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Abstract 

This study investigated hurricane trends in the Southeastern United States. First, we developed a 

high-resolution gridded hurricane dataset, GRID-HURDAT2, and calculated Accumulated 

Cyclone Energy (ACE) index in three spatial domains: the Southeastern U.S., the Eastern U.S., 

and the entire Atlantic Basin along with the mainland United States. We found little change in 

ACE over land since 1900, though we did find an increasing trend over the ocean. We then 

investigated if Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and 

El Nino Southern Oscillation (ENSO) were factors relevant to tropical cyclone activity in the 

Atlantic Basin, and they appear to be, especially AMO. From 1900 to 2019, we found that AMO 

positively impacted cyclonic activity (r = 0.45), and PDO and ENSO negatively impacted cyclonic 

activity (r = -0.23, -0.24, respectively). In the second phase, we used the GRID-HURDAT2 dataset 

along with gridded precipitation data from The National Oceanic and Atmospheric Administration 

(NOAA) to analyze the precipitation along the paths of hurricanes. We found an increasing trend 

in each year's greatest magnitude precipitation events with a p-value of 0.02. To further support 

the precipitation analysis, we used another metric, Extreme Rainfall Multiplier (ERM), for 

comparison and found an increasing trend with a p-value of 0.03. 
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Chapter 1:  

Introduction 

Hurricanes are powerful storms that often form in the Atlantic Basin and then travel westward to 

strike Central America, the Caribbean, and North America. For example, Fig. 1 shows storm tracks 

for the 2018 hurricane season, taken from the National Weather Service; most hurricane activity 

is found over the ocean, in this case, the North Atlantic. Further, global warming can increase 

hurricane risk and associated heavy precipitation events due to increased water vapor in the 

atmosphere and decreased translation speeds, which is the rate of movement of the cyclone system 

as a whole, as more precipitation can fall over an area if the cyclone moves more slowly (Kossin 

2018). Hence, a global context is necessary to understand the changing hurricane risk to the 

Emerald Coast (Box region in Fig. 2), as it is an area of high economic activity. 

 
Figure 1: North Atlantic Hurricane Tracks in Year 2018. Source: National Weather 

Service. 
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Hurricanes bring wind-related damages and heavy precipitation, causing an average 

economic loss of almost $16.1 billion annually in the United States (Weinkle et al. 2018). In 

addition, when passing over land, they affect the areas they pass over by dropping significant 

amounts of precipitation and through the force of their winds. The precipitation they release can 

have beneficial and detrimental effects on the areas they cross over; beneficial in that it can 

replenish aquifers and soil moisture, and detrimental in that it can cause flooding and erosion, as 

just two examples. (Li and Tsai 2020).  

Hurricane Data 

One of the primary datasets used in working with hurricanes is HURDAT2, managed by 

the National Hurricane Center (NHC) (Landsea and Franklin 2013). It includes information such 

as location through time, the system's status, e.g., tropical system, hurricane, or an extratropical 

cyclone, maximum sustained wind speed, minimum pressure, and the wind speed in the four 

 

Figure 2: Hurricane Season 2018. In the Atlantic Basin and the Eastern United States with GRID-

HURDAT2 Data (developed in this study). The Emerald Coast region is shown using the box. TS 

– Tropical Storm, H1 to H5 – Hurricane Category 1 to 5 based on the wind speed (see text). 
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quadrants of the system. All this is measured at points in time every six hours, unaveraged, with 

additional measurements being taken at the time of landfall for some but not all of the systems. An 

issue with the HURDAT2 dataset is that historical data are less reliable. They are much more 

reliable, advancing through time, owing to societal changes and the advancement of tracking 

abilities due to newer science and technology, such as satellites, drones, and improved sensors. 

The reliability of the data especially improved after the beginning of the use of satellite technology 

to track tropical cyclones, the beginning of the satellite era often being taken as 1979 (Nnamchi et 

al. 2020) 

Hurricane Metrics 

 Table 1: The Saffir-Simpson Hurricane Wind Scale (Saffir 1973). 

  

 

 

Saffir-Simpson Hurricane Wind Scale: A hurricane's intensity is categorized based on wind 

speed using the Saffir-Simpson Hurricane Wind Scale (Table 1) (Taylor et al. 2010). A hurricane 

is a class of tropical cyclones with a maximum sustained wind speed of at least 119 kilometers per 

hour. A tropical cyclone with a maximum sustained wind speed ranging from 63 to 118 kilometers 

per hour is called a tropical storm (T.S.), and anything less than 62 kilometers per hour is a tropical 

depression (T.D.). Although tropical depressions may not have destructive wind speeds, they can 

still drop significant amounts of precipitation and potentially cause harm through flooding 

(Shepherd et al. 2007). Hence, Tropical Cyclone (T.C.) is a more general term encompassing 

tropical depressions, tropical storms, and all five categories of hurricanes. 

Hurricane Category Sustained wind speed 

Tropical depression (T.D.) 0-62 km/h   

Tropical Storm (T.S.)  63-118 km/h 

Hurricane Category 1 (H1) 119-153 km/h 

Hurricane Category 2 (H2) 154-177 km/h 

Hurricane Category 3 (H3) 178-208 km/h 

Hurricane Category 4 (H4) 209-251 km/h 

Hurricane Category 5 (H5) ≥ 252 km/h 
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Accumulated Cyclone Energy: Another method of quantifying the power of a hurricane is 

Accumulated Cyclone Energy (ACE) (Bell and Chelliah 2006). ACE is calculated by squaring the 

maximum wind speed of the system every six hours and adding them (discussed later). Because 

the wind speed is squared, ACE increases exponentially with wind speed, as does the destructive 

potential of the storm system (Yu et al. 2009).  

Extreme Rainfall Multiplier (ERM): This hurricane-related precipitation metric expresses T.C. 

rainfall as a multiple of climatologically derived 2-year return period maximum rainfall event, i.e., 

the median of annual maximum precipitation time series (Bosma et al. 2020). The ERM metric 

better assesses the precipitation impact than the wind-scale-based metric. For example, Hurricane 

Harvey produced record-breaking rainfall of 45 to over 50 inches (five days total) in Southeast 

Texas, including the Houston metropolitan area (https://www.weather.gov/hgx/hurricaneharvey, 

accessed May 5, 2022). Using the ERM scale, Hurricane Harvey ranks the highest (ERM = 6.4), 

although Harvey was a low-category storm (H1 and T.S.) in the Southeast, TX, according to the 

Saffir-Simpson wind scale (Bosma et al. 2020). 

 

  

https://www.weather.gov/hgx/hurricaneharvey


16 

 

Literature Review 

Hurricane Trends – History, Projections, and Societal Risk 

Hurricane frequency varies across decades. There was greater than average hurricane 

activity in the 1940s, 1950s, and 1960s but relatively less in the 1970s, 1980s, and 1990s (Pielke 

and Landsea 1998). Although the number of major hurricanes has increased since the mid-nineties, 

that is not necessarily indicative of secular trends and could be due to multidecadal variability. 

Low-frequency variability in hurricane time series makes it more difficult to discern the influence 

of anthropogenic climate change. 

No significant trend has been observed for tropical cyclones making landfall in the 

United States from 1900 to 2019. More broadly, no significant change in frequency has been 

found globally (Knutson et al. 2019). The frequency of tropical cyclones of lower categories, 

such as 1,2 and 3, is projected to decrease due to global warming, whereas the frequency of 

higher categories, 4 and 5 is expected to increase, as indicated in several relevant studies 

(Knutson et al. 2019) 

Elsner et al. (2008) have found that there has been an increase in intensity among the 

most intense hurricanes in the past three decades. Climate model projections show the 

intensification of T.C.s due to global warming, particularly hurricanes of greater intensity (Elsner 

et al. 2008)  

Best-track data refer to data developed after the passage of a hurricane season using the 

best possible estimates of tropical cyclone position, intensity, and other relevant variables. 

