188 

[95% CI] =0.39 [0.09, 0.68], I2 = 0.00%, p=0.86), at 45 days old (Hedges’g [95% CI] =2.29 [-

0.49, 5.06], I2 = 86%, p<0.01),  46 days old (Hedges’g [95% CI] =1.05 [0.73, 1.37], I2 = NA), 48 

days old (Hedges’g [95% CI] = 0.27 [-1.02, 1.57], I2 = 96%, p<0.01), 52 day old (Hedges’g 

[95% CI] =0.63 [-15.62, 16.87], I2 = 98%, p<0.01),56 days old (Hedges’g [95% CI] =1.10[-0.63, 

2.83],, I2 = 96%, p<0.01), and at 60 days old (Hedges’g [95% CI] =0.03 [-0.10, 0.17], I2 = 

0.00%, p=0.58) respectively, indicating that birds at the ages of 34d, 38d, 45d, 46d, and 56d 

showed a large effect (g>0.8), birds at the age of 52d showed medium (g>0.5), and birds at the 

age of 42d, 48d and 60 days showed small effect on different parameters evaluated on bird’s age. 

Birds that are processed at the age of 45 days old (Hedges’g [95% CI] =2.66 [-0.86, 6.18], I2 = 

92%, p<0.01) and 52 (Hedges’g [95% CI] =0.53 [-0.27, 1.33], I2 = 74%, p<0.01) are 

significantly different from other processed birds at the age of 42, 56, 60 days respectively.  

4.9.3 Effect of Different Storage and Cooking Condition 

Different storage conditions of raw and further processed fillets and their products are key 

factors in affecting the quality parameters such as texture (toughness, tenderness, juiciness, and 

chewiness), appearance (color), odor, and overall acceptability of product. It also affects the 

chemical parameters related to the meat quality [34-37]. The overall effect of different cooking 

conditions (Hedges’g [95% CI] =0.72 [0.17, 1.26], I2 = 93%, p<0.01) have significant effects on 

breast fillet quality. Cooked breast fillets (Hedges’g [95% CI] =0.44 [0.21, 0.67], I2 = 54%, 

p<0.01) showed a significant effect on shear force energies values obtained from MORS, 

BMORS and sensory descriptive evaluation values. There was not any significant differences 

observed between cooked hot served (Hedges’g [95% CI] =-0.09 [-0.44, 0.26], I2 = 41%, p<0.17) 

and cooked cold served (Hedges’g [95% CI] =0.17 [0.13, 0.21], I2 = 0%, p<0.99) breast fillets to 

the sensory panel for descriptive sensory evaluation. BMORS shear force values for cooked 
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breast fillets were not significant when compared to raw breast fillets (Hedges’g [95% CI] =0.69 

[-0.22, 1.60], I2 = 98%, p<0.01). Overall, BMORS shear force values for the cooking conditions 

were significantly different (Hedges’g [95% CI] =1.07 [-0.73, 2.88], I2 = 97%, p<0.01). MORS 

shear force value cooked samples (Hedges’g [95% CI] =0.93 [-0.10, 7.87], I2 = 85%, p=0.01) 

were significantly different for various cooking methods in work done by Combs [12] such as 

Baked, Cooked frozen, Sous vide, Grill, and Raw frozen. Overall, the sous vide method of 

cooking for woody breast fillets showed a significant effect for different analyzed shear force 

energies and sensory descriptive sensory evaluation (Hedges’g [95% CI] =5.30 [-50.30, 83.40], 

I2 = 98%, p<0.01).  

4.9.4 Publication Bias  

To completely avoid publication bias, a funnel plot was studied between effect size and 

sample size. Number of studies that are not in symmetrical order, which is interpreted to mean, 

with publication bias is present. The study which was conducted between the effect of deboning 

time on different shear force energies and descriptive sensory evaluation, shows that 58.4 % of 

the studies do not have publication bias, whereas in 41.6 % of the studies, publication bias is 

present. In addition, the effect of different conditions on BMORS, around 37.5 % of studies 

shows no publication bias. There is no publication bias observed in 42.8 % of the studies 

evaluated for MORS analysis. Descriptive sensory evaluation funnel plot shows no publication 

bias for 47.22 % of the studies. 

4.10 DISCUSSION 

The main aim of this conducted study was to evaluate the effect of deboning time, age of 

bird, and different cooking conditions on classification accuracy, compression force, shear force, 
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and descriptive sensory evaluation for control group (normal breast fillets) as compared to 

woody breast fillets. From the analyzed data, it can be concluded that different cooking 

conditions have significant effects on the analyzed shear force value and sensory descriptive 

analysis. This quantitative analysis evidence shows that there was no impact on the age of birds, 

and deboning time on BMORS shear force values for wood breast fillets when compared to 

normal breast fillets. A strong impact of different cooking conditions on BMORS shear force 

values were observed with ranging p value from 0.01 to 0.001. There was no impact observed for 

the age of birds, and cooking condition on the analyzed MORS shear force value. Deboning time 

showed strong evidence to have impact on the MORS shear force values. There was minimal 

effects of deboning time, age of birds, and cooking conditions on descriptive sensory evaluation 

when compared with woody breast fillets. In current conducted study, the effect of different 

deboning times and age of birds have no such significance in shear force values analyzed by 

MORS and BMORS. As reported in other published articles, meat texture is noticeably 

influenced by cooking due to denaturation of different components, such as protein and fats 

(Forrest et al. 1975). In most cases, these modifications result in toughening of the muscle and an 

increment in shear values in cooked muscle products. In this analysis, cooking had a significant 

influence on the effectiveness of the shear approaches to distinguish between distinct WB groups 

(Moller, 1981). Each analyzed value at different conditions have showed high levels of 

heterogeneity, which may be due to other factors such as marination time, type of marination 

technique, different cooking conditions, age of processed birds, and deboning time. 

Classification accuracy for the identification of myopathic fillets is affected by the deboning time 

and different methods of analysis to analyze the collected data. Deboning time and methods for 

classification accuracy may have shown some level of heterogeneity due to the physiochemical 
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characteristic of fillets such as the amount of collagen, fat, water, and some output variables such 

as reflectance, resistance, and reactance values generated from classification techniques. 

