
Real-Time Graph-Based Path Planning for Autonomous Racecars

by

Elizabeth Keefer

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 5, 2023

Keywords: path planning, graph search, autonomous vehicle

Copyright 2023 by Elizabeth Keefer

Approved by

David Bevly, Chair, Bill and Lana McNair Distinguished Professor of Mechnaical Engineering
Scott Martin, Assistant Professor of Mechanical Engineering

Thaddeus Roppel, Associate Professor Emeritus of Electrical and Computer Engineering

Abstract

This thesis presents a computationally efficient graph-based motion planner designed for

high speed autonomous racing. The emergence of autonomous racing competitions, such as the

Indy Autonomous Challenge (IAC), have sought to test the limits of autonomous vehicle tech-

nology to accelerate development within the domain. A fast, safe, and reliable motion planning

algorithm is developed for an autonomous vehicle operating under high-speed conditions such

as the ones in the IAC. A variety of planning methods are investigated for this purpose, such

as graph-based planning and sampling-based planning, among others. A graph-based method

using the A* search algorithm is selected due to its computational efficiency, reliability, and

predictability in structured environments. The proposed planner is augmented with techniques

for integrating vehicular constraints with path smoothing and edge generation.

Two versions of the proposed path planner are presented. The version used for the 2021

and 2022 IAC competitions on oval tracks is developed and test results from simulation and

running the planner in real time competition are presented. Additionally, improvements to the

planner are implemented to enhance the dynamic feasibility of the planned path and allow for

use on road courses. The improved planner is tested on an autonomous consumer sedan as well

as in simulation. Both iterations of the proposed algorithm are shown to produce dynamically

feasible maneuvers in the presence of a priori unknown obstacles while maintaining faster than

real-time performance.

ii

Acknowledgments

First I would like to acknowledge my parents for being excited, and not mad, that I decided

to go to grad school instead of getting a job. Thank you for always being supportive of whatever

random endeavours I decide to pursue next. A big thanks Howard for convincing me that I

should go to grad school during our weekly meetings in Software for Sensors at the start of the

pandemic. I would also like to thank Dr. Bevly and Dr. Martin for providing an opportunity

for me to join the GAVLAB. I’ll miss the lab lunches, ski trips, and never-ending jokes about

tofu. Thank you Dr. Roppel for serving on my committee and also for your enthusiasm for all

things robots that made class that much more interesting.

Next I would like to thank my fellow GAVLAB cohort. Thank you Kathleen for being my

co-conspirator in all our lab shenanigans, tailgates, and party planning. And to Walt, who was

always down for a Birmingham shopping trip or any of our last-minute adventures. Thank you

Billy for the daily crossword reminder; without you I might have forgotten. And to Grubes, for

allowing all of us to invade your apartment for late-night commiserations over Auburn football,

grad school, and life. Thank you to the rest of the Dead Reckoners trivia team; Wednesdays

were always a highlight of my week (and the group in the corner was definitely cheating)! And

to Will Bryan for being in the top twenty (and his belief in me throughout our time in ATR and

during the formulation of this thesis).

A thanks to the many people whom I have not named but have shaped me into the person I

am today. These include my friend group from high school, my cycling teammates, my fellow

AUMB baritones and music lovers, and all the people in between who have filled my my life

with love, passion, and weirdness. I couldn’t forget a shout-out to Quentin and Elliot. All the

long nights and travels were so that I could give y’all the life you deserve. Lastly, I would like

to thank Christian Moomaw for being my forever best friend (and fiancé), biggest cheerleader

(and biggest critic), and for continually pushing me to be the best version of myself and loving

me regardless.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

1 Introduction . 1

1.1 Introduction and Motivation . 1

1.2 Contributions . 5

1.3 Outline . 6

2 Background . 7

2.1 Motion Planning . 7

2.1.1 Graph Search Algorithms . 10

2.1.2 Sampling Based Algorithms . 38

2.2 Path Smoothing . 47

2.3 Path Planning in Autonomous Racing . 53

3 Graph Based Planner for Oval Tracks . 57

3.1 Background and Motivation . 57

3.2 Planner Architecture . 58

3.2.1 Graph Generation . 58

3.2.2 Graph Search . 60

3.2.3 Path Smoothing . 63

3.3 Experimental Setup . 64

iv

3.3.1 LGSVL Simulator . 64

3.3.2 Object Simulation . 66

3.3.3 Tests . 67

3.4 Results . 67

3.5 Discussion . 70

4 Graph Based Planner for Road Courses . 76

4.1 Layer Generation . 76

4.2 Spline Generation . 83

4.3 Velocity Profile Generation . 92

4.3.1 Graph Generation - Offline . 92

4.3.2 Profile Selection - Online . 97

5 Results . 101

5.1 MKZ Testing . 101

5.1.1 Software Setup . 102

5.1.2 Results . 105

5.2 Simulation Testing . 108

5.2.1 Results . 113

6 Conclusions . 121

6.1 Summary . 122

6.2 Future Work . 122

A Path Planner Implementation . 125

A.1 Path Planner for Oval Courses . 125

A.2 Path Planner for Road Courses . 126

v

B Parameters used for testing oval course planner . 129

C Parameters used for testing road course planner . 131

vi

List of Figures

1.1 6 Levels of Driving Automation . 2

1.2 Waymo, a Level 4 Autonomous Taxi . 3

1.3 Stanford’s Stanley . 3

1.4 Autonomous Racing Series . 4

2.1 Traditional Motion Planning Algorithms . 9

2.2 Graph Search Example . 11

2.3 Directed Graph Search Example . 12

2.4 Tree Search Example . 12

2.5 Depth First Search . 14

2.6 Breadth First Search . 14

2.7 Dijkstra’s Example . 17

2.8 Dijkstra’s Example - Step 1 . 18

2.9 Dijkstra’s Example - Step 2 . 18

2.10 Dijkstra’s Example - Step 3 . 19

2.11 Dijkstra’s Example - Step 4 . 19

2.12 Dijkstra’s Example - Step 5 . 20

2.13 Dijkstra’s Example - Step 6 . 20

2.14 Dijkstra’s Example - Solution . 21

2.15 Heuristic measurement examples . 22

2.16 A* Example . 25

2.17 A* Example - Step 1 . 26

vii

2.18 A* Example - Step 2 . 27

2.19 Connectivity Examples . 27

2.20 A* Example - Step 3 . 28

2.21 A* Example - Step 4 . 28

2.22 A* Example - Step 5 . 29

2.23 A* Example - Step 6 . 29

2.24 A* Example - Step 7 . 30

2.25 A* Example - Step 8 . 30

2.26 A* vs Dijkstra’s Visited Nodes . 31

2.27 Dijkstra vs A* . 31

2.28 Effects of A* Heuristic Function . 34

2.29 RPP State Graph . 39

2.30 PRM Example . 42

2.31 PRM Example Results . 43

2.32 Triangular Inequality . 46

2.33 Examples of continuity . 48

2.34 Dubins Curve . 49

2.35 Bézier Curve . 51

2.36 Candidate Paths from an Algorithm . 55

3.1 Vertices and edges. 59

3.2 Lanes and layers. 59

3.3 Object cost assignment. 61

3.4 Dynamic cost. 62

3.5 Dynamic cost assignment. 62

3.6 Distance cost. 63

3.7 Heuristic cost. 63

viii

3.8 Path smoothing. 64

3.9 LGSVL Simulation. 65

3.10 SVL simulation for the LVMS. 66

3.11 Example of randomly placed objects. 67

3.12 Path plan around an object. 69

3.13 Large Object Avoidance . 69

3.14 Moving Object Avoidance . 70

3.15 Modena Road Course . 71

3.16 Modena Road Course Closeup . 72

3.17 Modena Road Course Closeup with Courser Layer Spacing 73

3.18 Modena Road Course . 74

3.19 Modena Road Course . 75

4.1 Modena Race Track Output from the Global Race Trajectory Optimization Tool 78

4.2 Modena Thetas from the Global Race Trajectory Optimization Tool 78

4.3 Layer Spacing . 79

4.4 Lane Points Generation . 80

4.5 Node Theta - Grid Theta . 81

4.6 Node Theta - Race Theta . 82

4.7 Node Theta - Variable Theta . 83

4.8 Spline along race line . 85

4.9 Splines with θgrid as θnode . 86

4.10 Spline with θraceline as θgrid . 87

4.11 Spline with variable θ as θgrid . 87

4.12 Radius of curvature . 89

4.13 Splines from node at the middle of the graph 90

4.14 Splines from node at the end of the graph . 91

ix

4.15 Spline Pruning . 92

4.16 Velocity Profile of Starting Lap . 93

4.17 Simplified Friction Circle . 94

4.18 Velocity Profiles Along the Race Line . 96

4.19 Pruned Velocity Profiles Along the Race Line 98

4.20 Full Race Profile . 99

5.1 Lincoln MKZ used for testing . 101

5.2 MKZ Test #1 Path . 102

5.3 MKZ Test #2 Path . 102

5.4 MKZ Test #3 Path . 103

5.5 Graph Generation of the MKZ . 104

5.6 MKZ Test #1 Velocity Results . 106

5.7 MKZ Test #1 Distance Traveled vs Speed . 106

5.8 MKZ Test #2 Velocity Results . 107

5.9 MKZ Test #2 Distance Traveled vs Speed . 107

5.10 MKZ Test #3 Velocity Results . 108

5.11 MKZ Test #3 Distance Traveled vs Speed . 108

5.12 Simple simulation setup . 109

5.13 Simple Simulation Testing for TMS . 110

5.14 Simulation Race Tracks . 111

5.15 How tuning can affect the output path . 113

5.16 Commanded Speeds at TMS . 115

5.17 Commanded Speed at TMS - Grid Points View 115

5.18 Simple Simulation Testing for TMS . 116

5.19 Passing an Object in Simulation . 117

5.20 Passing objects in simulation with 2 detected objects and 1 undetected object . 118

x

5.21 Passing objects in simulation with all 3 detected objects 118

5.22 Simple Simulation Testing for Monza . 119

5.23 Full lap of random objects at Monza . 120

6.1 Wavy Path Smoothing . 123

xi

List of Tables

2.1 Dijkstra vs A* Performance . 32

2.2 Dijkstra vs A* Performance with Scaled Heuristic 33

3.1 Static Object Calculation Times . 68

3.2 Dynamic Testing Calculation Times . 69

5.1 MKZ Testing Parameters . 104

B.1 MKZ Testing . 129

C.1 MKZ Testing . 131

C.2 Monza Circuit Testing . 132

C.3 Texas Motor Speedway Testing . 132

xii

Chapter 1

Introduction

1.1 Introduction and Motivation

The Society of Automotive Engineers (SAE) defines six levels of vehicle autonomy, seen in

Figure 1.1. The lowest level, Level 0, describes no autonomy at all, with the human driver

having full control of the vehicle, excepting for rudimentary safety technologies such as an

anti-lock braking system (ABS) [1] and blind spot detection [2]. Conversely, the highest level,

Level 5, describes full autonomous control which never requires human input, even as the ve-

hicle negotiates a wide variety of scenarios, conditions, and terrains. Level 1 and Level 2 tech-

nologies such as adaptive cruise control [3] and rudimentary lane keeping [4] are becoming

commonplace in vehicles as consumer safety measures. These lower levels (0–2) are cate-

gorized more broadly as driver-supported features with which the driver must be constantly

engaged while operating the vehicle.

1

Figure 1.1: 6 Levels of Driving Automation [5]

It is not until systems reach Level 3 autonomy that they begin to resemble the stereotypical

idea of vehicle autonomy. This level allows for full vehicle control in specific situations but

requires human intervention upon requests. Level 3 began to emerge on the consumer market

with Honda being one of the first approved manufacturer to sell to consumers in 2001, but only

in a very limited market [6]. The technology is called Traffic Jam Pilot and is only used under

certain conditions, such as congested traffic, but does allow the driver to partially disengage

from the driving task. Examples of Level 4 autonomy have been seen in autonomous taxi

services such as Waymo [7] (seen in Figure 1.2 and Cruise [8]. However, because Waymo

has human monitoring and intervention on standby for edge case scenarios and Cruise has a

limited working area, neither company can claim full Level 5 autonomy despite having no

physical driver present.

2

Figure 1.2: Waymo, a Level 4 Autonomous Taxi

To spur on innovation and push the limits of the then current autonomous technologies,

the Defense Advanced Research Projects Agency (DARPA) put on a race in the early 2000s.

In 2004, they hosted what was to be their first Grand Challenge, which consisted of a 210-

mile course through the Mojave Desert [9]. The event ended with no winner, as the last team

standing made it only 7.4 miles before their vehicle drove itself partially off the edge of a road.

The following year the second edition of the Grand Challenge was hosted with more com-

pelling results. Five of the 23 participating teams managed to finish the 132-mile course. The

winner, a robot named Stanley (seen in Figure 1.3 from the Stanford Racing Team, came in at

6 hours and 53 minutes [10]. All the teams were given was a list of latitude, longitudes, corri-

dor widths, and speed limits associated with almost 3,000 waypoints along the course. It was

up to the teams to have prepared for the unknown elements of the course. The Second Grand

Challenge led to advancements in research and technologies as well as leading to the founding

of many autonomous robotic startups.

Figure 1.3: Stanford’s Stanley

Nearly a decade later, another wave of autonomous racing competitions emerged. These

include RoboRace [11] (Figure 1.4a) and the Indy Autonomous Challenge [12] (Figure 1.4b.

3

Roborace was an European based series of autonomous races that takes place in the Roborace

Metaverse, described as “a mixed reality that blends the virtual and physical worlds” that started

in 2015 and held competitions from 2019 to 2021. It employed a World Endurance Champi-

onship (WEC) style chassis with an electric powertrain competing on a mixture of traditional

circuits and simulated environments with various goals for each round. The competitions them-

selves ranged from fastest lap to static and dynamic object avoidance. The races were all only

single-vehicle with the competition utilizing ”ghost” cars on track as dynamic objects [13].

(a) RoboRacing (b) IAC 2021

Figure 1.4: Autonomous Racing Series

The IAC, an US-based series, was inspired by the DARPA Grand Challenge and sought

to be the first fully autonomous multi-vehicle race. Utilizing a Dallara AV-21 racecar, also

used in the Indy Light series, that was retrofitted with a complete sensor package and drive-

by-wire capabilities, the series has grown from single vehicle time trials to a two-car passing

competition with plans to continue advancing the complexity of the race. The IAC was founded

to help address three major issues hurdles facing the advancement of autonomous vehicle (AV)

technology in commercial spaces:

1. Solving “edge case” scenarios - finding and testing scenarios at the limits of the vehicles

known capabilities and ensure vehicular control and safety

2. Catalyzing New AV technologies and innovators - like with DARPA, pushing a new

generations of engineers and researchers towards innovation of new technologies and

softwares in the field of AV

4

3. Engaging the public to help ensure acceptance and use of AV technologies - exposing

the general public, who may not have many opportunities for close-up interactions with

AVs, to the idea of AV and help improve their understanding of the technologies

Every aspect of an autonomous code stack answers some basic question asked of au-

tonomous systems. Localization, or estimation, answers the questions of “Where am I?”, per-

ception answers “What do I see?”, and path planning answers “I know where I need to go,

but what path should I take to get there?” The last question is answered more broadly by

global path planning and typically involves a type of optimal solution that does not take into

consideration unexpected obstacles.

This thesis focuses on a different way of answering the last question by providing a solu-

tion that is generally referred to as a local path planner, By using global waypoints, the planner

aims to negotiate a high-speed autonomous race car around a track in real-time while handling

the avoidance of obstacles not previously accounted for in the global path. The IAC competi-

tions serve as the basis of this thesis.

1.2 Contributions

While path planning for autonomous vehicles is a well-researched field with a diverse set of

solutions and algorithms, path planning specifically for high-speed racing vehicles is a new

field of study. The principal contribution of this thesis is a performant path planner suitable

for a racing environment on an oval and road course. Notable properties of the proposed path

planner include:

• Integration with an otherwise full autonomous racing software stack.

• Layer and edge generation that take into account the dynamic capabilities of the vehicle

in order to produce viable racing lines.

• Velocity profile generation to ensure dynamically feasible goal velocities along a path.

• A flexible software design that can support future algorithm development supporting

more complex environments.

5

An earlier-in-development (and therefore more limited) version of the planner is also discussed

which has been tested in competition on a physical racecar at an oval track. The full version

of the proposed planner is tested in a high-fidelity simulation environment and on a low-speed

autonomous consumer vehicle.

1.3 Outline

This chapter has served as an introduction to autonomous vehicles and their context in au-

tonomous racing. It also provides context for the thesis by providing the contributions to the

field of autonomous racing. Chapter 2 gives further background, exploring different aspects of

path planning. This includes a look at various types of path planning algorithms, path smooth-

ing techniques used in the context of autonomous vehicles, and path planning implementations

in autonomous racing. Chapter 3 discusses the initial path planner design and its testing in

both simulation and in a real-world environment. Chapter 4 discusses changes made to the

aforementioned path planner to address its shortcomings and limitations. Chapter 5 discusses

two experimental setups and results used to test the proposed path planner. Finally, chapter 6

provides a final summary, conclusion, and future work in this area.

6

Chapter 2

Background

2.1 Motion Planning

Motion planning, also known as path planning, is as a computational problem of getting from

one place to another. One of the classical examples of a path planning problem is the “Piano’s

Mover Problem” [14]. The idea is to create an algorithm that gives the path of the piano given

the inputs of the precise dimensions of the room, the objects, and the piano as well as a start and

ending location. The output would include the translations and orientations the piano would

have to move in order to get from the starting point to the goal while avoiding collisions with

any of the objects.

There is a wide range of motivations for studying path planning techniques. The following

list a few such motivations [15]:

• Discrete puzzles, operations, and scheduling [16] – like games such as chess or bridge to

more complex operations such as folding sheet metal into a particular object

• Motion planning puzzles [17] – similar to the physical puzzles where movements in a

precise order have to be executed to get the pieces apart where simulation environments

can be set up in which path planning algorithms solve the order of movements

• Automotive assembly puzzle [18] – instead of making a small scale model of a car to

figure out how a piece should be inserted such as Kineo CAM which was developed as a

motion planning solver to figure out how best to assemble products

7

• Navigating mobile robots [19] – robots designed to autonomously explore unknown

and/or unfamiliar terrain need to have the ability to safely navigate their changing en-

vironments

• Autonomous cars [20] – algorithms that will allow autonomous vehicles to negotiate the

world around them, and more specifically in this thesis the path planning problem present

is an autonomous race car that needs to safely and efficiently navigate an environment

with other high speed autonomous race cars

• Flying through the air or in space [21] – like autonomous driving, bodies in the air, such

as UAVs or drones, need to know how to safely navigate spaces that are also filled with

other moving objects

• Designing better drugs [22] – in drug design, the “docking problem” is determining if a

certain molecule can fit inside of a protein cavity which is similar to an assembly problem

and can be solved with similar algorithms

Motion planning algorithms are traditionally classified into the following three categories [23]:

• Graph Search

• Sampling Based

• Interpolating curve planners

A further breakdown of each category is shown below in Figure 2.1

8

Figure 2.1: Traditional Motion Planning Algorithms

The classification of motion planning algorithms is further expanded in two large subsets:

traditional and machine learning algorithms [24]. The machine learning algorithms are sub-

divided into the following categories:

• Supervised learning

• Optimal value reinforced learning

• Policy gradient reinforced learning

Graph search, also known as discrete search, planners discretize the search space into a

graph of nodes and edges. The nodes represent a point in the search space while the edges

connect the nodes to each other and sometimes have a cost associated to traversing to them.

Discrete searches are often used in vehicle navigation because they do well in low-dimension

space. However, in problems with a large search space, using a graph search method could

become unwieldy in terms of computational memory and time. Also, graph search methods

can only be as good as the ability to properly discretize and characterize the graph which might

not be possible in unknown environments.

Sampling-based planning uses samples in the search space, and then constructs a path

from those sample points. They are good for high dimensional problems and do not require

complete discretization of the search space. However, they do not guarantee optimality and

9

certain obstacles can prove nearly impossible to navigate past. The more common sampling-

based planners are randomized path planner (RPP), probabilistic road maps (PRM), and rapidly

exploring random tree (RRT) or one of their derivatives.

Both graph search and sampling-based algorithms will be discussed in the following sub-

sections. Interpolating curve planners will also be discussed, but not in the context of planners

but rather in the context of edge generation options. Machine learning algorithms will not be

discussed because they were ruled out early on as an option for the path planner. In part due

to their complexity and need for training data that would not be readily available or easily

reproducible.

2.1.1 Graph Search Algorithms

A graph is defined as a group of nodes and edges [25]. Nodes are also referred to as a vertex and

will be used interchangeably in this thesis. In the context of motion planning for autonomous

vehicles, each node represents a physical location. An edge connects two nodes that are related

in a significant way with only edges the robot is able to realistically traverse considered.

An example of a graph can be seen in Figure 2.2. The vertices are represented by the circles

labeled A-I and are connected by edges, represented by the double lines. In this example, Vertex

B (VB), Vertex C (VC), Vertex D (VD), Vertex G (VG), can be traversed to from VA using the

edges EAB, EAC , EAD, EAG, respectively. In the case of this graph, the traversal from VA to

VB along EAB is as valid as the reverse traversal from VB to VA along, EBA. This type of graph

is referred to as an undirected graph [26].

10

Figure 2.2: Graph Search Example

In the instances where the previous relationship is not true the graph is described as being

a directional graph. An example of a directional graph is shown in Figure 2.3. Both example

figures have similar node placement and edges with EAB being a valid edge for both. However,

the inverse edge, EBA, is not valid for Figure 2.3. VA can be traversed away from to VB, VC , or

VD, but the only way to return is from VG on EGA.

A graph is considered connected if a path exists between any two nodes, Vn and Vm for all

nodes on the graph. A path is a series of adjacent and connected vertices. For example, a path

between VA and VI might look like VA
EAC−−→ VC

ECF−−→ VF
EFI−−→ VI . A graph is said to contain a

cycle if a path exists a where the first and last vertices are the same. These cycles can enclose

the entire graph, such as VA
EAB−−→ VB

EBE−−→ VE
EEI−−→ VI

EIJ−−→ VJ
EJH−−→ VH

EHD−−−→ VD
EDA−−→ VA

from Figure 2.2 or can be nested inside the graph such as VA
EAC−−→ VC

ECF−−→ VF
EFG−−→ VG

EGA−−→

VA. For the previous examples, direction is not necessary as the path can be traversed either

clockwise or counterclockwise due to the undirected nature of the graph.

Looking at Figure 2.3, the directionality of certain edges means that the two cycles that

were previously stated do not exist in here. In fact, the graph only contains one short cycle:

VA
EAD−−→ VD

EDG−−→ VG
EGA−−→ VA. This cycle can only be traversed in the counterclockwise

direction.

11

Figure 2.3: Directed Graph Search Example

A special subset of graphs is a known as a tree in which searching through is called a tree

traversal. A tree is defined as directional graph that contains no cycles [25], an example of

which can be seen in Figure 2.4.

Figure 2.4: Tree Search Example

For graph traversals, there are two broad subsets of traversals that are commonly found in

algorithms: depth-first and breadth-first search algorithms. Algorithms are not limited to only

those two types, but many have elements of either one or the other.

A depth-first search algorithm explores along the length of a branch of a root node before

moving on to a neighboring node. A better way to describe this may be to visualize a tree such

as the one in 2.5. There are several general ways to traverse a graph using depth-first search

12

algorithms. In this example, the algorithm traverses the tree such that the left most unexplored

node is selected and expanded.

Starting at VA, the root of the tree, the node is expanded and it is discovered that it has

three children: VB, VC , and VD. Since the rules of this traversal state that the left most node

must be explored and expanded, VB is explored first and is expanded to show that it has two

children: VE and VF . VE , being the left most unexplored node is explored and expanded to

show that it has one child, VI . Once VI is expanded and shown to not have any children, the

exploration moves back to VE . All the children of VE have now been explored, so the algorithm

once again moves back up to VB, which has one unexplored child, VF . Once VF is explored and

expanded the algorithm is done with the branch with the root VB and it continues this pattern

of exploration with the remaining children of VA, VC (light blue) and VD (light orange).

