
Order Picking Method for Multi-entity Cooperation in Picking Warehouses

by

Jingwei Liu

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 5, 2023

Keywords: Order Picking, Assistive Robots, Routing Method, Mixed Integer Linear
Programming, Ant Colony Optimization, Simulation

Copyright 2023 by Jingwei Liu

Approved by

Jeffrey Smith, Chair, Joe W. Forehand Jr. Professor of Industrial and Systems Engineering
Alice Smith, Joe W. Forehand/Accenture Professor of Industrial and Systems Engineering

Konstantinos Mykoniatis, Assistant Professor of Industrial and Systems Engineering
Gregory Purdy, Assistant Professor of Industrial and Systems Engineering

Abstract

In recent years, different kinds of autonomous robots have been widely studied and ap-

plied in warehouses to meet the increasing demand for dealing with more customer orders,

providing shorter delivery time, and achieving higher system scalability. As the core operation

of the modern warehousing system, order picking is an area in which many researchers are try-

ing to find good strategies to apply robots to improve the performance and efficiency of order

picking. This dissertation provides a Multi-entity Cooperative Order Picking (MCOP) strat-

egy in which two types of entities (pickers and transporters) collaborate in a picker-to-parts

warehouse to complete order picking. We first define MCOP, and describe the components,

the working pattern, and the operating data structure involved in MCOP. An animated, data-

generated, and data-driven simulation model is developed to represent a visualized realization

of the processes in MCOP and provide a testbed for performance evaluation under different

configurable settings. Next, we develop a MILP model to find the optimal operational deci-

sions about workloads and routes for all entities in MCOP. Then, to overcome the inefficiency

of using the proposed model to deal with the situation that a large number of items need to be

retrieved in a pick wave, we develop an alternative algorithm called Hetero-ACO to find the

operational decisions in a short time. A two-stage structure is applied to search the operational

decisions for pickers and transporters, respectively. Lastly, we explore different combinations

of certain distributions of product picking times and entity traveling speeds to analyze the im-

pact of the variabilities on the makespan of MCOP and the wait time of pickers. The finding

of this work can potentially help warehouse owners find the improvement in upgrading manual

order pickings with assistive robots and guide the warehouse owners in how to apply robots to

assist order pickings.

ii

Acknowledgments

I want to express my gratitude to my academic advisor, Jeffrey Smith, for providing sig-

nificant guidance, assistance, and financial support throughout my Ph.D. study at Auburn Uni-

versity. I thank him for advising me in academic research and supporting me to build up my

knowledge and experience toward a Ph.D. degree.

I want to thank Dr. Alice Smith for her support and advice on my research and this disser-

tation. I would also like to thank the other committee members, Dr. Konstantinos Mykoniatis

and Dr. Gregory Purdy, for their enriching insights and suggestions during my dissertation

process. In addition, I would like to express my appreciation to Dr. Levent Yilmaz, for being

the University reader.

I want to thank my friends: Yaoxuan Luan, Gaoxiang Li, Jiaxiang Ren, Xuyang Hu, and

Dr. Jianzhou Mao, for all kinds of help. Finally, I want to give my deepest gratitude to my

family for their love, encouragement, and accompany that supported me throughout my life.

iii

Contents

Abstract . ii

Acknowledgments . iii

List of Abbreviations . xii

1 Introduction . 1

1.1 Problem Description and Background . 1

1.2 Research Methodology and Contributions . 5

1.2.1 Definition of MCOP and The Design of A Corresponding Simulation
Model . 5

1.2.2 Exact Method for Operational Decisions 6

1.2.3 Fast Method for Operational Decisions 6

1.2.4 Analysis on The Impact of Variabilities in MCOP 7

1.3 Summary . 7

2 Literature Review . 9

2.1 Introduction . 9

2.2 Batching Strategy . 10

2.3 Routing Method . 13

2.3.1 Static Routing Method . 13

2.3.2 Dynamic Routing Methods . 17

2.4 Robotic Applications in Order Picking . 19

2.5 Simulation Modeling in Order Picking . 22

iv

2.6 Summary . 25

3 Definition of MCOP and Design and Development of Simulation Model 27

3.1 Introduction . 27

3.2 Problem Description of MCOP . 27

3.3 Operating Data Structure in MCOP . 30

3.3.1 Warehouse Layout Group . 31

3.3.2 Stock Keeping Unit Group . 32

3.3.3 Customer Order Group . 33

3.3.4 Entity Group . 33

3.4 Simulation Model Development . 34

3.4.1 Development of Knowledge Model 34

3.4.2 Development of Action Model . 35

3.4.3 Model Verification and Validation . 38

3.4.4 Use Case of the Simulation Model . 38

3.5 Summary . 39

4 Development of MILP Model for Schedules of All Entities 41

4.1 Introduction . 41

4.2 Parameters and Notation . 42

4.3 Decision Variables . 44

4.4 Mathematical Formulation . 45

4.5 Performance Comparison . 50

4.6 Summary . 56

5 Development of Fast Method for Schedules of All Entities 58

5.1 Introduction . 58

v

5.2 Overview of Hetero-ACO . 59

5.3 Construction of Schedules for Transporters . 61

5.3.1 The Heuristic Function . 64

5.3.2 Dynamic Local Search . 65

5.3.3 Update of Pheromone Matrix . 66

5.4 Searching Schedules for Pickers . 67

5.4.1 Generation of Random Schedules . 68

5.4.2 Adjusting Existing Schedules . 68

5.4.3 Solutions from An Alternative MILP 72

5.5 Performance comparison . 75

5.6 Summary . 80

6 Analysis on The Impact of Variability in MCOP . 82

6.1 Experiment Settings . 83

6.2 Analysis of The Results . 84

6.2.1 Impacts on The Makespan . 85

6.2.2 Impacts on The Wait Time of Pickers 86

6.3 Summary . 89

7 Conclusions and Future Research . 92

Bibliography . 95

Appendices . 104

A Additional Materials for MILP Model Experiments 105

A.1 The remaining 5 warehouse layouts used in the experiments 105

B Additional Materials for Variability Experiments . 109

vi

List of Figures

1.1 (a) The first AGVs were introduced to the industry in the 1950s, by Barrett
Electronics of Northbrook, Illinois [5] and (b) An example of modern AGVs . . 3

1.2 AGV solutions in warehouses: (a) Amazon’s Kiva system for a fulfillment cen-
ter in Tracy, California [6], and (b) Jingdong’s unmanned logistic warehouse [7] 3

1.3 Crocs™ uses AMR solution in its warehouse to assist order pickers [9] 4

2.1 The depicted warehouse layout configuration in [33] 11

2.2 The depicted warehouse layout configuration in [11] 14

2.3 Example routes for the four routing heuristics [40] 16

2.4 An example of the chromosome encoding strategy [44] 17

2.5 Examples of the crossover and mutation operations [44] 18

2.6 The layout of the two-block warehouse [13] 21

2.7 The ASDI modeling methodology [60]. 23

3.1 An example of the warehouse layout in MCOP 29

3.2 Entity-relationship diagram of the operating data structure for MCOP 31

3.3 An example shows how nodes and arcs represent the warehouse layout [62]. . 32

3.4 An example of the simulation model with 2 pickers, 3 transporters, 24 picking
locations, and 12 hand-off spots. 37

4.1 An example shows the positions of picking location and storage racks in the
experiments. 52

4.2 The layout of a warehouse with 4 picking aisles and 1 cross aisle. 52

4.3 Percentage of average makespan from scenarios with different CAs in our model. 56

5.1 A example of the coded representation of entities’ schedules 61

5.2 The flowchart of the Hetero-ACO . 62

vii

5.3 An example of how the subset of items is formed based on the schedules of
pickers for Ants to add to schedules . 63

5.4 An example shows all alternative hand-off spots between a hand-off spot and
a picking location. The nodes in the red circles are the corresponding hand-off
spot and picking location. The nodes (red and green) in the red box are all
alternative hand-off spots since the possible paths between the two nodes in the
red circles pass those nodes in the red box. 65

5.5 An example of how the crossover operator adjusts two pickers’ schedules . . . 69

5.6 An example of how the 2-opt operator adjusts a picker’s schedule 70

5.7 An example of how the relocation operator adjusts two pickers’ schedules . . . 70

5.8 The comparison of average makespan across replications of each scenario for 3
pickers . 79

5.9 The comparison of average makespan across replications of each scenario for 3
pickers . 79

6.1 Boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and
Case9 of 1P2T . 86

6.2 Boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and
Case9 of 2P3T. 87

6.3 Boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and
Case9 of 5P8T. 87

6.4 Average wait time of pickers for all scenarios with 2P3T in all cases 88

6.5 Max wait time of pickers for all scenarios with 2P3T in all cases 89

6.6 The variance in wait time from settings LoadVary and AllVary versus the wait
time from setting Base in all cases for scenarios with 2P3T 89

6.7 The variance in wait time from settings LoadVary and AllVary versus the wait
time from setting Base in all cases for scenarios with 5P8T 90

A.1 The layout of a warehouse with 4 picking aisles and 0 cross aisles. 105

A.2 The layout of a warehouse with 8 picking aisles and 0 cross aisles. 106

A.3 The layout of a warehouse with 8 picking aisles and 1 cross aisle. 106

A.4 The layout of a warehouse with 4 picking aisles and 2 cross aisles. 107

A.5 The layout of a warehouse with 8 picking aisles and 2 cross aisles. 107

viii

B.1 Boxplot of the makespan for the scenarios with RPL sizes in all cases of 1P2T . 109

B.2 Boxplot of the makespan for the scenarios with RPL sizes in all cases of 2P3T . 110

B.3 Boxplot of the makespan for the scenarios with RPL sizes in all cases of 5P8T . 110

B.4 Average wait time of pickers for all scenarios with 5P8T in all cases 111

B.5 Max wait time of pickers for all scenarios with 5P8T in all cases 111

ix

List of Tables

3.1 The summary of objects involved in MCOP. 36

3.2 Summary of system parameters of order pickings. 39

4.1 Summary of the parameters and notations . 44

4.2 Summary of the decision variables . 45

4.3 Summary of the experimental settings . 53

4.4 When the RPL has 5 items, the average percentage (%) increase of the makespan
obtained from our model compared to the value obtained from the baseline
model in different scenarios. 54

4.5 When the RPL has 5 items, the percentage (%) of replications in different
scenarios that our model provides a better result than the baseline model on
makespan. 55

4.6 When the RPL has 5 items, the average wait time decrease per item by changing
from the baseline model to our model in different scenarios. 55

5.1 variables involved in Hetero-ACO . 60

5.2 Parameters involved in constructing schedules of all transporters in Hetero-ACO 64

5.3 Parameters involved in searching schedules of all pickers in Hetero-ACO 68

5.4 Summary of the parameters for the alternative MILP 74

5.5 Summary of the decision variables for the alternative MILP 74

5.6 Summary of the test settings for comparing Hetero-ACO using different meta-
heuristic strategies . 76

5.7 Comparison of the average makespan decrease across replications in each sce-
nario in percentage (%) . 77

5.8 Summary of the test settings for comparing Hetero-ACO with heuristic 78

6.1 The name and values of the 4 parameters used to add variabilities in pick wave . 84

x

6.2 Summary of the test settings for testing the impact of adding variabilities in
pick wave . 84

6.3 The p values of the hypotheses that the mean makespans from settings LoadVary,
AllVary are equal to the makespan in setting Base for 1P2T, 2P3T, and 5P8T . . 86

6.4 The p values of the hypotheses that the median makespans from settings LoadVary,
AllVary are equal to the makespan in setting Base for 1P2T, 2P3T, and 5P8T . . 86

A.1 When the RPL has 10 items, the average percentage (%) increase of the makespan
obtained from our model compared to the value obtained from the baseline
model in different scenarios. 106

A.2 When the RPL has 10 items, the percentage (%) of replications in different
scenarios that our model provides a better result than the baseline model on
makespan. 108

A.3 When the RPL has 10 items, the average wait time decrease per item by chang-
ing from the baseline model to our model in different scenarios. 108

xi

List of Abbreviations

ABS Agent-Based Simulation

ACO Ant Colony Optimization

AGV Automated Guided Vehicle

AMR Autonomous Mobile Robot

DES Discrete Event Simulation

GA Genetic Algorithm

MCOP Multi-entity Cooperative Order Picking

MILP Mixed Integer Linear Programming

PPL Picker Pick List

PSO Particle Swarm Optimization

RPL Required Pick List

SA Simulated Annealing

SKU Stock Keeping Unit

TCL Transporter Carry List

TS Tabu Search

WODS Warehouse Operations Data Structure

xii

Chapter 1

Introduction

1.1 Problem Description and Background

In a modern logistics system, warehousing is a required part for most businesses that transport

products. In the past, traditional warehouses provided nothing more than storage for in-transit

and inventoried goods. However, as the need to save money and boost the system’s productivity

increases, more complex warehouses that can provide better inventory management, efficient

packing/processing, superior customer services, and other additional functions are preferred

by modern businesses. Based on the research conducted in U.S. Logistics Industry, the rise

of e-commerce sales requires warehouses to process online orders quickly and efficiently [1].

In addition, as a result of COVID-19 pandemic, many e-commerce retailers experienced an

unprecedented rise in the number of online shoppers. So, the Intralogistics sector is now fac-

ing challenges that how to balance profit with product variability, short delivery time, and the

scalability of the system. To overcome those challenges, in this research, we focus on applying

automation technologies to assist order picking in a picking warehouse that can accelerate the

fulfillment of customer orders.

The target picking warehouse is a picker-to-parts system that involves several types of

work tasks such as receiving and dispatching orders, picking and transporting products, and

packing and shipping products. In a picking warehouse, order picking involves picking and

transporting products from specific storage locations to the depot (s), order consolidation, and

order packing in the depot (s) to fulfill customer orders. Traditionally, order picking is a non-

value-adding activity. But since this process involves significant money/time costs and even-

tually affects customer satisfaction levels, the realization of the order picking has substantial

1

impacts on the warehousing performance. Existing studies indicated that the cost of order pick-

ing is estimated to be as much as 55% of the total expense of operating the warehouse [2], and

human pickers involved in order picking use about 50% - 70% of their time traveling through

the warehouse workspace [3, 4]. Therefore, order picking, as the core of warehousing, has been

studied by many researchers to improve its performance and efficiency. What’s more, as au-

tomation technology advances, especially in the robotic field, many researchers have started to

find strategies that incorporate using robots to further improve the performance and efficiency

of order pickings.

Automated guided vehicles (AGVs) are mobile robots that follow predefined paths to

transport materials and were first brought to market in the 1950s by Barrett Electronics [5].

Figure 1.1 shows the first AGV introduced to the industry and an example of modern AGVs.

From the figure, we can find that some modern AGVs don’t change much after the AGV is in-

vented. AGVs have become quite capable of performing transporting tasks throughout decades

of development. Therefore, large warehouses prefer to use AGVs to accelerate their daily

order picking even though installing AGVs needs a large investment. Figure 1.2 shows Ama-

zon’s AGV solution and Jingdong’s AGV solution [6, 7]. Also, compared to the first AGV,

those AGVs can do loading and unloading tasks automatically. However, in those applications,

AGVs and human workers do not share their workspace, which means those solutions cannot be

used in a picker-to-parts warehouse. From the late 1990s until recently, many researchers have

focused on the area of Human-Robot-Interaction, and one major application is the assistive

robot system that seeks to provide various support to people such as carrying objects, navi-

gating through spaces, and interacting with people [8]. What’s more, due to the vast amount

of research on robotics-related topics in recent years, autonomous mobile robots (AMRs) are

more cost-effective and flexible than AGVs for supporting human pickers because AMRs can

move to any reachable place in a building rather than being constrained to predefined routes

and locations. Therefore, some companies have already started to use AMRs to assist human

order pickers in their warehouses. Figure 1.3 shows how Crocs™ uses AMRs to support order

pickers for carrying products and navigation [9].

2

(a) (b)

Figure 1.1: (a) The first AGVs were introduced to the industry in the 1950s, by Barrett Elec-
tronics of Northbrook, Illinois [5] and (b) An example of modern AGVs

Currently, few existing works in the literature focus on order picking with assistive robots.

One important research artifact that we use focused on minimizing the makespan of order

pickings for a single picker and multiple assistive AGVs [10]. They extended the algorithm

proposed in [11] and integrated a dynamic programming approach to find the optimal route

for the picker. In [12], they focused on multiple picking and transporting robot cooperation

to complete order picking. They used a Mixed Integer Linear Programming (MILP) model to

create interdependent schedules for all picking and transporting robots to minimize the total

makespan of the order picking. Another research focused on minimizing the makespan of

AMR-assisted order picking in a two-block warehouse [13]. In their work, they use some

predefined handover locations where the pickers place the picked items on AMRs. In Chapter

2, we will discuss these works in detail.

Figure 1.2: AGV solutions in warehouses: (a) Amazon’s Kiva system for a fulfillment center
in Tracy, California [6], and (b) Jingdong’s unmanned logistic warehouse [7]

3

Figure 1.3: Crocs™ uses AMR solution in its warehouse to assist order pickers [9]

Based on the research conducted in [1], warehouse employment in the U.S. experienced

37% growth between 2014 and 2017. They also predicted that employment would continue to

grow by 21% until 2026 due to the rise of e-commerce sales. So inspired by the increasing

need for more efficient order picking and the current state of the literature, in this dissertation,

we propose a method for performing multi-entity (human pickers and AMRs) cooperative or-

der picking (MCOP) in picker-to-parts systems. This MCOP involves picker entities that pick

and place products from storage shelves to transporters and transporter entities that take and

transport products to a depot where further consolidation and/or packing operations take place.

While these are important warehouse-related tasks, we do not consider those operations per-

formed in the depot. The proposed method aims to provide good workloads (the partitions of

the products needed to be picked) and routes for all entities that minimize the total makespan.

Specifically, this work investigates the following open questions:

1. The conceptual design questions focus on identifying characteristics of MCOP such as

components involved, behavior logic of components, the data structure used, etc.

2. The operational control questions focus on determining workloads and routes for all pick-

ers and transporters to efficiently complete MCOP in different operational conditions

such as insufficient numbers of pickers, insufficient numbers of AMRs, etc.

4

3. The tactical questions focus on the performance of operational control methods in dif-

ferent tactical settings such as different numbers of entities, different numbers of items

needed to be retrieved, etc.

4. The strategic questions focus on the performance of operational control methods in dif-

ferent warehouse configurations such as different sizes, different layouts, etc.

5. How does variability in picking, placing, and travel times impact the MCOP operations?

1.2 Research Methodology and Contributions

To answer the questions listed above, we develop different mathematical and simulation models

and conduct experiments using these models. Our work aims to provide a set of approaches

from the conceptual design phase to the practical operation phase to systematically examine the

overall performance of MCOP in different tactical and strategy settings and under stochastic

and changing conditions. The methodologies and contribution of this work are concluded as

follows:

1.2.1 Definition of MCOP and The Design of A Corresponding Simulation Model

In Chapter 3, a general analytical approach is established to support the discussion about the

conceptual design phase in MCOP. We first give a detailed definition of MCOP. This includes

the components involved in MCOP and the behavior logic of each entity in MCOP. Then,

we discussed the operating data structure used to complete MCOP. The data structure is split

into four groups to represent the data needed in different aspects of MCOP such as the in-

formation on warehouse layout, storage, customer orders, and entities. Finally, an animated,

data-generated, and data-driven simulation model based on Simio is built to represent the whole

operation of MCOP. From the design perspective, the simulation model is the digital twin of

MCOP and provides a visualized realization of the processes in MCOP. Also, in the subsequent

chapters, the simulation model will act as a cross-validation tool of the mathematical mod-

els and a testbed that enables the detailed analysis and performance evaluation under certain

scenarios involving various product picking times and entity traveling speeds.

5

1.2.2 Exact Method for Operational Decisions

In Chapter 4, we use MILP to build a mathematical model for the pick wave of MCOP to find

optimal decisions about workloads and routes of all pickers and transporters from the opera-

tional perspective. In our study, we treat the pick wave of MCOP as a joint order batching and

picker routing problem. To make our method effectively handle MCOP in different operational

conditions (insufficient number of pickers or AMRs), inspired by the work in [12], we extend

their model that picking and placing an item can occur in different places. In addition, the

model can decide the times of depot visits for each transporter rather than using predefined

values. However, to reduce the complexity, we relax our model so that it will no longer take

the battery usage of AMRs into consideration. In this chapter, the needed parameters, decision

variables, and constraints are abstracted, formulated, and augmented step by step along with

the assumptions.

We also conduct experiments to compare the performance of our model with the one in

[12] under different settings such as the different numbers of pickers, different numbers of

transporters, different numbers of items needed to be retrieved, different transporter capacities,

and different warehouse layouts. One important finding from our work is that when there are

fewer transporters with lower capacities, picking and placing items in different places can lead

to a shorter makespan for the pick wave of MCOP. And we also find that for a larger number of

retrieved items, using the MILP model is not efficient which may make the model less appealing

for real warehouse owners.

1.2.3 Fast Method for Operational Decisions

In Chapter 5, we develop an alternative algorithm called Hetero-ACO to find operational deci-

sions fast for MCOP based on Ant Colony Optimization (ACO) [14]. Since pickers and trans-

porters can cooperate with multiple partners (transporters and pickers respectively) in MCOP,

infeasible decisions could lead MCOP to a deadlock where all pickers are waiting for trans-

porters and all transporters are waiting for pickers. So, to avoid generating those infeasible

decisions, Hetero-ACO will first generate the workloads and routes for pickers and then uses

6

an ACO-based algorithm to find the workloads and routes for transporters that minimize the

makespan. Simulated Annealing (SA) and Tabu Search (TS) [15] are also tested in alternating

workloads and routes for pickers to check which method can improve the performance of our

algorithm. In addition, we develop a much simpler MILP model that only involves pickers. We

extract the intermediate solutions containing the workloads and routes for pickers from solving

this simpler MILP model and use those solutions to accelerate the convergence of our proposed

Hetero-ACO algorithm. Evaluation is performed by comparing our algorithm with a heuristic

method. By this comparison, we find that when the number of transporters is less than the

number of pickers, our proposed algorithm can provide a better makespan than the heuristic

method. What’s more, if the needed items are spread widely in the warehouse, our algorithm

usually performs better.