Classification results also depends on the selection of model for the analysis as different model 

uses different algorithms such as LDA and Random forest uses data dimensionality reduction 

techniques (Aydadenta and Adiwijaya, 2018) , while on the other hand, big data analytic 

approaches such as SVM, and MLP do not require the reduction of the data dimensionality 

(Chen et al. 2020; Siddique et al. 2021). Different techniques for the classification of fillets uses 

different algorithms to generate results and it is completely dependent on the researchers to set 

the acceptable range of the results. Several factors that are considered in these classification kind 

problems are linearity of data, amount of preprocessing of data, noise in the generated dataset, 

and different unknown confounding variables. Analysis in this paper showed that classification 

accuracy depends on the age of birds and methods used in classification study. Compression 

force analysis, and shear force analysis based on deboning time, the age of birds, different 

storage, and various conditions showed some level of heterogeneity due to the fact that heavy 

fast-growing broilers have more chances to show woody breast condition due to the deposition of 

collagen protein. Sihvo et al. (2014) have reported that increase in age and weight of broilers are 

directly associated with WB incidences [51]. A study conducted by Souza et al. (2005) suggested 

that early deboning of broiler carcass at 3 h and 4 h postmortem have caused a higher shear force 

value as compared to 24 h deboning time. During this study, several questions were raised, 

which need to be addressed with complete explanation, such as how effective is the treatment of 

different cooking conditions on analyzed shear force values or what would be the best average 

deboning time for chicken carcasses without affecting the speed to processing line within a 

profitable range.   
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4.11 CONCLUSIONS 

In conclusion, this meta-analysis provides evidence that there are very smaller numbers of 

published research available for a comparative study between normal and woody breast fillets 

due to the fact that there is not a fixed quantitative method for the classification of myopathic 

fillets and methods that are available for the classification is completely based on employee 

experiences which are more susceptible to give deviated false results during the processes. Other 

factors that contribute to these results are unexperienced employees, speed of processing lines, 

stress on employees, and levels of fatigue. In our observation, those studies that have used big 

data analytic approaches such as regression model, LDA, computer vision systems have mainly 

focused on the identification techniques and reported whether the implemented techniques are 

able to detect the myopathic conditions in fillets or not without performing comparisons by how 

much the new technique is able to detect these conditions. More studies are encouraged to be 

performed to explore different methods to classify the fillets based on quantitative methods, 

rather than qualitative approaches, to set a standardized parameter with new innovative 

technologies in poultry processing plants that can be placed to reduce the losses associated with 

the misclassification of these fillets and will also be helpful in maintaining the quality and keep 

up with the speed that can reduce the incidences of misclassification. Interestingly, studies that 

have used myopathic fillets in further processing products that utilize the woody breast fillets 

have agreed to the fact that further processing steps for different products made from these 

myopathic fillets do not differ from the normal fillets product and consumer panel found these 

product as acceptable in nature. 
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Figure 4-1: Hand palpation of fillets for manual classification based on severity level. 

 

 

Table 4.1:Meta-regression of moderators including age of bird, deboning time, and condition 

(Cooking and Storage) on the shear force of MORS, BMORS and other textural parameters 

analyzed by descriptive sensory evaluation. 

  QE df P QM df P τ2 I2 

 Age of Bird 335.02 8 <0.01 0.54 5 0.99 14.55 99.65 

BMORS Deboning 

time 

274.59 9 <0.01 1.02 4 0.90 12.17 99.69 

 Cooking and 

storage 

330.30 7 <0.01 60.60 7 <0.001 1.16 98.01 

 Age of Bird 181.02 15 <0.01 3.37 5 0.64 0.52 91.34 

MORS Deboning 

time 

64.85 15 <0.01 32.13 5 <0.000

1 

0.17 77.97 

 Cooking and 

storage 

273.78 14 <0.01 4.84 6 0.56 0.51 93.44 

  Age of Bird 176.44 31 <0.01 14.33 4 0.0063 0.33 83.75 

Descriptive 

Sensory 

Deboning 

time 

202.39 34 <0.01 3.10 1 0.07 0.44 86.93 

 Cooking and 

storage 

129.79 27 <0.01 51.83 8 <0.000

1 

0.33 83.81 

 



 201 

 

Figure 4-2: Forest plot analyzed for overall BMORS value for deboning time 

 

 

Figure 4-3: Forest plot for BMORS value for different deboning time periods 
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Figure 4-4: Forest plot for overall MORS value for deboning time 

 

 

Figure 4-5: Forest plot for BMORS value for different deboning time periods 
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Figure 4-6: Forest plot for overall classification accuracy results for deboning time 

 

 

Figure 4-7: Forest plot for classification accuracy values for different deboning time periods 
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Figure 4-8: Forest plot for overall shear force value results for deboning time 

 

 

Figure 4-9: Forest plot for shear force values for different deboning time periods 
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Figure 4-10: Forest plot for overall Textural profile analysis value for deboning time 
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Figure 4-11: Forest plot for textural profile analysis values for different deboning time periods 
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5.1 ABSTRACT 

Rapid change in consumer preferences and demand for high quality animal-based protein has 

shifted the poultry industry for the identification of rapid non-invasive technologies that can be 

implemented during in-line processing for rapid detection of muscle meat quality defects. At 

production plant, technologies such as Radiofrequency waves (RF-waves) can be used to identify 

and separate myopathy-conditioned meat. This can be done in order to prevent the mis-

classification errors caused by factors associated with human counterpart such as fatigue, and 

less experience. Previous studies have demonstrated that advance developed diagnostic tools in 

conjunction with complex data analytics tools such as support vector machines (SVM) and 

backpropagation neural network (BPNN) can be used to classify chicken breast myopathies with 

usability only after the deboning process. The present study demonstrates the use of RF-waves in 

detection of myopathies at four different processing steps. A total of 107 (48 days old) broilers 

were used in the experiment. RF-wave data in form of amplitude and phase was collected on live 

birds, pre-chill WOG's, post-chill WOG's, and on freshly deboned fillets (3-3.5 h after slaughter) 

were examined by hand-palpation for WB category (1-normal; 2-moderate; 3-Severe). The 

collected data was preprocessed using false discovery rate, predictor analysis. For identification 

of specific signature frequencies and development of classification model using supervised 

machine learning algorithms variable clustering analysis was used. Variable clustering approach 

resulted in the identification of 7 to 8 different frequencies at different processing steps. Pre-

processed data with identified signature frequencies were used to develop classification based 

models using Back Propagation Neural Network (BPNN) and Support vector machines (SVM). 

BPNN showed better classification accuracy as compared to SVM when it came to separating 

WB conditions at different processing steps, with an accuracy ranging from 90.0% to 96.1% for 
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live birds, 78.9% to 97.1% for pre-chill WOG’s, 82.1% to 95.9% for post-chilled WOG’s, and 

94.2% to 98.2% for deboned fillets. In poultry processing industry, use of specific Radio 

frequency range devices or sensors in combination with supervised machine learning algorithms 

like SVM and BPNN can be successfully integrated in order to detect muscle myopathies at 

different processing steps during in-line processing.  

Keywords: Support vector machines, Back propagation neural network, radio waves, Variable 

clustering 

5.2 INTRODUCTION 

The chicken industry in the United States is extremely popular with customers and is the 

most extensively consumed product with consumption of 44.08 Kg in 2020; it is projected that 

by the year 2022, on an average people will consume around 44.80 Kg of chicken (NCC, 2022). 