Other types of depth-first search algorithm include variations on which child to explore

first (left most or right most) or whether to completely expand a branch and explore for the bot-

tom up. In other words, the original depth-first search algorithm described has the exploration

order of:

VA → VB → VE → VI → VF → VC → VG → VJ → VK → VD → VH → VL

An algorithm that searches right first would look like:

VA → VD → VH → VL → VC → VG → VK → VJ → VB → VF → VE → VI

And an algorithm that expands and does not start exploring until the end of a branch would

have an exploration order similar to:

VI → VE → VF → VB → VJ → VK → VG → VC → VL → VH → VD → VA

Another way to think of a depth-first search algorithm is equate it to the concept of last-in-

first-out, LIFO. The last node explored or expanded is the first one to be explored or expanded

next. Depth-first search is also associated stacks when talking about data structures.

13

Figure 2.5: Depth First Search

Breadth first search algorithms are algorithms that explore every node at a certain depth,

or labeled layer in Figure 2.6, before moving further [27]. Breadth-first search can be equated

to the concept of first-in-first-out, FIFO and is often associated with the date structure type of

queues. The algorithm starts at VA and expands that node to find its children to be VB, VC ,

and VD, same as before. The difference this time is that it will explore all three children before

moving on to their children. In other words, the algorithm will explore and expand VB to find

it has children VE and VF but will move on to exploring VC next. The exploration order will

result in:

VA → VB → VC → VD → VE → VF → VG → VH → VI → VJ → VK → VL

Figure 2.6: Breadth First Search

14

Dijkstra’s algorithm

The most classic graph search algorithm is perhaps Dijkstra’s algorithm [28]. Proposed by E.

W. Dijkstra in 1959, the algorithm has similarities of a bread-first search algorithm while also

being classified as greedy algorithm. A greedy algorithm is defined as one that always explores

the best local, or immediate, solution [29]. In other words, with every iteration through the

algorithm’s search loop, the next node to explore is chosen by which one looks like the most

optimal step from the immediate node without taking any outside information into considera-

tion. This property can cause the algorithm to run slower than others in the same environment

because it will tend to prioritize nodes closer to the start regardless of if that node is heading in

the direction of the goal node or not. However, if a solution exists, Dijkstra guarantees it is a

globally optimal solution [30].

An example pseudo-code for Dijkstra’s Algorithm can be seen below in Algorithm 1. One

of the required inputs is the graph, which is assumed to include the vertices and its neighboring

vertices. At the start of the algorithm, the two arrays dist and prev are initialized, seen in

lines 2 and 3. dist is to contain the distance for every vertices to the start. In other words

dist[V] would return the distance from the vertex V to the starting vertex, Vstart. The array is

originally initialized to infinity since the vertices have not yet been traversed to and the distance

is still unknown. Likewise, the array prev is initialized with no values for each of the vertices.

prev will eventually contain directions for the shortest path to Vstart by indicating which of the

previous neighbors of any given node have to be traversed through to get to that node. Each

vertex is emplaced in the queue, Q and the distance from the start for Vstart is updated to 0.

The main loop of the code starts at line 8. In this example, it is implemented as a while

loop set to run until Q is empty, but a break condition is implemented in line 19 if the goal

node is found. For a more generalized version of Dijkstra’s algorithm, the break condition at

line 19 would be excluded. This would allow the while loop to iterate over every node in Q.

However, since only path between Vstart and Vgoal is desired, searching beyond the goal is a

computational wasteful task, especially as the scope of the search space widens.

15

In the while loop itself, the node selected to be searched and expanded is chosen by picking

the node in Q that has the minimum distance (line 9). In the case of the first iteration, the only

vertex that has a distance value that is not infinity is Vstart, which has a value of 0. The vertex,

u, is then removed from Q, and expanded such that each of its neighbors, n, are found. The

distance to each neighboring node via u is then calculated by adding the current distance to

u, dist[u], to the edge length between u and n using edge length (line 13). edge length can

be a calculated value or some predetermined value using prior knowledge of the graph. For

the former, it could be as simple as finding the Euclidean or Manhattan distance between the

two vertices. For the latter, the edge values could represent some real-world metric that is

numerically quantified. For example, if the edge between the vertices u and n represent a hilly

walking trail in the real-world, the edge length could be given a value of 5. However, if the

path is a paved, flat walking trail, the edge length could be given a value of 2 because the time

it takes to traverse would be shorter. If dist check is less than the current distance value for n,

then dist[n] and prev[n] are updated (lines 15 and 16, respectively).

The while loop can be broken out of in two ways, checking all nodes in Q or with the

previously mentioned condition of finding the node that is the goal node. If the latter condition

is never met and prev[Vgoal] returns empty, then there is no solution for a path between the

start and the goal nodes.

The output of the while loop is the array prev, which at this point contains back-pointers

to the shortest node. The path will have to be reconstructed using an algorithm such as

construct path, given in Algorithm 2. This algorithm checks if the goal node is found in

line 4. If it was, then the path is reconstructed from the goal, backwards until the starting node

is found.

A quick example on how exactly Dijkstra’s algorithm can be seen starting in Figure 2.7.

In this graph, there are four nodes, VA, VB, VC , and VD. The starting node, Vstart, is A and

indicated by the red square and the goal node, Vgoal, is indicated by the green square. Each

edge is indicated by the orange arrows with the cost of traversing each edge also shown.

16

Algorithm 1 Dijkstra’s Algorithm [28]
Require: graph, Vstart, Vgoal

1: for each V ertex, V , in graph do
2: dist→ ∞
3: prev → []
4: emplace V in Q.emplace(V)
5:
6: dist[Vstart] = 0
7:
8: while Q is not empty do
9: u = Q.min(dist(V))

10: Q.remove(u)
11:
12: for each neighbor, n, of u do
13: dist check = dist[u] + edge length(u, n)
14: if dist check < dist[n] then
15: dist[n] = dist check
16: prev[n] = u

17:
18: if n = Vgoal then
19: Exit
20:
21: path = construct path(prev, Vstart, Vgoal)
22:
23: return path

Figure 2.7: Dijkstra’s Example

In Algorithm 1, lines 2- 4 are represented by Figure 2.8. Each node is added to dist with

the associated value of infinity, prev with an empty back-pointer, and to the queue, Q.

17

Algorithm 2 Construct Path
Require: prev, Vstart, Vgoal

1: u = prev[Vgoal]
2: path = []
3:
4: if u then
5: path = u
6: while u is not Vstart do
7: u = prev[u]
8: path.push front(u)

9:
10: return path

Figure 2.8: Dijkstra’s Example - Step 1

Lines 6 and 9 are shown in Figure 2.9. The starting node distance is changed to 0 in dist.

Then Vcurr is selected to be VA because it is the node in Q with the lowest associated dist

value.

Figure 2.9: Dijkstra’s Example - Step 2

VA is then expanded and found to have two neighbors, VB and VC and then is removed

from Q. VB is arbitrarily chosen to be the first neighbor to be explored, indicated by the purple

square in Figure 2.10. dist check is then calculated, as in line 13, and is found to be equal to 2

18

units since dist[VA] and edge length(VA, VB) have values of 0 and 2 units, respectively. Since

2 < inf , the value for dist[VB] is updated to be 2 and the value of prev[B] is updated to be VA.

Figure 2.10: Dijkstra’s Example - Step 3

Next, VC by way of VA is explored and the its respective values in dist and prev are

updated to be 3 and VA (Figure 2.11). Using the current values in the dist array, the shortest

path to get from the starting node to VB is 2 units which can accessed by way of VA.

Figure 2.11: Dijkstra’s Example - Step 4

Now that both neighbors of VA are explored, the node is completed and the next Vcurr

can be selected. This next node being VB since it has the current lowest dist value of 2 units

(Figure 2.12). VB only has one edge leading out, VD. dist check is calculated by dist[VB] +

edge length(VD, VB) = 2 + 3 = 5 units.

19

Figure 2.12: Dijkstra’s Example - Step 5

Next node to be searched is VC , whose only has one edge leading away and is also VD

(Figure 2.13). Now, performing the dist check results in 4 units. Comparing it to the value

dist[VD] is a little bit different this time. In previous comparisons, the distance values were

always infinity since it was the first time encountering the node. However, now dist[VD] holds

the value of 5 units. This is less than the calculated dist check for this step and means that

a new path to VD has been found and is shorter than the one previously stored. dist[VD] is

updated to be 4 units and prev[VD] is updated to be VC . Now, the shortest path to VD is by way

of VC .

Figure 2.13: Dijkstra’s Example - Step 6

The final node left in Q is VD, which has no neighbors leading out of it but is also the

goal node. Either condition would allow for the exit of the while loop. The last step is seen in

line 21, reconstructing the path using the output matrix prev. This would result in a path shown

in 2.14, with a final path of: VA → VC → VD.

20

Figure 2.14: Dijkstra’s Example - Solution

Dijkstra’s simplicity and ease of implementation makes it a good starting point for creat-

ing a path planner for a robot, autonomous vehicle, or otherwise, like in [31]-[32]. However,

because of the algorithms greedy nature, there have been numerous attempts on adapting the

algorithm to improve speed while still maintaining optimality. For example, attempts to com-

bine Dijkstra with fuzzy logic to find a shortest path in a partially uncertain environment is

presented [33]. Alternatively, research argues that as distance between the start and goal node

increases, the computation time becomes too great to run in real-time [34]. The paper proposes

an alternative approach that includes starting the search from both the start and goal nodes and

continuing to iterate until the search spaces begin to overlap. That proves to greatly reduce the

search time as the distances between the two nodes increases.

A* Algorithm

The A* (or A-Star) algorithm was first proposed in 1968 by Peter Hart, Nils Nilsson, and

Bertram Raphael [35]. It is often seen as an extension of Dijkstra’s algorithm, but is capable of

finding a solution more efficiently assuming that certain parameters are tuned correctly. Where

Dijkstra’s algorithm could run regardless of if information about the goal is known a priori,

A* requires and uses information about the goal when choosing the nodes it explores in order

to minimize the total number of nodes that need explored and expanded. This in turn could

potentially reduce the run-time of the planner. This knowledge and use of the goal node gives

A* the property of being an informed algorithm, also known as best-first search [25].

21

A* attempts to minimize the cost function given in Equation (2.1).

f(n) = g(n) + h(n) (2.1)

where g(n) is the cost from the starting node to the node being explored and h(n) is the heuristic

function that estimates the distance from the current node to the goal. The heuristic function is

the key to an optimal and efficient A* algorithm.

There are several common ways of estimating the heuristic in low-dimensional problems.

They include the Euclidean, Manhattan, or Chebyshev distances seen in Figure 2.15. The two-

dimensional Euclidean distance is found with Equation (2.2).

disteuclidean =
√
(x1 − x2)2 + (y1 − y2)2 (2.2)

The two-dimensional Manhattan takes the sum of the absolute value of the distance of each

coordinate (ex. x and y) as seen in Equation (2.3).

distmanhattan = |x1 − x2|+ |y1 − y2| (2.3)

Lastly, the Chebyshev uses the largest difference along an axes as the distance value as

seen in Equation (2.4).

distchebyshev = max(|x1 − x2|, |y1 − y2|) (2.4)

Figure 2.15: (a) Euclidean, (b) Manhattan, (c) Chebyshev distance

Selecting a “bad” heuristic may still return a path, but that path might be aub optimal path

and the calculation time taken may be longer than an otherwise better heuristic. A bad heuristic

22

is one that returns a value that is more than the actual distance between the current and goal

nodes. The heuristic is considered admissible if it always returns a value that is less than or

equal to the cost of the actual shortest path from the current node to the goal. In this case, A*

is said to be optimal. One special case for A* is if h(n) = 0 for all n, then it can be viewed as

another case of Dijkstra’s algorithm and will perform no better.

An example of pseudo-code for A* can be seen in Algorithm 3.

Algorithm 3 A* Algorithm
Require: graph, Vstart, Vgoal

1: let Q be sorted by min(cost)
2:
3: for each V ertex, V , in graph do
4: visited→ false
5: prev → []
6: cost→ ∞
7:
8: cost[Vstart] = 0.0
9: Q.emplace(Vstart, cost[Vstart])

10:
11: while Q is not empty do
12: Vc = Q.top()
13: Vc = Q.pop()
14:
15: for each neighbor, Vn, of Vc do
16: costnext = cost(Vc) + edge cost(Vc, Vn)
17:
18: if costnext < cost(Vn) then
19: prev[Vn] = Vc
20: cost[Vn] = costnext
21: if !visited[Vn] then
22: Q.emplace(Vn, cost[Vn] + heur(Vn))
23: visited[Vn] = true

24:
25: if Vc = Vgoal then
26: exit
27:
28: path = construct path(prev, Vstart, Vgoal)
29:
30: return path

23

Similar to Dijkstra’s algorithm, A* initializes several arrays visited[V] = false, prev[V] =

[], and cost[V] = inf for each vertex, V , in the graph (lines 4-6). prev serves the same func-

tion as it did in Algorithm 1 while the dist array that tracks the shortest path from source and

the cost array tracks the cost of that node. The dist is used as the estimate of the shortest poten-

tial path if the path were to go through that particular node. The cost array is the combination

of the shortest calculated cost from the goal node and the estimated heuristic to the goal node.

The visited tracks which nodes have been explored.

Also similar to Dijkstra’s, A* initially sets cost[Vstart] = 0.0 and emplaces it into Q. For

this algorithm, Q is a minimum-priority queue, meaning that it sorts the entries from least to

greatest by some metric. Which in this case is the cost that is emplaced with the node. After

initialization, the algorithm enters the main while loop that continues to run until either Q is

empty or the goal node is found (line 25).

The first step each loop is to pick the next node from the top of the queue, which is also the

node with the lowest cost (line 12). The node is then popped, or removed, fromQ (line 13). The

current node chosen, Vc is then expanded and its neighbors, Vn,i, are found. Each neighbor is

then is explored. The potential next cost, costnext, is calculated in line 16 and is the combination

of the shortest path from the start to Vc and the edge cost, or the cost to traverse from Vc to Vn.

Like previously stated, the edge cost does not have to be the physical distance from the start

to the node, rather its the cost of traversing the specific edges. These costs can be impacted by

various factors such as proximity to objects, path conditions, or any other quantifiable metric.

If costnext is less than the current value of cost[Vn], then prev[Vn] and cost[Vn] are updated

to be Vc and costnext, respectively, in lines 19 and 20. If Vn had not been previously visited,

then it is emplaced into Q and marked true in visited. However, the cost value emplaced in

Q is not just costnext. It is the sum of both costnext and the heuristic cost, heur(Vn) (line 22).

By including the heuristic in the cost inserted in the queue, the queue will begin to prioritize

searching nodes that tend towards the goal. Essentially, if the goal is in “front” of the start, the

heuristic will keep the algorithm from searching in too many nodes that are “behind” the start.

24

If Vc is the goal node, the while loop is exited, else it will continue to iterate until it does

eventually find the goal or runs out of nodes to explore. Finally, upon exiting the while loop,

the algorithm constructs the path using the prev array.

A step-by-step of example A* starts at Figure 2.16. Similar to the previous example, the

start and end nodes are indicated by the red and green squares. The edge costs and directions

are also indicated on this graph.

Figure 2.16: A* Example

In Figure 2.17, the visted, prev, and cost array are initialized to their starting values like

in lines 4-6. Also shown in this step is Vstart, VA, being emplaced in Q along with the cost

value of 0.0 in second column (line 9).

25

Figure 2.17: A* Example - Step 1

Since VA is the only node in Q, it is first selected as Vc. VA is expanded and its neighbors

are found with VB arbitrarily being chosen as the first one to investigate. costnext is calculated

in line 16 and is the sum of the cost to travel to VA plus the edge cost, which in this case is

0 and 3, respectively. The calculated cost next is greater than the value cost[VB] and so both

cost[VB] and prev are updated to new values. Since VB has also not been visited yet, its status

is updated in visited and it is emplaced in Q. One thing to note, the value that it is placed in

is not the same value that is in cost. Rather, it is the value in cost plus the heuristic, as seen in

line 22.

In this example, the heuristic function chosen is the Euclidean distance between the node

and the goal. Each square is estimated to be, at best, 1 unit away from its neighbors, so the

heur(VB, Vgoal) =
√
12 + 22 = 2.24 units. If we were to use the Manhattan distance, the

heuristic function would result in 3 units while the Chebyshev distance would be 2 units.

26

Figure 2.18: A* Example - Step 2

Something to note, it was previously stated that the heuristic function had to result in an

optimistic estimation. That would imply that in this case, the Manhattan distance would not

be admissible because it has a greater value than the Euclidean distance. However, looking

closer, the maximum number of neighbors to or from a node is four. This is similar to a 4-

connected graph, or a von Neumann neighborhood [36]. With this type of connectivity, diagonal

movement is not allowed, only movement to a node that shares an edge is allowed. In this type

of edge configuration, the shortest path from a node to the goal is actually the Manhattan

distance, given that all edge lengths are greater than or equal to 1. Therefore, the Manhattan

distance is admissible in this particular case. An example of where it wouldn’t be admissible

can be seen below in Figure 2.19(b) for an 8-connected neighborhood.

Figure 2.19: (a) 4-connected (b) 8-connected

27

Next, VD is investigated. For this node, the cost to traverse is found to be only 2 units

while the heuristic function also returns 2.24 units. Since this node has also not been visited

prior to this, its visited[VD] is updated as well as being emplaced in Q. This time cost[VD] +

heur(VD, Vgoal) = 4.24 which is greater than the current queue cost of VB, VD is placed ahead

of VB, as seen in Figure 2.20.

Figure 2.20: A* Example - Step 3

In Figure 2.21, it is shown that VD is selected as the next Vc. Its expanded and its neighbors,

VE and VG, are explored for the first time and emplaced in the queue.

Figure 2.21: A* Example - Step 4

Continuing another iteration, VE is next in Figure 2.22.

28

Figure 2.22: A* Example - Step 5

In Figure 2.23, VH is shown to only have one neighbor, VI , which also happens to be the

goal node. However, the while loop will continue another iteration because in order to break

out of the while loop with goal condition, Vc, not Vn, must equal Vgoal.

Figure 2.23: A* Example - Step 6

Finally, Vc = Vgoal and the while loop is ended before exhausting the queue.

29

Figure 2.24: A* Example - Step 7

Using prev, the path can be reconstructed like in Figure 2.25.

Figure 2.25: A* Example - Step 8

Performance of A* vs Dijkstra’s Algorithm

Figure 2.26(a) highlights the nodes that were expanded before the goal was found. It happens

that in this particular scenario that the algorithm explored the nodes that were to become the

final path, but that is not always guarunteed as the search space grows or objects are introduced.

30

Figure 2.26: Comparing the visited nodes for A* (a) and Dijkstra’s Algorithm (b)

The nodes that would have been searched if Dijkstra’s algorithm were run for the same

graph are shown in Figure 2.26(b). In terms of efficiency, A* searched 3 less nodes than

Dijkstra’s. While that might not seem like a lot, the efficiency of A* really shines the larger

the search space and the farther apart the start and goal nodes are. For example, in Figure 2.27,

a 10 by 10 grid is shown with 20 nodes that are not reachable denoted with the black squares.

Both Dijkstra’s algorithm and A* was used to find the shortest path between the blue (start) and

orange (goal) nodes. However, in Figure 2.27(a), 77 of the 80 searchable nodes were searched

while only 22 were searched in Figure 2.27(b) for the same configurations.

Figure 2.27: (a) Dijkstra vs (b) A*

Both algorithms seem to start there search similarly, with the three nodes neighboring the

starting node are all explored. However, as both algorithms continued, A* began to explore

nodes that tended nearer the straight line path from the start to goal node. In the beginning,

31

Table 2.1: Dijkstra vs A* Performance

Graph
Size

of
Nodes

of
Objects

Dijk.
Time (ms)

A*
Time (ms) Diff Dijk.

Visited
A*

Visited Diff

5 x 5 25 5 1.70 1.10 1.55 15 6 2.47
10 x 10 100 80 6.23 2.27 2.74 76 19 3.92
15 x 15 225 45 13.7 3.88 3.53 317 70 4.51
20 x 20 400 80 26.5 7.51 3.53 317 70 4.51
25 x 25 625 125 42.7 9.98 4.28 497 91 5.44
50 x 50 2,500 500 226 50 4.56 1,997 391 5.10
75 x 75 5,724 1,125 940 133 7.05 4,496 678 6.63

100 x 100 10,000 2,000 2,986 533 5.60 7,996 1,491 5.36

when the algorithm comes to the L-shaped set of objects, it begins exploring both paths around

because they both appear to be valid solutions. As it goes on, the path to the right ultimately

continues to run into more objects, which would push it farther and farther right while the path

upwards eventually finds a hole in the objects and is able to continue towards the goal, lowering

the output of the heuristic function.

Table 2.1 represents the results of 100 simulations of increasingly larger graph sizes. Each

graph had a fifth of its nodes randomly selected as objects and each of the algorithms were im-

plemented for the same graph configurations. In these simulations, the graphs are 8-connected,

and so diagonal movement is allowed. For smaller graphs, like the 5x5, the performance dif-

ference is subtle. A* performs 1.55x faster than Dijkstra while searches 2.47 fewer nodes.

Revisiting the role of the heuristic function and its affects on the algorithm, Table 2.2

shows the results of simulations with changing values of the heuristic. The simulations are

set up similar to the one described previously for Table 2.1. In this simulation, the Euclidean

distance is used as the heuristic function and would be considered admissible because the edge

lengths are never less than 1. However, since these graphs are 8-connected, using the Manhattan

distance as the heuristic would not be considered ”optimistic” because the shortest path could

be shorter than the result of that function due to the diagonal travel.

For this set of simulations, the calculated value of the heuristic is scaled by various values

seen in the first column. For example, if the heuristic results in a value of 3.4 units using the

Euclidean distance and the scaling is 0.75, the heuristic function would actually return 2.55

units. As the the scaling decreases, the number of nodes visited increases, with A* only being

32

Table 2.2: Dijkstra vs A* Performance with Scaled Heuristic

Heuristic
Scaling

Dijk.
Visited

A*
Visited Diff

1.00 396 139 2.84
0.90 396 203 1.95
0.80 396 253 1.56
0.75 396 273 1.45
0.50 396 351 1.13
0.25 396 395 1.00
0.10 396 396 1.00
0.00 396 396 1.00

able to maintain a higher efficiency with heuristic scaling of about 50%. The two nodes con-

verge and perform identically from 25% and lower. This corresponds with the earlier statement

that if h(n) = 0, A* is functionally no better than Dijkstra’s.

To better visualize what is happening as the scaling goes down, Figure 2.27 shows the

comparison of the various scalings of a 20x20 grid with about a fifth of the nodes treated

as objects. Figure 2.28a and 2.28b show the results of running Dijkstra’s algorithm and A*

just as before. A* appears to have worked very efficiently, finding the goal with exploring

much fewer nodes. In the next pane, Figure 2.28c, the estimation of the heuristic is 90% of

the Euclidean distance. This causes the visited nodes to fan out more because the algorithm

wrongly prioritizes nodes it believes to be closer to the goal. Continuing through the panes,

Figures 2.28d-2.28i, the number of nodes continues to increase until the visited nodes begins

to look like result of the Dijkstra’s graph.

33

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.28: Effects of A* Heuristic Function

34

A* Variations, D*, and Others

The simplicity and versatility of A* has led to many derivatives since its first introduction.

These derivatives include trying to improve various properties of A* such as computation time

or node-expansion efficiency. Weighted A* adapts the queue cost calculation in Algorithm 3

Line 22 with Equation (2.5).

fweighted(n) = g(n) + w ∗ h(n), w > 1 (2.5)

In general, the this would speed up finding a solution with a trade off that the solution may

not be the most optimal, or the shortest path [37].