Heterogeneities in best-track data for tropical cyclones can complicate ascertaining trends in the 

relevant datasets, as the methods used vary with time, and so does the accuracy. Hurricane trends 
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are more significant in the best-track data than homogenized gridded data, suggesting 

heterogeneity in the best-track data from technological changes (Kossin et al. 2020). The 

increases in the intensity of tropical cyclones vary between ocean basins and are most significant 

in the North Atlantic, the area to which this study is confined. 

Large-scale climate variability can affect regional climate in regions outside the region of 

variability, e.g., PDO and ENSO can affect Atlantic Basin hurricanes (Lupo et al. 2008). For 

example, Lupo et al. (2008) found that Atlantic hurricanes are less intense during an El Niño 

year. Atmospheric variability is higher than variability in sea surface temperatures (SSTs), so it 

can be challenging to sort out the noise in analyzing individual tracks (Kossin et al. 2020). 

Much is unknown about hurricanes and future trends, but some trends have become 

apparent, especially trends in factors relevant to the formation and activity of hurricanes. For 

example, SSTs have increased, and the atmosphere can hold more water vapor (Cane et al. 1997; 

Trenberth et al. 2005). Although models disagree on future trends, the abovementioned factors are 

expected to increase hurricane intensity and precipitation (Trenberth 2005). Additionally, there 

may be an increase in rainfall from hurricanes but not in the frequency of tropical storms and 

hurricanes (Knutson et al. 2008). 

Changes in risk to society are driven primarily by changes in societal vulnerability, not by 

changes in the trends of storm events. For example, if the population is higher, there is a greater 

potential for loss of life, and if people have more wealth, there is a greater potential for economic 

damages (Pielke Jr et al. 2005).  

The latest Intergovernmental Panel on Climate Change (IPCC) report finds that the 

precipitation associated with hurricanes may increase and that hurricane translation speeds, the 
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speed at which the system moves, as opposed to wind speed, could decrease, which could lead to 

more precipitation along the storm path and a greater number of stalling events, as with Hurricane 

Harvey (Seneviratne et al. 2021). This metric is also less sensitive to data issues because it does 

not require precise measurements of a cyclone's absolute intensity. Kossin (2018) found that the 

average translation speeds of tropical cyclones decreased from 1949 to 2016. 

A tropical cyclone has an inner region of convective activity and an outer region without 

convective activity. The size of a storm is necessary to analyze associated risks, such as 

precipitation and area of influence (Chavas et al. 2016). Tropical cyclone size has been somewhat 

neglected compared to other relevant metrics such as intensity. Between 1981-2011 there has been 

no significant change in the size of tropical cyclones within the North Atlantic Basin or globally 

(Knaff et al. 2014). Smaller tropical cyclones are more likely to undergo rapid intensification when 

the cyclone's intensity increases sharply over a relatively short period than the larger cyclones 

(Carrasco et al. 2014). 

 

Impacts of Hurricanes on Society 

The fact that hurricanes can cause significant economic losses on a wide scale has been 

well established, and it can be seen clearly from the scale of the destruction of property they cause 

and the lives lost. One of the prime examples of the economic cost is Hurricane Katrina, which 

caused the most enormous monetary loss to the United States of any hurricane in history until it 

struck in 2005. It was costly in terms of monetary damages and human costs; e.g., an estimated 

1,836 lives were lost (Knabb et al. 2005). Because more well-developed areas tend to have higher 

property values, they also tend to suffer larger economic losses, although the overall impact on 
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society is lower since they usually are more prepared for natural disasters and can do more to 

mitigate their harmful effects (Baade et al. 2007). 

 

Ecological Impacts 

Ecological disturbances are when forces or processes alter ecological systems or their 

components in reference to their normal state (Beever et al. 2019). Many kinds of disturbances can 

occur due to hurricanes. For example, when hurricanes occur, they can alter the populations of 

different organisms in diverse ways because some are much more vulnerable to such events than 

others (Witman 1992). One instance is that of coral communities in Florida, which were heavily 

affected by both Hurricanes Hugo and Gilbert (Witman 1992). Populations were affected in 

unexpected ways due to the severity of the disturbance and the time intervals at which they 

occurred. A hurricane of greater severity, Hurricane Hugo, was expected to have a more severe 

impact. Still, contrary to expectations, the comparatively less severe Hurricane Gilbert had a 

greater impact due to the fact that hurricanes had not impacted the area it struck in 54 months. 

Sponges had accumulated on the reef (Witman 1992). 

The relative influence of a tropical storm on a community can vary based on the community 

and the tropical storm. Some storms are much more severe than others and have more potential to 

influence a community. For example, some areas might lose more or fewer trees to hurricanes 

based on topographic factors such as slope, elevation, and aspect, and other non-topographic 

factors such as soil type and density of streams (Wang and Xu 2009). Some areas could then be 

more or less fire-prone based on those changes in tree density. For another example, hurricanes 

can clear out some sites, which leaves them more available for other species to invade (Sousa 

1984). In South Florida, for example, Hurricane Andrew profoundly affected the ecology of 
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subtropical hardwood forests through alterations in the density and relative abundance of various 

native and exotic species after their regeneration from seed banks. (Kwit et al. 2000). 

 

Epidemiological Significance of Tropical Cyclones 

Among the myriad effects of tropical cyclones are those concerning the spread of 

contagious diseases. Tropical cyclones can often contribute to the spread of contagious diseases, 

especially waterborne diseases, and those spread by organisms that require water to reproduce and 

spread, particularly mosquitos (Naqvi 2010). Human factors such as land use, how buildings are 

designed, how people respond to the disaster, and how well people evacuate interact with storm 

factors such as the severity of winds, rain, flood, and storm surge to determine how contagious 

diseases spread (Shultz et al. 2005). 

After the passing of a storm, there may be suffering from damage to buildings and 

infrastructure, people's homes, and healthcare infrastructure such as hospitals, especially; 

problems with transportation, economic issues, and others associated with that. Overall, some 

regions of the world suffer more from the effects of tropical cyclones, particularly those that are 

not as well developed, as more-developed areas have a greater capacity for handling tropical 

cyclones and their consequences (Shultz et al. 2005). 

One of the most obvious ways to assess losses is to look at mortality. An estimated 1,836 

people died as a result of Hurricane Katrina, for example (Knabb et al. 2005). Regarding the 

differences between how such disasters are handled in developed versus developing countries, 

deaths due to flooding are generally a larger proportion of overall mortality since developing 

countries often do not have robust emergency, warning, and evacuation systems in place compared 



21 

 

to more developed countries. To describe this in terms of the phases of the disaster, developed 

countries frequently suffer a greater proportion of injuries in the phase after the storm has passed 

compared to the phase where the storm is making impact, and developing countries suffer more 

during the storm (Shultz et al. 2005). 

 

Hurricane Modeling 

A model is a conceptual/mathematical representation of a real system, and various diverse 

models are used across multiple domains. There are numerical models for a variety of climatic 

phenomena (Ford 2009). Climate models describe soil moisture, temperature, precipitation 

patterns and other phenomena. This study focuses on modeling tropical cyclones. Understanding 

and predicting tropical cyclones is necessary because of their profound impacts on society, and 

tropical cyclone modeling is useful to scientists and society because of its utility in understanding 

the behavior of tropical cyclones, which can be difficult to understand and predict through other 

means. (Vickery et al. 2009). 