1.2.4 Analysis on The Impact of Variabilities in MCOP

In Chapter 6, we conduct experiments to check the impact of picking, placing, and travel time

variability on our proposed methods for MCOP. By exploring different combinations of dis-

tributions of product picking times and entity traveling speeds in our simulation model, we

provide a brief analysis of the influence on the makespan of MCOP and the wait time of pick-

ers. Based on our experiment results, the variabilities will negatively impact the decisions from

our proposed methods when the ratio of transporter number to picker number is smaller than 2.

that is, the real makespan becomes more likely to be greater than the baseline expected value.

This finding shows sophisticated pickers are important to our method if we want to reduce the

negative impact of the variabilities.

1.3 Summary

Due to the variety, complexity, and timing requirements brought by the rising e-commerce,

coherent and flexible decisions for operating the order picking in a picker-to-parts warehouse

are needed in modern warehousing systems. As the more cost-effective mobile robots, assistive

AMRs show great potential in improving the warehousing efficiency by taking advantage of

their fast movement.

7

To better use AMRs and to improve the overall performance of warehousing, a multi-entity

order picking method is proposed. Also, by exploring research approaches involving simula-

tion modeling, mathematical programming and modeling, statistical and stochastical analysis,

etc., we expect our work to deliver useful insights to warehouse owners who are seeking to

use robotic technology to improve warehousing systems and contribute to the current body of

literature as well.

8

Chapter 2

Literature Review

2.1 Introduction

Over the last decades, a vast body of research has focused on improving order picking processes

and facility designs. Due to the complexity of order picking, many aspects of a warehouse sys-

tem can affect its performance. Recent reviews [2, 16, 17] discuss the aspects of the warehouse

system that can impact order picking, the current research state, and future research directions.

Although every aspect discussed in those reviews is important for improving order picking, in

this work, we will only focus on several aspects and just give a brief introduction to those we

don’t focus on.

The warehouse layout design is a factor that can affect order picking. In general, it con-

cerns two problems: one is called the facility layout problem which focuses on deciding where

to locate various departments (storage, picking, packing, shipping, etc.). The other one is called

the internal layout problem focuses on determining the storage blocks and aisles in each block.

A lot of research has been done in these general areas [18, 19, 20, 21, 22].

The warehouse storage assignment is another factor. It generally focuses on the placement

of products (items) before they can be retrieved to fulfill order picking. Currently, even there are

many existing storage policies such as random storage, dedicated storage, closest open storage,

class-based storage, and turnover-based storage, many researchers are still trying to find more

efficient and effective storage policies to better support order picking [23, 24, 25, 26].

9

The remainder of this chapter presents an analysis of the gaps and strengths of the research

on four main areas, namely batching strategy, routing method, robotic applications in order

picking, and simulation modeling in order picking.

2.2 Batching Strategy

Order batching is the process of grouping customer orders into batches and releasing them for

order picking. That is, for a single picker, before backing to the depot and unloading the orders,

the picker can pick multiple orders during the picking tour. Usually, the main objective of the

batching strategy is to reduce the traveling time or traveling distance of order pickers.

In many studies, researchers tried using heuristics to solve order batching problems. Seed

algorithms form a big group of those heuristics. They usually consist of two steps: Choosing

the seed (or initial) order and then adding other orders to the seed order until the order picker is

filled to capacity. For the variety of seed algorithms, they use different seed selection rules and

seed order addition rules to perform those two steps. For example, using a random order as the

seed order and then selecting the order with the property that the sum of the distances between

every item of the seed and the closest item in the order is minimized [27]. Using the order with

the largest number of items as the seed order and selecting the order with the property that the

sum of the distances between every item of the order and the closest item in the seed order

is minimized [28]. In some methods, the added order is chosen by minimizing the additional

aisles visited or checking the difference between the center of gravity (COG) of added orders

and the COG of the seed order [29]. Another big group of heuristics is called savings algorithms

which focus on the time savings that can be obtained by combining two orders. A very basic

variant is called C&W(i). In that algorithm, savings of all possible order pairs are calculated.

Then, the pair with the highest saving is selected and judged by some rules to be inserted

into an existing route or forming a new route. To improve this algorithm, the other two variants

C&W(ii) and C&W(iii), add a recalculation feature when one or two orders have been clustered

and a limitation of the number of batches, respectively [30]. Elsayed and Unal [31] proposed an

algorithm called EQUAL which combines seed algorithms and savings algorithms. De Koster

et al. [32] compared the seed algorithms and saving algorithms with different routing methods.

10

They found that seed algorithms have better performance when the capacity of the pick device

is large, and savings algorithms have better performance when the capacity of the pick device

is small. J. Zhang et al. [33] proposed an integrated online order batching method called

IOOPDS which can deal with dynamically arriving orders. Their algorithm assigns orders

into picking batches to minimize the makespan and maximize the number of completed orders

before departure (depart from the warehouse for customers). Their work focuses on a typical

single-block warehouse which is shown in Figure 2.1. Also, they used the S-shape tour as the

routing strategy. At the start of the IOOPDS method, it uses a MILP model to solve an offline

version of the order batching problem. Then, it applies rule-based solutions to deal with future

orders. One rule applies seed algorithms in [34] and C&W(ii) based on order similarity. For

two orders, the similarity is calculated by taking the ratio of the numbers of identical picking

aisles between two orders and the total number of picking aisles that the picker needs to visit

if the two orders are combined. Another rule modifies the seed algorithms and C&W(ii) and

takes the completion time of the orders and departure time into consideration.

Figure 2.1: The depicted warehouse layout configuration in [33]

Hsieh and Huang [35] introduced two new batching heuristics based on data-mining con-

cepts to minimize the traveling distance of pickers. One method is called Self-organization

11

Map Batching (SOMB), in which orders act as the artificial neurons, and each order has three

factors: the number of SKUs in the order; the number of aisles covered in the order; the number

of the same aisles covered between two orders (must be redefined before use). Based on these

three factors, orders can be marked as a three-dimensional (3-D) node grid. Then, to reduce

the computation complexity, the SOMB method uses Order relativity, a linear combination of

the number of SKUs in an order and the number of the same aisles covered between two orders

to project the 3-D grid to a 2-D grid. Finally, the order containing maximum SKUs becomes

the core order to form a new batch, and other orders will be added to the batch based on the

node distance in the 2-D grid. When a batch reaches its capacity, a new batch will start to form.

Another method is called K-means Batching (KMB), in which the order with the minimum

traveling distance is the core of a new batch. Then, an order that causes a minimum increment

in total traveling distance will be added to this batch. When a batch reaches its capacity, a new

batch will start to form. In their work, they also showed that order batching is the critical strat-

egy under small and medium order numbers, while storage assignment is the critical strategy

under large order numbers.

Other than heuristics, metaheuristics are also widely studied for order batching problems.

One methodology was presented in [36] to study the joint order batching and scheduling op-

timization problem. The method is based on a revised similarity index used to form the batch

and then combined the genetic algorithm (GA) [37] with a two-echelon encoding structure to

determine the sequence of the orders. They also adopted several initialization methods to in-

crease the overall efficiency of the GA such as methods where the picking line with the earliest

completion time has the priority to be scheduled, or the batch with a larger amount of items

is more likely to be assigned to high-efficiency picking lines. Henn and Wäscher [38] pro-

posed order batching methods using two metaheuristics: Tabu search and attribute-based hill

climber (ABHC) to reduce the travel distance in a picker-to-parts warehouse. For their two

metaheuristics, the configurations are represented by three arguments: the initial solution, the

neighborhood structure, and the neighborhood selection strategy. They provided two initial

solution methods: one is generated entirely randomly, and one is generated by a recalculation

time-saving algorithm. They also provided three neighborhood structures: one is called swap,

12

in which the set of solutions can be obtained from interchanging two customer orders from

different batches, another is called shift, in which the set of solutions can be generated by as-

signing one order to a different batch, and the remaining one is a combination of the previous

two structures. Their selection strategy tried two options: exploring all neighborhoods or ex-

ploring part of the neighborhood. They also provided class-based demand and uniform-based

demand experiments, which reveal that these two methods have similar performances. More-

over, based on their experiments, they found that if they use the combination neighborhood

structure, the impact of the initial solution is negligible.

2.3 Routing Method

According to the research in [3], traveling through the warehouse contributes about 50% of the

picker’s total order picking time. So, reducing the traveling time is usually the first candidate

for improving the order-picking process. The routing problem in warehouse order picking is a

special case of the well-known Travelling Salesman Problem (TSP). After order pickers receive

a picklist in a warehouse, they start at a location (usually a depot), then visit all item locations

in the picklist and finally return to the starting location. There are different methods developed

in recent decades to handle this routing problem, and we will discuss several works focusing

on the routing problems.

2.3.1 Static Routing Method

One common assumption in many research is that after the routes for pickers are determined,

the routes should not be adjusted during the order picking. So, in static routing methods, if new

orders arrive while the pickers follow the existing routes, the new orders can only be included

in new routes. For solving static routing problems, many researchers focus on using heuristic

methods or metaheuristic methods or both.

Heuristic routing methods use efficient heuristics to find an acceptable solution quickly

instead of the optimal one. For rectangular warehouses that have parallel picking aisles and

crossover aisles only at the top and bottom shown in Figure 2.2, Ratliff and Rosenthal [11]

developed an algorithm called Optimal to construct a minimum length tour for a single order

13

picker to pick all items in a pick list based on some pre-defined route segments they called

partial tour subgraph (PTS). In their work, they converted the warehouse into a graph in which

vertices represent the depot, the requested items, and the ends of each picking aisle. Also,

each adjacent pair of vertices is connected by an unlimited number of parallel arcs and the

pre-defined PTSs are some possible combinations of arcs. By using dynamic programming,

the algorithm can construct the tour with minimum traveling distance. Their algorithm pro-

vides a very efficient procedure to solve the routing problem for the desired warehouse layout

configuration. However, if there are more crossover aisles in the warehouse, the number of

the pre-defined possible arc configuration classes could increase rapidly. For rectangular ware-

houses that have multiple cross aisles (at the top, bottom, and in between), an “Aisle-by-aisle”

routing method to find the minimum traveling distance is investigated in [39]. In this method,

order pickers will visit every picking aisle one by one. For every picking aisle, if the indices of

the entered and exited cross aisle are given, the method can compute the traveling distance to

pick all required items in that picking aisle. Therefore, this policy can recursively find a picking

tour with minimum traveling distance by using dynamic programming.

Figure 2.2: The depicted warehouse layout configuration in [11]

14

Roodbergen and Koster [40] compared four different heuristic routing methods and pro-

posed a combined heuristic that extends the Optimal algorithm in [11] to fit warehouses with

multiple cross aisles. The four compared routing heuristics are S-shape, Largest Gap, Aisle-

by-aisle, and the Optimal algorithm. The S-shape heuristic is that the picker will traverse the

entire picking aisle when the aisle contains at least one required item. The Largest Gap heuris-

tic tracks the gap (distance) between any two adjacent required items within a picking aisle or

between a required item and a cross aisle. So, the Largest Gap heuristic will determine whether

it is necessary to traverse the entire picking aisle. The Aisle-by-aisle and the Optimal algorithm

are the exact work we discuss above. Figure 2.3 provides example routes for these four routing

heuristics. For their proposed Combined heuristic, it divides the warehouse into several blocks.

Each block consists of two adjacent cross aisles and the picking aisles between the two cross

aisles. Then, starting from the farthest block to the nearest block (from the depot) and starting

from the left picking aisle to the right picking aisle, the Combined heuristic will construct the

route using dynamic programming extended from the Optimal algorithm. Heuristic methods

are also compared in [41]. The authors analyzed the S-shape, Return, Midpoint, Largest Gap,

Combined, and the Optimal algorithms in warehouses which are similar to the one in Figure

2.2. Based on the analysis, they found the route distances of those methods heavily depend on

the size and shape of the warehouse and the size of the pick list. In addition, a properly selected

routing heuristic could result in routes that are only a few percent over the optimal route.

The word metaheuristic was first mentioned in [42] to refer to a high-level problem-

independent algorithmic framework that provides a set of guidelines or strategies to develop

heuristic optimization algorithms [43]. Compared with heuristics, metaheuristics generally

perform better and can be considered a higher-level strategy to modify heuristics to generate

solutions. Also, unlike heuristics that often end up with local optimal solutions, well-defined

metaheuristics can often find the global optimal solution. So, in recent years, many researchers

have started focusing on using metaheuristics to solve routing problems in order picking. Tsai

et al. [44] proposed a two-layer GA to solve the batch-picking problem in a picker-to-parts

warehouse. Their objective is to find a minimum travel cost that combines the total traveling

distance and a penalty related to tardiness (or earliness) of fulfilling all orders. They assumed

15

Figure 2.3: Example routes for the four routing heuristics [40]

that each order was dividable so that a batch could contain parts of an order. In their proposed

method, the first layer of GA is to solve a batch problem. A population of chromosomes in

which the length of each chromosome equals the number of items in all orders. Each gene in

the chromosome represents the batch number. After having the chromosomes, the method uses

crossover and mutation operations to generate offspring. Figure 2.4 and Figure 2.5 show the

example of the chromosome encoding strategy and the updating operations, respectively. The

second layer of GA is to solve a TSP. The population initialization, selection, mutation, and

16

surviving rules are the same as in the first layer of GA. Kulak et al. [45] combined TS and clus-

tering algorithms to solve order batching and picker routing problems jointly. In their work,

they first used a MILP to model the problems and provided two modified TS methods to find

the solutions. The first TS method constructs the solution by integrating the Nearest Neighbor

+ Or-opt heuristic [46] and the TS algorithm. The second method constructs the solution by

integrating the Savings + 2-opt heuristic [47] and the TS algorithm. They also developed a

seed-based clustering algorithm to generate initial batches. Chen et al. [48] introduced a hy-

brid algorithm to solve joint order batching and picker routing problems. Their work focuses

on minimizing the total tardiness of all customer orders in a picker-to-parts warehouse. The

hybrid algorithm first applies a hybrid-coded GA to make decisions about batch size and order

sequence in a batch. After deciding the batch sizes and order sequences, the proposed algo-

rithm uses ACO to construct the route for each batch. A two-stage algorithm is also proposed

in [49] which uses Particle Swarm Optimization (PSO) to first determine the order batches and

then use ACO to identify the shortest picking distance for each batch.

Figure 2.4: An example of the chromosome encoding strategy [44]

2.3.2 Dynamic Routing Methods

Unlike static routing problems, many problems focus on order picking where routes of pickers

can be adjusted for newly incoming orders during an order picking. Those problems are usually

treated as dynamic vehicle routing problems (DVRPs). As warehouses face the challenge of

dealing with more and more orders based on the rise of e-commerce sales, dynamic routing

17

Figure 2.5: Examples of the crossover and mutation operations [44]

methods may provide quicker responses to customer orders. Therefore, studies in this area are

increasing in recent years.

Giannikas et al. [50] proposed an Interventionist Routing Algorithm (IRA), which ex-

tends the Optimal algorithm to deal with new arriving orders during the picking process. Their

work allowed the picking operation to be interrupted by newly arrived orders even though the

required items are not further downstream in a picker’s current route. To achieve the dynamic

feature, they first defined two traveling areas: One-way and Round-trip. For a One-way area,

the picker can travel through aisles in either a forward or backward direction but not both. For

a Round-trip area, the picker can travel through aisles in both directions. Also, they introduced

seven new arc configuration classes to build partial tour subgraphs. If new orders arrive, the

IRA will construct a new route to deal with new orders. Therefore, the picking operation can be

supplemented by any order received. The authors also provided simulation tests based on their

proposed IRA in [51]. They compared their IRA with the Optimal algorithm and the Largest

Gap heuristic. They found that when the rate of new orders is lower than some value, IRA

outperforms the other two in terms of completion time. As the rate of new orders increases, the

performance of the IRA and the Optimal algorithm are close but still better than the Largest

Gap heuristic. Xu et al. [52] introduced an Enhanced Ant Colony Optimization (E-ACO) to

18

solve the multi-vehicle dynamic vehicle routing problem (DVRP). In their work, they used the

K-means clustering algorithm to reduce the size of the optimization problem. Then for each

cluster, they use their E-ACO to construct the routes. In their E-ACO, they used an ant-weight

pheromone updating strategy shown in formula 2.1.

∆τ kij =

Q

K∗L ∗ Dk−dij
mk∗Dk , if edge (i, j) visited by the kth ant

0, otherwise
(2.1)

Where ∆τ kij is the pheromone left by ant k. Q is a constant and L is the sum of all routes’

lengths, that is L =
∑

k D
k. Dk is the route length of kth ant, dij is the length of the edge

(i, j), and mk is the number of locations visited in the kth route. Also, several local search

methods (crossover operation, swap operation, etc.) are included in their E-ACO to enhance

the solution. Based on their experiments, the E-ACO outperforms other metaheuristics like TS

and GA-based algorithms when dealing with multi-vehicle DVRP.

2.4 Robotic Applications in Order Picking

Azadeh et al. [53] presented an overview of the recent trends in using robotic technology in

warehousing to fulfill orders. In their work, they provided analytical models to represent and

evaluate the operations in warehouses. As an overview, they discussed several autonomous

picking systems in three categories: system analysis, design optimization, and operations plan-

ning and control. Also, they mentioned that human picker in collaboration with support AGVs

is becoming increasingly popular in practice in order picking operation but has not been ade-

quately studied for scientific investigations.

Löffler et al. [10] extended the Optimal algorithm in [11] to provide a routing strategy

for an AGV-assisted order-picking system. Their work optimizes the routing of a single picker

when he (she) is cooperating with AGVs to minimize the makespan of the order picking. In

their research, they assumed that when an AGV is assigned to a human picker before the human

picker finishes his picking tour, the AGV cannot assist other human pickers at the same time.

When a human picker finishes his picking tour, his assigned AGV will be released and can be

19

assigned to another human picker if needed. They also conducted experiments and indicated

that AGV-per-picker-ratios of about 1.5 seems to be a realistic rule of thumb in their AGV-

assisted order picking with multiple pickers. Lee and Murray [12] developed a MILP model to

represent two kinds of robots: pickers and transporters that cooperate in order picking. In their

model, an item should first be picked by a picker and then placed on a transporter at the same

place. Therefore, pickers will only focus on picking items and placing items, and transporters

will only focus on holding and transferring the items to the depot. They also assumed that a

picker could cooperate with multiple transporters simultaneously and vice versa. In addition,

only successfully transferring an item from a picker to a transporter, both the picker and the

transporter can move to another place. Their work also considers the usage of the batteries of

robots. They evaluated the performance of different combinations of pickers and transporters

and different warehouse layout designs. Based on the results, it shows that when there are

more picking aisles or fewer cross aisles, using robots in order-picking operations offers the

most significant improvement over traditional human order-picking.

Giulia et al. [13] investigated an application of a hybrid picker-to-parts order-picking

system, in which human pickers collaborate with AMRs. In their study, the application ware-

house is characterized by two blocks, as depicted in Figure 2.6, and the warehouse has some

handover locations where pickers put collected items at a handover location, which are vis-

ited by an AMR. The AMR then picks and transports the items to the depot. Based on their

study, they found that letting picking aisles share the handover locations can lead to more ef-

ficient solutions in terms of tardiness when compared with separating handover locations for

each picking aisle. They also indicated in this application, increasing AMR fleet size provides

better performance than increasing AMR fleet speed, in terms of tardiness. Žulj et al. [54]

proposed a two-stage heuristic consisting of adaptive large neighborhood search (ALNS) to

solve the AMR-assisted order-picking problem, which focuses on grouping customer orders

into batches, assigning batches to AMRs, and finding the sequence of these batches processed

by the order pickers and the AMRs such that the total tardiness of all customer orders is mini-

mized. In their work, they find that compared to increasing the AMR fleet size, increasing the

speed ratio between AMRs and order pickers can lead to a larger reduction in total tardiness.

20

Takayoshi [55] proposed an algorithm that generates a sub-optimal cooperation schedule for

both AGVs and human pickers. The algorithm combines two heuristic rules to reduce the size

of the search space: assigning a picker to an AGV that is closest to the picker or assigning a

picker to an AGV who is most behind in the schedule. By using these two heuristic rules, the

proposed algorithm is almost linear to the number of AGVs used in the warehouse.

Since human pickers are still the core of robot-assisted order pickings, how applying

robots influences the pickers is an important area as well. A recent study suggests, to assess the

effect of the introduction of more automation in intralogistics jobs, one needs to consider the

specific system design characteristics[56]. Pasparakis et al. [57] investigated how the experi-

ence of autonomy affects the pickers’ satisfaction with the job, which may affect the turnover

intentions. In their work, job satisfaction and self-evaluations including self-esteem and self-

efficacy are the metrics for assessing the long-term success of a human-robot collaborative

system. In addition, the work evaluates two human-robot collaboration strategies: human lead-

ing the robot and human following the robot. Based on their experiments, the work finds that

the introduction of collaborative robots increases job satisfaction for both collaboration strate-

gies. But when the pickers are guided by the robots, there is a greater positive effect on job

satisfaction. The work also finds that self-esteem and self-efficay are stable in the transition

from manual to collaborative order picking.