Another class of A* derivatives is the Anytime A* family, which includes Anytime Weight

A* [38], Anytime Weighted A* [39], and Anytime Repairing A* [40] among others. The main

characteristics of these algorithms is they trade off optimality for efficiency in order to have

a solution anytime. For the most part, the algorithms are designed to quickly find a solution

then iterate over the algorithm by incrementally changing a parameter resulting in a longer

computation time but more optimal solution. However, the algorithm could be terminated at any

time, using the most recently computed path as its solution. Algorithms like this would most

likely shine in environments with lower computation ability, rapidly changing environments,

or some combination of both.

Other derivatives of A* take a different approach when adapting the original algorithm in

that they are designed for situations where there is some understanding of the graph during the

initialization of the algorithm, but can handle unknowns such as unexpected objects. Lifelong

Planning A* (LPA*) is one such algorithm introduced by Koenig as an incremental version

of A* that reuses parts of the graph that are identical in order to save time re-planning due to

changing edge costs or nodes, among other things [41]. An example of the LPA* algorithm can

be seen in Algorithm 4. Note, that oftentimes other graph search methods, such as A* are used

to find the initial path and various costs.

Like previous algorithms, LPA* initializes a few arrays, g and rhs, with values of infinity

for each vertex. The g array is similar to array in A* that tracks the distance from the start to the

35

current node. However, the array rhs is an array that has not been used before and represents

one-step look-ahead values that are based on g values and could be better informed.

Also differing in this algorithm is how the queue, Q, is sorted. Rather than cost like in

A*, it is sorted by the key. However, a closer look at what calcKey(v) (line 1) returns shows

that it returns two values, k(v) = [k1(v), k2(v)] where k1 = min(g[v], rhs[v] + heur(v, Vgoal)

and k2 = min(g[v], rhs[v]). Q is sorted by k1 and then by k2. For example, for two keys,

Ka = [ka,1, ka,2] and Kb = [kb,a, kb,2], Ka will always be smaller if ka,1 ≤ kb,1 or if (ka,1 =

kb,1, ka,2 ≤ kb,2).

The algorithm then enters the main loop in lines 33-37 that would run until stopped. At

every iteration, the shortest path is constructed using GetShortestPath function in lines 14-

23. Essentially, the function does the same thing as Algorithm 4 by starting at the goal vertex

and working backwards and checking the shortest paths from the nodes predecessors. This

process is repeated until the start vertex is found.

Between iterations of the loop, there may be changes in the edge costs. If that is the case

then each edge, composed of u (start) and v vertices, is iterated and its costs are updated and

UpdateV ertex(v) is called. In UpdateV ertex (line 4), each of the predecessor vertices rhs

values are updated in line 8. Then the vertex is checked whether it is in Q and removed if it is

(line 9. Finally, if the g and rhs values do not matched, the vertex is emplaced in Q and a new

key is calculated reflecting updated values.

While the first iteration of LPA* runs the same as A*, the strengths of the algorithm

comes by reducing the re-planning times for subsequent iterations because the algorithm is

able to reuse results from previous searches and thus reduces the amount of nodes that need to

be explored [42].

Other popular and often used derivatives of A* that can repair the graph due to unforeseen

changes, often classified as dynamic variants, include:

• D* [43] - Orginially proposed by Anthony Stentz, assumes some apriori knowledge of

the graph and the search space and initially plans a shortest path between the start and

goal. However, as the path is traversed and new graph information is uncovered (such as

unknown objects), the algorithm re-plans from the current cell to the goal. D* is often

36

Algorithm 4 LPA* Algorithm
Require: graph, Vstart, Vgoal

1: CalcKey(v)
2: return key cost = [min(g[v], rhs[v] + heur(v, Vgoal),min(g[v], rhs[v])]
3:
4: UpdateVertex(v)
5: if v! = Vstart then
6: rhs[v] = ∞
7: for each predecessor, pred of v do
8: rhs[pred] = min(rhs[v], g[pred] + EdgeCost[pred, v])

9: if Q.isIn(v) then
10: Q.remove(v)

11: if g[v]! = rhs[v] then
12: Q.emplace(v, CalcKey(v))

13:
14: GetShortestPath()
15: while Q.top().key < CalcKey(Vgoal)||rhs[Vgoal]! = g[Vgoal] do
16: Vc = Q.pop()
17: if g[Vc] > rhs[Vc] then
18: g[Vc] = rhs[Vc]
19: else
20: g[Vc] = ∞
21: UpdateV ertex(Vc)

22: for each successor, succ, of Vc do
23: UpdateV ertex(succ)

24:
25: Main()
26: let Q be sorted by key
27: for each Vertex, V , in graph do
28: g → ∞
29: rhs→ ∞
30: rhs[Vstart] = 0
31: Q.emplace(Vstart, CalcKey(Vstart))
32:
33: while true do
34: GetShortestPath()
35: for each edge, [u, v], with changed costs do
36: cost[u, v] = newEdgeCost(u, v)
37: UpdateV ertex(v)

37

seen as a fairly complicated algorithm that is hard to implement, with the potential need

for a large amount of memory storage being one of the main drawbacks [42].

• Focused D* [44] - By the original author of D*, Stentz further improved the algorithm by

introducing the Focused D* algorithm. This algorithm is an informed heuristic search al-

gorithm that was proven to run faster than the original D* by several orders of magnitude.

This is accomplished by focusing updates of the graph to only nodes that matter.

• D* Lite [45] - Rather than being based on D*, D* lite draws its inspiration from LPA*.

When implemented, the algorithm explores fewer nodes than LPA* and thus is able to

run faster than its predecessor.

2.1.2 Sampling Based Algorithms

Like its name suggest, sampling based planning is a type of planning algorithm that samples

the search space as opposed to discretization. In general, sampling is able to converge on a

solution very quickly for more complex problems such as paths in high dimension spaces. For

example, a UAV has a minimum of 6 degrees of freedom: x, y, z, ϕ, θ, ψ. In a 2D scenario

where there were 100 vertices in a graph, the 6D case would require 1,000,000 vertices [46].

In fact, increasing a graph by n-dimensions increases the number of vertices by 10n. For this

reason, sampling based planning techniques are often implemented for problems with 5 or more

dimensions.

However, one of the drawbacks to sampling based algorithms is that they cannot be con-

sidered to be complete. To be complete, an algorithm will return a solution, if one exists, in

a finite amount of time [15]. Algorithms such as A* and D* are considered complete, be-

cause given enough time and it exists, a solution will always be found. In certain edge cases,

that solution may require searching the entire graph, but the algorithm will always converge.

The same can not be said of sampling based algorithms and because of this a weaker idea of

completeness is tolerated when considering various sampling based algorithms. Instead, an

algorithm can be considered to be probabilistically complete. Which means that given enough

38

time, and assuming a solution exists, it will be found. This is a key metric to assess this quality

being how quickly can the algorithm converge to a solution.

Randomized Potential Planner (RPP)

One of the earliest sample based methods developed to better solve the more complex problems

that discrete planning could not is the randomized potential fields or the randomized potential

planner [47]. The algorithm can best explained with Figure 2.29.

In general, the algorithm uses a potential function as a type of psuedo-heuristic or metric

for determining the distance to the goal. The potential function generally has an attractive term

that is related to the distance to the goal and a repulsive term that is related to the proximity

to objects. However, unlike the heuristics described earlier, this function does not need to be

optimistic, meaning it is allowed to overestimate.

Initialization

Stuck

ResetStuck

Figure 2.29: RPP State Graph

At initialization, the planner enters the BestFirst state. In this state, a vertex and edge are

produced using gradient descent, or in other words, minimizing the potential function, g. The

planner will stay in this state as long as g continues to decrease with every iteration. During

this time, the counter i is kept at i = 1.

If the planner is unable to reduce g, it enters the RandomWalk state. In this state, a ran-

dom walk is executed and the algorithm returns to BestF irst and the counter i is incremented

by one. If g is still unable to be minimized, the algorithm returns to RandomWalk. This

process is repeated, incriminating i each time BestF irst is unsuccessful. If i = k, where k is

39

a pre-determined parameter that is the maximum number of iterations of RandomWalk, then

the algorithm switches to Backtrack. In the Backtrack state, the planner randomly selects

one of the vertices produced during the previous sets of random walks. The counter i is reset

to 1 and the state is changed back to BestF irst.

The introduction of random walk into the algorithm is useful for escaping local minima

in the potential fields. However, in order to do so a large amount of parameters must be hand

selected and tuned in increasing numbers as the number of dimensions increased. While RPP,

has been shown to solve problems with 25 or more dimensions, the task of finding the correct

parameters led to the developments of different sampling based algorithms.

Probabilistic Roadmaps (PRM)

One of the major sampling algorithm families are ones that deal with roadmaps called the

Probabilistic Roadmap Method (PRM) [48]. In essence, a roadmap planner samples the search

space randomly, connecting nodes with edges in order to find a solution between the start

and the goal. In the original algorithm, the process is broken down into two parts: learning

phase and query phase. The learning phase is then broken down into steps: construction and

expansion.

In the construction phase, nodes are placed on the graph and checked if it belongs to the

free space of the graph, or in other words if the node was placed on an obstacle or not. If

it is in free space, it is then connected to neighbors. There are many methods to choosing

which neighboring nodes to connect to including k-nearest neighbors or connecting all nodes

within a given radius. Each of the selected neighbors is checked that the path between them is

completely in the free space, or that by traversing the path there is no collision with an object.

This process is continued until a pre-determined density of nodes is met.

The expansion phase starts right after the construction phase ends. In this phase, areas of

the graph that are deemed more difficult are added to increase connectivity. For example, if

there is a narrow passage between two objects, there is more likely to be disconnected parts of

the graph. Additional nodes and edges are added to regions around nodes that are deemed to

exist in “difficult” regions.

40

The second part of the PRM algorithm is the query phase. In this phase, the start and

goal locations, Vs and Vg, respectively, are connected to the graph. This phase assumes that

the graph as a whole is connected, and so by adding the start and goal locations, the algorithm

assumes a path between the two can be found. A search algorithm is then run to find such path.

If no path is found, then the query phase is said to have failed. In this case it can not actually be

said if a path does or does not exist, just that this particular density and configuration can not

find said path. However, if a path is found then, because of previous checks, it can be assumed

that it is collision free. A path smoothing technique might need to be employed because of the

disjointed nature of the results from this algorithm.

An example of how PRM works can be seen in Figure 2.30. Figure 2.30a represent the

search space, with the large orange shapes being various objects. In Figures 2.30b-2.30d, nodes

are added to the graph at random with edges being added between nodes in close enough prox-

imty. The final graph is shown in Figure 2.30e, ending the learning phase. Figure 2.30f repre-

sents the addition of Vs and Vg. A search algorithm is employed to find a path connecting them,

with the final result shown in Figure 2.31. The final path, highlighted in orange, would most

definitely need to be smoothed out for an autonomous vehicle because of the sharp corners.

41

(a) (b)

(c) (d)

(e) (f)

Figure 2.30: PRM Example

42

Figure 2.31: PRM Example Results

Various derivatives of PRM were developed to address different aspects of the PRM [49].

Others include:

• Collision Checking - In early methods, collision checking was done incrementally along

the path. Later a binary method was developed to first check for a collision in the middle

of the path. If there is no collision there, the halfway points on either side are then

checked. This is done recursively until either the points checked are close enough or a

collision is detected, as presented [50].

• Sampling - Originally, sampling was done randomly within the possible configurations,

but other methods of sampling were proposed such as quasi-random methods using Hal-

ton points that appear to be randomly placed, but generate a more evenly spread of points

in a given area [51]. Another method, Obstacle Based PRM (OBPRM) adds nodes that

are in the free space, but when a node is not then a random direction is picked and the

sample is moved and re-checked [52]. This is done until the sample chosen becomes free

and is then added. This will lead to more nodes closer to obstacles. In problems where

the solution requires travel through narrow or complicated configurations, this method

may help find a path.

• Neighbors - Tuning this element of the PRM is important because of how computation-

ally expensive collision checking along a path is. Choosing neighbors with a relatively

43

high separation distance increases the time needed for checking while also significantly

increasing the change of a collision occurring, essentially wasting that effort. The pre-

viously mentioned method of k-nearest neighbors for determining neighbors generally

has good results [49]. Other methods include component, which connects a new node

to other nearest nodes that are already in a connected component. Visibility is another

common alternative method [53]. In this method, nodes are kept only if they are deemed

useful. To be useful the node has to either be able to connect to at least two other nodes

or to none (waiting to eventually be connected). This reduces the number of nodes on

a graph in an attempt to keep the number of kept nodes low so that a higher number of

edge combinations can be attempted.

Rapidly-exploring Random Trees (RRT)

Rapidly-exploring Random Trees (RRT) was developed and published around the same time

as PRM [54]. This algorithm serves as the basis of a broader family of algorithms by utilizing

”space-filling trees”. This family of algorithms randomly samples the free space of a problem,

building a tree linked to the starting point. One of the problems that RRT addresses was the

perceived bias towards exploring areas that have already been explored during random-walk

algorithms. Instead, RRT has a tendency towards previously unexplored areas. Also, in the

original paper, it was claimed that RRT is probabilistically correct, but no comment could be

made on the convergence. However, in general RRT could outperform the PRM algorithm.

An overview of a basic RRT implementation can be seen in Algorithm 5. The algorithm

needs the starting location, Vstart and a maximum number of iterations, K. Upon initialization,

Vstart is added to the graph, G. In this implementation, a for-loop is set up to for K-iterations.

For each loop, a node, or vertex, is generated at random within the free space and is called

Vrand. Then the nearest neighbor is found in the point that already belongs in G. This nearest

neighbor does not have to be a vertex but could also be the shortest distance to a point on an

edge that also belongs in G. An edge is created between the two points and it is checked that

there are no collisions. If that is true, then Vrand and edge(Vrand, Vnear) are added to G.

44

Algorithm 5 RRT Algorithm
Require: Vstart, K

1: G.init(Vstart)
2:
3: for i = 1 : K do
4: Vrand = GenerateRandomV ()
5: Vnear = NearestNeighbor(Vrand, G)
6: if edge(Vrand, Vnear) is in Gfree then
7: G.addV ertex(Vrand)
8: G.addEdge(edge(Vrand, Vnear))

9: return G

The algorithm can be adjusted for a path planner in a couple of different ways. The main

loop can terminate if a random vertex is in the same spot or a certain radius of the goal node and

is able to be connected to the graph. Or the main loop can continue on aK number of iterations

and the cheapest path is selected. Or the main loop can terminate after a certain amount of time

has passed.

A major sub-class of RRT algorithms is the [55] based on the RRT* algorithm. RRT* was

developed to address the optimality issues of most sampling-based approaches. While it can

not guarantee the most optimal path, it does generally begin to converge on the optimal path and

outperforms RRT by the same metric. RRT* does this in two ways. The first is by recording the

cost to travel to each vertex and checking the costs of all the neighbors within a given radius. If

the new cost is cheaper than one of the neighboring node, then the new node replaces it. This

addition to the algorithm gives RRT* a fan like shape as opposed to RRT’s disjointed shape.

The second addition to RRT* is the “rewiring” of nodes when a cheaper vertex is added to

the neighborhood. In other words, if connecting to the new node causes the overall cost to

decrease, the edges are rewired to go through that new vertex which creates smoother paths.

However, RRT* tends to trade efficiency for the gains in optimality. The two additions

can be computationally heavy and an increase in required computation time is likely. In certain

experiments, the run-time difference between RRT and RRT* shows RRT* taking over four

times as long as RRT for the same amount of iterations, but was able to to output a more

optimal path [56]. This trade off might be worth it for situations where time is not as much of

an issue or where smoother and more optimal paths are needed.

45

RRT*-Smart, seen as an extension of RRT*, adds two more elements to RRT* in an at-

tempt to address some of its predecessor’s issues [57]. This algorithm begins similarly to RRT*,

searching for an initial path between the start and the end. Once RRT* is terminated, the path

is optimized by checking along the path for visibility of successive nodes. For example, in the

chain VA → VB → VC → VD, the path between VA and VC are checked for collision (the edge

between VA and VB having already been checked during the initial part of the algorithm). If

there is no collision, VB is eliminated and an edge between VA and VC are then connected with

an edge. This guarantees a shorter path because of the concept of Triangular Inequality, shown

in Figure 2.32. This elimination of node along an edge continues while it is still collision free.

At the end of this phase, the nodes that are left are called Beacons, and are used for the second

addition, Intelligent Sampling.

Figure 2.32: Triangular Inequality

In Intelligent Sampling, the graph is resampled, with samples biased towards a radius

around each of the beacons. The idea is that the location of the beacons gives an indication

as to location of the objects. Sampling near the beacons tend to increase the optimization of

the final path at the turns about an object. In the end, RRT*-Smart improves upon the final

path cost when compared to both RRT and RRT* in the same experiments mentioned earlier.

However, for run time, RRT*-Smart performed slightly slower than RRT, but was able to finish

three times faster than RRT*. While RRT*-Smart was able to improve upon RRT in terms of

path costs, the computational tradeoffs could still be problematic in higher dimensional spaces

or in much more complex problems.

Still, other variations of RRT* add elements similar to ones already discussed in the pre-

vious sections. For example, Informed RRT* adds an elliptical heuristic in order to converge

46

on a solution quicker and more optimal than RRT* [58]. The addition is similar to that of the

heuristic addition of A* algorithm. In Informed RRT*, once a solution is found, a theoretical

ellipse is drawn around the start node, end node, and path. The algorithm then only searches

within these ellipses, making the assumption that any improvement to the algorithm must lie

within this region. As better solutions are found the ellipse narrows, continuing to decrease

the search space and increasing the likeliness of converging on an optimal solution in a timely

manner.

2.2 Path Smoothing

Most path planning algorithms will produce a path with sharp edges and turns as a result of

the edges chosen for the final path. However, in practical applications this is not the desired

output from a planner. These sharp turns are most likely not dynamically feasible for the

vehicle to traverse or, at the very least, cause some reduction in speed. In problems where

speed is essential, the time necessary to follow a jagged path might be detrimental. In other

applications, such as a vehicle carrying delicate cargo or a human, the sharp turns could lead

to accidents or discomfort to the passenger. Fortunately, path smoothing has been extensively

researched in both the fields of mathematics and robotics.

One important characterization of a smooth path is the idea of continuity. There are two

types: geometric continuity (Gi) and parametric continuity (Ci) [59]. Geometric continuity is

when the end points of two splines meet and their respective tangent vectors are in the same

direction. Parametric continuity is similar but with the additional characteristic of the tangent

vectors also having equal magnitudes. In other words, parametric continuity assumes geometric

continuity but the reverse can not be assumed.

A path is said to be Ci continuous between two curves if at point p, where they meet, their

ith-derivatives are also equal. A path that is Ci continuous is also Cn continuous for all values

of n < i. Figure 2.33a shows a discontinuous path, so for no values of i can the path be said to

be continuous. A C0 continuous path is shown in Figure 2.33b where the two halves of the path

meet and the left path’s end point is equal to the right path’s start point. However, the slope

of the paths are not equal, and so there is no higher order of continuity. Figure 2.33c shows a

47

C1 continuous path, where the slopes of the two paths are equal at the point where they meet.

This path is said to have curvature discontinuity though, because the curvatures at the point

are not equal. The first half of the graph is said to have no curvature since it is a straight line,

but immediately transitions to a graph with high curvature. Finally, Figure 2.33d shows a C2

continuous path, where the derivatives of curvature are equal no matter where the path is split.

In fact, the two halves of the path are indistinguishable.

(a) (b)

(c) (d)

Figure 2.33: Examples of continuity

For the most part, C1 and C2 are sought in motion planning for robots. Higher order

continuity begins to deal with properties not as relevant to the robots motion. Some common

path smoothing techniques used in robotic motion planning will be discussed next.

Dubin’s Curve

Given desired poses (position and orientation) at two points, Dubin’s curve uses arcs and

straight line segments to create a path between the points [60]. Figure 2.34 shows an example

of how a path would be pieced together using Dubin’s curve. Starting from the left, the path

48

to the first point (blue dot) is straight, but transitions to follow around a circular path until the

second point is reached. Then the edge between the second and third is straight before also

transitioning to follow a circular path until the fourth point is reached.

Dubin’s curve has been shown to successful in implementation in a 3D UAV problem [61].

In that application, a 2D Dubin’s curve was created and then extended into the third dimension.

The UAV’s kinematic model is propagated along the 3D curve to check for any collisions,

throwing out any edge that does have a collision and keeping the edge that makes it collision-

free. The author’s of the paper gave two reasons for choosing Dubin’s curve: 1) the curve takes

into account the initial and final headings and 2) it produces the shortest path given a curvature

constraint, which in this case would be the UAV’s turning radius. The method for applying

Dubin’s curve for an autonomous vehicle is used in a similar fashion in the water domain as

well [62].

Due to it’s relatively low computational expense, Dubin’s curves make an excellent path

smoothing technique in environments where computing space is limited. They also can guaran-

tee a shortest path around an object. However, these curves are traditionally used in 2D spaces,

so for applications in slightly higher dimensions, interpolation might be required. The paths

also do not guarantee C2 continuity, which can cause high jerk in the robot’s movement.

Figure 2.34: Dubins Curve

49

Clothoids

Clothoids, also known as Euler Spirals, are a type of curve with a special property that their

curvature changes as a function of its length. Therefore, as the the curve traverses, the radius

of curvature changes linearly, which also means that a vehicle traversing the curve will have

a constant rate of angular acceleration. This property tends to keep the overall path to be

smoother than other options, which makes clothoids a good choice for autonomous vehicle

path planning.

In [63], clothoids are combined with arc and straight line segments for path generations.

The authors chose clothoids specifically because they believe that they require minimal steer-

ing, emulating the way a human driver would drive. Others have created a piece-wise path

using clothoids for autonomous navigation in urban environments [64]. Their experiments in-

cluded roundabouts, lane changes, straight and curvy road segments and were interested in

producing paths that would be most comfortable for their passengers. Clothoids have also been

implemented using a look-up table to approximate the desired shape to increase the overall

efficiency of their planner and to run in real-time [65].

Bézier Curve/B-Splines

Bézier Curves were were invented in 1962 as method for designing automobile bodies and a

curve with degree n is represented by,

P[t0,t1](t) =
n∑

i=0

Bn
i (t)Pi (2.6)

where Pi are control points such that P (t0) = P0 and P (t1) = Pn [66]. Bn
i (t) is called the

Bernstein polynomial and is represented by

Bn
i (t) =

(n
i
)
)(

t1 − t

t1 − t0

)n−1(
t− t0
t1 − t0

)1

, i ∈ {0, 1, ..., n} (2.7)

50

Bézier curves guarantee that the spline produced will pass through P0 and Pn and the path

will always lie within the convex shape formed by the control points, which can be seen in

Figure 2.35.

Figure 2.35: Bézier Curve

A more general form of Bézier Curves is known as B-Splines and is a linear combination

of Bézier Curves. B-splines use knots xi when formulating the function where xi, x0 <=

x1 <= ... <= xm − 1 for m-number of points [67]. The piece-wise function is represented by

S(x) =
m−n−2∑

i=0

Bn
i (x)Pi, x ∈ [xn, xm−n−1] (2.8)

where Pi are the control points where the number of control points is equal to m− n− 1. The

B-splines are defined below in Equation (2.9).

Bj,n =
x− xj
xj+n − xi

Bj,n−1(x) +
xj+n+1 − x

xj+n+1 − xj+1

Bj−1,n−1(x), j = {0, ...m− 1} (2.9)

Note the recursive nature of Equation (2.9). In order to calculateBj,n, bothBj,n−1 andBj−1,n−1

must be calculated. This in turn means that for Bj,n−1 to be calculated, Bj,n−2 and Bj−1,n−2

also must be calculated.

