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Abstract

Dusty plasmas consist of components typically found in a plasma (electrons, ions
and neutral particles) as well as micrometer sized dust particles. The structural and dynamic
properties of a dusty plasma system are governed by the dust particle charging state and the
interaction of these particles with each other as well as the surrounding plasma and as a re-
sult of this, the knowledge of the exact charging state of the dust particles is very important.
Theories such as Orbital Motion Limited (OML) and Allen-Boyd-Reynolds (ABR) theories
as well as modified versions of these have been used to theoretically determine dust charge
value in the past. Some recent experiments to determine particle charge indicate differences
from theoretical models. This is particularly the case in the presence of a magnetic field. A
molecular dynamic simulation has been created to study dust particle dynamics in the presence
of a magnetic field. In a flowing system, a dust particle density gradient can build up due to
the Lorentz force (similarly to the classical Hall effect). This dissertation will show multiple
theories which have been developed to utilize this gradient to determine the particle charge in
different coupling regimes. This is a new method for determining dust charge value which will
be useful in many future experiments.

Due to the interactive properties of dust particles, coupling of dust particles becomes an
important factor. The coulomb coupling parameter I' is defined as a ratio of interactive poten-
tial energy to thermal kinetic energy. With this coupling parameter, regimes of liquid, solid
and gas-like can be defined. Using a similar experimental system to that of a classical Hall
effect, separate theories for calculation of dust charge were developed for the low coupling
(’gas-like”) and high coupling (’solid-like”/crystalline) regimes. These two new methods will

help increase the accuracy of dust charge determination in future dusty plasma research.
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Chapter 1

Introduction

1.1 Motivation and Scope

The goal of this dissertation is to develop a new approach to the problem of dust particle
charge determination. This will be done by first showing previous theoretical models and ana-
lytical approaches which have been used to determine dust charge as well as the experimental
results using these methods. Next, a new theory will be introduced for the case of low inter-
particle coupling (“gaseous”-like dusty plasma) as well as a new theory for the case of high
inter-particle coupling (’solid”’-like dusty plasma). A new molecular dynamic simulation will
then be introduced which has been created in order to test this theory as well as the validity of
this simulation for this research. The results of this simulation will be shown as well as the ana-
lytical tools which have been created in order to test these theories. Lastly, a future experiment

will be proposed which can be utilized to test these theories further.

1.2 Plasmas

The field of plasma physics is one which has existed for almost one hundred years. Some
of the most important terms in plasma physics such as ”plasma” and ’sheath” were originally
coined by Irving Langmuir in 1928 when he wrote ”...Except near the electrodes, where there
are sheaths containing very few electrons, the ionized gas contains ions and electrons in about
equal numbers so that the resultant space charge is very small. We shall use the name plasma to
describe this region containing balanced charges of ions and electrons” [1]. Since this time, the
field of plasma physics has advanced significantly to become one of the most interesting and

relevant fields of physics. Plasmas are commonly found in nature in stars, in nebulae as well



as on Earth in the form of the Aurora Borealis as shown in figure 1.1. Knowledge of plasmas
in these system gives us information about the Earth and the universe which would have been
otherwise difficult to interpret. It has been shown, for example, that plasma characteristics
observed by low-altitude satellites can be used to map the upper atmosphere of the Earth [2].

Plasmas are known as the “fourth state of matter” and are created by taking a gas (for
example, Argon or Helium) and adding a large amount of energy into the system. This energy
input is accomplished through various different methods in practice. In a laboratory system,
energy is typically input into the system via an applied direct current (DC), alternating current
(AC) or radio frequency (RF) current. As this energy increases, the electrons separate from
neutral particles which forms a standard plasma. This standard plasma consists of positively
charged ions, negatively charged electrons and non-energized neutral particles which are seen
in plasma systems [3].

One common property of plasmas is the release of excess energy in the system in the

Figure 1.1: An example of plasma in the Aurora Borealis above North Amer-
ica (Image from NOAA space weather).

form of light. This is referred to often as the “plasma glow.” The characteristics of this light
emission can be analyzed to find information about the plasma itself. This is typically done

by using a spectrometer to analyze the wavelengths of light being emitted from the energetic
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electrons. Specific wavelengths of light will then correspond to specific energetic decays as the
bound electrons drop to lower energy levels. The difference between these energy levels and
therefore the emitted light is unique and can be used to determine information about the plasma
itself and which atoms make up the plasma. The intensity of the spectral lines emissions can
are also used to diagnose plasma parameters such as temperature and density. The wavelengths
help identify the emitting elements and are used to diagnose plasma flows and velocities. This
technique, known as optical emission spectroscopy has been used to analyze many different
types of plasmas [4] and is one of many techniques to determine plasma parameters in a system.
An example of laboratory plasma systems are shown in Figure 1.2.

In nature, plasmas which occur are often times influenced by external contaminants not
included in our definition of a ’standard plasma”. Any new particles in the system will change
the nature of the plasma. This new system which contains more than the three (ions, electrons

and neutrals) plasma components is commonly referred to as a “complex” or ’dusty” plasma.

1.3 Dusty Plasmas

A dusty plasma (sometimes called a complex plasma) is typically defined as a four com-
ponent plasma composed of ions, electrons, neutral particles and an additional component.
There is no set definition for the specifics of this fourth component however it typically refers
to a component of larger scale compared to other components which exists within the system.
This fourth component is referred to as a ’dust particle” and hence the name “dusty plasma”.
Dusty plasmas are present in nature in environments such as the upper atmosphere, volcanic
clouds, the interstellar media, planetary nebulae and planetary rings [5, 6]. These dust particles
can have a wide range of varying shapes, sizes and material properties each of which will affect
the way a dusty plasma behaves.

In terms of size, dusty plasmas can be made from particles on the order of a few nanome-

ters [7] up to almost a millimeter in size [8]. It has also been shown that it is possible for a
dusty plasma to have a distribution of many sizes within the same system [10, 9, 11].

Dust particles can be made of many different types of many different materials such as

melamine formaldehyde [12], silicon [8], ice (as is the case for some of saturns rings) [14, 13],



() (b)

Figure 1.2: Two examples of laboratory plasmas (a) An example of a typi-
cal laboratory DC discharge chamber and (b) an example of a laboratory RF
generated plasma in the dodecahedral plasma chamber at Auburn University).
Both of these plasmas are glowing with a ”pink” hue, analysis of the fre-
quency of this light can show what gas is inside of these chambers. In both of
these cases, Argon is used.

to the much more complicated systems of microorganisms [15] as well as various metals such
as tungsten which has been used to study ablation in fusion reactors [16].

Beyond the size and material of the dust particles is their shape. While many of these
particles are assumed to be spherical [12], there are cases where this is not the case. Some
examples of this are particles which result from particle growth [8]. These non-spherical dusty
plasmas have even been theorized to exist within Saturn’s rings [13]. The assumption of a
spherical shape however is generally accepted to have minimal effect for cases where the par-
ticle size < Debye length.

As a result of this wide range of parameter spaces it is useful to have a definition of a



Figure 1.3: An example of a dusty plasma created by in a Zyflex chamber
(Image provided by Uwe Konpoka). Dust particles shown in zoomed in por-
tion beginning to form structure.

”common” laboratory dusty plasma. In a common laboratory dusty plasma, particles have a
radius on the scale of a micrometer and are made of plastic such as melamine-formaldehyde
(which has a mass density of 1510 kg/m? [17]).

One major benefit of a dusty plasma system is that it can be used as a macro scale system
which emulates more complex micro scale systems (such as electrons and atoms) due to the
charged nature of the particles. Some of the behavior which has been observed in dusty plas-
mas is similar to that of various states of matter through the interaction and coupling between

particles [18].

1.3.1 Dust Charging

As the dust particles interact with the surrounding plasma, they accumulate charge based
on their physical properties such as characteristic size, shape and the material properties of the
dust. The determination of an accurate value for this quantity has proven to be a very difficult
task. While many methods have been postulated for calculating dust charge value, there are

many circumstances such as the presence of magnetic fields [19] in which the accuracy of these



theories decrease. In the following section, various theoretical, computational and experimental
methods that have been used to approximate, calculate or measure dust charge value in a system
will be introduced.

The first introduction to dust charge accumulation on a dust particle was shown in the
1926 paper by Mott-Smith and Langmuir [20] as well as (coincidentally) the paper by Langmuir
[1]. This was done by first assuming the particle will behave similarly to a small spherical
probe. Next, showing the currents incident upon a “small” spherical probe in a plasma with
the assumption that the changes to the surrounding plasma did not expand beyond the sheath
region. This ”small” spherical probe is defined as dust radius, 4 < Debye length A\p. Debye
length is defined in equation 1.1 and can be described as a charge carrier’s net electrostatic

effect and the approximate length to which this electrostatic effect persists [21].

T.
Ap = | 2ote (1.1)

47n,.e2

where n. is plasma electron density, 7, is the electron temperature, k; is Boltzmann’s constant
and e is electron charge.

This theory of charging was further expanded upon with Allen-Boyd-Reynolds (ABR)
theory [22] which assumes radial motion of the ions and electrons about the dust particle as
well as Orbital-motion limited (OML) theory [23, 24, 3, 17] which assumes orbital motion of
the incident ions about the dust particle.

Both OML and ABR theories calculate the ion and electron current incident upon the
probe based on assumptions about the particle motion. Some of the limitations of ABR and
OML theories appear in the case where rp/Ap < 2.8 at which point electron current is mea-
sured to be above expected values as shown in the paper by Sonin et al. [25]. In terms of dusty
plasmas, the inaccuracy of ABR and OML theories appear as dust particle size increases and
therefore result in an inaccuracy in the calculation of dust charge value using these theories.
Further calculations of mixed mode theories were done by Bryant et al. [26] which show that

values for dust charge lie somewhere between these two theories as shown by the plots in this

paper.



One of the most important aspects which affects the nature of dusty plasmas is the charge
on individual dust particles. The dust particles interact with the plasma components (ions, elec-
trons, neutral particles) through collisions which results in some of this charge being deposited
on the dust particles. This charge deposition over time can be represented as a current from

each of the plasma components (k) incident upon the dust particle.

ko
= Z I, (1.2)

These currents incident upon the dust particle will eventually result in the particles be-
coming charged. The determination of this dust charge is very important as this property will
have an effect on the surrounding plasma. An example of a dusty plasma is shown in figure 1.3.

An assumption is made first that, in the case of a lab, 7, > 7} and that mobility will
be limited. The currents on this particle are assumed to be dominated by the electron and ion
currents. These currents are assumed to come to an equilibrium on the dust particle over time

to reach a constant value which balance.
d@
— = L=1L+1.=0 1.3
It E k + (1.3)

This is known as the floating condition where /. is the electron current and /; is the ion current.
This condition can be used to calculate the dust particle charge value once the incident currents
have reached an equilibrium. In general, when the dust charge value is calculated, the dust
particles are found to have a negative dust charge value. This is the case as the condition
which charges the dust particle is the interaction with the surrounding plasma. The movement
of plasma components around the dust changes over time as the particle becomes charged.
The external power input mainly acts upon the electrons in the system as they are smaller and
will move faster than the ions and neutrals in the system. This energy is then transferred to
the neutral particles in the system through the highly energized electrons and subsequently
ionization occurs. Electrons are initially more energetic than ions and neutrals and will have

more collisions with the dust particles. This results in a more negative charge on the dust



particles [17, 3]. Eventually the dust particles will become more negative and repel the incident
electrons. When this occurs a balance of flux is established.

OML theory is commonly used as an assumption for many laboratory dusty plasmas
as a typical dusty plasma falls within the valid parameter space of this theory and has been
shown experimentally to fit theory [24]. The limits of OML theory appear as the ratio of r4/\p
increases. It is shown in the paper by Zobnin et al. [27] that as this ratio increases, the absolute
value of the dust surface potential increases. Further deviation of dust charge value from OML
theory comes with the inclusion of magnetic fields.

The charge value on a dust particle has been theorized to change as magnetic field be-
comes larger. It is shown in the papers by Tsytovich et al. [19, 28] that this deviation from
expected value begins to occur as magnetic field becomes larger than a critical value. This
critical magnetic field B, arises as the dust radius compares to quantities called the ion and

electron gyro-radii which are given by

mrgUr k

1.4
WD (1.4)

Bk =

where the subscript k can refer either to electron (e) or ion (i). Here thermal velcity vy is given

by
kgTh
my

(1.5)

VU X

According to equation 1.4, these radii decrease as the magnetic field increases. For particles
of dust radius r; ~ 10 um this change begins to occur at relatively small magnetic fields (for
example, the critical magnetic field BS, = 4kG for a dust particle size of a ~ 10 pm). In the
case when By, > B,,, electron gyroradius becomes smaller than dust radius and results in a
decrease of dust charge value. As the magnetic field becomes even higher and ion gyro-radius
becomes smaller than the dust radius, the dust charge value starts to increase greatly compared
to values calculated with OML theory without a magnetic field. A computational analysis of
the critical magnetic field at which dust charge value begins to decrease has been shown in the

paper by Kodanova et al.[29].
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Figure 1.4: Figure (a) A cartoon showing input of thermal energy into the
dusty plasma system of neutral dust particles and neutral atoms. Energized
free electrons move to collide with neutral particles. Figure (b) Cartoon show-
ing ionization of particles. Ions move to collide with dust particles and neutral
particles in system. Figure (c) Plasma ignites and all particles move in system
with higher electron thermal energy than ion and neutral thermal energy due
to interaction with wall
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Heat input into system

Heat transferred to free electrons through wall

Energetic free electrons collide with neutrals transferring
energy and causing ionization, plasma is created.

Thermal energy transferred be-
tween ions and neutrals, T, = Ty

Collisions with dust particles,
dust particle collects charge

Dust particles reach net zero flux as charge currents
from electrons and ions reach equilibrium, ®;, =
®,,+ and dust charge approaches a constant value

Figure 1.5: Flow diagram showing generation of dusty plasma

1.3.2 Dust Charge Analysis

While analysing the charging process is a useful method for calculating dust charge value,
there are many other methods of finding this quantity. For the case of an isolated dust particle,
a common method for calculating dust charge is achieved by establishing a connection between
the floating potential of dust grains ¢,. dust capacitance C and their charge value (), [30, 31,
3].

Qa = Cos (1.6)

The equation above requires an assumption for the capacitance of a dust particle. For this

we consider the dust particle as a small spherical capacitor with the opposing charges being at
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a distance equal to the screening length Ap [32]. This yields a dust capacitance of

O = drmegrae b =~ dregra(l+ %) (—L is small) (1.7)
AD AD
When ry; < \p Equation 1.7 becomes [3]
C = 4dmegry (1.8)

This is a common assumption for many laboratory dusty plasmas with micron sized particles
and debye lengths typically between 50 - 500 pm [5].

For dust particles sized below 50 pum, charge value begins to fluctuate as a result of the
discrete nature of the charging process via interactions with the surrounding plasma compo-
nents. This is shown numerically in the paper by Cui and Goree [33] then analytically by

Matsoukas and Russel [34]. These charge fluctuations reveal a power law [30, 27].

AQ

<Q>=0MWH7 (1.9)

where Q refers to dust charge value and N refers to number of dust particles. This means that
there will be further uncertainty in the dust charge as the average charge becomes smaller.
There have been many experimental methods for measuring dust charge. One of the sim-
plest among these methods would be to look at the balance of forces for a dust particle. This
has been done in the case where electric field balances with gravitational force on the dust
particle. Equation 1.10 would allow the calculation of dust charge value provided a value of
electric field could be found [35]. The drawback of this is that electric field is not a quantity
that can be directly measured easily without disrupting the plasma. An example of this force

balance is shown in figure 1.6

GaE. = mg (1.10)

12



Z
'137 @ @ @ o
ﬁ
x @ @ (©)

Figure 1.6: A cartoon showing a dust particle in a plasma in the case where
the electric field force, I’y = ¢F balances with the gravitational force, I, =
mg to cause levitation of the particle.

Similarly, another experiment by Barkan et al. [36] uses the force balance between the
electric field force F'x and force of gravity F| for a dropped particle in order to calculate dust

charge once the particle has reached a constant velocity

Y Fy=Fp—F,=0 (1.11)

Another method for experimental determination of the dust charge value is to use a Lang-

muir probe to measure the drop in plasma potential between a system without dust to that of a

system with dust. This difference can then be compared to the quasi-neutrality condition [37,
36]

eny —en, — NgQq =0 (1.12)

which could then be used to calculate dust charge value (), provided the dust, electron and ion
densities are all known quantities. One major drawback of using a probe to measure dust value
is that it will disrupt the plasma and therefore has the possibility of changing the conditions
of the dust-plasma system (and unfortunately the charge of the dust particles). Furthermore,

knowledge of the ion, electron and dust densities are difficult to determine accurately [22].
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The calculation of dust surface potential can be found through the analysis of dust trajec-
tories during particle-particle collisions and the radial distances between particles. By assuming
a screened Coulomb potential, dust plasma charge value can be calculated. The calculation for
the effective dust charge value as well as screening length of these partricles has been shown
in the papers by Konopka et al. to have an uncertainty of 10-20 percent [12, 38]. While this
method is rather unperturbative, it does become difficult in a high dust density situation when
the influence of neighbor particles cannot be ignored. The measurement of dust charge in this
system is also dependent upon the dynamics of the dust particles. With the inclusion of a mag-
netic field the dynamics of the particles change and this will subsequently have an increase in
the uncertainty of the measurement.

It has also been shown that it is possible to use vertical oscillations and waves in crystal-
lized dust systems as a diagnostic. This is done by using a laser to input energy in the system in
the form of an acoustic wave. By observing the wave as it moves through the system the height
of the vertical oscillations of the dust can be measured. This can then be used to determine
different properties in the dusty plasma such as coupling and dust charge value, (), [39].

A few experiments have been conducted for the case of a magnetized dusty plasma. An
investigation into the dust charge value for this case was conducted by Lynch at Auburn Univer-
sity [40]. This was done in a magnetized dusty plasma which has been theorized by Tsytovich
et al. (among others) [19] to alter the dust charge value in the system. An experiment was con-
ducted by dropping individual, isolated dust particles into plasma with a perpendicular external
magnetic field as shown in figure 1.7 While the dust particles are falling, they become charged
as a result of the surrounding plasma. The Lorentz force resulting from the magnetic field
acting upon the dust particle causes the particle to deflect. The magnitude of this deflection
can be utilized to then measure the dust charge value on each particle. The dust charge value
was measured to be lower than expected values calculated using OML charging theory [40]. A

drawback of this method is that it is difficult to use in a more dense, collisional dusty plasmas.
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Figure 1.7: Experiment conducted by Lynch at Auburn University [40] which
utilizes the deflection due to the Lorentz force of a single isolated dust particle
in a perpendicular magnetic field to calculate dust charge value

1.3.3 Debye Shielding

As a result of the plasma surrounding dust particles, the effect of the interactive force
is diminished. For charged particles, the interaction between particles can be modeled with a

Coulomb potential.

a1
4meq T,

¢coulomb = (113)

A result of the screening of this potential by the surrounding plasma, the use of a screened
Coulomb potential can be used for evaluating the interaction between these particles [41]. This
theory has been tested experimentally by Konopka et al. [38] to have excellent agreement
with the theory of screening in a dusty plasma. This screening effect is referred to as a Debye

shielded potential

.
qr €*p

Dshielded = (1.14)

dmeg T
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1.3.4 Coupling Between Charged Particles

Dusty plasmas have also been used to study states of matter on a macro scale. A pa-
rameter known as the Coulomb coupling parameter can be introduced which correlates to the
different state of matter of the dusty plasma. This coupling parameter I' which is quantified by
the ratio of inter-particle potential energy compared to the thermal kinetic energy of the dust

particles [42].
Potential Energy q: f
Kinetic Energy  4meokpTyA 2

;= (1.15)

Where here A is a parameter representing the inter-particle spacing of the dust particles (in
meters) and f is the degrees of freedom in the system. It can be noted here that for this case,
I'; given in equation 1.15 takes into account the degrees of freedom of the system. When
referencing literature on the subject, the degrees of freedom are often times omitted or the
system is assumed to match the description given in the paper.

q:

= —FF—— 1.16
47T€0]€BTdA ( )

In the case of a screened potential (which is useful in the case of a Debye shielded system) this

parameter can be modified by [43]

Potential Energy q 5= (1.17)
_ — e D .

~ Kinetic Energy  AmeokpTyA

A dusty plasma system is said to be strongly coupled when the coupling coefficient
I' > 1, or in other words when Coulomb interaction potential energy is much greater than
dust thermal kinetic energy. In the case of a strongly coupled dusty plasma, the particles will
no longer be isolated from one another. Subsequently, the dust charge values in the highly cou-
pled case have been found to be lower than expected values calculated using various charging
theories [18, 44].

For cases when I' < 1, the system will be dominated by the thermal energy of the dust

particles and therefore will behave similarly to a system in a gas-like state. Most dusty plasmas
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will be in the weakly coupled regime where I' < 1. For dusty plasmas where I" is on the order
of 1, the system can be approximated as being in a “liquid-like” state. For cases where the
coupling coefficient I' > 1 the system begins to form into a solid-like, Coulomb crystal [45,
18, 30].

Crystals such as this have been postulated as far back as 1938 and have been proposed as
macro-scale models for more complex crystalline systems [46]. For dust particles in plasmas,
Coulomb crystals were more specifically theorized in a 1986 paper by Ikezi et al. [47]. The
crystallization of the system and the coulomb crystals result in a carbon-like hexagonal struc-
ture as shown in figure 1.8. Dusty plasma crystallization have also been studied experimentally
and have been found to have dust charge values which are reduced compared to those calcu-

lated in the case of isolated dust particles using charging theory [18].

Figure 1.8: An example of crystallization in a dusty plasma system as shown
in an experimental setup created at Max Planck Institute (Image provided by
Uwe Konopka)

Much of the behaviour of dusty plasmas is related to how the dust particles interact with
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each other as well as the surrounding plasma. This interaction is largely dominated by the
dust charge value therefore it is important to have an accurate method of determining this dust
charge value. The determination of this particle charge is difficult to ascertain accurately as
there are currently limited methods for calculating this value to a high degree of precision. Fur-
ther complications arise with the addition of a magnetic field which many current methods have
shown to find difficulty compensating for [19]. Due to these constraints, a new measurement
technique which can measure this value precisely without modifying the dust or surrounding
plasma is required. This is especially relevant in the case of high dust density, high coupling or
in the presence of a magnetic field where the uncertainty in dust charge value is even higher.

In order to address the problem of charge value determination, a theory to accurately de-
termine dust charge value has been created which takes both magnetic field and coupling into
account. The theory will be expanded upon in the next chapter in the cases of both high and
low coupling coefficient. These theories are then tested using a molecular dynamic simulation
which has been developed for this purpose. A potential experimental investigation to verify the
results collected from the simulation data has also been developed.

In chapter 2, the theoretical approach will be presented for the cases of both high and
low dust particle coupling. In chapter 3, a simulation will be presented which will be used to
analyze the methods introduced in chapter 2. In chapter 4, the results of the simulation are dis-
cussed as well as the analytical codes which have been developed to test the theory. In chapter
5, an experiment is proposed which can be constructed to test this theory. Finally, chapter 6
discusses the summary of this dissertation as well as the future work which has been theorized

to continue this research.
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Chapter 2

Theory

2.1 Theoretical Approach

In this chapter, the general theoretical approach will be introduced. This will then be ex-
panded upon for both the case of a fluid system (low coupling) as well as a crystalline system
(high coupling). For both cases, the theory requires a system in which an external force com-
presses the system along a set direction. The external force is directed opposite the direction of
an electric field confinement. Experimentally this confinement will be the result of the walls of
the system or the walls of an imposed potential well in the system. The result of these forces
is a gradient in the density of the dust particles. This is very similar to a classical Hall effect
system.