Tropical cyclone modeling has already been used to determine several vital things, such as 

wind speed maps in the United States and other world regions. Given that winds can damage 

property and infrastructure, those wind speed maps are also relevant to determining regulations in 

areas such as building construction and insurance (Huang et al. 2001). In the past half-century, 

models for tropical cyclones have improved notably. In making models for tropical cyclones, a 

few parameters are commonly used to identify them and describe their behavior, low sea surface 

pressure and high wind speed being two of the most common. Although the modeling of hurricanes 

in individual sites has existed for half a century, modeling entire hurricane tracks is a somewhat 

newer development (Vickery et al. 2009). 
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Vickery developed a new way of modeling hurricanes that allowed him to track a hurricane 

for its complete duration through the Atlantic Ocean. Their method is based principally on 

determining the central pressure of the system as a function of the sea surface temperature (Vickery 

et al. 2000; Vickery et al. 2009). Many other researchers conducted studies using his innovations. 

Emanuel et al. (2006) made further strides by using different models together to create many storm 

tracks and then synthesizing them together (Vickery et al. 2009). 

 

Extreme Rainfall Multiplier. 

Bosma et al. (2020) developed ERM (Extreme Rainfall Multiplier) as an intuitive metric 

for understanding extreme rainfall events. It is a hurricane-related precipitation metric that 

expresses tropical cyclone rainfall as a multiple of the climatologically derived 2-year return period 

rainfall event of a given duration, i.e., the median of annual maximum precipitation time series. 

To put this another way, at a given location, d-days duration (1-day) annual, maximum rainfall 

events in a year are ranked by their magnitude for all years, e.g., 1948 to 2021, then the median 

within that series is used as a baseline for comparison for tropical storms. A metric commonly 

used to access tropical cyclone intensity is maximum wind speed, but it does not consider their 

precipitation, as ERM does. Another advantage is that it shows the severity of a storm in reference 

to 2-year return period event, which can make it easier to understand for the public (Bosma et al. 

2020) 

 



23 

 

Three Patterns of Sea Surface Temperature Oscillation: Atlantic Multidecadal Oscillation, 

Pacific Decadal Oscillation, and El Nino Southern Oscillation 

Atlantic Multidecadal Oscillation (AMO) is a pattern of multidecadal warming and cooling 

SSTs in the North Atlantic Ocean that is linked with multiple climatic phenomena in different 

regions of the world. The cycle is about 65-80 years with a range of 0.4 degrees Celsius. Although 

the signal for AMO is most prominent in the North Atlantic Ocean, the signal is global and present 

in the North Pacific Ocean, as well (Enfield et al. 2001). AMO is detrended, so anthropogenic 

warming should not influence the signal. The region is between 0-70 degrees latitude in North 

Atlantic. Multiple warm and cold phases have been observed since 1860, but although SSTs in the 

North Atlantic Basin have been higher than average since 1995, it cannot be determined yet if this 

is a warm phase in the AMO pattern (McCabe et al. 2004). Pacific Decadal Oscillation (PDO) is 

another pattern of oscillating SSTs in the Pacific Ocean that may be driven by several physical 

processes working together (Newman et al. 2016). El Nino Southern Oscillation (ENSO) describes 

anomalously high SSTs in the Tropical Pacific Ocean driven by atmospheric changes, and it can 

cause many unusual and extreme weather events (Trenberth 1996). 

 A positive correlation has been found between AMO and tropical cyclone-associated 

rainfall in Florida and other parts of the southeastern United States. A negative correlation has 

been found between ENSO and tropical cyclone-associated rainfall in Texas (Nogueira et al. 

2013a). PDO may be a driver of hurricane activity in the Atlantic Basin and it interacts heavily 

with ENSO (Lupo et al. 2008). 
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Description of the Emerald Coast 

The study area for this project, The Emerald Coast, lies within the Florida Panhandle and 

the adjacent region of Alabama to the West. This area is generally considered to be comprised 

primarily of Escambia, Santa Rosa, Walton, Bay, and Okaloosa Counties, although some counties 

in Alabama, especially Baldwin County, can also be included, as well, as can be seen in Fig. 2. 

The Emerald Coast is urbanizing and undergoing ecosystem changes associated with urbanization, 

such as habitat loss problems related to the discharge of effluent from sewers. The region contains 

the outlets of many vital rivers that feed into estuaries due to their economic and recreational value. 

The surface geology is composed of sedimentary rock; it has a mild, subtropical climate stabilized 

by the Gulf of Mexico and large groundwater stores (Wolfe 1988). Being in southern Alabama 

and western Florida, it is also in a hurricane-prone region, and the subject of how hurricane trends 

are changing and are relevant to land use and risk in the area is worthy of research. 

Knowledge Gaps 

• Limited availability of gridded hurricane data, especially before the satellite era 

• Global Drivers and local impact analysis for the Emerald Coast 

My research addresses the non-availability of gridded hurricane data by creating a gridded 

hurricane dataset. This data is used to analyze hurricane-associated precipitation changes. 

Objectives 

This thesis aims to understand the changing risks that tropical cyclones pose to the Emerald Coast, 

encompassing southern Alabama and the Northwestern portion of Florida (box in Fig. 2). A larger 

goal of the study is to understand the impacts of climate change and land-use change on hurricane 

activity in the region. Hence, we have investigated long-term trends in hurricane frequency and 

overall hurricane activity (1900 to 2019) and their impact on extreme precipitation (1948 to 2019).  
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Specific objectives are: 

(a) Develop a high-resolution gridded hurricane dataset (GRID-HURDAT2) – I 

developed GRID-HURDAT2 data to investigate hurricane trends over land and ocean, 

separately from 1900 to 2019. In addition, I investigated how hurricane frequency and 

overall intensity, determined by maximum wind speed, changed within that period.  

(b) Investigate hurricane-related heavy precipitation events: The second phase of 

analysis investigates how precipitation along the hurricane path has changed from 1948 

until 2019. The availability of high-resolution gridded precipitation data limits the 

precipitation analysis (1948 to 2019). In a review of what is available, I have not found 

precipitation data compatible with GRID-HURDAT2 before this period. Therefore, I 

overlayed the GRID-HURDAT2 data with the precipitation data and investigated the 

hurricane-related precipitation trends. 

Justification for the Development of a Gridded Hurricane Dataset: GRID-HURDAT2 

Another gridded hurricane dataset called HURSAT has been developed using satellite data 

(Kossin et al. 2020). Still, HURSAT has some drawbacks and insufficiencies compared to best-

track data, which may be more accurate. The main advantage is that it is homogenous through 

time and space, whereas best-track datasets are not. The main disadvantage is that HURSAT 

only covers 1979-2017 (Kossin et al. 2020). Our gridded dataset, GRID-HURDAT2, has been 

generated using best-track data. Hence it goes back to the year 1900 and is suitable for long-term 

analysis. Some potential uses of GRID-HURDAT2 are analyses of land use along the tropical 

system path, analyses of precipitation along the tropical system path and analyses of tropical 

system trajectory. 
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Table 2: GRID-HURDAT2 and HURSAT Comparison. The dataset we developed, GRID-

HURDAT2, is contrasted with another gridded hurricane dataset, HURSAT. 

GRID-HURDAT2 HURSAT 

Derived from HURDAT2 best-track data Derived from satellite data 

Heterogenous through space and time Homogenous through space and time 

Covers 1900-2019 Covers 1979-2017 

Resolution of 0.25 degrees latitude by 0.25 

degrees longitude 

Resolution of 8 kilometers 
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Chapter 2 

Data and Tools 

HURDAT2 

NOAA has maintained a hurricane database going back to 1851, recording minimum 

pressure, wind speed, maximum wind speed, location through time, and maximum wind radius, 

along the hurricane track. The original hurricane dataset maintained by NOAA 

(https://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html, accessed 2022) was called HURDAT, 

a portmanteau of hurricane and database. HURDAT2, which can be downloaded at the official 

NOAA website, is the revised version of HURDAT and is a continuation of it in many ways, but 

has been improved through the inclusion of landfall and intensity maxima, non-developing tropical 

depressions and best track wind radii (Landsea and Franklin 2013). Data from more recent years 

are more accurate than older data in HURDAT2 because the tropical systems in HURDAT2 go 

back to the 1800s. As one moves forward in time, superior methods are available to gather 

information about the tropical systems. The Best Tracking Change Committee with the NHC 

(National Hurricane Center) regularly revises HURDAT2 to align it with changes in tropical 

cyclone analysis.  