Bézier Curves and B-Splines will often produce similar results in paths. While Bézier

Curves are simpler to implement in practice, B-Splines allow for more flexibility when it comes

to control points. A B-Spline formulation requires control points, the degree, and the knot

vector. Changing the latter two of those can drastically change the characteristics of the path,

51

causing tuning to be necessary. However, adding control points to the path does not effect the

path as a whole, just the local area of the control point since B-Splines are a combination of

Bézier Curves, blended together using the knot vector. This is unlike Bézier Curves where an

additional control point affects the path entirely.

Both techniques have been used in path planning. In [68], the authors present a real-

time implementation of a path planner based off Bézier curves. The simplicity of the curve

allows them to create a safe and and comfortable path at quick enough speeds to effectively

avoid collisions with objects encountered on the road. A B-Spline implementation of a swarm

of UAVs has also been [69]. They were chosen because the splines only require as few as

three control points rather than a segment with thousands of points. They also selected to

implement a third-order version of B-Splines to ensure the path generated stays near the control

points, reducing the risk of a collision. B-Splines were also successfully used in cooperative

driving of multiple autonomous vehicles [70]. This was due to the parameterized nature of the

curve, allowing for a much lower communication bandwidth between vehicles when passing

information back and forth about their respective trajectories. Finally, because of the piece-wise

nature of B-Splines, a path can quickly be updated upon encountering a previously indicted

object by only updating the B-Splines around the said object [71].

Other Smoothing Techniques

Another common path smoothing technique include non-uniform rational B-Spline curve, or

NURBS. A NURBS curve is defined by Equation (2.10) below.

C(t) =

∑n
i=0Ni,p(t)wiPi∑n
i=0Ni,p(t)wi

(2.10)

for a p-order curve where Ni,p is a B-spline basis function with control points Pi, and wi is

the weight [72]. Having both control points and weights allow for NURBS to be flexible when

generating the shapes of desired trajectories. Conversely, poorly chosen weights can cause for

poor parametrization of the curve. NURBS Curves are traditionally used in Graph Design tools

but have been utilized in various path planning tools [73, 74, 75].

52

Cubic Splines are also often used in path smoothing because it is the minimal degree

needed to have C2 approximations and are usually smooth enough in the presence of small

curves [67]. A cubic spline, like B-Splines, are a piece-wise polynomial that is shaped to pass

through a set of global way-points, or control points. The general form of a one-dimensional

cubic spline in a set of n+ 1 piece-wise set [y0, y1, ..., yn] is defined by Equation (2.11).

Yi(t) = ai + bit+ cit
2 + dit

3 (2.11)

where i represents the i-th piece of the spline and t ∈ [0, 1] [76]. Examples of cubic spline

applications in path planning can be found in [77, 78, 79].

2.3 Path Planning in Autonomous Racing

In previous sections, various aspects of path planning and their implementations in the context

of autonomous vehicles were presented. However, autonomous robotic, or vehicular, naviga-

tion has a wide range of applications, from subterranean robots to UAVS to land vehicles. Each

type of robot has different requirements for its planning algorithm due to its physical limita-

tions, domain, and specific use-case. These requirements might mean sacrificing efficiency for

optimality or complexity for fidelity and vice versa.

For this particular thesis, the vehicle domain is a race car, and the specific use-case is

high-speed autonomous racing. This particular set of factors is rather unique and has been a

more recent development in the field of autonomous vehicles, thanks in part to the IAC and

RoboRacing. The needs for this problem are reliability, predictability, and speed. The planner

must be reliable in that it will always output a path, whether that is for object avoidance or

for last-second braking. It must be predictable in that it will always produce a similar path for

relatively similar scenarios so that other aspects of the software stack can always depend on it.

Lastly, it must computationally fast in order to give the car the most up-to-date safe path and

not take up more computational power than it needs to allow for other systems to be able to run

with enough frequency to operate safely.

53

There are also other sacrifices that can be made such as less robustness to various scenarios

and less graph complexity. The vehicle will, in theory, never leave the race track and will

hopefully never encounter unknown objects. This means the algorithm does not need to account

for various road variables that a street car might encounter. Also, the algorithm should only

encounter other vehicles that are similar to itself and also going in the same direction, albeit at

different velocities. It will not have to encounter objects of varying size or with trajectories not

unlike its own. With the vehicle only traveling on the race course, and only in the ”forward”

direction, the graph traverses can be simplified to a directionally cyclic graph which greatly

simplifies the needs of the graph.

Other authors attempt to solve the path planning problem for an autonomous race car [80].

They consider using an model predictive control, or MPC, type solution but found that it re-

quires too much computational power to be practical in a race scenario. Instead, they settle

on representing the track as a graph. Offline they determine the sequence of maneuvers that

are associated with the optimal race line and associate them with the nodes on the constructed

graph. When encountering another object, the algorithm assumes that it is following the same

minimal-time trajectory and propagates the objects position forward in order to optimally de-

termine the path around the obstacle to avoid a collision.

The approach taken in [81] was not for a race scenario, but rather an of-road driving course

with potential for encounters with unknown variables. Like the previous paper, these authors

assume some knowledge of the track beforehand, in their case using global way-points. Using

the way-points, a parametric curve connecting the points is calculated with a C2 continuity.

This curve is named the base frame. Using information from the base frame, path candidates

are generated in real time based on current positioning. These paths are designed so that at

the end, the orientation of the car matches the curvature of the candidate frame at that point.

An example from this approach can be seen in Figure 2.36. Using various characteristics of

each candidate path and checking for collisions, the algorithm determines the best path for the

vehicle.

54

Figure 2.36: Candidate Paths from an Algorithm

This algorithm also determines target speed for the vehicle along the selected path. The

speed limit of the path due to the curvature is calculated in Equation (2.12).

vκ =

√
|ay|max

max(κpath)
(2.12)

Also, factored in to the speed limit is the proximity to other objects and the width of drivable

portion of the road. This is to reduce the risk of an accident or collision. The author’s point

to the algorithms ability to perform in simulation, as well as competition, outputting smooth,

consistent, and safe paths.

Researchers have also approached the problem by using an MPC in their path planner

while simulating the Suzuka race track [82]. Their experiments consisted picking points on

the track and calculating the ideal trajectory while measuring the time for that iteration. With

their setup, the MPC was able to produce a trajectory in about 0.02 seconds. However, their

planner was not implemented on any vehicle or vehicle simulator. This, combined with prior

information regarding the computational time needed for an MPC controller led to other path

planning methods with simulation or real-world results to be explored.

Other research have also utilized an architectures into their planner that went on to be

implemented in an autonomous Dallara AV-21 and Formula Student race cars, respectively

utilized [83] and [84]. Both planners have an offline elements that include a global trajectory

optimization, which is common in planners where knowledge of the track is known a priori.

55

The authors in [83] simplify the problem by moving the calculations into Frénet space.

Or in other words, they represent their race lines and trajectories in terms of (s, d) where s is

the length along a given path and d is the latter offset. Multiple trajectories are produced with

varying degrees of convergence rates to the predefined line. Using potential collision checking

and various safety checks, a trajectory is ultimately chosen and used in the controller.

Another high-speed planner was presented in [85]. This implementation wholly defines

the graph offline, also in Frénet space, with each discrete point represented by [x(s), y(s), θ(s), κ(s)].

Edge selection is based off a function of three weights, κκ, κtrans, and κroute where each is a

function of the distance to an object cluster , the road curvature, and the distance to the racing

line, respectively.

Similarly, [86] discretizes a track completely with nodes connected by cubic splines that

can guarantee C1 continuity. Some of their edge costs can be calculated offline as well, includ-

ing the costs due to the lateral displacement from the race line and the maximum curvature of

the line. Moving calculations like this to the offline phase helps reduce the computational load

at run time. During each planner iteration, the portion of the graph between the ego vehicle

and the goal horizon is extracted from the whole graph. Nodes that have the potential to plan

a collision into another vehicle are removed, along with the nodes in the vicinity of the other

vehicle. A shortest path is calculated and re-processed to give it C2 continuous splines.

56

Chapter 3

Graph Based Planner for Oval Tracks

3.1 Background and Motivation

In May of 2020, teams participating in the inaugural Indy Autonomous Challenge (IAC) in

Indianapolis, had access to a fully autonomous drive-by-wire retrofitted Indy Lights race car.

Over the course of the next five months, teams wrote and tested their software stacks in hopes of

competing in the solo time trial in October of 2020 that consisted of two fast laps and an object

avoidance lap. While the solo competition was not what the organizers originally envisioned for

the competition, it was the first step towards a true head-to-head multi-car racing competition.

The next competition came quickly on the heels of the first, being scheduled for Jan-

uary of 2021 at the Las Vegas Motor Speedway in conjunction with the Consumer Electronics

Show (CES). This competition consisted of a tournament bracket style setup with the two-team

rounds of a passing competition. The format of each round included two cars alternating over-

taking maneuvers at increasing speeds until one of them failed to complete the maneuver. The

defending vehicle had to maintain a specified speed and hold an inside line while the attacking

vehicle attempted to safely pass and merge back onto the inside line. Each time both vehicles

successfully completed the overtake at a given speed, the defender speed was increased. The

defender speed started at 130 kph (36 m/s) and gradually increased each round to speeds over

270 kph (75 m/s).

For a motion planner to be effective in this competition, it needed to be safe, efficient,

stable, and predictable. This planner would also have to be written from scratch and success-

fully integrated with the existing software stack in less than three months. After a survey of

57

potential planner algorithms, the A* algorithm was chosen as the basis for this planner. The A*

algorithm’s strength comes from combining elements of Dijkstra’s Algorithm and principles of

greedy best-first-search algorithms. Dijkstra’s algorithm guarantees optimality, and the adding

of the heuristic allows A* to find the solution in a much more efficient manner by searching the

most promising vertices first [87].

3.2 Planner Architecture

Upon startup, the planner would load an existing graph or generate a new graph with the desired

parameters such as distance between lanes or layers. The planner continuously took in vehicle

state estimates, object detections/predictions, race control flags, and the desired race line trajec-

tory. It then performed the graph search using the A* algorithm in presented in section 2.1.1.

Before outputting the desired path, the planner up-samples and smoothed the optimal path to

provide an improved reference for the motion control modules. A more detailed description of

the planner architecture can be found in Appendix A.1.

3.2.1 Graph Generation

The graph generation could be done offline because the racetrack bounds were known in ad-

vance. It was safe to make a couple assumptions: (1) the ego vehicle should remain inside

the track bounds and (2) the ego vehicle will always be moving in the forward direction (track

dependent). These assumptions allowed the generated graph to be simplified to a directionally

cyclic graph which greatly reduced the complexity of the graph. This also allowed for the edges

to be computed at run-time without greatly affecting the speed of the calculation. However, if

computation time was an issue, the graph could also be pre-computed during initialization.

Edges were generated from a vertex to the dynamically feasible neighbors using a lateral

acceleration limit. This lateral acceleration limit acts as a tuning parameter, and in practice

it determines how many layers forward the car must travel to move over laterally one vertex.

Figure 3.1 gives an example of a few vertices in the graph and their edges.

58

Figure 3.1: Vertices and edges.

For purposes of this thesis, the graph is described by two coordinates, lanes and a layers.

A layer spans the width of the track and are set equal distances apart from each other around

the track. An equal number of lanes are placed in each layer. This is can be seen in Figure 3.2

where there are 5 lanes in the graph.

Figure 3.2: Lanes and layers.

Upon the graph generation, several parameters could be changed and tuned to better fit a

track or a scenario. The distance between layers could be adjusted, with smaller distances cre-

ating a denser graph but requiring more computation time. For this testing, the layer distance

was set to be 10 meters. The number of lanes could also be increased or decreased depending

on how finely the lateral movement needed to be to achieve a successful pass. Five lanes was

59

shown to be a sufficient number for the purposes of this competition. In Figure 3.2, the blue

stars represent the graph points while the orange stars represent the corresponding perpendic-

ular points on the inner and outer bounds. The adjustment of where the lanes start and end

relative to the inner and outer bounds allowed for a margin of safety within the paths outputted

by the planner.

3.2.2 Graph Search

During the graph search portion of the planner, the planner calculates the cost of each vertex.

Four different factors make up the total cost of each vertex: object cost, dynamic cost, distance

cost,and heuristic cost.

Object Cost

The object cost is a penalty associated with a given vertex based on its proximity to a detected

object’s predicted path. The cost of the vertices decrease as they move further from an object’s

predicted trajectory, causing the planner to avoid the object. The implemented object cost

configuration is shown in Figure 3.3. The light, medium, and dark blue areas correspond to

soft, medium, and hard weights, respectively, that are applied to the cost of the vertex. The

width of the bands represent how far those weights carry laterally from the object. The weights

do not necessarily have to correspond with certain lane(s) or vertex, rather they correspond

with an actual distance from the object. The weights are additive in the event there are multiple

objects in close proximity.

There are several parameters around the object cost that can be adjusted based on the given

scenario. Most important of which are the soft, medium, and hard weights and their respective

distances from the detected object. Too similar of weights or too wide of a distances from the

object could potentially cause the algorithm to plan a path straight through the object. For the

best case, a notable gradient at a reasonable distance from the object is required for a successful

object avoidance.

Another important parameter is the distances longitudinally the weights carry for each

object. In other words, how far forward and how far back from an object do the weights still

60

hold. For this testing, the distance was set at initialization, but it could have been rewritten to

scale the distances based on the speed of the defending vehicle.

Figure 3.3: Object cost assignment.

Dynamic Cost

A dynamic cost was included to prevent the planner from outputting a path that is not dynam-

ically feasible for the ego vehicle, and to limit any unnecessary lateral movement. Several

methods, such as the lateral velocity, the lateral acceleration, or a vehicle model, can be used to

calculate the dynamic cost. Here, the lateral velocity is used as the basis of the cost calculation

as shown in Equation (1) and in Figure 3.4.

Jdyn =
√
LD2 + SD2 ∗ 3

√
Vx ∗DW (1)

61

Figure 3.4: Dynamic cost.

where LD represents the distance between the lanes, SD is the distance between layers,

and DW is the dynamic weight. With this formulation, the cost is scaled at higher speeds to

stay within the range of dynamic feasibility. Figure 3.5 shows how the dynamic cost changes

with lateral velocity with a selected dynamic weight of 0.1884.

Figure 3.5: Dynamic cost assignment.

Distance Cost

The distance cost is related to a vertex’s distance from the race line, seen in Figure 3.6. The

cost is calculated as a linear function of the perpendicular distance from the desired racing line.

The purpose of the distance cost is to keep the path on the optimal race line when obstacles are

not present. For the purposes of the IAC competition, the desired race line is generally set to

be the inner most lane of the graph. It could be changed at the planner initialization to be any

other desired line.

62

Figure 3.6: Distance cost.

Heuristic Cost

The heuristic cost is the same as most grid based A* planners, and is calculated as the Euclidean

distance from the vertex to the goal, as shown in Figure 3.7. The purpose of this cost is to

prioritize the search of the vertices that are nearer to the goal, decreasing the total computation

time required to find the optimal path, when compared to Dijkstra’s method. The heuristic cost

was not weighted; instead, all of the other costs were tuned to the expected heuristic values.

Figure 3.7: Heuristic cost.

3.2.3 Path Smoothing

The path generated from the A* planner results in a rough path with discontinuous curvature,

represented by the orange line in Figure 3.8. The non-smoothed path was upsampled between

points and a moving mean is applied for smoothness and allows the path to be tracked more

accurately by the motion controller.

63

Figure 3.8: Path smoothing.

3.3 Experimental Setup

3.3.1 LGSVL Simulator

Testing was done on the LGSVL Simulator, seen in Figure 3.9, that had custom vehicle models

and tracks provided to the IAC teams to allow for replication of the competition environment.

The LGSVL Simulator was an open source, high-fidelity simulator designed for autonomous

vehicle software testing [88]. The simulator provided integration with various autonomous

driving (AD) open-source system platforms like Apollo, Autoware.AI and Autoware.Auto. The

simulator also allows for plug-ins for any type of run-time framework. Like Autoware.AI and

Autoware.Auto, this code stack utilized the open-source ROS2 bridge for communication.

The simulation utilizes Unity’s game engine to simulate a highly realistic and customiz-

able environments. The customization can be broken down into four different categories: en-

vironment simulation, sensor simulation, vehicle dynamics, and control simulation of the ego

vehicle. The environmental simulations included control over aspects of the scenario such as

time of day or weather conditions. This was not necessary for this experiment because the IAC

competitions would not be held in any type of wet or cold conditions that would greatly impact

the vehicle dynamics.

64

Figure 3.9: LGSVL Simulation.

The simulator came with a set of “out-of-the-box sensor” configurations for sensors such

as GPS and IMU, but also allows for real-world sensor models to be used during testing. The

sensors can be configured with placement on the vehicle, publishing rate, and topic name

among other things. The testing simulation environment used the same sensor configuration

as the ones of the AV-21. LGSVL provides a basic vehicle model, but as with most things

regarding the simulation, external models can be imported into the simulation using the Func-

tional Mockup Interface (FMI) [89]. However, the main reason this simulation environment

was chosen was because of its real-time simulation capabilities and ease of use. The ROS2

integration allows for easy porting of code between the software-in-the-loop (SIL) setup and

the actual car.

The planner assumes zero noise and bias on the sensor outputs for the sensor simulation

since that was out of the scope of this testing. The built-in vehicle dynamics module was

insufficient and was replaced with a custom-built vehicle and tire dynamics model that more

accurately replicated the true performance of the AV-21. The control inputs were produced

using Auburn’s autonomous racing software stack including localization, perception, motion

planning, controls, and safety monitoring. The full set of parameters used for testing can be

found in Appendix B. A model of the Las Vegas Motor Speedway (LVMS) was used for testing

for the 2020 IAC at CES competition. An example of the simulation environment used for

testing can be seen in Figure 3.10. The SVL simulator has since been discontinued by LG and

65

an alternative simulator would be needed in order to continue to have up-to-date simulation

[90]

Figure 3.10: SVL simulation for the LVMS.

3.3.2 Object Simulation

To effectively test the motion planning algorithm, a simple object simulator was developed.

The density, locations, and trajectories of the objects can be set explicitly or randomized. An

example of random object placements can be seen below in Figure 3.11. Object detections had

no added noise, and a constant velocity was assumed for the predictions, since object detection

and tracking are outside the scope of this planner. For this testing, the detection distance was

set to 100 meters which is approximately the detection range with the sensors on the actual

vehicle.

66

Figure 3.11: Example of randomly placed objects.

3.3.3 Tests

Tests of the planner were performed in both simulation and in the real world at LVMS. In

simulation, two types of static scenarios were tested. For the first static test, static objects were

placed on the race line randomly. For the second scenario object locations were selected in

a way that intentionally forced complex avoidance maneuvers. For the simulated scenarios,

the car was given an initial desired velocity of 35 m/s which was increased with every lap

completed up to a top speed of 75 m/s. The dynamic testing involved placing another car on

the inside lane (to mimic the IAC competition rules) that was set to go between 10 m/s and 45

m/s slower than the ego vehicle.

For the real-world experiments, Auburn’s AV-21 was tested at LVMS against both dynamic

“ghost” vehicles and real vehicles from other teams. These tests were performed with 5 m/s

and 15 m/s differential speeds between the two vehicles. This range of differential speeds was

much lower due to the risks involved in real-world testing.

3.4 Results

The planner was able to successfully avoid and pass the randomly dispersed static objects at

the full range of velocities with no collisions. An example of a successful pass is shown in

Figure 3.12. The blue dot indicates the location of ego vehicle, the green square indicates a

67

detected object prediction, the blue line represents the desired race line, the orange line repre-

sents the planned path, and the star indicates the current goal vertex. The average, minimum,

and maximum planner calculation times for each tested speed during the static obstacle tests

are shown in Table 3.1. At the average planner calculation time was 5.1 ms, the ego vehicle

will travel less than 0.39 meters between iterations when driving 270 kph (75 m/s). These are

much lower calculation times than many of the algorithms discussed in the prior chapter.

Another example of a static obstacle avoidance test can be seen in Figure 3.13. In Fig-

ure 3.13(a), the ego vehicle approaches four objects. Initially, only the first two objects are

within detection range of the ego vehicle. Because of this, the planner outputs a path that

would go through the undetected third object, which is indicated by the red box. Once the third

object is within detection range, the planner re-plans a safe path that avoids the newly-detected

object as shown in Figure 3.13(b)

The results from the simulated dynamic obstacle overtaking tests can be seen in Table 3.2.

The average calculation time was 0.0033 seconds, which is likely slightly faster due to there

being less objects to avoid. Figure 3.14 shows an example of the ego vehicle approaching and

planning an overtake around a dynamic object.

Table 3.1: Static Object Calculation Times

Speeds Path Calculation Time (ms)
(m/s) Average Min Max

35 65. 8900E-7 186.6
45 5.4 1.1 187.1
55 3.9 9.87E-7 297.6
60 5.3 1.0 173.3
65 3.2 1.2 126.6
70 5.6 8.84E-7 317.1
75 2.1 1.1 7.3
All 5.1 8.89E-7 317.1

68

Table 3.2: Dynamic Testing Calculation Times

Differential Path Calculation Time (ms)
Speeds (m/s) Average Min Max

10 4.8 9.27E-7 17.2
15 3.5 8.20E-7 35.0
20 3.3 8.44E-7 21.1
25 2.4 7.76E-7 06.2
30 3.9 7.04E-7 32.7
35 2.8 7.60E-7 13.5
40 3.6 8.40E-7 16.2
45 3.3 8.78E-7 10.7
All 3.3 7.04E-7 35.

Figure 3.12: Path plan around an object.

Figure 3.13: (a) Detection of two of objects. (b) Re-planned path to avoid the third and fourth
object.

69

Figure 3.14: (a) Detected moving object and planning path around. (b) Mid-object pass. (c)
Moving back to race line.

3.5 Discussion

When this planner was tested on Auburn University’s AV-21, the average planning time was

.32 ms, or ten times faster than the simulated results. The standard deviation of the calculation

times was .13 ms and the minimum and maximum calculation times were .19 ms and 2.0 ms,

respectively. The planner was successfully able to avoid and overtake real vehicles as well

as simulated “ghost” opponents during testing. There was a couple of reasons the calculation

times were so much lower on the actual car. First, the simulation tests were done on a computer

that was running both the simulation environment as well as the entire software stack. Second,

the computer in the car is far more powerful than the one used for the simulation results

This iteration of the planner works exactly how it needs for the narrow and specific use-

case during the IAC. However, translating it to a broader application, or even a slightly more

complex situation would not result in ideal path solutions. Types of potential additional com-

plexity includes:

• defending car modulating speed

• defending car performing evasive maneuvers

• defending car racing off a pre-described race line

70

• multi-car racing with any/all of the above above possibilities

• road course

One of the limitations of this iteration of the planner is its limitations to ovals an tri-ovals

More specially, tracks that have large and sweeping turns in the same direction with any range

of banking. A road course would bring in the element of both left and right turns that are much

tighter than at the IMS or LVMS. An example of a road course at Modena, Italy is shown in

Figure 3.15.

Figure 3.15: Modena Road Course

A closer view of a graph produced using the same planner for the road course is shown

in Figure 3.16 The orange line represents a potential ideal racing line for this particular course

Ideally, the ego vehicle would follow the line, hugging closer to the inside of this tight curve

71

Figure 3.16: Modena Road Course Closeup

However, circumstances of the race might dictate that the ego vehicle travel along the

outside of the curve. This would result in a graph search that includes areas with less dense

nodes. An approximation of one such outer line is represented by the blue line. In this particular

example the problem is not as evident because of the density of the nodes Changing that spacing

to 5 meters, which is closer to what was run in this planner testing, results in a path similar to

Figure 3.17.