A classical Hall effect system initially has uniformly distributed electrons along a two
dimensional plane. These electrons are given a velocity along a specific flow direction which is
parallel to the plane. This plane is perpendicular to an external magnetic field. Having charge,
the incident magnetic field gives the electrons a U x E drift perpendicular both to the direction
of movement as well as the magnetic field. An electron density gradient builds up establishing
a Hall electric field that opposes the Lorentz force. As a result, a Hall voltage can be measured
across the conductor perpendicular to both the electron motion as well as the magnetic field. A
similar system can then be envisioned in which negatively charged dust acts as the particles in
the system in a similar way to the electrons in the case of the classical Hall effect system, the
main difference in this case being the shielding effect of the surrounding plasma. Shielding of

the dust particles has a result that the compensation force as a result of a Hall electric field is
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no longer a global effect and now is instead a result of the pressure force from the dust-dust

collisions. This is shown in Figure 2.1 as it applies to our similar "Dusty Plasma” Hall effect

N>

Magnetic Field, B

Particle Flow, v,

Figure 2.1: Dust particles should behave similarly to the classical Hall effect,
this is a result of the charged nature of the dust particles

system. As with the electrons, these charged dust particles will also have a resultant T X §

drift due to the magnetic field.

2.2 Low Coupling Theory

When looking at low coupling theory it is helpful to view the system as a fluid. Along

with this a few assumptions will be made:

. The system is isothermal (i.e., ?T =0)

—_—

2. The system has reached a steady state and is independent of time

dQ _

(%7 = 0,v = constant, Vi = constant)

3. Magnetic field, flow direction and density gradient are all perpendicular
4. External electric field is approximately zero in region of evaluation

5. Density is non-uniform along y-direction
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As we are viewing the system as a fluid, it is useful at this point to start solving the

equation for momentum.

0
0
mn%g4¢i%ﬁf =3 2.1)

where m is dust mass, n is dust density, u is system velocity. It should be noted that for the
sake of this derivation, f; refers to a force density and F; will refer to forces. Here, %—? =0
because we assume that our system has reached steady state. From Lorentz force, this speed
perpendicular to the magnetic field results in a deflection of the dust particles perpendicular to
the flow direction. By the time the system has reached steady state, a density gradient will have
formed as shown in Figure 2.1.

The forces which act upon a dust particle in our system are shown in Figure 2.2. The
drag and driving forces shown in this diagram oppose and result in a constant flow velocity
once the system has reached a steady state. Furthermore, the force balance between the vertical
confinement electric field and the gravitational force results in a monolayer of particles which
allows the system to be viewed of as two dimensional. An example of this monolayer is shown
in figure 2.3. Lastly, the Lorentz force in the system will become balanced with the force of the
pressure gradient will also balance and this is what allows the calculation of the particle charge
proportional to the density gradient.

Listing the force densities in the system is necessary now to solve equation 2.1, it is

useful however to remember that the density is non-uniform along our y direction n = n(y)
?m:m%ﬁ+7x§> (2.2)

Lorentz force for this system will have an electric field component along our 2 direction
as well as a magnetic field component along the ¢ direction. The next force to look into is the
force resulting from the dust pressure, as this force is a result of the gradient of temperature
and density, it can be shown this will only appear along the y-direction since the pressure will

be strongest when the dust particle density is highest (i.e. anti-parallel to the magnetic force
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Figure 2.2: Forces on a dust particle in a dusty plasma. Among these are
driving force, drag, electric field (Fg), gravity (F}), pressure force (F'p), and
lorentz force (Fp)

and perpendicular to the magnetic field.

?Pressure - _ep = —?(ndkBTd)

0

:—@H€m—@y%§ 2.3)
?drive = n?dm’ve = (TL) (COnSt) s 2.4)

One of our assumptions for this system is a constant driving force. Experimentally this
can either be generated in a number of different ways some of which will be discussed further
in this dissertation. An important piece of note is that this driving force can not be proportional

to charge as this will result in charge value cancelling.

7drag,n = —TL’)/7 (25)

The framework for neutral drag on a charged particle in a plasma was originally theorized

in the 1924 paper by Paul Epstein [48]. Neutral drag on the dust particles where drag coefficient
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Figure 2.3: A diagram showing the monolayer of dust particles. The area
between the red boxes is what we will be looking at (i.e. along the direction
of gravitational force shown in figure 2.2). This is useful as it allows our
system to be viewed as two dimensional

7 is given by

7
v = (5?nnmn65r§ (2.6)

Here, c; is the sound speed which is a result of the neutral temperature and neutral mass shown

kT,
o = kB 2.7)
™My,

Equation 2.8 shows d which is the reflection coefficient. The reflection coefficient ¢ relies on

in equation 2.7.

how a charged dust particle moves through the plasma and the resulting reflection of the plasma
components. This value for the reflection coefficient is chosen as it represents diffuse reflection
for the case of a perfect spherical thermal non-conductor as is the case for a commonly used

melamine-formaldehyde dust particle [48, 49].

97
0= (1 + 6_4) (2.8)
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Using these equations we can then solve equation 2.1 further by assuming that grav-

ity and electric field along the z direction will cancel

0= ?Lor + ?p + ?eps + ?dm’ve (29)
(T B) T T

Reiterating the assumptions of perpendicular magnetic field, zero electric field (within the re-

gion of simulation) and constant flow direction yields equation 2.10:

B=Bz: E,—0

(2.10)
E,~0, U = uyd
And applying these assumptions gives an equation for the system flow velocity.
0
0
s 0= _kBTd n + fdrive — YUy
T
Tive F Tive
%%:h — (2.11)

nwy Y

This shows that the velocity of the system is a function of the driving force Fj,;,. as well as the
drag coefficient. As both of these values are constant, the velocity of the particles along the x

direction is constant. Solving for forces along the y direction,

y: 0=gqn <7 X ?)y — kgTyVyn

— 0 = gqnu,B, — kgTyVyn (2.12)

By using equation 2.2 dust charge value can be evaluated for the case of low coupling

. /{ZBTd’}/VyTL

2.13
Bofdm’ve ( )
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Or, by inserting the result from equation 2.2 into equation 2.2 charge can be calculated with

this average system velocity, u,
. k BTd Vyn
Bou, n

(2.14)

Equation 2.14 gives an value for dust charge dependent upon the dust temperature 7, dust
density gradient V,n and flow velocity u,. These are all parameters which can be evaluated by
using positional data over multiple time frames in either an experiment using particle tracking
software or in a simulation.

This charge calculation is useful when dust thermal energy is much higher than the inter-
particle energy between dust particles. Another method of evaluation therefore is required
when the opposite is true. When a set of particles is crystallized or in other words has a high
coefficient of coupling, a separate dust charge calculation theory is necessary. For this case, a

high coupling charge calculation theory has been developed.

2.3 High Coupling Theory

For the case of high coupling in a dusty plasma, the inter-particle potential energy will
be larger than the thermal potential energy of the dust particles. The result of this is that the
system will begin to behave in a solid-like manner where crystalline structure can begin to form
at high values of the coupling coefficient, I's. In order to evaluate this coupling coefficient an
assumption must be made regarding the interaction between dust particles. For an independent
set of charged particles in a vacuum, a coulomb potential shown in equation 1.13 is assumed
as the interaction potential between particles. Since each particle is screened by the plasma in
the system, it is necessary to instead use a screened coulomb potential as an assumption. This
is apparent from the solution of Poisson’s equation in spherical coordinates for the potential

given a space charge around a sphere given by [32]

p = nee[l —exp(ep/kT)] (2.15)
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Figure 2.4: Electric field diagram for the case of a positive dust particle. In
this system, the particle will be confined within the center region along the
y-direction

The solution of poisson’s equation, VZ¢ = —;%, for charge density from equation 2.15 subse-
quently yields an equation for inter-particle potential ¢
dd 6%

o= (2.16)
dmey T4

Taking the gradient of this force gives an equation for the interaction force between dust parti-

cles. This interaction force is similar to the coulomb force but includes the effect of screening
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as a result of the surrounding plasma from equation 2.16.

—T

2 GE .
?interaction - _q€¢ - 44 (/\D + Td)r (217)

2
4meg Aprj

As aresult of the interaction forces the particles will all repel one another. This repulsion
combined with the confinement within the system by an external electric field shown in figure
2.4 causes the particles to organize into a hexagonal shape. This results has been observed in
experiments by H. Thomas et al. [18] as well as Chu et al. [45] which goes on to show the
hexagonal form these crystals will take. This hexagonal structure is shown in figure 2.5a. This
has been observed many times and is a true crystalline structure. When the compressional force
(in this case Lorentz force) is included a more complex system arises.

Under the effects of a compressional Lorentz force a ’crystal” similar to that shown in fig-
ure 2.5b forms. A note should be made here about the validity of the use of the word “crystal”.
Since the definition of a crystal is a piece of a homogeneous solid substance having a natural
geometrically regular form with symmetrically arranged plane faces” from this is technically
no longer a crystal as the symmetry and homogeneity has been lost, however for the sake of
simplicity I will continue to refer to this as a “crystal-like” or “pseudo-crystalline” structure.
Due to the discreteness of bond lengths of crystalline structures in nature, it is uncommon to
have this sort of structure. A similar geometry can be found for the case of sedimentation
layers in charged colloidal particles as shown in [50]. This work shows a similar system with
slightly different three dimensional geometry. Also in the field of colloid chemistry, the paper
by Philipse et al. [51] shows unique diffusion and sedimentation profiles for the case of sedi-
mentation in colloids where the Debye screening between adjacent particles is relevant, which
is the case for our dusty plasma system.

Taking into account the forces incident upon the central particle in figure 2.5b, figure
2.6 1s formed. This figure includes both the external forces (drag, driving force, compressional

Lorentz force) as well as the interaction forces from each of the six nearest neighbors. Including
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Figure 2.5: This figure shows an example of (a) a particle with no compres-
sional force which creates a perfect hexagon with constant inter-particle dis-
tance shown here as A and subsequently a uniform y-directional distance. (b)
Shows a figure which is under a compressional force balanced by the bound-
ary conditions which holds the particles stationary. Note here that the dis-
tances between particles is constant however the inter-particle spacing will
change for each layer. The x-direction distances are all constant however re-
gardless of layer.
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Figure 2.6: Asymmetric dust “crystal” due to compressional force. This
shows the interaction forces (shown in red) as well as the external forces
(shown in gray). Note here that the upper and lower y distances are not equal
but the distance between particles in the x direction are the same. Here, the
green particles is the one being investigated and can be viewed as particle i
with charge value ¢;

this interaction force for a calculation of forces from Newton’s second law

Z ? = (Fdrive - Fdrag + Z Ent,x)if + (Eorentz + Z Ent,y)g = m? (218)

Figure 2.7shows a plot of the density in the x direction over time. Since this density is
relatively constant, it can be said that the particles are equally spaced along the x direction.
From this, 7 = 0 and the system can said to be in a steady state. Newtons second law
> F = ma can then be solved along the x direction.

As shown in figure 2.6, the forces which we will be taking into account are those of the
Epstein drag, driving force as well as the interaction forces in the system for the x direction

(Lorentz force only points along y).

Fint,B,x - Ent,4,x + Ent,l,x - Ent,?,x + Ent,G - Ent,3 + de’ve - Fdrag =0 (219)
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Figure 2.7: This figure shows a plot of the dust particle density over time in
a simulation. Each frame in x is plotted on a histogram and this is shown as a
single vertical slice. For the particle position along x there is no preferential
direction or structure for the density of the particles. As time progresses it
can be seen that the density is random. This is why the image appears to look
like ”white noise”, this noise is because of the movement of the particles in
the system in random Stochastic motion as a result of the temperature in the
system.

As a result of the uniformity along the x direction, the interaction forces in the system will all

cancel and this simply yields

Farive = Fdrag (220)
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This matches the assumption in the system that the drag and driving forces are independent of

the interaction forces.

Firive = Firag: > Finta =0 (2.21)

In order to avoid confusion, it should be pointed out here the labeling of forces in this
section. The forces follow those shown in figure 2.6. Each of the particles is given a number 1
through 6 and the interaction forces are corresponding to the force between the center particle
and the number give. Each of these forces will be repulsive forces as all dust particles are
assumed to have the same dust particle charge. With this in mind, Newton’s second law can be

solved along the y-direction to yield
Fint,4,y + Ent,5,y - Ent,Q,y - Ent,l,y - E,Lorentz =0 (222)

Where F; forent> and similarly v; , refer respectively to the lorentz force on particle i (in figure
2.6 particle 1 would be the green central particle) and the velocity of particle 1. Fj,; ,, refers to
the assumed interaction force in the system along the y-direction (perpendicular to that of the
driving force of the system as well as perpendicular to the magnetic field in the system). In the
case of this dissertation, the assumed interaction force is that of a Debye shielded potential as
shown in equation 2.17.

Due to the uniformity in x as well as the symmetry in the system,

Ent,lower = Lint 4y — Lint,5y

(2.23)

Ent,upper = Lintly — Ent,Q,y

Continuing with the y-direction and rewriting equation 2.22 with terms defined in 2.23 yields

Yiower
2-Fint,lower - 2Ent,upper

Tlower upper

Yupper

— QaviaB. =0 (2.24)
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Continuing and, for the sake of ease of view, rewriting 7., as r;, and the same for forces and

Tupper
2q; [(ru+Ap)e ™/ P yy  (rp+Ap)e 0y
47T€g )\DT‘?] Tu )\DT% L

= dei7sz (225)

This equation can be subsequently solved for the dust particle charge as a result of the geometry

of the system:
dmegv; B, v, B,

rutdp)e TUAD gy 2ArptAp)e 7LD g 3Gy,
)\DT2U ry )\DT’% TL

4= (2.26)

Where G|, refers to the geometric terms from the interaction forces further defined in equations
2.28 and 2.29. While equation 2.26 is true for the ideal case where the system is truly symmetric
along the x-direction this is not always the case, by assuming Fj,,; je st 7 Fint right the following

equation results.
Amegv; . B,

T Ga+Cs—G— G,

qa (2.27)

where for the sake of simplicity a geometric term, G, is introduced. Here, this geometric term

Figure 2.8: Visualization of a single interaction force and it’s components
and angle. This angle is used in equation 2.28

is simply the y-component of the interaction force without the charge. Looking at an individual

interaction force is shown in figure 2.8.

Fryr _ Fry

— (2.28)
Gy Q@

F
Gy = —gsinék =
d
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Or in other words, rewriting equation 2.28 with the values of force from equation 2.17 yields,

(T’k + )\D)e_wk/AD Yk
Gy, = )\DT;% a (2.29)

Equation 2.26 can be further generalized for a separate external non-Lorentz force which is not

dependent upon ¢, by substituting q v, B, = Fiyierne- This results in a more general equation:

Fexternal
= 2.30
qa = 4| S G (2.30)

Equation 2.30 is useful for cases such as compressive force due to gravity. As a result of the

previous derivations, equations 2.26 and 2.30 can be used in the case of a crystal-like or highly-
coupled dusty plasma system. Combining this with equation 2.13 for the case of a fluid or
lowly-coupled system means that dust charge value can now theoretically be determined for a
wide range of cases. This can further be validated through analysis of a simulation which will

be shown in the next chapter.
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Chapter 3

Molecular Dynamics Simulation

3.1 Approach

The theory from the previous chapter was tested using a computational approach. In or-
der to achieve this, a molecular dynamic (MD) simulation was written and the body of this
code is included in appendix A. This code was developed in C++ and is a molecular dynamics
simulation the purpose of which is to analyze the movements of the individual particles in the
system. This is useful for simulation of dusty plasmas due to the discrete nature of the macro-
sized system particles.

The forces which are applied to the particles in this simulation consist of Epstein drag,
Lorentz force, gravitational force, an external driving force, a Yukawa or screened Coulomb
interaction force derived from equation 2.16 as well as a force resulting from the thermal dust
temperature. A flow diagram of the simulation is shown in figure 3.1

Two separate integration methods were tested for this simulation. The first of which was
Runge-Kutta 4th-order (RK4) integration. This is an extremely rigorous integration method
which decreases error at the cost of longer simulation times compared to other integration meth-
ods. While this integration method was originally implemented, a more efficient integration
method was eventually implemented which is referred to as the BAOAB method. While most
integration methods have a tendency to increase error as drag coefficient increases, BAOAB
has the lower error when compared to methods such as Stochastic Position Verlet (SPV) and
Brunger-Brooks-Karplus (BBK) as shown in the papers by Leimkuhler et al. [52, 53].

In order to make the simulation more efficient, the integration method was changed from
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{ Begin simulation }

Initial conditions: Randomized
positions and particle velocities

Calculate particle force

Calculate particle velocity
using integration method

Repeat calculation

) Move particles
for next timestep

Check boundary conditions

|

Done?

no

yes

End simulation

Figure 3.1: Flow diagram for simulation

RK4 to this new method which is similar to a velocity-verlet integrator that can more easily
and efficiently function in our simulation. This simulation is implemented by first analyzing
the simple set of equations which refer to the change of position as well as change of momen-
tum are shown in equation 3.1.
z my 0 0

= dt +

dt + 3.1

d
7 0 YU T dt + om2dW i

TX B @)



where we use position X, momentum p, an infinitesimal unit of the Weiner process dW (which
is a stochastic process which includes Brownian motion in the system, in other words this
includes the thermal properties of the system), potential energy U, drag coefficient -, [units of
kg-s~1] and variance o. It is important to note here that the drag coefficient is calculated using
drag on a charged particle as shown in the paper by Epstein [48]. From equation 3.1, A refers
to a simple euler integration method, B refers to the forces acting on the particle and O refers
to the drag on the particle as well as the Langevin thermostat. This thermostat introduces the
thermal energy and therefore temperature into the system [54].

Some useful constants can be defined which incorporate mass m, temperature T and
friction coefficient 7y, and a number R which is chosen randomly from a normal distribution

which is centered at zero [52, 53].

cp=e MmO ey =AU 1 —¢), e3=/ksT(1 —c3) (3.2)
B : Pntij2 = pn — 0tVU (x,)/2
A Tpi12 = Tp + 5tm_1pn+1/2/2
O: Pnt1j2 = C1Pnt1s2 + cam' PRy (3.3)
A: Tl = Tpy1/2 + 5m_1ﬁn+1/2/2
B: Pnt1 = Pryij2 — OVU(Tny1)/2

An alternate way of viewing this method is to see each term in equation 3.3 corresponds
toastepof B— A — O — A — B. Where B is the momentum, A is the position, O is the
momentum operator (which includes the temperature in coefficient c3). Once the method of
integration has been analyzed, the evaluation of an appropriate time step is necessary before
running the simulation.

The value of the time step is very relevant when running a simulation. A shorter time step
will correspond to a higher level of precision. The drawback of a shorter time step is a longer
simulation time. The most efficient time step is calculated based on the movement of particles

in our system with regard to their interaction with nearby particles [55]. The relevant time step
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will correspond to the smallest of the values calculated from equation 3.4

lpYm lg%n
|Fext| ’ 6]{‘IBT‘d

At ~ min( (3.4)

where [, = A is the characteristic system length represented by the average inter-particle spac-
ing in our system. It can be noted that F,,;/,, will be the drift velocity of our particles, this
shows that the first is the average amount of time it would take for a particle to collide with
another particle based on the density of the dust. The second term in equation 3.4 is a charac-
teristic amount of time it would take for the thermal energy to make the particles collide. More
concisely, equation 3.4 helps choose a time-step depending on the larger of either thermal ki-
netic energy or kinetic energy relating to particle velocity.

One of the largest benefits of designing a new simulation is the variability of the condi-
tions of the system. For our experimental system we would like to be able to freely change a
number of parameters such as external magnetic field, dust particle parameters (such as dust
charge, size, density and mass), external electric field, drag coefficient, initial velocity, temper-
ature, simulation size and number of dust particles. The variation of these parameters facilitates
in the testing of the theories derived previously in Chapter 2.

The general simulation system is that which is shown in figure 2.1 of a constant parti-
cle flow with a perpendicular magnetic field causing the compressional Lorentz force. This is
shown in Figure 3.2 where the resulting density gradient can be seen. A secondary simulation
system has also been used with no driving force and instead a constant compressional external
force is considered. This is similar to a gravitational compression which can be seen in many
experiments.

The confinement of the system is also important to take note of. In terms of bound-
ary conditions, the simulation uses a circular boundary condition along the x direction and an
electric field confinement along the y direction. As a result it is important to note the external

electric field acting upon our system. This can be seen in Figure 3.3
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Figure 3.2: A plotted frame of the simulation in the case of an incident mag-
netic field and charged particles. In this image, the density gradient is visible
as there are more particles along the lower portion of the simulation space
than there are on the upper region.

3.2 Validity of Simulation

Various assumptions have been made in our theory. In this section these assumptions will
be tested and validated in the MD simulation. The assumptions made in our system are shown

below:
1. The system is isothermal (i.e., ?T =0)

2. The system has reached a steady state and is independent of time
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Electric Field (Vector Diagram)
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Figure 3.3: External electric field incident upon system. Experimentally, this
is similar to the electric field which appears as a result of the chamber walls.
Note that the external electric field in the center of the simulation region is
zero which fits with our assumptions. This electric field aids in containment as
the negatively charged dust particles will have a resultant force which pushes
them back into the center region of the system which is where the analysis
takes place

3. Magnetic field, flow direction and density gradient are all perpendicular
4. External electric field is approximately zero in region of evaluation

5. Interaction force is modeled from a shielded Debye potential
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For the first assumption of an isothermal system the dust particle temperature is assumed
to be constant in each dimension. In order to test this it is useful to calculate the temperature of
each particle compared to both the x and y direction. An example of this calculation is shown in
figure 3.4. This figure shows that the input temperature of the system matches the assumption
of an isothermal system as it does not vary along our y position

Steady state is a necessary assumption for both high and low coupling theories. There

35000

o Do A o % o8 °o o.. U ce " ...°..:...o.o N %0 o
30000 % a R T, N L e T i e

15000

Average temp(

10000

5000

2.5 5.0 75 10.0 12,5 15.0 17.5 20.0
Particle y position [mm]

Figure 3.4: Average temperature vs y position. This shows a nearly constant
temperature for each y position. The uncertainty in this calculation is evalu-
ated by using the velocities of the dust particles and is further in analyzed in
chapter 4

are multiple time scales relevant in the steady state assumption. The fastest of the relevant time

scales is that of the dust charging process. This is derived in the paper by J. Goree [30] and the
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dust particle charging time is given by

kpT,
7, = K, P (3.5)

-
TaNplasma

where T, is electron temperature and K is a constant on the order of 10% s ym em™3 eV =1/
found by a numerical solution of the continuous charging model with the assumption of no
electron emission and non-drifting Maxwellians. Since 7,4smq 15 very large, the dust charging
time is on the order of 107% seconds which is very short compared to the simulation time (on
the order of seconds). This means this time scale can be safely ignored for both our simulation
and the experiment shown in chapter 5.

