
A Research Framework for Asynchronous Adversarial Multi-Player Games with
Human Player GUI and AI Gym

by

Cody Roberts

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 5, 2023

Keywords: adversarial games, asynchronous, multi-player, AI Gyms

Copyright 2023 by Cody Roberts

Approved by

Daniel Tauritz, Chair, Associate Professor of Computer Science and Software Engineering
Samuel Mulder, Associate Research Professor of Computer Science and Software Engineering

Davide Guzzetti, Assistant Professor of Aerospace Engineering
Akhil Rao, Assistant Professor of Economics, Middlebury College

Abstract

The primary contribution of this thesis is to describe the design and development of a

research framework to support complex, real-time asynchronous multi-agent simulations with

both homogeneous as well as heterogeneous human and artificial intelligence (AI) agents. This

framework provides researchers with a platform to model adversarial games and benchmark AI

algorithms and policies. It provides a flexible, reusable client/server architecture that supports

a wide variety of games for use as (learning) environments.

The secondary contribution of this thesis is to describe the design and development of an

example use-case of the research framework for satellite constellations named Satellite Tycoon

(Sat-Tycoon). The provided React client provides researchers, educators, and aerospace enthu-

siasts with a way to play the provided Sat-Tycoon game from their internet browser without

the need for downloading or installing. The Sat-Tycoon game itself is a satellite constellation

simulation rich with complexity, ideal for use as a reinforcement learning environment.

This thesis will cover the design decisions made for these contributions, and the trade-offs

involved in those decisions. Such decisions include using multiple networked gyms instead of

a single multi-agent gym, using the OpenAI gym standard instead of PettingZoo, building a

server authoritative architecture over a peer-to-peer architecture, and using a web framework

instead of a game engine.

ii

Acknowledgments

The work described in this thesis received funding from the Air Force Research Laboratory

(AFRL)1 under contract FA9453-20-1-0008 as well as from the Auburn Cyber Research Center

(ACRC)2, without their generous support this work would not have been possible.

I would like to acknowledge my committee chair and advisor Dr. Daniel Tauritz, without

his guidance and relentless support I would not have been able to reach this major milestone

in my life. I appreciate his unwavering encouragement and optimism, which kept me going

through the most difficult challenges. I would also like to express my deepest gratitude to my

committee members: Dr. Davide Guzzetti, Dr. Samuel Mulder, and Dr. Akhil Rao for their

unique perspectives, incredible wisdom, and invaluable feedback. I would also like to thank my

teammates: Rehman Qureshi, Jay Patel, Manuel Indaco, Lucy Bone, and Emily Kimbrell for

their friendship, hard work, and contributions to the project. I would like to give special thanks

to my good friend Deacon Seals, whose guidance, knowledge, friendship and support proved

to be indispensable. From my bachelor’s degree to my master’s, Deacon has been there to help

and support me late into the night and I couldn’t have done it without him. I want to thank my

parents Aaron and Bernetta Roberts for always emphasizing the importance of education and

supporting me in my academic endeavors, and my brother Keith Roberts for always being there

for me when I needed him. Finally, I want to thank my best friend and partner in all things

Meredith Brown for all of her love and support, and having the patience to see me through this

journey.