72

Figure 3.17: Modena Road Course Closeup with Courser Layer Spacing

Since the path between nodes is approximated as a straight line, the relative sparseness of

the layers results in a path with clear straight line segments. The path-smoothing method from

this planner may have an adequate result. Alternatively, a more elegant solution that integrates

the curvature of the road could also be found. Another possible solution is to keep the density

of nodes high enough to wave away the problem, but with a higher density of nodes comes a

longer computation time.

Another major issue with translating this planner to a road course is that the ideal racing

line does not follow any specific lane, rather it follows a line between grid points at different

layers. This is more apparent in Figure 3.18. If the planner were to use the graph and desired

path as shown, the algorithm would try and approximate the race line to the closest graph point

at every layer. The result would be a jagged path such as the one shown in blue in Figure 3.19.

The approximation could be adequate enough for the straight sections, it would not hold up for

the curved sections where the affect of the approximation is even greatly exaggerated.

73

Figure 3.18: Modena Road Course

74

Figure 3.19: Modena Road Course

This problem is not something that can be easilty ignored either a path-smoothing tech-

nique or higher density of nodes. The graph would need to integrate the race line into each

layer. Although it might not be difficult to do such an integration, is not part of this iteration of

the path planner.

75

Chapter 4

Graph Based Planner for Road Courses

This chapter addresses various concerns raised about the usability of the planner as the com-

plexity of the racing increases such as racing on road courses. These changes include changes

in the layer generation, the edge generation, and an addition of a velocity profile generation.

For a more detailed description of the planner’s architecture, see Appendix A.2.

4.1 Layer Generation

With the previous iteration of the planner having a uniform grid around the tack (i.e. the same

number of nodes in each layer, with each layer even spaced around the track) shown to be

too simplistic of an approach with more complex tracks, a new layer generation scheme is

devised. The first is a more sophisticated way of generating the track bounds using the Global

Race Trajectory Optimization tool produced by the Technical University of Munich’s (TUM)

Institute of Automotive Technology [91, 92].

The first step in using this tool is to is obtain data about the track that is being produced.

This data in the form of: [Xm, Ym, widthright, widthleft] where Xm and Ym are local coordi-

nates of a line around the track. For example, the line could be the right bound of the track. The

input file consists of points along that bound with the width of the track populating thewidthleft

column and 0m populating the widthright column. Other viable lines could be points along a

driven route around the track, as long as accurate offset data is also acquired. The output of the

tool is the array with columns: [Xref , Yref , wright, wleft, xnorm, ynorm, α, s, ψraceline, κ, vx, ax],

which are defined below.

76

• Xref , Yref (m) - the coordinates (in the same frame as the input file) of the reference line

• wright, wleft (m) - the distance from the reference line to the right and left bound along

the normal vector

• xnorm, ynorm (m) - the coordinates of the normalized normal vector based on the reference

line point

• α (m) - representative of the lateral shift from the reference line to the optimal race line

• s (m) - the curvilinear distance along the race line

• ψraceline (rad) - the heading of the race line with zero being north in an NED frame

• κ (rad/m) - curvature of the raceline

• vx, ax (m/s, m/s2) - the target velocity and acceleration, respectively, at the given point

based off pre-set parameters (note: these values will be ignored since many of the input

parameters that are used to calculate it are unknown)

Using the values above, a few more details about the track can be extracted using Equa-

tions (4.1-4.4) [91][92].

• Right Bound Coordinates, xright, yright:

[xright, yright] = [xnorm, ynorm] ∗ wright + [Xref , Yref] (4.1)

• Left Bound Coordinates, xleft, yleft:

[xleft, yleft] = −[xnorm, ynorm] ∗ wleft + [Xref , Yref] (4.2)

• Grid Theta, θgrid:

θGrid = atan(ynorm/xnorm) (4.3)

77

• Race Line Coordinates, xraceline, yraceline

[xraceline, yraceline] = [xref , yref] + α[xnorm, ynorm] (4.4)

An example of the tool’s out put when track information from the road course at Modena can

be seen in Figures 4.1 and 4.2.

Figure 4.1: Modena Race Track Output from the Global Race Trajectory Optimization Tool

Figure 4.2: Modena Thetas from the Global Race Trajectory Optimization Tool

78

The next step for the layer generation is to find the points along the track for the layers.

Previously, the layer distance is consistent around the entire track. However, this iteration of

the planner allows for different spacing based off the curvature of the track or race line. For

sections that have a radius of curvature below a predetermined threshold, layer distance can be

closer together to allow for a denser area of nodes. For sections that are straighter, the distance

between layers can be set farther apart. The threshold for the tighter layer distance can be tuned

based off the track, vehicle parameters, or the specific needs of the planner.

A close up example from a road course in Berlin can be seen below in Figure 4.3. The

blue lines indicate the straight layer distance, which is chosen to be 10 meters apart for this

scenario. The orange lines represent the layers that were designated as tighter curves by having

a radius of curvature less than 0.0052 rad/m (0.300 deg/m) and has a separation distance of 5

meters. The spacing distance is relative to the distance along the inside bounds.

Figure 4.3: Layer Spacing

For each layer, lane points were generated. Previously, the number of lanes in each layer

were consistent, however, in tracks such as the Modena Circuit, the width varies from 6.9

meters at its narrowest and 23.2 meters at it widest. If there is a set 5 lanes per layer, the

narrowest section would have lane spacing of 1.38 meters and the widest would have 4.65

meter spacing. Instead, this planner uses a lane separation distance parameter to determine

how many lanes are in each layer. Also, to correct the issues with estimating the desired path,

79

which would be the race line in this case, the race line itself is inserted as a node point. As seen

in Figure 4.4.

Figure 4.4: Lane Points Generation

Another parameter in this planner is the offset from the inside and outside bounds as shown

by the fact the nodes do not quite reach the actual track bounds. This can be tuned based on

knowledge of the track. For example, if the edges are exactly at the edge between the banking

and the skirt that need to be avoided or an additional layer of safety is needed to keep the car

from drifting into a wall.

There is one more calculation made at this step, which the angle of the node. This angle

is important for the next step and represents the end heading of the previous edge and the

beginning heading of the following edge to that node. It also can greatly affect the splines

produced, which will be explored in more detail in the next section.

There are a couple of option in choosing the node angle for any particular node. The first

is to use θgrid for the boundary at each node in that layer. An example of doing so can be seen

in Figure 4.5. In this example, the vectors for each node are represented by the orange arrows.

Also displayed are the vectors corresponding to the grid (in black) and the race line (in blue).

However a problem arises upon a closer look at the nodes along the race line. The vector out

of a race line node in this example is notable different than the ideal vector from the race line

80

itself. This would mean that it would be almost impossible to guide the car back on to the ideal

path.

Figure 4.5: Node Theta - Grid Theta

The next option for choosing θnode would be to use ψraceline, or the heading of the race line

itself. An example of this can be seen in Figure 4.6. While this might initially appear to be a

better solution for nodes nearer the race line, the farther out the node is form the race line, the

more extreme the difference between successive nodes are layer to layer. In other words, if the

planner needed a path that went along the upper bound, the edges produced would basically be

unfeasible due to the heading requirements of that edge.

81

Figure 4.6: Node Theta - Race Theta

In the end, the solution is to use a mix of both θgrid and ψraceline, as seen in Figure 4.7.

The angle of the node is linearly interpolated between θgrid and ψraceline based on the nodes

distance along the vector between the right bound to the race line point, with ψraceline as the

theta for the race line. Then it interpolated from ψraceline to θgrid to the left bound. Overall,

using a variable theta for each layer creates smoother transitions at the nodes and allows for

more dynamically feasible edges.

82

Figure 4.7: Node Theta - Variable Theta

4.2 Spline Generation

For the edge generation in this planner, a cubic polynomial is selected as the basis for the splines

as opposed to straight lines between node edges. The cubic spline guarantees C1 continuity

between nodes. The basis for this spline generation is found in [93]. The general formula is

described below in Equation (4.5).


x(µ) = a3,xµ

3 + a2,xµ
2 + a1,xµ+ a0,x

y(µ) = a3,yµ
3 + a2,yµ

2 + a1,yµ+ a0,y

(4.5)

where µ ∈ [0, 1] and represents points along the path. For example, if two nodes are approx-

imated 10 meters apart and a µ = [0, 0.1, 0.2...1.0] is used, the spline points produced would

be about a meter apart. So if a denser amount of points are need, a more granular µ could

be selected (i.e µ = [0, 0.01, 0.02...1.0] for ten times the amount of points per edge). The

coefficients, a3,(x,y), a2,(x,t), a1,(x,y), a0,(x,y), satisfy Equations (4.6-4.9).

83


xstart = a0,x

ystart = y0,y

(4.6)


x′start = slencos(θs) = a1,x

y′start = slensin(θs) = a1,x

(4.7)


xend = a3,x + a2,x + a1,x + a0,x

yend = a3,y + a2,y + a1,y + a0,y

(4.8)


x′end = slencos(θe) = 3a3,x + 2a2,x + a1,x

y′end = slensin(θe) = 3a3,y + 2a2,y + a1,y

(4.9)

The terms [xstart, ystart] and [xend, yend] represent the coordinate points of the starting node

and ending node, respectively. thetas and thetae represent the node theta discussed in the

previous subsection. slen represents the length of the spline which will differ from the distance

between the two nodes. However, the solution to this set of equations has to be iteratively

calculated because the actual length of the spline is not known at first and is initialized as

the distance between the nodes. So, coefficients are solved for, and the length of the spline

is calculated and the coefficients are then re-solved for. In this planner’s implementation, the

number of iterations continues for a set number of times or until the differences in lengths

between iterations is lower than a set threshold.

Using the third-degree polynomial splines allows for edges that closer align to the desired

path, as shown below in Figure 4.8. The blue line represents the spline produced along the race

line nodes while the orange dashed line is the desired path. While it does not line up exactly, the

variations are negligible, even less so in segments of lower curvature which form a seemingly

smooth line through the node transitions.

84

Figure 4.8: Spline along race line

As previously mentioned, the node thetas have strong influences on the behaviors of the

splines (seen in Equations (4.7) and (4.9)). In Figure 4.9, the splines produced from using the

corresponding thetagrid for both θs and θe. In this particular section of the track, the spline

along the desired path shows a notable offset along the third segment and appears to be oscil-

lating. This is due, in part, to a large enough difference between the θgrid and ψraceline.

85

Figure 4.9: Splines with θgrid as θnode

The effects of using just the corresponding ψraceline for both thetas is shown in Figure 4.10.

While the oscillation and offset of the race line are not present along the desired path’s splines,

the splines farther away from the race line show a noticeable problem. Particularly notable are

the splines in the third segment. For both ends of the nodes, the corresponding ψraceline and

θgrid are very different as the race line is about to enter a tight turn and is beginning its transition

from the outer line to an inner line. Figure 4.11 shows the results of using the varying theta as

the node theta, combining the better parts of the previous two options.

86

Figure 4.10: Spline with θraceline as θgrid

Figure 4.11: Spline with variable θ as θgrid

The last step in the spline generation is to check if the spline is viable, and if so add it to

the graph as an edge. In the previous figures, only a few splines were shown as to not crowd

87

the image. However, in the planner, a spline is produced from every point in each layer to

every points in the next layer, as seen in Figures 4.13 and 4.14, but not every spline is kept.

Since the coefficients describing the spline are known, the radius of curvature can be accurately

calculated with Equations (4.10) and (4.11).

rcurve = |1
κ
| (4.10)

κspline =
x′ ∗ y′′ − y′ ∗ x′′√

(x′2 + y′2)3
(4.11)

The coeffiecients x′, y′, x′′, y′′ are calculated in Equations (4.12) and (4.13).


x′ = 3a3,xµ

2 + 2a2,xµ+ a1,x

y′ = 3a3,yµ
2 + 2a2,yµ+ a1,y

(4.12)


x′′ = 6a3,xµ+ 2a2,x

y′′ = 6a3,yµ+ 2a2,y

(4.13)

The radius of curvature, is defined as the reciprocal of the curvature where curvature is

a value that describes how much a line deviates from being “straight” [94]. It can be seen as

the radius of the circle that comfortably fits to that point, as seen in Figure 4.12. This value is

important because one of a vehicle’s characteristic is the minimal radius of curvature that it is

able to feasibly drive. For each spline produced, the minimal radius of curvature (or maximum

kappa) is found and compared to the vehicle’s minimal radius of curvature. If the rcurve is less

than the vehicle’s turning radius then the spline is deemed dynamically infeasible to traverse

and is not included in the graph.

88

Figure 4.12: Radius of curvature

In Figures 4.13 and 4.14, each spline that is produced and tested are shown along with

their maximum κ and minimum rcurve. In this example, the vehicle’s radius of curvature is set

to 5 meters. The splines that are kept are in orange, and the ones that are not traversible are

plotted in blue.

89

Figure 4.13: Splines from node at the middle of the graph

90

Figure 4.14: Splines from node at the end of the graph

Finally, because not all splines are considered admissible, there may be potential paths that

lead to ”dead ends”. Without pruning the splines, the graph would look like Figure 4.15a. To

prune the dead ends, the graph is iterated through to first check if there are any edges that have

no layers leading to it and if so are removed, resulting in Figure 4.15b. Then edges that have no

edges going from it are removed. In the end, the graph edges look like those in Figure 4.15c.

In the example shown in Figure 4.15, while Figure 4.15a has 1,296 edges, Figure 4.15b

has 904, and Figure 4.15c has 653. Therefore, half of the splines have been pruned for this

20-layer section for the graph. The high rate of pruning is more prevalent in areas of the graph

with higher curvature. In the end, the pruning will lead to a quicker A* search because it will

91

never explore a dead end and guarantees a path from the start to the goal as long as the nodes

with no edges are removed as options for the goal node.

(a) (b) (c)

Figure 4.15: (a) unpruned, (b) starts pruned, (c) ends pruned

4.3 Velocity Profile Generation

4.3.1 Graph Generation - Offline

The final update to this planner is the velocity profile generation. This is done in two parts,

during the graph generation and during run-time. During the graph generation, the goal is to

characterize the potential velocity profiles of each edge such that once the path is produced,

desired velocities along the path can be selected, as seen in Figure 4.16. In this example, the

start and goal node are set to the start/finish line and the path produced is a race line free of

objects around the track. The desired velocity profile of the path is plotted as a gradient of the

value of the velocity at that point according to various parameters that will be discussed later

in this section.

92

Figure 4.16: Velocity Profile of Starting Lap

However, before the velocities can be selected the velocity profiles of each edge needs to

be produced. This part is done along with the spline generation. The first step is finding the

maximum velocity allowed along the spline, velmax,spline, by using Equation (4.14).

velmax,spline = min

(
velmax,car,

√
αmax,car/κ

)
(4.14)

which is the minimum between the maximum velocity of the car, a parameter of the par-

ticular vehicle, and the max acceleration of the can be divided by the curvature. A vec-

tor of potential velocities along that spline is created based off the velstep parameter. For

example, if velstep = 1m/s and velmax,spline = 20m/s, the vector would be velsspline =

[0, 1, 2, ...velmax,spline]. Next, the maximum lateral acceleration, αmax,lat, along the spline is

found using Equation (4.15).

αmax,lat = v2κ (4.15)

where αmax,lat is an array of maximum lateral accelerations that correspond with each velocity

in velspline.

93

The longitudinal acceleration can be derived next. Typically when considering the limits of

a vehicle, understanding the tire friction circle is key. In short, the friction circle represented the

“force-producing limit of the tire” under certain conditions [95]. The vertical axis represents

what that paper calls the lateral force while the horizontal axis represents the longitudinal

force as shown in Figure 4.17, where the orange circle is the friction circle, or the theoretical

tire limits of a vehicle of the combined forces (or accelerations). However, finding the limits

usually requires extensive testing and knowledge of the tire beforehand, and can quickly change

due to various circumstances like weather or tire degradation.

Therefore, a simpler tire friction model was utilized, akin to the blue lines on Figure 4.17,

where the friction limits are the additive values of the lateral and longitudinal forces. By choos-

ing a reasonable max force/acceleration for the vehicle, a margin of safety can be established

for the tire limits. The maximum longitudinal acceleration is found by using Equation (4.16).

Traction Force

La
te

ra
l F

or
ce

Friction Circle
(envelope)

Figure 4.17: Simplified Friction Circle

αmax,long = αmax,car − αmax,lat (4.16)

Then the maximum total change in velocity over that spline is found using Equation (4.17).

∆vel =
√
2 ∗ αmax,lat ∗ slen (4.17)

The velocity profile range can then be constructed, similar to Equation (4.18). The first

column would represented the calculated range of velocities for the previous edge. The second

94

column represents the lowest velocity possible with maximum deceleration and the third col-

umn represents the highest velocity possible with the maximum acceleration. The deceleration

is the maximum between the 0 m/s and the starting velocity minus the maximum total change

in velocity. The acceleration maximum is the minimum between the velocity limit of the spline

and the starting velocity plus ∆vel.

velrange = [velsspl,max (0, velsspl −∆vel) ,min (velmax,spl, velsspl +∆vel)] (4.18)

These calculations are done for every admissible spline, and a graphical representation of

what was calculated can be seen in Figure 4.19. The blue stars represent the velsspline for each

of the nodes of the race line. As the line begins to curve, the number of feasible velocities

decrease. The purple lines represent the maximum positive change in velocity between nodes

based off the previous parameters discussed. The green line represents the maximum negative

change in v.

95

Figure 4.18: Velocity Profiles Along the Race Line

From initial inspection of the profiles shown, an issue becomes apparent once the planner

begins selecting desired velocities. Looking at the second and third segments of the profile in

Figure 4.19, the second segment is able to span the entire range of vehicle velocity capabilities,

which in this case is 75 m/s. However, the third segment has a much smaller maximum radius

of curvature and so has a maximum velocity limit of about 45 m/s, much less than previous. If

the planner were to select a velocity along the second spline that is above the maximum of the

third spline, then once the vehicle gets to the latter it would not be cable of safely decelerating

96

in time and would likely increase the chances of a crash. In order to keep this from happening,

the velocity profiles need to be pruned. In this thesis, the pruning is done during the online

portion of the planner.

4.3.2 Profile Selection - Online

Once the planner is initialized and the starting and goal information is passed on, the planner

determines if the velocity profile is a ramp up or ramp down profile. This means that if the

starting velocity is lower than the goal velocity, the profile is considered a ramp up profile. On

the other hand, if the goal velocity is less than the starting velocity, the profile is considered a

ramp down. Each profile has three sub-profiles that were developed for this thesis:

• Ramp Up Profiles

– Aggressive - ramps up to the goal speed as fast as possible

– PercentX - increases by X% of the maximum acceleration for each node until the

max is reached, scaled by the edge length and layer distance parameter

– SteadyX - increases speed by X m/s per node until the goal is reached, scaled by the

edge length and layer distance parameter

• Ramp Down Profiles

– Linear - reduces the speed linearly from the starting velocity to the goal velocity

– Logarithmic - reduces the speed logarithmically from the starting velocity to the

goal velocity

– StepToX - reduces the speed quickly to X m/s, and steps down to 0 m/s during

the last couple of nodes, this profile is meant specifically for vehicles coming to a

complete stop

After the path is reconstructed from the A* algorithm, the velocities are pruned. This

pruning is done such that no ending velocity along a spline is greater than the maximum velocity

of the next spline. The result would look similar to Figure 4.19. With this pruning, the planner

97

would not be able to select a velocity that would be infeasible to decelerate in order to feasibly

drive alone the next spline. An example of the profiles along the entire race line can be seen in

Figure 4.20.

Figure 4.19: Pruned Velocity Profiles Along the Race Line

98

Figure 4.20: Full Race Profile

The final step in selecting the velocity profile is to choose a velocity associated with each

node. The first velocity is the starting velocity or whatever the closest is without being greater.

The planner then goes through each node in the path and selects a velocity according to the

velocity profile determined in an earlier step in the code. For example, if the velocity profile

99

is Aggressive, then the next velocity selected will be the greatest possible change to the next

velocity (or whatever velocity is at the end of the purple lines in the figures). For Percent## or

Steady##, the maximum within the limitations is chosen. So for the percent, the total acceler-

ation and the change in velocity across the edge is calculated and the final velocity is selected

for the next node. For Steady##, the next nodes velocity will be the minimum between the

maximum change in velocity or the velocity step size.

For the ramp down profiles, the Linear and Logarithmic profiles are pre-computed based

off the length of the path and each node is a assigned a desired velocity. A check is run to

make sure the velocities are feasible for that node, and if not they are adjusted accordingly.

The StepTo## acts similar to Aggressive profile, except decreasing in velocity. However, it

continues to decelerate until it reaches the indicated velocity, in which it holds until the end of

the path where it linearly decreases until coming to a stop at the goal node.

After the profile is selected, the velocities associated with each point in the edge are inter-

polated between the velocities of each node at either end.

100

Chapter 5

Results

5.1 MKZ Testing

First, two sets of experimental tests were done using a Lincoln MKZ, shown in Figure 5.1,

with fully autonomous drive-by-wire capabilities at the Auburn University’s National Center

For Asphalt Testing (NCAT) . While using the Indy Light’s car would have been ideal for

testing, due to it being tied up for a future IAC competition, lack of hardware needed, and ideal

testing location, the MKZ was the best alternative for this particular setup.

Figure 5.1: Lincoln MKZ used for testing

The MKZ is equipped with various sensors to help with the data collection including a

high-grade INS unit that outputs a highly accurate INS/GNSS solution with little error run to

run. The vehicle is also equipped with wheel speed sensors were also utilized for an accurate

real-time measurement of the vehicle’s speed.

101

5.1.1 Software Setup

Three different desired path outcomes were tested, shown in Figures 5.2-5.4. All three scenarios

were set to be an ”emergency stop” type of situation due to the limited space of the skid pad.

Due to the space constraint, along with the limitations of the vehicle controller, the maximum

speed tested was about 5 m/s (11 mph).

Figure 5.2: MKZ Test #1 Path

Figure 5.3: MKZ Test #2 Path

102

Figure 5.4: MKZ Test #3 Path

A way-point manager was set up to track where the vehicle was along the desired path.

These way-points were taken directly from the output of the path planner and included both

coordinates and desired velocities. A simple PID controller was used to control the throttle and

breaking. The lateral controller was a discrete heading lead controller, which essentially took

the desired way-points and calculated a heading error and then pointed the vehicle towards it

[96].

The planner itself was modified slightly to run this particular experiment. The first modifi-

cation was to the graph generation itself. In the previous chapter, the planner would be a graph

based on previously tested and validated track bounds. However, since this particular experi-

mental setup did not have well known bounds, a general graph was generated at the start. This

graph had the properties seen in Table 5.1. The longitudinal length was the distance between

the first layer and the last layer, forward from the body of the car. The lateral length was the

distance to the left and the right of the center lane. Additional parameters for this testing can

be found in Appendix C: Table C.1.

This graph moved with vehicle, where the center lane and first layer was always the lo-

cation of the vehicle. This is shown in Figure 5.5 where each colored set represents the graph

as the MKZ moves along the path (black arrow). The green dot represents the ego vehicle

at that point in time. Since the general shape of the graph stays the same, the edges and the

103

Table 5.1: MKZ Testing Parameters

Parameter Value
Longitudinal Length 40 meters
Lateral Length 14 meters
Lane Separation 5 meters
Layer Spacing .5 meters

nodes were generated at the graph initialization. This allows for algorithm to be run in the body

frame. Outside objects ar then rotated from their detected frame into the body frame. Once the

desired path is calculated, the path is then rotated from the body frame into ENU coordinates.

Figure 5.5: Graph Generation of the MKZ

Once an object is detected, the path and the graph become locked in place. In other

words, the planner stops updating the path unless new data reflects new previously undetected

objects. This path is then sent to the way-point manager and controllers. Freezing the path

keeps the planner from continuing to re-plan paths that differ from the original path from the

104

updated positioning as the ego vehicle continues forward. Since both localization and object

detection/prediction are outside of the scope of this thesis, the commercial INS/GNSS solution

is taken as truth and objects are spoofed onto the graph with perfect detections.