The next time scale is that of velocity. With a constant driving force, the velocity of these
particles will reach steady state velocity depending on the magnitude of the driving force and
the drag coefficient. A similar result has been shown in chapter 2 equation 2.2, u, = Fyive/Vim-

In order to calculate the characteristic time, an equation for the velocity as a function of

time must be found. To start, Newton’s second law is used

Z F = Fdrive — TmVU = mu (36)
Integrating this equation,
v d bt
/ S / a (3.7)
vo de’ve — TmV o m
In (F, rive — |m b t
o I Farwe Z9mv) |7 _ (3.8)
—TYm vo m

rewriting and remembering that I = ~

F, rive — |m mt

Fdrive — TmYo m

F, rive — /m _
= (e ZImB ) (3.10)

de’ve — TmYo
F, rive — F, rive
=(t) = (vo—d—)e vty drive (3.11)
m Ym
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Figure 3.5: This plot shows a plot of simulation x-velocity data as well as an
exponential fit of the data. Following equation 3.12, A = vy — vy where here
Uy = V.

which, combining with equation 2.2 shown in chapter 2, u, = v,/ Fyrive yields

v(t) = (vg — ug) e " + uy (3.12)

This allows the definition of a characteristic time constant 7,

(3.13)

The time constant shown in equation 3.13 as well as the function in equation 3.12 are

both plotted in figure 3.5. From this it can be seen that the drag coefficient determines the time
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scale in the system as well as the final system velocity. It is valid to assume that, after a certain
amount of time depending on system parameters, the system will reach a steady state with a
constant velocity which is independent of the initial velocity of the system. The independence
from initial velocity can be seen in figure 3.6. This time scale can also be seen while calculating
the charge value for a low coupling system as is shown in Figure 3.7

The last, and most complicated, of the time scales is that of sedimentation time. This

150 52.812 mm/s

26.428 mm/s
125

100

75

50

Velocity [mm/s]

25

-25
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [s]

Figure 3.6: This diagram shows multiple simulation runs varying both initial
velocity and drag coefficient. A lower drag coefficient (Red) corresponds
to a higher final velocity. A high drag coefficient (Blue) corresponds to a
lower final velocity. This is independent of initial velocity as multiple initial
velocities converge to the same velocity value

time scale will be relevant mainly for the high coupling theory. After reaching a constant veloc-

ity (also known as the drift velocity), the dust particles in the system will still need to reorganize
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Figure 3.7: This diagram shows the calculation of dust charge value for a
lowly coupled system. For a single simulation with an input charge value of
700 electron charges, the calculation becomes or accurate over time as the
system comes to steady state.

to achieve the pseudo-crystalline state. This sedimentation can be seen from the density versus
time plot shown in figure 3.8. The most important thing to note here is that the time scale of
sedimentation depends upon the compression force (here being Lorentz force) and as a result,
the particles which are lower on the y axis organize faster than those at a higher y position.
This means that the sedimentation time will be proportional to the coupling coefficient of the
system. This sedimentation time is generally longer than the other time scales and therefore

can not be ignored. The exact physics of this system is left as future work and is accommodated

by allowing the system charge to reach a constant value as shown in figure 3.7.
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Another assumption that is made is a Maxwellian velocity distribution for the case of
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Figure 3.8: Results shown here are from a system with a high compression
force resulting in a highly coupled system. The amount of time to reach a
steady state in terms of density and therefore sedimentation is proportional
to the y position and therefore the density and coupling coefficient at that
location

low coupling. By calculating the velocity of each particle it can be shown that this follows a
Maxwell-Boltzmann curve as is shown in Figure 3.9. In this figure it is shown that the expected
value of the standard deviation matches the value of standard deviation calculated from the
velocity data in the system. This plot also shows the average velocity of the system which is
necessary for charge calculations. In the case of the agreement of the experimental standard
deviation to standard deviation calculated from the input temperature of the system shows the

validity of the assumption of a uniform distribution.
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In order to evaluate the importance of the standard deviation in the system, two equations

must be compared. The first equation is that of a standard Maxwell-Boltzmann distribution.

m 3/2 m1z2
F(o)do = ( . T) ¢ AT iy (3.14)
TRB

Or, in the case of one dimension,

2

e 5T (o, (3.15)

m

f(vr)dve = omkpT

The second equation that this will be compared to is that of a normal distribution in a single

dimension is given as

flw) = —=e 3 (%

_0 2

(3.16)

Where here, 1 is the average of the variable x. Comparing these two equations yields an equa-

tion for the standard deviation o in terms of the dust temperature and dust mass.

o= ,/%BTd (3.17)
mq

Utilizing this standard deviation allows the calculation of the system temperature as is

shown in figure 3.9. It is also shown in this figure that by finding the standard deviation by
fitting a Maxwellian distribution to the system and comparing this to the standard deviation by
using equation 3.17 yields nearly identical values. Knowing the assumptions in our system and
the validity of the simulation allows us then to begin analysis of the theories through use of this

simulation.
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Figure 3.9: Particle x velocity histogram. The grey line corresponds to
the fit from the input temperature corresponding to standard deviation o =

%%’:W = (.664679 while the black dashed line corresponds to a nu-
merical fit of the data to a Maxwellian distribution which corresponds to

o = 0.666408. This distribution also has an average velocity of 79 mm/s
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Chapter 4

Results and Analysis

In this chapter we will analyze data which is a result of various simulation runs carried
out using the molecular dynamic simulation discussed in chapter 3. These simulation runs
vary system parameters such as dust density, magnetic field, dust temperature and input charge
value. Data collected from these simulation runs will be used to show the analytical techniques
used to verify the theories derived previously in chapter 2 for cases of high and low coupling

as well as the parameter spaces for which each theory is valid.

4.1 Analytical Codes

In order to study the data, analytical codes first needed to be developed. The data which
has been collected to be analyzed was the output of this simulation. The simulation produced
both positional and velocity data for the dust particles which are similarly obtainable in the case
of experimental data. Both particle positions and velocity data can be found in an experimental
system by analyzing particle positions from video data. This has been achieved in previous ex-
periments using particle image velocimetry (PIV) [56, 57, 58] as well as by tracking individual
particle positions using particle tracking velocimetry (PTV) [59].

Show below are the various analytical codes needed to evaluate our simulations. These

codes were all written in Python and can be found in appendix B.

1. Low coupling analytical codes:
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(a) Dust particle temperature evaluation from dust velocity data:
Dust particle velocity u4rqy — Standard deviation of velocity, o, — Dust

temperature, 1y

(b) Dust particle average velocity from dust velocity data:

Dust particle velocity, 4,4y — Average of dust velocity u,,

(c) Dust density as a function of y position and fit from positional data:
Dust particle position — histogram of data for each time step — sum over all

time steps after steady state — Fit of function to histogram data

(d) Dust charge calculation:
Dust velocity, u,, dust temperature, 7,, and dust density N(y) — Average

dust charge value, g4
(e) Code for analysis of calculated parameters as a function of y position using N(y)

(f) Coupling parameter vs charge calculation
2. High coupling analytical codes:

(a) High coupling charge calculation from positional data:
Select particle and find particle position — find nearest neighbors — use near-

est neighbors position to find particle charge — average over particles in system
(b) Charge calculation over time

(c) Code for analysis of calculated parameters as a function of y position Find
particle individual particle charge ¢; — count y position — find equation for charge

as a function of y

(d) Coupling parameter vs charge calculation
3. Additional analytical codes:

(a) Density over time analysis:
Calculate histogram of positions for a single time step — plot heat map for

each time step

49



(b) Code for comparison of charge calculation of both high and low coupling methods

4.1.1 Low Coupling Analytical Codes

The result of the low coupling theory is given by equation 2.13 which was previously

derived in Chapter 2 is shown again below

- k?BTd Vyn

B,u, n

qd 4.1

In order to find the dust charge value, the quantities of dust temperature 7, density n and av-
erage particle velocity u, must be found. In order to evaluate this result, analysis techniques
were developed to find these quantities from the available data sets.

The first code which was developed is that which evaluates the dust particle temperature.
In order to calculate this, the velocity data is used and the x velocity of each dust particle is
taken. The standard deviation of the velocity distribution is then calculating using this velocity
data, dust temperature can subsequently be found as shown in equation 4.3. This calculation
assumes a Maxwellian distribution for the data which is verified in figure 3.9 which shows a
plot of both the best fit of a Maxwellian distribution the input temperature as well as the plot of

the distribution which fits the histogram data.

1

5mo—2 = kgTy 4.2)
1 mo?

T, == 4.3

5T 4.3)

These two values show almost no deviation (less than 0.3 percent difference on average for a
lowly coupled system) as shown in figure 3.9 this also demonstrates that the assumption of a
Maxwellian distribution is valid. The second code is a simple one which takes the average of
the velocity data in each time step then determines the average of each of these values over
the entire simulation after the system reaches steady state. This gives the value of the average
velocity of the dust particles in the system.

The next analytical code for the low coupling theory is that which determines the dust
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density in the system, N(y). Similar to the previous two methods, this can be done for each time
step and is accomplished by plotting a histogram of the particle position for each direction. This
plot of the histogram yields the dust particle density for each time step and is shown in figure
4.3 and data is used after the system reaches this steady state. The values of density can be
further averaged over all time steps to yield the figure shown in 4.4. This figure also gives
the result of an exponential fit to the data. As a result of the compressional force (in this case
Lorentz force), the density will be non-uniform along the direction of the compression force.
This is shown in figure 4.4

The determination of a valid fit for this data is done best by comparing the distribution
of particles to that of air in the atmosphere. The similarities between these two systems lie
in the fluid state of both. The equations for pressure and density are shown in U.S. Standard
Atmosphere (1976) [60] which shows that the pressure and density follow an equation shown
given by

!
g90Mo

P=p, Ly e
TM,b + LM’b<H — Hb)

4.4)

where the quantities Hy, Ly, R*, My and g, refer respectively to geopotential height, molecular-
scale temperature gradient, gas constant, molecular weight and gravitational acceleration at sea

level. For the case of V' = 0 and therefore L;;, = 0, equation 4.4 evaluates to

—gyMo(H — H,)
P=D 45
bEXP { R+ Tary “.5)
—gyMo(H — H,)
P = PueXp [ RTors (4.6)

The equation for density shown in equation 4.6 can be further evaluated where density
p in the case of atmosphere is equivalent to dust density n for the case of the dusty plasma
system. In the atmospheric case, the force of compression is characterized by gravitational

force. Similarly, TR* = k,T and replacing quantities used in the dusty plasma system this
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equation can be rewritten to fit a more appropriate to this research form

Fcom ressionA
P—y} 4.7)

P = PveXp [ kT,

This equation shows the relevance of the exponential fit as a function of y coordinates. Equation
4.7 is therefore similar to the equation of fit which is shown in figure 4.4.

Lastly, average dust charge value in the system is calculated. This is accomplished by
first running the previous three analytical codes to get dust velocity, .., dust temperature,
Ty, and the dust number density distribution, V(). Using these values, the final code utilizes
equation 2.13 to calculate the dust charge value for a single time step. This is then averaged
over all time steps after steady state has been reached to find the average dust charge value in
the system. It is important to note that this has been averaged both over all particles and particle

positions as well as for all time steps.

4.1.2 High Coupling Analytical Codes

The main difference between these two methods is the discrete nature of the highly cou-
pled crystal-like structure compared to the more fluid and continuous nature of the low coupling
system. For the case of high coupling, the dust charge value found by analyzing the crystal-like
structure seen in 4.1.

The first high coupling analytical code calculates the charge of a single particle by using
the positional data in the system. In order to calculate dust charge for a highly coupled system,
equation 2.26 is used. This necessitates the measurement of particle positions from the simula-
tion.

In order to find the inter-particle forces, a single particle is chosen. The distance between
this particle and all particles are found and the six nearest neighbors are selected. The positions
of these nearest neighbors are then plugged into equation 2.26. The result of this first code is
the charge value of a single chosen particle. A sample of this calculation is shown in table 4.1.
This charge is then averaged over all particles in the system (particles are assumed to have the

same particle charge). A flow diagram of this calculation is shown in figure 4.2.
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Figure 4.1: Example of hexagonal structure in a highly coupled dusty plasma
with[' > 1

The second analytical code calculates the density of the system for a single time step.

The density is then plotted on a heat map to show the evolution of the system over time. A sam-
ple of this code is shown in figures 4.3 and 4.5 and the analytical code is given in the appendix.
Similarly, for the third analytical code, charge is calculated for each time step and plotted

as a function of time. A sample calculation of this code is shown in figure 3.7

4.2 Results

4.2.1 Low Coupling

For the case of low coupling, the assumptions must once again be taken into account,

these assumptions are:
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{ Begin calculation }

Calculate all particle po-
sitions and velocities

Varrays Larrays Yarray

Pick single particle, g;

Calculate nearest neigh-
bors and their positions

Repeat calculation for Calculate charge us-
next particle in system ing neighbor positions

|

Done?

no

yes

Remove edge particles

Average over all particles

End calculation

Figure 4.2: Flow diagram showing calculation method for average particle
charge for the case of high coupling in the system

1. The system is isothermal (i.e., V' = 0)

2. The system has reached a steady state and is independent of time

3. Magnetic field, flow direction and density gradient are all perpendicular
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4. External electric field is approximately zero in region of evaluation
5. Interaction force is modeled from a shielded Debye potential

6. Density is non-uniform perpendicular to magnetic field and flow, and uniform along the

flow direction

While most of these assumptions have been previously verified in the Simulation chap-
ter, the case of density must be analyzed for each of the coupling cases. Figure 4.3 shows the
particle density along both the x and y direction in the case of low coupling. From these figures
it can be seen that along the x direction there is uniform particle distribution while along the y
direction (direction of compressional force) there is a clear gradient which forms.

Calculating the quantities of dust temperature, density, and drift velocity using the previ-
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Figure 4.3: This figure shows an example of (a) the particle density along the
x direction as a function of time. This shows that for our system, the particle
density in x is uniform in time as well as uniform in x. Or, in other words,
V.z = 0and dz/0t = 0 (b) Shows a plot of particle density as a function of
the y direction. From this plot it can be seen that the system reaches a steady
state after about one second for this sample as well as being non-uniform in
the y direction (or V,, # 0).

ously mentioned analytical codes, particle charge is calculated using equation 2.13. A sample
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Figure 4.4: Exponential fit for number of particles in each bin (histogram) in
the system for the case of low coupling. This exponential fit gives the equation
for N(y) in our system. Using this result and the values for u, = 79¢m/s and
T = 30,000K a dust charge value of ¢ = 974.15e which, when compared
t0 Ginpur = 1000e gives very reasonable agreement with only 2.63 percent

difference.
calculation of this method is shown in figure 4.4.
In terms of error analysis, this comes down to the parameters which have been used to

calculate the charge. For equation 2.13 this refers specifically to the error in finding dust tem-

perature, dust density, and dust drift velocity.

For the average dust drift velocity, the standard error involved in this calculation follows
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the equation
o

SE = — 4.8
N (4.8)

where ¢ is the standard deviation of the distribution and N is the number of data points. For the

calculation of velocity, standard deviation is dependent upon the temperature in the system by

the equation.
kpTy
m

4.9

The result of this is that for a lower temperature system, the standard deviation of the velocity
(and therefore standard error) is smaller. Inadvertently, because of the equation for coupling
coefficient shown in equation 1.16, provided the two have the same charge and inter-particle
energy, a highly coupled system would have a lower error than a lowly coupled system. The
result of this is that the error can be minimized by having more data points as well as a lower
temperature.

For the calculation of dust density, this value is calculated from the positional data in
the system. This means that the uncertainty in calculating dust density is coupled with the
uncertainty in finding the the positions of the particles in the system. This uncertainty can be

reduced by more accurately determining particle positions in the system.

4.2.2 High Coupling

In the case of a high coefficient of coupling in the system (Where I'y > 1 [5]) a crystalline
structure begins to form and the dusty plasma is said to be in a solid-like state. This crystal-
like structure is visible in figure 4.5 which is generated from the data created by the molecular
dynamic simulation previously discussed.

The assumptions made for the case of High Coupling are the same as for low coupling

with one additional assumption:

1. The system is isothermal (i.e., V' = 0)

2. The system has reached a steady state and is independent of time

3. Magnetic field, flow direction and density gradient are all perpendicular

57



10 Sample simulation frame
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Figure 4.5: A frame taken from a single run of the simulation shown in chap-
ter 3. This frame shows a visible crystal-like structure in a regime of high
coupling.

4. External electric field is approximately zero in region of evaluation
5. Density is non-uniform along y-direction
6. Interaction force is modeled from a shielded Debye potential

The analysis for the high coupling case allows for similar methods to verify these as-
sumptions as shown in the previous section. Similarly, the assumption of a Debye shielded
potential has been shown to be valid for the case of dusty plasmas.

Here each of the particles are labeled individually and the inter-particle forces are calcu-
lated using each of their radial distances from the center particle of this asymmetric hexagon.
This is then used to calculate the dust charge value. A sample of this calculation is shown in
table 4.1.

Though it is difficult to discern from figure 4.1, the differences in y coordinates between
each of the layers can be seen in table 4.1. This shows that Ay,,per > AYiower Which is pre-
dicted from the theory on the effect of compressional force on the solid-like pseudo-crystalline
system. The charge value for the data from the molecular dynamic simulation fits well with the
input data. In order to further analyze this theory, this same calculation can be done for every

particle in the system.
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Particle T, [mm] Yp [mm] R, [mm]

Center 19.4940 2.0297 -
1 19.7876 2.4641 0.5242
2 19.2658 2.4668 0.4931
3 18.9675 2.0273 0.5432
4 20.0372 2.0344 0.5266
5 19.2174 1.6186 0.4956
6 19.7444 1.6090 0.4895
Cgcalculated = 8277.3e
Qactual = 8000e
Percent Difference = 3.403%

Table 4.1: Positional data calculated from image given in 4.1. Each individual
force is calculated and then used to find the particle charge using equation 2.26

This same calculation is done on a larger scale by following the flow diagram shown in
figure 4.2. This calculation is done by finding first the charge for a single particle and then
averaging over all particles in the system. This is further averaged for each time step in order
to ensure a more accurate calculation.

For the calculation of standard error in this system, equation 4.8 can once again be used.
Here, this error is largely dependent upon the knowledge of the particle positions in the system.

Similarly to the case of low coupling, the calculation for charge can be calculated and
compared to coupling parameter to show the validity of this theory for various values of cou-

pling parameter.

4.3 Discussion

4.3.1 Comparison to Previous Methods and Accuracy

As shown in the previous section, both high coupling and low coupling methods have per-
cent differences which are less than 5%. This percent difference can be compared to previous
experimental charge measurement methods such as that shown in the paper by Konopka et al.
[12] which show a percent difference of between 10-20 % from expected values. This increase

in precision for charge determination is a very valuable addition to the field of dusty plasmas.
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Figure 4.6: Plot of density vs time for the case of a highly coupled system.
This plot shows how the particles start with a randomized particle position
on the left hand side of the diagram and organize themselves into discrete
rows over time. This plot confirms that the particles organize into a relatively
constant y position based on their heigh (since the spread of positions along
y is relatively small for a single layer compared to the distance between the
layers.

Furthermore this method can be applied to the case of magnetized dusty plasmas which have

so far had limited experimental determination methods.

4.3.2 Limits of Theories

The accuracy of the measurement for each theory however is dependent upon the cou-

pling in the system.The percent difference between input and expected values in this system
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is valid for approximately I's < 1 (Low coupling) and for I'y; > 100 (High coupling). In the
parameter space where 1 < I'; < 100, the system is said to be in a "’liquid-like” state. As many
dusty plasmas exist in this regime, it will be important to develop a separate method for cal-
culation of dust particle charge while the dusty plasma system is in this parameter space. This
intermediate, liquid-like regime shows both a pseudo-crystalline state (low y position and high
coupling coefficient) and a more gaseous state (high y position and low coupling coefficient).
This intermediary regime will be discussed further in chapter 6. This region between the two
extremes of high and low coupling theories is one which can be investigated further. Hope-
fully, the investigation of a unifying mixed mode theory can be found in the future. Though
this intermediary region may have higher percent error than the high or low coupling modes,
it will allow further investigation of these regions and at the very least allow for a comparative

analysis method to measure dust charge value.
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Chapter 5

Experimental Investigation

5.1 Experimental Approach

As part of future work, an experiment has been designed in order to test these theories
discussed in previous chapters. There are a few unique requirements that designate a design

which is different that those previously used in experiments. These requirements are as follows:

1. The dust has reached a steady state

2. Particles are confined within our system

3. Magnetic field perpendicular to flow direction

4. External electric field is approximately zero

Due to these requirements, a unique experimental design is needed. The chamber which
was chosen is one similar to the "Zyflex” chamber developed at DLR. This chamber is a cylin-
drical chamber designed for dusty plasmas in microgravity as it has a great deal of visibility
and allows for changes in the future [61]. One benefit of using this chamber are the very large
windows on the sides as well as on top of the chamber. Another benefit is the large amount
of space and variability of the inside of the system. An example of this chamber is shown in
figure 5.1.

For the requirement of steady state, multiple methods have been proposed such as using
gravity as a driving force along a tilted axis or using a laser to drive the dust particles. The

method which was investigated is that of using a varying potential well to move the particles
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Figure 5.1: Image of the zyflex chamber

along a specified direction. This method has shown to move particles along at a constant ve-
locity as is shown from simulations in the paper by Jiang et al. [62]. In this paper, a set of
electrodes is arranged in a grid. Each cell of this grid of electrodes (called “stripes™) is given a
voltage which is offset by a phase from its neighbors. It is further shown that a phase difference
between each stripe of ¢ = 7/3 yields the most efficient transport. An example of the transport

method of a moving potential well shown in figure 5.2.
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Figure 5.2: This figure shows the moving potential well which can carry the
dust particle along a set direction. Each plot represents an adjacent electrode
plate.

There are two separate signals necessary to generate this signal. The first of which is

a Radio Frequency (RF) signal on the order of 13 MHz which is typical for plasma generation.
The second signal is that of the moving potential well, this is an AC signal which is proportional

to the distance between adjacent electrodes divided by the drift velocity of the particles. This

is shown in figure 5.4.

To generate these signals, a unique electronic setup was designed combining both an RF
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Figure 5.3: Proposed experimental setup
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Figure 5.4: In order to create the signal required to move the particles in
the experimental system, multiple signals must be combined. (a) Represents
the AC input signal generated from a micro-controller which has a frequency
proportional to the velocity of the dust particles, (b) represents the RF signal
used to create the plasma in the system and finally (c) shows the combination

of these two signals

voltage as well as a DC offset. This design is shown in the flow diagram in figure 5.5 and has

a special requirement of using a micro-controller to control the signals in the system.
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5.2 Electronic Design

For the electronic design, multiple circuits were required. This electronic design has
been split into two parts, the high voltage RF circuit and the AC circuit which is controlled by

a micro controller. Each of the design of this circuit is shown in figure 5.5.

{ Micro-controller } RF signal

Digital/Analog

Converter (DAC) RF amplifier circuit

AC Amplification Circuit Matching Signal

Signal
Mixing

Plasma

Figure 5.5: Flow diagram for experimental electronics
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5.2.1 Radio Frequency Circuit Design

In order to generate a plasma, a high voltage radio frequency (RF) signal must be gen-
erated. This signal is designed to have a frequency of 13 MHz with a DC voltage offset of 70
Volts. The purpose of this DC offset is to serve as the walls of the potential well as shown in
figure 5.8. The 13 MHz signal was generated by a function generator at 5 volts. This function
generator creates a 5 volt signal which is then amplified to = 70 volt DC offset. A circuit was
created to accomplish this DC offset which is shown in figure 5.6. Using this signal, a plasma

can be generated. Next, the alternating current signal needs to be created.

5.2.2 Alternating Current Signal Generation

For the AC current, an Arduino Due was used as a micro-controller and code was written
in the Arduino programming language, Arduino C, for the purpose of controlling the AC signal
in the system. The arduino code is shown in section C.2 of the appendix of this dissertation.
The purpose of the micro-controller is to generate a digital signal in a sawtooth pattern at a
chosen ratio. This signal was subsequently converted into a sinusoidal analog signal using a
digital/analog converter (DAC). This analog signal was then amplified in order to generate the
AC current potential well shown in figure 5.4.a. By applying these alternating potential wells
to electrode labeled in figure 5.7 as pads P1, P2 and P3, this will create the driving force in our

system.

5.3 Electrode Design

The electrode design is similar to that which is shown in the paper by Jiang et al. [62]
was chosen to be used. There are two main problems with using an exactly identical design.
Firstly, the dimensions would be required would be very large along one dimension in order to
allow the moving dust particles to reach steady state or alternatively have the particles move
slowly in which case they would be unable to reach steady state. This would require a unique
chamber design which therefore would not fit in experiments such as the Magnetized Dusty

Plasma eXperiment (MDPX).
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Figure 5.6: Shown in this figure is the RF amplifier circuit which takes a 9V
signal and amplifies it to &= 70V DC offset. Figure (a) shows the circuit to
create the voltage amplification. Figure (b) shows the output of the simulation
of this circuit. It should be noted here that the colored dots on diagram (a)

correspond to the similarly colored plots in figure (b).

Secondly, the loss of particles at the end of their path (i.e., non-circular boundary con-
dition) would require a constant replenishment of dust particles in the system. This would
complicate things further as it can be difficult to uniformly disperse dust particles in an experi-
mental system and this non-uniformity might disrupt the steady state of the system. In order to

avoid these requirements a circular system was preferable so as to confine the particles (without
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needing to replenish the dust in the system) as well as allow the system to reach a steady state

in terms of both dust charge and dust velocity as discussed in previous chapters.

Figure 5.7: Experimental electrode design consisting of 8 individual elec-
trodes controlled separately. There are two separate sets of electrodes, A-E
confine the dust particles while P1-P3 create a constant driving force

The electrodes labeled B and D in Figure 5.8 are the confinement rings in this system.
These are given a high voltage so as to create a potential well to keep the dust particles within
the region of flow (which is all of electrode C as well as P1, P2 and P3). Further, pads A and
E are held at a much higher voltage in the case that any dust comes near to falling out of the
system. This flow region will allow the dust particles to be confined within our system and
remove the requirement of replenishing the number of dust particles as the number of particles

will remain constant. As previously stated, the purpose of this is to allow the dust in the system
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to reach a steady state. Figure 5.9 shows an example of the voltage on plates A through E in
this system. These voltages on the electrodes both generate the plasma in the system as well as
create a potential well for the particles to be confined within.