Figure 2.6: The layout of the two-block warehouse [13]

21

2.5 Simulation Modeling in Order Picking

Compared to analytical models, well-defined simulation models have several advantages: 1)

simulation models can handle some complex systems which are difficult to analyze using math-

ematical methods; 2) simulation models allow the modeling of uncertainty and the generation

of probability distributions for model outputs; 3) simulation models can help to generate a

deeper understanding of the system being modeled, by allowing the user to see the behavior

of the system over time and under different conditions; 4) simulation models allow for ex-

perimentation, such as “what-if” analysis, that can be difficult or impossible to perform with

analytical models. In this work, we are focusing on the papers that describe both simula-

tion development methodology and the use of simulation to evaluate performance. Currently,

there are many simulation modeling methodologies. Multi-paradigm modeling and simulation

framework (MPMF) is proposed in [58] to model real-world systems. In this methodology, a

complex system is divided into several subsystems in their work, and each subsystem could use

one or multiple modeling and simulation (M&S) methods (Discrete Event (DE), System Dy-

namics (SD), and Agent-Based (AB) methods) to model. Because many subsystems may need

to exchange information, this methodology also provides a four-step structure to help identify

the proper method to use and how they interact to exchange information in a simulation model.

A three-step methodology is discussed in [59]. In this work, to develop a simulation model,

domain modeling which describes the problem domain, conceptual modeling which describes

the domain in language-independent simulation terms, and simulation modeling are applied.

The ASDI methodology (Analysis, Specification, Design, Implementation) was first in-

troduced in [60] and is used for the design, development, and implementation of a simulation

environment, which could be an existing domain (class of system) or a system that still has to

be conceived [61]. Figure 2.7 shows the ASDI methodology [60]. Based on ASDI method-

ology, the final simulation model is obtained by repeatedly constructing the knowledge model

and action model. The ASDI methodology recommends the construction of a knowledge model

of the system through Analysis and Specification phases, which allow the modeler to identify

the objects in the system and the corresponding behaviors. Then, based on the methodology,

22

through Design and Implementation phases, the knowledge model is translated to an action

model that provides performance criteria for the system.

Figure 2.7: The ASDI modeling methodology [60].

Warehouse Operations Data Structure (WODS) was first introduced in [62] as a general-

ized data structure used in real-world order pickings and simulation areas. The idea is that this

data structure can serve as a “starting point” for research work involving order picking. In their

work, the data structure consists of six tables: Orders, SKUs, LineItem, Nodes, Arcs, and Slots.

The Orders table holds information about customer orders. The SKUs table holds information

related to each Stock Keeping Unit (SKU). The LineItem table stores the information related

23

to each line of orders and the required SKU. The Nodes table and the Arcs table store informa-

tion related to graph representations of the warehouse layout. The Slots table is related to the

storage that connects the representation of the node with SKUs. WODS can be implemented in

any database software by having this design, and it is also easily extendable based on the real

problem.

A simulation-based comparison of an Autonomous Storage and Retrieval System (AS/RS)

and a Kiva system is conducted in [63]. In their work, they examined the performance of the

two systems on the basis of expected throughput and expected container retrieval times under

different settings such as different numbers of SKUs, different numbers of open pickers, and

different warehouse layouts, etc. A multi-agent simulation of the logistics warehouses is pro-

posed in [64]. They designed a self-contained agent architecture that makes an agent can be

executed as a single program, and the internal attributes (variables, functions, and methods)

are not directly referred by the other programs. They also designed a unified architecture of

agent messages to make the development of agents’ communication easier. An event-based

simulation model of manual order picking is discussed in [65]. In this work, An event graph

is developed to represent the event and description of the system logic. The simulation model

tested three delivery policies from same-day delivery to 48-hour delivery. Under the three

policies, they found that specifying different time windows for different delivery policies out-

performs the mixture of different delivery policies in terms of picker utilization and makespan

of order picking.

Bahrami et al. [66] carried out an intensive simulation study to examine the performance of

order picking under different picking policies in a picker-to-parts system. Their work measures

the system based on the total traveled distance, the number of collisions between pickers, and

the order lead time. The work also characterizes the system based on four factors: batching

rules, routing policies, sorting methods, and storage strategies. According to a full factorial

experiment, the work finds congestion has a direct impact on order lead time and a random

batching rule performs poorly than other batching rules for collisions and order lead time.

Klodawski et al. [67] also focused on using simulation to analyze congestion situations in

a picker-to-parts system with very narrow aisles. In their work, the order picking system is

24

characterized by different storage policies, the number of pickers, and picking strategies. The

work explains seven congestion situations that may occur during order picking. Based on their

experiments, although increasing the number of pickers can increase the picking efficiency,

more pickers lead to congestion and cuts the picking efficiency.

Winkelhaus et al. [68] developed a simulation model to study a hybrid order picking

where autonomous robots and human pickers work together within a shared workspace. In their

work, autonomous robots are capable of picking items and are considered as a different type of

pickers that can pick large and standardized goods. To develop the simulation model, the work

applies AB and DE methods to build its three components: agents and behaviors, interactions,

and working environment. The work uses eight basic actions to depict the logic of human

pickers and autonomous robots. In addition, the work illustrates six blocking configurations

and discusses the process of solving the blocking situations. Because the proposed hybrid

order picking is rarely used in practice, the work validates the simulation model based on

related research and observations.

2.6 Summary

This chapter discusses many research works that focus on different aspects related to order

picking. Because of the complexity of order picking, those aspects are always interdependent,

and therefore, the recent trend of using robots to assist human pickers in cooperative order

picking raises many research questions that are open for discussion.

Many researchers focus on order picking that only involves human pickers. However,

fulfilling the cooperative order picking that applies robots is different from the order pickings

that only have human pickers. Currently, how to assign robots to assist human pickers, and

whether the existing batching strategies and routing methods are still effective in cooperative

order picking are still not fully studied. In addition, for the warehouse layout and storage

assignment methods, whether those methods still have similar performance in cooperative order

picking is needed to be discussed.

25

Some researchers have already proposed several cooperative order-picking methods in

batching strategies and routing methods. However, those works only focus on the static sit-

uation that they assume the pickers and robots will follow the exact schedules without any

variation. In reality, human pickers and robots may face unforeseen delays (need more time to

find the items, need more time to place the items, etc.) when fulfilling the order picking. Exist-

ing studies in the literature haven’t considered these unforeseen delays when they determine the

batches and routes for pickers and robots. So, studies on analyzing the influence of unforeseen

delays on cooperative order pickings and designing methods to handle those unforeseen delays

are needed.

According to the literature review, there are many works focused on using simulation tech-

niques to model order pickings, but none of the studies consider building a universal simulation

model to test methods in different aspects of multi-entity cooperative order picking. Although

there are works that provide frameworks to build complex systems, there is no general testbed

for cooperative order picking among the existing studies in the literature.

26

Chapter 3

Definition of MCOP and Design and Development of Simulation Model

3.1 Introduction

This chapter first aims to provide an introduction to the Multi-entity Cooperative Order Picking

(MCOP) problem. We will discuss the picker and transporter entities, the warehouse layout, the

dispatching rule, the data structure used, and the assumptions we use to study MCOP. Then,

A data-driven and data-generated simulation model is built based on ASDI methodology to

support the development of both design configuration and operational control of MCOP. Since

the operations in MCOP includes entity movements, loading/unloading, as well as the dynamics

in order, entity, and Stock Keeping Unit (SKU) information, etc., those operations are simulated

based on a hybrid methodology which combines Discrete Event Simulation (DES) and Agent-

Based Simulation (ABS) techniques. The simulation model is developed in Simio [69], which

is a commercial multimethod simulation modeling tool.

3.2 Problem Description of MCOP

In MCOP, a required pick list (RPL) is the list of all items that must be retrieved from the

warehouse storage and delivered to a depot (packing station). The list of items may consist of

multiple customer orders, and it is known before the start of order picking and is fixed during

the whole operation period. In MCOP, there are two types of entities that perform different

tasks: pickers and transporters. Pickers’ duties are picking items from picking locations and

placing items on transporters, while transporters’ duties are accepting items from pickers and

transporting them to the depot. In general, the pickers provide the dexterity required for picking

27

different items from different shelf locations/slots and the transporters provide the transport

speed required for efficient operation. At the start of a pick wave in MCOP, each picker will

have a picker pick list (PPL) that describes the required items this picker needs to pick in this

pick wave. Also, each transporter will have a transporter carry list (TCL) that describes the

required items this transporter needs to deliver to the depot in this pick wave. Each item in the

RPL should appear and only appear in one PPL and one TCL. Since there could be multiple

same items in the RPL belonging to different customer orders, those items could appear in

different PPLs and TCLs. Using these definitions, it is clear that combining all PPLs (or TCLs)

will be the exact RPL (i.e., the PPLs form a partitioning of the RPL).

In MCOP, the warehouse consists of storage racks, picking and cross aisles, picking lo-

cations, hand-off spots, and home and depot locations. Figure 3.1 shows an example of the

warehouse used in MCOP. In the figure, each storage rack consists of multiple picking slots,

and several picking slots have a corresponding picking location where the pickers pick items.

The “Home” represents the rest area for pickers and the charging area for transporters. Some-

times it is possible that the depot also acts as the home location. Also, there are some locations

called hand-off spots at which pickers place items on transporters. In this work, pickers follow

an individual picking strategy. That is, when a picker finishes picking the needed item(s) at a

picking location, the picker should move to a hand-off spot and place the item(s) on a trans-

porter before picking the next item(s). Ideally, the optimal hand-off spot for each item should

be determined by incorporating the states of all entities, which means we need to calculate

the optimal hand-off spot for each item in the warehouse during the pick wave. However, to

reduce the complexity of the problem, we use sets of pre-defined hand-off spots in this work.

In addition, in order to let order picking be closer to reality, as depicted in [12], every picking

location is a hand-off spot by default. When a picker arrives at the assigned hand-off spot with

the picked item(s) ahead of the assigned transporter, the picker must wait at the hand-off spot.

Similarly, when the transporter arrives at the hand-off spots earlier, it must wait for the assigned

picker. In actual MCOP, instead of waiting at the hand-off spots, it is reasonable for pickers to

dynamically alter their positions when they “see” their assigned partner moving toward them.

However, in this work, we let both pickers and transporters wait at the hand-off spots before

28

their assigned partner arrives to simplify MCOP. Therefore, only after finishing the placement

of the picked item(s) can the assigned picker and transporter leave the hand-off spot and move

to their next place for other activities. And in Chapter 6, we track the waiting time by pickers

and transporters and use them as performance metrics to analyze MCOP.

Figure 3.1: An example of the warehouse layout in MCOP

To accomplish MCOP, pickers and transporters will cooperate and pick up all the items in

the RPL and transport them to the depot. Here, we make no assumption about the cooperation

type. That is, each picker can cooperate with all transporters while each transporter can coop-

erate with all pickers during the pick wave. All transporters have a limited capacity and may

require to drop their carried items at the depot multiple times during the order picking. So, at

29

the beginning of MCOP, each picker should have its PPL and the corresponding route repre-

sents the picking sequence of the items in PPL. While each transporter should have its TCL and

the corresponding route represents the carrying sequence of the items in TCL. Then, the goal

of this work is to determine the workload (PPLs and THLs) for pickers and transporters and

the route for pickers and transporters to finish their workload to accomplish the pick wave of

MCOP in a minimum makespan. In the following of this work, we will use the word “sched-

ules” to represent the workloads and routes for all pickers and transporters. In this work, we

have the following assumptions to better study MCOP:

1. The depot has an additional consolidation process, and therefore, we can split orders

into individual items and let different pickers and transporters pick and transport the

associated items.

2. All entities initially start from the home location. When finishing the order picking, all

entities will return to the home location.

3. Traveling speeds of all entities, the picking and placing time of all pickers are determin-

istic and known for modeling MCOP. In Chapter 6, we will also experiment with some

distributions for those values.

4. One type of item can only be stored in one picking slot in a storage rack, and one slot can

store multiple types of items, as defined in [62].

5. The capacity of transporters could be related to many factors (item volume, item weight,

item number, etc.). For simplification, in this work, each transporter has a number-related

capacity that each transporter can only carry a limited number of items before back to the

depot.

3.3 Operating Data Structure in MCOP

In MCOP, an operating data structure is needed to complete the operation. We develop the

operating data structure based on WODS. WODS provides a general way to organize warehouse

data and offers the flexibility to add extra information when applying to different applications.

30

Figure 3.2: Entity-relationship diagram of the operating data structure for MCOP

Figure 3.2 shows the entity-relationship diagram (ERD) of the operating data structure for

MCOP. In this chapter, our simulation model will use this data structure to simulate MCOP.

The data structure contains multiple tables and can be broken down into four main groups

based on the roles in MCOP. We will explain those groups in this section, but we will not

discuss them in detail again for those groups already discussed in [62].

For the experiments in Chapters 4 and 5, we use randomly generated storage slots for

SKUs and randomly generated customer orders, which are the values in the Skus table and

Orders table from our data structure. However, if there is any “real data”, we could easily

apply it to our data structure and then use it.

3.3.1 Warehouse Layout Group

This group consists of Nodes table and Arcs table. Using these tables, we can represent the

warehouse layout and the movement graph for pickers and transporters. Figure 3.3 shows an

example of how nodes and arcs represent the warehouse [62]. In the figure, the circles are the

nodes, and arcs are the paths between adjacent circles. Pickers and transporters may stop at

these nodes to perform tasks like picking items or cooperating with others. Also, all circles in

31

Figure 3.1 are treated as nodes. In the following of this chapter, we will use PickNodes and

CoopNodes, which represent the picking locations and hand-off spots, respectively.

Nodes – This table contains node information like node ID, node object type (picking

locations, hand-off spots, etc.), and the position represented by their X, Y, and Z values with

the corresponding unit under a specific coordinate system.

Arcs – This table contains arc information like arc ID, the head node (starting point), and

the tail node (ending point). The head and tail nodes make each arc a unidirectional path. So,

to simulate the bidirectional property of the paths in the warehouse, for each pair of nearby

nodes, two arcs that have opposite head and tail nodes are applied.

Figure 3.3: An example shows how nodes and arcs represent the warehouse layout [62].

3.3.2 Stock Keeping Unit Group

This group consists of Skus table. It holds information about each SKU, which is also the type

of items stored in the picking slot. We’ve already indicated the capacity of the transporters is

based on the number of carried items. However, to make the data structure available for more

common use, the table Skus also contains weight or volume (or both) information of the SKU.

So, in Figure 3.2, the Skus table includes Sku ID, the PickNode (picking location), the item’s

weight (optional), and the item’s volume (optional).

32

3.3.3 Customer Order Group

This group consists of Orders table and LineItem table. To have a clear data structure, we use

different tables to store information about customer orders and the associated items. Also, the

information about the workloads of entities is stored in this group.

Orders – This table contains order information like order ID, the destination (where to be

packed), order release time (optional), and order release wave (optional).

LineItem – This table contains the item and some solution information. The item informa-

tion includes the SKU ID and the quantity of that SKU. The workload information includes the

assigned picker and transporter, priority of the transporter (items with higher priority will be

picked first), CoopNode (hand-off spot), and the current status of the items (indicating whether

the item is picked or not).

3.3.4 Entity Group

This group consists of Pickers table, PickerRoutes table, Transporters table, and Transporter-

Routes table. It contains information about all entities and their related routes. In addition, for

simulation purposes, this group will also hold some simulation information.

Pickers – This table contains information like picker ID, the corresponding picker simula-

tion components, which provide the features to interact with the simulation system.

PickerRoutes – This table contains information like picker ID and the corresponding node

sequence of its route.

Transporters – This table contains information like transporter ID, the corresponding

picker simulation components, which provide the features to interact with the simulation sys-

tem.

TransporterRoutes – This table contains information like transporter ID and the corre-

sponding node sequence of its route.

33

3.4 Simulation Model Development

A well-defined simulation model can mimic the actual order picking in warehouses. Since there

is no real application for MCOP, to develop the simulation model for MCOP, we decide to use

the ASDI modeling methodology. Based on the ASDI shown in Figure 2.7, we can develop the

simulation model through iterative constructions of the knowledge and action models.

3.4.1 Development of Knowledge Model

Since MCOP is a complex system, to obtain its knowledge model, ASDI recommends a sys-

temic decomposition of the system into three communicating subsystems [70]:

1. The Physical Subsystem (PSS) defines the physical entities set (which concerns different

fields, such as the production, storage, handling and transport fields), their geographical

distribution and the links between them.

2. the Logical Subsystem (LSS) represents the flows of entities which have to be handled

by the system, along with the set of operations concerning these flows, and the nomen-

clatures which refer to this set.

3. the Decision-making Subsystem (DSS) contains the management and working rules of

the system.

To develop the knowledge model of MCOP, we need to identify these three subsystems,

which are all objects involved and their behaviors and interactions in MCOP. Based on the

analysis of MCOP, the system has nine different types of objects. Items is the basic object

that represents multiple products of the same SKU needed in customer orders. Home is the

place where all pickers and transporters should start at the beginning of MCOP and park at

the end of MCOP. Depot is the place where all transporters drop the carried items. Picker and

Transporter are the entities that cooperate to pick and carry the items from picking slots to the

depot. PickNode, CoopNode, TransferNode, and Path are places that form part of the movement

graph of the warehouse. Picker can pick Items at PickNode, place Items at CoopNode, and

34

move to any node through Path. Transporter can get Items at CoopNode and move to any node

through Path.

Since Home, TransferNode, Path are only used to represent the warehouse layout, those

objects don’t have additional behaviors. For the other objects, Depot should receive the Items

carried by Transporters, PickNode should store the corresponding Items, Picker and Trans-

porter are objects with complex behaviors, so their behavior logics are listed below. Table 3.1

summarizes the major objects and their behaviors identified for the knowledge model.

Behavior Logic 1 Procedures for Pickers
1: Based on the route, move to the next PickNode.
2: Pick the desired Items at the corresponding PickNode.
3: Move to the corresponding CoopNode.
4: If the assigned Transporter does not wait at the CoopNode, wait for the assigned Trans-

porter. Otherwise, go to step 5.
5: Put the picked Items on the assigned Transporter.
6: If there are Items that still need to be picked at this PickNode, go to step 2. If no Items

need to be picked at this PickNode, but there is a next PickNode in the route, go to step 1.
Otherwise, go to step 7.

7: Move to Home and park there.

Behavior Logic 2 Procedures for Transporters
1: Based on the route, move to the next CoopNode.
2: Wait at PickNode to get the needed Items.
3: After obtaining the all Items at this PickNode, if the next node in the route is Depot, go to

step 4. Otherwise, go to step 1.
4: Move to Depot and unload all carried Items. After finishing unloading, if there is a next

CoopNode in the route, go to step 1. Otherwise, go to step 5.
5: Move to Home and park there.

3.4.2 Development of Action Model

In our process of translating the knowledge model into the action model, we apply DE and AB

methods to support the realization of the behaviors of objects and the features for performance

criteria in the action model. In the action model, Items is derived from the default ModelEntity

object in Simio. To make each Picker follows a correct sequence to pick all Items in its PPL,

instead of creating complicated logic, we add a customized Source object for each Picker in

Simio that can assign the Items to PickNode. Therefore, instead of creating all Items related to

35

Table 3.1: The summary of objects involved in MCOP.

a PPL at the beginning of the simulated MCOP, the Source create and assign Items sequentially.

That is, when the simulation starts, a Source will assign the first Items to its PickNode. After

the Picker picks the Items, according to the route of that Picker, the next PickNode and cor-

responding Items are known. Then the Source will assign the corresponding Items to the next

PickNode. The Source will repeat these procedures until no more Items need to be assigned.

The Picker and Transporter objects are derived from the default Vehicle object in Simio. We

add customized processes to achieve the behavior logics we discussed in Section 3.4.1. The

Home, PickNode, CoopNode, and TransferNode are all node objects in Simio. Home is derived

from the default BasicNode and the other three is derived from the default TransferNode. The

Depot object is derived from the default Sink object in Simio that also provides a corresponding

node object which can be connected to other node objects. Finally, we use exactly the same

Path object in Simio as the Path object in our simulation model.

As we discussed in Section 3.2, the objective of this work is to find schedules with the

minimum makespan. The computation of the schedules is not included in this action model.

We will discuss those in Chapter 4 and Chapter 5. So, the action model only stands for the

physical operations of MCOP. Since no actual application applies MCOP, the simulation model

36

provides a visualized realization of the processes in MCOP. Also, the simulation model can

act as a cross-validation tool of the mathematical models discussed in the subsequent chapters

and a testbed when involving various product picking times and entity traveling speeds. The

makespan is the primary performance criterion metric. In addition, we add two other metrics:

the average wait time of all pickers and the max wait time of all pickers. These two metrics are

helpful for us to examine the other qualities of the schedules when we consider the impact of

variabilities in Chapter 6.

After developing the exact objects in Simio and determining the criteria metrics. We could

use the data based on the data structure discussed in Section 3.3 to generate action models with

different warehouse layouts and different combinations of pickers and transporters. Figure 3.4

shows an example of our final simulation (action) model with 2 pickers, 3 transporters, 24

picking locations, and 12 hand-off spots.

Figure 3.4: An example of the simulation model with 2 pickers, 3 transporters, 24 picking
locations, and 12 hand-off spots.

37

3.4.3 Model Verification and Validation

Verification and validation (V&V) of the simulation model are performed using the aforemen-

tioned ASDI modeling methodology. Verifying a simulation model is the process of assessing

the design and implementation of the model to ensure that it accurately represents the system

that is intended to simulate. The validation of a simulation model is the process of determining

the degree to which a simulation model accurately represents the real world from the perspec-

tive of the intended uses of the model. In this work, the model verification is performed by

developing submodels that represent different aspects of MCOP and examining the submodels

through data collection from the models and visual animation. Those submodels help verify

the cooperation of entities, the realization of picking PPLs for pickers, the sequence of getting

TCLs for transporters, etc.