HURDAT2 includes the following information in the heading for a tropical system:  

https://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html
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Table 3: HURDAT2 Data Example. 

 

Table 4: HURDAT2 Data Example Continued. 

 

Table 5: Hurricane Michael Example Data. 

 

Column 1: Two characters for the basin, A.L. in the case of the Atlantic Basin, two 

characters for the storm's place in that year, and four characters for the year. 

After the heading for the storm, the year and day are recorded. For example, 

Hurricane Michael (AL142018) was the 14th storm in the Atlantic Basin 

(A.L.) in 2018. 

Column 2:  Name and time. 

Column 3:  Number of entries.  

Column 4:  Category. 

Columns 5 and 6: Latitude and longitude. 

Column 7:  Maximum sustained wind speed in knots. 

Column 8:  Minimum pressure in millibars 

Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11

Date Time_Name Number_of_Best_Track_EntriesRecordIdentifierLatitude Longitude Maximum_Sustained_Wind_in_KnotsMinimum_Pressure_in_Millibars34-kt_wind_radii_maximum_extent_in_northeastern_quadrant_(in_nautical_miles)34-kt_wind_radii_maximum_extent_in_southeastern_quadrant_(in_nautical_miles)34-kt_wind_radii_maximum_extent_in_southwestern_quadrant_(in_nautical_miles)

AL011851             UNNAMED      14

18510625  0000    HU  28.0N   94.8W 80 -999 -999 -999 -999

18510625  0600    HU  28.0N   95.4W 80 -999 -999 -999 -999

Column12 Column13 Column14 Column15 Column16 Column17 Column18 Column19 Column20 Column21

34-kt_wind_radii_maximum_extent_in_northwestern_quadrant_(in_nautical_miles)50-kt_wind_radii_maximum_extent_in_northeastern_quadrant_(in_nautical_miles)50-kt_wind_radii_maximum_extent_in_southeastern_quadrant_(in_nautical_miles)50-kt_wind_radii_maximum_extent_in_southwestern_quadrant_(in_nautical_miles)50-kt_wind_radii_maximum_extent_in_northwestern_quadrant_(in_nautical_miles)64-kt_wind_radii_maximum_extent_in_northeastern_quadrant_(in_nautical_miles)64-kt_wind_radii_maximum_extent_in_southeastern_quadrant_(in_nautical_miles)64-kt_wind_radii_maximum_extent_in_southwestern_quadrant_(in_nautical_miles)64-kt_wind_radii_maximum_extent_in_northwestern_quadrant_(in_nautical_miles)

-999 -999 -999 -999 -999 -999 -999 -999 -999

-999 -999 -999 -999 -999 -999 -999 -999 -999

AL142018             MICHAEL      38

20181006  1800    LO  17.8N   86.6W 25 1006 0 0 0

20181007  0000    LO  18.1N   86.9W 25 1004 0 0 0

20181007  0600    TD  18.4N   86.8W 30 1004 0 0 0

20181007  1200    TS  18.8N   86.4W 35 1003 120 180 0

20181007  1800    TS  19.1N   85.7W 45 999 120 180 0
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Column 9-21:  Wind radius in nautical miles. 

 

Tropycal 

Tropycal is a Python package to retrieve and analyze tropical cyclone data. The Tropycal 

package was developed by Sam Lillo at the University of Boulder in Colorado (Lillo 2022). It can 

work with different datasets to present information for different storms in different parts of the 

world, but for our purposes, we only used HURDAT2, since that is the dataset for tropical cyclones 

in the Atlantic Basin. We used the Tropycal package to convert HURDAT2 data into gridded data 

for all storms (1,523 from 1900 to 2019). A full description of the Tropycal implementation is 

given in Appendix A. 

Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and El Nino Southern Oscillation 

Atlantic Multidecadal Oscillation (AMO) is a multidecadal pattern of warming and cooling 

in the Atlantic Ocean which may be one driver of some climatic phenomena (Enfield et al. 2001). 

We accessed data for Atlantic Multidecadal Oscillation (AMO) through the website of the Physical 

Sciences Laboratory of NOAA (National Oceanic & Atmospheric Administration Physical 

Sciences Laboratory 2023a) 

Pacific Decadal Oscillation (PDO) and El Nino Southern Oscillation (ENSO) are patterns 

of sea surface temperature change in the Pacific Ocean that may also influence tropical cyclones 

in the Atlantic Basin. We accessed data for PDO through the National Centers for Environmental 

Information with NOAA (National Oceanic & Atmospheric Administration National Centers for 

Environmental Information 2023). We accessed data for ENSO through the Physical Sciences 
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Laboratory of NOAA (National Oceanic & Atmospheric Administration Physical Sciences 

Laboratory 2023b) 

Precipitation Data 

NOAA's Physical Science Laboratory Data: CPC Unified Gauge-Based Analysis of Daily 

Precipitation over CONUS: NOAA Physical Sciences Laboratory has developed daily gridded 

precipitation data using station-based observations (Xie et al., 2007). These precipitation data go 

back to 1948 until the present. The spatial resolution is 0.25 - degree latitude x 0.25 - degree 

longitude U.S. grid (300x120), and the spatial extent is 20.125N-49.875N, 230.125E-304.875E. 

An example of the data showing Hurricane Harvey is provided in Fig. 3. 

 

Fig. 3: Five Days Total Precipitation, Ending on August 30th, 2017. During Hurricane 

Harvey in CPC Unified Gauge-Based Precipitation Analysis gridded dataset. Unit: mm of 

precipitation in five days. 

 

 

 

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
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Summary of Chapter 2 

I used HURDAT2 as the raw input and Tropycal software. Additionally, I used gridded 

precipitation data from the Climate Prediction Center and data for AMO, PDO, and ENSO from 

the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration. 

Additionally, HURDAT2 data were used to find dates of landfall and create tropical storm 

frequency analysis. We used GRID-HURDAT2 for the ACE analysis over land and ocean. The 

gridded precipitation data were used to assess precipitation along the storm paths. We used data 

for AMO, PDO, and ENSO to investigate their influence on hurricane activity. 
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Chapter 3 

Tropical System Frequency Through Time in the Atlantic Basin 

3.1 Introduction 

The first phase of our analysis was to investigate how the frequency of tropical systems 

has changed since 1900. Multiple measures can be used to determine how hurricane trends have 

changed through time. The frequency of tropical systems is relevant to society because if more 

hurricanes strike the United States, they could cause more damage and drop more precipitation. 

3.2 Methods 

For this phase of our analysis, we sorted through the dataset HURDAT2, to find how many 

tropical systems of all categories were identified in the Atlantic Basin in each year. Then, we 

analyzed the data graphically and performed trend analysis (linear regression) to see if frequency 

has changed over time. We separated it into different periods, 1900 forward, 1950 forward, and 

1970 forward, to see if different trends would be present in those periods and analysis would be 

less subject to underreporting in the pre-1950s period. 