This experimental design once built will allow for the testing of the theoretical frame-

ANBI[C][DIE

Figure 5.8: Electrode rings labeled B and D and highlighted in green in this
image will act as potential walls in our system.

work shown in this dissertation in chapter 2. While much of this experiment has been created
and tested, due to the constraints of time as well as the expansion of the theory to include high
coupling, this experiment was never fully realized. The framework of this experiment will be
very useful for future graduate students and I hope that this experiment is completed and this

theory can be further verified.
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Figure 5.9: A sample electrode configuration for electrodes A through E.
This Voltage configuration will allow for a flow region along electrode C. The
inclusion of electrodes B and D can allow for further physics to be tested (for
example, setting voltage to 0 V on these electrodes will create a region of
shear around C)

71




Chapter 6

Summary and Future Work

6.1 Summary

One of the particular reasons why dusty plasmas have been such an interesting field of
study is their behaviour with regard coupling coefficient. The behaviour of dust particles and its
similarity to that of various states of matter is a unique way of viewing both states of matter and
Coulomb interactions on the macro scale. With the importance of the Coulomb interaction in
the study of dusty plasmas the value of dust charge becomes very important. The complication
of the dust-plasma system makes finding this value incredibly difficult. The goal of this disser-
tation from the onset has been to find a new method for accurately determining dust charge in
a dusty plasma system. Initially this was intended to be done by comparing molecular dynamic
simulations to experiments. This was however expanded to include further analysis of dust
charge value determination and its correspondence to the coupling parameter with two separate
theories. Utilizing the molecular dynamic simulation to analyze these theories was successful
in showing the accuracy of these new methods of analysis.

Chapter 1 began with an introduction to dusty plasmas and the relevance of their charge
values. This was accomplished by first showing the Coulomb potential and its variation into
the Debye shielded potential in the case of a dusty plasma. The interactions between particles
were further expanded upon by the introduction of the coupling parameter and its relation to
states of matter and crystallization. The discussion of charge determination techniques which
have been previously used in dusty plasmas and their limitations have been split into two cat-

egories, theoretical and experimental. Among the theoretical methods, these include charging
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theories such as ABR and OML theory which are commonly used in the field of dusty plasmas.
For the experimental theories, dust charge was shown to be calculated using dust capacitance,
vertical oscillations, dust acoustic waves as well as force balance in levitation of particles. One
important note is the limitations of these methods with regards to magnetic field as shown by
Tsytovich et al. [19].

In Chapter 2, two new theories for charge determination were introduced. Both theories
use the assumption of a system similar to that in the case of the classical Hall effect. This
system requires a constant flow of particles (i.e., particles with a constant velocity) as well as a
perpendicular magnetic field in order to generate a loretz force which acts as a compressional
force in the system. The first of the two theories is for the case of a lowly coupled system with
an incident magnetic field. Among the assumptions for this system is that for a lowly coupled
system, the dust will behave as a fluid which is true when Kipermar > Uinter—particle- AS @
result, fluid equations are used for this theory and dust charge ¢, is found in equation 2.13 to
be proportional to the dust temperature 7;, density gradient V7 and average particle velocity
along the flow direction u,.

Next, a charge determination theory was introduced for the case of a highly coupled dusty
plasma. These dusty plasmas can be said to be crystalline-like. An interaction force is solved
for the case of a shielded Debye potential. This force is utilized in the calculation of the force
balance on a particle. This is unique as these dust pseudo-crystals are asymmetric as a result of
the compressional force. An equation for the dust charge value in the case of a highly coupled
dusty plasma is shown in equation 2.26.

Chapter 3 introduces the simulation which was created to run these experiments. This
chapter begins by introducing the integration method which is used in this simulation and it’s
benefits. Furthermore, equation 3.4 shows the method for calculation of time step compared
to the the scale of either the energy from the driving force in the system or the thermal energy
in the system. This is chosen based on which is the smaller time step (i.e., whether driving
force or stochastic force is stronger). The molecular dynamic simulation is validated with a
comparison of the analysis results to the assumptions made in the system. Assumptions such

as the system being time-independent, isothermal, and having a perpendicular density gradient
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are all verified here.

Chapter 4 shows the results and analysis of the data in the system. For the case of a lowly
coupled dusty plasma, the quantity is calculated using equation 2.13. This is done by determin-
ing the dust temperature, density and average velocity from positional and velocity data. Next,
a calculation for the case of a highly coupled dusty plasma is conducted by using equation 2.26
by using positional and velocity data from the simulation. A sample calculation is provided for
a single particle and further calculations are shown for the ensemble of the dust system.

In Chapter 5, experimental design is introduced to test the two previous theories. First
the experimental setup is discussed with the proposed use of the Zyflex chamber. The electrode
is next discussed with its unique method for control of dust particles. Also shown here is the
design of the electrode to incorporate a circular boundary condition. Lastly, the electronic con-
trol of the system is introduced which includes both electronic design for controlling multiple

unique signals as well as microcontroller design.

6.2 Future Work

In the investigation of this work, many interesting areas of study have been discovered
which may increase the accuracy and validity of these methods as well as giving more infor-

mation about dusty plasmas overall.

6.2.1 Experimental Testing

Chapter 5 discussed an experimental system which can analyze the results of these theo-
ries. This system can be used therefore to test both the high and low coupling theories simply
by modifying the system parameters to achieve the coupling necessary. This experiment has
been entirely designed from the chamber to the electrode to the electronics. This design allows
for further work on studying flowing dusty plasma systems in the future provided this system is
built. Preliminary experimental setup has been done at Auburn University and will be followed
up in future work. Should this experiment be completed it will allow for further analysis of the
theoretical method by providing error data in a real system.

One major benefit of this experiment being at Auburn University will be the availability
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of the magnetized dusty plasma experiment (MDPX). The experiment which has been designed
and described in chapter 5 has been created in a way which is compatible with MDPX. This
will allow study of both the low and high coupling cases. MDPX (shown in figure 6.1) is an
multi-user device which consists of a superconducting magnet as well as a plasma chamber.
This magnet has a range of up to 4 T and would be able to test both the low and high coupling
charge determination theories.

Further work has been proposed which will analyze data from experiments of similar

Figure 6.1: Image showing Magnetized Dusty Plasma eXperiment (MDPX)
user device at Auburn University (courtesy of Uwe Konopka)

systems to what has been seen in simulations. Since compression by gravitational force oc-
curs in all ground based dusty plasma systems, this compressed crystalline-like structure has
been previously observed and can be seen evaluated using this new method. In order to study
this data, positional and velocity data can be taken from images of experimental research and
analyzed using previously existing particle analysis software such as ImageJ or COPLA. An-

alyzing this data and using it to find dust charge will help expand upon the validity of these
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theories. Figure 6.2 shows a dusty plasma system in which compression and density gradient

can be seen.

Figure 6.2: Image of a magnetized dusty plasma showing density gradient in
Zyflex chamber. This shows at least two distinctive regimes, the first being on
the rightmost side where the system can be said to be crystallized, on the left
side of the system, the particles are less organized and therefore more liquid-
like in nature. on the crystalline side, the distance between layers can be seen
to be increasing (image courtesy of Uwe Konopka)

6.2.2 Mixed Coupling Theory and Phase Transitions

An interesting result of the high and low coupling theories is the existence of phase
transitions as a function of position. Since the phase a dusty plasma exists in is dependent
upon the coupling coefficient, the relevance of a non-constant coupling coefficient creates some
interesting effects as shown in figure 6.3.

Figure 6.3 shows an example case where the lower portion of the simulated system has

a high coupling coefficient where crystallization occurs. This can be seen in the existence of
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Figure 6.3: This figure shows an example of (a) Corresponding simulation
frame showing both highly coupled crystal-like and lowly coupled liquid
states (b) Density vs Time showing both crystal-like and liquid states

hexagon-like structure along the bottom few rows. The upper portion of this figure shows a
more fluid state with less uniform structure. This kind of system may occur when coupling
coefficient I' ~ 1 which means the energy of the system is balanced between thermal and inter-
particle potential energy. This is relevant for many systems and falls in the range where the
accuracy of each of the two respective theories drops. A theory for this boundary range would

be helpful to increase upon the accuracy of the theories of compressed dusty plasma systems.

6.2.3 Density analysis

The density of the system is non-uniform and there is a reliance upon the assumption
of an appropriate fit for the density of the system. As shown in figure 6.4 the assumption
of an exponential fits reasonably well for for this system. It can be noted however while the
exponential assumption of fit matches what is expected from a compressed gas similar to that
found in air in the atmosphere [60], there is slight deviation from this fit. By plotting the
residuals of this data, an interesting structure is found as shown in figure 6.5. This structure

appears in the case of a lowly coupled system. With further analysis of this, information about
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Figure 6.4: Plot showing the number density of particle as well as the expo-
nential fit to the data

the system and possibly the charge may be extrapolated. This may be useful in either error
correction (in the case of finding a better fit) or couple possibly show more information about

the system which may be held in the structure of these dust particles.

6.2.4 Time Scale Analysis

The time scales involved in these simulations come in three separate varieties. The first is
that of the charging time scale which is on the order of approximately 10~° seconds as shown
by equation 3.5. This is minimal compared to the simulation times in the system. Next is that of
acceleration time which is a result of the particles coming to a drift velocity. The last and most
interesting is the time scale of structural organization or sedimentation. This is relevant for the

case of a highly coupled system as shown in figure 6.6. This varying sedimentation time is an
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Figure 6.5: Plot showing the number density of particle as well as the expo-
nential fit to the data

interesting result. Analysis of this may result in further information regarding the dust particles
themselves such as another method of determining dust charge value. Furthermore, the value
of this information increases as dust parameters change. This is due to the fact that for, for

example, a different dust particle size the charging time on various time scales will change.

6.3 Conclusion

There are a few major benefits to this research: firstly, the molecular dynamics code
which was developed for the purpose of studying this system is widely applicable. This is not
only the case for dusty plasmas but for any system which might require a molecular dynamics
code. When this simulation was developed it was developed for the purposes of being usable

by not only myself but users in general. It is my hope that once this work is completed, others
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Figure 6.6: Density as a function of time for a highly coupled system. The
dotted line in this plot shows an approximation of the time at which the system
can be said to be steady state. This varies with the y position in the system
and therefore will also vary with the coupling in the system.

will be able to utilize this code and adapt it to their own needs.

The second major benefit is that of the applicability of the research itself. This work
introduces two new methods (High and low coupling charge calculation theories) which can be
used for magnetized dusty plasma systems to calculate dust particle charge to a high degree of
precision as shown in chapter 4. The added benefit is that this requires no other equipment ex-
perimentally than image processing techniques and a camera (Neither of which will disturb the
plasma itself). As well, the high coupling charge calculation theory can be used for compressed
dusty plasma systems without magnetic field. These results are enough to show the value of

this research project.
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Lastly, in this work many interesting branches developed which were shown in the pre-
vious “Future work™ section. This will allow this work to be valuable for future researchers
as a resource to develop new ideas and to perfect this method beyond my time and capabili-
ties. I greatly look forward to seeing the continuation of my work and how it can be applied to

research both by myself and others in the future.
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Appendix A

Molecular Dynamics Simulation Code

This first appendix includes the molecular dynamics simulation which is used for analysis

of the theory. This is broken up into multiple different sections

1. md_sim.c includes the main simulation (This includes the integration method, BAOAB

as well as an alternate RK4 method)

2. md_sim_class.c includes all of the functions which are used in the main portion of the

simulation

3. md_sim_class.h includes the implementation and naming of all functions

4. md_sim_ext.h includes all of the constants used in the simulation

The main piece of the simulation which is absent here is the CO-OPTIONS functions
which come from the COPLA software developed by uwe konopka. The main pieces which
are missing are those which implement the running of the software. This software is available

fully on git-hub and has included version control

/1 This code is a simple molecular dynamic simulation for use with dusty
/! plasmas. It is mathematically implemented using the Runge-Kutta 4 or

// RK4 method.
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25

26

27

28

30

31

32

/1

/1 Written by:

/1

#include
#include

#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

"md_sim_ext.h”

”COPLA-Common/ co_options .h”

"md_sim_class.c”

<stddef .h>
<stdio .h>
<stdlib .h>
<string .h>
<math . h>
<time .h>
<map>
<random >
<cmath>
<iostream >
<iomanip >
<ctype .h>
<windows . h>
<unistd .h>
<sys/stat.h>
<limits .h>
<sstream >

<string >

Dylan Funk at Auburn University ,
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// option headers and

// needed for NULL
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33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

#define MD_SIM_VERSION 001
// #define DEBUG

// Commandline parameters for the program including physical parameters

_BOOL_. md_sim_help = _FALSE_; // set, if help output is needed
_UINT_. md_sim_num_particles = 100; // number of particles to simulate
double md_sim_drag_coef = drag_coef; // need replacement [units] XXxxX
double md_sim_size = size; /1 box size [Debye lengths]

double md_sim _magnetic_field Bz = B_field; // field in Bz direction [T]
double md_sim_simulation_interval_tl = 10; // total interval of simulation]s]
double md_sim_time_step_dt = 0.001; // time steps size [s]

double md_sim_E_max_x = E_max_x;

double md_sim_E_max_.y = E_max_y;

double md_sim_temperature = md_temp;

double md_sim_q_val = q_val;

double md_sim_start_velocity = start_velocity;

int md_sim_num_time_steps = 1 +

int (floor ((md_sim_simulation_interval _tl )/ md_sim_time _step_dt));
_BOOL_. md_sim_flag_save_parameter = _FALSE_; // flag, if to save parameters
_BOOL. md_sim_flag_load_parameter = _FALSE_; // flag, if to use prev. values

_BOOL_. md_sim_test_set_parameter = _FALSE_;

char xq_input = NULL;
char =xsize_input = NULL;

char =B _input = NULL;
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61

62

63

64

66

67

68

69

70

71

73

74

75

76

77

78

79

80

81

83

84

85

86

87

88

char =temp_input = NULL;

char =total_time_input = NULL;
char =«timestep_input = NULL;
char xdrag_input = NULL;

char =vel_input = NULL;

char «*fname_buffer = NULL;
_UINT_ fname_buffer MAX = 1024;

const char *fname_option_default = "md_sim”;
char +fname_option = NULL;
co_options md_sim_dict = co_options (’md_sim”, MD_SIM_VERSION);

md_sim_class md_sim_functions = md_sim_class ();

double calculateSD (double data[], int num_vals)

{
double sum = 0.0, mean, sd = 0.0, Differ, varsum = O;
int 1;
for(i = 0; i < num_vals; i++){

sum += datal[i];

}
mean = sum/num_vals;
for(i = 0; 1 < num_vals; i1++){

Differ = data[i] - mean;
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90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

116

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

varsum = varsum + pow(Differ ,2);

double variance = varsum/num_vals;
sd = sqrt(variance);

return sd;

Rate from the force equation (or more precicesly ,

the rate = dv/dt = F/mass of moving charge)

The way that rk4 works is that it solves the equation dx/dt = f(x) where

for this situation x is our velocity v

Variables : x, y = position of moving particle
v = component of velocity for current calculation
q-x, q.y = position of all stationary particle

Note these rate calculations view a particle k as moving at time 1

while viewing all others as stationary

double rate_x (double t, double vX, double vy, double xqx, double xqy, int k,
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117 int num_particles ,double box_size, double md_sim_q-val)
18 {

119

120 /17””NOTE: REMOVE THIS FOR STANDARD RUNS”””

121 // This section is for runs using external constant force

122 et B

123 // double f_drive = O0;

124 // double f_external_.y = -3E-15;

125 /22
126

127 double rate = O0;

128 double drag = 0;//NOTE:Drag accounted for in sim steps

129 md_sim_class :: vector Efield =

130 md_sim_functions.electric_field (gx[k], qy[k], box_size);
131 double Ex = Efield .x;

132

133 double EcrossB = md_sim_q_val = (Ex + vy = B_field) / m;
134 double boundx = O;
135 rate = f_drive / m + EcrossB;

136 /lprintf ("v cross B x = %.5f\n”, md_sim_q_-val = (vy = B_field) / m);

137 for (int j = 0; j < num_particles; j++)

138 // This loop cycles through each available charge and
139 // includes the effect in the rate

140 {

141 if(j !'= k)

142 {

143 double delta_x = gx[k] - gx[]];

144 if (gqgx[k] <= box_size/2)
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145 {

146 if (fabs(delta_x) >= box_size/2) delta_x = box_size - fabs(delta_x);
147 }

148 if (gx[k] > box_size/2)

149 {

150 if (fabs(delta_x) >= box_size/2) delta_x -box_size + fabs(delta_x);

151 }

152 double delta_.y = qylk] - qylj]l;

153 /1 Note: these two are distances from the particle

154 // to the adjacent charges

155 double r_square = fabs(delta_x = delta_x + delta_.y = delta_y);
156 double r = sqrt(r_square);

157 /!l Distance from particle to stationary charges

158

159 if(r < 1E-5)

160 {

161 r = 1E-5;

162 }

163 rate=rate+kappasmd_sim_q_-valxmd_sim_q_-val «(1/(lambdaxr=r))=(r+l
164 x(exp(-r/lambda))=(delta_x/r)/m;

165 /!l Add the effect from the current stationary charge

166 }

167 }

168 return rate;

169 }

170

98



173 // Rate_y

174 1/

175 // Rate_y 1is much the same as ratex except there is no driving force

176 // The forces at work here are the electric field , magnetic field as

177 // well as epstein drag and inter -particle coulomb forces.

178 /) ==
179 double rate_y (double t, double vx, double vy, double xqXx, double =qy,

180 int k, int num_particles, double box_size, double md_sim_q_val)
181 {

182 /1 7””NOTE: REMOVE THIS FOR STANDARD RUNS”””

183 A T et B

184 // double f_drive = 0;

185 // double f_external_y = -3E-15; CHANGE THIS IN .h FILE

186 // 2 99999
187 md_sim_class :: vector Efield =
188 md_sim_functions.electric_field (gx[k], qy[k], box_size);

189 double Ey = Efield.y;

190 it (qylk] > box_size)

191 {

192 Ey = -1000;

193 /l printf (" Upper bound, (%.4f, %.4f)\n”, qyl[k]/lambda, md_sim_q_val=«Ey);
194 }

195 else if (qy[k] <= 0)

196 {

197 Ey = 1000;

198 /!l printf (”Lower bound, (%.4f, %.4f)\n”, qyl[k]/lambda, md_sim_q_val«Ey);
199 }

200 double drag = 0;// Accounted for in simulation integration
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201 double rate = md_sim_q-val = (Ey - vx = B_field) / m + f_external_.y / m;

202
203 //REMOVE FOR NON-COLUMN SIMULATION
204 // rate = rate - l+md_sim_q_val/(1000=electron_charge);

205 // double F_Rand = ((double)(rand() % 1000000)/1000000.0x2 - 1);

206 /[l printf (”v cross By = %.5f\n”, md_sim_q_-val = ( - vx = B_field) / m);
207

208 for (int j = 0; jJ < num_particles; j++)

209 /1 This loop cycles through each available

210 /1 charge and includes the effect in the rate

211 {

212 if(j !'= k)

213 {

214 double delta_x = gx[k] - gx[j];

215 if (qgx[k] >= box_size/2)

216 {

217 if (fabs(delta_x) >= box_size/2) delta_x = box_size - fabs(delta_x);
218 }

219 if (gx[k] < box_size/2)

220 {

221 if (fabs(delta_x) >= box_size/2) delta_x = -box_size + fabs(delta_x);
222 }

223 double delta_.y = qyl[k] - qyl[j];

224 /!l Note: these two are distances from the particle

225 // to the adjacent charges

226

227 double r_square = fabs(delta_x =« delta_x + delta.y = delta_y);

228 double 1t = sqrt(r_square);
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229 // Distance from particle to stationary charges

230

231 if(r < 1E-5)

232 {

233 r = 1E-5;

234 // Do not allow particles to overlap

235 }

236 rate=rate+kappaxmd_sim_q_val=md_sim_q_val =(1/(lambdasr=r))«(r+l
237 x(exp(-r/lambda))=(delta_y/r)/m;

238 // Add the effect from the current stationary chare

239 }

240 }

241 /l printf ("rate y: %.5f\n”, rate);

242 return rate;

243}

244

245 ] e
246 // commandline help message header

247 /) mm e
248

249 int md_sim_usage(void)

250 {

251 fprintf (stderr ,”=========================================== \n”);
252 fprintf (stderr ,” This_program._is._a_.molecular

253 Liccoooooo dynamic.simulation._for_use_with\n”);

254 fprintf (stderr ,”dusty._plasmas._and._was_written_by._Dylan_Funk._at_Auburn\n”);

255 fprintf (stderr ,”University._in._2018\n");

256 fp T 1 n t f ( S t d crr , P ———m———————————————————————————————————————=— \n” ) ’

101



259

260

261

262

263

264

265

266

267

268

269

270

271

275

276

return (0);

// Output simulation parameters

int md_sim_print_simulation_parameters ()

{

printf("-——-—-------

printf ("Number_of_Particles: %i\n”,
)3

printf (”Number_of .Time._Steps: _%i\n”,
E

printf ("Time_interval : .%f\n”,

);

printf ("Box_Size_(in_debye_lengths): _%f\n”,

)

printf (”Electric _Field .Max.(x-dir ): .%f\n",
)

printf (" Electric _Field -Max.(y-dir ): %f\n",
);

printf (”Magnetic_Field: _%f\n”,

printf (”Drag_Coefficient:_%.10e\n”,

);

102

md_sim_num _particles

md_sim_num _time_steps

md_sim_time_step_dt

md_sim_size

md_sim_E_max_x

md_sim_E_max_y

md_sim_magnetic_field_Bz );

md_sim_drag _coef



2717

279

280

281

289

290

291

292

293

294

295

296

297

298

);

);

);

);

);

);

printf (”Dust_Charge: _%.2e\n”, md_sim_q_val

printf (”Dust_radius:_%.5e\n”, dust_radius
printf (”Dust_mass:._.%.5e\n”, m
printf (”Dust_Temperature: _%.5e\n”, md_sim_temperature
printf (”Start_.velocity :.%.5e\n”, md_sim_start_velocity
printf (”\nFile _Name: -%s _ #«*=. txt\n”, fname_option
if(md_sim_flag_save_parameter == 0)

printf (”Flags:_Do_.NOT_save_particle _positions\n”);
if(md_sim_flag_save_parameter == 1)

printf (”Flags:._.Save_last_particle_positions\n”);
if(md_sim_flag_load_parameter == 0)

printf (”Flags:_Random.initial .particle _positions\n”);
if(md_sim_flag_load_parameter == 1)

printf (”Flags:_Initial _.particle_positions._loaded._from.file\n”);
printf (" -—-—-------- - \n”’);

return (0);
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299

300

301

302

303

304

305

306

307

308

309

310

311

313

314

315

316

317

318

319

int main(int argc, char =argv/[])

{

double tic = clock ();
fname_buffer = (char x)malloc(fname_buffer MAX);

«fname_buffer = 0;

md_sim_dict.add_option(”help/h/01/show_help/1/”,
&md_sim_help );
md_sim_dict.add_option(”num _particles/n/01/Set_Number_of_Particles/U/”,
&md_sim_num_particles );
md_sim_dict.add_option (”Drag/d/01/Set_drag._[default_2E-13]/S/”,
&drag_input);
md_sim_dict.add_option(”vel/v/01/Set_start_velocity
wooo[defaultodriving .force.over.drag]/S/”, &vel_input);
md_sim_dict.add_option(”Size/z/01/Set_Box.Size
wooo[default_100_debye_lengths ]/S/”,&size_input);
md_sim_dict.add_option(”temp/k/01/Set_Dust_.Temp/S/”,&temp _input);
md_sim_dict.add_option(”charge/q/01/Set_Dust_charge.(number_of_electron
—~—..charges)/S/”,&q_input);
md_sim_dict.add_option(”Bfield/b/01/Set_Magnetic_Field.[default_.0_T]/S/”,
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327 &B _input);