Since there is no actual application of MCOP, we could not find real data to help the

validation process. Therefore, the model validation is performed by analyzing system pa-

rameters of similar industrial applications [9] and similar research in the order picking area

[10, 12, 13, 72, 73, 74, 75]. Table 3.2 shows the summary of the system parameters based

on the analysis. Therefore, our simulation model with parameters of any value combinations

within the range could be a valid representation of a future possible MCOP.

3.4.4 Use Case of the Simulation Model

According to a survey conducted in [71], the application of simulation in manufacturing sys-

tems can be classified into three classes: 1) for system design that involves long-term decisions

including facility layout and system capacity/configuration and the analysis of design alterna-

tives; 2) for system operations involving short-term decisions such as operations planning and

scheduling, real-time control, operating policies, and performance analysis; and 3) simulation

language/software package development. In this work, the simulation model is primarily used

for supporting the first two classes: the system design and the system operation designs of

MCOP. Those topics will be discussed in detail in Chapter 6. What’s more, although the simu-

lation model is developed based on the commercial software Simio, the modeling approaches

38

Table 3.2: Summary of system parameters of order pickings.

Model Parameter Value Range
Required Pick List 5 - 100 items [10, 12, 13]
Picking Slots 450 - 2500 [9, 10, 12, 13, 72, 73, 74, 75]
Number of Pickers 1 - 40 [10, 12, 13]
Number of Transporters 1 - 100 [10, 12, 13]
Number of Picking Aisles 2 - 10 [12, 13, 75]
Number of Cross Aisles 2 - 4 [12, 13, 75]
Picker Speed 0.5 - 1 m/s [10, 12, 13, 72, 73, 74, 75]
Transporter Speed 0.8 - 4 m/s [9, 10, 12, 13]
Width of Picking Aisle 1 - 3 meters [12, 13, 75]
Width of Cross Aisle 1 - 3 meters [12, 13, 75]
Width of Storage Rack 0.2 - 1 meters [12, 13, 75]
Width of Storage Rack 0.2 - 1 meters [12, 13, 75]
Picking Time of Pickers (Per Item) 1 - 5 seconds [10, 12, 13, 74, 75]
Picking Time of Pickers (Per Location) 10 - 80 seconds [72, 73]
Placing Time of Pickers (Per Item) 1 - 4 seconds [10, 12, 13, 74, 75]
Unload Time of Transporter 0 - 90 seconds [72, 73]

and techniques applied are generalized. Therefore, following the model development methods

discussed in this section, one can easily re-develop the simulation model in other simulation

platforms.

3.5 Summary

This chapter explains the components, the operations, and the development of a simulation

model of MCOP. In MCOP, pickers and transporters cooperate with each other to pick and

transport all needed items to the depot.

We first discuss the concepts of RPL, PPL, and TCL, as well as the concepts in warehouse

layout. The operations of pickers and transporters are also identified. Then, a data structure

consisting of four groups - warehouse layout, stock keeping unit, customer order, and entity -

is discussed for managing the data during the whole operation of MCOP. Finally, a simulation

model is designed and developed based on ASDI modeling methodology. System objects,

objects’ behaviors and processes are modeled through the construction of the knowledge model

and action model. Also, the model is verified and validated based on small models reflecting

different aspects of MCOP and analysis of similar order-picking applications/research. The

39

simulation is expected to support the system design and operation design of MCOP, to be

further discussed in Chapter 6.

40

Chapter 4

Development of MILP Model for Schedules of All Entities

4.1 Introduction

In this chapter, we will develop a mathematical model using MILP for MCOP to find optimal

decisions about workloads and routes of all entities that minimize the makespan of the pick

wave from the operational perspective. The workload of a picker (transporter) represents all the

products in the corresponding PPL (THL). While the route of a picker (transporter) indicates

the exact location sequence that the picker (transporter) follows to finish its PPL (THL).

The MILP model is an exact method since it uses mathematical formulae to characterize

the pick wave of MCOP. Also, the MILP model is capable of providing the optimal solution as

long as its runtime is long enough. As discussed in Chapter 1, our MILP model is inspired by

the work in [12], which uses MILP to model two kinds of robots cooperating to complete order

picking. We extend their work so that picking and placing items of pickers can occur in different

places. In addition, the model can decide the times of depot visited by each transporter rather

than using predefined values. But, to reduce the complexity of the model, we relax our model

so that the usage of robot batteries is no longer considered. This no-battery usage assumption

seems reasonable since the use of backup robots, hot battery swapping, and wireless charging

are increasing in popularity for high-volume facilities.

The rest of this chapter is organized as follows. In Section 4.2 we present the needed

parameters used for developing the MILP model. Section 4.3 describes the decision variables

needed in our MILP model. In Section 4.4, we build and explain the mathematical formulae

that characterize the pick wave of MCOP. Section 4.5 discusses the settings of our experiments

41

and results to compare our MILP model with the model proposed in [12]. In section 4.6, we

summarize our findings.

4.2 Parameters and Notation

In the previous chapter, we have already described the pick wave of MCOP. To develop a MILP

model to represent the pick wave, we first need to introduce the parameters in the model (see

Table 4.1). Since the RPL may contain multiple items of a single SKU (eg. customers order 10

same small toys), it is reasonable for a picker to pick those items together and then bring them to

a transporter as long as the picker can carry those items. Therefore, in our mathematical model,

we treat those items as a single “item”, and in the rest of this chapter, we will use the term item

to represent multiple items of a single SKU. Then, the RPL is denoted as I = {1, ..., |I|} which

means there are total |I| items that need to be picked and delivered to the depot. It is necessary

to mention here that if there are too many products of a single SKU in the RPL a picker cannot

carry at once, it is possible we have multiple items related to that SKU in I . In addition, the

determination of items is done by a pre-processing process so that the MILP model will just

use that information.

Considering there are two types of available entities in MCOP, P represents the set of

pickers, and D represents the set of transporters. The set of all entities can be denoted as

E = P ∪D. Because transporters have a number-related capacity, for each transporter d ∈ D,

its capacity is denoted as Cd, which means the transporter can carry no more than Cd items

before dropping its load at the depot. In addition, for each entity e ∈ E, the traveling speed of

that entity is denoted as Ve. There are three types of action time that need to be identified. First

is the pick time for a picker p ∈ P to pick an item i ∈ I from the storage which is denoted as

T pick
p,i . Then, we use T place

p,i to represent the placing time that a transporter gets an item i ∈ I

from a picker p ∈ P . Last, we use T drop
d to represent the time needed for a transporter d ∈ D

to drop all loaded items at the depot. We assume the transporters use totes to carry the items.

Therefore, T drop
d is independent of the number of items carried by a transporter.

This work uses a node network described in section 3.2 as the warehouse to help represent

the movement of all entities in the MILP model. The network consists of four types of nodes:

42

(1) the home nodes as the home location for all entities, (2) the picking nodes as the picking

locations for all items, (3) the depot replicas as the depot, and (4) the hand-off replicas as the

hand-off spots. For the home node of an entity e ∈ E, it is denoted as HN e. The picking

node of each item i ∈ I is denoted as Ri. Here we need to mention that although some items

may share the same physical picking location and all entities share the exact home location, in

the MILP model, each HN e and each Ri are unique. In addition, the set of all home nodes is

denoted as HN , and the set of all picking nodes is denoted as R. In MCOP, there is only one

physical depot. However, since each transporter may visit the depot multiple times during the

pick wave, to make sure a node in the MILP model can only be visited no more than once, we

use multiple depot replicas to represent the physical depot. So, the set of depot replicas for a

transporter e ∈ E is denoted as DN e where DN e1 ∩DN e2 = ∅ for all e1 ̸= e2. Because only

transporters visit the depot, when e ∈ P , DN e = ∅. The set of all depot replicas is denoted

as DN . Since in our work, the exact number of depot replicas used by each transporter is

determined based on the solution from our MILP model, before running the model, the model

only knows the maximum number of depot replicas can be used by all transporters, which is

denoted as DNc. After an item is picked by a picker, it could be placed on a transporter at

different hand-off spots. Also, based on the same reason for the depot, hand-off replicas are

used in the MILP model to make sure each replica is visited no more than once. Then, HRi is

used to represent the set of hand-off replicas of item i ∈ I . That is, the set of hand-off replicas

HRi is a copy of the possible hand-off spots for item i ∈ I . The set of all hand-off replicas is

denoted as HR. Therefore, in the MILP model, all nodes in the network that the entities could

visit in the pick wave are denoted as N = HN ∪R∪DN ∪HR. For any two nodes k, k1 ∈ N ,

the distance between the two nodes is denoted as Lk,k1, which is known.

There are two additional notations that characterize the movement of the entities. Given

a node k ∈ N , for an entity e ∈ E, we define N−
e,k as the set of nodes that could be visited

immediately before node k. For example, if k ∈ R, then N−
e,k ⊂ HR ∪HN for any given

picker e ∈ P . The other notation is N+
e,k, which represents the set of nodes that could be

visited immediately after node k. For example, if k ∈ R, then N+
e,k ⊂ HR for any given picker

e ∈ P .Table 4.1 summarizes the parameter notations of our MILP model.

43

Table 4.1: Summary of the parameters and notations

Parameter Notation Parameter Notation Description
I The set of all items in the RPL
P The set of all pickers
D The set of all transporters
E The set of entire entities E = P ∪D
Cd The capacity of a transporter d ∈ D
Ve The traveling speed of an entity e ∈ E

T pick
p,i The time needed for a picker p ∈ P to pick an item i ∈ I

T place
p,i The time needed for a transporter to get an item i ∈ I from a picker

p ∈ P

T drop
d The time needed for a transporter d ∈ D to drop all carried items at

the depot
HN e The home node for entity e ∈ E
HN The set of all home nodes for all entities
Ri The picking node of item i ∈ I
R The set of all picking nodes
DN e The set of depot replicas for an entity e ∈ E
DN The set of all depot replicas
DN c The total number of depot replicas
HRi The set of hand-off replicas of item i ∈ I
HR The set of all hand-off replicas
N The set of all nodes
N−

e,k The set of nodes that could be visited immediately before node k ∈ N
for an entity e ∈ E

N+
e,k The set of nodes that could be visited immediately after node k ∈ N

for an entity e ∈ E
Lk,k1 The distance between two nodes k, k1 ∈ N

4.3 Decision Variables

There is a variety of decision variables encountered in the MCOP (see Table 4.2). First, for

each entity, we have a binary decision variable Ye,k,k1 = 1 if an entity e ∈ E moves directly

from node k to node k1 where k, k1 ∈ N and k ̸= k1. For each picker, we also have a binary

decision variable Xp,i,j = 1 if that picker p ∈ P pick item j just after picking item i where

i ∈ {I ∪ {0}}, j ∈ {I ∪ {−1}} and i ̸= j. To make the relation between Ye,k,k1 and Xp,i,j

easier for every picker, we add two virtual items 0 and− 1 where 0 represents the virtual item

located at the home node that each picker needs to pick first. While −1 represents the virtual

item located at the home node that each picker needs to pick last.

44

We have continuous decision variables te,k ≥ 0 determine when an entity e ∈ E arrives

at a node k ∈ N to conduct an activity related to the items. This definition represents when a

picker arrives at a picking node or starts placing the picked item at a hand-off replica. While

for a transporter, this definition represents when it starts receiving the item at a hand-off replica

or begins to drop all items at a depot replica. For coordinating all entities, the binary decision

variables ap,d,i represent the pairing between two entities for a particular item so that ap,d,i = 1

if a picker p ∈ P and a transporter d ∈ D are assigned to pick and deliver the item i ∈

I . For each transporter, integer decision variables Sd,k,k1 ≥ 0 represent the payload of that

transporter d ∈ D leaving node k1, and have traveled from node k where k ̸= k1. Therefore, if

a transporter d ∈ D travels from node k to node k1, Sd,k,k1 will include all items loaded after

leaving node k plus the item added at node k1. Finally, the makespan of the pick wave, which

is to be minimized, is defined by the continuous decision variable m ≥ 0. In this work, it is the

time the depot has received all items in the RPL. Table 4.2 summarizes the decision variables

of our model.

Table 4.2: Summary of the decision variables

Decision Variable Decision Variable Description
ap,d,i ap,d,i = 1 if a picker p ∈ P and a transporter d ∈ D are assigned to

pick and deliver the item i ∈ I
m The makespan of the pick wave
te,k The time when an entity e ∈ E at a node k ∈ N to conduct an activity

related to the items
Sd,k,k1 The total number of items carried by the transporter d ∈ D after

leaving node k1, and have traveled from node k
Xp,i,j Xp,i,j = 1 if a picker p ∈ P pick item j just after picking item i where

i, j ∈ I and i ̸= j
Ye,k,k1 ye,k,k1 = 1 if an entity e ∈ E move from node k to node k1 where

ik, k1 ∈ N and k ̸= k1

4.4 Mathematical Formulation

After having the parameters and the decision variables, the mathematical formulation of the

objective and constraints are shown as follows.

45

Min m (4.1)

s.t. m ≥ td,k + T drop
d ∀d ∈ D, k ∈ DN, (4.2)

∑
p∈P

∑
k∈N−

p,Ri

Yp,k,Ri
= 1 ∀i ∈ I, (4.3)

∑
p∈P

∑
k1∈HRi

Yp,Ri,k1 = 1 ∀i ∈ I, (4.4)

∑
k1∈R

Yp,HNp,k1 = 1 ∀p ∈ P, (4.5)

∑
k∈HR

Yp,k,HNp = 1 ∀p ∈ P, (4.6)

∑
d∈D

∑
k∈N−

d,k1

Yd,k,k1 ≤ 1 ∀k1 ∈ {HR ∪DN}, (4.7)

∑
k∈N−

d,k1

Yd,k,k1 =
∑

k2∈N+
d,k1

Yd,k1,k2 ∀k1 ∈ {HR ∪DN}, d ∈ D, (4.8)

∑
k∈DN

Yd,k,HNd
= 1 ∀d ∈ D, (4.9)

∑
k1∈HR

Yd,HNd,k1 = 1 ∀d ∈ D, (4.10)

∑
d∈D

∑
k∈N−

d,k1

∑
k1∈HRi

Yd,k,k1 = 1 ∀i ∈ I, (4.11)

∑
p∈P

∑
j∈{I∪{−1}}

Xp,i,j = 1 ∀i ∈ I, (4.12)

∑
p∈P

∑
i∈{I∪{0}}

Xp,i,j = 1 ∀j ∈ I, (4.13)

∑
j∈I

Xp,0,j = 1 ∀p ∈ P, (4.14)

∑
i∈I

Xp,i,−1 = 1 ∀p ∈ P, (4.15)

∑
i∈{I∪{0}}

Xp,i,j =
∑

l∈{I∪{−1}}

Xp,j,l ∀p ∈ P, j ∈ I, (4.16)

46

2Xp,i,j ≤
∑

k∈HRi

(Yp,Ri,k + Yp,k,Rj
) ∀i ∈ I, j ∈ I, p ∈ P, (4.17)

Xp,i,j + 1 ≥
∑

k∈HRi

(Yp,Ri,k + Yp,k,Rj
) ∀i ∈ I, j ∈ I, p ∈ P, (4.18)

2Xp,0,i ≤ Yp,HNp,Ri
+

∑
k∈HRi

Yp,Ri,k ∀i ∈ I, p ∈ P, (4.19)

Xp,i,j + 1 ≥ Yp,HNp,Ri
+

∑
k∈HRi

Yp,Ri,k ∀i ∈ I, p ∈ P, (4.20)

2Xp,i,−1 ≤
∑

k∈HRi

(Yp,Ri,k + Yp,k,HNp) ∀i ∈ I, j ∈ I, p ∈ P, (4.21)

Xp,i,−1 + 1 ≥
∑

k∈HRi

(Yp,Ri,k + Yp,k,HNp) ∀i ∈ I, j ∈ I, p ∈ P, (4.22)

Yp,Ri,k ≤ Yp,k,Rj
+ 2(1−Xp,i,j) ∀p ∈ P, i ∈ I, j ∈ I, k ∈ HRi, (4.23)

Yp,k,Rj
≤ Yp,Ri,k + 2(1−Xp,i,j) ∀p ∈ P, i ∈ I, j ∈ I, k ∈ HRi, (4.24)

Yp,Ri,k ≤ Yp,k,HNp + 2(1−Xp,i,−1) ∀p ∈ P, i ∈ I, j ∈ I, k ∈ HRi, (4.25)

Yp,k,HNp ≤ Yp,Ri,k + 2(1−Xp,i,−1) ∀p ∈ P, i ∈ I, j ∈ I, k ∈ HRi, (4.26)

∑
p∈P

∑
d∈D

ap,d,i = 1 ∀i ∈ I, (4.27)

Yp,Ri,k1 ≤
∑

k∈N−
d,k1

Yd,k,k1 + 2(1− ap,d,i) ∀p ∈ P, d ∈ D, i ∈ I, ki ∈ HRi, (4.28)

∑
k∈N−

d,k1

Yd,k,k1 ≤ Yp,Ri,k1 + 2(1− ap,d,i) ∀p ∈ P, d ∈ D, i ∈ I, ki ∈ HRi, (4.29)

tp,k ≥ tp,Ri
+ T pick

p,i +
LRi,k

Vp

−M(1− Yp,Ri,k) ∀p ∈ P, i ∈ I, k ∈ HRi, (4.30)

tp,Rj
≥ tp,k + T coop

p,i +
Lk,Rj

Vp

−M(2−Xp,i,j − Yp,Ri,k)

∀p ∈ P, i ∈ I, j ∈ I, k ∈ HRi,

(4.31)

tp,Ri
≥ LRi,k

Vp

−M(1− Yp,HNp,Ri
) ∀p ∈ P, i ∈ I, (4.32)

47

td,k1 ≥ td,k + T coop
p,i +

Lk,k1

Vd

−M(2− ap,d,i − Yd,k,k1)

∀p ∈ P, d ∈ D, i ∈ I, k ∈ HRi, k1 ∈ N+
d,k,

(4.33)

td,k1 ≥ td,k + T drop
d +

Lk,k1

Vd

−M(1− Yd,k,k1)

∀d ∈ D, i ∈ I, k ∈ DN, k1 ∈ HR,

(4.34)

td,k ≥
LHNd,k

Vd

−M(1− Yd,HNd,k) ∀d ∈ D, k ∈ HR, (4.35)

td,k1 ≥ tp,k1 −M(2− ap,d,i − Yp,k,k1)

∀p ∈ P, d ∈ D, i ∈ I, k1 ∈ HRi, k ∈ N−
p,k1

,

(4.36)

tp,Rj
≥ td,k + T coop

p,i +
Lk,Rj

Vp

−M(3− ap,d,i −Xp,i,j − Yp,k,Rj
)

∀p ∈ P, d ∈ D, i ∈ I, j ∈ I, k ∈ HRi,

(4.37)

Sd,k,k1 ≤ Yd,k,k1 ∀d ∈ D, k1 ∈ {HR ∪DN}, k ∈ N−
d,k1

, (4.38)

Sd,HNd,k = Yd,HNd,k ∀d ∈ D, k ∈ HR, (4.39)

Sd,k,k1 = Yd,k,k1 ∀d ∈ D, k ∈ DN, k1 ∈ HR, (4.40)

Sd,k1,k2 ≥
∑

k∈N−
d,k1

Sd,k,k1 + Yd,k1,k2 − Cd(1− Yd,k1,k2)

∀d ∈ D, k2 ∈ HR, k1 ∈ N−
d,k2

,

(4.41)

m ≥ 0, (4.42)

te,k ≥ 0 ∀e ∈ E, k ∈ N, (4.43)

Sd,k,k1 ≥ 0 ∀d ∈ D, k1 ∈ N, k ∈ N−
d,k1

, (4.44)

ap,d,i ∈ {0, 1} ∀p ∈ P, d ∈ D, i ∈ I, (4.45)

Xp,i,j ∈ {0, 1} ∀p ∈ P, i ∈ I, j ∈ I, (4.46)

Ye,k,k1 ∈ {0, 1} ∀e ∈ E, k1 ∈ N, k ∈ N−
e,k1

, (4.47)

48

The objective function 4.1 is to minimize the makespan when all items from the RPL are

delivered to the depot, as limited by Constraint 4.2. Constraint 4.3 ensures each picking node

can be visited by only one picker one time. Constraint 4.4 ensures a picker will move to one of

the hand-off replicas of the item after picking that item at the picking node. Constraints 4.5 and

4.6 specify a picker will start from its home node and return to its home node after finishing

the pick wave. Constraint 4.7 ensures that no more than one transporter will visit each hand-off

replica and depot replica. Constraint 4.8 guarantees a transporter will leave a hand-off replica

or a depot replica if it enters that node. Constraints 4.9 and 4.10 ensure a transporter will start

from its home node and return to its home node after finishing the pick wave. Constraint 4.11

makes sure that each item can only be placed on one transporter at one hand-off replica.

Constraints 4.12 to 4.29 coordinate the items picking sequence with the node sequence of

each picker and transporter. Constraints 4.12 and 4.13 ensure each item can only be picked

by one picker. Constraints 4.14 to 4.16 set the proper picking sequence of the items for each

picker and guarantee each picker will start from picking item 0 and end from picking item

-1. Constraints 4.17 to 4.22 set the appropriate node sequence for each picker based on the

picking sequence. Constraints 4.23 to 4.26 ensure when a picker enters a hand-off replica, it

will leave that node. Constraints 4.27 to 4.29 set the appropriate value of ap,d,i to pair pickers

and transporters and ensure each item can only be placed on one transporter.