According to a survey released by National chicken council on November 2020, during the time 

of COVID-19 pandemic retail sales of chicken was increased $1.3 billion, and was up by 19.5% 

from last year same time period scale (NCC,2022). Over the past 70 years, increased 

consumption of chicken was observed as compared to beef and pork (NCC, 2022; Figure 5-1). 

Due to rich source of protein, less fat, easy in preparation, low cost and associated health benefits 

of chicken meat had played a significant role in purchasing behavior of consumers for boneless 

chicken fillets (Resurreccion, 2004). In a survey, consumers have preferred white meat over dark 

meat and consumer in US eats chicken 10 times a month when prepared at home. To complete 

this increased demand of chicken meat, researchers have moved towards the genetic selection 

fast growing of chicken breeds (Petracci et al. 2015). As results to this method, genetic selection 

had also lead us to the chicken muscle myopathic conditions such as Woody breast (WB), White 

striping (WS), Spaghetti meat (SM). Based on literature and published report, Huang and Ahn 
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(2018) reported that the prevalence rate of muscle myopathies in broilers can ranged from 5 to 50 

% and could reach up to 100 % in controlled dietary studies (Cruz et al. 2017).  

Woody breast condition is a quality defect of chicken meat which affects basic nutrient 

content, cook loss, pH, texture, water holding capacity (WHC), dull appearance and 

histologically characterized by deposition of extracellular collagen in breast part of birds (Sihvo 

et al. 2014; Soglia et al. 2016; Kuttappan et al. 2017). These conditions not only inflicts the 

quality of chicken meat but also responsible for the economic loss worth of $1 billion annually 

(Kuttappan et al. 2016). Because of the inferior quality of WB meat, it is separated out in 

processing factories by manual hand-palpation (Figure 5-2) and multiple grading scales 

dependent on the degree of the condition (Table 5.1). However, because this method is 

inconsistent and biased, there is a risk of misinterpretation of the chicken breast in some 

conditions (Morey et al. 2020). During the past several decades, researchers have investigated 

several approaches and attempted to put these strategies into practice for the identification of 

these aberrations through the production of chicken fillets. Several recent studies have 

investigated near-infrared spectroscopy (NIR) (Wold et al. 2019), computer vision system (CVS) 

(Geronimo et al. 2019), and hyperspectral imaging (HS-Imaging) (Jiang et al. 2017). According 

to the findings of molecular investigations, there is a positive association between the conditions 

of WB and the bird's age, with a larger occurrence of WB detected in aged birds (Petracci et al. 

2015; Papah et al. 2017; Radaelli et al. 2017; Sihvo et al. 2017; Kuttappan et al. 2017).  

5.3 RADIO-FREQUENCY WAVES SPECTRUM 

History of radio-wave dated back to 1867, when Scottish physicist J. C. Maxwell first 

proposed the theory of electromagnetism later this theory was recognized as Maxwell’s equation 

(Nappo, 2021). Later in 1887, German physicist, Heinrich Hertz, created the EM waves in 
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laboratory proving the nature of radio waves similar to the properties of light including 

refraction, reflection, polarization and diffraction (Mulligan, 1987). Radio waves represent a 

specific component of the electromagnetic spectrum (EM) that typically have frequencies 

ranging from low frequencies (30 Kilo Hertz) to extremely high frequencies (300 

gigahertz)(Romanenko et al. 2017) (Figure 5-3), and contains the widest wavelengths of any 

form of EM waves in the spectrum series (Johnson and Guy, 1972). Based on mathematical 

expression frequency is inversely proportional to the wavelength. As the frequency increases the 

wavelength decreases (equation 1).  

                                                                     𝜗 = 𝑐/𝜆                                                      (1) 

Where 𝜗 = frequency, c = speed of light and 𝜆 = Wavelength 

For example, 300 GHz can only travels a distance of 1 mm, while a distance 33 km is 

achieved from frequency at 30 Hz. These waves are capable to travel in vacuum space with the 

speed of light. These radio waves are generated by electronic devices charged particles that are 

subjected to acceleration, such as those found in time-varying electrical impulses through 

transmitters and generated waves are detected by receivers. These transmitters and receivers 

antennas are designated to operate on a set standard limited frequency ranges (Ellingson, 2016).  

Different frequency waves have different properties such as long distance waves are affected by 

the environmental distraction while on the other hand shot distance waves are unaffected by 

these distraction and travels  in a straight line of path.  

Ultra-high frequency is a designation given by International Telecommunication Union 

(ITU) to the frequency ranging from 300 MHz to 3GHz. In the context of electromagnetic 

radiation, UHF band has a wavelength that ranges from one meter to one hundred millimeters, 

and is also generally known as the decimeter band. The UHF frequency band are unaffected by 
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environmental factors and is used frequently for multichannel transmission in TV and radio 

broadcasting.  

The present study investigated the use of radio-frequency wave as an alternative non-

destructive technique (RF-NDT) to detect woody breast myopathies identification during 

different processing steps from live birds to deboned fillets considering different variables using 

frequency ranged from 2GHz to 18 GHz. These frequencies ranged between Ultra-high 

frequency and Super-high frequency with the wavelength ranges from 100 mm to 10 mm. Radio-

frequency waves are electromagnetic waves ranging from 300 kHz to 300 MHz. Frequencies of 

radio waves can range from a few kilohertz to several billion cycles per second, depending on 

their wavelength. Radio waves have an inverse relationship between their wavelength and 

frequency. Different sources use different methods to specify the frequency range (Fleming, 

1919; Ghirardi, 1932). RF waves have the ability to heat materials, and when compared to 

microwave heating, they have higher heating uniformity and penetration depth (Jiao et al. 2017). 

The warming time is decreased and the thermal spread is more even as a result of 

electromagnetic heating (Duan et al. 2005; Song et al. 2009). There has been number of studies 

conducted on different materials for the use of microwave sensors to determine the moisture 

content, and density of cereal grains (Trabelsi et al. 1997), for monitoring of moisture content of 

wheat (Nelson and Stetson, 1976; Kraszewski et al. 1977; Trabelsi et al. 1998), for determination 

of moisture and bulk density content in sand and rice (Li and Zhang, 2015), moisture 

determination in coal (Klein, 1980). 
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5.4 MATERIAL AND METHODS  

5.4.1 Data Collection 

Ross 708 broilers (n =108), 40 days old birds were analyzed in poultry sciences 

slaughtering and deboning facility in Auburn, Alabama. A portable radio-wave transmitter 

device (Compass tech. LCC., Georgia) was employed to capture data using radio waves with a 

frequency range of 2 GHz to 18 GHz on live birds, pre-chilled WOG's, post-chilled WOG's 

(4oC), and deboned fillets, frequency data in the form of amplitude and phase were gathered in 

two different positions (waves perpendicular to muscle fibers and waves parallel to muscle 

fibers). The deboned breast fillets were hand palpated and were classified into WB severity level  

(Tijare et al. 2016) and used to train the ML algorithm for classification of live birds, pre-chilled 

WOG's, post-chilled WOG's, and fillets. Weight of individual live birds, pre-chill WOG’s, post-

chill WOG’s and fillets were recorded using a weighing balance (Ohaus Corporation, Pine 

Brook, NJ, United States) for the analysis. Additionally, a false discovery rate (FDR) analysis 

was done on the obtained data to eliminate false-positive results and avoid data complexity of the 

model.  