328 md_sim_dict.add_option(”Time/t/01/Set_total _time.[default_.2.0.s]/S/”,

329 &total _time_input);

330 md_sim_dict.add_option(”tInt/1/01/Set_time_interval .[default_.0.001_.s]/S/”,
331 &timestep_input);

332 md_sim_dict.add_option(”save/s/01/Set_save_options.[default_O_(dont_save),
333 _.oolo(saveolastoposition)]/1/”,&md_sim_flag_save_parameter);

334 md_sim_dict.add_option(”load/1/01/Set_load _options

335 sooo[default.O_.(random._particle _positions),.l.(load_particle._position)]/1/”,
336 &md_sim_flag_load_parameter);

337 md_sim_dict.add_option(”test/x/01/Make_test_values(l_for_yes,_O_for_no)/1/”,
338 &md_sim_test_set_parameter);

339 md_sim_dict.add_option(”filename/f/01/Set._file .name/S/”,&fname_option );

340 md_sim_dict.register_detailed_help_callback(&md_sim_usage);

341

343 //printf ("\n\n\n-- %.3e -- \n\n\n”,md_sim_q_val);

344 int pos = 1, res = 0;

345 if (argc > pos) res = md_sim_dict.evaluate_comline (argc ,argv,&pos);

346

347

348 if (gq-input != NULL) {md_sim_q-val = atof(q_-input);}

349 if (temp_input != NULL) {md_sim_temperature = atof(temp_input);}
350 if (size_input != NULL) {md_sim_size = atof(size_input);}

351 if (B_input != NULL) {md_sim_magnetic_field_Bz = atof(B_input);}
352 it (total_time_input != NULL){md_sim_simulation_interval_tl =

353 atof (total_time_input);}

354 if (timestep_input != NULL) {md_sim_time_step_dt = atof(timestep_input);}
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355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

if (drag_input != NULL) {md_sim_drag_coef = atof(drag_input);}

if (vel_input != NULL) {md_sim_start_velocity = atof(vel_input);}

int md_sim_num_time_steps = 1 +

int (floor ((md_-sim_simulation_interval_tl )/ md_sim_time_step_-dt));

if (md_sim_help)
{
md_sim_dict. print_full_options_help ();

exit (0);

if (fname_option == NULL)
strcpy (fname _option , fname_option_default);

else if(sizeof (fname_option) < fname_buffer MAX - 24)
strcpy (fname_buffer ,fname_option);

else if(sizeof (fname_option) > fname_buffer MAX - 24)

{
printf ("ERROR: _File .name_must_be_less _that_%d._characters”,
(fname_buffer MAX - 24));
exit(1);
}

md_sim_class :: vector v;

double xvx_old = (double+)malloc(md_sim_num_particles = sizeof (double));

double =xvy_old (double x) malloc(md_sim_num_particles = sizeof (double));

double *Vvy_new (double x) malloc(md_sim_num _particles % sizeof (double));
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387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

double xvx_new = (doublex)malloc(md_sim_num_particles = sizeof (double));

double =x_old (double x) malloc(md_sim_num _particles % sizeof (double));

double *X_new

(double x) malloc(md_sim_num _particles = sizeof (double));

double =y_old

(double =) malloc(md_sim_num _particles * sizeof (double));

double =xy_new (double x) malloc(md_sim_num _particles = sizeof (double));

int xparticle_flag = (ints)malloc(md_sim_num_particles = sizeof (int));
int **grid;
double md_sim_box_size = md_sim_size xlambda;

const int num_grid_x (int)floor (md_sim_box_size/GRID_SIZE);

const int num_grid_y (int)floor (md_sim_box_size/GRID_SIZE);

0;

int cross_count
// double vx_max = 0, vx_min = 0, vy_max = 0, vy_min = 0;
//box_size = md_sim_sizexlambda;
//box_size = md_sim_sizexlambda;

// dens = (double ) malloc(num_grid_.y = sizeof(double));

grid = (int=sx)malloc(num_grid.y * sizeof (int x));
// double xgrad = (double ) malloc(md_sim_num _particles = sizeof(double));;
for(int 1 = 0; 1 < num_grid_y; i++)

grid[i] = (intx)malloc(num_grid_x = sizeof (int));

if(md_sim_flag_load_parameter == 0)
md_sim_functions.init_parameters(x_old, y_old, vx_old, vy_old, x_new,
y_new, vx_.new, vy new, md_sim_num_particles ,
md_sim_box_size , md_sim_start_velocity );

else if(md_sim_flag_load_parameter == 1)

{
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411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

//std::ifstream infile (” start_positions.txt”);

2 2

FILEx fl1 = fopen(”start_positions.txt”, 7r”);

printf (”\nLoading.Particle _Positions ...\n”);
int num_particles = 0;

char parse[1], del_1[1], del_2[1];

double tmp_x, tmp.y,tmp_vx,tmp_vy,;

fscanf (fl, "%d\n”, &num _particles );

/+«for(int j=0;j<num _particles+1;j++) x_old[j]=atof (fgets(str ,8,f1));
printf ("%.6f”, x_old[num_particles -1]);

for(int j = 0; j < num _particles -1; j++) fscanf(fl, "%1f”, y_old[]]);
fscanf (fl1, "%1f\n”, &y_old[num_particles ]);

for(int j = 0; j < num_particles -1; j++) fscanf(fl, "%If”, vx_old[j]);
fscanf55:()(fl, "%lf\n”, &vx_old[num _particles ]);

for(int j = 0; j < num_particles -1; j++) fscanf(fl, "%1f”, vy_old[j]);
fscanf (fl, "%lf\n”, &vy_old[num _particles ]);

for(int k = 0; k < num_particles; k++)
{
fscanf (fl1, 7"%lf”, &tmp_x);
x_old[k] = tmp_x=xlambda;
x_new[k] = tmp_x=xlambda;
/[l printf ("%.3e 7, x_newl[k]);
}
for(int k = 0; k < num_particles; k++)

{

108



439 fscanf (fl1, 7"%lf”, &tmp.y);

440 y_old[k] = tmp_y=lambda;

441 y_new[k] = tmp_y=lambda;

442 }

443 for(int k = 0; k < num _particles; k++)
444 {

445 fscanf (f1, "%l1f”, &tmp_vx);

446 vx_old[k] = tmp_vx;

447 vx_new [k] = tmp_vx;

448 }

449 for (int k = 0; k < num _particles; k++)
450 {

451 fscanf (f1, "%l1f”, &tmp_vy);

452 vy_old[k] = tmp_vy;

453 vy_new[k] = tmp_vy;

454 }

455

456 fclose (f1);

457 printf (”"Loading_Complete!”);

458 }

459

460

461

462 2
463 /" Section for main simulation operation
464 /[ —— e
465 chdir (”Data”);

466 mkdir (fname _option );
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467

468

469

470

471

473

474

475

476

477

478

479

480

481

483

484

485

486

487

488

489

490

491

492

493

494

chdir (fname_option);
strcpy (fname_buffer ,fname_option);
printf (”====\n\n%s\n\n====\n\n",fname _buffer);

b

FILE «md_sim_f_grad = fopen(strcat(fname_buffer,” _gradient.txt”), "w’);

strcpy (fname _buffer ,fname_option );

b

FILE smd_sim_f_vals = fopen(strcat(fname_buffer,” _values.txt”), "w’);
strcpy (fname_buffer ,fname_option);

FILE +md_sim_f_count = fopen(strcat(fname_buffer,” _count.txt”), "w’);
strcpy (fname_buffer ,fname_option );

’

FILE xmd_sim_f_vavg = fopen(strcat(fname_buffer ,” _vx_ave.txt”),”w”’);

strcpy (fname _buffer ,fname_option);
FILE +md_sim_f_vx = fopen(strcat(fname _buffer,” _vx.txt”),”w”);
strcpy (fname _buffer ,fname_option);

2 2

FILE smd_sim_f_vy = fopen(strcat(fname_buffer,”_vy.txt”),”w”);

// md_sim_functions .load _parameters(x_old, y_old, vx_old, vy_old, x_new,
// y_new, VX_New, Vy_Nnew);

md_sim_print_simulation_parameters ();

md_sim_q_-val = md_sim_q_val x electron_charge;

printf (”Start_.Simulation.\n”);

md_sim _functions.init_files (md_sim_num_time_steps, md_sim_num_particles,
md_sim_f_vals, md_sim_f_grad, md_sim_f _count,
md_sim_f_vavg, md_sim_time_step_dt,
md_sim_simulation_interval_tl ,md_sim_box_size); //,
// fname _option , fname_buffer);

printf (”Files._.Initialized\n”);
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496

497

498

499

500
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503
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509

510

511

512

513

514

515

516

517

518

519

520

521

522

md_sim_functions. print_particle_positions (xXx_-new, y_new,

/1
/1
/1
/1

if

/1
/1
/1
/1
/1
/1
/1
/1

md_sim_num_particles, md_sim_f_vals);

grid = md_sim_functions. grid_count(x_old, y_old, md_sim_time_step_dt,
0, md_sim_num _particles , dens, md_sim_f_grad);
md_sim_functions.dens_count(grid, md_sim_time_step_dt, O,

dens, md_sim_f_grad);

(md_sim_test_set_parameter == 1) {

printf ("\no----- _NOTE: _.CREATING_TEST _VALUES. - -—-- -\n”);

MAIN TIME LOOP:

For each time step, i, the second loop cycles through each particle

and calculates its forces on all other particles using the rk4
method defined above
NOTE: The first index of each array is the timestep
(int 1 is the time step), the second index,
k, refers to each individual particle.
for (int 1 = 1; 1 < md_sim_num _time_steps -1; 1i++)
{

/1 Report on % complete

md_sim_functions. progress_report(i, md_sim_num_time_steps);

// For each charge, calculate the new velocity and position

for(int k = 0; k < md_sim_num_particles; k++)

{
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528

529
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535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

/

%/

if(md_sim_test_set_parameter == 0)
{
v = md_sim_functions.rk4(&rate_x ,
&rate_y ,
md_sim_time_step_dt ,
md_sim_simulation_interval_tl + md_sim_time_step_dt = (1 - 1),
vx_old[k],
vy_old[k],
x_old ,
y_old ,
k,
md_sim_num _particles ,

md_sim_box_size);

// Scaling factor is damping time/dt (damping time =
m/drag coefficient)
vx_new|[k] = md_sim_functions.random _velocity _update(v.x,
md_sim_time_step_dt);
vy_new[k] = md_sim_functions.random _velocity update(v.y,
md_sim_time_step_dt);

x-new[k] = vx_new[k] * md_sim_time_step_dt + x_old[k];

y_new [k] vy new[k] * md_sim_time_step_dt + y_old[k];

// baoab method:
/'l Step B:

double vx_half = vx_old[k] + rate_x(md_sim_simulation_interval_tl
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551 + md_sim_time_step_-dt = (i - 1),vx_old[k],vy_-old[k],x_-old,y-old , k,

552 md_sim_num _particles , md_sim_box_size ,

553 md_sim_q_val)+md_sim_time_step_dt/2;

554 double vy_half = vy_old[k] + rate_.y(md_sim_simulation_interval_tl +
555 md_sim_time_step_dt = (i - 1),vx_old[k],vy_old[k],x_old,y_old , k,
556 md_sim_num_particles , md_sim_box_size ,

557 md_sim_q_-val )+md_sim_time_step_dt/2;

558 /1 Step A: position_update

559 double x_half = x_old[k] + vx_half+md_sim_time_step_-dt/2;

560 double y_half = y_old[k] + vy_halfsmd_sim_time_step_dt/2;

561 /1 Step O:

562 vx_old[k] = md_sim_functions.random_velocity update (vx_half,

563 md_sim _time_step_dt , md_sim_drag _coef);

564 vy_old[k] = md_sim_functions.random_velocity_update (vy_half,

565 md_sim _time_step_dt , md_sim_drag _coef);

566 // Step A: position_update

567 x_-new|[k] = x_half + vx_old[k]+*md_sim_time_step_dt/2;

568

569 //x_new|[k] = md_sim_box_size/2;

570 /1 «$«$ THIS SECTION IS USED FOR STATIONARY COLUMN

571

572 y-new[k] = y_half + vy_old[k]«md_sim_time_step_dt/2;

573 // Step B:

574 vx_new|[k] = vx_old[k] + rate_x(md_sim_simulation_interval_tl +

575 md_sim_time_step_dt = (i - 1),vx_old[k],vy_old[k],x_new,y_ new,bk,
576 md_sim_num _particles ,

577 md_sim_box_size ,md_sim_q_val)xmd_sim_time_step_dt/2;

578 vy new|[k] = vy_old[k] + rate_.y(md_sim_simulation_interval_tl +
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580
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599

600

601

602

603

604

605

606

md_sim_time_step_-dt = (i - 1),vx_old[k],vy_-old[k],x_-new,y_new, k,

md_sim_num _particles ,
md_sim_box_size ,md_sim_q_val)»md_sim_time_step_dt/2;

vx_old[k] = vx_new[k];

vy_old[k] vy new [k];

md_sim_functions .bound_check(&x_new[k], &y new[k], &vx_new[k],

&vy new[k],md_sim_box_size);

}

else if(md_sim_test_set_parameter == 1)

{

v = md_sim_functions.test_gen(md_sim_num_particles ,f_drive );

vx_new [ k]

1
<
>

vy_new [k]

1]
<
<

x_-new[k] = vx_new[k] * md_sim_time_step_dt + x_old[k];
md_sim_functions .bound_check(&x _new[k], &y new[k], &vx_new[k],

&vy_new[k],md_sim_box_size);

//1if (vx_new[k] > vx_max) vx_max = vx_new|[k];
//if(vx_new|k] < vx_min) vx_min = vx_new|[k];
/1if (vy_new[k] > vy_-max) vy-max = vy_newl[k];

/11f (vy_new[k] < vy_min) vy_min = vy_new|[k];
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607

608 }

609 cross_count=md_sim_functions.update_count(x_old, X_new, y_new, vx_new,
610 vy_.new, md_sim_num_particles, md_sim_f_count,

611 md_sim_f_vx, md_sim_f_vy,hcross_count ,md_sim_box_size);
612 // grid = md_sim_functions. grid_count(x_old, y_old, md_sim_time_step_dt,
613 //1, md_sim_num _particles, dens, md_sim_f_grad);

614 md_sim_functions.update _arrays (x_old ,y_old,vx_old,vy_old ,x_new,y new,
615 vx_new, vy_new,md_sim_num_particles);
616 md_sim_functions. print_average_velocities (vx_-new,md_sim_num_particles ,
617 md_sim_f_vavg);

618 if (plot_.count == plot_interval -1)

619 {

620 md_sim_functions . print_particle_positions (Xx_-new, y_new,

621 md_sim_num_particles, md_sim_f_vals);

622 plot_count = 0;

623 }

624 else plot_count++;

625

626 e S S O
627 /1 Update the file that saves start positions of the Particles

628 [ = e
629 if(md_sim_flag_save_parameter == 1 && 1 % save_interval == 0)

630 {

631 chdir(”..7);

632 chdir(”..7);

633 printf (”Saving ...”);

634 FILE «f3 = fopen(”start_positions.txt”,”w”);
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636
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639

640

641

642

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

fprintf (f3, 7%i\n”, md_sim_num_particles );

md_sim_functions . print_particle_positions (x_new, y_new,
md_sim_num _particles , f3);

md_sim_functions. print_particle_velocities (vXx_.new, vy_new,
md_sim_num _particles , f3);

fclose (f3);

chdir (”Data”);

chdir (fname _option);

// md_sim_functions.dens_count(grid, md_sim_time_step_dt, i,
//dens, md_sim_f_grad);

md_sim_functions. grid_zero (grid, md_sim_box_size);

}

fclose (md_sim_f_vavg);

fclose (md_sim_f_count);

fclose (md_sim_f_vx);

fclose (md_sim_f_vy);

md_sim_functions . final _update (cross_count ,fname_option , fname _buffer,

md_sim_num_particles , md_sim_time_step_dt, md_sim_q_val);

double toc = clock();
printf (”\n\nDone!\n”);
double time_elapsed = ((double) (toc - tic))/ CLOCKS_PER_SEC;
printf (”Elapsed .Time: _%f_seconds.\n”, time_elapsed);
double sd_calc = calculateSD (vx_new, md_sim_num_particles);

printf (” Standard Deviation = %f”, sd_calc);
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663 e e e e e ...,

664 /1 Section for cleaning up memory

665 /- —————————————————————— -
666

667 // free string variables , if aquired by co_options

668 md_sim_dict.cleanup_memory ();

669

670 return O;

671 }

A.2 md_sim_class.c

2 // This code is a simple molecular dynamic simulation for use with dusty
3 // plasmas. It is mathematically implemented using the Runge-Kutta 4 or
4 // RK4 method. This is the CLASS!

5 /1

6 // Written by: Dylan Funk at Auburn University , 2022

8
9 #include “md_sim_class.h” // my header file :)

10 #include "md_sim_ext.h”

11 #include “COPLA-Common/co_options.h”

13 #include <stddef.h> /1 needed for NULL
14 #include <stdio.h>
15 #include <stdlib .h>
16 #include <string.h>

17 #include <math.h>
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I8 #include <time.h>

19 #include <iostream >

20 #include <string >

21 #include <random>

22 #include <ctime>

23 #include <windows.h>

24 #include <sSstream >

25 #include <fstream >

26

27

28 std::default_random_engine generator;

29 std::normal_distribution <double > distribution (0.0, sqrt(kb+md_temp/m));
30 std::normal_distribution <double> dist2 (0.0,1.0);

31 /] ==========================================================================

32 // Public

34
35 ]

36 // md_sim_class
37 1/

38 // Constructor for md_sim_class.

39 //
T S A —————
41

42 md_sim_class :: md_sim_class ()

43 |
44
45 '}
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46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

// "md_sim_class

/1

// Destructure for md_sim_class.

/1 Keep care to free memory yourself that might be occupied.

md_sim_class :

{

// initialize

/1

:"md_sim_class ()

// 1initialize variables for the simulation. Use this at least once before

// staring any simulations!!!

int md_sim_class ::

{

return (0);

// == =_===

// Private

/] == =_===

initialize ()
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74
75

76 /) —m e
77 /1 bound_check

78 1/

79 // This checks the particle positions with the boundary conditions listed

80 // Currently boundary conditions are:

81 // y-direction, rigid boundaries

82 // x-direction, cyclical boundaries

83 /) e
84

85 veoid md_sim_class::bound_check(doublex X, doublex y, doublex VX, doublex Vy,

86 double box_size)
87 {
88 double box_size.y = box_size/x_y_ratio;

89 if(xx < 0)

90 {

91 /l+x = 0; /! Rigid boundary
92 *X = box_size + fmod(xx,box_size); //Circular boundary condition
93 // printf (” Particle x < 0: %f”, xx);

94 }

95

96 if (X > box_size)

97 |

98

99 /l+«x = box_size - (double)(rand() % 20000)/2000000000.0;
100 *X = fmod(xx,box_size); //Circular boundary condition
101 // printf (” Particle x > box_size: %f”, xx);
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102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

if(xy < -box_size_y/(30))
{
[1if (xvy < 0) =vy = 0;
/[l printf ("\n%f”, =y);
/l+y = -box_size_y/(30);

// printf (” Particle y < 0: %f”,

if (xy > 33«box_size_y/(30))

*y ),

/lxy = 33xbox_size_y/(30) - (double)(rand() % 20000)/2000000000.0;

// dens_count

/1

// This comes in for density gradient

/!l and the right halves) the total number of particles

// coordinate in each time step

void md_sim_class:: dens_count(int ==

{
[1if (xvy > 0) =vy = 0;
/[l printf ("\n%f”, xy);
// printf (” Particle y > box_size: %f”,
}
}

grid ,

121

calculates

*y )5

double dt,

int

time_step ,

for each y cell

double

later by summing (in the left

den



130 FILE «f_grad, double box_size)

132 const int num_grid_x (int)floor(box_size/GRID_SIZE);

133 const int num_grid._y (int)floor (box_size /GRID_SIZE);

134 int grad_.y = 0;

135 double sumx = 0, sumx2=0,sumy=0,sumy2=0,sumxy=0;
136 for(int j = 0; j < num_grid_y; j++)

137 {

138 dens[j] = O0;

139 for(int k = 0; k < num_grid_x; k++)

140 {

141 dens[j] = dens[j] + grid[k][]];

142 // Total number of particles on grid space
143 }

144 dens[j] = dens[j]/num_grid_y;

145 // Average overall x values

146 }

147

148 for(int 1 = 0; 1 <num_grid_y; 1+4+)

149 {

150 sumx += 1i;

151 sumy += dens|[1];

152 sumx2 += pow(i,2);

153 sumy2 += pow(dens[i],2);

154 sumxy += ixdens[i];

155 }

156

157 double denom = num_grid_y = sumx2 - pow(sumx,2);
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158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

/1
/1
/1
/1
/1
/1
/1

grad_y = (num_grid_y = sumxy - sumx=zsumy )/denom;
fprintf (f_grad , "%f _%f”, grad_.y, dtstime_step);
fprintf (f_grad, ”\n”);

electric_field

This function returns the proper electric field in x and y based on the
position of the particle , the complicated sign_x and E-field functions come
from the geometric position of each particle to return the proper (linearly

linearly increasing) electric field magnitude and direction (sign_x and

sign_y)

struct md_sim_class:: vector md_sim_class:: electric_field (double X, double Yy,

double box_size)

struct vector Efield;

double E_bound_x = box_size x0.99;

double E_bound.y = box_sizex0.99/x_y_ratio;

double box_size.y = box_size/x_y_ratio;

double sign_x = —-(x - box_size/2 - E_bound_x/2)/
fabs(x - box_size/2 - E_bound_x/2);

double sign.y = —-(y - box_size_.y/2 - E_bound_.y/2)/
fabs(y - box_size_y/2 - E_bound.y/2);

// These two yield either -1 or +1 depending on X or y

if (fabs(x - box_size/2) < E_bound_x/2)
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186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

204

205

206

207

208

209

Efield .x = 0;
if (fabs(x - box_size/2) >= E_bound_x/2)
Efield .x = E_max x+2+sign_xx(fabs(fabs(x - box_size/2) - E_bound_x/2)/
(box_size - E_bound_x));
if (fabs(y - box_size_y/2) < E_bound_y/2)
Efield.y = 0;
if (fabs(y - box_size_y/2) >= E_bound_y/2)
Efield.y = 0;

/ s
/1 E_max_y=«2xsign_y «(fabs (fabs(y - box_size_y/2) - E_bound_.y/2)/
(box_size_.y - E_bound.y));
//EDIT 2/13/23: Changed below section to be 10xbox_size
(relevance 1is the variance in y direction)

%/

if(y > 10«box_size_y)
Efield.y = -E_max_y;
if(y < Oxbox_size._y)

Efield.y = E_max_.y;

return Efield;

void md_sim _class :: final _update (int cross_count,char xfname_option,

chars fname_buffer ,int num_particles ,double time_step_dt ,h double q)

strcpy (fname_buffer ,fname_option );

/l printf (”\n\nAlmost There...\n\n”);
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FILE «f_count_read = fopen(strcat(fname_buffer,

b

strcpy (fname_buffer ,fname_option);

FILE «f_vx_read = fopen(strcat(fname_buffer ,” vx.txt”),”r”);

strcpy (fname_buffer ,fname_option);

FILE «f_vy_read = fopen(strcat(fname_buffer ,” _vy.txt”),”r”);

FILE «f_tmp = fopen(strcat(fname_buffer ,”tmp.txt”), w”

strcpy (fname _buffer ,fname_option );

double xtmp_count;

double =tmp_vX,;

double s=tmp_vy;

tmp_count = (double ) malloc(sizeof (double)xcross_count);
tmp_vx = (double x) malloc(sizeof (double)xcross_count);
tmp_vy = (double x) malloc(sizeof (double)xcross_count);
printf (”\n%d _%s\n”, cross_count, fname _buffer);

for(int 1 = 0; 1 < cross_count; 1i++)

{

fscanf(f_count_read , "%lf”, &tmp_count[i]);

fscanf(f_vx_read , "%lf”, &tmp_vx[i]);

fscanf (f_vy_read , "%lf”, &tmp_vy[i]);

}

fclose (f_count_read);

fclose(f_vx_read);

fclose (f_vy_read);

Every time a particle 1s within a counting region,

125
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255
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257

258
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262

263

264

265

266

267

268

269

/l velocity data is saved and here it is copied to a file that
/!l ends ”_count.txt”

// The first few lines of this are information about the sim:
/1 (Magnetic Field)

/!l (Input charge value)

/!l (Temperature)

// (Box size)

// (Time step)

// (Number of time steps)

// dens[0] dens[1]... dens[num_grid_y] (at t

0)
// dens[0] dens[1]... dens[num_grid_.y] (at t = 1)

/1

// dens[0] dens[1] ... dens[num_grid_.y] (at t = n)

/1 ==== ==== ============ ==== ==== =========================
FILE «f_count_write = fopen(strcat(fname_buffer,” _count.txt”),”w”);

strcpy (fname _buffer ,fname_option);

/1 ==== ==== ============ ==== ==== S==============S==========
/l To plot the x velocity , we will output the x velocity into a data file
// named s _vx.txt” this will be used to plot in python. The data

// should look similar to this:

/! (Number of crossings)

/1 vx[O0] vx[1]... vx[num_particles] (at t = 0)

/1 vx[0] vx[1]... vx[num_particles] (at t = 1)

/1

/1 vx[O] vx[1]... vx[num_particles] (at t = n)

/1 ==== ==== ============ ==== ==== e
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270 FILE «f_vx_write = fopen(strcat(fname_buffer ,” _vx.txt”),”w’);

271 strcpy (fname_buffer ,fname_option);

272 || ==================—=—=—=—=——————————-——-——-———————————————————————————=——=—===
273 // To plot the y velocity , we will output the y velocity into a data file

274 // named s _vy.txt” this will be used to plot in python.