Constraints 4.30 to 4.37 are related to the route time of all entities. Constraint 4.30 indi-

cates that if a picker moves from the picking node Ri to a hand-off replica k, then the arrival

time to k cannot be before the arrival time to Ri plus the picking time at Ri plus the travel time

from Ri to k. The value of M is a sufficiently large number. In this model, one possible value

could be calculated as the maximum cumulative time of traveling through all nodes’ pairs plus

the summation of the maximum time of picking, placing, and dropping times the number of

items. Constraint 4.31 indicates that if a picker moves from the hand-off replica k to the picking

node Rj , then the arrival time to Rj cannot be before the arrival time to k plus the placing time

at k plus the travel time from k to Rj . Constraint 4.32 states the time a picker moves from the

home node to a picking node. Constraint 4.33 ensures that the time a transporter starts getting

the item at a hand-off replica k1 cannot be earlier than the time the transporter gets the previous

49

item at k plus the travel time. Constraints 4.34 and 4.35 state the time a transporter starts get-

ting item when the transporter travels from a depot replica or the home node. Constraint 4.36

indicates a transporter can start getting the item only when the associated picker is ready at the

hand-off replica. Constraint 4.37 indicates a picker cannot move to the next picking node until

the placement of the previous item is completed at the hand-off replica.

Constraints 4.38 to 4.41 are related to the capacity limitation of the transporters. Constraint

4.38 ensures the total payload on a transporter cannot exceed the limit at any node. Constraint

4.39 and 4.40 guarantee that a transporter’s payload is 1 when that transporter leaves a hand-

off replica and has traveled from the home node or a depot replica. Constraint 4.41 forces the

payload to be at least the summation of the payload when a transporter leaves node k1 plus the

item loaded at node k2. Constraints 4.42 to 4.47 are related to the definition of the decision

variables.

4.5 Performance Comparison

This section compares the performance of our above-discussed MILP model with the baseline

model in [12] based on the results from experiments under different settings. Both models are

solved by Gurobi 9.1.2 [76] via Python version 3.8.12. All computational work was conducted

on a PC with an Intel(R) Xeon(R) W-2123 processor and 128 GB RAM running Microsoft

Windows 10 in 64-bit mode.

To better evaluate these two models, we apply five main different settings: (1) 3 different

numbers of pickers from 1 picker to 3 pickers, (2) 3 different numbers of transporters from 1

transporter to 3 transporters, (3) 2 different RPL sizes |I| = 5 items and |I| = 10 items, (4)

3 different transporter capacities, and (5) 6 different warehouse layouts which have different

numbers of picking aisles (PA) and cross aisles (CA). Therefore, there are 324 experiment

scenarios in total.

The 3 transporter capacity settings are Low, Medium, and High. The Low capacity indi-

cates the transporter cannot carry more than 2 items. The Medium capacity is related to the

RPL size that the transporter cannot carry more than ⌈|I|/2⌉ items. The High capacity is also

related to the RPL size that the transporter cannot carry more than |I| items. For the warehouse

50

layout settings, we test warehouses with 4 and 8 picking aisles and 0 to 2 cross aisles (top and

bottom aisles are not included). All 6 warehouses are rectangular and their picking aisles are

perpendicular to the cross aisles like the warehouse shown in Figure 3.1. In that figure, we can

also find that if the picking slots in a storage rack are close enough, it is reasonable to use only

one location to represent the picking locations of all picking slots in that storage rack. In addi-

tion, based on our analysis of the literature shown in Table 3.2, the width of the picking aisles

is from 1m to 3m, which we think is small. So, using one picking location for both side storage

racks of a picking aisle is practical as well. Then, the warehouses used in the experiments have

the following properties settings: (1) the width of the picking aisles is 2m, (2) the width of the

cross aisles is 3m, (3) there are 96 storage racks, and each is 2m wide, 3m long and contains 10

picking slots, (4) the picking location for the two storage racks of a picking aisle locates in the

center of the aisle as shown in Figure 4.1. (5) the depot, which also acts as the home location,

is at the center of the bottom aisle, (6) there are 4 additional hand-off spots in the warehouses,

which are located at the top aisles, bottom aisle, or cross aisles. Figure 4.2 shows one layout of

our tested warehouses with 4 picking aisles and 1 cross aisle. In this figure, each red node is the

picking location for the nearby two storage racks. Each green node is the additional hand-off

spot. Each blue node is used to form the aisles and the black node is the depot. The other 5

layouts are shown in Appendix A.

We have some other settings for the model parameters. Each Picker travels at a speed of 1

m/s, while each transporter travels at 2 m/s. Based on our definition of item, the picking time

of pickers is based on per location shown in Table 3.2. So, we choose 30 seconds/item as the

picking time. Considering placing multiple items in a tote will not differ much from placing

just one item, in our experiment, we set 5 seconds/item as the placing time. The tote drop-off

time of each transporter is 60s. The total number of depot replicas is 10. For each item, its

hand-off replicas contain 5 nodes: the corresponding picking node and the other 4 hand-off

replicas that are not the picking locations. In addition, for each experiment scenario, we test

50 replications where each replication has a different RPL and in each replication, both models

use the same RPL. The cut time of both models is set to 300s for 5 items RPL and 600s for 10

items RPL. So, all experimental settings are summarized in Table 4.3.

51

Figure 4.1: An example shows the positions of picking location and storage racks in the exper-
iments.

Figure 4.2: The layout of a warehouse with 4 picking aisles and 1 cross aisle.

52

Table 4.3: Summary of the experimental settings

Setting Value Levels
Number of Pickers 1, 2, 3
Number of Transporters 1, 2, 3
Size of RPL 5 items, 10 items
Transporter Payload Capacity Low (2 items), Medium (⌈|I|/2⌉),

High (|I|)
Number of PAs 4, 8
Number of CAs 0, 1, 2
Cut Time 300s, 600s
Number of Storage Racks 96
Number of Picking Slots 960
Number of Picking Locations 48
Width of PA 2 m
Width of CA 3 m
Picker Speed 1 m/s
Transporter Speed 2 m/s
Picking Time 30 /item
Placing Time 5 /item
Total Number of DN 10
Size of HRi 5
Tote Drop-off Time 60 s
Replications of main settings combination 50

In each replication, both models generate schedules for all entities. Then, the makespan

and average wait time of pickers are computed as the comparison metrics to analyze these two

models. Here, the wait time is the time used for a picker waiting at the hand-off spots. After

finishing all replications, we find that for the scenarios when the RPL has 5 items, the baseline

model can always find the optimal solutions before the cut time (300s). While for all other

scenarios, both models cannot find the optimal solutions before the cut time.

Table 4.4 shows when the RPL has 5 items, the average percentage increase of the makespan

of the schedule obtained from our model compared to the makespan obtained from the base-

line model under scenarios of different numbers of pickers, numbers of transporters, numbers

of PAs, and transporter capacities. In the table, 1P1T means the scenarios use 1 picker and 1

transporter. Also, a negative value in the table means our model can find better schedules for

the scenarios since the average makespan of all corresponding replications is smaller. From

the table, we can find that when there are fewer transporters with Low or Medium capacity,

53

schedules from our method are better. That means in those scenarios, pickers often need to find

different locations to place the items. While if there are more transporters with High capacity,

the baseline can provide better schedules because the model does not need to find different

hand-off spots for pickers to place the picked items since the transporters in those scenarios

are capable of waiting for the pickers at the picking locations. Table 4.5 shows when the RPL

has 5 items, the percentage of the replications in different scenarios that our model provides a

better result than the baseline model on makespan under different combinations of the number

of pickers, number of transporters, number of PAs, and transporter payload capacities. From

the table, we can find that when the transporters with Low or Medium capacity are fewer than

the pickers, our model can find better schedules for almost every replication in those scenarios.

Considering the schedules found by the baseline model are the optimal solutions that model can

get in those scenarios, we can conclude that during the pick wave, there are always some pick-

ers that need to move after picking an item to shorten the makespan. Table 4.6 shows when the

RPL has 5 items, the average wait time decrease per item by changing from the baseline model

to our model under different combinations of the number of pickers, number of transporters,

number of PAs, and transporter payload capacities. This table indicates reducing the wait time

of placing each item is very important for a pick wave in MCOP to have shorter makespans.

Table 4.4: When the RPL has 5 items, the average percentage (%) increase of the makespan
obtained from our model compared to the value obtained from the baseline model in different
scenarios.

Entity Combination
4PAs 8PAs

Low Medium High Low Medium High
1P1T -6.0 -3.2 0.8 -6.2 -3.3 0.3
1P2T 0.9 0.6 0.5 0.4 0.4 0.4
1P3T 0.2 0.2 0.3 0.2 0.2 0.2
2P1T -15.2 -9.4 2.6 -14.0 -7.3 1.3
2P2T 3.6 3.5 3.9 2.8 2.7 2.8
2P3T 2.5 2.1 2.1 2.3 2.6 1.5
3P1T -21.0 -17.4 0.0 -16.0 -14.8 -2.0
3P2T -6.5 3.9 3.7 -5.8 4.2 4.7
3P3T 2.8 2.0 1.8 2.2 2.3 2.4

Figure 4.3 shows the percentage of average makespan from scenarios with 3CAs and 4CAs

compared to average makespan from scenarios with 2CAs in our model. From the figure, we

54

Table 4.5: When the RPL has 5 items, the percentage (%) of replications in different scenarios
that our model provides a better result than the baseline model on makespan.

Entity Combination
4PAs 8PAs

Low Medium High Low Medium High
1P1T 96.0 85.3 0.0 98.0 90.7 0.0
1P2T 0.0 0.0 0.0 0.0 0.0 0.0
1P3T 0.0 0.0 0.0 0.0 0.0 0.0
2P1T 100.0 98.0 18.7 100.0 96.7 30.0
2P2T 19.3 0.0 0.0 19.2 0.0 0.0
2P3T 0.0 0.0 0.0 0.0 0.0 0.0
3P1T 100.0 100.0 38.0 100.0 99.3 59.3
3P2T 82.0 0.7 1.3 83.3 0.0 0.0
3P3T 0.0 0.0 0.0 0.0 0.0 0.0

can find that increasing the number of cross aisles may not always shorten the makespan. This

is consistent with the findings in [12, 40] that increasing the number of CAs might not improve

performance despite creating more picking route options.

For those scenarios when RPL has 10 items, the results are similar to what we find from

scenarios with 5 items, and the detailed tables are shown in Appendix A. However, we find

that there is about 20 percent of the overall replications using our model cannot find a feasible

solution before the cut time. So, from a practical standpoint, when there are more items in the

RPL, it is important to find a fast method to generate the schedule for all entities. And that

schedule could be used as the initial solution for our MILP model.

Table 4.6: When the RPL has 5 items, the average wait time decrease per item by changing
from the baseline model to our model in different scenarios.

Entity Combination
4PAs 8PAs

Low Medium High Low Medium High
1P1T 3.3s 1.4s 0.0s 2.8s 1.2s 0.0s
1P2T 0.1s 0.0s 0.0s 0.0s 0.0s 0.0s
1P3T 0.0s 0.0s 0.0s -0.1s 0.0s 0.0s
2P1T 15.9s 9.5s 0.4s 13.2s 6.9s 0.9s
2P2T 1.8s 0.1s 0.4s 1.7s 0.8s 0.6s
2P3T 0.0s 0.3s 0.4s 0.7s 0.6s 0.2s
3P1T 22.0s 10.3s 1.2s 13.6s 7.1s 1.7s
3P2T 6.1s 0.6s 0.6s 4.8s 0.5s -0.1s
3P3T 0.1s 1.0s 0.3s 0.1s 0.2s 0.7s

55

Figure 4.3: Percentage of average makespan from scenarios with different CAs in our model.

4.6 Summary

This chapter proposed a mathematical model based on MILP to find schedules for all entities

in a pick wave of MCOP. Compared to the existing work, our model gives pickers the ability

to place the picked items at a place where it is different from the picking location. In addition,

unlike the existing work, our model can decide how many times each transporter should visit

the depot.

We performed a set of experiments to investigate the performance of our model with the

existing work under different settings in terms of makespan and picker wait time. The results

show that the makespan from our model is smaller than the one from the existing work when

there are fewer transporters with a small capacity. The results also indicate reducing the pickers’

wait time to place the picked items is an important reason that our model can provide better

results in some experiment settings. From our experiments, we found increasing the number of

CAs may lead to a higher makespan, which is consistent with the findings from other research

56

as well. We found the mathematical model is not efficient when the RPL size is large. So,

to use this model in practice, a more efficient method is needed to provide an initial solution

to our model. In the next chapter, we will discuss our proposed efficient method to generate

schedules for all entities.

57

Chapter 5

Development of Fast Method for Schedules of All Entities

5.1 Introduction

In this chapter, to overcome the disadvantage of the MILP model which is insufficient to handle

MCOP with large required pick list (RPL), we develop an alternative algorithm called Hetero-

ACO to find schedules for all entities. The purpose of the proposed Hetero-ACO is to try to

find good schedules which result in a small pick wave makespan in a reasonable amount of

computational time. Unlike the MILP we discussed in Chapter 4, Hetero-ACO is not a global

optimization algorithm which means the best schedules obtained in Hetero-ACO are not guar-

anteed to be the global optimal schedules no matter how long you run this algorithm. Also,

since our Hetero-ACO is developed based on ACO, it is a swarm intelligence (SI) optimization

algorithm with the merits of self-learning ability, easy implementation, and a simple frame-

work.

Because pickers and transporters act asynchronously and each can cooperate with multiple

partners during the pick wave in MCOP, improper schedules for all entities could lead the

pick wave to a deadlock where all pickers are waiting for transporters and all transporters are

waiting for pickers. Therefore, a dedicated algorithm that can avoid generating those infeasible

schedules is important since even for a fast algorithm, we don’t want to waste computational

resources on infeasible solutions. Unlike some SI-based algorithms, which rely on modifying

the complete solution, ACO employs the probabilistic technique and gradually constructs the

complete solution. Thus, this feature of ACO provides the ability to avoid infeasible solutions

during the construction of the solutions.

58

The organization of this chapter is as follows. In section 5.2, we discuss the overview of

Hetero-ACO which includes the workflow of the algorithm and the encoding strategy used in

the algorithm. Section 5.3 presents the methods involved in the construction of schedules for

all transporters when all schedules of pickers are given. Then, we describe and compare the

methods used in the algorithm for searching the schedules for all pickers in section 5.4. In

section 5.5, we conduct experiments and compare our Hetero-ACO with a heuristic to evaluate

the performance in MCOP. Finally, section 5.6 summarizes our findings.

5.2 Overview of Hetero-ACO

To better present our proposed algorithm, we first must illustrate our encoding strategy. Figure

5.1 shows an example of the coded representation of entities’ schedules. In this figure, for a

picker p ∈ P , a sequence of item indices is used to represent its schedule Sp, and the picker

will follow this sequence to pick the assigned items. In this coded representation, the hand-off

spot for each item is the picking location at the starting point for the algorithm and may change

as the algorithm iterates. While for a transporter d ∈ D, the sequence of item indices is also

used to represent its schedule Sd. Here, we will use the symbol Dt to represent the depot.

Therefore, the coded representation of a transporter’s schedule consists of item indices and the

depot symbols. In addition, we use SP and SD to denote the schedules for all pickers and all

transporters, respectively. The variables used in the rest of this chapter are listed in Table 5.1

Figure 5.2 shows the flowchart of our Hetero-ACO. After initializing the algorithm param-

eters (see Table 5.2 and Table 5.3) and the alternative MILP, we first generate the schedules for

all pickers. In this algorithm, generating random schedules with equal-sized sequences, adjust-

ing existing schedules with some operators, and using intermediate solutions from small MILP

models are the methods we applied. Those methods are discussed in detail in section 5.4. When

schedules for all pickers are determined, the algorithm will construct SD. There are three terms

Group, Squad, and Ant, which are important for understanding the construction processes. An

Ant in the algorithm represents a virtual transporter, and each Ant will construct its schedule.

A Squad represents a group of Ants, and the number of Ants equals the number of transporters

59

Table 5.1: variables involved in Hetero-ACO

Variable Notation Parameter Notation Description
Sp Schedules of a picker p ∈ P
Sd Schedules of a transporter d ∈ D
SP Schedules of all pickers
SD Schedules of all transporters
psi,j,k The probability for the sth Ant in the Squad s of adding item j after

adding item i to its schedule
τi,j Pheromone value of item index pair (i, j)
∆τ si,j Pheromone increment on item index pair (i, j) left by Squad s
ηi,j Heuristic function value of item index pair (i, j)
timegap The maximum time reduction in makespan the algorithm gets through

the dynamic local search after completing dl Groups
ms The makespan with Squad s
t′i Time the corresponding Ant leaves the hand-off spot of item i
t′j Time the corresponding Ant reaches the hand-off spot of item j
St
P Schedules of all pickers at iteration t

St
D Schedules of all transporters at iteration t

Tt Temperature value used in SA at iteration t
mt Makespan at iteration t
pt Probability of accepting the new St

P or not in SA at iteration t
tabu The tabu list in TS

used in MCOP. In addition, the schedules for the Ants in a Squad form a SD. A Group rep-

resents a group of Squads, each Squad in a Group shares the same pheromone matrix. For a

given SP , there will be an enormous number of possible SD. So, by using Groups and Squads,

our algorithm can construct multiple SD that increase the chances of finding relatively good

solutions. Therefore, the algorithm constructs schedules Squad by Squad and Group by Group.

After Constructing the schedules for a Squad, we can compute the makespan since we have a

set of schedules for all entities. As discussed above, each item’s hand-off spot is the picking

location by default in our coded representations. After computing the makespan, the algorithm

may apply a dynamic local search to find different hand-off spots for each item to decrease the

makespan. When all Squads in a Group finish the schedule construction and local search, then

the algorithm will update the pheromone matrix for the next Group. When all Groups finish,

our algorithm completes an iteration for finding schedules for all entities. Then, the algorithm

starts a new iteration with a new SP or stops and returns the best schedules found with the

60

smallest makespan. The criterion of our algorithm is the maximum running time. Section 5.3

provides a more detailed explanation of how the algorithm constructs SD.

Figure 5.1: A example of the coded representation of entities’ schedules

5.3 Construction of Schedules for Transporters

To better understand this algorithm, we will first explain the details of the construction of SD.

The parameters involved in this construction process are shown in Table 5.2. We also use

some parameters discussed in section 4.2. After a SP is given, our algorithm will generate

gpmax Groups, and in each Group, there are sdmax Squads. To construct the schedules for each

Squad, the strategy is sequentially letting an Ant in the Squad add an item index or the depot

symbol until all item indices are assigned. For example, if the Squad has two Ants, then first

Ant will add its first item index; the second Ant add its first item index; the first Ant add its

second item index and so on. The strategy of picking the next item for each Ant depends on the

given SP and a probabilistic rule that considers the pheromone value and a heuristic function.

The following formula shows how the kth Ant decides the probability of adding item j after

adding item i to its schedule.

psi,j,k =

G(wi)∗(τi,j)α∗(ηi,j)β∑

j (τi,j)
α∗(ηi,j)β

, i ∈ I, j ∈ SubI ⊂ I

1−G(wi), j is Dt

(5.1)

In this formula, psi,j,k is the probability for the kth Ant in the Squad s of adding item j after

adding item i. τi,j is the pheromone value of index pair (i, j), and ηi,j is the heuristic function

61

Figure 5.2: The flowchart of the Hetero-ACO

value of index pair (i, j). α and β are the relative importance of the pheromone density and the

heuristic function value, respectively. wi is the payload of the Ant after taking item i, and G(wi)

62

is a function that related to the payload. The higher the payload, the lower the G(wi) value. So

G(wi) can control when an Ant needs to visit the depot to unload all carried items. In this work,

when the Ant doesn’t reach the payload capacity, G(wi) ∈ [0.9, 1] is a linear function with wi,

which means when the payload is zero, G(wi) = 1. And when the payload is the Ant capacity

minus one, G(wi) = 0.9. And when the Ant reaches payload capacity, G(wi) = 0. In this

formula, when j is not the depot symbol, j belongs to a subset of all items. Figure 5.3 explains

how the subset is built, and changes as the Ants add item indices to their schedules. In this

figure, 3 pickers and 2 transporters cooperate to retrieve 9 items. When the SP is determined,

the initial subset consists of the first item of all pickers, that is items {1,4,7}. If Ant1 add item

4 to its schedule, then, the subset will be items {1,5,7}. After Ant2 add item 7 to its schedule,

the subset then changes to items {1,5,8} and Ant1 can add an item which is item 8 from this

subset. So, the subset always consists of the first item that is not added by Ants in each picker’s

schedule. By using this rule, we can guarantee the constructed schedules are feasible.

Figure 5.3: An example of how the subset of items is formed based on the schedules of pickers
for Ants to add to schedules

63

Table 5.2: Parameters involved in constructing schedules of all transporters in Hetero-ACO

Parameter Notation Parameter Notation Description
α Relative importance of pheromone
β Relative importance of heuristic
ρ Pheromone evaporation rate
τinit Initial pheromone density
gpmax Maximum number of Groups used
sdmax Maximum number of Squads in each Group
Qh A constant value used in the heuristic function
HSi,j The set of all alternative hand-off spots along the path between the

picking locations of item i and item j
f The dynamic local search will stop if f consecutive items are tested

with no improving makespan
dl The number of Groups used to compute the maximum time reduction

in the dynamic local search
Qτ A constant value used in the computation of increased pheromone of

each Squad
τmin The lower bound of the pheromone in each index pair
τmax The upper bound of the pheromone in each index pair

5.3.1 The Heuristic Function

In the ACO-based algorithms, a good heuristic is helpful for constructing good solutions. In

MCOP, for intuition, an item picked first should have a higher probability of being placed on

a transporter first to reduce pickers’ wait time, which may lead to a smaller makespan. In

addition, another good intuitive strategy is the nearer the item, the higher the probability it is

added by the Ant to reduce the traveling time between items. The formula of the heuristic

function is shown below:

ηi,j =
Qh

ϕ(j)! ∗ Li,j

i, j ∈ I (5.2)

where ηi,j is the heuristic function value of index pair (i, j), Qh is a constant value, and Li,j

is the distance between the hand-off spot of item i and the picking locations of item j. ϕ(j) is

the relative position in the pickers’ schedules. For example, in Figure 5.3, at Step 1, since the

items {1,4,7} are all first item in the pickers’ schedules, ϕ(1) = ϕ(4) = ϕ(7) = 0. At Step 2,

item 5 is the second item in schedule of Picker2, now ϕ(1) = ϕ(7) = 0, and ϕ(5) = 1. At

Step 3, ϕ(1) = 0, and ϕ(5) = ϕ(8) = 1.