5.5 DATA ANALYSIS 

Raw data collected from RF-device in form of amplitude and phase were subjected to R 

software, and jmp16 pro (Version 16.0) for pre-processing and screening procedure. The data 

sets collected for RF ranges with different myopathic conditions for various processing steps 

were subjected into false discovery rate (FDR) analysis for the separation of false positive results 

to avoid error and predictor screening (PS) (Bootstrap Forest) method was used to separate out 

the actual frequency range responsible for detection of myopathies at different processing steps. 
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Both FDR analysis, and feature extraction was performed using response screening, and 

predictor screening option provided in JMP16 pro software. Top 100 isolated frequencies 

obtained after the FDR and predictor screening analysis were subjected to variable clustering 

approach to identify different signature frequencies for each myopathic condition at various 

processing steps. In our datasets, the various class labels corresponding to the four processing 

stages (Normal, Moderate, and Severe) were not uniformly distributed. It is widely recognized 

that prediction models may suffer from suboptimal performance when confronted with 

significantly imbalanced datasets. To address this issue of dataset imbalance, we employed the 

Synthetic Minority Over-sampling Technique (SMOTE) package in combination with a 10-fold 

nested cross-validation approach for multi-class classification, which facilitated the replication of 

instances belonging to the underrepresented class. For the data preprocessing in our multi-class 

classification model, we utilized the R software and leveraged the capabilities of the caret 

package. This ensured a more balanced representation of the class labels across the four 

processing steps, ultimately leading to improved prediction performance. 

5.5.1 False Discovery Rate Analysis 

In the field of statistics, the false discovery rate, also known as the FDR, is a means for 

conceptualizing the rate of type I errors in the process of evaluating the null assumption when 

multiple comparisons are performed. The Erroneous Discovery Rate (EDR), or FDR, is the 

expected fraction of "discoveries" (rejected null hypotheses) that are false. FDR-controlling 

strategies are designed to control the FDR (incorrect rejections of the null) (Bogomolov et al. 

2017). The FDR analysis is another way of referring to the expected ratio of the number of 

erroneous positive classifications, also known as false discoveries, to the total number of positive 
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classifications (rejections of the null) ( Benjamini and Hochberg, 1995; Alzu’bi et al. 2021;Tay 

et al. 2022 ).  

Both total false positives (TFP) and the total true positives (TTP) are considered toward 

the number of null hypothesis rejections (TP) (TP = TFP + TTP) (Tay et al. 2022). To put it in 

mathematical way, FDR is TFP divided by TTP plus TFP. When compared to family wise error 

rate (FWER) controlling procedures (such as the Bonferroni correction), which control the 

probability of at least one Type I error, FDR-controlling procedures offer a less stringent control 

of Type I errors (Alzu’bi et al. 2021). This is because FDR-controlling procedures use a false 

discovery rate (FDR). Therefore, FDR-controlling techniques have more power, but at the 

expense of producing more Type I error. The FDR refers to the proportion of times a feature 

(here, frequency bands) is found to be statistically and practically insignificant.  

The FDR includes features that can be helpful. So, if the FDR is 5%, then 5% of the 

features are insignificant. If we assume that there are a thousand distinct frequency bands in our 

sample, then the p-value for the middle band, at 15.89 GHz, is 0.0005 and thus the q-value is 

0.03. It's likely the test statistic is really out of the ordinary here, and that there are, in fact, 

differentially expressed frequencies with test values less extreme than 15.89 GHz. When using q-

value of 0.03 tells us that 3% of the radiofrequencies as extreme as frequency of 15.89 GHz are 

false positives (i.e., the bands with lower p-values). By calculating q-values, we can set a 

threshold for the percentage of insignificant features we're ready to accommodate. This comes in 

handy when we're willing to accept a broad range of frequencies for later verification.  In the 

event that all null hypotheses are correct (there are no meaningfully different outcomes), then the 

FDR will equal the FWER.  
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When there are enough plausible alternate explanations, controlling for the FWER also 

controls the FDR by definition. Implementation of FDR analysis in the larger data set reduces the 

chance of making inaccurate pronouncements of significance (Storey and Tibshirani, 2003). 

5.5.2 Predictor Screening 

In the analysis of our large data set and identification of specific frequency ranges for the 

categorization of myopathic conditions at different processing steps feature extraction from the 

larger data set is one of the important steps for the training of developed ML models (Rahman et 

al. 2018). For the feature extraction purposes, we implemented predictor screening method 

offered by JMP 16 pro software. This method screens many potential predictors for the 

significant effect in a given response. In another words, The Predictor Screening tool gives users 

a way to evaluate many potential predictors based on their capacity to accurately forecast a 

result. 

The predictor screening is not the same as the response screening method as describe 

above. Response screening for an outcome uses several parameters, one at a time, to make a 

prediction about a certain response. On the other hand, predictor screening in based on the 

method of bootstrap forest partitioning, in this process of predictor screening to assess the impact 

of predictors on the response. The models for the partitioning are constructed using various 

predictors. Screening for predictors can help to uncover variables that stand on their own as 

being unreliable but are powerful in expression of response when used in conjunction with other 

predictors (variables) (Klimberg and McCullough, 2016). 
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5.5.3 Variable Clustering  

Variables reduction is an essential stage in the process of model generation without 

compromising the potential predictive value of the data. One such method that contributes to the 

reduction of variables is known as variable clustering (Bogomolov et al. 2018). The more 

dimensions a dataset contains, the more complicated it is to analyze. It lengthens the time 

required to perform the data processing, hinders the capability to investigate the model 

relationship, reduces the accuracy of model scoring, and adds more redundant information to the 

dataset (Adebiyi et al. 2022). Variable clustering is one of the corrective measures that may be 

taken. It locates a group of variables that, inside a cluster, have the highest possible correlation 

between themselves and the lowest possible correlation with variables from other clusters. When 

working on a modeling assignment that contains a large number of variables, an analyst may find 

themselves in a position to reduce unnecessary variables before they can develop a model. 