5.1.2 Results

The results of the three scenarios are shown in Figures 5.6-5.11. The first test is a straight path

with no objects spoofed, the second has objects placed such that a “lane change” is forced, and

the last scenario has object placements such that a “double-lane change” is forced. The spoofed

objects are represented by the purple dots while the light blue line is the planner’s outputted

path. The red star represents the starting node and the green star represents the goal node. On

the left side, the colored line represents the actual path the experimental vehicle actually took

along with a gradient of the vehicle’s speed at that point. The right side represents the outputted

path along with the associated desired trajectory for that point.

In all three scenarios the vehicle was set to have a goal speed of 0 m/s after detecting an

object. In all scenarios, the vehicle begins reducing its speed immediately and came to a stop,

as expected. However, the vehicle never actually comes to a complete stop at the goal. This

was most likely due to rounding errors in the longitudinal controller not allowing a commanded

velocity of 0 m/s. Another note, the recorded path, when compared to the planner’s path, differs

slightly in the second and third tests. There appears to be some over shoot, and the controller

does not follow precisely. This error can potentially be attributed to poor tuning of the look-

ahead distance in the way-point manager and of the lateral controller. The look-ahead distance

refers to how far ahead on the path that the desired way-point is selected. So if the distance is

set to 5 meters, the waypoint that is sent to the controllers is the point along the curve that is 5

meters in front of where the vehicle is at that moment.

Despite this, the planner showed that it is able to generate paths. In scenarios where a

sudden stop due to a obstacle is needed, the planner is able to react quickly and correctly for

both the safety of the ego vehicle and the vehicles around it.

105

Figure 5.6: MKZ Test #1 Velocity Results

Figure 5.7: MKZ Test #1 Distance Traveled vs Speed

106

Figure 5.8: MKZ Test #2 Velocity Results

Figure 5.9: MKZ Test #2 Distance Traveled vs Speed

107

Figure 5.10: MKZ Test #3 Velocity Results

Figure 5.11: MKZ Test #3 Distance Traveled vs Speed

5.2 Simulation Testing

The second set of experimental tests were conducted entirely in simulation because of the

practicality of testing the planner on the race car. Instead, testing similar to that done in the first

planner was used for this testing. This included both a simple simulation used for rapid tuning

of parameters and a full high-fidelity race car simulation, Autonoma’s AutoVerse.

The simple simulation was designed for quickly fine tuning the parameters by selecting a

position along the race line to spoof the car’s location. It also allowed for simulated objects to be

placed either randomly or in specified locations along the race line to test the planner’s ability

to produce a viable path. Another key feature of the simple simulation was printed outputs

from the planner that can be seen in the top-left corner of the tmux terminal in Figure 5.12. In

108

this particular example, the output is displaying the cost calculation of different nodes while

A* was running.

Figure 5.12: Simple simulation setup

Once the path planner passed this initial evaluation in the simple simulation, testing was

moved to more realistic simulation testing. Previously, testing was done on LGSVL, but that

simulator has since been discontinued and no longer has updates to keep up with the develop-

ments of the IAC. In its place is the Unity based simulator from Autonoma, called AutoVerse

[97]. This simulation provides a high-fidelity real-world simulator complete with a realistic

sensor suite, real world vehicle models, and software-in-the-loop capabilities that allow for

easy plug-and-play for the path planning testing. This simulator provides an accurate replica of

various race tracks for testing such as the Texas Motor Speedway and the Monza Circuit, seen

in Figure 5.13b and 5.13c, respectively. The specific parameters that were used in this testing

are list in Appendix C: Table C.3 and Table C.2.

109

(a) Autonoma AutoVerse Home Screen

(b) Texas Motor Speedway Simulation (c) Monza Simulation

Figure 5.13: Simple Simulation Testing for TMS

The path planner made certain assumptions about scenario because of the scope of the

testing. This includes using the truth location of the car in the planner as well as assuming

perfect object detection, Therefore, if an object is detected it is assumed that it really ”exists”

and must be avoided. Previously the ATR code stack was used for the lateral and longitudinal

controls as well as some of the safety options. For path planner integration for this set of

testing, an in-development full-code stack from Autonoma was used because it was designed

to interface with the simulation. However, it is still in development, some of the testing was

limited because of the need for better tuning of different parameters.

Many of the cost parameter configuration that were used in the previous iteration of the

planner were used again, such as the soft, medium, and hard weights. Additional parameters

were added such as right/left of object zone cost, it was safe to assume that any objects encoun-

tered would be in the inner lane, or the left side of the track, but with the expanding scope of the

competition that assumption will not always hold true. Instead, objects could be found in any

lane of the track, left, right or center. Therefore, in this testing is that any object that needs to

be avoided would lie somewhere along the desired race lines, which are shown in Figure 5.14.

110

Here it is evident that the desired race line does not just stay in the center of the track. However,

as the planner is written, two nodes of equal cost will default to the node explored first which

will be the node farthest to the right. This was not a problem when all the passing was to be

done on the right, but now the objects could also exist further to the right on the track. This led

to an occasional undesirable path that hugged too close to the track bounds.

TMS Monza

Figure 5.14: Simulation Race Tracks

An exaggerated version of how the object weight parameters are configured can be seen

in Figure 5.15. In this example, the detected object is represented by the green square and lies

in the right side of track as the vehicle travels from the top of the graph to the bottom. All the

nodes that are covered by the purple section are considered nodes that are right of the object.

The nodes covered by the red, yellow, and green sections have the hard, medium, and soft

weights applied to them, respectively. The nodes that are not covered by any color do not have

any object weight applied to them.

Since the number of nodes per layer are not uniform, figuring out which zone a node

belongs to was tweaked for this iteration. Essentially, each objects path was projected forward

according to its distance from the right bound. The distance between this projected path and

the node being explored was calculated and the appropriate object weight applied. Another

111

option that was considered was projecting the object forward on the race line, but in that case

the object weight would have similar affect as the race line cost.

Tuning these parameters can be tricky and require a deeper examination of the costs at

each node while the A* algorithm was being run. For example, in Figure 5.15b, an exaggerated

version of the final weight parameters are shown. In this case, the hard and medium weight

zones are expanded and most of the nodes on the graph fall under one of the weight zones. The

hard zone weight was set to 20, the medium to 16, the soft to 10, and the right of object to 20.

Initially a designer may set high weights and wide widths for the hard zone would easily force

the calculated path away from object as quickly as possible. However, looking at Figure 5.15b

shows that the opposite is true. Instead, the path that was output of A* runs right through the

object, the exact opposite of what was desirable.

This effect is caused by a number of reasons. First is the fact is that the relative weight of

the hard zone and the medium zone are similar. When calculating the costs, a node in the hard

weight zone would be more attractive because it has a lower race line distance cost. The width

of the hard zone is also wide enough, such that the object cost stays the same, but the race line

distance cost continues to increase the farther away from the the lane. A node that lies in the

medium or soft weight zone might be too far away from the race line that the reduced costs do

not matter in the final calculation.

A more reasonable tuning of the weights is shown in Figure 5.15c. In this one, the three

weight zones cover a much more narrow portion of the track. The weights are also 12, 8, and

4 for the hard, medium, and soft zones, respectively. The combination of changes results in

a much more reasonable gradient of costs away from the object. The resulting paths will be

explored in next sections of this chapter.

112

(a) Bad tuning example

Race Line
Planned Trajectory
Object
Right Of Object Zone
Hard Weight Zone
Medium Weight Zone
Soft Weight Zone

(b) Weight Area - Bad Tuning (c) Weighted Area - Accept-
able Tuning

Figure 5.15: How tuning can affect the output path

5.2.1 Results

Both the TMS and Monza tracks were set up in the planner to be tested. For the TMS track,

three tests were performed

1. Commanded speeds - checking that the addition of the velocity profiler works as ex-

pected, free of objects

2. Simple simulation - initial check that the planner outputs the desired path with an object

in the desired path

3. Object avoidance - check that the planner performs as expected and as well as the previ-

ous iteration on a track similar to what was previously tested

Similarly, Tests 2 and 3 were performed on the Monza track to test the planner’s capabili-

ties on a road course.

TMS Simulation

The first test done on the TMS track was commanding various speeds around the track to see

how well the velocity profile addition to the planner worked. In this scenario, the constraints

113

to the planner were set artificially low to best showcase the velocity profiles. This means the

maximum lateral acceleration was set much lower than the actual vehicle’s capibility. In theory,

this would mean that the maximum velocity around curves would be lower than the maximum

velocity set for the track.

The results of this test can be seen in Figure 5.16. The dotted purple line reflects the con-

straints put on this test such that during the turns, the maximum velocity allowed is lower than

the 80 m/s maximum velocity set for the track as a whole. The blue represents the goal speed

that was set manually during the tests in 5-10 m/s steps. The commanded speed, represented

by the orange line, was the speed sent to the longitudinal controller. This speed was calculated

from the velocity profile as a speed that corresponded with a certain distance into the calculated

path.

In this scenario, the ramp-up type was set to “linear 1”, or linear increase in speed at 1

m/s per layer. This should result in the commanded speeds not being instantaneous, but rather

having a ramp up to the next goal speed. This is best exemplified in the first two goal speed

change around 15 seconds and 30 seconds.

At higher speeds, the constraints of the velocity profile begin to become apparent. The

general velocity profile trend follows the general trend of the maximum speed allowed at that

point on the track, but is offset and did not reach or sustain the maximum speeds. This could

be due to limitations in the longitudinal controller that did not allow for the type of responses

modeled in the velocity profiler, which caused the vehicle to not reach the speeds it was ex-

pected, which in turn affected the overall velocity profile results. Despite this, the planner does

show that the velocity profiler is able to vary the commanded speed of the vehicle in parts of

the track that require a lower speed than the maximum velocity.

114

0 50 100 150 200 250 300

Time (s)

0

10

20

30

40

50

60

70

80

90

S
pe

ed
 (

m
/s

)

TMS Commanded Speeds Test

Goal Speed
Commanded Speed
Actual Speed
Max Grid Speed

Figure 5.16: Commanded Speeds at TMS

Figure 5.17 shows a different view of the commanded speeds. In this graph, the goal,

commanded, and actual speeds are shown plotted along a turn in the graph. The goal speed

is set higher than the actual speed at that point, but the commanded speed was trending faster

with the actual speed matching behind it.

Figure 5.17: Commanded Speed at TMS - Grid Points View

The next test was done in the simple simulation and was used to test the viability of the

computed path when encountering an object at different points on the graph. The results of

one set of objects is shown in Figure 5.18. In some of the cases, the results are not an accurate

reflection of how the planner might react in a live simulation because the car was placed in the

race line well within the detection range of 100 meters. This is seen in Figure 5.18c, where the

car was placed too close to the object. The planner outputs a path that avoid the object but does

go much closer to the object then the chosen parameters would otherwise suggest. However, it

115

is able to route around the objects, even under non-normal operating conditions which confirms

that the planner is able to output paths that can reliably guide the car around a detected object.

(a) (b)

(c) (d)

(e)

Figure 5.18: Simple Simulation Testing for TMS

For the next test, similar random object placement was used. Since objects can not be

simulated in the simulation at the moment, the objects were spoofed similar to the previous

tests. The vehicle location was sent to the object spoofer, and if the location was within the

viewing distance, the object location was sent to the planner. Figure 5.19 shows an example

of the vehicle passing an object, traveling from the bottom to the top of path. In this snapshot,

116

the vehicle had previously detected the object and the A* path was essentially frozen until

the vehicle passes the object and returns to the race line. The planner is still running in the

background, but the starting and goal nodes are kept the same which means the path outputted

by the planner stays the same unless a new object is detected. The path freeze is necessary so

that the path does not continually get replanned as the vehicle approaches the object and the

starting node is continually shifted forward. This allows the lateral controller enough time to

guide the car away from the object(s).

Race Line
Car Position
Trajectory
Undetected Object
Detected Object

Figure 5.19: Passing an Object in Simulation

In Figure 5.20, the vehicle is seen approaching a series of three objects, having already

detected the first two. If the vehicle would continue on this path, it would come quite close to

the third object. However, the vehicle does eventually detect the third object and adjusts its path

accordingly, seen in Figure 5.21. In this scenario, the planner continues to freeze the starting

and ending node, but is able to extend the avoidance path to safely go around all three objects.

By keeping the starting node the same, the behavior of the path stays mostly the same towards

the beginning and does not cause any large jumps in where the vehicle is supposed to be versus

where is actually is, while also allowing the rerouting to seamlessly blend into the previously

planned trajectory.

117

Figure 5.20: Passing objects in simulation with 2 detected objects and 1 undetected object

Race Line
Car Position
Trajectory
Undetected Object
Detected Object

Figure 5.21: Passing objects in simulation with all 3 detected objects

Monza Simulation

Similarly, testing for the Monza was done first in the simple simulation. Figure 5.22 shows a

set of results. Results from the AutoVerse simulation are also shown in Figure 5.23. The central

subplot shows the location of the randomly generated objects along the track. Certain areas of

the track did not have any objects such as the chicanes and tighter turns because in a realistic

racing scenario, the vehicle would not be passing in those zones.

118

Figure 5.22: Simple Simulation Testing for Monza

119

Figure 5.23: Full lap of random objects at Monza

120

Chapter 6

Conclusions

Overall, the planner acted as expected, consistently planning viable paths around detected ob-

jects. The main goal of this path planner iteration was to build upon the initial planner for

the IAC by providing a more robust spline generation technique that would account for more

complex track configurations as well as add a velocity profile that could aid in assuring the

produced paths fell within the vehicle constraints. Additionally, the planner needed to increase

in complexity while keeping a low computation time to make it viable in a racing situation.

Unfortunately, due to a change in testing hardware, the time complexity of the planner was not

as rigorously tested for comparison. However, even with older hardware the planner performed

with maximum calculation time, of about 20 ms per iteration. This computation time’s is on

par with the maximum values seen in Chapter 3.

Many of the path planning algorithms introduced in Chapter 2 were designed with robust-

ness in mind. Specifically they were designed to handle a wide range of situations with a wide

range of unknowns. In return, many of these planners either take extensive tuning with a mul-

titude of parameters or take too long to find a solution to be viable for high-speed racing. This

thesis presents and alternative to these types of planners. In exchange for giving up robustness

to handle a range of unknowns, this planner utilizes a simple, efficient, and reliable planning

algorithm to navigate a well-defined environment.

121

6.1 Summary

This thesis presented an introduction to autonomous vehicles and racing in Chapter 1. Also

presented in the first chapter are the contributions to the field of autonomous racing. Chap-

ter 2 presents some background information relevant to different aspects of the path planner

including path planning algorithms, path generation techniques, and how the problem of path

planning has been addressed already. Chapters 3 and 4 present two path planners. The first

planner was an earlier in-development planner that was designed for a competition set on an

oval course. The second planner built upon the first planner but was expanded and augmented

so that it could be used on road course and could handle more complex maneuvers. Finally,

Chapter 6 presents two experimental setups and results that tested the usability of the second

planner.

6.2 Future Work

While the planner developed in this thesis is certainly not the final solution to place into just

any autonomous racing software stack, it can serve as the basis for more complex needs and

scenarios. There were many ideas and unexplored planner additions and areas of improvement

that were discovered during the duration of the research and implementation for this planner.

The following are some of these ideas that could be avenues for future investigation.

Post Planner Path Smoothing In the first planner iteration, path smoothing was done with

a moving mean in order to soften the corners of the path. In the second iteration, the moving

mean was also implemented as a path smoothing technique. However, with the spline edges,

this could result in wavy paths such as the ones shown in Figure 6.1. For the most part, the

paths appeared smoother and any waviness present did not effect the overall driveability of

the path at the speeds tested, but it could effect the controlability at higher speeds. Also, the

spine generation techniques only guarantees a C1 continuity, but C2 would be more preferred

at higher speeds. Future iterations of the planner could explore more advanced path smoothing

techniques.

122

Figure 6.1: Wavy Path Smoothing

Integration with Object Prediction This planner assumes that any object it detects is a static

object and propagates its cost zones forward along the race line. The assumption made is that

the detected object has a similar calculation for what race line it should be on without taking

in to account it prior behaviors. This might not always be true in more advanced autonomous

racing scenarios and the opponent vehicle could deviate from the expected race line in order

to perform a defensive maneuver. While the planner as is could respond with a shift in object

position by adjusting the node the object is associated with, ultimately a safer option would

be to add an object prediction method to more accurately produce paths that avoid collisions.

An even more advanced object prediction method could take into account the objects previous

moves in order to predict how they will defend certain attacks. These options combined with

multiple dynamic objects are all areas of further research to integrate with a planner.

Cost Configuration With more complex edge generation, such as the one implemented in

this thesis, more characteristics can be extracted from the spline such as curvature, range of

curvature, or start/end node offset. Using these and other spline characteristics, a more sophis-

ticated cost calculation could be implemented. This could allow for more complex maneuvers

when racing against more than one opponent at a time.

Vehicle Model With the second iteration of the planner introduced in Chpater 4, some vehicle

dynamic parameters were incorporated in the spline and velocity generation. However, further

integration of the model could be used in order to continually produce dynamically feasible

123

paths and profiles while also reducing the safety margins in order to better emulate racing

maneuvers seen with human drivers.

Code Optimization As more complexity is added to the planner, a stronger focus in how the

code is written will need to be taken. This includes optimizing various pieces of the run-time

code. Including:

1. More intelligent way of identifying the nearest nodes for both the car and the detected

objects

2. Optimizing sections of code in a loop and utilizing functions in C++’s Standard Template

Library (STL)

3. Cleaner data structures that are not as computationally burdensome with potentially need-

less complexity

4. Reduce the number of steps required for the velocity generation such as removing the

need to prune the velocities by just having an improved velocity profile selection.

More optimal code could also allow for a denser node field. This would in turn allow for

more control over trickier maneuvers as the scope of the competition rules continue to widen,

allowing for much more complex and dynamic scenarios.

Testing For overall testing improvements, work to get a finer tuned set of controllers in order

to increase the speed and handling of the vehicle during the testing. Additionally, an improved

simulation environment that allows multiple simulated vehicles in order to more accurately

reflect the racing scenario. This would require an increase in computing power in order to run

two or more instances of the simulated vehicle as well as each vehicles’ code stacks. Real-

world validation on a road course could also validate the potential issues that could arise from

the planner that do not come through in the simulation. For this type of testing, a road set-up

on the car is necessary as well as a road course that is accurately mapped and validated.

124

Appendix A

Path Planner Implementation

A.1 Path Planner for Oval Courses

The following is a more detailed description of the how the planner for oval courses is imple-

mented in code. The offline portions can be done either offline or upon planner initialization.

The online portion is done repeatedly until the process is terminated. It can be tied to either

a timer-in-a-loop or a callback from the localization. Regardless, the most up-to-date position

estimation and speed and object detections are used.

Offline

1. Get inner track points - Using known points of the inner bounds, the inside bound is re-

sampled to be an X meters distance apart from each other, where X is the layer distance

parameter.

2. Get outer track points - An associated outer bound point is calculated so that a perpen-

dicular line from the inner bound point can be drawn to the outer bound point.

3. Get lane points - The lane points are calculated by interpolating along the line between

the inner and out bound point for each layer. The number of lanes is determined by a

parameter.

Online

1. Get start and goal node - The closest vertex to the vehicle’s current location is used to

determine the starting node. The goal node is found by using the vertex on the race line

125

that is some distance, X , forward on the race line, where X is some parameter. The race

line is determined by a parameter that indicates which layer should be the goal lane.

2. Apply A* - Using the start node, goal node, and detected objects location, Algorithm 3 is

applied. For line 16, the description for how each cost is calculated can be found below.

(a) Object cost - The distance laterally and longitudinally of the node to the object is

determined and the appropriate weight is added.

(b) Race line cost - The absolute distance from the node to the closest point on the race

line is calculated and used for the race line cost.

(c) Dynamic cost - The cost is applied if the edge causes a change in lanes from one

layer to the next.

(d) Heuristic - The absolute distance between the node being explored and the goal

node is used for this value.

3. Smooth path - The path is smoothed using a moving mean.

4. Publish path and relevant information.

A.2 Path Planner for Road Courses

The following is a more detailed description of the how the planner for road courses is imple-

mented in code. The offline portions can be done either offline or upon planner initialization.

The online portion is done repeatedly until the process is terminated. It can be tied to either

a timer-in-a-loop or a callback from the localization. Regardless, the most up-to-date position

estimation and speed and object detections are used.

Offline

1. Get track bounds - Input known bounds of the desired track into Global Race Trajectory

Optimization to get the output CSV file. [91][92]

2. Re-sample the track data - The graph layers will be selected from these new points.

126

3. Generate layers - Using the curvature of the track to determine if the layer is on a curve

or a straight portion, the layer information is extracted from the re-sampled data in Step

2 at the appropriate distances apart [93].

4. Generate lanes - Using the width of the track and the lane distance, the lane points at

each layer can be generated along the line between each layers left and right bounds.

5. Generate splines - For each lane point, or vertex, in the graph, a spline between it and

every vertex in the following layer is generated using Equations (4.6-4.9) [93]. Only

splines whose minimum radius of curvature is greater than the vehicle turn radius are

kept.

6. Spline pruning - Since not all splines are kept, there may be orphaned edges or edges that

lead to nothing or have no start. These edges are pruned from the graph which guarantees

that a path between any two vertices on the graph can be found.

7. Velocity profile generation - The velocity profile for each remaining left is generated.

This process is outlined in more detail in Section 4.3.1.

8. Velocity profile pruning - Similar to the spline pruning, the velocities are also pruned to

ensure that only velocities that can connect to neighboring edges remain.

Online

1. Get start and goal node - The closest vertex to the vehicle’s current location is used to

determine the starting node. The goal node is found by using the vertex on the race line

that is some distance, X , forward on the race line, where X is some parameter.

2. Apply A* - Using the start node, goal node, and detected objects location, Algorithm 3 is

applied. For line 16, the description for how each cost is calculated can be found below.

(a) Object cost - the distance laterally and longitudinally of the node to the object is

determined and the appropriate weight is added.

127

(b) Race line cost - the absolute distance from the node to the closest point on the race

line is calculated and used for the race line cost.

(c) Heuristic - The curvilinear distance associated with the layers race line is used as

the heuristic cost.

3. Generate the velocity profile - Using the selected edge, the velocity profile is extracted

from the graph.

4. Smooth path - The path is smoothed using a moving mean.

5. Determine the goal velocity - The controller used in this implementation can only take in

a single value for goal velocity. Using a parameter, the velocity associated with a point

X meters along the path is found.

6. Publish path and relevant information.

128

Appendix B

Parameters used for testing oval course planner

The following parameters were used for the experiments that tested the oval course planner.

Table B.1: MKZ Testing

Parameter Value

Layer Distance (m) 10

Number of Lanes 5

Distance to Goal (m) 100

Soft Object Weight 6

Medium Object Weight 8

Hard Object Weight 12

Soft Zone Distance (m) 1

Medium Zone Distance (m) 1

Hard Zone Distance (m) 1

Front Object Distance (m) 50

Back Object Distance (m) 65

Dynamic Cost 2.25

Distance Cost .75

Passing Lane 3

Defending Lane 0

129

The planner represents the following:

• Layer Distance - The distance between layers.

• Number of Lanes - The number of lanes in each layer, same around the entire track

• Distance to Goal (m) - The distance from the starting node to set the goal node.

• Hard Object Weight - The weight associated with the closest zone around an object (see

Figure‘3.3).

• Medium Object Weight - The weight associated with the middle zone around an object

(see Figure 3.3)

• Soft Object Weight - The weight associated with the farthest zone around an object (see

Figure 3.3).

• Hard Zone Distance (m) - The distance past the object where the Hard Object Weight

is in effect.

• Medium Zone Distance (m) - The distance past the Hard Zone Distance where the

Medium Object Weight is in effect.