64

5.3.2 Dynamic Local Search

After a Squad s finishes constructing the schedules, our algorithm performs a dynamic local

search to potentially find better solutions. This dynamic local search aims to find alternative

hand-off spots for some items to decrease the makespan. Since we know where all picking

locations and potential hand-off spots are, all possible paths between a hand-off spot and a

picking location are known in advance. Therefore, when the warehouse layout is determined,

we denote all alternative hand-off spots along the paths between the hand-off spots of item i

and the picking location of item j as HSi,j . Figure 5.4 gives an example of the alternative

hand-off spots.

Figure 5.4: An example shows all alternative hand-off spots between a hand-off spot and a
picking location. The nodes in the red circles are the corresponding hand-off spot and picking
location. The nodes (red and green) in the red box are all alternative hand-off spots since the
possible paths between the two nodes in the red circles pass those nodes in the red box.

The strategy of choosing which items to test the alternative hand-off spots is based on a

probabilistic rule that the higher the time a picker waits at the assigned hand-off spot to place

the item, the higher the probability the item is chosen to test the alternative hand-off spots. After

determining the item i, the algorithm will try all alternative hand-off spots in HSi,j along the

paths that a picker moves from its assigned hand-off spot of this item i to the picking location

of the next item j. If using new hand-off spots for that item i makes the makespan smaller, then

65

the hand-off spot provides the largest time reduction in makespan is the new assigned hand-

off spot to item i. The local search will continue until f consecutive items are tested without

obtaining a smaller makespan.

From our analysis in Chapter 4, if there are relatively large numbers of transporters in

MCOP, the pickers usually place the picked items at the picking locations. While, if there

are fewer transporters, the pickers tend to place the picked items at alternative hand-off spots.

So, the dynamic feature in our local search is achieved by the following settings: (1) Dur-

ing generating schedules for the first dl Groups, when a Squad finishes the local search, the

time reduction in makespan before and after the local search is determined. The maximum

time reduction in makespan timegap the algorithm gets through the local search is known after

completing dl Groups. (2) For the rest Groups, when the makespan of a Squad finishes con-

structing the schedules is smaller than the shortest makespan mshortest the algorithm currently

obtains plus timegap, the Squad will perform the local search. Otherwise, the Squad skips the

local search. The dynamic local search can obtain high efficiency using these settings under

different entity combinations.

5.3.3 Update of Pheromone Matrix

Updating the pheromone is one of the essential steps in ACO-based algorithms. This technique

enables the algorithms to achieve a self-learning feature which helps obtain high-quality solu-

tions. To simulate the process of pheromone evaporation and ensure no index pair has unique

advantages, we use the following formula to update the pheromone matrix:

τnewi,j = ρ ∗ τ oldi,j +
sdmax∑
s=1

∆τ si,j i, j ∈ I (5.3)

where τnewi,j is the new pheromone for index pair (i, j), τ oldi,j is the previous pheromone for index

pair (i, j) before the update. ρ ∈ (0, 1) is a constant value that determines the evaporation rate,

s is the index of a Squad in a Group, and ∆τ si,j is the increased pheromone of index pair (i, j)

left by the sth Squad. Our Hetero-ACO uses a similar strategy of computing the increased

pheromone as in [52]:

66

∆τ si,j =

Qτ

ms ∗
ms−(t′j−ti)

ms , if index pair (i, j) in the sth Squad

0, otherwise
(5.4)

where i, j ∈ I , Qτ is a constant value and ms is the makespan of the sth Squad in a Group.

t′j is the time the corresponding Ant reaches the hand-off spot of item j, and ti is the time the

corresponding Ant leaves the hand-off spot of item i. So, this pheromone updating strategy

includes two parts: (1) The global pheromone increment Qτ/m
s is related to the makespan of

that Squad. (2) The local pheromone increment (ms − (t′j − ti))/m
s is related to the index

pair contribution to the makespan. That is, the shorter the time the Ant moves between the

hand-off spots of items i and j, the larger the local pheromone increment the index pair (i, j)

can provide. In addition, a user-defined lower and upper bound of the pheromone [τmin, τmax]

will be applied in our work. These bounds can help avoid the solution being stuck to a local

optimal.

5.4 Searching Schedules for Pickers

The parameters involved in searching schedules for pickers are shown in Table 5.3. As illus-

trated in section 5.2, Hetero-ACO uses three methods to find SP . The purpose of using these

three methods is to try to let the algorithm balance the exploration and exploitation of the search

process and let another model provide promising directions for the search process. As shown in

Figure 5.2, the alternative MILP model is built and solved at the start of Hetero-ACO. When-

ever the solver finds an incumbent solution, Hetero-ACO will store that solution. The random

generation of SP is performed after the initialization of Hetero-ACO, then at each iteration,

the algorithm tends to adjust the existing SP . If the algorithm doesn’t find a smaller makespan

after adjusting existing SP for Re iterations, the algorithm will generate new SP as a re-start

strategy. If there are unused solutions from the alternative MILP model, the algorithm will first

use those solutions to generate new SP . Otherwise, the random generation method is used to

generate new SP .

67

Table 5.3: Parameters involved in searching schedules of all pickers in Hetero-ACO

Parameter Notation Parameter Notation Description
Re The maximum iterations of non-improving adjustment of pickers’

schedules before using randomly generated schedules
Tmax The maximum temperature after using randomly generated schedules
Tmin The minimum temperature before using randomly generated sched-

ules
θ Coefficient for updating temperature at each iteration
LenTB The length of the tabu list
LenNB The size of the partial neighborhood

5.4.1 Generation of Random Schedules

In this method, we first group the items in the same picking location into a cluster. Then, for

each picker, the method sequentially adds a random cluster to the pickers’ schedule. When the

size of the schedule exceeds |I|/3, the method will start to generate the schedule for another

picker. After generating the schedules for all pickers, if the sizes of those schedules are differ-

ent, we will remove several items in the largest-sized schedule and add them to other schedules

to make all pickers’ schedules equal-sized. The rule for selecting those items is based on the

size of the items’ corresponding cluster. Those items from smaller clusters have a high priority

to be selected to make equal-sized schedules.

5.4.2 Adjusting Existing Schedules

In Hetero-ACO, we use three operators to adjust the existing schedules: crossover operator,

2-opt operator, and relocation operator.

For the crossover operator, it comes from GA (Genetic Algorithm), where the operator

randomly chooses two pickers and swaps two item indices between their coded representations

for their schedules. After that, the two new schedules replace the original schedules. Figure

5.5 shows an example of how the crossover operator adjusts two pickers’ schedules. The 2-opt

operator is a classical local search heuristic, which was first introduced in [77]. The main idea

is to exchange the two neighborhood locations to find better solutions. In our work, we will

randomly select a picker and swap two item indices in the picker’s schedule. Then, the original

schedule will be replaced by this newly generated one. Figure 5.6 shows an example of how the

68

2-opt operator works. The relocation operator will cut off one item index in a picker’s schedule

with the longest time and insert that item index into a target picker’s schedule with the shortest

time. The item from smaller clusters have a high priority to be cut off. If the target schedule has

items belonging to the same cluster of the inserted item, then the inserted item will be inserted

adjacently to those items. Otherwise, the cut-off item is inserted into a random position in the

target schedule. Using this operator, the algorithm allows schedules with different sizes for

pickers to decrease makespan. Figure 5.7 provide an example of this relocation operator.

Figure 5.5: An example of how the crossover operator adjusts two pickers’ schedules

To improve the performance of the three operators, we also test applying strategies from

two other metaheuristics SA (Simulated Annealing) and TS (Tabu Search). The algorithms for

applying those strategies are shown below.

To test the strategy in SA, we use two parameters Tmax and Tmin, which represent the

maximum and minimum temperatures, respectively. After starting (re-starting) using the ran-

domly generated schedules, a temperature value Tt at iteration t resets to Tmax and decrease

iteratively. Tmin is the lower bound of Tt. The equation below shows how Tt changes at each

iteration. In the equation, θ ∈ (0, 1) is a constant value that controls the decreasing process of

Tt.

69

Figure 5.6: An example of how the 2-opt operator adjusts a picker’s schedule

Figure 5.7: An example of how the relocation operator adjusts two pickers’ schedules

Tt = θ ∗ Tt−1 (5.5)

After completing iteration t−1, for the existing schedules of all pickers St−1
P , the algorithm

can get the schedules of all transporters St−1
D with the shortest makespan mt−1. At iteration t,

a random operator is used to create new schedules of pickers St
P . Then we can get the shortest

70

makespan mt with St
D. Here, like SA, we have a probability of accepting the St

P or not at each

iteration. The probability equation at iteration t is shown below:

pt =

1, if mt < mt−1

e
mt−1−mt

Tt , otherwise
(5.6)

From the equation, the algorithm will always accept new schedules St
P if the corresponding

shortest makespan mt is smaller than the makespan mt−1 in the previous iteration. When

mt ≥ mt−1, if we accept St
P , at iteration t + 1, the operators will operate St

P . Otherwise, the

operators will operate St−1
P .

Algorithm SA strategy in Hetero-ACO
Initialize Tmin, Tmax, Re, θ
t ← 0
Tt ← Tmax

count ← 0 (Non-improvement iteration count)
Generate random St

P and find corresponding St
D and mt according section 5.3

While not stop:
t++
count++
Tt ← θ ∗ Tt−1

if Tt < Tmin:
Tt ← Tmin:

if count > Re:
St
P ← randomly generated SP

count ← 0, Tt ← Tmax

else:
choose an operator σ
St
P ← σ(St−1

P)
find corresponding St

D and mt

if mt < mt−1:
count ← 0

else:
count++
U ← Uniform(0,1)

if U < e
mt−1−mt

Tt :
St
P ← St−1

P

if exceed maximum running time:
Stop algorithm

71

To test the strategy in TS, we use a fixed-length tabu list, and its length is denoted as

LenTB. The tabu list stores the item indices that prohibit the operators from selecting those

indices in the tabu list. So this could prevent operators from making “cycle” moves on SP ,

which may benefit our algorithm. Here, at iteration t, the tabu list is denoted as Lt
TB. After

starting (re-starting) using the randomly generated schedules, the algorithm empties the tabu

list. In our algorithm, after completing iteration t − 1, the algorithm has the corresponding

St−1
P , St−1

D , and mt−1. At iteration t, the algorithm selects a random operator and uses that

operator to create a partial neighborhood of St−1
P . We need to mention that the neighborhood

size is denoted as LenNB, and the operator cannot use the items indices in the tabu list to find

the partial neighborhood. Then, the algorithm uses the methods discussed in section 5.3 to find

the corresponding SD and makespan for all SP in the neighborhood. Then, the algorithm will

rank those SP based on the makespans, and SP with the best makespan in the neighborhood

will be St
P . After this, the algorithm adds the items indices used by the operator to create St

P

from St−1
P into the tabu list. If the tabu list reaches the max length, then the oldest items indices

are dropped and new ones are added.

5.4.3 Solutions from An Alternative MILP

In MCOP, if there are relatively large numbers of transporters, there is no need to consider those

schedules for transporters since transporters are enough to guarantee the picker can place the

picked item at the picking location. In that situation, we can focus on finding good schedules for

all pickers. However, even if there are not that many transporters, those schedules for pickers

may still provide some useful information. For example, in a pick wave, ten transporters are

needed to guarantee the hand-off spots for all items are their picking locations. Then, if only

nine transporters are available, the schedules for all pickers cooperating with nine transporters

may share some similarities with the schedules for all pickers cooperating with ten transporters.

Therefore, we develop an alternative MILP, which only involves pickers to finish the pick wave.

We assume a transporter is always waiting at the picking location in this MILP.

The parameters and decision variables used in this MILP are similar to those we discussed

in Chapter 4, so we will not explain them again but list them in Table 5.4 and Table 5.5.

72

Algorithm TS strategy in Hetero-ACO
Initialize LenTB, LenNB, Re
t ← 0
tabu ← [] (tabu list)
count ← 0 (Non-improvement iteration count)
Generate random St

P and find corresponding St
D and mt according section 5.3

While not stop:
t++
count++
if count > Re:

St
P ← randomly generated SP

count ← 0
else:

choose an operator σ
find partial neighborhood with LenNB elements using σ(St−1

P) and tabu
for SP in the partial neighborhood:

find corresponding SD and makespan
rank all SP based on the corresponding makespans
St
P ← SP with shortest makespan

mt ← the shortest makespan
if mt < mt−1:

count ← 0
else:

count++
if length of tabu equals LenTB:

drop the oldest items indices
add new items indices to tabu

if exceed maximum running time:
Stop algorithm

73

Table 5.4: Summary of the parameters for the alternative MILP

Paramter Notation Paramter Notation Description
I The set of all items in the RPL
P The set of all pickers
Ri The picking node of item i ∈ I
R The set of all picking nodes
Vp The traveling speed of a picker p ∈ P
VD The traveling speed of transporters
T pick
p,i The time need for a picker p ∈ P to pick an item i ∈ I

T place
p,i The time need for a picker p ∈ P to place an item i ∈ I on a trans-

porter
Dp The depot node
HNp The home node for a picker p ∈ P
HN The set of all home nodes
N The set of all nodes where N = R ∪HN
N−

p,k The set of nodes that could be visited immediately before node k ∈ N
for a picker p ∈ P

Lk,k1 The distance between two nodes k, k1 ∈ N

Table 5.5: Summary of the decision variables for the alternative MILP

Decision Variable Decision Variable Description
m The makespan of the pick wave
tp,k The time when a picker p ∈ P reach node k ∈ N to pick the related

item
Yp,k,k1 yp,k,k1 = 1 if a picker p ∈ P move from node k to node k1 where

k, k1 ∈ N and k ̸= k1
ap,i ap,i = 1 if picker p pick item i ∈ I

The mathematical formulation of the objective and constraints for this alternative MILP

are shown as follows.

Min m (5.7)

s.t. m ≥ tp,Ri
+ T pick

p,i + T place
p,i +

LRi,Dp

VD

−M(1− Yp,Ri,HNp)

∀p ∈ P, i ∈ I,

(5.8)

∑
p∈P

ap,i = 1 ∀i ∈ I, (5.9)

∑
p∈P

∑
k∈N−

p,Rj

Yp,k,Rj
= 1 ∀j ∈ I, (5.10)

74

∑
k∈N−

p,Rj

Yp,k,Rj
=

∑
k∈N/Rj

Yp,Rj ,k ∀p ∈ P, j ∈ I, (5.11)

∑
j∈I

Yp,HNp,Rj
= 1 ∀p ∈ P, (5.12)

∑
i∈I

Yp,Ri,HNp = 1 ∀p ∈ P, (5.13)

ap,i ≤
∑

k∈N−
p,Rj

Yp,k,Rj
∀p ∈ P, j ∈ I, (5.14)

tp,Rj
≥ tp,Ri

+ T pick
p,i + T place

p,i +
LRi,Rj

Vp

−M(1− Yp,Ri,Rj
)

∀p ∈ P, i ∈ I ∪ 0, j ∈ I ∪ −1,

(5.15)

The objective function 5.7 is to minimize the makespan when all items are delivered to

the depot. Constraints 5.8 state that the makespan is no earlier than the time an item reaches

to depot. Constraints 5.9 indicate that each item can only be picked by one picker. Constraints

5.10 guarantee a picking location can only be visited once by only one picker. Constraints

5.11 ensure a picker enters a picking location and will leave that picking location. Constraints

5.12 and 5.13 ensure each picker starts from the home node and returns the home node at the

end. Constraints 5.14 are use to create relations between decision variable ap,i and Yp,k,k1.

Constraints 5.15 states the time a picker moves from one node to another node.

5.5 Performance comparison

We first compare the performance of makespan among our Hetero-ACO with SA to adjust SP ,

Hetero-ACO with TS to adjust SP , and Hetero-ACO without any metaheuristic strategiy to

adjust SP . Table 5.6 shows our test settings. In this test, the RPL contains 50 items. The

warehouse layout is the warehouse with 4 picking aisles and 2 cross aisles shown in Figure A.4

in Appendix A. We fix the number of pickers to 2 and let the number of transporters be 1, 2, or 3.

We think this could reflect the situations where MCOP uses enough transporters or not enough

transporters. The transporter payload capacities are set to 3, 5, and 10 items for Low,Medium,

and High, respectively. Since in TS, the length of the tabu list may have a significant impact

75

on the performance, we test two tabu list lengths LenTB = 10 or LenTB = 20. Also, based on

some small preliminary tests, we found that gpmax = 10, sqmax = 15 are good for both SA and

TS strategies. For the other parameters in Hetero-ACO, we set α = 1, β = 1, ρ = 0.5, τinit = 2,

τmax = 3, τmin = 0.5, Qh = 10, Qτ = 1000, f = 10, Re = 4, dl = 3, Tmax = 200, Tmin = 20,

θ = 0.8,LenNB = 20. For each combination of these settings, we test 10 replications and the

cut time is set to 600 seconds. For the other parameters related to MCOP like the traveling

speed of entities, the picking time and placing time, and so on, those settings are the same as

those values in Table 4.3.

Table 5.6: Summary of the test settings for comparing Hetero-ACO using different metaheuris-
tic strategies

Setting Value Levels
Number of Transporters 1, 2, 3
Transporter Payload Capacity Low (3 items), Medium (5 items),

High (10 items)
LenTB 10, 20
Number of PAs 4
Number of CAs 2
Size of RPL 50 items
Number of Pickers 2
α 1
β 1
ρ 0.5
τinit 2
gpmax 10
sdmax 15
Qh 10
f 10
dl 3
Qτ 1000
τmin 0.5
τmax 3
Re 4
Tmax 200
Tmin 20
θ 0.8
LenNB 20
Replications of main settings combination 10
Cut Time 600s

76

Table 5.7 shows the comparison of the average makespan decrease across replications

in each scenario in percentage (%). In this table, the values are the Hetero-ACO with SA

or TS compared to Hetero-ACO without any metaheuristics. A negative value means using a

metaheuristic strategy provides a smaller makespan than without a metaheuristic strategy. From

the table, we can find using the strategy from SA has a little better performance when there are

not enough transporters. The reason could be at each iteration, the partial neighborhood is not

good, and for a SP that is not good in the neighborhood, our TS strategy still needs to find the

corresponding SD. Also, from the table, we can find that when there are many transporters,

the performance of using metaheuristic strategies or not using a metaheuristic strategy is close.

This is because of the alternative MILP model since the intermediate solutions from that model

play a decisive role in those situations.

Table 5.7: Comparison of the average makespan decrease across replications in each scenario
in percentage (%)

Entity Hetero-ACO Hetero-ACO with TS
Combination with SA short list long list

Low Medium High Low Medium High Low Medium High
2P1T -1.9 -2.2 -3.2 -0.5 -2.1 -1.3 -1.3 -2.0 -1.4
2P2T -1.6 -1.2 -0.3 -0.6 0 0 0 2.5 0.1
2P3T -0.2 0 0.1 0.1 0.2 0.1 0 0.2 0.2

We also compare the performance of makespan between the Hetero-ACO with SA and a

simple heuristic as the number of transporters increases from small to large. The heuristic is

that when a transporter is assigned to a picker, it cannot collaborate with other pickers before

it delivers the current assigned picker’s items to the depot. After unloading the carried items at

the depot, that transporter can be re-assigned to other pickers. In addition, the hand-off spot of

an item in the heuristic is the picking location for that item. The assignment of transporters in

the heuristic is determined using the following procedures: When a transporter d is available

to be assigned, for a picker p that is not assigned a transporter, let tp be the time that the picker

gets the next item i in Sp. Then, the transporter will be assigned to the picker with the smallest

tp. If a picker gets the item, but no transporter is available. The picker will wait at the picking

location. In this test, the SP are obtained from the alternative MILP model discussed in section

5.4.3. If we denote t′p be the moment in time the picker p get the last item j to fill up the assigned

77

transporter d, then the actual time interval of d occupied by p is [tk−
LDt,Ri

Vd
, t′k+

LRj,Dt

Vd
+T drop

d]

where tk −
LDt,Ri

Vd
is the time d departs from the depot and t′k +

LRj,Dt

Vd
+ T drop

d is the time d

finish unloading at the depot.

Table 5.8 shows the experiment settings in this comparison. The number of pickers is set

to be 3 or 6. When using 3 pickers, we set RPL with 60 items, and we will test the makespan

for the number of transporters ranging from 1 to 6. When using 6 pickers, we set RPL with 150

items, and we will test the makespan for the number of transporters ranging from 1 to 12. The

transporter payload capacity is set to 5 items. The warehouses used in this test are the same

as the experiments we discussed in section 4.5. Therefore, 6 warehouse layouts with 4 or 8

picking aisles and 0 to 2 cross aisles are used. In our warehouse settings, there are 48 picking

locations. In this test, we let the picking locations used for the items in RPL be 10 or 48 to

check how the two methods perform when the items in RPL are concentrated in several picking

locations or are spread widely in the warehouse. For each combination of these settings, we

test 30 replications, and the cut time is set to 300 seconds. For all other parameters related to

MCOP or the Hetero-ACO, we use the same values in Table 4.3 and Table 5.6.