During this process there is a higher chance that the variables will act as the relationship between 

the goals of the modeling effort is not known (Lee, 1973). In addition, larger variables numbers 

makes it difficult to determine the relationship between each other (Lee, 1973; Bagozzi, 2007). 

The use of an excessive number of variables makes the created model less efficient and 

also increases the amount of time needed for analysis (Graham, 2007). The parameters then 

would be used as inputs in various predictive analysis and classification approaches, such as 

support vector machines, and neural networks for developing models. It is not common to find a 

detailed explanation of the variable clustering algorithm method in the majority of textbooks that 

cover multivariate approaches. However, the variable cluster track the progress primarily as an 

application in statistical analysis software (Anderberg, 2014). 
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A set of nominal variables can be clustered using either a hierarchical structure or a 

disjunct clustering using the variables clustering technique (Michalski et al. 1981). There is a 

linear integration of the variables that make up each cluster that is connected to each cluster. This 

linear combination might be the initial principal component or it could be the centroid 

component. The rule stipulates that the variable with the lowest 1-R2 score should be chosen to 

serve as the cluster representative (Ramchandran et al. 1994). 

The formula for calculating the 1-R2 is as follows:  

                                                         1-R2 = (1-R2) (own)) / (1 — R2) (nearest)                           (2) 

Intrinsically, we want to get the group representative to have the strongest possible 

correlation to its own cluster and the weakest possible correlation to the cluster that is 

geographically closest to it. As a result, a variable is considered to be the best indicator of a 

cluster if it is one in which 1-R2 trends toward zero. In the literature on clustering, there is 

generally a rule for choosing the sample of the cluster, which is referred to as the 1-R2. In 

addition to this criterion, organizational "knowledge from subject matter experts" should also be 

used to guide the choice of factors. As a result of this, we might settle on the idea of employing 

multiple variables (in our case the various frequencies) in each cluster. 

5.5.4 Back Propagation Neural Networking (BPNN) 

 The most important part of training a neural network is called backpropagation. 

It is the process of fine-tuning the weights of an artificial neural networks based on the error rate 

achieved in the preceding epoch of the network's training (i.e., iteration). By fine-tuning the 

weights in the right way, it is possible to lower the overall error rate and improve the model's 

reliability by expanding its applicability. The term "backward propagation of errors" is what's 

meant to be referred to when discussing about backpropagation in neural networks. It is a tried-
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and-true approach to the development of artificial neural networks. The gradient of a loss 

function in relation to all of the weights in the network can be more easily computed with the 

assistance of this method. Detailed explanation on the working principle of BPNN can be found 

in Siddique et al. (2021).  

5.5.5 Support Vector Machines (SVM) Algorithms 

Although the SVM approach was initially developed by Vapnik (1995), it has recently 

gained a lot of traction in the field of machine learning because of its many potential practical 

applications. Many research have indicated that the SVM methodology surpasses alternative data 

classification models depending on the information type concerning classification accuracy when 

particularly in comparison to other approaches (Maji et al. 2008). When classifying data sets, 

SVM creates a line (hyper-plane) between the classes. SVM seeks to locate a higher dimensional 

space that can distinguish different classes of available dataset with a largest margin while still 

delivering the best generalization capabilities for a two or more class linearly differentiated 

(Siddique et al. 2021). The SVM algorithm's underlying logic is described in detail by Siddique 

et al (2021, 2022). 

5.6 RESULTS AND DISCUSSIONS 

A total number of 535 different significant frequencies (p ≤ 0.05) were identified for live 

chicken data using FDR analysis. These frequencies ranged from 2.00 GHz to 2.38 GHz; 6.01 

GHz to 6.29 GHz; 8.06 GHz to 10.78 GHz; 12.44 GHz to 13.16 GHz; and 16.80 GHz to 18.00 

GHz. There were not significant frequencies were identified for the FDR analysis performed on 

pre-chilled WOG’s collected data. For post-chilled WOG’s data, a total of 719 significant (p ≤ 

0.05) frequencies were found ranging from 9.27 GHz to 16.45 GHz. A total number of 308 



 220 

different significantly different frequencies were obtained from FDR analysis for deboned fillets 

data. These frequencies ranged from 9.64 GHz to 10.60 GHz; 14.70 GHz to 15.74 GHz; 16.95 

GHz to 18.00 GHz.   

After the identification of specific frequency ranges for different processing steps, 

cleaned frequency data was subjected into predictor screening analysis for the identification of 

top 100 different frequencies for each processing steps. These top 100 separated frequencies 

were used in variable clustering method to identify the most representative frequencies for each 

myopathic conditioned fillets. Most representative frequencies for each condition for different 

processing steps are presented in table 5-2. For normal condition in live chicken, we have 

identified 7 specific radio-frequencies (2.14 GHz, 2.33 GHz, 6.06 GHz, 8.73 GHz, 10.21 GHz, 

12.60 GHz, and 16.95 GHz); 7 frequencies for moderate conditioned live birds (2.16 GHz, 6.06 

GHz, 8.41GHz, 9.27GHz, 10.36GHz, 12.61GHz, and 16.95 GHz) and 6 different frequencies for 

severe condition (2.16 GHz, 6.06 GHz, 8.77 GHz, 10.21 GHz, 12.61 GHz, and 16.95 GHz). A 

total of 2-3 overlapping radio waves were also identified in analyzed frequency ranges that have 

contributed into the identification of myopathic condition in live birds. Proportion of variation 

explained by radio-frequencies normal, moderate and severe live birds conditioned 

radiofrequencies were 97.4%, 97.1% and 97.8% respectively. For the pre-chilled WOGs, 

variable cluster analysis for normal WOG’s resulted in identification of 6 frequencies (3.21 GHz, 

4.60 GHz, 7.50 GHz, 10.06 GHz, 11.16 GHz, 16.09 GHz), for moderate condition WOG’s, 7 

frequencies were identified ( 3.15 GHz, 3.92 GHz, 4.85 GHz, 6.93 GHz, 7.69 GHz, 9.97 GHz, 

16.07 GHz) and severe pre-chilled WOG’s resulted in identification of 6 radio-frequency waves 

(3.33 GHz, 4.75 GHz, 5.90 GHz, 8.52 GHz, 10.00 GHz, and 15.99 GHz) respectively with over 

lapping of 2-3 frequency waves. Proportion of variation explained by the radiofrequencies for 
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pre-chilled WOG’s normal, moderate and severe conditioned WOG’s were 94.7%, 95.9% and 

94.9% respectively. Variable clustering results for post chilled WOG’s showed 6 different 

frequencies waves for both normal (9.40 GHz, 9.90 GHz, 11.67 GHz, 12.48 GHz, 13.01 GHz, 

14.79 GHz) and moderate condition (9.40 GHz, 9.90 GHz, 11.98 GHz, 12.48 GHz, 13.01 GHz, 

14.79 GHz) followed by 5 different frequencies for severe conditioned (9.40 GHz, 9.90 GHz, 

12.24 GHz, 12.86 GHz, 14.86 GHz) post-chilled WOG’s. The results for post-chilled WOGs 

also showed overlapping of 2-4 frequencies in all post chilled WOG’s with different myopathic 

conditions. Variable clustering for deboned fillets shows 5 different frequencies for normal (9.54 

GHz, 9.93 GHz, 10.37 GHz, 14.86 GHz, 17.92 GHz) explaining 97.30% of proportion of 

variations, for moderate condition 6 frequencies (9.41 GHz, 9.71 GHz, 10.12 GHz, 14.96 GHz, 

17.14 GHz, 17.91 GHz) were identified with 97.60% variance explained, and severe deboned 

chicken breast fillets data resulted in 5 different radio-frequencies (9.52 GHz, 10.03 GHz, 14.99 

GHz, 17.63 GHz) 98.30% of variation explained with no overlapping frequencies.  