3.3 Results 

Storm frequency analysis – We analyzed all storms recorded in HURDAT2 database, 

including tropical depressions, tropical storms, and H1 to H5 in terms of their number of 

occurrences per year. Then I fit a linear trend line and assessed its significance, as can be seen in 

Fig. 4. For the period 1900 to 2019, we found a statistically significant increasing trend with a p-

value of < 0.001; for the period 1950 to 2019, we found a statistically insignificant increasing trend 

with a p-value of 0.08, and for the period 1970 to 2019 we found a statistically insignificant 

decreasing trend with a p-value of 0.81. 
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Fig. 4: Hurricane Frequency in Different Time Periods. (A) is 1900 onward, which shows a 

significant increase of 0.98 tropical cyclones per decade; (B) is 1950 onward, which shows a 

statistically insignificant increase of 0.45 tropical cyclones per decade (p-value: 0.08); and (C) is 

1970 onward which does not show an increasing trend in hurricane frequency. The significance 

of the trends varies greatly between different periods, possibly due to data quality improving 

over time; and / or multi-decadal variability (discussed later) 
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3.4 Discussion 

According to the background information that goes along with the HURDAT2 dataset, 

many tropical systems of lower intensity were not adequately identified in the Atlantic Basin 

before the 1950s, but after that, especially in the satellite era, many more were adequately 

identified (Nhc.noaa.gov. 2022). The trend for 1900 to 2019 is statistically significant compared 

to those for 1950 to 2019 and 1970 to 2019, which are not. Caution is needed to interpret the 

hurricane trends from 1900 to 2019 due to underreporting of hurricane activity in the pre-1950s 

period. 
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Chapter 4 

Validation of GRID-HURDAT2 and Accumulated Cyclone Energy Analysis 

4.1 Introduction 

This phase of the analysis aimed to produce aggregated cyclone activity measures in 

different geographic areas. It served two purposes: (1) to create and validate the gridded dataset, 

GRID-HURDAT2, and (2) to better understand if tropical cyclone activity has changed over time 

in the areas mentioned, taking into consideration AMO, PDO, and ENSO. The measure I used was 

ACE, a widespread measure of tropical cyclone activity (Yu, 2009) 

ACE is calculated by taking the maximum wind speed for a cyclone every six hours and 

summing them together along with the life of the storm (Eq. 1). A complete season's ACE can then 

be calculated by summing the ACE of all the storms together. 

𝐴𝐶𝐸 =  10−4∑𝑣2
𝑚𝑎𝑥 

Equation 1: ACE Equation. ACE equals the summation of the maximum wind speed of a 

tropical cyclone at 6-hour intervals. Vmax represents the maximum wind speed (unit: 10^4 

kt^2). 

 

4.2 Methods 

4.2.1 Creation of GRID-HURDAT2 

  The first step in this phase of analysis was to create a gridded hurricane dataset named 

GRID-HURDAT2. It was necessary to further develop an analysis of ACE, a metric of tropical 

cyclone intensity, in the southeastern United States, and it was used in conjunction with another 

precipitation dataset for a hurricane-associated precipitation analysis in the eastern United States. 
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To create our high-resolution gridded dataset, we used a python package called Tropycal. 

This python package can work with different storm-related datasets. The HURDAT2 data (csv 

files) was used as input to the Tropycal, because HURDAT2 is the most commonly used dataset 

for hurricane paths in the Atlantic, and it is already what we are using in other parts of our analysis. 

The following is a description of how the gridded dataset was produced within Jupyterlab, using 

the TroPYcal python package. 

Step 1:  tropycal.tracks was imported as tracks and datetime was imported as dt.  

Step 2: Load in the HURDAT2 dataset as hurdat_atl, using hurdat_atl = 

tracks.TrackDataset(basin=’north_atlantic’,source=’hurdat’,include_btk=False).   

Step 3:  Got a key for each of the hurricanes to use in a loop. The key is a unique identifier 

for each storm including the basin it is in, which is the Atlantic Basin for all the 

storms in our study, the year of the storm, and the storm's place during that year. 

keys = hurdat_atl.filter_storms(year_range=(1990,2020),return_keys=True).  

Step 4:  The main function used to generate the high-resolution gridded dataset was 

gridded_stats, but it could not plot out individual storms, so a script was written for 

that. The gridded_stats function was then used together with the simple script we 

wrote to plot out individual storms, which were converted to netcdf files using the 

storm.to_netcdf function, "storm.to_netcdf(str(key) = ‘.nc’). 

Fig. 5: Flowchart to Describe Creation of GRID-HURDAT2 
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The steps described in Fig. 5 produced a dataset with one netcdf file for each storm in the 

HURDAT2 dataset. The format for the file names is A.L. for Atlantic since they are in the Atlantic 

Basin, followed by two digits for the storm's place within the year it occurred, followed by four 

 

Fig. 6: Storm Path Data. The image to the right shows each storm file with an example of 

Hurricane Katrina. The image to the left shows each file's lat, lon, time, and wind speed. 

 

digits for the year. The files contained four variables, latitude, longitude, time, and wind speed, at 

a resolution of 0.25 degrees. Fig. 6 shows all the tropical cyclone files together with Hurricane 

Katrina open as a graphic example along with the data contained within each file. 

This dataset has been helpful in the phases of our analysis that are dealt with in other 

analyses in the following chapters. As a result of the fact that it has wind speed, hurricane category, 

and ACE can both be determined with it alone, and it can be used in conjunction with compatible 
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datasets of the same resolution to perform other forms of analysis, as we did for our precipitation 

analysis.  

Finally, I developed an animation to visualize hurricanes from 1900 to 2019. For each 

year, I plotted the hurricanes using NCAR Command Language (NCL) as a 'png' file. Then, I 

used MATLAB's VideoWriter function to read each 120 png files (1900 to 2019) and make a 

movie. This animation has been uploaded as video data along with my thesis. A sample program 

is shown in the appendix. 

4.2.2 Accumulated Cyclone Energy Analysis 

The primary dataset we used for this analysis was the gridded dataset we created, GRID-

HURDAT2. It has location through time for the duration of each storm and wind speed in knots, 

which are both necessary for our ACE analysis. The wind speed was essential for the calculation 

of ACE, time was required to determine in what year each storm's ACE belonged, and position 

was necessary for masking, i.e., subsetting by region to determine what spatial domain the ACE 

would be for. We used a mask to separate our analysis into three different regions: the entire 

Atlantic Basin and eastern United States, which includes the tropical and midlatitude regions of 

the Atlantic Basin; the eastern United States, which includes the continental United States east of 

the states of North Dakota, South Dakota, Nebraska, Kansas along with the coastline; and the 

southeastern United States, which is Texas, Oklahoma, Arkansas, Louisiana, Mississippi, 

Tennessee, Alabama, Georgia, North Carolina, South Carolina, and  Florida, along with the 

coastline (Fig. 7). We did this as we expected, we could find different trends in these regions. We 

included the entire southeastern United States instead of only the coast along the Gulf of Mexico 

because we wanted to understand large-scale drivers of tropical cyclone changes.  
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Apart from separating ACE spatially by region, we also divided it temporally into two 

periods: 1900 forward and 1950 forward. We did this to isolate different trends in these periods in 

general, and, more particularly, because more recent data are more reliable due to better data 

collection methods, especially those employing satellite technology after the beginning of the 

satellite era in 1979. In addition to dividing tropical cyclones by region and time, we also divided 

them by category: tropical depression, tropical storm, and hurricanes of category 1 through 5, all 

based on maximum wind speed. 
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Fig. 7: Three Regional Domains for Hurricane Analysis. (a) Atlantic domain including the 

Eastern U.S., (b) Eastern U. S. only domain, (c) Southeastern U.S. only domain. Hurricane 

season 2018 is overlaid on each map. 
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For the script that was used to develop ACE, the necessary files, the hurricane paths and 

mask files, were first opened. The variables that were taken from the gridded_stats, ncl files were 

wind speed, latitude and longitude, represented by, "ws," "lat," and "lot," in the script. ACE was 

then calculated using wind speed according to time and region. 

“hurdat_ana_amv_ana2_ind_storm_rev2_south.ncl" is the script that was used to produce 

that ACE dataset. The reader can find it in the appendix. 