Table 5.8: Summary of the test settings for comparing Hetero-ACO with heuristic

Setting Value Levels
Number of Pickers 3, 6
Number of Transporters 1-6 (3 pickers), 1-12 (6

pickers)
Size of RPL 60 items (3 pickers), 150

items (6 pickers)
Number of PAs 4, 8
Number of CAs 0, 1, 2
Picking location used for RPL 10, 48
Transporter payload capacity 5 items
Replications of main settings combination 30
Cut Time 300s

Figure 5.8 and Figure 5.9 show the comparison of average makespan across replications

of each scenario for 3 and 6 pickers, respectively. The red bar is the makespan of the heuristic

which we set to 100 percent, the blue bar is the Hetero-ACO applied on 10 picking locations,

and the green bar is Hetero-ACO applied on 48 picking locations. From the figures, we can

find that when the number of transporters is less than the number of pickers, our Hetero-ACO

78

always provides smaller makespans. When the number of transporters exceeds the number of

pickers, the heuristic sometimes provides slightly smaller makespans. Also, Hetero-ACO ap-

plied on 48 picking locations usually provides smaller makespans than applied on 10 picking

locations, which means our Hetero-ACO performs better when the items in RPL spread widely

in the warehouse. This is because when the items in RPL are concentrated in several pick-

ing locations, pickers will spend a relatively long time at those picking locations. Therefore,

instead of letting different transporters collaborate with a picker, it is efficient letting a single

transporter collaborate with a picker until the transporter reaches the payload capacity.

Figure 5.8: The comparison of average makespan across replications of each scenario for 3
pickers

Figure 5.9: The comparison of average makespan across replications of each scenario for 3
pickers

In our experiments, we informally observed that when there are relatively more trans-

porters, our algorithm’s convergence rate is faster than when there are relatively fewer trans-

porters. We think one reason for this observation is that our alternative MILP model can provide

good schedules for pickers, and the final solutions (schedules for both pickers and transporters)

of our Hetero-ACO are found in the neighborhood of the MILP solutions when there are more

79

transporters. However, when there are fewer transporters, the final solutions of our Hetero-ACO

are found in the neighborhood of the randomly generated schedules for pickers. In this work,

we don’t make any analysis of the computational effort of our proposed algorithm. However, a

detailed computational analysis is one avenue for future work.

In Hetero-ACO, we use random numbers to help find good schedules for all entities. How-

ever, we don’t test the sensitivity of the random number seeds in our algorithm. The reasons

are: 1) In the transporter schedule construction phase, we use multiple Groups and Squads to

help determine the schedules for all transporters, which can reduce the influence caused by

using random seeds in this phase. 2) In the picker schedule searching phase, the algorithm will

generate multiple random solutions and use the operators multiple times for the neighborhood

search. Using this setting, we can also reduce the influence caused by random seeds in this

phase. But, when the problem size increases, if the computation time is limited, since the algo-

rithm may not have enough time to do the random searching or construction, using a heuristic

solution as the starting point could reduce the influence of using random seeds.

5.6 Summary

This chapter proposes a fast algorithm called Hetero-ACO to find schedules for all entities in a

pick wave of MCOP. This algorithm applies strategies from basic ACO to construct schedules

for all transporters. A dynamic local search is also integrated into the algorithm to improve the

schedules of all transporters by trying different hand-off spots for some items. In addition, the

algorithm applies three methods for searching the schedules of all pickers. The random sched-

ule generation method, the schedule adjustment based on three operators, and the alternative

MILP model ensure the algorithm is efficient under different picker and transporter combina-

tions. We test applying two strategies from the metaheuristics SA and TS for the schedule

adjustment method. Based on the test results, we find using the strategy from SA has slightly

better performance in terms of makespan. Moreover, we compare our Hetero-ACO with a

heuristic under different picker and transporter combinations. The results show Hetero-ACO

outperforms the heuristic when the transporters are no more than the pickers. And Hetero-ACO

80

and the heuristic have similar performance when the transporters are more than the pickers. Ex-

periment results also show that Hetero-ACO performs better when the items in RPL are spread

widely in the warehouse than items in RPL are concentrated in several picking locations.

In this work, the Hetero-ACO can find similar or better schedules when the RPL is smaller

than 150 items, the number of pickers is smaller than 6, and the number of transporters is

smaller than 12. However, we don’t test the robustness for larger problems. For larger prob-

lems, our algorithm can always provide feasible schedules for the entities. But, since a larger

problem will also increase the search space of all solutions, the larger the problem, the more

time is needed for the algorithm to find a relatively good solution. We tested several different

parameter combinations to determine the final values used in this work. But we don’t do de-

tailed parameter tuning. In general, for problems with more transporters, we could use more

Groups and Squads to find the schedules for all transporters since we can obtain relatively

good schedules for all pickers from our alternative MILP. While for problems with fewer trans-

porters, we could use less Groups and Squads to let the algorithm search for more schedules

for all pickers from random generation and neighborhood search. Detailed parameter tuning

analysis could be a good direction for future work to strengthen the algorithm.

81

Chapter 6

Analysis on The Impact of Variability in MCOP

In Chapter 4 and Chapter 5, our proposed MILP model and Hetero-ACO algorithm use constant

values for the traveling speed of the entities, and the time needed for picking and placing an

item. However, in an actual pick wave in the order picking, those values could vary due to

many reasons. For example, an order picker who is less experienced with a storage rack may

need much more time to search for the items on the shelves than an experienced picker [72].

Similarly, a picker who is not familiar with the warehouse layout and stored items may need

more time to move from one picking location to another picking location. In addition, since

in MCOP, pickers and transporters share the workspace, they often must adjust their speed

to avoid collisions and congestion. So, because of the variabilities caused by those reasons,

there may be unforeseen delays during the actual pick wave in MCOP. Since we cannot predict

what will happen before the pick wave and the entities cannot avoid the variability during the

pick wave, in the chapter, we will use our simulation model discussed in Chapter 3 to conduct

experiments to check the impact of adding variabilities to some parameters in the pick wave

of MCOP. We need to mention here that this work does not complete a thorough test to check

the impact of all variabilities that may occur during the pick wave of MCOP. We only add

variabilities to some parameters that we think those values are likely to vary during the pick

wave. In section 6.1, we will discuss the experiment settings in detail. Section 6.2 analyzes

the results and interprets the impact of adding variabilities on the makespan and wait time of

pickers. Section 6.3 summarizes our findings.

82

6.1 Experiment Settings

In our experiments, the warehouse layout is the warehouse with 4 picking aisles and 2 cross

aisles shown in Figure A.4 in Appendix A. We tested 3 entity combinations: 1P1T (1 picker 2

transporters), 2P3T (2 pickers 3 transporters), and 5P8T (5 pickers 8 transporters). The 1P2T

is used to test the situation when we have enough transporters to guarantee the picking location

and the hand-off spot for each item are the same. 2P3T and 5P8T are used to test when we have

relatively small numbers of transporters. The reason to choose these three combinations is we

want to focus on the situations where the ratio of transporters to pickers is no more than 2. For

situations where the ratio is more than 2, the impact of adding variabilities in a pick wave will

be similar to the impact of adding variabilities to 1P2T. This conclusion is intuitive because we

can always assign two different transporters for each picker if the ratio is greater than 2. In

addition, the payload capacity of each transporter is set to 10 items. We also test 3 different

RPL sizes in 9 cases: 50 items for cases 1 to 3, 100 items for cases 4 to 6, and 150 items for

cases 7 to 9. The items in the RPL for each case are randomly generated.

To add variabilities in the pick wave, we apply 4 different settings: Base, SpeedVary,

LoadVary, AllVary. In each setting, we use constant values or some distributions to represent

4 parameters: the picking time and placing time for pickers, and the traveling speed for both

pickers and transporters. For the picking time, we will use 60 s/item or exponential distribution

with λ = 1/60 seconds. For the placing time, we will use 30 s/item or exponential distribution

with λ = 1/30 seconds. For the pickers’ speed, we will use 1 m/s or a triangular distribution

with 0.9 m/s, 1 m/s, and 1.1 m/s for min, mode, and max, respectively. For the transporters’

speed, we will use 2 m/s or a triangular distribution with 1.8 m/s, 2 m/s, and 2.2 m/s for min,

mode, and max, respectively. The details of the 4 settings are shown in Table 6.1. The reason

we choose exponential distributions for the picking and placing time is that we want to add

large variances to the pick wave. While the reason we choose triangular distributions for the

speed is that we want to add small variances to the pick wave. Therefore, we can check how

small and large variances impact the pick wave.

83

Therefore, we will have 108 unique experiment scenarios. Except those scenarios contain

Base setting, we will run 200 replications for each scenario. Based on our preliminary result,

200 replications can provide a relatively precise result under reasonable computation time. For

those scenarios containing Base setting, we will only run 1 replication since the pick wave

is deterministic. The schedules for all entities are computed using our Hetero-ACO. The pa-

rameters we discussed in this chapter are summarized in Table 6.2. The parameters related to

Hetero-ACO and MCOP that are not discussed in this section are set based on Table 4.3 and

Table 5.6.

Table 6.1: The name and values of the 4 parameters used to add variabilities in pick wave

Setting Picking Time Placing Time Picker Speed Transporter Speed
Name (second/item) (second/item) (meter/second) (meter/second)

Base 60 30 1 2
SpeedVary 60 30 Triang(0.9,1,1.1) Triang(1.8,2,2.2)
LoadVary Exp(1/60) Exp(1/30) 1 2
AllVary Exp(1/60) Exp(1/30) Triang(0.9,1,1.1) Triang(1.8,2,2.2)

Table 6.2: Summary of the test settings for testing the impact of adding variabilities in pick
wave

Setting Value Levels
Number of Pickers 1, 2, 5
Number of Transporters 2 (1 pickers), 3 (2 pickers), 8 (5

pickers)
Size of RPL 50 items (3 cases), 100 items (3

cases), 150 items (3 cases)
Variability Setting Base, SpeedVary, LoadVary,

AllVary
Transporter payload capacity 10 items
Number of PAs 4
Number of CAs 2
Replications 200 (except Base setting)

6.2 Analysis of The Results

In our experiment, for each replication, we will record the makespan, the average wait time of

pickers at hand-off spots, and the maximum wait time of pickers at hand-off spots, which are

84

the same metrics we discussed in section 3.4.2. This section will show the results from our

experiments and analyze how the added variabilities impact the metrics.

6.2.1 Impacts on The Makespan

For scenarios with 1P2T, we find that although adding variabilities increases the dispersion of

the makespan, the average and median values of the makespan among each scenario are very

close. Figure 6.1 shows the boxplot of the makespan for the scenarios with RPL sizes in Case1,

Case4, and Case9 of 1P2T. The green triangle represents the average makespan, and the orange

line represents the median value of the makespan. The boxplots for all cases are shown in

Figure B.1 in Appendix B.

For scenarios with 2P3T and 5P8T, we find that when the variances are large, adding

variabilities increases the dispersion of the makespan and the average and median values of

the makespan. That is, for settings LoadVary and AllVary in all cases, more than half of the

replications will result in a larger makespan compared to the makespan from setting Base.

Figure 6.2 shows the boxplot of the makespan for the scenarios with RPL sizes in Case1,

Case4, and Case9 of 2P3T. Figure B.2 in Appendix B shows the boxplots for all cases. Figure

6.3 shows the boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and

Case9 of 5P8T and Figure B.3 in Appendix B shows the boxplots for all cases. Also, since

we are not using normal distributions, we will use Welch’s t-test and Wilcoxon signed-rank

test to statistically compare the mean and median makespan among settings Base, LoadVary

and AllVary. Table 6.3 shows the p values of the hypotheses that the mean makespans from

settings LoadVary, AllVary are equal to the makespan in setting Base for 1P2T, 2P3T, and

5P8T. From the table, we can reject the hypotheses for 2P3T and 5P8T, which means the mean

makespans from settings LoadVary, AllVary are statistically different from the makespan in

setting Base. Table 6.4 shows the p values of the hypotheses that the median makespans from

settings LoadVary, AllVary are equal to the makespan in setting Base for 1P2T, 2P3T, and 5P8T.

From the table, we can also reject the hypotheses for 2P3T and 5P8T.

85

Table 6.3: The p values of the hypotheses that the mean makespans from settings LoadVary,
AllVary are equal to the makespan in setting Base for 1P2T, 2P3T, and 5P8T

Hypothesis Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9

1P2T
µBase = µAllV ary 0.46 0.62 0.85 0.58 0.95 0.47 0.25 0.51 0.08
µBase = µLoadV ary 0.90 0.84 0.87 0.92 0.60 0.86 0.36 0.50 0.71

2P3T
µBase = µAllV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
µBase = µLoadV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

5P8T
µBase = µAllV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
µBase = µLoadV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 6.4: The p values of the hypotheses that the median makespans from settings LoadVary,
AllVary are equal to the makespan in setting Base for 1P2T, 2P3T, and 5P8T

Hypothesis Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9

1P2T
MBase = MAllV ary 0.13 0.82 0.99 0.84 0.57 0.25 0.09 0.61 0.12
MBase = MLoadV ary 0.64 0.56 0.62 0.95 0.74 0.97 0.37 0.51 0.68

2P3T
MBase = MAllV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
MBase = MLoadV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

5P8T
MBase = MAllV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
MBase = MLoadV ary <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Figure 6.1: Boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and
Case9 of 1P2T

6.2.2 Impacts on The Wait Time of Pickers

For scenarios with 1P2T, the average wait time for all pickers is almost 0 for every scenario

in all cases, which means for most replications in those scenarios, pickers can place the item

86

Figure 6.2: Boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and
Case9 of 2P3T.

Figure 6.3: Boxplot of the makespan for the scenarios with RPL sizes in Case1, Case4, and
Case9 of 5P8T.

immediately on the transporter when they reach the hand-off spots. For scenarios with 2P3T

and 5P8T, we find that the average wait time of pickers for settings Base and SpeedVary are

87

almost identical in all cases. In addition, the average wait time of pickers for settings LoadVary

and AllVary are almost identical and larger than the wait time from the other two settings in

all cases. We also find similar results for the max wait time of pickers. Figure 6.4 and Figure

6.5 show the average and max wait times of pickers for all scenarios with 2P3T in all cases,

respectively. Figure B.4 and Figure B.5 in Appendix B show the average and max wait times

of pickers for all scenarios with 5P8T in all cases, respectively.

Figure 6.4: Average wait time of pickers for all scenarios with 2P3T in all cases

We also check the variance in wait time from settings LoadVary and AllVary versus the

wait time from setting Base in all cases for scenarios with 2P3T and 5P8T. For each scenario

with settings LoadVary and AllVary, all entities follow the same schedules in the 200 replica-

tions. Therefore, for placing a certain item, we can compute the variance of the wait time and

compare that variance with the wait time when there is no variance (Base setting). Figure 6.6

and Figure 6.7 show the wait time variance versus wait time for scenarios with 2P3T and 5P8T,

respectively. The figures show that the picker may need to wait to place an item even if the wait

time in setting Base is zero. We can also find that there seems to be a trend that the higher the

wait time to place an item is, the higher the potential variance will be.

88

Figure 6.5: Max wait time of pickers for all scenarios with 2P3T in all cases

Figure 6.6: The variance in wait time from settings LoadVary and AllVary versus the wait time
from setting Base in all cases for scenarios with 2P3T

6.3 Summary

In this chapter, we used our simulation model developed in Chapter 3 as a testbed and com-

bined the Hetero-ACO we proposed in Chapter 5 to check the impact on the pick wave when

89

Figure 6.7: The variance in wait time from settings LoadVary and AllVary versus the wait time
from setting Base in all cases for scenarios with 5P8T

adding variabilities to several parameters in MCOP. The main focus was trying to check how

the variabilities influence the makespan and the pickers’ wait time. Our experiments investi-

gated certain distributions of pickers’ picking and placing times and entities’ traveling speeds.

The results showed that when the ratio of transporters to pickers is smaller than 2, adding vari-

abilities may lead to a situation where the chance the makespan is larger than the makespan

with no variabilities is greater than 50 %. In addition, we found that as the RPL size increases,

that chance also rises. Our experiments also observed that the pickers’ average and max wait

time would increase when the picking and placing times have high variance distributions. And

if a picker needs to wait to place an item based on the schedule from the Hetero-ACO, the

longer the wait time, the higher the variance of wait time the picker may face when adding

variabilities. Therefore, from our results, sophisticated pickers are important to reduce the neg-

ative impacts of the variabilities that may occur in the pick wave of MCOP. However, our tests

only involve several distributions for several parameters, and the variabilities in the real-world

pick wave could differ from our test settings. Since our objective is to make a brief analysis,

90

our results can still provide useful insights into the impacts on the pick wave of MCOP caused

by the variabilities.

For our simulation model, besides the application discussed in this chapter, there could be

more use cases, for example:

1. In our algorithms for finding the schedules for all entities, battery usage is not considered.

But in our simulation model, we could add the battery usage and evaluate how different

charging policies (changing conditions, changing durations, etc.) impact the schedules

obtained from models that don’t consider battery usage.

2. Since the simulation model can act as a data provider, we could integrate the optimization

model into the simulation model. In actual order picking, pickers or transporters may

be temporarily unavailable (shutdown, injured, etc.) The simulation model can easily

add features to represent the situation. If that happens in the simulation, the simulation

model can execute the optimization model and re-schedule the remaining pickers and

transporters.

91

Chapter 7

Conclusions and Future Research

This dissertation studied methods for cooperative order picking to minimize the makespan of

a pick wave. According to our study on the current body of literature and the industrial ap-

plications, the outcome shows three research gaps that need to be addressed in cooperative

order picking. First, the strategy of the cooperation logic is not well studied. Consequently, we

proposed a multi-entity cooperative order picking strategy that provides different cooperation

logic based on the characteristics of the pick wave. That is, the locations for placing the picked

items are determined based on the storage locations of the items, the warehouse layout, and

the number and ratio of different types of entities. So, when there are fewer pickers in the pick

wave, pickers will tend to place the items at the picking location. When there are more pickers

in the pick wave, pickers will tend to place the items at some alternative locations. In addition,

we developed a data-driven and data-generated simulation model to represent the pick wave

of MCOP. By applying a customized data structure, our simulation model can be a testbed

for performance evaluation of pick wave in MCOP under different warehouse layouts, storage

policies, and batching and routing methods.

The second gap is how to effectively and efficiently make the operational decisions, includ-

ing the workload and routes for all entities of the pick wave in MCOP. Therefore, we proposed

an exact method based on MILP that uses mathematical formulae to represent the whole op-

eration of the pick wave and solved the model using a commercial solver. Experiment results

show our model can provide a smaller makespan than the one from the existing work when

there are fewer transporters with a small capacity. This performance improvement is mainly

achieved by letting pickers choose alternative locations to place items to reduce the wait time

92

of pickers. Due to the limitation of the size of the pick wave the exact model can handle in

practice, we also demonstrate a fast algorithm to find the operational decisions by integrating

different optimization methods. We combined three methods to find the operational decisions

for all pickers, including random generation, adjustment by three searching operators, and us-

age of intermediate solutions from a small alternative MILP model. We also tested applying

two strategies from Simulated Annealing and Tabu Search to improve the adjustment methods

for the decisions of all pickers. Besides that, an Ant Colony Optimization based strategy is

used to construct operational decisions for all transporters. Lastly, a dynamic local search is

integrated to improve the decisions by searching alternative locations for placing some items.

The last gap is none of the current literature considers the impact of variabilities on the pick

wave of MCOP. We used our proposed simulation model as the testbed and the fast algorithm

to find operational decisions for all entities to check the impact on the pick wave when the

pickers’ picking and placing times and entities’ traveling speeds have certain distributions. Our

experiment results reveal some of our tested distributions may increase the expected makespan

and may lead to a situation where the chance the makespan is larger than the makespan with no

variabilities is greater than 50 % when the ratio of transporters to pickers is smaller than 2. We

also observed from our experiments that the average and max wait times of pickers increase

when the picking and placing times have high variance distributions. Therefore, sophisticated

pickers are essential to reduce the negative impacts of the variabilities in MCOP.

This dissertation aimed to provide a comprehensive study on cooperative order picking.

We believe our proposed algorithms and models can provide insights and help warehouse own-

ers find the improvement in upgrading manual order pickings with assistive robots and decide

the best combination of pickers and robots. In future studies, we can extend our work in several

directions, including:

1. Making a detailed computational analysis of our Hetero-ACO algorithm. Such as collect-

ing data to analyze the “quality” of the solution associated with each phase (constructing

each Squad and the local search), analyzing how Simulated Annealing contributes to the

algorithm in the neighborhood search, analyzing how the alternative MILP contribute to

93

the algorithm at different ratio of transporters to pickers, and analyzing whether the alter-

native MILP can still accelerate the convergence when the size of the problem is larger

(PRL size larger than 150 items).

2. Analyzing the robustness of the Hetero-ACO under different problem sizes. This can help

the determination of the effectiveness of the algorithm for a certain size of a problem.

Furthermore, detailed parameter tuning can indicate each parameter’s effect and help

select the parameter settings.

3. Computing dynamic hand-off spots in continuous space during the pick wave in MCOP.

In a real pick wave, based on the locations of pickers and transporters, using dynamic

hand-off spots can further reduce the wait time of pickers to improve the makespan.

Also, using dynamic hand-off spots may let the paired picker and transporter reach a

hand-off spot at the same time, which is more realistic since pickers and transporters can

move toward their assigned partner when they “see” it.

4. Applying additional strategies to handle new coming orders. During a pick wave, new

customer orders may arrive. If the current pick wave can be intervened and re-scheduled

to include the new orders, this kind of extension may further improve the efficiency of

the order picking and customer satisfaction.

5. Extending the problem also to facilitate re-stocking activities. So, robots bring items

from the depot back into the warehouse, and pickers return items to the shelves. This

could help warehouses get rid of individual re-stocking activities and leave more time for

order picking to increase the daily throughput.