The performance of the Back Propagation Neural Network (BPNN) model (a supervised 

machine learning model) in predicting the myopathic condition (Normal, Moderate, and Severe) 

of poultry during different stages of processing was evaluated. The model was developed using a 

10-fold cross-validation technique with the nested k-fold cross-validation method to deal with an 

unbalanced post-processed dataset with a set seed value of 2000. Different processing steps 

include Live Birds, Pre-Chill Whole Bird Without Giblets (WOG), Post-Chill WOG, and 

Deboned Fillets. The model's performance is assessed using various statistical measures, such as 

Generalized R2, Entropy R2, RASE (Relative Approximation Squared Error), Misclassification 

Rate, and Receiver Operating Characteristics (ROC). 
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In the Live Birds stage, the BPNN model demonstrates strong performance, explaining 

83% of the variance in the data with a Generalized R2 value of 0.83. The Entropy R2 of 0.64 

suggests a moderate ability to predict the myopathic conditions. A RASE value of 0.33 denotes a 

relatively low error rate, and a Misclassification Rate of 0.12 implies that 12% of the model's 

predictions are incorrect. The testing accuracy for the different myopathic conditions ranges 

from 87.5% to 100%. Classification accuracy for testing data results showed 87.5 % accuracy for 

normal, 83.3% accuracy for moderate, and 100 % accuracy for severe myopathic conditioned 

birds (Table 5.3). The high ROC values in this stage reflect the model's capacity to identify the 

myopathic condition with high sensitivity. 

During the Pre-Chill WOG stage, the model accounts for 78% of the data's variability, as 

shown by a Generalized R2 of 0.78. The model has a moderate predictive ability, indicated by an 

Entropy R2 of 0.56. A RASE value of 0.37 suggests a somewhat low error rate, while a 

Misclassification Rate of 0.06 reveals that 6% of the predictions are incorrect. For pre-chill 

WOGs, classification accuracy analysis showed 100 % accuracy for normal, 87.5% for moderate, 

and for severe 100% respectively (Table 5.3). The model's sensitivity for identifying the correct 

condition is 100% in this stage, as demonstrated by the ROC values. 

The model explains 91% of the variance for the Post-Chill WOG stage, denoted by a 

Generalized R2 of 0.91. The Entropy R2 of 0.78 indicates strong predictive ability. A RASE 

value of 0.26 implies a low error rate, while a Misclassification Rate of 0.10 shows that 10% of 

predictions are incorrect. The testing accuracy for the three conditions ranges from 69.7% to 

100%. The model's sensitivity for identifying the correct condition remains at 100% for this 

stage (Table 5.3). 
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In the Deboned Fillets stage, the model accounts for 85% of the data's variability, as 

evidenced by a Generalized R2 of 0.85. The Entropy R2 of 0.66 signifies moderate to strong 

predictive ability. A RASE value of 0.33 indicates a relatively low error rate. However, a 

Misclassification Rate of 0.26 reveals that 26% of predictions are incorrect. The testing accuracy 

for the conditions is between 66.7% and 100% (Table 5.3). Despite the higher misclassification 

rate, the model's sensitivity for identifying the correct condition remains 100%, as shown by the 

ROC values. In overall obtained accuracy results, separated signature frequencies for all different 

processing steps performed well, with accuracy ranging from 66.7% to 100%.   

In SVM analysis, Live birds under normal conditions, the SVM classification model 

showed a 68.4% sensitivity and a 55.5% specificity rate, leading to a 61.9% testing accuracy 

(Table 5.4). The sensitivity of the SVM model dropped to 45.5% in moderate conditions, while 

the specificity increased to 73.0%, resulting in a 59.2% testing accuracy (Table 5.4). In severe 

conditions, the sensitivity dipped slightly to 42.8%, but the specificity rose considerably to 

96.6%, yielding a 69.7% testing accuracy (Table 5.4). When analyzing pre-chill whole bird 

carcasses (WOGs), the detection model demonstrated a 34.6% sensitivity rate and a 75.0% 

specificity rate in normal conditions, culminating in a 54.8% testing accuracy (Table 5.4). In 

moderate conditions, the sensitivity rose to 50.0%, and the specificity marginally increased to 

77.7%, achieving a 63.8% testing accuracy (Table 5.4). In severe conditions, the sensitivity rate 

climbed to 70.0%, while the specificity fell to 67.5%, leading to a 68.7% testing accuracy (Table 

5.4). 

For post-chill WOGs, the detection model revealed a 38.4% sensitivity rate and an 84.0% 

specificity rate in normal conditions, amounting to a 61.2% testing accuracy (Table 5.4). In 

moderate conditions, the sensitivity grew to 53.3%, and the specificity remained consistent at 
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77.7%, attaining a 65.5% testing accuracy (Table 5.4). The sensitivity rate rose to 60.0% in 

severe conditions, but the specificity declined to 63.4%, generating a 61.7% testing accuracy 

(Table 5.4). 

Finally, in deboned fillets, the detection model exhibited a 46.1% sensitivity rate and a 

92.3% specificity rate in normal conditions, resulting in a 69.2% testing accuracy (Table 5.4). In 

moderate conditions, the sensitivity substantially increased to 75.0%, while the specificity 

marginally dropped to 72.2%, yielding a 73.6% testing accuracy (Table 5.4). In severe 

conditions, the sensitivity rate further enhanced to 80.0%, and the specificity also grew to 80.9%, 

accomplishing an 80.4% testing accuracy (Table 5.4). 

In summary, the detection model's performance varied based on the chicken product type 

and condition, with the highest accuracy observed in severe conditions of deboned fillets. The 

model's effectiveness in recognizing normal and moderate conditions demonstrated room for 

improvement, indicating that further research and optimization may be necessary to enhance its 

accuracy in these areas. 