• Soft Zone Distance (m) - The distance past the Medium Zone Distance where the Soft

Object weight is in effect.

• Front Object Distance (m) - The distance past an object to apply the three-zone weight-

ing.

• Back Object Distance (m) - The distance behind an object to apply the three-zone

weighting.

• Dynamic Cost - The cost associated with the lateral movement between lanes.

• Distance Cost - The valued multiplied to distance from the race line.

• Passing Lane - The goal lane when the vehicle encounters an object.

• Defending Lane - The goal lane of the vehicle.

130

Appendix C

Parameters used for testing road course planner

The following parameters were used for the experiments that tested the road course planner.

Table C.1: MKZ Testing

Parameter Value
Layer Distance - Straight (m) 5
Mu Spacing 0.2
Velocity Step Size (m/s) 1
Vehicle Turn Radius (m) 5
Maximum Car Velocity (m/s) 10
Maximum Allowable Acceleration (m/s2) 19.62
Soft Object Weight 2
Medium Object Weight 4
Soft Zone Distance 2
Medium Zone Distance 2
Hard Zone Distance 2

131

Table C.2: Monza Circuit Testing

Parameter Value
Layer Distance - Straight (m) 10
Layer Distance - Curve (m) 5
Curve Omega Max (deg/m) 0.3
Mu Spacing 0.05
Velocity Step Size (m/s) 1
Vehicle Turn Radius (m) 5
Max Car Velocity (m/s) 90
Max Allowable Acceleration (m/s2) 10
Send Velocity Distance (m) 20
Distance to Goal (m) 200
Soft Object Weight 4
Medium Object Weight 8
Hard Object Weight 12
Soft Zone Distance (m) 1
Medium Zone Distance (m) 2
Hard Zone Distance (m) 2
Front Object Distance (m) 30
Back Object Distance (m) 30

Table C.3: Texas Motor Speedway Testing

Parameter Value
Layer Distance - Straight (m) 10
Layer Distance - Curve (m) 10
Curve Omega Max (rad/m) 0.3
Mu Spacing 0.05
Velocity Step Size (m/s) 1
Vehicle Turn Radius (m) 5
Max Car Velocity (m/s) 80
Max Allowable Acceleration (m/s2) 19.62
Send Velocity Distance (m) 25
Soft Object Weight 4
Medium Object Weight 8
Hard Object Weight 12
Soft Zone Distance (m) 1
Medium Zone Distance (m) 2
Hard Zone Distance (m) 2
Front Object Distance (m) 50
Back Object Distance (m) 50

132

The parameters represent the following:

• Layer Distance - Straight (m) - The distance between layers for the straight section.

• Layer Distance - Curve (m) - The distance between layers for the curved sections.

• Curve Omega Max (deg/m) - The radius of curvature where, if less than, the part of the
track is considered a curve and the layer distance is set appropriately.

• Mu Spacing - Where 1/µ represent the number of points in each generated spline .

• Velocity Step Size (m/s) - For the velocity profile generation, the step size between the
calculated velocities.

• Vehicle Turn Radius (m) - The turn radius of the vehicle.

• Max Car Velocity (m/s) - The maximum velocity of the vehicle. This parameter limits
the maximum possible velocities generated by the velocity profile generator.

• Max Allowable Acceleration (m/s2) - maximum allowable acceleration of the vehicle.

• Send Velocity Distance - The velocity associated with the distance along the path of this
parameter that is sent to the controller as the goal velocity.

• Distance to Goal (m) - The distance from the starting node to set the goal node.

• Hard Object Weight - The weight associated with the closest zone around an object (see
Figure‘3.3).

• Medium Object Weight - The weight associated with the middle zone around an object
(see Figure 3.3)

• Soft Object Weight - The weight associated with the farthest zone around an object (see
Figure 3.3).

• Hard Zone Distance (m) - The distance past the object where the Hard Object Weight
is in effect.

• Medium Zone Distance (m) - The distance past the Hard Zone Distance where the
Medium Object Weight is in effect.

• Soft Zone Distance (m) - The distance past the Medium Zone Distance where the Soft
Object weight is in effect.

• Front Object Distance (m) - The distance past an object to apply the three-zone weight-
ing.

• Back Object Distance (m) - The distance behind an object to apply the three-zone
weighting.

133

Bibliography

[1] Lan Yang et al. “A Systematic Review of Autonomous Emergency Braking System:

Impact Factor, Technology, and Performance Evaluation”. en. In: Journal of Advanced

Transportation 2022 (Apr. 2022). Ed. by Francesco Galante, pp. 1–13. ISSN: 2042-3195,

0197-6729. DOI: 10.1155/2022/1188089. URL: https://www.hindawi.

com/journals/jat/2022/1188089/ (visited on 03/19/2023).

[2] Blind Spot Information System (BLIS) Overview. URL: https://volvo.custhelp.

com/app/answers/detail/a_id/9874/˜/blind-spot-information-

system-%28blis%29-overview (visited on 03/19/2023).

[3] Lingyun Xiao and Feng Gao. “A comprehensive review of the development of adaptive

cruise control systems”. en. In: Vehicle System Dynamics 48.10 (Oct. 2010), pp. 1167–

1192. ISSN: 0042-3114, 1744-5159. DOI: 10.1080/00423110903365910. URL:

http://www.tandfonline.com/doi/abs/10.1080/00423110903365910

(visited on 03/19/2023).

[4] Lane Departure vs. Lane Keeping vs. Lane Centering Tech. en. URL: https://www.

jdpower.com/cars/shopping-guides/lane-departure-vs-lane-

keeping-vs-lane-centering-tech (visited on 03/19/2023).

[5] SAE Levels of Driving Automation™ Refined for Clarity and International Audience. en.

URL: https://www.sae.org/site/blog/sae-j3016-update (visited on

03/19/2023).

134

https://doi.org/10.1155/2022/1188089
https://www.hindawi.com/journals/jat/2022/1188089/
https://www.hindawi.com/journals/jat/2022/1188089/
https://volvo.custhelp.com/app/answers/detail/a_id/9874/~/blind-spot-information-system-%28blis%29-overview
https://volvo.custhelp.com/app/answers/detail/a_id/9874/~/blind-spot-information-system-%28blis%29-overview
https://volvo.custhelp.com/app/answers/detail/a_id/9874/~/blind-spot-information-system-%28blis%29-overview
https://doi.org/10.1080/00423110903365910
http://www.tandfonline.com/doi/abs/10.1080/00423110903365910
https://www.jdpower.com/cars/shopping-guides/lane-departure-vs-lane-keeping-vs-lane-centering-tech
https://www.jdpower.com/cars/shopping-guides/lane-departure-vs-lane-keeping-vs-lane-centering-tech
https://www.jdpower.com/cars/shopping-guides/lane-departure-vs-lane-keeping-vs-lane-centering-tech
https://www.sae.org/site/blog/sae-j3016-update

[6] Honda Legend Sedan with Level 3 Autonomy Available for Lease in Japan. en-us. Sec-

tion: News. Mar. 2021. URL: https : / / www . caranddriver . com / news /

a35729591/honda-legend-level-3-autonomy-leases-japan/ (vis-

ited on 03/19/2023).

[7] What Full Autonomy Means for the Waymo Driver - IEEE Spectrum. en. URL: https:

/ / spectrum . ieee . org / full - autonomy - waymo - driver (visited on

03/19/2023).

[8] Autonomous Vehicle Technology — Driverless Cars — Cruise. en. URL: https://

www.getcruise.com/technology/ (visited on 03/19/2023).

[9] From Darpa Grand Challenge 2004DARPA’s Debacle in the Desert. en-US. June 2004.

URL: https://www.popsci.com/scitech/article/2004-06/darpa-

grand-challenge-2004darpas-debacle-desert/ (visited on 03/18/2023).

[10] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand Challenge”.

en. In: Journal of Field Robotics 23.9 (Sept. 2006), pp. 661–692. ISSN: 15564959,

15564967. DOI: 10.1002/rob.20147. URL: https://onlinelibrary.

wiley.com/doi/10.1002/rob.20147 (visited on 03/18/2023).

[11] Roborace. en. URL: https://roborace.com (visited on 12/26/2022).

[12] Indy Autonomous Challenge - Official Website. en-US. URL: https://www.indyautonomouschallenge.

com (visited on 12/26/2022).

[13] Craig Scarborough. Autonomous racing is here! How Roborace is helping develop tech-

nology for the future. en-US. Nov. 2021. URL: https://motorsport.tech/

roborace/how-roborace-is-helping-develop-technology-for-

the-future (visited on 03/21/2023).

[14] John H. Reif. “Complexity of the mover’s problem and generalizations”. en. In: 20th

Annual Symposium on Foundations of Computer Science (sfcs 1979). San Juan, Puerto

Rico: IEEE, Oct. 1979, pp. 421–427. DOI: 10.1109/SFCS.1979.10. URL: http:

//ieeexplore.ieee.org/document/4568037/ (visited on 01/29/2023).

135

https://www.caranddriver.com/news/a35729591/honda-legend-level-3-autonomy-leases-japan/
https://www.caranddriver.com/news/a35729591/honda-legend-level-3-autonomy-leases-japan/
https://spectrum.ieee.org/full-autonomy-waymo-driver
https://spectrum.ieee.org/full-autonomy-waymo-driver
https://www.getcruise.com/technology/
https://www.getcruise.com/technology/
https://www.popsci.com/scitech/article/2004-06/darpa-grand-challenge-2004darpas-debacle-desert/
https://www.popsci.com/scitech/article/2004-06/darpa-grand-challenge-2004darpas-debacle-desert/
https://doi.org/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/10.1002/rob.20147
https://roborace.com
https://www.indyautonomouschallenge.com
https://www.indyautonomouschallenge.com
https://motorsport.tech/roborace/how-roborace-is-helping-develop-technology-for-the-future
https://motorsport.tech/roborace/how-roborace-is-helping-develop-technology-for-the-future
https://motorsport.tech/roborace/how-roborace-is-helping-develop-technology-for-the-future
https://doi.org/10.1109/SFCS.1979.10
http://ieeexplore.ieee.org/document/4568037/
http://ieeexplore.ieee.org/document/4568037/

[15] Steven LaVelle. Planning Algorithms. Cambridge University Press, 2014.

[16] S.K. Gupta et al. “Automated process planning for sheet metal bending operations”. en.

In: Journal of Manufacturing Systems 17.5 (Jan. 1998), pp. 338–360. ISSN: 02786125.

DOI: 10.1016/S0278-6125(98)80002-2. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0278612598800022 (visited on 01/29/2023).

[17] Alexander Shkolnik and Russ Tedrake. “Sample-Based Planning with Volumes in Con-

figuration Space”. en. In: ().

[18] Stefania Pellegrinelli et al. “Multi-robot spot-welding cells for car-body assembly: De-

sign and motion planning”. en. In: Robotics and Computer-Integrated Manufacturing

44 (Apr. 2017), pp. 97–116. ISSN: 07365845. DOI: 10.1016/j.rcim.2016.

08.006. URL: https://linkinghub.elsevier.com/retrieve/pii/

S0736584515300302 (visited on 01/29/2023).

[19] K. Sugihara and J. Smith. “Genetic algorithms for adaptive motion planning of an au-

tonomous mobile robot”. en. In: Proceedings 1997 IEEE International Symposium on

Computational Intelligence in Robotics and Automation CIRA’97. ’Towards New Com-

putational Principles for Robotics and Automation’. Monterey, CA, USA: IEEE Com-

put. Soc. Press, 1997, pp. 138–143. ISBN: 978-0-8186-8138-7. DOI: 10.1109/CIRA.

1997.613850. URL: http://ieeexplore.ieee.org/document/613850/

(visited on 01/29/2023).

[20] Laurene Claussmann et al. “A Review of Motion Planning for Highway Autonomous

Driving”. en. In: IEEE Transactions on Intelligent Transportation Systems 21.5 (May

2020), pp. 1826–1848. ISSN: 1524-9050, 1558-0016. DOI: 10.1109/TITS.2019.

2913998. URL: https://ieeexplore.ieee.org/document/8715479/

(visited on 01/29/2023).

[21] Lun Quan et al. “Survey of UAV motion planning”. en. In: IET Cyber-Systems and

Robotics 2.1 (Mar. 2020), pp. 14–21. ISSN: 2631-6315, 2631-6315. DOI: 10.1049/

iet-csr.2020.0004. URL: https://onlinelibrary.wiley.com/doi/

10.1049/iet-csr.2020.0004 (visited on 01/29/2023).

136

https://doi.org/10.1016/S0278-6125(98)80002-2
https://linkinghub.elsevier.com/retrieve/pii/S0278612598800022
https://linkinghub.elsevier.com/retrieve/pii/S0278612598800022
https://doi.org/10.1016/j.rcim.2016.08.006
https://doi.org/10.1016/j.rcim.2016.08.006
https://linkinghub.elsevier.com/retrieve/pii/S0736584515300302
https://linkinghub.elsevier.com/retrieve/pii/S0736584515300302
https://doi.org/10.1109/CIRA.1997.613850
https://doi.org/10.1109/CIRA.1997.613850
http://ieeexplore.ieee.org/document/613850/
https://doi.org/10.1109/TITS.2019.2913998
https://doi.org/10.1109/TITS.2019.2913998
https://ieeexplore.ieee.org/document/8715479/
https://doi.org/10.1049/iet-csr.2020.0004
https://doi.org/10.1049/iet-csr.2020.0004
https://onlinelibrary.wiley.com/doi/10.1049/iet-csr.2020.0004
https://onlinelibrary.wiley.com/doi/10.1049/iet-csr.2020.0004

[22] Torin Adamson et al. “Optimizing Low Energy Pathways in Receptor-Ligand Binding

with Motion Planning”. en. In: 2019 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM). San Diego, CA, USA: IEEE, Nov. 2019, pp. 2041–2048. ISBN:

978-1-72811-867-3. DOI: 10.1109/BIBM47256.2019.8983169. URL: https:

//ieeexplore.ieee.org/document/8983169/ (visited on 01/29/2023).

[23] David Gonzalez et al. “A Review of Motion Planning Techniques for Automated Ve-

hicles”. en. In: IEEE Transactions on Intelligent Transportation Systems 17.4 (Apr.

2016), pp. 1135–1145. ISSN: 1524-9050, 1558-0016. DOI: 10.1109/TITS.2015.

2498841. URL: http://ieeexplore.ieee.org/document/7339478/

(visited on 01/29/2023).

[24] Chengmin Zhou, Bingding Huang, and Pasi Fränti. “A review of motion planning algo-

rithms for intelligent robotics”. en. In: ().

[25] Lynch Choset. Principles of Robot Motion. The MIT Press, 2005.

[26] Jørgen Bang-Jenson and Gregory Gutin. Digraphs: Theory, Algorithms and Applica-

tions. 1st. Springer-Verlag, 2000.

[27] Scott Beamer, Krste Asanovic, and David Patterson. “Direction-optimizing Breadth-

First Search”. en. In: 2012 International Conference for High Performance Computing,

Networking, Storage and Analysis. Salt Lake City, UT: IEEE, Nov. 2012, pp. 1–10. ISBN:

978-1-4673-0805-2. DOI: 10.1109/SC.2012.50. URL: http://ieeexplore.

ieee.org/document/6468458/ (visited on 01/12/2023).

[28] E W Dijkstra. “A Note on Two Problemsin Connexion with Graphs”. en. In: Numerische

Mathematlk (1959).

[29] greedy algorithm. URL: https://xlinux.nist.gov/dads//HTML/greedyalgo.

html (visited on 01/16/2023).

[30] Thomas Cormen et al. Introduction to Algorithms. Vol. Third Edition. MIT Press, 2007.

137

https://doi.org/10.1109/BIBM47256.2019.8983169
https://ieeexplore.ieee.org/document/8983169/
https://ieeexplore.ieee.org/document/8983169/
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/TITS.2015.2498841
http://ieeexplore.ieee.org/document/7339478/
https://doi.org/10.1109/SC.2012.50
http://ieeexplore.ieee.org/document/6468458/
http://ieeexplore.ieee.org/document/6468458/
https://xlinux.nist.gov/dads//HTML/greedyalgo.html
https://xlinux.nist.gov/dads//HTML/greedyalgo.html

[31] Huijuan Wang, Yuan Yu, and Quanbo Yuan. “Application of Dijkstra algorithm in robot

path-planning”. en. In: 2011 Second International Conference on Mechanic Automa-

tion and Control Engineering. Inner Mongolia, China: IEEE, July 2011, pp. 1067–1069.

ISBN: 978-1-4244-9436-1. DOI: 10.1109/MACE.2011.5987118. URL: http:

//ieeexplore.ieee.org/document/5987118/ (visited on 01/13/2023).

[32] Guan-zheng Tan, Huan He, and Sloman Aaron. “Global optimal path planning for mo-

bile robot based on improved Dijkstra algorithm and ant system algorithm”. en. In: Jour-

nal of Central South University of Technology 13.1 (Feb. 2006), pp. 80–86. ISSN: 1005-

9784, 1993-0666. DOI: 10.1007/s11771-006-0111-8. URL: http://link.

springer.com/10.1007/s11771-006-0111-8 (visited on 01/13/2023).

[33] Yong Deng et al. “Fuzzy Dijkstra algorithm for shortest path problem under uncer-

tain environment”. en. In: Applied Soft Computing 12.3 (Mar. 2012), pp. 1231–1237.

ISSN: 15684946. DOI: 10.1016/j.asoc.2011.11.011. URL: https://

linkinghub.elsevier.com/retrieve/pii/S1568494611004376 (vis-

ited on 01/13/2023).

[34] M. Noto and H. Sato. “A method for the shortest path search by extended Dijkstra algo-

rithm”. en. In: SMC 2000 Conference Proceedings. 2000 IEEE International Conference

on Systems, Man and Cybernetics. ’Cybernetics Evolving to Systems, Humans, Organi-

zations, and their Complex Interactions’ (Cat. No.00CH37166). Vol. 3. Nashville, TN,

USA: IEEE, 2000, pp. 2316–2320. ISBN: 978-0-7803-6583-4. DOI: 10.1109/ICSMC.

2000.886462. URL: http://ieeexplore.ieee.org/document/886462/

(visited on 01/13/2023).

[35] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Deter-

mination of Minimum Cost Paths”. en. In: IEEE Transactions on Systems Science and

Cybernetics 4.2 (1968), pp. 100–107. ISSN: 0536-1567. DOI: 10.1109/TSSC.1968.

300136. URL: http://ieeexplore.ieee.org/document/4082128/ (vis-

ited on 12/26/2022).

138

https://doi.org/10.1109/MACE.2011.5987118
http://ieeexplore.ieee.org/document/5987118/
http://ieeexplore.ieee.org/document/5987118/
https://doi.org/10.1007/s11771-006-0111-8
http://link.springer.com/10.1007/s11771-006-0111-8
http://link.springer.com/10.1007/s11771-006-0111-8
https://doi.org/10.1016/j.asoc.2011.11.011
https://linkinghub.elsevier.com/retrieve/pii/S1568494611004376
https://linkinghub.elsevier.com/retrieve/pii/S1568494611004376
https://doi.org/10.1109/ICSMC.2000.886462
https://doi.org/10.1109/ICSMC.2000.886462
http://ieeexplore.ieee.org/document/886462/
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
http://ieeexplore.ieee.org/document/4082128/

[36] Eric W. Weisstein. von Neumann Neighborhood. en. Text. Publisher: Wolfram Research,

Inc. URL: https://mathworld.wolfram.com/ (visited on 01/21/2023).

[37] Ira Pohl. “The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine

Dynamic Weighting and Computational Issues in Heuristic Problem Solving”. In: Pro-

ceedings of the 3rd International Joint Conference on Artificial Intelligence. Stanford,

USA: Morgan Kaufmann Publishers Inc., 1973, pp. 12–17.

[38] Abhinav Bhatia, Justin Svegliato, and Shlomo Zilberstein. “On the Benefits of Randomly

Adjusting Anytime Weighted A*”. en. In: Proceedings of the International Symposium

on Combinatorial Search 12.1 (July 2021), pp. 116–120. ISSN: 2832-9163, 2832-9171.

DOI: 10.1609/socs.v12i1.18558. URL: https://ojs.aaai.org/

index.php/SOCS/article/view/18558 (visited on 01/25/2023).

[39] Eric A. Hansen, Shlomo Zilberstein, and Victor A. Danilchenko. Anytime Heuristic

Search: First Results. Tech. rep. 97-50. Computer Science Department, University of

Massachussetts Amherst, 1997. URL: http://rbr.cs.umass.edu/shlomo/

papers/HZDtr9750.html.

[40] Maxim Likhachev, Geo Gordon, and Sebastian Thrun. “ARA*: Formal Analysis”. In:

(2003).

[41] Sven Koenig, Maxim Likhachev, and David Furcy. “Lifelong Planning A”. en. In: Arti-

ficial Intelligence 155.1-2 (May 2004), pp. 93–146. ISSN: 00043702. DOI: 10.1016/

j.artint.2003.12.001. URL: https://linkinghub.elsevier.com/

retrieve/pii/S000437020300225X (visited on 01/28/2023).

[42] Szilárd Aradi. Survey of Deep Reinforcement Learning for Motion Planning of Au-

tonomous Vehicles. en. arXiv:2001.11231 [cs, eess, stat]. Jan. 2020. URL: http://

arxiv.org/abs/2001.11231 (visited on 12/26/2022).

[43] A. Stentz. “Optimal and efficient path planning for partially-known environments”. en.

In: Proceedings of the 1994 IEEE International Conference on Robotics and Automa-

tion. San Diego, CA, USA: IEEE Comput. Soc. Press, 1994, pp. 3310–3317. ISBN:

139

https://mathworld.wolfram.com/
https://doi.org/10.1609/socs.v12i1.18558
https://ojs.aaai.org/index.php/SOCS/article/view/18558
https://ojs.aaai.org/index.php/SOCS/article/view/18558
http://rbr.cs.umass.edu/shlomo/papers/HZDtr9750.html
http://rbr.cs.umass.edu/shlomo/papers/HZDtr9750.html
https://doi.org/10.1016/j.artint.2003.12.001
https://doi.org/10.1016/j.artint.2003.12.001
https://linkinghub.elsevier.com/retrieve/pii/S000437020300225X
https://linkinghub.elsevier.com/retrieve/pii/S000437020300225X
http://arxiv.org/abs/2001.11231
http://arxiv.org/abs/2001.11231

978-0-8186-5330-8. DOI: 10 . 1109 / ROBOT . 1994 . 351061. URL: http : / /

ieeexplore.ieee.org/document/351061/ (visited on 01/29/2023).

[44] Anthony Stentz. “The Focussed D* Algorithm for Real-Time Replanning”. en. In: ().

[45] Sven Koenig and Maxim Likhachev. “D* Lite”. In: Aaai/iaai 15 (July 2002), pp. 476–

483.

[46] MotionPlanningHigherDimensions. URL: http://motion.cs.illinois.edu/

RoboticSystems/MotionPlanningHigherDimensions.html (visited on

02/25/2023).

[47] J. Barraquand and J.-C. Latombe. “A Monte-Carlo algorithm for path planning with

many degrees of freedom”. en. In: Proceedings., IEEE International Conference on

Robotics and Automation. Cincinnati, OH, USA: IEEE Comput. Soc. Press, 1990, pp. 1712–

1717. ISBN: 978-0-8186-9061-7. DOI: 10.1109/ROBOT.1990.126256. URL:

http://ieeexplore.ieee.org/document/126256/ (visited on 02/25/2023).

[48] L.E. Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional con-

figuration spaces”. en. In: IEEE Transactions on Robotics and Automation 12.4 (Aug.

1996), pp. 566–580. ISSN: 1042296X. DOI: 10.1109/70.508439. URL: http:

//ieeexplore.ieee.org/document/508439/ (visited on 02/25/2023).

[49] Roland Geraerts and M.H. Overmars. “A comparative study of probabilistic roadmap

planners”. In: Algorithmic Foundations of Robotics V (2004).