275 // The data should look similar to this:

276 /! (Number of crossings)

277 /1 vy[O] vy[1l]... vy[num_particles] (at t = 0)
278 /1 vy[O] vy[1]... vy[num_particles] (at t = 1)
279 /1

280 /1 vy[O] vy[1l]... vy[num_particles] (at t = n)

bal 2

282 FILE «f_vy_write = fopen(strcat(fname_buffer ,” _vy.txt”),”w”);

283 strcpy (fname_buffer ,fname_option );
284

285

286 float n.q = q/electron_charge;

287 fprintf (f_count_write , "%f\n”, B _field);
288 fprintf (f_count_write , "%e\n”, n_q);

289 fprintf (f_count_write , "%f\n”, md_temp);

290 fprintf (f_count_write , "%f\n”, size);

291 fprintf (f_count_write , "%f\n”, time_step_dt);
292

293 fprintf (f_count_write , "%d\n”, cross_count);
294 fprintf (f_vx_write , "%d\n”, cross_count);

295 fprintf (f_vy_write , "%d\n”, cross_count);

296

297 for(int 1 = 0; 1 < cross_count —-1; i++)
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299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

if(1i % save_interval==0)

{
fprintf (f_count_write , "%.4f.”, tmp_count[1i]);
fprintf (f_vx_write , "%.4f.”, tmp_vx[i]);

fprintf (f_vy_write , "%.4f.7, tmp_vy[i]);

fprintf (f_count_write , "%.4f”, tmp_count[cross_count]);
fprintf (f_vx_write , "%.4f”, tmp_vx[cross_count]);

fprintf (f_vy_write , "%.4f”, tmp_vy[cross_count]);

fclose(f_count_write );
fclose (f_vx_write );

fclose (f_vy_write );

/] grid_zero
/1

/!l Zero out the grid variable , maybe unnecessary

void md_sim_class:: grid_zero(intxx grid, double box_size)

{

const int num_grid_x

(int)floor (box_size/GRID_SIZE);

const int num_grid_y (int)floor(box_size/GRID_SIZE);
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327

328

329

330

331

332

333

334

335

339

340

341

343

344

345

346

347

348

349

350

351

352

353

/1
/1
/1

int+x md_sim_class:: grid_count(doublex X, doublex y, double dt,

for(int p = 0; p < num_grid_x; p++)

{
for(int q = 0; q < num_grid_y; q++) grid[p][q] = O;

grid_count

Take all the points and assign them to grid points

int

time_step ,

int num _particles , doublex dens, FILE «f_grad,

double box_size)

const int num_grid_x (int)floor(box_size/GRID_SIZE);

const int num_grid.y = (int)floor(box_size/GRID_SIZE);

int+x grid = (int=*x)malloc(num_grid.y x sizeof (int x));
for(int 1 = 0; 1 < num_grid_y; 1++)
grid[i] = (intx)malloc(num_grid_x % sizeof (int));

// grid_zero (grid);

Il
S

int X_pos
int y_pos = 0;
for(int k = 0; k < num_particles; k++)

{

X_pos

(int) floor(x[k]/GRID_SIZE);

y_pos (int) floor(y[k]/GRID_SIZE);
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354 grid [x_pos][y-pos]++;

355 [l printf(C%d”, grid[x_pos][y-pos]);

356 }

357

358 int grad_.y = 0;

359 double sumx = 0, sumx2=0,sumy=0,sumy2=0,sumxy=0;

360 for(int j = 0; j < num_grid_y; j++)

361 {

362 dens[j] = O0;

363 for(int k = 0; k < num_grid_x; k++)

364 {

365 dens[j] = dens[j] + grid[k][]];

366 // Total number of particles on grid space
367 }

368 dens[j] = dens[j]/num_grid_y;

369 // Average overall x values

370 }

371

372 for(int 1 = 0; 1 <num_grid_y; 1+4+)

373 {

374 sumx += 1i;

375 sumy += dens|[1];

376 sumx2 += pow(i,2);

377 sumy2 += pow(dens[i],2);

378 sumxy += ixdens[i];

379 }

380 double denom = num_grid_.y = sumx2 - pow(sumx,2);
381 grad.y = (num_grid_y % sumxy - sumxs:sumy )/denom;
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383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

fprintf (f_grad , 7%f _%f”, grad_.y, dtxtime_step);
fprintf(f_grad, ”\n”);

return grid;

// init_files
//

// Initialize the files to be written to

void md_sim_class::init_files (int num_time_steps, int num_particles ,
FILE «f_vals , FILE «f_grad, FILE «f_count,
FILE «f_vave, double dt, double tl,
double box_size)//,

// char =fname_option ,charx fname_buffer)

const int num_grid_x (int)floor(box_size/GRID_SIZE);

const int num_grid_y (int)floor(box_size /GRID_SIZE);

/1 Once we calculate the positions of the particles, it is then output
// to a data file called ”values.txt”, this is then input into a Python
/!l code which plots our data at certain timesteps and produces

/! various image files which we can later use. The GDL code requires a

/l specific format:

/1 (number of particles)

// (num_time_steps/plot_interval)
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410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

/1 (Display/Box width)
/1 (Display/Box height)

/I x 0 x_1 x2 ... x_k (for t = t0)

/1y 0O y.1l y2 ... yk (for t = t0)

// x_0 x_1 x_2 ... x_k (for t = t0O +dt)
/1y 0 y_1 y.2 ... yk (for t = t0 +dt)

/1

/1 x 0 x_1 x.2 ... x_k (for t = t0 + n=dt)
/Iy Oy 1l y2 ... yk (for t = t0 + n=xdt)

/!l This format will be taken care of in various fprintf functions

fprintf (f_vals ,”%i\n%i \n%g\n%g\n” ,num _particles ,
(num _time _steps -1)/plot_interval +1,

box_size/lambda, box_size/(lambdaxx_y_ratio));

/1 To plot the density gradient we will output them into a data file

/7 _gradient.txt” this will be used to plot in python. The data should look
// similar to this:

/! (Number of times steps)

/! (Number of grid points in y)

// dens[0] dens[1]... dens[num_grid_.y] (at t = 0)

// dens[0] dens[1]... dens[num_grid_.y] (at t = 1)

//

// dens[0] dens[1] ... dens[num_grid_.y] (at t = n)

// e —————————

fprintf (f_grad, 7"%d\n”, num_time_steps);

fprintf (f_grad, 7%d\n”, num_grid_y);
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438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

/

fprintf (f_vave, "%.4f\n”, dt);

fprintf (f_vave, "%.4f\n”, tl);

fprintf (f_vave, "%.4e\n”, drag_coef);

/1 To plot the density gradient we will
/1l 7 gradient.txt” this will be used to plot
// similar to this:

// (Number of times steps)

/!l (Number of grid points in y)

// dens[0] dens[1]... dens[num_grid_y] (at ¢t
// dens[0] dens[1]... dens[num_grid_y] (at t
/1

// dens[0] dens|[1] dens[num_grid_y] (at
FILE «f_vx_write = fopen(strcat(fname_buffer,

strcpy (fname _buffer ,fname_option);

To plot the density gradient we will

7gradient. txt” this will be used to plot

similar to this:

(Number of times steps)

(Number of grid points in y)

dens[0] dens[1]... dens[num_grid_y] (at t
dens[0] dens[1]... dens[num_grid_y] (at t
dens[0] dens|[1] dens[num_grid_y] (at

133

9

output them

output them

into a data file named
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>

467 FILE «f_vy_write = fopen(strcat(fname_buffer,” _vy.txt”),”w”);

468 strcpy (fname_buffer , fname _option);

469 %/

470}

471

2 ) B E——

473 // load_parameters

474 1/

475 // Loads data points from a previous file

476 1/ ——

477 veoid md_sim_class::load_parameters(doublex x_old, doublex y_old,

478 doublex vx_old, doublex vy_old,
479 double+ X_new, doublex y_new,
480 doublex vx_new, doublex Vvy_new)
481 {

482 //std ::ifstream infile (” start_positions.txt”);

483 FILE« fl1 = fopen(”start_positions.txt”, 7r”);

484

485 printf (”\nLoading_.Particle .Positions ...\n”);

486 int num_particles = 0;

487 char parse[l], del_1[1], del_2[1];
488 double ==tmp_X, s=tmp.y,x=tmp_vX ,=tmp_vy;

489 fscanf (fl, "%d\n”, &num _particles );

490

491 tmp_x = (double ) malloc(sizeof (double )xnum _particles);
492 tmp_.y = (double =) malloc(sizeof (double )xnum_particles);
493 tmp_vX = (double x) malloc(sizeof (double)+num _particles );
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494 tmp_vy = (double x)malloc(sizeof (double)+num_particles );

495

496 fscanf (fl1, "%lf”, &tmp_x);

497 fscanf (fl, "%lf”, &tmp.y);

498 fscanf (fl1, "%lf”, &tmp_vx);

499 fscanf (fl1, "%lf”, &tmp_vy);

500 /+for(int j = 0; j < num_particles+1; j++) x_old[j] = atof(fgets(str ,8,fl1));
501 printf("%.6f”, x_old[num _particles -1]);

502 for(int j = 0; j < num_particles -1; j++) fscanf(fl, "%1f”, y_old[j]);
503 fscanf (fl, "%I1f\n”, &y_old[num_particles |);

504 for(int j = 0; j < num_particles -1; j++) fscanf(fl, "%1f”, vx_old[j]);
505 fscanf (fl1, "%lf\n”, &vx_old[ num_particles ]);

506 for(int j = 0; j < num_particles -1; j++) fscanf(fl, "%1f”, vy_old[j]);

507 fscanf (fl, "%lf\n”, &vy_old[num_particles ]);

508  x/

509 for (int k = 0; k < num _particles; k++)
510 {

511 x_new[k] = tmp_x[k];
512 y-new[k] = tmp.y[k];
513 vx_new|[k] = tmp_vx[k];
514 vy_new[k] = tmp_vy[k];
515

516 printf (7%.3f”, x_old);
517 }

518

519 fclose (f1);
520 printf ("Loading _Complete!”);

521}

135



523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

// init_parameters
/1
// Initialization of parameters. This includes random distribution of dust

/!l particle locations as well as setting all charge velocities to zero

void md_sim _class ::init_parameters (doublex Xx_old, doublex y_old,
doublex vx_old, doublex vy_old,
double+ X_new, doublex y_new,
double+ vX_new, doublesx vy_new,
int num _particles ,

double box_size, double v_start)

srand ((int)time (0));

for (int k = 0; k < num _particles; k++)

{
x_old[k] = (double)(rand() % 10000)/10000.0+box_size;
// Position all new particles randomly
y_old[k] = (double)(rand() % 10000)/10000.0xbox_size/x_y_ratio;
vx_old[k] = distribution(generator) + v_start;

vy_old[k] = distribution(generator);

x_new [k] x_old[k];

y_new [k] y_old[k];
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560

561
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563

564

565

566

567

568

569

570

571

575

576

577

// print_average_velocities

/1

// Print the positions of the particles

// under the function init_files

void md_sim_class

FILE «f_out)

{
double vx_ave = 0;
for (int k = 0; k < num _particles; k++)
{
vx_ave = vx_ave + vx[k]/lambda;
}
vx_ave = vx_.ave/num_particles;
printf ("%.4f_.”7, vx_ave);
fprintf (f_out, "%.4f_.", vx_ave);
}

/!l print_particle_positions

/1

/!l Print the positions of the particles

// under the function 1init_files

void md_sim_class
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to a data file. Uses the format listed

;:print_average_velocities (doublex vx,int num_particles,

to a data file. Uses the format listed

int

c:print_particle_positions (doublex X, doublex Yy,

num _particles ,FILE «f_out)



578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

{

/1
/1
/1
/1

void md_sim_class

for(int k =

{

0; k < num_particles; k++)

fprintf (f_out, "%.4f.”, x[k]/lambda);

}
fprintf (f_out,”\n”);

for(int k =

{

0; k < num_particles; k++)

fprintf (f_out, "%.4f.”, y[k]/lambda);

}

fprintf (f_out, ”\n”);

print_particle_velocities
Print the velocities of the particles

under the function init_files

to a data file .Uses

the format listed

for (int k = 0; k < num_particles; k++)
{

fprintf(f_out, "%.3f.", vx[k]);
}

fprintf (f_out,”\n”);

for (int k = 0; k < num _particles; k++)
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c:print_particle_velocities (double* VX,

int

double x vy,

num _particles , FILE «f_out)



606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

/1
/1
/1
/1

fprintf (f_out, "%.3f.", vyl[k]);

}
fprintf (f_out, ”\n”);

progress_report

This function simply updates the user with what percentage the

simulation is complete

void md_sim _class :: progress_report(int i, int num_time_steps)

{

/1
/1
/1
/1
/1

double digits = 0.1;
/11f(1 % ((num_time_steps —-1)/100) < digits)
printf ("\r%.3f _%%_-Complete”, (ix100.0/num_time_steps));

random _velocity _update

This function updates velocity in a distribution based on the dust temp

This comes from Langevin Dynamics based on the paper by Lemkuhler and

Matthews (2012) and the BAOAB method
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e L
635 double md_sim_class::random_velocity update(double Vv,double time_step ,

636 double drag)

637 {

638 double norm = dist2 (generator);

639 double cl = exp((-drag/m)=time_step );

640 double c2 = sqrt(l-clxcl)*sqrt(kbsmd_temp/m);

641 double v_new = clxv + norm=c2;

642 return V_NEw,;

643}

644

645 /] —mm e

646 // A simple function to generate a test set of data based on the input data
647 |/ — e
648 struct md_sim_class::vector md_sim_class::test_gen(int num_particles ,

649 double f_drive)

650 {

651 md_sim_class :: vector v;

652 v.x = f_drive/drag_coef + distribution(generator);

653 v.y = distribution (generator);

654 return V;

655 }

656

657 /] ==

658 // update_arrays
659 //
660 // This next loop 1is to (after all caculations) move the charges

661 // to their new position for the calculation in the next time step
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662 // —m e
663 void md_sim_class::update_arrays(double+ x_old, doublex y_old,
664 doublex vx_old, doublex vy_old,
665 double+ X_new, doublesx y_new,
666 double+ vx_new, doublex vy_new,
667 int num_particles)

668 {

669 for (int k = 0; k < num _particles; k++)

670 {

671 vx_old[k] = vx_new][k];

672 x_old[k] = x_new][k];

673 vy_old[k] = vy_newl[k];

674 y_old[k] = ynewl[k];

675 }

676 }

677

678 int md_sim_class ::update_count(doublex x_old,doublex x_new, doublex y new,

679 double+ vx_new, doublex vy_new,

680 int num_particles ,

681 FILE xf_count, FILE «f_vx, FILE sf_vy,
682 int cross_count, double box_size)

683 {

684 for (int k = 0; k < num _particles; k++)

685 {

686 if (1) //Use all particles
687 //if(x_old[k] > (box_size - center_region )/2

688 /1 && x_old[k] < (box_size + center_region )/2)

689 /1 Use particles in center region
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693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

/1
/1
/1
/1

//1if (x_old[k] < box_size/2 &% x_new[k] > box_size/2 &% vx_new[k] > 0)

{
fprintf (f_count, "%.4f_.", y new[k]/lambda);
fprintf (f_vx, "%.4f_.”, vx_new|[k]/lambda);
fprintf (f_.vy, "%.4f_.", vy_new|[k]/lambda);
cross_count = cross_count + 1;

}

}

return cross_count;

Runge-Kutta 4th order, this function integrates the rate (force/m) equation

to give the velocities at the current time step

struct md_sim_class :: vector md_sim_class ::rk4 (double (xfx)(double, double ,

double , double %, double =, int, int, double),

double (xfy)(double,
double =+, int, int, double),

double dt, double t,

double =xqy, int k, int num_particles, double box_size)

struct vector vl;
// double norm = dist2(generator);
// double const_-D = 2:mxdrag_coefskbxmd_temp/dt;

double
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718

719

720

726

727

728

729

730

731

732

733

736

737

738

739

740

741

k1

k2

fx(t, vx, vy, gx, qy, k, num_particles, box_size),

11T = fy(t, vx, vy, gx, qy, k, num_particles, box_size),

= fx(t + dt / 2, vx + k1l = dt / 2, vy + 11 = dt / 2, gx, qy,
k, num_particles, box_size),
12 = fy(t + dt / 2, vx + k1l « dt / 2, vy + 11 « dt / 2, gx, qy,

k, num_particles , box_size),

k3 = fx(t + dt / 2, vx + k2 « dt / 2, vy + 12 =« dt / 2, gx, qy,
k, num_particles, box_size),
13 = fy(t + dt / 2, vx + k2 « dt / 2, vy + 12 « dt / 2, gx, qy,

k, num_particles , box_size),

k4 = fx(t + dt, vx + dt = k3, vy + dt = 13, gx, qy, k, num_particles ,
box_size),
14 = fy(t + dt, vx + dt = k3, vy + dt = 13, gx, qy, k, num_par

box_size),

kf = vx + dt = (k1 + 2 = k2 + 2 « k3 + k4) / 6,
If = vy + dt = (11 + 2 % 12 + 2 « 13 + 14) / 6;
vl.x = kf;

1f;

vl.y

return Vvl ;
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24

25

A.3 md_sim_class.h

The code for md_sim_class.h

/!l This code is a simple molecular dynamic

simulation for use with dusty

/!l plasmas. It is mathematically implemented using the Runge-Kutta 4 or

// RK4 method. This is the CLASS!
/1

/! Written by: Dylan Funk at Auburn University , 2022

#ifndef _MD_SIM_CLASS_H
#define _MD_SIM_CLASS_H

#include “COPLA-Common/co_options.h”
#include <stddef.h>

/!l needed for NULL

#include <stdio.h>

#include <stdlib .h>

#include <string .h>

#include <math.h>

#include <time.h>

class md_sim_class {

public :

struct simulation_parameters {

_UINT_ num_particles;
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28

29
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31

38

39

40

41

43

44

45

46

47

48

49

50

} simulation_parameters;

struct

vector {

double X, y;

s

private :

struct particles {

double X, y, gX,gYy;

}s
public :
md_sim_class (); // Constructor
"md_sim_class (); // Destructor
void init_files (int num_time_steps, int num_particles, FILE «f_vals, FILE =«
void bound_check (double* X, doublex y,doublex VX, doublex Vvy,double box_size)
void dens_count(intx*x grid,double dt,int time_step ,doublex dens, FILE «f_gr,
struct vector electric_field (double X, double y,double box_size);
void final _update (int cross_count ,charx fname_option, charx fname_buffer,int
void grid_zero(int=x+ grid, double box_size);
int++ grid_count(doublex X, doublex y, double dt, int time_step, int num_pa
void load _parameters (doublex x_old ,doublex y_old,6doublex vx_old, doublex Vy._
void init_parameters (doublex Xx_old ,doublex y_old, doublex vx_old,doublex Vy_
void print_particle _positions (double* X, doublex y,int num_particles ,FILE«+ f
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55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

void print_average_velocities (doublex vx,int num_particles, FILE« f_out);
void print_particle_velocities (doublex vx,doublex vy,int num_particles ,FILE
void progress_report(int i, int num_time_steps);
double random_velocity_update(double v, double time_step, double drag);
struct vector test_gen(int num_particles, double f_drive);
void update_arrays (doublex Xx_old ,doublex y_old,doublex vx_old,doublex vy_ol
int update_count(double* x_old, doublex X new, doublex y new, doubles VX_n
struct vector rk4(double (%fx)(double ,double ,double ,double x,doubles,int ,int , ¢
// static double rate_x (double t,double vx,double vy,double xgqx,double =xqy, dot
// static double rate_y (double t,double vx,double vy,double =xqx,double =xqy,int
int initialize (); // initialize simulation parameters
private :

}s

#endif
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A4 md_sim_ext.h

// This 1includes the external constants included in the md simulation Written

/! by Dylan Funk

#ifndef MD_SIM_EXT_H

#define _MD_SIM_EXT_H

#include “COPLA-Common/co_options.h”

#include <stddef.h> /! needed for NULL
#include <stdio.h>

#include <stdlib .h>

#include <string .h>

#include <math.h>

#include <time.h>

// Default globals for the program including physical parameters

double md_sim_ext.g = 9.8;
double electron_charge = 1.6E-19;

double kappa = 9E9; [/l 1/4xpixepsilon_0 ~ 9x1079
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52

53

54

55

double
double
double
double
double
double
double
double
double

/1
double

double

double
double
double
double

double

x_y_ratio = 1;

lambda = 250E-6; /! Debye Length
E_max_x = 0; // Electric field found on edge of containme
E_max_y = 100000; /!l in wunits of V/m

B_field = 4;//1; // External magnetic field in z direction

dust_mass_density = 1510; // in kg/m"3 (1510 for melamine formaldehyde
dust_radius = 1.7E-6; /1 [m]

g-val = 8000; // Dust particle charge value [C]

m = (4+3.14/3)xdust_mass_densityxdust_radiusxdust_radiussdust_radius;

m ~ 3.1E-14 Dust particle mass in kg

kb = 1.381E-23; // Boltzmann constant

f_drive = 100x«2.64E-13;

md_temp = 1000;

n_ions = 5E14; // ion number density (units = m"-3)
m_ions = 6.63E-26; // 1on mass (assumed argon) in kg
T_ions = 0.026; /!l ion temp in eV (T7300 K)
v_ave_ions = sqrt(8x«(T_ionsxelectron_charge)/(3.14+m_ions));

// average ion speed (note AVERAGE not rms)

/1 [NOTE: T_ions=electron_charge is a conversion to joules]

double

double

double

double

double

m_neutrals = m_ions;

P_neutrals = 30; // in Pascals, typically about 0.3 mBar
T_neutrals = 300; // In kelvin

n_neutrals = P_neutrals/(kb+T_neutrals); // "7.24E21 m"-3
v_ave_neutrals = sqrt(8«(kbxT_neutrals)/(3.14+ m_neutrals));
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56 double alpha_eps I + 9%3.14159/64; // See eps 1924

57 double drag_coef = 0.2xalpha_eps=«(4+«3.14/3)xn_neutrals+m_neutralsxv_ave_neutral
58 /l F_epstein_drag = drag_coef=xv_particles , from epstein paper 1924

59

60 double start_velocity = f_drive/drag_coef;

61 double size = 80;

62 double BOXWIDTH = size «xlambda, BOX_HEIGHT = sizes«lambda;

63 double center_region = sizesxlambda/4;

64 // Define parameters of box to plot

65 //double E_bound_x = BOXWIDTH=%0.8, E_bound_.y = BOXHEIGHT=x=0.8;
66 /!l Soft boundary limits where E becomes greater than zero

67 double GRID_SIZE = 2xlambda;

68

69 int plot_interval 20; /! number of time steps between plotting
70 int save_interval = 20;

71 int plot_count = 0;

72 int flag_start_parameter = 0;

73 int flag_save_paramter = 0;

74

75 //const int num_grid_x = (int)floor (BOX_-WIDTH/GRID _SIZE);
76 //const int num_grid_.y = (int)floor (BOX_HEIGHT/GRID_SIZE);
77 /1 Grid spacing

78

79 double f_external_.y = 0;//-3E-15;

80

81 #endif
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Appendix B

Analytical Code

This is the analytical code as discussed in chapter 4. These have been broken up into
two general analytical codes (both written in python), one for low coupling and one for high
coupling. These are the main pieces of code which can be used to analyze both positional and

analytical data. Further analytical pieces are excluded from this section

(V)

(O8]

9

10

B.1 Low coupling analytical code

# —-x- coding: utf-8 -—x-

999999

Created on Sun Aug 29 20:17:52 2021

@author: dil_e

999999

import matplotlib.pyplot as plt
import numpy as np

import gc

import pickle

import scipy

from scipy import optimize

import matplotlib.colors as colors
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30

31

32

33

34

35

36

37

38

39

40

41

42

import scipy.special as sp
#import ffmpy

#import os

debl = 250E-6

#Boltzmann Constant

kb = 1.381E-23

mass = 3.105E-14

f_drive = 2.64E-13

drag_coef = 3.3417023489E-12

#hist parameters, box size, left bound and right bound
box_width_.y = 0.1+250E-6
Ibl = 40+«250E-6

rbl = 200«250E-6
1b2 = 120+«250E-6
rb2 = 150«250E-6

#This creates an array that will hold our histogram boxes
val _range = np.arange (lbl ,rbl ,box_width_y)

val_range2 = np.arange(lb2 ,rb2 ,box_width_y)

plot_start = 5

filename = input(”Please_Enter_Filename:.”)