SVM analysis has been shown higher accuracy level with high dimensional data used for 

data classification with relatively smaller sample set. This method has also been utilized by other 

authors to assist in the classification of multi-dimensional data. Barbon et al. (2018) have used 

SVM as a classification technique for breast fillets with muscular myopathies in which they have 

classified normal and pale meat in relation to pale, soft, and exudative poultry breast meat using 

NIR results. The classification accuracy for normal breast fillets was 53.4%, while the 

classification accuracy for pale breast fillets was 72.0%. Geronimo et al. (2019), have also 

implemented SVM technique in conjunction with image acquisition system with NIR output and 

observed 91.83% classification efficiencies (fillet images). The classification accuracy for WB 
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was 90.67% when these researchers classified the data set using multilayer perceptron, which is a 

feed forward network rather than the back propagation network employed in BPNN. Expressible 

fluid images of breast flesh were studied by Yang et al. (2021), who classified WB using SVM 

(the training and testing ratio was not provided) and DL (training to testing is 2 to 1). These 

researchers have reported lower testing accuracies (38.25 - 63.89%) of developed model 

compared to training set (40.41 - 81.94%). In their DL classification, which is a form of ANN, 

they classified WB and claimed an accuracy of 93.30% in the testing set despite having achieved 

an accuracy of 100% in the training set.  

The SVM method has garnered considerable attention due to its exceptional performance 

efficiency, capacity to achieve pinpoint accuracy, and management of high-dimensional, multi-

variable data sets. The ML theory is responsible for laying the framework for the SVM 

algorithm. SVMs were implemented by Cortes and Vapnik (1995) as a new machine learning 

technique for the problem of group classification. Researchers have revealed that support vector 

machines (SVMs) are an inexpensive, sensitive, and simple classifier that may be utilized in 

organized evaluation tasks. SVM has a number of important applications, one of which is the 

inspection of enormous data sets generated during production (Burbidge et al. 2001; Chinnam, 

2002). SVM is frequently used in a variety of food industrial operations, including as a product 

surveillance system, robotic fault, and dimensional tolerances (Ribeiro, 2005; Azadeh et al. 

2013; Salahshoor et al. 2011; Cydaş and Ekici, 2012). In addition to their application in the food 

commodity industry worldwide, SVMs are also utilized in the pharmaceutical and medical 

research industries, as well as in surgical procedures and the treatment of cancer (Vapnik, 2013). 

In addition to product quality monitoring (Borin et al. 2006) and molecular level polymer 

identification (Li et al. 2009), other industries are also feasible domains in which SVM might be 
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implemented. These examples, taken from a variety of industries, show that the SVM algorithms 

are applicable to a wide variety of settings and offer a high degree of adaptability (Kotsiantis et 

al. 2007). The current study reveals that SVM and BPNN, in conjunction with RF waves and 

different processing step weight data, can be used to classify broilers at different processing 

steps. 

After carcasses have been processed in deboning facilities, WB can be identified based 

on visual and hand palpation characteristics. Misclassifications owing to human error, inefficient 

processing, and higher labor expenses all arise while classifying muscle myopathies on a 

production chain. Woody breast manifests itself largely in the breast fillet's superficial area and 

is identified by the proximity of surface intracranial hemorrhage, a yellowish color breast surface 

appearance, a rigidly bulging fillet, and physical palpability of the tissue (Figure 5-2) (Mazzoni 

et al. 2015; Mudalal et al. 2015). In addition, the connective tissue content (Collagen content) 

and pH of WB fillets are higher than those of normal chicken breasts, and the cross-sectional 

areas of the two are significantly different (Huang and Ahn, 2018). (Petracci et al. 2015; 

Chatterjee et al. 2016; Clark and Velleman, 2016; Soglia et al. 2016).To best of our knowledge, 

there is no supporting documents available for investigation on the categorization of WB 

myopathies at various stages of processing steps. 

Thus, we were able to categorize live birds, pre-chill WOG's, post-chill WOG's, and 

deboned fillets among the WB myopathies by employing a variety of complicated information 

accessible from an RF wave transmitter in the form of amplitude and phase with distinguishing 

separable signature frequency signals.  

Artificial neural networks, which are modeled based on the actual human neural complex, 

connect seemingly unrelated nodes or units in a computer system to address problems that cannot 
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be addressed by more traditional statistical methods. The implementation of the subconscious 

system to a processing architecture allows for the execution of specialized operations 

(perception, voice synthesis, picture recognition) that have proven effective in the manufacturing 

sector (Kecman, 2001; Alpaydin, 2010). To interpret data through the intricate response of these 

terminals and their connections to exogenous stimuli, decentralization requires a large number of 

interlinked hubs or neurons. (Akay, 2011). These approaches, which fall within the domains of 

perception and computation, are essential in the advancement of contemporary machine learning 

techniques (Nilsson, 2005). Process control is just one example of an area where neural networks 

have been put to use in industry (Pham and Afify, 2005; Wang et al. 2005). However, a larger 

sample size is necessary for acceptable accuracy when using ANN (Kotsiantis et al. 2007). 

The problem of over-fitting and under-fitting, which is associated with high-variance 

algorithms, has been widely recognized as a drawback of ANN Algorithms (Kotsiantis et al. 

2007). The complexity of the resulting models, the avoidance of missing values, and the time 

required to develop a neural network on a collected data are just a few of the issues that arise 

when utilizing this technique (Kotsiantis et al. 2007; Pham and Afify, 2005). 

5.7 CONCLUSIONS 

This study is intended to illustrate the application of radio waves in conjunction with supervised 

machine learning (ML) in the operations of poultry manufacturing by grouping myopathic 

chicken into categories based on the severity level at different processing steps. In comparison to 

the qualitative approach, SVM and BPNN combined with RF-waves and processing steps weight 

data can be used to classify myopathies, such as identification of WB in real-time in-line 

processing. This results in a more accurate classification of myopathies at different processing 

steps. It may be possible to increase the classification accuracy of both the SVM and the BPNN 
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by include other meat quality criteria, such as the number of dissolved solids, fat, and protein in 

the product. Future studies will also include larger amounts of information for myopathies to 

mitigate the interleaved of conditions resulting from human error during processing. This will 

allow researchers to obtain a well-trained framework for categorization at different processing 

steps. The novel combination of these techniques has the potential to increase the efficiency of 

poultry processing and reduce the number of downgrades of breast fillets caused by undesired 

myopathies, all while simultaneously lowering the number of customer complaints. 

5.8 DATA AVAILABILITY STATEMENT 

The data sets that were collected for this study will be made available upon request. 

5.9 CONTRIBUTIONS MADE BY AUTHORS 

AM is the principal investigator and was responsible for conceiving of the idea, securing 

funding, and carrying out the research. AS was responsible for the gathering of Radio-wave 

analysis data, and performing SVM analysis and BPNN analysis, and production of the text. 