[50] Gildardo Sanchez-Ante and Jean-Claude Latombe. “A Single-Query Bi-Directional Prob-

abilistic Roadmap Planner with Lazy Collision Checking”. In: International Journal of

Robotic Research - IJRR. 2001, pp. 403–417.

[51] M.S. Branicky et al. “Quasi-randomized path planning”. en. In: Proceedings 2001 ICRA.

IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). Vol. 2.

Seoul, South Korea: IEEE, 2001, pp. 1481–1487. ISBN: 978-0-7803-6576-6. DOI: 10.

1109/ROBOT.2001.932820. URL: http://ieeexplore.ieee.org/

document/932820/ (visited on 02/27/2023).

140

https://doi.org/10.1109/ROBOT.1994.351061
http://ieeexplore.ieee.org/document/351061/
http://ieeexplore.ieee.org/document/351061/
http://motion.cs.illinois.edu/RoboticSystems/MotionPlanningHigherDimensions.html
http://motion.cs.illinois.edu/RoboticSystems/MotionPlanningHigherDimensions.html
https://doi.org/10.1109/ROBOT.1990.126256
http://ieeexplore.ieee.org/document/126256/
https://doi.org/10.1109/70.508439
http://ieeexplore.ieee.org/document/508439/
http://ieeexplore.ieee.org/document/508439/
https://doi.org/10.1109/ROBOT.2001.932820
https://doi.org/10.1109/ROBOT.2001.932820
http://ieeexplore.ieee.org/document/932820/
http://ieeexplore.ieee.org/document/932820/

[52] Nancy M Amato et al. “OBPRM: An Obstacle-Based PRM for 3D Workspaces”. en. In:

().

[53] T. Siméon, J.-P. Laumond, and C. Nissoux. “Visibility-based probabilistic roadmaps for

motion planning”. en. In: Advanced Robotics 14.6 (Jan. 2000), pp. 477–493. ISSN: 0169-

1864, 1568-5535. DOI: 10.1163/156855300741960. URL: https://www.

tandfonline.com/doi/full/10.1163/156855300741960 (visited on

02/27/2023).

[54] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for path planning”.

In: (1998). Publisher: Ames, IA, USA.

[55] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Algorithms for Opti-

mal Motion Planning. en. arXiv:1005.0416 [cs]. May 2010. URL: http://arxiv.

org/abs/1005.0416 (visited on 12/26/2022).

[56] Iram Noreen, Amna Khan, and Zulfiqar Habib. “A Comparison of RRT, RRT* and

RRT*-Smart Path Planning Algorithms”. en. In: (2016).

[57] Fahad Islam et al. “RRT*-Smart: Rapid convergence implementation of RRT* towards

optimal solution”. en. In: 2012 IEEE International Conference on Mechatronics and Au-

tomation. Chengdu, China: IEEE, Aug. 2012, pp. 1651–1656. ISBN: 978-1-4673-1278-3.

DOI: 10.1109/ICMA.2012.6284384. URL: http://ieeexplore.ieee.

org/document/6284384/ (visited on 03/03/2023).

[58] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. “Informed

RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Ad-

missible Ellipsoidal Heuristic”. en. In: 2014 IEEE/RSJ International Conference on In-

telligent Robots and Systems. arXiv:1404.2334 [cs]. Sept. 2014, pp. 2997–3004. DOI:

10.1109/IROS.2014.6942976. URL: http://arxiv.org/abs/1404.

2334 (visited on 03/04/2023).

[59] Abhijeet Ravankar et al. “Path Smoothing Techniques in Robot Navigation: State-of-the-

Art, Current and Future Challenges”. en. In: Sensors 18.9 (Sept. 2018), p. 3170. ISSN:

141

https://doi.org/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
http://arxiv.org/abs/1005.0416
http://arxiv.org/abs/1005.0416
https://doi.org/10.1109/ICMA.2012.6284384
http://ieeexplore.ieee.org/document/6284384/
http://ieeexplore.ieee.org/document/6284384/
https://doi.org/10.1109/IROS.2014.6942976
http://arxiv.org/abs/1404.2334
http://arxiv.org/abs/1404.2334

1424-8220. DOI: 10.3390/s18093170. URL: http://www.mdpi.com/1424-

8220/18/9/3170 (visited on 03/04/2023).

[60] L. E. Dubins. “On Curves of Minimal Length with a Constraint on Average Curva-

ture, and with Prescribed Initial and Terminal Positions and Tangents”. en. In: American

Journal of Mathematics 79.3 (July 1957), p. 497. ISSN: 00029327. DOI: 10.2307/

2372560. URL: https://www.jstor.org/stable/2372560?origin=

crossref (visited on 03/04/2023).

[61] Yucong Lin and Srikanth Saripalli. “Path planning using 3D Dubins Curve for Un-

manned Aerial Vehicles”. en. In: 2014 International Conference on Unmanned Aircraft

Systems (ICUAS). Orlando, FL, USA: IEEE, May 2014, pp. 296–304. ISBN: 978-1-4799-

2376-2. DOI: 10.1109/ICUAS.2014.6842268. URL: http://ieeexplore.

ieee.org/document/6842268/ (visited on 03/04/2023).

[62] Wenyu Cai, Meiyan Zhang, and Yahong Zheng. “Task Assignment and Path Planning

for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †”. en. In: Sen-

sors 17.7 (July 2017), p. 1607. ISSN: 1424-8220. DOI: 10.3390/s17071607. URL:

http://www.mdpi.com/1424-8220/17/7/1607 (visited on 03/04/2023).

[63] Doran K. Wilde. “Computing clothoid segments for trajectory generation”. en. In: 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO,

USA: IEEE, Oct. 2009, pp. 2440–2445. ISBN: 978-1-4244-3803-7. DOI: 10.1109/

IROS.2009.5354700. URL: http://ieeexplore.ieee.org/document/

5354700/ (visited on 03/05/2023).

[64] Junior A. R. Silva and Valdir Grassi. “Clothoid-Based Global Path Planning for Au-

tonomous Vehicles in Urban Scenarios”. en. In: 2018 IEEE International Conference

on Robotics and Automation (ICRA). Brisbane, QLD: IEEE, May 2018, pp. 4312–4318.

ISBN: 978-1-5386-3081-5. DOI: 10.1109/ICRA.2018.8461201. URL: https:

//ieeexplore.ieee.org/document/8461201/ (visited on 03/05/2023).

[65] Misel Brezak and Ivan Petrovic. “Real-time Approximation of Clothoids With Bounded

Error for Path Planning Applications”. en. In: IEEE Transactions on Robotics 30.2 (Apr.

142

https://doi.org/10.3390/s18093170
http://www.mdpi.com/1424-8220/18/9/3170
http://www.mdpi.com/1424-8220/18/9/3170
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://www.jstor.org/stable/2372560?origin=crossref
https://www.jstor.org/stable/2372560?origin=crossref
https://doi.org/10.1109/ICUAS.2014.6842268
http://ieeexplore.ieee.org/document/6842268/
http://ieeexplore.ieee.org/document/6842268/
https://doi.org/10.3390/s17071607
http://www.mdpi.com/1424-8220/17/7/1607
https://doi.org/10.1109/IROS.2009.5354700
https://doi.org/10.1109/IROS.2009.5354700
http://ieeexplore.ieee.org/document/5354700/
http://ieeexplore.ieee.org/document/5354700/
https://doi.org/10.1109/ICRA.2018.8461201
https://ieeexplore.ieee.org/document/8461201/
https://ieeexplore.ieee.org/document/8461201/

2014), pp. 507–515. ISSN: 1552-3098, 1941-0468. DOI: 10.1109/TRO.2013.

2283928. URL: http://ieeexplore.ieee.org/document/6646277/

(visited on 03/05/2023).

[66] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. “Path Planning Based on Bezier

Curve for Autonomous Ground Vehicles”. en. In: Advances in Electrical and Electron-

ics Engineering - IAENG Special Edition of the World Congress on Engineering and

Computer Science 2008. San Francisco, California, USA: IEEE, Oct. 2008, pp. 158–

166. ISBN: 978-0-7695-3555-5. DOI: 10.1109/WCECS.2008.27. URL: http:

//ieeexplore.ieee.org/document/5233184/ (visited on 03/05/2023).

[67] Baoye Song, Guohui Tian, and Fengyu Zhou. “A Comparison Study on Path Smoothing

Algorithms for Laser Robot Navigated Mobile Robot Path Planning in Intelligent Space

”. en. In: Journal of Information (2010).

[68] Long Han et al. “Bezier curve based path planning for autonomous vehicle in urban envi-

ronment”. en. In: 2010 IEEE Intelligent Vehicles Symposium. La Jolla, CA, USA: IEEE,

June 2010, pp. 1036–1042. ISBN: 978-1-4244-7866-8. DOI: 10.1109/IVS.2010.

5548085. URL: http://ieeexplore.ieee.org/document/5548085/

(visited on 03/07/2023).

[69] Jung Leng Foo et al. “Path Planning of Unmanned Aerial Vehicles using B-Splines and

Particle Swarm Optimization”. en. In: Journal of Aerospace Computing, Information,

and Communication 6.4 (Apr. 2009), pp. 271–290. ISSN: 1542-9423. DOI: 10.2514/

1.36917. URL: https://arc.aiaa.org/doi/10.2514/1.36917 (visited

on 03/07/2023).

[70] Robbin vanHoek, Jeroen Ploeg, and Henk Nijmeijer. “Cooperative Driving of Auto-

mated Vehicles Using B-Splines for Trajectory Planning”. en. In: IEEE Transactions on

Intelligent Vehicles 6.3 (Sept. 2021), pp. 594–604. ISSN: 2379-8904, 2379-8858. DOI:

10.1109/TIV.2021.3072679. URL: https://ieeexplore.ieee.org/

document/9415170/ (visited on 12/26/2022).

143

https://doi.org/10.1109/TRO.2013.2283928
https://doi.org/10.1109/TRO.2013.2283928
http://ieeexplore.ieee.org/document/6646277/
https://doi.org/10.1109/WCECS.2008.27
http://ieeexplore.ieee.org/document/5233184/
http://ieeexplore.ieee.org/document/5233184/
https://doi.org/10.1109/IVS.2010.5548085
https://doi.org/10.1109/IVS.2010.5548085
http://ieeexplore.ieee.org/document/5548085/
https://doi.org/10.2514/1.36917
https://doi.org/10.2514/1.36917
https://arc.aiaa.org/doi/10.2514/1.36917
https://doi.org/10.1109/TIV.2021.3072679
https://ieeexplore.ieee.org/document/9415170/
https://ieeexplore.ieee.org/document/9415170/

[71] Timothy Arney. “Dynamic path planning and execution using B-Splines”. en. In: 2007

Third International Conference on Information and Automation for Sustainability. Mel-

bourne, Australia: IEEE, Dec. 2007, pp. 1–6. ISBN: 978-1-4244-1899-2. DOI: 10 .

1109/ICIAFS.2007.4544771. URL: http://ieeexplore.ieee.org/

document/4544771/ (visited on 03/07/2023).

[72] Eric W. Weisstein. NURBS Curve. en. Text. Publisher: Wolfram Research, Inc. URL:

https://mathworld.wolfram.com/ (visited on 03/08/2023).

[73] Fusheng Liang, Chengwei Kang, and Fengzhou Fang. “A smooth tool path planning

method on NURBS surface based on the shortest boundary geodesic map”. en. In: Jour-

nal of Manufacturing Processes 58 (Oct. 2020), pp. 646–658. ISSN: 15266125. DOI: 10.

1016/j.jmapro.2020.08.047. URL: https://linkinghub.elsevier.

com/retrieve/pii/S1526612520305533 (visited on 03/08/2023).

[74] A.J. Schmid and H. Woern. “Path planning for a humanoid using NURBS curves”. en.

In: IEEE International Conference on Automation Science and Engineering, 2005. Ed-

monton, AB, Canada: IEEE, 2005, pp. 351–356. ISBN: 978-0-7803-9425-4. DOI: 10.

1109/COASE.2005.1506794. URL: http://ieeexplore.ieee.org/

document/1506794/ (visited on 03/08/2023).

[75] Sawssen Jalel, Philippe Marthon, and Atef Hamouda. “NURBS Based Multi-objective

Path Planning”. en. In: Pattern Recognition. Ed. by Jesús Ariel Carrasco-Ochoa et al.

Vol. 9116. Series Title: Lecture Notes in Computer Science. Cham: Springer Interna-

tional Publishing, 2015, pp. 190–199. ISBN: 978-3-319-19263-5. DOI: 10.1007/978-

3-319-19264-2_19. URL: http://link.springer.com/10.1007/978-

3-319-19264-2_19 (visited on 03/08/2023).

[76] Eric W. Weisstein. Cubic Spline. en. Text. Publisher: Wolfram Research, Inc. URL:

https://mathworld.wolfram.com/ (visited on 03/09/2023).

[77] John Connors and Gabriel Elkaim. “Analysis of a Spline Based, Obstacle Avoiding

Path Planning Algorithm”. en. In: 2007 IEEE 65th Vehicular Technology Conference -

VTC2007-Spring. ISSN: 1550-2252. Dublin, Ireland: IEEE, Apr. 2007, pp. 2565–2569.

144

https://doi.org/10.1109/ICIAFS.2007.4544771
https://doi.org/10.1109/ICIAFS.2007.4544771
http://ieeexplore.ieee.org/document/4544771/
http://ieeexplore.ieee.org/document/4544771/
https://mathworld.wolfram.com/
https://doi.org/10.1016/j.jmapro.2020.08.047
https://doi.org/10.1016/j.jmapro.2020.08.047
https://linkinghub.elsevier.com/retrieve/pii/S1526612520305533
https://linkinghub.elsevier.com/retrieve/pii/S1526612520305533
https://doi.org/10.1109/COASE.2005.1506794
https://doi.org/10.1109/COASE.2005.1506794
http://ieeexplore.ieee.org/document/1506794/
http://ieeexplore.ieee.org/document/1506794/
https://doi.org/10.1007/978-3-319-19264-2_19
https://doi.org/10.1007/978-3-319-19264-2_19
http://link.springer.com/10.1007/978-3-319-19264-2_19
http://link.springer.com/10.1007/978-3-319-19264-2_19
https://mathworld.wolfram.com/

ISBN: 978-1-4244-0266-3. DOI: 10.1109/VETECS.2007.528. URL: http://

ieeexplore.ieee.org/document/4212956/ (visited on 03/09/2023).

[78] Martin Saska et al. “Robot Path Planning using Particle Swarm Optimization of Ferguson

Splines”. en. In: 2006 IEEE Conference on Emerging Technologies and Factory Automa-

tion. Prague, Czech Republic: IEEE, Sept. 2006, pp. 833–839. ISBN: 978-0-7803-9758-

3. DOI: 10.1109/ETFA.2006.355416. URL: http://ieeexplore.ieee.

org/document/4178249/ (visited on 03/09/2023).

[79] Jianfang Lian et al. “Cubic Spline Interpolation-Based Robot Path Planning Using a

Chaotic Adaptive Particle Swarm Optimization Algorithm”. en. In: Mathematical Prob-

lems in Engineering 2020 (Feb. 2020), pp. 1–20. ISSN: 1024-123X, 1563-5147. DOI:

10.1155/2020/1849240. URL: https://www.hindawi.com/journals/

mpe/2020/1849240/ (visited on 03/09/2023).

[80] Tizar Rizano et al. “Global path planning for competitive robotic cars”. en. In: 52nd

IEEE Conference on Decision and Control. Firenze: IEEE, Dec. 2013, pp. 4510–4516.

ISBN: 978-1-4673-5717-3. DOI: 10.1109/CDC.2013.6760584. URL: http:

//ieeexplore.ieee.org/document/6760584/ (visited on 03/12/2023).

[81] Keonyup Chu, Minchae Lee, and Myoungho Sunwoo. “Local Path Planning for Off-

Road Autonomous Driving With Avoidance of Static Obstacles”. en. In: IEEE Trans-

actions on Intelligent Transportation Systems 13.4 (Dec. 2012), pp. 1599–1616. ISSN:

1524-9050, 1558-0016. DOI: 10.1109/TITS.2012.2198214. URL: http://

ieeexplore.ieee.org/document/6203588/ (visited on 03/12/2023).

[82] Saeed Amirfarhangi Bonab and Ali Emadi. “Optimization-based Path Planning for an

Autonomous Vehicle in a Racing Track”. en. In: IECON 2019 - 45th Annual Confer-

ence of the IEEE Industrial Electronics Society. Lisbon, Portugal: IEEE, Oct. 2019,

pp. 3823–3828. ISBN: 978-1-72814-878-6. DOI: 10.1109/IECON.2019.8926856.

URL: https://ieeexplore.ieee.org/document/8926856/ (visited on

03/12/2023).

145

https://doi.org/10.1109/VETECS.2007.528
http://ieeexplore.ieee.org/document/4212956/
http://ieeexplore.ieee.org/document/4212956/
https://doi.org/10.1109/ETFA.2006.355416
http://ieeexplore.ieee.org/document/4178249/
http://ieeexplore.ieee.org/document/4178249/
https://doi.org/10.1155/2020/1849240
https://www.hindawi.com/journals/mpe/2020/1849240/
https://www.hindawi.com/journals/mpe/2020/1849240/
https://doi.org/10.1109/CDC.2013.6760584
http://ieeexplore.ieee.org/document/6760584/
http://ieeexplore.ieee.org/document/6760584/
https://doi.org/10.1109/TITS.2012.2198214
http://ieeexplore.ieee.org/document/6203588/
http://ieeexplore.ieee.org/document/6203588/
https://doi.org/10.1109/IECON.2019.8926856
https://ieeexplore.ieee.org/document/8926856/

[83] Ayoub Raji et al. “Motion Planning and Control for Multi Vehicle Autonomous Rac-

ing at High Speeds”. en. In: 2022 IEEE 25th International Conference on Intelligent

Transportation Systems (ITSC). Macau, China: IEEE, Oct. 2022, pp. 2775–2782. ISBN:

978-1-66546-880-0. DOI: 10.1109/ITSC55140.2022.9922239. URL: https:

//ieeexplore.ieee.org/document/9922239/ (visited on 03/16/2023).

[84] Jose L. Vazquez et al. “Optimization-Based Hierarchical Motion Planning for Autonomous

Racing”. en. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). Las Vegas, NV, USA: IEEE, Oct. 2020, pp. 2397–2403. ISBN: 978-

1-72816-212-6. DOI: 10.1109/IROS45743.2020.9341731. URL: https:

//ieeexplore.ieee.org/document/9341731/ (visited on 03/16/2023).

[85] Daegyu Lee et al. A Resilient Navigation and Path Planning System for High-speed

Autonomous Race Car. en. arXiv:2207.12232 [cs, eess]. Sept. 2022. URL: http://

arxiv.org/abs/2207.12232 (visited on 03/12/2023).

[86] Johannes Betz et al. “A Software Architecture for the Dynamic Path Planning of an

Autonomous Racecar at the Limits of Handling”. en. In: 2019 IEEE International Con-

ference on Connected Vehicles and Expo (ICCVE). Graz, Austria: IEEE, Nov. 2019,

pp. 1–8. ISBN: 978-1-72810-142-2. DOI: 10.1109/ICCVE45908.2019.8965238.

URL: https://ieeexplore.ieee.org/document/8965238/ (visited on

03/12/2023).

[87] Dave Ferguson, Maxim Likhachev, and Anthony Stentz. “A Guide to Heuristic-based

Path Planning”. en. In: ().

[88] Guodong Rong et al. LGSVL Simulator: A High Fidelity Simulator for Autonomous Driv-

ing. en. arXiv:2005.03778 [cs, eess]. June 2020. URL: http://arxiv.org/abs/

2005.03778 (visited on 12/26/2022).

[89] Functional Mockup Interface. URL: https://fmi-standard.org/ (visited on

01/11/2023).

[90] SVL Simulator Sunset. en. URL: https://www.svlsimulator.com/news/

2022-01-20-svl-simulator-sunset/ (visited on 01/11/2023).

146

https://doi.org/10.1109/ITSC55140.2022.9922239
https://ieeexplore.ieee.org/document/9922239/
https://ieeexplore.ieee.org/document/9922239/
https://doi.org/10.1109/IROS45743.2020.9341731
https://ieeexplore.ieee.org/document/9341731/
https://ieeexplore.ieee.org/document/9341731/
http://arxiv.org/abs/2207.12232
http://arxiv.org/abs/2207.12232
https://doi.org/10.1109/ICCVE45908.2019.8965238
https://ieeexplore.ieee.org/document/8965238/
http://arxiv.org/abs/2005.03778
http://arxiv.org/abs/2005.03778
https://fmi-standard.org/
https://www.svlsimulator.com/news/2022-01-20-svl-simulator-sunset/
https://www.svlsimulator.com/news/2022-01-20-svl-simulator-sunset/

[91] TUM-Institute of Automotive Technology. Global Race Trajectory Optimization. original-

date: 2019-05-21T08:29:33Z. Jan. 2023. URL: https://github.com/TUMFTM/

global_racetrajectory_optimization (visited on 02/04/2023).

[92] Alexander Heilmeier et al. “Minimum curvature trajectory planning and control for an

autonomous race car”. en. In: Vehicle System Dynamics 58.10 (Oct. 2020), pp. 1497–

1527. ISSN: 0042-3114, 1744-5159. DOI: 10.1080/00423114.2019.1631455.

URL: https://www.tandfonline.com/doi/full/10.1080/00423114.

2019.1631455 (visited on 02/04/2023).

[93] Tim Stahl et al. “Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dy-

namic Scenarios”. en. In: 2019 IEEE Intelligent Transportation Systems Conference

(ITSC). Auckland, New Zealand: IEEE, Oct. 2019, pp. 3149–3154. ISBN: 978-1-5386-

7024-8. DOI: 10.1109/ITSC.2019.8917032. URL: https://ieeexplore.

ieee.org/document/8917032/ (visited on 12/26/2022).

[94] Curvature (article). en. URL: https://www.khanacademy.org/math/multivariable-

calculus/multivariable-derivatives/differentiating-vector-

valued-functions/a/curvature (visited on 02/11/2023).

[95] William F. Milliken and Douglas L. Milliken. Race Car Vehicle Dynamics. Fifth. Society

of Automotive Engineers, Inc, 195. ISBN: 1-56091-526-9.

[96] William Kennedy. “Steering Actuator Delay Compensation for a Ground Vehicle Lateral

Control System”. Thesis. 2023.

[97] Autonoma. Autonoma. en-US. URL: https://autonomalabs.com/ (visited on

06/07/2023).

147

https://github.com/TUMFTM/global_racetrajectory_optimization
https://github.com/TUMFTM/global_racetrajectory_optimization
https://doi.org/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://doi.org/10.1109/ITSC.2019.8917032
https://ieeexplore.ieee.org/document/8917032/
https://ieeexplore.ieee.org/document/8917032/
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/curvature
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/curvature
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/curvature
https://autonomalabs.com/

	Abstract
	Acknowledgments
	Introduction
	Introduction and Motivation
	Contributions
	Outline

	Background
	Motion Planning
	Graph Search Algorithms
	Sampling Based Algorithms

	Path Smoothing
	Path Planning in Autonomous Racing

	Graph Based Planner for Oval Tracks
	Background and Motivation
	Planner Architecture
	Graph Generation
	Graph Search
	Path Smoothing

	Experimental Setup
	LGSVL Simulator
	Object Simulation
	Tests

	Results
	Discussion

	Graph Based Planner for Road Courses
	Layer Generation
	Spline Generation
	Velocity Profile Generation
	Graph Generation - Offline
	Profile Selection - Online

	Results
	MKZ Testing
	Software Setup
	Results

	Simulation Testing
	Results

	Conclusions
	Summary
	Future Work

	Path Planner Implementation
	Path Planner for Oval Courses
	Path Planner for Road Courses

	Parameters used for testing oval course planner
	Parameters used for testing road course planner