94

Bibliography

[1] Beth Gutelius and Nik Theodore, The Future of Warehouse Work: Technological Change

in the U.S. Logistics Industry. UC Berkeley Center for Labor Research and Education and

Working Partnerships USA, 2019.

[2] René de Koster, Tho Le-Duc, and Kees Jan Roodbergen, Design and control of ware-

house order picking: A literature review. European Journal of Operational Research,

182(2):481-501, 2007.

[3] James A Tompkins, John A White, Yavuz A Bozer, and J. M. A. Tanchoco, Facilities

Planning (3rd ed.). John Wiley and Sons, 2003.

[4] Ivona Bajor, Antonia Glasnović, and Josip Habazin, Order Picking Process in Warehouse:

Case Study of Dairy Industry in Croatia. PROMET - Traffic&Transportation, 29(1):57-65,

2017.

[5] Günter Ullrich, Automated Guided Vehicle Systems – A Primer with Practical Applica-

tions. Springer, 2015.

[6] Amelia Smith, Amazon Reveals Robot Army in Its Warehouses, 2014.https://www.

newsweek.com/amazon-reveals-robot-army-its-warehouses-288

124

[7] ShaSha Lai, JD.Com Opens Doors to Unmanned Warehouse for First Time, 2018. http

s://www.yicaiglobal.com/news/jdcom-opens-doors-to-unmanne

d-warehouse-for-first-time

95

https://www.newsweek.com/amazon-reveals-robot-army-its-warehouses-288124
https://www.newsweek.com/amazon-reveals-robot-army-its-warehouses-288124
https://www.newsweek.com/amazon-reveals-robot-army-its-warehouses-288124
https://www.yicaiglobal.com/news/jdcom-opens-doors-to-unmanned-warehouse-for-first-time
https://www.yicaiglobal.com/news/jdcom-opens-doors-to-unmanned-warehouse-for-first-time
https://www.yicaiglobal.com/news/jdcom-opens-doors-to-unmanned-warehouse-for-first-time

[8] Alan C Schultz and Michael A Goodrich, Human-Robot Interaction: A Survey. Founda-

tions and Trends® in Human-Computer Interaction, 1(3):203-275, 2007.

[9] 6 RIVER SYSTEMS, CROCS POP-UP WAREHOUSE - READY IN TIME FOR PEAK,

2020. https://6river.com/case-study/crocs-pops-up-warehouse-for-peak/

[10] Maximilian Löffler, Nils Boysen, and Michael Schneider, Picker Routing in AGV-

Assisted Order Picking Systems. INFORMS Journal on Computing, 34(1):440-462, 2022.

[11] Donald H. Ratliff and Arnon S Rosenthal, Order-Picking in a Rectangular Warehouse: A

Solvable Case of the Traveling Salesman Problem. Operations Research, 31(3):507-521,

1983.

[12] Hung-Yu Lee and Chase C Murray, Robotics in order picking: evaluating warehouse

layouts for pick, place, and transport vehicle routing systems. International Journal of

Production Research, 57(18):5821-5841, 2018.

[13] Giulia Pugliese, Xiaochen Chou, Dominic Loske, Matthias Klumpp, and Roberto Mon-

temanni, AMR-Assisted Order Picking: Models for Picker-to-Parts Systems in a Two-

Blocks Warehouse. Algorithms, 15(11), 2022.

[14] Marco Dorigo, Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Politecnico

di Milano, 1992.

[15] Fred Glover, Tabu Search—Part I. ORSA Journal on Computing, 1(3): 190-206, 1989.

[16] Johan Oscar Ong and Don Thomas Joseph, A Review of Order Picking Improvement

Methods. J@Ti Undip: Jurnal Teknik Industri, 9(3):135-138, 2014.

[17] Nils Boysen, René de Koster, and Felix Weidinger, Warehousing in the e-commerce era:

A survey. European Journal of Operational Research, 277(2):396-411, 2019.

[18] Semih Önüt, Umut R. Tuzkaya, and Bilgehan Dog˘ac, A particle swarm optimization al-

gorithm for the multiple-level warehouse layout design problem. Computers & Industrial

Engineering, 54(4): 783-799, 2008.

96

[19] Abbas Ahmadi, Mir Saman Pishvaee, and Mohammad Reza Akbari Jokar, A survey on

multi-floor facility layout problems. Computers & Industrial Engineering, 107: 158-170,

2017.

[20] Vassilios Vrysagotis and Patapios Alexios Kontis, Warehouse layout problems : Types of

problems and solution algorithms. Journal of Computations & Modelling, 1(1):131-152,

2011.

[21] Shahab Derhami, Jeffrey S. Smith, and Kevin R. Gue, Optimising space utilisation in

block stacking warehouses. International Journal of Production Research, 55(21):6436-

6452, 2017.

[22] Kevin R. Gue and Russell D. Meller, Aisle Configurations for Unit-Load Warehouses. IIE

Transactions, 41(3):171-182, 2009.

[23] B. Rouwenhorst, B. Reuter, V. Stockrahm, G.J. van Houtum, R.J. Mantel, and W.H.M.

Zijm, Warehouse design and control: Framework and literature review. European Journal

of Operational Research, 122(3): 515-533, 2000.

[24] Rong Yuan, Tolga Cezik, and Stephen C. Graves, Stowage decisions in multi-zone storage

systems. International Journal of Production Research, 56(1-2): 333-343, 2018.

[25] Yipeng Zhang, Correlated Storage Assignment Strategy to reduce Travel Distance in Or-

der Picking. IFAC-PapersOnLine, 49(2): 30-35, 2016.

[26] Mohammadnaser Ansari and Jeffrey S. Smith, Gravity Clustering: A Correlated Storage

Location Assignment Problem Approach. Paper presented at the 2020 Winter Simulation

Conference, 2020.

[27] D.R. Gibson and G.P. Sharp, Order batching procedures. European Journal of Operational

Research, 58: 57-67, 1992.

[28] C-H Pan and S-Y Liu, A comparative study of order batching algorithms. Omega Inter-

national Journal of Management Science, 23: 691-700, 1995.

97

[29] M. B. Rosenwein, A comparison of heuristics for the problem of batching orders for

warehouse selection. International Journal of Production Research, 34: 657-664, 1996.

[30] G. Clarke and W. Wright, Scheduling of vehicles from a central depot to a number of

delivery points. Operations Research, 12: 568-581, 1964.

[31] E.A. Elsayed and I.O. Unal, Order batching algorithms and travel-time estimation for

automated storage/retrieval systems. International Journal of Production Research, 27:

1097-1114, 1989.

[32] De Koster, M.B.M., Van der Poort, and M. Wolters, Efficient orderbatching methods in

warehouses. International Journal of Production Research, 37(7): 1479-1504, 1999.

[33] Jun Zhang, Xuping Wang, and Kai Huang, Integrated on-line scheduling of order batching

and delivery under B2C e-commerce. Computers & Industrial Engineering, 94: 280-289,

2016.

[34] Y.-C. Ho and Y.-Y. Tseng, A study on order-batching methods of order-picking in a distri-

bution centre with two cross-aisles. International Journal of Production Research, 44(17):

3391-3417, 2006.

[35] Ling-Feng Hsieh and Yi-Chen Huang, New batch construction heuristics to optimise the

performance of order picking systems. International Journal of Production Economics,

131(2): 618-630, 2011.

[36] Xiaochun Feng and Xiangpei Hu, A Heuristic Solution Approach to Order Batching and

Sequencing for Manual Picking and Packing Lines considering Fatiguing Effect. Scien-

tific Programming, 2021.

[37] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone, Genetic pro-

gramming: an introduction on the automatic evolution of computer programs and its ap-

plications. Morgan Kaufmann Publishers Inc., 1998.

98

[38] Sebastian Henn and Gerhard Wäscher, Tabu search heuristics for the order batching prob-

lem in manual order picking systems. European Journal of Operational Research, 222(3):

484-494, 2012.

[39] T. S. Vaughan, The effect of warehouse cross aisles on order picking efficiency. Interna-

tional Journal of Production Research, 37(4): 881-897, 1999.

[40] Kees Jan Roodbergen and René de Koster, Routing methods for warehouses with multiple

cross aisles. International Journal of Production Research, 39(9): 1865-1883, 2001.

[41] Goran Dukić and C̆edomir Oluić, Order-Picking Routing Policies: Simple Heuristics, Ad-

vanced Heuristics or Optimal Algorithm. Journal of Mechanical Engineering, 50(11):530-

535, 2004.

[42] Fred Glover, Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research, 13(5): 533-549, 1986.

[43] Kenneth Sörensen and Fred Glover, Metaheuristics. Encyclopedia of Operations Research

and Management Science, pages 960–970. Springer, New York, 2013

[44] C.-Y. Tsai, J. J. H. Liou, and T.-M. Huang, Using a multiple-GA method to solve the batch

picking problem: considering travel distance and order due time. International Journal of

Production Research, 46(22): 6533-6555, 2008.

[45] Osman Kulak, Yusuf Sahin, and Mustafa Egemen Taner, Joint order batching and picker

routing in single and multiple-cross-aisle warehouses using cluster-based tabu search al-

gorithms. Flexible Services and Manufacturing Journal, 24(1): 52-80, 2011.

[46] Ilhan Or, Traveling Salesman-Type Combinatorial Problems and Their Relation to the

Logistics of Regional Blood Banking. Ph.D. Thesis, Northwestern University, Illinois,

1967.

[47] Martin Grunow, Hans-Otto Günther, Martin Schleusener, and Ihsan Onur Yilmaz. Opera-

tions planning for collect-and-place machines in PCB assembly. Computers & Industrial

Engineering, 47(4): 409-429, 2004.

99

[48] Tzu-Li Chen, Chen-Yang Cheng, Yin-Yann Chen, and Li-Kai Chan, An efficient hybrid

algorithm for integrated order batching, sequencing and routing problem. International

Journal of Production Economics, 159: 158-167, 2015.

[49] Chen-Yang Cheng, Yin-Yann Chen, Tzu-Li Chen, and John Jung-Woon Yoo, Using a hy-

brid approach based on the particle swarm optimization and ant colony optimization to

solve a joint order batching and picker routing problem. International Journal of Produc-

tion Economics, 170: 805-814, 2015.

[50] Vaggelis Giannikas, Wenrong Lu, and Duncan McFarlane, Interventionist Routing Algo-

rithm for single-block warehouse: Application and Complexity, 2015.

[51] Wenrong Lu, Duncan McFarlane, Vaggelis Giannikas, and Quan Zhang, An algorithm

for dynamic order-picking in warehouse operations. European Journal of Operational Re-

search, 248(1): 107-122, 2016.

[52] Haitao Xu, Pan Pu, and Feng Duan, Dynamic Vehicle Routing Problems with Enhanced

Ant Colony Optimization. Discrete Dynamics in Nature and Society, 2018:1-13, 2018.

[53] Kaveh Azadeh, René de Koster, and Debjit Roy, Robotized Warehouse Systems: Devel-

opments and Research Opportunities. SSRN Electronic Journal, 2017.

[54] Ivan Žulj, Hagen Salewski, Dominik Goeke, and Michael Schneider, Order batching and

batch sequencing in an AMR-assisted picker-to-parts system. European Journal of Oper-

ational Research, 298(1):182-201, 2022.

[55] Takayoshi Yokota, Min-Max-Strategy-Based Optimum Co-Operative Picking with AGVs

in Warehouse. 58th Annual Conference of the Society of Instrument and Control Engi-

neers of Japan (SICE), Hiroshima, Japan, 2019.

[56] Sven Winkelhaus, Christoph H. Glock, and Eric H. Grosse, Job Satisfaction: An Explo-

rative Study on Work Characteris- tics Changes of Employees in Intralogistics 4.0. Journal

of Business Logistics, 43(3): 343-367, 2022.

100

[57] Alexandros Pasparakis, Jelle de Vries, and René de Koster, Assessing the impact of hu-

man–robot collaborative order picking systems on warehouse workers. International Jour-

nal of Production Research, 2023.

[58] Konstantinos Mykoniatis and Anastasia Angelopoulou, A modeling framework for the

application of multi-paradigm simulation methods. Simulation, 96(1): 55-73, 2019.

[59] Donghuang Li, Comprehensive Methodology for the Design Configuration and Opera-

tional Control of Shuttle-based Storage and Retrieval Systems. Ph.D. Dissertation, 2022.

[60] Michel Gourgand and Patrick Kellert, An object-oriented methodology for manufactur-

ing system modelling. In Summer Computer Simulation Conference, 1123–1128. Reno,

Nevada, USA, 1992.

[61] Michelle Chabrol, Michel Gourgand, and Sophie Rodier, A modeling methodology and its

application to the design of decision-making aid tools dedicated to the hospital systems.

In RCIS’08:International Conference on Research Challenges in Information, 2008.

[62] Mohammadnaser Ansari and Jeffrey S. Smith, Warehouse Operations Data Structure

(WODS): A data structure developed for warehouse operations modeling. Computers &

Industrial Engineering, 112: 11-19, 2017.

[63] Yavuz A. Bozer and Francisco J. Aldarondo, A simulation-based comparison of two

goods-to-person order picking systems in an online retail setting. International Journal

of Production Research, 56(11): 3838-3858, 2018.

[64] Takumi Kato and Ryota Kamoshida, Multi-Agent Simulation Environment for Logistics

Warehouse Design Based on Self-Contained Agents. Applied Sciences, 10(21), 2020.

[65] Pasquale Legato, Massimiliano Matteucci, and Rina Mary Mazza, Event-based modeling

and simulation for optimizing order picking. 21st International Conference on Modelling

and Applied Simulation, 2022.

101

[66] Behnam Bahrami, El-Houssaine Aghezzaf, and Veronique Limere, Using Simulation to

Analyze Picker Blocking in Manual Order Picking Systems. Procedia Manufacturing, 11:

1798-1808, 2017.

[67] M. Klodawski, R. Jachimowski, I. Jacyna-Golda, and M. Izdebski, Simulation Analysis of

Order Picking Efficiency with Congestion Situations. International Journal of Simulation

Modelling, 17(3): 431-443, 2018.

[68] Sven Winkelhaus, Minqi Zhang, Eric H. Grosse, and Christoph H. Glock, Hybrid order

picking: A simulation model of a joint manual and autonomous order picking system.

Computers & Industrial Engineering, 167, 2022.

[69] Simio LLC. Simio Reference Guide. 2021. https://www.simio.com/

[70] A.Talhi, JC. Huet, V. Fortineau, and S. Lamouri, Towards a Cloud Manufacturing systems

modeling methodology. IFAC-PapersOnLine, 48(3): 288-293, 2015.

[71] Jeffrey S. Smith, Survey on the use of simulation for manufacturing system design and

operation. Journal of manufacturing systems, 22(2): 157-171, 2003.

[72] Eric H. Grosse and Christoph H. Glock, An experimental investigation of learning effects

in order picking systems. Journal of Manufacturing Technology Management, 24(6): 850-

872, 2013.

[73] Eric H. Grosse, Christoph H. Glock, Mohamad Y. Jaber, and W. Patrick Neumann, In-

corporating human factors in order picking planning models: framework and research

opportunities. International Journal of Production Research, 53(3): 695-717, 2014.

[74] Melonee Wise, Michael Ferguson, Daniel King, Eric Diehr and David Dymesich, Fetch &

Freight: Standard Platforms for Service Robot Applications. The IJCAI 2016 Workshop

on Autonomous Mobile Service Robots, New York City, NY, USA, 2016.

[75] Mengfei Yu and René de Koster, Enhancing performance in order picking processes by

dynamic storage systems. International Journal of Production Research, 48(16): 4785-

4806, 2009.

102

https://www.simio.com/

[76] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2021. https://www.

gurobi.com/

[77] G. A. Croes, A Method for Solving Traveling-Salesman Problems. Operations Research,

6(6): 791-812, 1958.

103

https://www.gurobi.com/
https://www.gurobi.com/

Appendices

104

Appendix A

Additional Materials for MILP Model Experiments

In this part, we present the additional materials for the experiments comparing the performance
of the two MILP models in section 4.5.

A.1 The remaining 5 warehouse layouts used in the experiments

Figure A.1 to A.5 show the other 5 warehouse layouts used in the experiments. Table A.1 to
A.3 shows the experiments results when RPL has 10 items.

Figure A.1: The layout of a warehouse with 4 picking aisles and 0 cross aisles.

105

Figure A.2: The layout of a warehouse with 8 picking aisles and 0 cross aisles.

Figure A.3: The layout of a warehouse with 8 picking aisles and 1 cross aisle.

Table A.1: When the RPL has 10 items, the average percentage (%) increase of the makespan
obtained from our model compared to the value obtained from the baseline model in different
scenarios.

Entity Combination
4PAs 8PAs

Low Medium High Low Medium High
1P1T -4.9 -3.4 1.0 -7.1 -3.0 0.8
1P2T 1.2 0.9 0.3 0.2 0.6 0.5
1P3T 0.2 0.4 0.4 0.5 0.7 0.2
2P1T -12.2 -7.4 2.6 -14.8 -7.1 2.0
2P2T 5.2 4.4 3.2 4.3 3.9 3.7
2P3T 4.1 3.3 3.6 2.5 3.8 2.2
3P1T -19.5 -16.2 0.0 -16.8 -13.9 0.3
3P2T -5.7 4.1 3.0 -4.2 3.5 4.0
3P3T 2.0 3.1 1.5 2.5 2.9 3.0

106

Figure A.4: The layout of a warehouse with 4 picking aisles and 2 cross aisles.

Figure A.5: The layout of a warehouse with 8 picking aisles and 2 cross aisles.

107

Table A.2: When the RPL has 10 items, the percentage (%) of replications in different scenarios
that our model provides a better result than the baseline model on makespan.

Entity Combination
4PAs 8PAs

Low Medium High Low Medium High
1P1T 95.2 85.7 0.0 95.0 90.0 0.0
1P2T 0.0 0.0 0.0 0.0 0.0 0.0
1P3T 0.0 0.0 0.0 0.0 0.0 0.0
2P1T 100.0 95.0 19.0 100.0 93.0 34.1
2P2T 20.0 0.0 0.0 18.2 0.0 0.0
2P3T 0.0 0.0 0.0 0.0 0.0 0.0
3P1T 100.0 100.0 40.0 100.0 98.0 60.0
3P2T 84.0 2.0 1.5 82.0 0.8 0.0
3P3T 0.0 0.0 0.0 0.0 0.0 0.0

Table A.3: When the RPL has 10 items, the average wait time decrease per item by changing
from the baseline model to our model in different scenarios.

Entity Combination
4PAs 8PAs

Low Medium High Low Medium High
1P1T 2.8s 1.2s 0.0s 3.0s 1.1s 0.0s
1P2T 0.1s 0.1s 0.0s 0.0s 0.0s 0.0s
1P3T 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s
2P1T 13.5s 8.7s 0.2s 14.1s 6.3s 0.2s
2P2T -0.6s -0.3s 0.1s 0.8s 0.1s 0.0s
2P3T 0.0s -0.2s 0.0s 0.2s 0.1s 0.1s
3P1T 20.7s 10.0s 1.5s 12.2s 7.0s textbf2.0s
3P2T 5.3s 0.0s 0.2s 3.9s 0.0s 0.0s
3P3T 0.1s 0.1s 0.4s 0.1s 0.1s -0.3s

108

Appendix B

Additional Materials for Variability Experiments

Figure B.1: Boxplot of the makespan for the scenarios with RPL sizes in all cases of 1P2T

109

Figure B.2: Boxplot of the makespan for the scenarios with RPL sizes in all cases of 2P3T

Figure B.3: Boxplot of the makespan for the scenarios with RPL sizes in all cases of 5P8T

110

Figure B.4: Average wait time of pickers for all scenarios with 5P8T in all cases

Figure B.5: Max wait time of pickers for all scenarios with 5P8T in all cases

111

	Abstract
	Acknowledgments
	List of Abbreviations
	 Introduction
	 Problem Description and Background
	 Research Methodology and Contributions
	 Definition of MCOP and The Design of A Corresponding Simulation Model
	 Exact Method for Operational Decisions
	 Fast Method for Operational Decisions
	 Analysis on The Impact of Variabilities in MCOP

	 Summary

	 Literature Review
	 Introduction
	 Batching Strategy
	Routing Method
	Static Routing Method
	Dynamic Routing Methods

	Robotic Applications in Order Picking
	Simulation Modeling in Order Picking
	Summary

	 Definition of MCOP and Design and Development of Simulation Model
	 Introduction
	 Problem Description of MCOP
	 Operating Data Structure in MCOP
	 Warehouse Layout Group
	 Stock Keeping Unit Group
	 Customer Order Group
	 Entity Group

	 Simulation Model Development
	 Development of Knowledge Model
	 Development of Action Model
	 Model Verification and Validation
	 Use Case of the Simulation Model

	Summary

	Development of MILP Model for Schedules of All Entities
	Introduction
	Parameters and Notation
	Decision Variables
	Mathematical Formulation
	Performance Comparison
	Summary

	Development of Fast Method for Schedules of All Entities
	Introduction
	Overview of Hetero-ACO
	Construction of Schedules for Transporters
	The Heuristic Function
	Dynamic Local Search
	Update of Pheromone Matrix

	Searching Schedules for Pickers
	Generation of Random Schedules
	Adjusting Existing Schedules
	Solutions from An Alternative MILP

	Performance comparison
	Summary

	Analysis on The Impact of Variability in MCOP
	Experiment Settings
	Analysis of The Results
	Impacts on The Makespan
	Impacts on The Wait Time of Pickers

	Summary

	Conclusions and Future Research
	Bibliography
	Appendices
	Additional Materials for MILP Model Experiments
	The remaining 5 warehouse layouts used in the experiments

	Additional Materials for Variability Experiments