AM and LJG both contributed to the writing process by reviewing it and modifying it. 

5.10 THE CONTRIBUTION THAT YOU MADE TO THE FIELD STATEMENT: 

Over the course of the past few of decades, there has been a significant rise in the intake of 

animal-based food on a global scale. The average annual consumption was only 10 kg in the 

1960s, but by the 2000s it had risen to 26 kg, and projections indicate that it will reach 37 kg by 

the year 2030. The physicochemical and sensory features of chicken meat, such as its texture, 

color, and flavor, are largely responsible for the strong market for chicken meat. Hand-palpation 

is the only low-cost method for categorizing the severity of WB fillets after processing and 

deboning; nevertheless, it is arbitrary, difficult, and has a substantial error in categorization. 
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Despite these drawbacks, it is still the only method currently available. In order for businesses to 

reduce the amount of money lost due to incorrect identification, stringent criteria for enhanced 

fillet sorting need to be developed right away. The processes of optimization, output tracking and 

control, and forecasting have all benefited significantly from the application of machine learning. 

In other areas of the food industry, quality assurance in production industry has seen significant 

improvements thanks to the widespread implementation of artificial intelligence techniques such 

as these. According to the findings of this study, radio-wave sensors in conjunction with machine 

learning algorithms during in-line processing had a strong ability to effectively categorize 

myopathies at different processing steps. 
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Figure 5-1: Consumption trend of chicken compared to beef and pork (Modified from NCC, 

2021) 
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Figure 5-2: Identification of myopathic fillets using Hand-palpation technique based on 4 point 

scale (Tijare et al. 2016) 

 

 

 

Figure 5-3: Descriptive Radio frequency spectrum bands with travelling distances 
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Figure 5-4: Receiver Operating Characteristics for different processing steps 
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Table 5.1:Different subjective scales used for the classification of woody breast meat. 

12 point scale (Sihvo et al. 2014), and 3 point scale (Sihvo et al. 2014), 4 point scale (Tijare et al. 2016)  

 

 

 

Woody Breast 

Subjective 

Classification Scale1 Condition Description 

2 Point Scale 
Normal No toughness or Hardness 

Severe Tough fillets 

   

3 Point Scale 

Normal No toughness or Hardness 

Moderate Medium toughness up to 50% 

Severe More than 50% toughness 

   

4 Point Scale 

Normal No toughness or hardness 

Mild Hardness at cranial region 

Moderate 
Filets extremely hard and rigid through from cranial region of caudal tip filets that were 

hard throughout but flexible in mid-to caudal region 

Severe More than 50% of fillet area is woody 
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Table 5.2: Summary table for specific radio-wave frequency from top 100 frequencies for different processing steps 

Step Condition Frequency Ranges 

 

Live Birds 

Normal 2.14 GHz, 2.33 GHz, 6.06 GHz, 8.73 GHz, 10.21 GHz, 12.60 GHz, 16.95 GHz 

Moderate 2.16 GHz, 6.06 GHz, 8.41 GHz, 9.27 GHz, 10.36 GHz, 12.61GHz, 16.95 GHz 

Severe 2.16 GHz, 6.06 GHz, 8.77 GHz, 10.21 GHz, 12.61 GHz, 16.95 GHz 

 

 

     Pre-Chill 

WOGs 

 

Normal 

 

2.18GHz, 3.21 GHz, 4.60 GHz, 5.71 GHz, 7.50 GHz, 8.90 GHz, 10.06 GHz, 11.16 GHz, 16.09 GHz 

Moderate 2.18 GHz, 3.15 GHz, 3.92 GHz, 4.85 GHz, 5.71 GHz, 6.93 GHz, 7.69 GHz, 8.90 GHz, 9.97 GHz, 10.93 GHz, 16.07 

GHz 

Severe 2.18 GHz, 3.33 GHz, 4.75 GHz, 5.90 GHz, 8.52 GHz, 10.00 GHz, 10.93 GHz, 15.99 GHz 

 

 

Post-Chill 

WOGs 

 

Normal 

 

9.40 GHz, 9.90 GHz, 11.67 GHz, 12.48 GHz, 13.01 GHz, 14.79 GHz 

Moderate 9.40 GHz, 9.90 GHz, 11.98 GHz, 12.48 GHz, 13.01 GHz, 14.79 GHz 

Severe 9.40 GHz, 9.90 GHz, 12.24 GHz, 12.86 GHz, 14.86 GHz 

 

 

Deboned 

Fillets 

 

 

Normal 

 

 

9.54 GHz, 9.93 GHz, 10.37 GHz, 14.86 GHz, 17.92 GHz 

Moderate 9.41 GHz, 9.71 GHz, 10.12 GHz, 14.96 GHz, 17.14 GHz, 17.91 GHz 

Severe 9.52 GHz, 10.03 GHz, 14.99 GHz, 17.63 GHz 
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Table 5.3: Classification accuracy summary table for Live Birds, pre-chill WOGs, post-chill WOGs and Deboned fillets using BPNN 

algorithm. 

Processing 

Steps 

Model 

 Measurement 

Testing Accuracy 

Normal Moderate Severe 

 

Live Birds 

Generalized R2 0.83  

 

87.5 

 

 

83.3 

 

 

100 
Entropy R2 0.64 

RASE 0.33 

Misclassification Rate 0.12 

 

Pre-Chill WOG 

Generalized R2 0.78  

100 

 

87.5 

 

100 Entropy R2 0.56 

RASE 0.37 

Misclassification Rate 0.06 

 

Post-Chill 

WOG 

Generalized R2 0.91  

69.7 

 

100 

 

100 Entropy R2 0.78 

RASE 0.26 

Misclassification Rate 0.10 

 

Deboned Fillets 

Generalized R2 0.85  

100 

 

66.7 

 

100 Entropy R2 0.66 

RASE 0.33 

Misclassification Rate 0.26 
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Table 5.4: Support vector machines classification accuracy summary table for Live Birds, pre-chill WOGs, post-chill WOGs and 

Deboned fillets 

Condition Type Sensitivity Specificity Testing 

 

Live Birds 

Normal 68.4 55.5 61.9 

Moderate 45.5 73.0 59.2 

Severe 42.8 96.6 69.7 

 

Pre-Chill WOG’s 

Normal 34.6 75.0 54.8 

Moderate 50.0 77.7 63.8 

Severe 70.0 67.5 68.7 

 

Post-Chill WOG’s 

Normal 38.4 84.0 61.2 

Moderate 53.3 77.7 65.5 

Severe 60.0 63.4 61.7 

 

Deboned Fillets 

Normal 46.1 92.3 69.2 

Moderate 75.0 72.2 73.6 

Severe 80.0 80.9 80.4 

 