#variable for holding our plot choice

plot_flag = int(input(”Choose_a_plot_fit_(0O_.for_linear ,_l1_.for_.exponential):.”))
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43

44

45

46

47

48

49

50

52

53

54

58

59

60

61

62

63

64

65

66

67

68

69

70

def

def

func_exp is our exponential assumption for exp fit

func_exp(x, a, b, c):

return a * np.exp(-b x x) + ¢

func_exp2 is our exponential assumption for exp fit

func_exp2(x, a, b, c):

return a = np.exp(b = x) + ¢

func_test 1is our test fit function

func_test(x, a, b, c¢):

return a / X =x2

func_test2(x,a,b,c):

return ax(X+b)=x+2 + c

func_residual is to test our residuals

func_residuals(x, a, b, c):
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71 return axxssp.jve(0,b/x)+c

72

73 #====================================—===========—====—===—===—=—=—=====—============
74 # plot_func is a simple plotter function to generalize all of our plots
75 #==============================================================================
76 def plot_func(x_vals, y_vals, size = 100,fontsize = 40, =xargs, =xkwargs):
77 title = kwargs.get(’title’, None)

78 x_title = kwargs.get(’ x_title’, None)

79 y_title = kwargs.get( y_title’, None)

80 y2 = kwargs.get(’y2’, None)

81 y3 = kwargs.get(’y3’, None)

82 errl = kwargs.get(’errl’, None)

83 err2 = kwargs.get(’err2’, None)

84 legend = kwargs.get(’legend’, None)

85 xlims = kwargs.get(’xlims’, None)

86 ylims = kwargs.get(’ylims’, None)

87

88 # Create the figure that will hold our plot and choose its size

89 fig = plt.figure(figsize=(20.0,20.0))

90

91 # Change the size of the number labels (ticks)

92 ax = fig.add_subplot(111)

93 for tick in ax.xaxis.get_major_ticks ():

94 tick .label .set_fontsize (40)

95 for tick in ax.yaxis.get_major_ticks ():

96 tick .label.set_fontsize (40)

97

98 text = ax.yaxis.get_offset_text ()
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99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

119

125

126

text.set_size (40)

# Change plot limits
if xlims is not None:

ax.set_xlim (xlims)
if ylims is not None:

ax.set_ylim (ylims)

# Create scatter plot
plt.scatter (x_vals, y_vals, color = ’red’, edgecolors = ’black’,
if y2 is not None:

plt.plot(x_vals ,y2, -’, color = ’blue’, linewidth = 5)

if y3 is not None:

plt.plot(x_vals ,y3, -, color “green’, linewidth = 10)
if errl is not None:
plt.errorbar(x_vals ,y_vals ,yerr=errl ,ls="none”,color="black”™)

if err2 is not None:

plt.errorbar(x_vals ,y2,yerr=err2 ,ls="none”,color="black”)

# Add titles/Label axes/Legend
plt.title (title , fontsize = 40)

plt.ylabel(y_title , fontsize = 40)
plt.xlabel (x_title ,fontsize = 40)

ax.ticklabel _format(style="sci’,axis="y’ ,scilimits=(-3,3))

if legend is not None:

plt.legend (legend, loc=’best’,fontsize = 30)
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133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

# Make plot

plt.show ()

# As above, this reads in values and turns it into an array of floats

vx_in = open(”C:\\ Users\\dil_e\\Dropbox\\Physics\\Research\\MD_Sim\\ md_sim.c\\I

num_vals = int(vx_in.readline ())
data_str_vx = vx_in.read ().split(’.")
data_vx_orig = list (map(float ,data_str_vx))

data_vx = data_vx_orig[int(len(data_vx_orig)/10):1len(data_vx_orig)]

#Convert data_vx from debye lengths per second to mm/s

data_vx = np.multiply (data_vx ,250E-6)

# Open file and read the values

pos_in = open(”C:\\ Users\\dil_e\\Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\\
B _field = float(pos_in.readline ())

g_-actual = float(pos_in.readline ())

T = float(pos_in.readline ())

size = float(pos_in.readline ())
time_step = float (pos_in.readline ())
num_vals = int(pos_in.readline ())

# Left_bount = 1b and right bound = rb. These can be manipulated to include
# or exclude outlier data
Ib =0

rb = len(data_vx) - 2
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155

156

157

158

159

160

161

162

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

# Only using data within our bounds, the average and standard deviation are
#calculated. This is then printed

data_vx_avg = np.average(data_vx[lb:rb])

data_vx_stdev = np.std(data_vx[lb:rb])

print ("\n\n\n\nAverage: _%f\nCalculated._Standard._Deviation._(Data): %f\nCalculate

Temp_calc = (data_vx_stdev )=x2+mass/kb

#INFILE = open(”D:\\ Dropbox\\ Physics\\Research\\MD_Sim\\md_sim.c\\ values.txt”)

INFILE = open(”C:\\ Users\\dil_e\\Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\\

num_parts int (INFILE . readline ())

num_steps int (INFILE.readline ())
plot_width = int (INFILE.readline ())
plot_height = float (INFILE.readline ())
INFILE . close ()

num_steps = num_steps - plot_start

t_total = num_steps=time_step
#This 1s a bit clunky but np.loadtxt is great for reading in arrays and it resi
data = np.loadtxt(”C:\\ Users\\dil_e\\Dropbox\\Physics\\Research\\MD_Sim\\md_sim

interval = 1

#Convert data_vx from debye lengths to m

data = np.multiply (data ,250E-6)

156



183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

# Exclude the last element due to size mismatch. This is in case smoothing
# is used and this has one less element

val_mod = val_range[:-1]

# Array full_hist_data 1is goign to be our histogram array at each timestep so
# have a row for each element and a column for each y position (hist data)
hist_data = np.zeros((int(num_steps/interval) - 2, len(val_-mod)))

hist_datax = np.zeros ((int(num_steps/interval) - 2, len(val_-mod)))

# This will be our array of all gradients at each timestep. this can be used
# to find our charge at each timestep

grad_array = np.zeros(int(num_steps/interval)-2)

# This odd looking function uses python’s numpy ”slicing” feature. This is
# saying data[l::2] is basically starting at element 1 (the second element)

# we would like to use every 2nd item. data[0O::3] would start at element O and
# use every third element etc.

data_.y = data[1::2,:]

data_x = data[0::2,:]

# The range of this function starts at the end of our first summing interval
# and continues until the total sim time minus the time interval

for X in range(plot_start ,num_steps+plot_start -3«int(interval)):

#Loop through the array until reaching x == time interval

if x%int(interval) == 0:
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# This says that between x and x + interval make a histogram of all vy
# positional data.

hist_data[i,:],bin_data = np.histogram(data_y[x:x+int(interval),:], bin
hist_datax[1,:],bin_datax = np.histogram (data_x[x:x+int(interval),:], bi
# This picks the current-timestep element from our histogram array

# that will be used for our linear data fit

hist_data_i = hist_data[1i]

# this 1s our linear fit for the current timestep, 1
it plot_flag == O0:
polyfit_i = np.polyfit(val_mod, hist_data_i ,1)
grad_array[i] = polyfit_i[0]
it plot_flag == 1:
expfit_.i = scipy.optimize.curve_fit(func_exp,val-mod, hist_data_i)
grad_array[i] = expfit_i[0][1]

i+=1

def heatmap2d(arr: np.ndarray):
fig, ax = plt.subplots(figsize = (20,20))
for tick in ax.xaxis.get_major_ticks ():
tick .label .set_fontsize (40)
for tick in ax.yaxis.get_major_ticks ():
tick .label .set_fontsize (40)
im = ax.imshow(arr.T, cmap=’plasma’,origin="lower’, aspect="auto’)
cbar = fig.colorbar (im)

cbar.ax.tick_params(labelsize=10)

ax.ticklabel _format(style="sci’,axis="y’ ,scilimits=(-3,3))
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239 plt.title (" Particle _Density._vs._.Time” ,fontsize = 40)

240 plt.ylabel(r”Particle _y_position.(Debye_Lengths)”, fontsize = 40)
241 plt.xlabel ("Timestep”,fontsize = 40)

242 plt.show ()

243

244 def colorbarfmt(x, pos):

245 a, b = "{:.2e}’.format(x).split(’e’)

246 b = int(b)

247 return r’${}_.\times_10"{{{}}}$ .format(a, b)
248

249 def colormesh2d(arr: np.ndarray):

250 fig, ax = plt.subplots(figsize = (20,20))

251 for tick in ax.xaxis.get_major_ticks ():

252 tick .label.set_fontsize (40)

253 for tick in ax.yaxis.get_major_ticks ():

254 tick .label.set_fontsize (40)

255 plot_range = np.arange(interval=«time_step ,t_total - 3xinterval=xtime_step , ti
256 im = ax.pcolormesh(plot_range ,val_ mod,arr[:int(len(plot_range ))].T, cmap=p
257 cbar = fig.colorbar (im)

258 cbar.ax.tick_params(labelsize =40)

259 cbar.set_label (r”Particle _density”, size=40)

260 #plt.title (" Particle Density over time”,fontsize = 40)

261 plt.ylabel(r”Particle _y_position._[m]”,fontsize = 40)

262 plt.xlabel ("Time_(s)”,fontsize = 40)

263

264 ax.ticklabel _format(style="sci’,axis="y’ ,scilimits=(-3,3))

265 #plt.xlim(0,15)

266 plt.show ()
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267

268

269

270

275

276

277

278

279

280

288

289

290

291

292

#heatmap2d (hist_data)
colormesh2d (np. multiply (hist_data ,1000))
colormesh2d (np. multiply (hist_datax ,1000))

ux = np.average(data_vx)

g-calc = kbxTemp_calc«(grad_array )/( B_fieldxux)/(-1.6E-19)

time_arr = np.arange(0,len(q-calc))

sum_grad2 = np.polyfit(val_ mod[int(len(val_-mod)/2):], hist_data.mean(axis=0)[int

H=—————=—=—=————————————————————————————————————————————=
# Functions to fit to both linear and exponential
Ho————————————————— oo
sum_grad = np.polyfit(val mod, hist_data.mean(axis=0),1)
y_linear = sum_grad[0]xval mod + sum_grad[1]

if plot_flag ==
fit = sum_grad
y_plot = sum_grad[0O]*val_ mod + sum_grad|[1]
y_plot2 = sum_grad2[0]«val mod[int(len(val - mod)/2):] + sum_grad2[1]
plot_legend = [r’Equation_of_Fit:_$%.3f_y_.+_.%.3f_.$" % (sum_grad[0O],sum_grad
fit_calc = sum_grad[0]

if plot_flag == 1:
fit = scipy.optimize.curve _fit(func_exp,val_ mod, hist_data.mean(axis=0))

y_exp = func_exp(val_-mod, fit [O][O], fit [O][1], fit[O][2])

#q_fit scipy .optimize.curve_fit(func_exp,time_arr[:-1]«2«xinterval «0.005, -

y_plot y_exp
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295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

y_plot2 = sum_grad2[0]+val_-mod[int(len(val-mod)/2):] + sum_grad2[1]
fit_calc = fit[O][1]

plot_legend = [r Number_of_particles _at_each_y_position’,r’ Equation_of_Fit:
#:::::::::::::::::::::::::::::::::::::::::::::::::::::
# Plot of density vs position
#=====================================================

plot_func (val_mod, hist_data.mean(axis=0),
title="N(y)”,x_title="y-position”,y _title=r”Number_of_particles”,
y2 = y_plot,
#errl = np.sqrt(hist_data.mean(axis=0)),

legend = plot_legend)

residuals = hist_data.mean(axis=0) - y_plot
residual _fit = scipy.optimize.curve_fit(func_residuals ,val-mod,residuals)

y_residual = func_residuals(val-mod, residual_fit[O][0], residual_fit[O]J[1], re

999999

# Plot of density residuals

plot_func (val _mod,residuals ,
title="Residual _Fit”,x_title="y-position.[m]”,y_title=r”$N_{fit}-N_{c

#y2 = y_residual)

time _arr = np.arange(0,len(q_calc))
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323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

# Plot of charge value over time

plot_func (time _arr[:-1]«2+interval «0.005,-q_calc[:-1],

title="Calculated _Charge_Value_over_time”,x_title="Time_(s)”,y_title=

#image _folder = ’D:\\ Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\\ plots”’
image _folder = ’C:\\ Users\\ dil_e \\Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\
ql = kbxTemp_calcx(-fit_calc)/(B_fieldsux)/(-1.6E-19)

#print ("\n\n\n\nN-fit: %f y + %f” % (polyfit_i[0], polyfit_i[1]))

print ("q-avg.=_-%.5f” % np.average(-q-calc))

print (7 q_final .=_%.5f” % ql)

print (”q_actual .=_%.5f” % (q_actual))

#ffmpeg -f image2 -r 10 -1 plot_%05d.png -vcodec mpegd -y movie.mps

gc.collect ()

g2 = round(ql,6)

list_data = [filename, q_actual, num_parts, B_field, T, size, time_step, num_vc

with open (”C:\\ Users\\ dil_e \\Dropbox\\Physics\\Research\\MD_Sim\\ md_sim.c\\ Data
for line in list_data:
f_data.write(str (line))

f_data.write(’\n’)
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B.2 High coupling analytical code

# -x— coding: utf-8 -x-

999999

Nearest Neighbor Calcs

@author: dil_e

999999

import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt

import numpy as np

import

from scipy.spatial

plot_size

math

font_size =

40.0
20

e0 = 8.85E-12

lambdaD

= 250E-6

kb = 1.381E-23

mass = 3.105E-14
box_width_y = 0.1
Ibl =1
rbl =5

import Voronoi,

voronoi_plot_2d
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28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

#This creates an array that will hold our histogram boxes

val_range = np.arange (lbl ,rbl ,box_width_y)

val_mod = val_range[:-1]

# This rejects

large outliers (such a those in corners or on edge without 6

# nearest neighbors which form a hexagon)

def reject_outliers(data, m = 4.):

d = np.abs(data - np.median(data))

mdev = np.median(d)

s = d/mdev

if mdev else O.

return data[s<m]

# Same as above but for more complicated data sets(aka those with multiple

# dimensions)

def remove_outlier_.2D (data, m = 4):

def

def

def

d = np.abs(data[:,2] - np.median(data[:,2]))

mdev = np.median(d)

s = d/mdev

if mdev else O.

return data [:][ s<m]

floor_round (x):

return int (math.floor(x / 100.0) = 100)

ceil_round (x):

return int(math.ceil(x / 100.0) = 100)

hist_plotter (hist_array ):

upper_bound

ceil _round (max( hist_array))
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56 lower_bound = floor_round (min(hist_array))

57 dif = upper_bound - lower_bound

58 spacing = int(dif/100)

59 bins_def = np.arange(lower_bound ,upper_bound, spacing)

60 plt.hist(hist_array ,bins = bins_def)

61

62 #==============================================================================
63 # plot_func is a simple plotter function to generalize all of our plots

64 H#H==============================================================================

65 def plot_func(x_vals, y_vals, title , x_title , y_title, size = 100,fontsize = 40,

66 y2 = kwargs.get(’y2’, None)

67 y3 = kwargs.get(’y3’, None)

68 errl = kwargs.get(’errl’, None)

69 err2 = kwargs.get(’err2’, None)

70 legend = kwargs.get(’legend’, None)
71 xlims = kwargs.get(’xlim’, None)

72 ylims = kwargs.get(’ylim’, None)

73

74 # Create the figure that will hold our plot and choose its size
75 fig = plt.figure(figsize=(20.0,20.0))

76

77 # Change the size of the number labels (ticks)
78 ax = fig.add_subplot(111)

79 for tick in ax.xaxis.get_major_ticks ():

80 tick .label .set_fontsize (40)

81 for tick in ax.yaxis.get_major_ticks ():

82 tick .label.set_fontsize (40)

83
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84 text = ax.yaxis.get_offset_text ()

85 text.set_size (40)

86

87 # Create scatter plot

88 plt.scatter (x_vals, y_vals, color = ’red’, edgecolors = ’black’, s = size)
89 if y2 is not None:

90 plt.plot(x_vals ,y2, ’-’, color = ’“blue’, linewidth = 10)
91 if y3 is not None:

92 plt.plot(x_vals ,y3, '-’, color = ’green’, linewidth = 10)
93 if errl is not None:

94 plt.errorbar(x_vals ,y_vals ,yerr=errl ,ls="none”,color="black”™)
95 if err2 is not None:

96 plt.errorbar(x_vals ,y2,yerr=err2 ,ls="none”,color="black”)
97

98 # Change plot limits

99 if xlims is not None:

100 ax.set_xlim (xlims)

101 if ylims is not None:

102 ax.set_ylim (ylims)

103

104 # Add titles/Label axes/Legend

105 plt.title (title , fontsize = 40)

106 plt.ylabel(y_title , fontsize = 40)

107 plt.xlabel (x_title ,fontsize = 40)

108 ax.ticklabel _format(style="sci’,axis="y’ ,scilimits=(-3,3))
109

110 if legend is not None:

111 plt.legend(legend, loc="best’,fontsize = 30)
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113 # Make plot

114 plt.show ()

115

116 # This function creates a voronoi plot for our

117 def crystal_voronoi(d2D, qj, q-act):

118 # generate Voronoi tessellation

119 vor = Voronoi(d2D)

120

121 q = np.abs(qj/np.sqrt(2))

122 numerator = q_act-q

123 denominator = q_act

124 qdiff = np.divide (numerator ,denominator)

125 qdiff_reject = reject_outliers (qdiff)

126

127 # find min/max values for normalization

128 minima = min(qdiff_reject)

129 maxima = max(qdiff_reject)=2

130

131 # normalize chosen colormap

132 norm = mpl.colors.Normalize (vmin=minima, vmax=maxima, clip=True)
133 mapper = cm. ScalarMappable (norm=norm, cmap=cm. Blues_r)

134

135 plt.rcParams [’ figure. figsize’ ] = [25,20]

136 # plot Voronoi diagram, and fill finite regions with color mapped from spee
137 voronoi_plot_2d (vor, show_points=True, show_vertices=False, s=1)
138 for r in range(len(vor.point_region)):

139 region = vor.regions[vor.point_region[r]]
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140 if not -1 in region:

141 polygon = [vor.vertices[i] for 1 in region]

142 plt. fill («zip (+polygon), color=mapper.to_rgba(qdiff[r]))
143 plt.show ()

144

145 # Split array into a 2D array of particle positions for analysis

146 def splitter (array ,timestep ):

147 xvals = array[timestep ,:]

148 yvals = array[timestep+1,:]

149 xyarray = [xvals,yvals]

150 array2D = np.zeros ([len(xyarray[0]),2])

151 for i in range(0,len(xyarray[0])):

152 array2D[1] = [xyarray[O][i],xyarray[1][1]]
153 return array2D

154

155 # Calculate the Euclidean distance between two vectors

156 def euclidean_distance (rowl ,row2):

157 separation = (rowl - row2)xx2

158 distance = 0.0

159 distance = np.sqrt(separation[0O]+separation[1])
160 return distance

161
162 # Locate the most similar neighbors

163 def get_neighbors(train, test.-row , num_neighbors):

164 distances = list ()

165 for train_row im train:

166 dist = euclidean_distance (test_row , train_row)
167 distances .append ((train_row , dist))
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168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

# Plot

distances .sort(key=lambda tup: tup[1l])

neighbors = list ()

for i in range(num_neighbors):
neighbors.append(distances[1][0])

return neighbors

nearest neighbors to the chosen particle

def plot_neighbors(dataArr, nArr, timestep):

fig
ax

for

for

ax.

ax .

for

= plt.figure(figsize=(plot_size ,plot_size))

= fig.add_subplot(111)

tick in ax.xaxis.get_major_ticks ():
tick .label .set_fontsize (font_size x2)
tick in ax.yaxis.get_major_ticks ():
tick .label .set_fontsize (font_size %2)
scatter (dataArr[timestep ,:],dataArr[timestep+1,:],color = ’gray’, edgecc
scatter (nArr[O][O0] ,nArr[0][1],color = ’blue’, edgecolors="black’,s=320)

1 in range(1l,len (nArr)):

ax.scatter (nArr[1][0],nArr[i][1], color "red’, edgecolors="black’,6s=32

ax.set_xlim (0.0, float (plot_-width x0.25))
ax.set_ylim (0.0, float (plot_height«0.1))
ax.set_aspect (1.0)
ax.set_xlabel (r’x_position.[mm]’, fontsize = font_size x2)
ax.set_ylabel(r’y_position.[mm]’, fontsize = font_size x2)
ax.set_title (r’Sample_simulation_frame’, fontsize = font_size x2)

# This was originally to calculate bond order, not particlularly useful here

# 1t turns out (not actually hexagonal crystals)
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196 def bond_order (nArr):

197 #Sort by y value to evaluate heights
198 column_index = 1

199 neighbors_np = np.stack (nArr,axis=0)
200 sortArr = neighbors_np[neighbors_np|[:,column_index ].argsort ()]
201

202 #Sort to specify each particle by location and convert to meters
203 upl = sortArr[-1]/10x%=3

204 up2 = sortArr[-2]/10x=3

205 midl = sortArr[-3]/10%%3

206 mid2 = sortArr[-4]/10+%3

207 mid3 = sortArr[-5]/10%%3

208 downl = sortArr[-6]/10%=3

209 down2 = sortArr[-7]/10x%+3

210

211 #Specify test particle

212 mid = neighbors_np[0]/10x%x3

213

214 xupl = np.abs(upl[0] - mid[O0])

215 yupl = np.abs(upl[1] - mid[1])

216 xup2 = np.abs(up2[0] - mid[0])

217 yup2 = np.abs(up2[1l] - mid[1])

218 xmidl = np.abs(mid2[0] - mid[0])

219 ymidl = np.abs(mid2[1] - mid[1])

220 xmid2 = np.abs(mid3[0] - mid[O0])

221 ymid2 = np.abs(mid3[1] - mid[1])

222 xdownl = np.abs(downl[0] - mid[0])
223 ydownl = np.abs(downl[1] - mid[1])
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234

235

236

243

244

245

246

247

248

249

250

xdown2 = np.abs(down2[0] - mid[0])

ydown2 = np.abs(down2[1] - mid[1])

theta = np.

theta[0] =
theta[l] =
theta[2] =
theta[3] =
theta[4] =
theta[5] =

psi_i = np.