4.3 Results 

Validation of GRID-HURDAT2 

GRID-HURDAT2 compares well with NOAA's ACE estimate. The official ACE released 

by NOAA was used as a benchmark to compare our measures to as a way of validating the dataset 

we made, GRID-HURDAT2, and our methods. Our results are largely in alignment with those of 

NOAA, with a correlation coefficient of 0.94, as seen in Fig. 8, which we interpret to mean that 

our dataset, GRID-HURDAT2, is valid. Other statistical metrics were unable to be used to verify 

it because the two calculations are at different scales. 

The ACE index produced using GRID-HURDAT2 calculates ACE using the wind speed 

estimate at each grid point along the path of each tropical cyclone, whereas NOAA's ACE estimate 

was calculated using wind speed estimates every six hours. Hence the GRID-HURDAT2 ACE 

estimate is one order larger than NOAA's ACE estimate. For example, in the year 2017, the ACE 

calculated by NOAA was 239.4 (unit: 10^4 kt^2) and the ACE we calculated using GRID-

HURDAT2 was 2237.1. However, their interannual variability is similar (r = 0.94). 
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Long-term Hurricane Trends 

Hurricane activity has increased over the ocean but not over land. I found that ACE has 

increased over land and ocean together, though not over the southeastern United States or the 

eastern United States (Figs. 9-10). The trend is consistent when accounting for different 

categories of tropical cyclones and when observing a more recent study period (Figs. 11-14). 

When all categories of tropical cyclones are used in calculating ACE, the trend is highly 

statistically significant over land and ocean from the period 1900 to 2019 (Fig. 9, p < 0.01). 

However, when the temporal period of the analysis is confined to 1950 to 2019, the trend is less 

significant (Fig. 10, p = 0.05) 

As trends in ACE could vary between tropical cyclones of lesser intensity compared to 

tropical cyclones of greater intensity, I produced additional ACE calculations that exclude 

tropical cyclones of lesser intensity. When tropical storms are excluded from the analysis, the 

trend is still statistically significant over land and ocean in the period 1900 to 2019 (Fig. 11, p < 

0.01). However, for the period 1950 to 2019 over land and ocean, the trend does not meet the 

threshold for statistical significance, although it does approach it (Fig. 12, p = 0.10). 

Excluding both tropical cyclones and hurricanes of category 1 from the analysis still 

makes apparent an increasing trend in ACE over land and ocean (Fig. 13, p < 0.01), which is less 

significant over a shorter temporal period (Fig. 14, p = 0.05). 
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AMO, PDO and ENSO 

ACE, PDO, and ENSO, all internal modes of sea surface temperature variability, appear 

to be potential drivers of hurricane activity in the Atlantic Basin. 

Of the three, AMO is the only one that has a positive correlation with ACE and has the 

greatest correlation coefficient of the three (Fig. 15, r = 0.45, p < 0.01). This intuitively makes 

sense, as AMO occurs in the Atlantic Basin where hurricanes form and move, whereas the other 

two modes occur in other parts of the world. Confining the analysis to a shorter period does not 

have an appreciable effect on how well they correlate (Fig. 16, r = 0.46, p < 0.01). 

In contrast to AMO, PDO has a weak negative correlation with ACE (Fig. 15, r = -0.23, p 

< 0.01). In the 1900 – 2019 period and 1950 – 2019 period we found similar correlations 

between PDO and ACE (Fig. 16, r = -0.22, p < 0.01). 

The results for ENSO are quite similar to those for PDO. ENSO also shows a negative 

correlation with ACE (Fig. 15, r = -0.24, p < 0.01), though it is notable that in this case, it varies 

more between the two temporal periods (Fig. 16, r = -0.29, p < 0.01). 
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Fig. 8: NOAA's Official ACE Compared with the ACE Calculated Using GRID-

HURDAT2. 
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Fig. 9: Tropical Storms and Above ACE – 1900 to 2019 in Three Regional Domains. 

Depicted is ACE in different regions for 1900 to present: (A) the Atlantic Basin, (B) the eastern 

U.S., and (C) the southeastern U.S. 
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Fig. 10: Tropical Storms and Above ACE – 1950 to 2019 in Three Regional Domains. 

Depicted are ACE in different regions: (A) the Atlantic Basin, (B) the Eastern U.S., and (C) the 

Southeastern U.S. 
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Fig. 11: Hurricane Category 1 and Above ACE – 1900 to 2019 in Three Regional Domains. 

Depicted are ACE in different regions: (A) the Atlantic Basin, (B) the Eastern U.S., and (C) the 

Southeastern U.S. 
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Fig. 12: Hurricane Category 1 and Above ACE – 1950 to 2019 in Three Regional Domains. 

Depicted are ACE in different regions: (A) the Atlantic Basin, (b) the Eastern U.S., and (c) the 

Southeastern U.S. 
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Fig. 13: Hurricane Category 2 and Above ACE – 1900 to 2019 in Three Regional Domains. 

Depicted are ACE in different regions: (A) the Atlantic Basin, (B) the Eastern U.S., and (C) the 

Southeastern U.S. 
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Fig. 14: Hurricane Category 2 and Above ACE – 1950 to 2019 in Three Regional Domains. 

Depicted are ACE in different regions: (A) the Atlantic Basin, (B) the Eastern U.S., and (C) the 

Southeastern U.S. 
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Fig. 15: SST Anomalies Compared to ACE – 1900 to 2019. Multiple SST anomalies are 

plotted against ACE within the entire Atlantic Basin from 1900 to present, including PDO, 

ENSO and AMO. 
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Fig. 16: SST Anomalies Compared to ACE – 1950 to 2019. Multiple SST anomalies are 

plotted against ACE within the entire Atlantic Basin from 1950 to present, including PDO, 

ENSO and AMO, and their correlation coefficients are shown, as well. 
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4.4 Discussion  

We found that in the eastern United States and the southeastern United States, none of our 

results were statistically significant for any hurricane category. For ACE over land and ocean, we 

found the increasing trend was statistically significant for multiple hurricane categories and 

periods, and it did not seem to vary notably across categories. However, that could be because of 

better tracking in the ocean going forward through time.  

We interpret the results to mean that hurricane activity has increased within the Atlantic 

Basin but not over the continental United States. Although many other studies have dealt with 

ACE in various ways (Murakami et al. 2014; Villarini and Vecchi 2012, 2013; Yu et al. 2009), 

none have divided the study area into spatial domains as this study does. This highlights the 

usefulness of the dataset we developed, GRID-HURDAT2, as it was indispensable in performing 

our analysis across the three spatial domains.  

As to the reason ACE seems to have increased over the ocean, we speculate that the results 

could be reflective of reality, or it could be because of data heterogeneity, given that in the past, 

some of the weaker cyclones were not identified over the ocean, and in more recent decades weaker 

storms were. In contrast, over land, they may have been easier to identify further back in the past. 

Assuming the results reflect actual increasing trends in hurricane activity over the ocean, another 

line of speculation is that increased SSTs could play a role (Trenberth 2005).  

 Regarding the connections that AMO, PDO, and ENSO have with ACE, our interpretation 

of our results is that all three are drivers of tropical cyclone activity within the Atlantic Basin. Still, 

AMO seems to be the greatest of the three, given that the coefficient of correlation is the highest, 

which makes sense intuitively because AMO is a SST pattern within the Atlantic Basin where 

hurricanes occur. In contrast, the other two SST patterns occur in the Pacific basin. That ENSO 



54 

 

has an inverse relationship with hurricane activity in the Atlantic Basin is supported by the work 

of Lupo et al. (2008), particularly during PDO’s warm phases. Additionally, others have found 

evidence that AMO contributes directly to hurricane activity in the Atlantic Basin (Zhang and 

Delworth 2006). 
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Chapter 5 

Hurricane Impacts on Precipitation 

5.1 Introduction 

 Tropical storms drop tremendous amounts of precipitation along their paths. Evidence 

suggests that tropical storm translation speeds, i.e. the speeds at which the whole systems move, 

may be decreasing, which could allow larger amounts of precipitation to fall along their paths 

(Kossin 2018). The aim of this phase of analysis is to investigate if this holds within the eastern 

United States. Using the gridded hurricane files generated through Tropycal, along with gauged-

based, gridded precipitation data, this phase of analysis estimates how much precipitation is 

dropped along the tropical cyclone path for the greatest amount of precipitation in each year, then 

plots them all as a time series for 1948-2019.  