psi6 = 0

zeros (6)

np.arctan (yupl/xupl)

np.arctan (yup2/xup2)

np.arctan (ymidl/xmidl)

np.arctan (ymid2/xmid2)

np.arctan (ydownl/xdownl)

np.arctan (ydown2/xdown?2)

zeros (6)

for 1 in range(len(theta)):

psi_i]
psi6 =

i] = 1/len(psi_i)+(np.exp(6j=thetal[i]))

psi6 + psi_i[i]

return psi6

# This function sorts

each particle by height and

# charge value based on the nearest neighbors

def q_calculator (nArr,Bz, vavg, flag):

e0 = 8.85E-12

lambdaD =

fext = 3E-

#Sort by y

250E-6
15

value

to evaluate heights
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252 column_index = 1

253 neighbors_np = np.stack (nArr, axis=0)
254 sortArr = neighbors_np[neighbors_np[:,column_index]. argsort ()]
255

256 #Sort to specify each particle by location and convert to meters
257 upl = sortArr[-1]/10x%3

258 up2 = sortArr[-2]/10x%%3

259 midl = sortArr[-3]/10x%3

260 mid2 = sortArr[-4]/10x+3

261 mid3 = sortArr[-5]/10%%3

262 downl = sortArr[-6]/10x%+3

263 down2 = sortArr[-7]/10%x3

264

265 #Specify test particle

266 mid = neighbors_np[0]/10x%%3

267

268 xupl = np.abs(upl[0] - mid[O])

269 yupl = np.abs(upl[1] - mid[1])

270 xup2 = np.abs(up2[0] - mid[0])

271 yup2 = np.abs(up2[1] - mid[1])

272 xup_avg = (xupl+xup2)/2

273 yup-avg = (yupl+yup2)/2

274 xmidl = np.abs(midl [0] - mid[0])

275 ymidl = np.abs(midl[1] - mid[1])

276 xmid2 = np.abs(mid3[0] - mid[O0])

277 ymid2 = np.abs(mid3[1] - mid[1])

278 xdownl = np.abs(downl[0] - mid[O0])
279 ydownl = np.abs(downl[1] - mid[1])

172



288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

xdown?2

ydown?2

xdown_avg

ydown_avg

np.abs(down2[0] - mid[0])
np.abs(down2[1] - mid[1])

(xdownl+xdown2)/2

(ydownl+ydown2)/2

rup = np.sqrt(xup_avg=*+2 + yup_avg==2)

rdown = np.sqrt(xdown_avg=«x2 + ydown_avgxx2)
rul = euclidean_distance (mid2, upl)
ru2 = euclidean_distance (mid2, up2)
rml = euclidean_distance (mid2, midl)
rm2 = euclidean_distance (mid2, mid3)
rdl = euclidean_distance (mid2, downl)
rd2 = euclidean_distance (mid2, down2)
fl1x = (rul +lambdaD)syupls+np.exp(-rul/lambdaD )/(lambdaDsrdownsrdown=rdown)
vx_avg = vavg/10x%x3
denoml = 2x(rdown +lambdaD )xydown_avgxnp.exp(-rdown/lambdaD )/(lambdaDxrdown
denom2 = 2x«(rup +lambdaD)xyup_avg=np.exp(-rup/lambdaD )/(lambdaD«rup=«rup=rup
if(flag == 0):
# This first is with driving force and lorentz force compression/sedi
q = (4xnp.pixe0xvx_avg«Bz)/(denoml - denom?2)
elif (flag == 1):
# This first is charge for external y compression/sedimentation

# force with no driving force

q:

2«np.sqrt(4=np.pixe0xfext/np.abs(denoml-denom?2))
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308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

999999

q-¢ = np.abs(q)/1.61E-19

return (_¢

# This calculates the height required to reach our cutoff for coupling and only

# returns values below that height.

# Coupling coefficient = inter —-particle potential energy/thermal energy

def coupling_reject(data,q_-act,T_act, coupling_cutoff = 1.):

coupling _coef_const = (q_act=%2/(4+np.pixe0))/(kbxT_act)

#Sort by y value to evaluate heights (column index 1 =y position)
column_index = 1

sorted_data = data[data[:,column_index ]. argsort ()]

r_cutoff = np.sqrt(coupling_coef_const/coupling_cutoff)

x_cutoff = sorted_data[len(sorted_data),0] - sorted_data[len(sorted_data),O
y_cutoff =

valid = [x for x in sorted_data if x < ]

return valid

29999

neighbors_dist(data):

distData = np.zeros(len(neighbors)-1)

for 1 in range(0,len(data)-1):
distData[i] = euclidean_distance (data[0], data[i])
i+=1

spacing = np.average(distData)

return spacing
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336

337

338

343

344

345

346

347

348

349

350

351

354

355

356

357

358

359

360

361

362

363

def

def

colormesh2d is what creates our density plots, not currently being used her

colormesh2d (arr: np.ndarray ,lb,rb):

fig, ax = plt.subplots(figsize = (20,20))

for tick in ax.xaxis.get_major_ticks ():
tick .label .set_fontsize (40)

for tick in ax.yaxis.get_-major_ticks ():
tick .label .set_fontsize (40)

plot_range = np.arange(lb,rb)

im = ax.pcolormesh(plot_.range ,val_mod,arr[:int(len(plot_range ))].T, cmap="r

cbar = fig.colorbar (im)

cbar.ax.tick_params (labelsize =40)

cbar.set_label (r”Particle _.Counts”, size=40)

plt.title (" Particle .Density._.vs._.Time”,fontsize = 40)
plt.ylabel(r”Particle _y_position._[mm]”,fontsize = 40)
plt.xlabel ("Time_(s)”,fontsize = 40)

plt.show ()

example _plot(dataArr, nArr, timestep, Bz, vavg, flag):
neighbors_np = np.stack (nArr, axis=0)

Xmin

min(neighbors_np[:,0]) - 0.5

xmax = max(neighbors_np[:,0]) + 0.5

ymin = min(neighbors_np[:,1]) 0.5

ymax = max(neighbors_np[:,1]) + 0.5

fig = plt.figure(figsize=(plot_size «.25,plot_size *.25))
ax = fig.add_subplot(111)
for tick in ax.xaxis.get_major_ticks ():

tick.label.set_fontsize (font_size)
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364

365

366

367

368

369

370

371

373

374

375

376

377

378

379

380

381

383

384

385

386

387

388

389

390

391

for tick in ax.yaxis.get_major_ticks ():

tick.label.set_fontsize (font_size)
ax.scatter (dataArr[timestep ,:], dataArr[timestep+1,:],color = “gray’, edgecc
ax.scatter (nArr[0O][0],nArr[O][1],color = “blue’, edgecolors="black’,s=400)
for i in range(l,len(nArr)):

ax.scatter (nArr[1][0],nArr[i][1],color ‘red’, edgecolors="black’,6s=4(

ax.set_xlim (xmin,Xxmax)
ax.set_ylim (ymin, ymax)

ax.set_aspect (1.0)

ax.set_xlabel (r’x_.position.[mm]’, fontsize = font_size)
ax.set_ylabel(r’y_position.[mm]’, fontsize = font_size)
ax.set_title (r’Sample_.Nearest_.Neighbors’, fontsize = font_size)

e0 = 8.85E-12
lambdaD = 250E-6

#Sort by y value to evaluate heights
column_index = 1
neighbors_np = np.stack (nArr, axis=0)

sortArr = neighbors_np[neighbors_np|[:,column_index ].argsort ()]

#Sort to specify each particle by location and convert to meters
upl = sortArr[-1]/10x%%3
up2 = sortArr[-2]/10x=3
mid1

sortArr[-3]/10%=3

mid?2 sortArr[-4]/10x%%3

mid3 = sortArr[-5]/10%%3

downl = sortArr[-6]/10x%%3
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392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

414

415

416

417

418

419

down2 = sortArr[-7]/10x%+3

rul = euclidean_distance (mid2, upl)
ru2 = euclidean_distance (mid2, up2)
rml = euclidean_distance (mid2, midl)
rm2 = euclidean_distance (mid2, mid3)
rdl = euclidean_distance (mid2, downl)
rd2 = euclidean_distance (mid2, down2)

q = q_calculator (nArr,Bz,vavg, flag)
g_-act = q_actual

diff = np.abs(q - q_act)/np.average([q,q-act])=100

table_data = {”Center”: [round(mid2[0]«10%%3,5), round (mid2[1]x10%x3,5), ’-
1: [round (upl[0]«10%%3,5), round(upl[1]+10%«3,5), round(rul =1
2: [round(up2[0]=x10%%3,5), round(up2[1]+10%«x3,5), round(ru2 «l
3: [round (midI[0]«10%%3,5), round(midl[1]+10%%3,5), round(rml
[round (mid3[0]«10%+3,5), round(mid3[1]+10%%x3,5), round (rm2
[round (downl[0]=%10%%3,5), round(downl[1]%10x%%3,5), round(r

AN W B

[round (down2[0]%10%%3,5), round(down2[1]+10%%3,5), round(r

print (7[{:<12}_|{:<12}|{:<12}]{:<12}” . format(’ Particle’,’x-pos’, y-pa

for k, v in table_data.items ():

Xpos, ypos, r =V

print (7 |{:<12}_|{:<12}o|o{:<12}]o{:<12}”.format(k, xpos, ypos, 1))

print ("Q_.Calculated .=.%.5f” % q)
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422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

print ("Q_Actual .=_%.5f” % q_-act)
print ("Percent_Difference _=_%.5f%%" % diff)

filename = input(”Please_Enter_Filename:._")
flag_type = int(input(”What_type_of_data_is_this?_(0_for_lorentz ,_l_for_externa
# As above, this reads in values and turns it into an array of floats

vx_in = open(”C:\\ Users\\dil_e \\Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\\I

num_vals = int(vx_in.readline ())
data_str_vx = vx_in.read ().split(’.")
data_vx_orig = list (map(float ,data_str_vx))

data_vx = data_vx_orig[int(len(data_vx_orig)/10):1len(data_vx_orig)-1]

#Data 1s in debye lengths, this function converts to mm

data_vx = np.multiply (data_vx ,0.25)

# Left_bount = 1b and right bound = rb. These can be manipulated to include
#or exclude outlier data

Ib = 0

rb

len(data_vx) - 2

# Only using data within our bounds, the average and standard deviation are
#calculated. This is then printed

data_vx_avg = np.average(data_vx[lb:rb])

# Open file and read the values

pos_in = open(”C:\\ Users\\dil_e\\Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\\

B = float(pos_in.readline ())
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448 q-actual = float(pos_in.readline ())

4499 T = float(pos_in.readline ())

450 size = float(pos_in.readline ())

451 time_step = float (pos_in.readline ())
452 num_vals = int(pos_in.readline ())
453

454 #INFILE = open(”D:\\ Dropbox\\Physics\\Research\\MD_Sim\\md_sim.c\\ values.txt”)

455 INFILE = open(”C:\\ Users\\dil_e \\Dropbox\\Physics\\Research\\MD_Sim\\ md_sim.c\\

456 num_parts int (INFILE.readline ())

457 num-_steps

int (INFILE.readline ())

458 plot_width = int (INFILE.readline ())

459 plot_height = float (INFILE.readline ())

460

461 data = np.loadtxt(”C:\\ Users\\dil_e\\Dropbox\\Physics\\Research\\MD_Sim\\ md_sim

462 data = np.multiply (data ,0.25)

463
464 step = int(num_steps-11)
465 ] =0

466 1b = int (num_steps - 21)

467 rtb = int(num_steps -11)

468 step_range = range(lb, rb, 2)

469 gq-avg-1 = np.zeros(len(step_range))

470 gq-avg_all_i = np.zeros(len(step_range))
471 val_range = np.arange(5000,11000, 250)
472 q_-hist = np.zeros(len(val_range)-1)

473 qtot = np.empty (0)

474 for step in step_range:

475 data2D = splitter (data,step)
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476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

493

494

495

496

497

498

499

500

501

#part_.num = input(”Pick a particle number (Total %d): ” % len(data2D))
qi = np.zeros(len(data[0]))
psi6 = np.zeros(len(qi))
space_1 = np.zeros(len(data[0]))
for 1 in range(0,len(data2D) - 1):
neighbors = get_neighbors (data2D, data2D[i1],7)
qi[i] = q_calculator(neighbors, B, data_vx_avg, flag_type)
space_i[i] = neighbors_dist(neighbors)
#psi6[1] = bond_order(neighbors)
gi_reject = reject_outliers (np.abs(qi), m=1)
#neighbors = get_neighbors (data2D, data2D[40],7)
#plot_neighbors (data, neighbors, step)

#q-e = q-calculator(neighbors, B, data_vx_avg, flag_type)

qtot np.append(qtot ,qi_-reject)
#crystal _voronoi (data2D ,qi,q_actual/1.61E-19)
g-avg_i[j] = np.average(np.abs(qi_reject))

j+=1

g-avg = np.average(q_-avg_i)
print (" Calculated .charge._value:_%.4f\n” % q_avg)

print (7" Actual _charge._value:_.%.4f\n” % (float(q_-actual)))

# Sample case
neighbors = get_neighbors (data2D, data2D[60],7)
print (neighbors[1:])

plot_neighbors (data, neighbors, step)
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504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

q-e

= q-calculator (neighbors, B, data_.vx_avg , flag_type)

example_plot(data, neighbors, step, B, data_vx_avg, flag_type)

particle_i = np.zeros(len(data[0]))

space_i = np.zeros(len(data[0]))

g-calc_i = np.zeros(len(data[0]))

for

i in range(0,len(data2D)-1):

# This function gets the chosen particle coordinates (particle 0) as well
# as the 6 nearest neighbors. NOTE: 6 nearest neighbors has a few issues

# for particles along the edge.

neighbors = get_neighbors (data2D, data2D[i1],7)

# chosen particle is the

chosen_particle = neighbors[0]

# particle_i is an array made up of particle y-coordinates that will corr
#to spacing and calculated charge (i.e. particle_i[10] will have correspond
#spacing space_i[10] and q_calc_i[10])

particle_i[1] = chosen_particle[1]

# space_i is n array which holds the average spacing (inter -particle dist
# of the nearest neighbors to particle i

space_i[i] = neighbors_dist(neighbors)

# Using whichever calculation 1is necessary, q-calc_i is the calculated

# charge of particle i

g-calc_i[1] = q-calculator(neighbors, B, data_vx_avg ,h flag_type)
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532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

# This is a function which calculates coupling coefficient for each particle
# based on the input charge and spacing that was calculated

coupling_i_actual = np.divide ((np.power(q-actual«1.61E-19,2)/(4=np.pi+e0«kb=T)=

# This is a function which calculates coupling coefficient for each particle
# based on the input charge and spacing that was calculated

coupling_i = np.divide ((np.power(q_-calc_i[:-1]«1.61E-19,2)/(4+np.pi«e0«kb=T)=np

# combined simply creates an array with four columns, particle_i, space_i, cl
# coupling_i, {NOTE: the final value tends to be blank so i1 remove it with
# the [:-1] which includes all values but the last one}

combined = np.vstack ((particle_i[:-1],space_i[:-1],q-calc_i[:-1],coupling_i)).T

# this function removes outliers from the combined array by the calculated ch
# The purpose of this is to remove those particles near the edge as they will
# have less than 6 valid nearest neighbors and therefore will not be usable

combined_rejected = remove_outlier_.2D (combined , 1)

# This function does the same calculation but without the edge particles

coupling_i_rejected = np.divide ((np.power(combined_rejected[:,2],2)/(4=np.pi=el

B o
# Plots:

# 1) spacing vs y position

# 2) coupling coefficient vs y position

# 3) Coupling coefficient vs charge (% difference) (NOTE: not done yet)
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560 Homm e

561 plot_func(particle_i[:-1],space_i[:-1],

562 ”Spacing_vs_y_position”,”Particle _y-position.[mm]”,
563 r’spacing._.(mm)”, xlims = [1bl ,rbl])
564

565 plot_func(combined_rejected[:-1,0],combined_rejected[:-1,1],

566 ”Spacing._vs_.y_position.(filtered)”,”Particle_y-position.[mm]”,
567 r’spacing.(mm)”, xlims = [lbl ,rbl])
568

569 #NOTE: Removed as some outliers are too large and throw off scale

570 #plot_func(particle_i[:-1],coupling_i,

571 # ”Coupling parameter vs y position”,” Particle y position [mm]”,
572 # r”Coupling Parameter”, xlims = [Ibl,rbl])
573

574 plot_func(combined_rejected[:,0], coupling_i_rejected ,

575 ”Coupling _parameter_vs_position._[mm]”,”Particle _y-position [mm]”,
576 r”Coupling _.Parameter”)
577

578 plot_func(combined_rejected [:,2],coupling_i_rejected ,

579 ”Coupling .parameter.vs.Q _calculated.[e]”,”Q_calculated._[e]”,
580 r”Coupling _Parameter”)
581

582 #plot_func(combined_rejected[:,0],combined_rejected[:,2],

583 # ”Particle Charge vs y position”,” Particle y position [mm]”,
584 # r”Particle Charge”, xlims = [lbl ,rbl])
585

586 #plot_func(step_-range , q-avg-i,

2

587 # ”Particle Charge vs y position”,” Particle y position [mm]”,
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588 # r”Particle Charge”, xlims = [lbl ,rbl])
589

500 #hist_plotter (qtot)
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Appendix C

Experimental Diagrams

In this section are included many diagrams which have been developed for the experiment

proposed in chapter 5 of this dissertation.

C.1 Circuit Development

TEENSY_3.0+4

Eﬁ;t: 14,780 13—
CH3A izjﬁé 5 - Change pins to get PWM output. Pins 3.4,5,6,9,10,20,21,22,23
CHAAIN 17 45 10—

o——18 /a4 g Iy

o 107a5 . INT—OUT
CHAPWH 5 oo 7 CH&A
CHIPWN . CHLR
CH2PWH 55" 5 : CH3A
CH1PWH 55 4 . CHIB

e—{a10 3 flri2

o— s ; i

1
GERDOND 5 CH1B
GHFEFAREF
GND —a
SAERNBAT 3I—e
PaH vin Break | between Vin and Vusb
| o——RESET VUSE e reak Jumper

TEENSY3.1

Figure C.1: Circuit Diagram for Teensy/Arduino Board

C.2 Arduino Code

| const int syncPin = 52;

2 const int clkPin = 50;
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9

const int
const int
const int
const int
const int
const int
const int
const int
int da0 =
char

// Note :

CHIPWM

Analog input for measuring cu

rigqit
CH1A
1%’“ -

(rectangular) waves 180 offse

dPin0
dPinl
dPin2
dPin3
dPin4
dPin5
dPin6

dPin7

1023;

dArrayl [10];

CH1AIN

CHiB

+24v

Figure C.2: Circuit diagram for high voltage generator

34;
36;
38;
40;
42;
44,
46;
47;

Be sure to write on low,

R71

D2

S9P4 1

R9

D4

4 [fEﬂNER-DrDESMBg PR nibozews

because
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3V3

R63

117 INT=IN
—NPN=-50 —
Ra2
1 -
© 10F I
=Ry N =
[l —
oD CRD
RES 33

i

Reg D21 23_BEC

CRN=S0T23-BER . hreour
pe | R

I

GND

RB6

Figure C.3: Circuit diagram for IO Control

// For test, 2.5V = 50% = 512/1024 (10 bit max = 1024). 512 =
void setup () {

/!l put your setup code here, to run once:

pinMode (syncPin , OUTPUT);

pinMode (clkPin , OUTPUT);

pinMode (dPin0O, OUTPUT);
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Figure C.4: Circuit diagram for step down converter

+24Y
>

V_IN
LMD
V_OUT

svEND

Figure C.5: Circuit diagram for step up converter
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25

27

28

29

pinMode (dPinl ,
pinMode (dPin2 ,
pinMode (dPin3 ,
pinMode (dPin4 ,
pinMode (dPin5 ,
pinMode (dPin6 ,
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Figure C.6: Circuit diagram for digital output

OUTPUT) ;
OUTPUT ) ;
OUTPUT) ;
OUTPUT) ;
OUTPUT) ;
OUTPUT) ;
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Figure C.7: Circuit diagram for 4 channel electrode controller. This includes
all previous components with some replicated for multiple channels

30 pinMode (dPin7 , OUTPUT);

31
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44
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Figure C.8: Circuit board created for 4 channel control of experimental sys-

tem

digitalWrite (syncPin, HIGH);
digitalWrite (clkPin, HIGH);

digitalWrite (dPin0O ,
digitalWrite (dPinl ,
digitalWrite (dPin2 ,
digitalWrite (dPin3 ,
digitalWrite (dPin4 ,
digitalWrite (dPin5 ,
digitalWrite (dPin6 ,

digitalWrite (dPin7,

Serial .begin(9600);

R34

HIGH ) ;
HIGH ) ;
HIGH ) ;
HIGH ) ;
HIGH ) ;
HIGH) ;
HIGH ) ;
HIGH ) ;

[3
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45 bitConvert(da0);
16}
47

48 void bitConvert(int temp)

49 |

50 for(int 1 = 0; 1 < 10; i++)

51 {

52 dArrayl[10-1] = temp & 1;

53 Serial . println (dArrayl [10 - 1],BIN);
54 temp >>= 1;

55 }

56 Serial . println ();

57}

58 void writeToPins(int bit_count)
59 {

60 if ((dArrayl[bit_count] & 0x001) == 0) digitalWrite (dPin0O, LOW); else digital

61 // 1f (((dal >> bit_count) & 0x001) == 0) digitalWrite (dPinl, LOW); else digit
62 // if (((da2 >> bit_count) & 0x001) == 0) digitalWrite (dPin2, LOW); else digit
63 // if (((da3 >> bit_count) & 0x001) == 0) digitalWrite (dPin3, LOW); else digit
64 // if (((da4 >> bit_count) & 0x001) == 0) digitalWrite (dPind4, LOW); else digit
65 // if (((da5S >> bit_count) & 0x001) == 0) digitalWrite (dPin5, LOW); else digit
66 // 1f (((da6 >> bit_count) & 0x001) == 0) digitalWrite (dPin6, LOW); else digit
67 // if (((da7 >> bit_count) & 0x001) == 0) digitalWrite (dPin7, LOW); else digit
68 }

69

70 // Need to:
71/ I)Implement writeToPins

72 11 2)Read in values from serial after each loop
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73 11/ 3)Convert values from serial to binary
74 1/ 4)Convert arrays to be properly sent to D/A
75 void loop () {

76

77 digitalWrite (clkPin , HIGH);

78 delayMicroseconds (10);

79 digitalWrite (clkPin , LOW);

80 delayMicroseconds (10);

81

82 int bit_count = O0;

83 digitalWrite (syncPin, LOW);

84

85 // First two bits are don’t cares

86 digitalWrite (clkPin, HIGH);

87 delayMicroseconds (10);

88 digitalWrite (clkPin , LOW);

89 delayMicroseconds (10);

90 digitalWrite (clkPin , HIGH);

91 delayMicroseconds (10);

92 digitalWrite (clkPin , LOW);

93 delayMicroseconds (10);

94

95 // Next two bits are power down control, 0,0 for normal operation
96 digitalWrite (clkPin , HIGH);

97 digitalWrite (dPin0, LOW);

98 digitalWrite (dPinl , LOW);

99 digitalWrite (dPin2, LOW);

100 digitalWrite (dPin3, LOW);
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101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

119

120

121

digitalWrite (dPin4 , LOW);
digitalWrite (dPin5, LOW);
digitalWrite (dPin6, LOW);
digitalWrite (dPin7 , LOW);
delayMicroseconds (10);

digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin , HIGH);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

// Next 10 pins are the data
digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count );
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin, HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

pins
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133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

154

155

156

digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin, HIGH);
bit_count++;

writeToPins (bit_count );
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);
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158

159

160

161

162

163

164

165

166

167

168

169

170

171

174

175

176

177

178

179

180

181

182

digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin, HIGH);
bit_count++;

writeToPins (bit_count );
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);

digitalWrite (clkPin , HIGH);
bit_count++;

writeToPins (bit_count);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);

delayMicroseconds (10);
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185

186

187

188

189

190

191

192

193

194

195

196

197

// Last two bits are dont cares
digitalWrite (clkPin , HIGH);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);
delayMicroseconds (10);
digitalWrite (clkPin, HIGH);
delayMicroseconds (10);
digitalWrite (clkPin , LOW);
digitalWrite (syncPin, HIGH);

delayMicroseconds (10);
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