ERM is then used as another metric to compare and validate our results (Bosma et al. 2020). 

𝐸𝑅𝑀𝑠,𝑥,𝑡 =
𝑅𝑠,𝑥,𝑡

𝑅𝑥,𝑡
2−𝑦𝑟 

Equation 2: ERM Equation. S represents the storm, t is the duration, x is the location, and R is 

the rainfall depth. 𝑅𝑥,𝑡
2−𝑦𝑟

 represents the rainfall depth for the 2-yr average recurrence interval for 

the same duration and location. 

Once we had our hurricane path files generated through Tropycal, we took our precipitation 

data from the Physical Sciences Laboratory at NOAA. PSL Data: CPC Unified Gauge-Based 

Analysis of Daily Precipitation over CONUS: NOAA Physical Sciences Laboratory These 

precipitation data go back to 1948 and up until the present. The spatial extent is 0.25 - degree 

latitude x 0.25 - degree longitude U.S. grid (300x120), 20.125N-49.875N, 230.125E-304.875E. 

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
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5.2 Methods 

The data files used come from GRID-HURDAT2 and CPC Daily Precipitation data. The 

HURDAT2 dataset doesn't include precipitation, so for that we took data from the Climate 

Prediction Center (CPC) and selected precipitation files with gridding matching those in GRID-

HURDAT2. 

 The tropical storm path files were concatenated into a larger file to make them easier to 

work with. The HURDAT2 dataset was filtered so that the date of landfall date on the continental 

United States was recorded and matched with each storm, and the script would only record 

precipitation for the five-day period after landfall. Because some storms can release significant 

amounts of precipitation over more than a day, I used the five-day total after the date of landfall in 

the continental United States to derive the final precipitation value for the storm. This was to 

account for storms lasting more than a day. I also filtered the landfall data according to latitude 

since some storms originally made landfall on Caribbean islands or Central America, rather than 

the United States.  

A stepwise description of the precipitation analysis is shown in Figs. 17 to 20. The original 

tropical storm path files also only include one grid point along the path of the storm, so the analysis 

script was written to include adjacent cells: 100km X 100km window around the T.C. grid-cell; 

and select the maximum precipitation grid cell. I decided to use Hurricane Harvey to verify my 

results and found a value of 877.58 mm of precipitation, which aligns with what others have 

reported (Emanuel 2017; Van Oldenborgh et al. 2017).  
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Step 1:  Select a hurricane (GRID-HURDAT2). 

 

Figure 17: Precipitation Analysis Step 1 

Step 2:  Select five-day total precipitation (CPC Gauge—based Precipitation), where day 

1 is the landfall date on the conterminous United States. 

 

Figure 18: Precipitation Analysis Step 2 
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Step 3:  Overlay these two maps. 

 

Figure 19: Precipitation Analysis Step 3 

Step 4:  Go through the hurricane path, one grid cell at a time, and identify the maximum 

precipitation by expanding the grid to a 100 km X 100 km spatial box and select the maximum 

precipitation grid cell (25 km X 25 km). 

 

Figure 20: Precipitation Analysis Step 4 
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Step 5:  Repeat Step 4 for all the grid cells in the hurricane path, creating an array of 

maximum precipitation along the hurricane path. 

Step 6:  Select the maximum value for the maximum precipitation array in Step 5 

5.3 Results 

Annual, Maximum Hurricane-Associated Precipitation  

 Annual maximum hurricane-associated precipitation has increased in the continental 

United States. I found that within the continental United States, the precipitation associated with 

the greatest rainfall events produced by hurricanes has increased from 1948 to 2019 (Fig. 21). 

However, this trend is highly dependent on the most recent years of data due to severe storms 

such as Hurricane Harvey and Hurricane Florence, and when the analysis excludes the years 

2017, 2018 and 2019 the trend is less significant (Fig. 22). After calculating ERM, I found that it 

supported those results in both temporal periods (Figs. 23-24).  

 Figs. 21 and 22 show annual maximum hurricane-associated precipitation trends, for 

different time periods, and excluding various categories of tropical cyclone. The results are 

statistically significant when the years 2017, 2018 and 2019 are included, but when those years 

are excluded, the trend is less significant and more dependent on tropical cyclone category. In the 

period 1948 – 2016, when accounting for different categories of tropical cyclone, the increasing 

trend becomes gradually more pronounced as the lower categories are excluded (Fig. 22 d, p = 

0.03). 

 ERM was used to validate our results, and the ERM we calculated is largely in line with 

the previous results, particularly in the period 1948 – 2019 (Fig. 23). However, in the period 

1948 – 2016 the results of the ERM calculation do not align quite as well with the previous 
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results. As with the precipitation analysis, the trend does become more significant as lower 

categories of tropical cyclones are excluded, though not to the same degree (Fig. 24). In 

particular, the trend for Fig. 24 (d) is not statistically significant. 
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 Fig. 21: Annual, maximum, tropical cyclone-associated precipitation events – 1948 to 2019. 

Depicted are trends over time of the greatest tropical cyclone-associated precipitation events of 

each year separated by category. (a) includes all tropical cyclones, (b) includes tropical storms 

and above, (c) includes all hurricanes category 1 and above, and (d) includes hurricanes category 

2 and above. 
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Fig. 22: Annual, maximum, tropical cyclone-associated precipitation events: 1948 - 2016. 

Depicted are trends over time of the greatest tropical cyclone-associated precipitation events of 

each year separated by category. (a) includes all tropical cyclones, (b) includes tropical storms 

and above, (c) includes all hurricanes category 1 and above, and (d) includes hurricanes category 

2 and above. 
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Fig. 23: ERM from Tropical Depression to Category 2: 1948 – 2019. Depicted are trends 

over time of the ERM of each year separated by category. (a) includes all tropical cyclones, (b) 

includes tropical storms and above, (c) includes all hurricanes category 1 and above, and (d) 

includes hurricanes category 2 and above. 
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Fig. 24: ERM from Tropical Depression to Category 2: 1948 – 2016. Depicted are trends 

over time of the ERM of each year separated by category. (a) includes all tropical cyclones, (b) 

includes tropical storms and above, (c) includes all hurricanes category 1 and above, and (d) 

includes hurricanes category 2 and above. 
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5.4 Discussion 

 We found that there has been a statistically significant increasing trend in precipitation 

along the storm path. The ERM results are in line with that. The results for Figs. 21 and 23 are 

statistically significant. They all show that tropical cyclone-associated precipitation along the 

storm path for the maximum rainfall events of each year. ERM increased from 1948-2019, and the 

trend was still present when excluding tropical cyclones of lower intensity. When the years 2017, 

2018, and 2019 are removed, the hurricane category becomes a more relevant factor in determining 

the significance of the trend. The maximum precipitation trend is statistically significant in Fig. 22 

(d), whereas they are not significant for ERM analysis (Fig. 24).  

The discrepancy between the results for the annual maximum hurricane-associated 

precipitation results and the ERM results is likely because ERM takes into account the effect of 

the global warming effect that may have increased the annual maximum precipitation (Shearer et 

al. 2022); so the denominator in ERM equation (Eq. 2) has also increased.  

We interpret the results to mean that the precipitation along the storm path associated with 

the maximum rainfall events of each year has increased over time due to decreasing tropical 

cyclone translation speeds, although this result is heavily dependent on the data from the years 

2017-2019. The hurricane associated increasing precipitation trend is partly attributable to 

hurricane stalling events, which are when the system spends hours in a confined area as Hurricane 

Harvey did (Van Oldenborgh et al. 2017). An increasing trend in hurricane stalling events has been 

found by Hall and Kossin (2019) from 1948-2017, attributed both to decreasing translation speeds 

and to an increase in abrupt changes in trajectory, though it is not clear that AMO is a contributing 

factor (Hall and Kossin 2019). Another study has found that AMO appears to be a contributing 

factor to tropical cyclone rainfall, although this study does not focus on the most extreme events 
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as ours does (Nogueira et al. 2013b). Our finding that the most extreme annual rainfall events 

caused by tropical cyclones are in line with what others have found (Gori et al. 2022; Knight and 

Davis 2009; Lau et al. 2008). 
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Chapter 6 

Summary and Discussions 

6.1 Main Findings 

For trends in general hurricane activity measured through ACE, we found that there has 

not been a significant increasing or decreasing trend over land. There appears to be an increasing 

trend over the ocean, but that is likely because of better tracking in more recent decades and better 

data more recently in the dataset. For trends in precipitation along the hurricane path, I found that 

there is an increasing trend in precipitation associated with the storms dropping the most 

precipitation in each year. It was also found that AMO, PDO, and ENSO are all likely contributing 

factors to the formation of tropical cyclones in the Atlantic Basin, and AMO is the most significant 

among them. 

6.2 Unique Contributions 

ACE has already been developed in other studies, but the unique contribution of this work 

is that we did it using the GRID-HURDAT2 developed with Tropycal, and then isolated the 

calculation to the southeastern United States, which other studies have not done.  

The precipitation analysis is also unique in that it makes use of GRID-HURDAT2, is 

limited spatially to the eastern United States, and estimates precipitation associated with tropical 

cyclones. 
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Appendix - A 

Script Used to Produce GRID-HURDAT2 

1. tropical.track and datetime are imported. 

import tropycal.tracks as tracks 

import datetime as dt 

2. The dataset is loaded. 

hurdat_atl = tracks.TrackDataset(basin='north_atlantic',source='hurdat',include_btk=False) 

3. We get a key for each of the hurricanes to use in a loop. The key is a unique identifier for each 

storm including the basin it's in, which is the Atlantic Basin for all the storms in our study, the 

year of the storm, and the storm's place during that year. 

keys = hurdat_atl.filter_storms(year_range=(1990,2020),return_keys=True) 

4. This part is used to take each individual storm and collect data from it to pass onto the next 

function, which plots out the storms that were present in the Atlantic Basin. This was done 

because the gridded_stats function can plot out time periods but not individual storms. 

for key in keys: 

    a = hurdat_atl.get_storm(key) 

    b = a.to_dataframe() 

    c = b["date"] 

    d = c[0] 

    e = c[len(c)-1] 

    f = str(d) 

    g = f[5:7] 

    h = f[8:10] 

    i = str(e) 

    j = i[5:7] 

    k = i[8:10] 
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    l = f[0:4] 

    m = i[0:4] 

    n = g + '/' + h 

    o = j + '/' + k 

 

Hurricane Michael from the year 2018 is featured in Fig. 2 (main text) striking the southeastern 

United States. It's cutoff at North Carolina because that's the point where it becomes an 

extratropical cyclone. It made landfall at 17:30 at 30.0N, 85.5W. 

5. This is where the gridded_stats method is used. It plots the tropical storms out on a grid. We 

chose resolution 0.25 where it mentions binsize, determining resolution. Maximum wind is used 

as the request for what to plot because we need it to compute ACE. The lat and lon coordinates 

are mapped according to binsize. 

storm = hurdat_atl.gridded_stats(request="maximum wind", 

year_range=(int(l),int(m)),date_range=(n,o),binsize=0.25, return_ax=True, return_array=True) 

6. The file is converted into a netcdf file for analysis using Cheyenne. 

In the program we used to calculate ACE it uses the maximum wind speed data from the files 

generated using gridded_stats and calculates ACE using the maximum wind speed squared at 

intervals and summed together. 

storm.to_netcdf(str(key) + '.nc') 
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Script Used to Calculate ACE from GRID-HURDAT2 Data 

 

 inDir = "/glade/work/kumar34/HURDAT2" 

f1 = addfile(inDir+"/HURDAT2_IND_STORM_1900_2019_rev1.nc", "r") 

f2 = addfile(inDir+"/HURDAT2_1900_2018.nc", "r") 

print(f1) 

lat = f2->lat 

lon = f2->lon 

print(lon(0:10)) 

nlat = dimsizes(lat) 

nlon = dimsizes(lon) 

fe = addfile(inDir+"/hurdat2_east_us_mask.nc", "r") 

fs = addfile(inDir+"/hurdat2_south_us_mask.nc", "r") 

ws_yr = f1->hurdat2_ws    ; 1 knots  =  1.151 miles per hour = 1.852 km per hour 

ws_yr = mask(ws_yr, ws_yr.ge.137.0, True) 

time = ispan(1900, 2019, 1) 

east_mask = fe->east_mask 

south_mask = fs->south_mask 

ntime = dimsizes(time) 

P1 = new((/ntime, 3/), "double", -9999.0) 

do i = 0, ntime-1 

   ws = ws_yr(i, :, :, :) 

   ws = mask(ws, ws.lt.35.0, False) 

   temp1 = ((10.0^-4)*ws^2)   ; eq1 from Chylck and Lesins 2008 

   P1(i, 0) = sum(temp1) 

end do 

do i = 0, ntime-1 

   ws = ws_yr(i, :, :, :) 

   ws = mask(ws, ws.lt.35.0, False) 
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   ws = mask(ws, east_mask.eq.1.0, True) 

   temp1 = ((10.0^-4)*ws^2)   ; eq1 from Chylck and Lesins 2008 

      P1(i, 1) = sum(temp1) 

end do 

do i = 0, ntime-1 

   ws = ws_yr(i, :, :, :) 

   ws = mask(ws, ws.lt.35.0, False) 

   ws = mask(ws, south_mask.eq.1.0, True) 

   

   temp1 = ((10.0^-4)*ws^2)   ; eq1 from Chylck and Lesins 2008 

   P1(i, 2) = sum(temp1) 

end do 

;************************* 

opt1 = True 

opt1@fout = "ACE_1900_2019_ATL_EAST_SOUTH_ind_storm_rev5.txt" 

fmtx = "3f15.8" 

write_matrix(P1, fmtx, opt1) 
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Appendix – B 

Matlab Program to Create the Hurricane Movie 

 

writerObj = VideoWriter('Hurricane_1900_2019_GRID-HURDAT2.avi'); 

open(writerObj); 

for K = 1 : 120 

    filename = sprintf('hurricane_%d_graph_rev1.png', 1900+K-1); 

    thisimage = imread(filename); 

    writeVideo(writerObj, thisimage); 

end 

close(writerObj); 
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Appendix - C 

Supplemental Figs. for ACE Analysis 

Category 3 and above – 1900 Forward 
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Category 3 and Above -1950 Forward 
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Category 4 and Above -1950 Forward 
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Category 4 and Above -1950 Forward 
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Category 5 and Above -1950 Forward 
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Category 5 and Above -1950 Forward 
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Appendix - D 

Supplemental Figs. for Precipitation Analysis 

Five Day Running Mean
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Three Day Running Mean 
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ERM Five Day Running Mean 
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Appendix – E 

Hurricane Atlas 

The following hurricane atlas contains images of all the tropical cyclones in each 

hurricane season.  
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Hurricane Season 1900 
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