1https://www.afrl.af.mil/
2https://cyber.auburn.edu

iii

https://www.afrl.af.mil/
https://cyber.auburn.edu

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . ix

List of Tables . x

1 Introduction . 1

1.1 Reinforcement Learning . 2

1.2 AI Gyms . 2

1.3 OpenAI Gym . 3

1.3.1 Step Function . 3

1.3.2 Reset Function . 4

1.3.3 Spaces . 4

1.3.4 Action Space . 4

1.3.5 Observation Space . 4

1.4 DotA 2 and StarCraft II . 5

1.4.1 The Sat-Arena Gym for Sat-Tycoon 6

1.5 Sat-Tycoon . 9

1.5.1 Simulation of Time . 9

1.5.2 Making Actions . 10

1.5.3 Direct Player Interaction . 10

iv

1.5.4 Information Framing . 10

1.5.5 Ending the Game . 10

1.6 Contributions . 10

1.7 Outline . 11

2 Related Work . 12

2.1 OpenSpiel . 12

2.2 PettingZoo . 12

2.2.1 Agent Environment Cycle . 13

2.3 Dopamine . 13

2.4 Related Aerospace Gyms . 14

2.4.1 Deep Replacement: Reinforcement learning based constellation man-
agement and autonomous replacement 14

2.4.2 StarCraft II . 14

2.5 Multi-Agent Reinforcement Learning . 15

2.6 Multi-Agent Reinforcement Learning Gyms 15

2.6.1 TanksWorld . 15

2.6.2 Battlesnake Challenge . 16

2.7 Competitive Multi-Agent Environments . 17

2.7.1 NeuralMMO . 17

2.7.2 Online RPG For Reinforcement Learning 18

3 Client/Server Architecture and Model/View Separation 20

3.1 Clients . 20

3.2 Server . 20

3.2.1 Lobbies . 20

3.2.2 Users . 21

v

3.2.3 Multiprocessing . 22

3.2.4 Game Logic . 23

3.2.5 Ending the Game . 24

3.3 Multiprocessing . 24

3.4 Server Authoritative Architecture . 24

4 The React Client for Human Players . 28

4.1 Player Login . 29

4.1.1 Zero Turn . 29

4.2 Components . 31

4.2.1 Footer . 31

4.2.2 Multi-Panel . 32

4.2.3 Earth Panel . 32

4.2.4 Space Panel . 32

4.2.5 Social Panel . 35

4.2.6 Analytic Panel . 35

4.2.7 Scoreboard . 36

4.3 Redux State . 36

4.4 Networking . 37

4.4.1 API . 38

5 The Sat-Arena OpenAI Gym Client . 39

5.1 Simplified Environment . 39

5.2 Step . 40

5.3 Reset . 40

5.4 Timesteps . 41

5.5 Networking . 41

vi

5.5.1 The Connection Class . 41

5.5.2 Connecting . 42

5.6 Multiprocessing . 42

5.6.1 Action Queue . 42

5.6.2 Response Queue . 43

5.6.3 Connection State Dictionary . 43

6 Sat-Tycoon as a Research Framework . 44

6.1 Supported Games . 44

6.1.1 Markov Decision Process . 44

6.1.2 Extensive-Form Games . 45

6.2 Independent Gym Environments in Multi-Agent Learning 45

6.3 Client Agnostic Design . 45

6.4 Possibilities . 46

6.5 Results . 46

7 Conclusion . 48

7.1 Limitations . 48

7.1.1 Reinforcement Learning . 48

7.1.2 Design . 49

7.1.3 Hardware . 49

7.1.4 Networking . 49

7.2 Future Work . 49

7.2.1 Converting React Client to Functional Components 50

7.2.2 More Complex Gym Environments . 50

7.2.3 Mini-games and Challenges for RL Agents 50

7.2.4 Visualizer Client . 50

vii

7.2.5 Server-side Gym Environments . 51

7.2.6 Persistent Data . 51

References . 52

Appendices . 55

A Changing the Environment . 56

A.1 Changing the Game Logic . 56

A.2 Changing the API . 57

A.3 Other files . 58

A.4 Developing clients . 58

B Getting Started . 59

B.1 Setting up Linux . 59

B.1.1 Setting up Linux using WSL2 in Windows 10/11 59

B.1.2 Setting up a dedicated Linux install 60

B.2 Using Git and GitHub . 60

B.3 Installing the Backend . 61

B.4 Recommended Development Environment . 61

B.5 Running the Server . 62

B.6 Installing the React Client . 62

B.7 Installing the Gym Client . 62

B.8 Hosting the Server . 63

B.9 Hosting the React Client . 63

viii

List of Figures

1.1 An agent sends actions to an environment which returns the next state and reward. 3

1.2 Two alternatives for implementing multi-agent gyms in the framework 8

3.1 The server organizes players into lobbies. 21

3.2 The exchange of data between the server and a gym client, and the internal data
flow for each. 27

4.1 The initial title screen for the React player client. 29

4.2 The login page allows players to choose a name and lobby. 30

4.3 The lobby page shows which players have joined the game, and lets a player
signal they are ready to play. 30

4.4 The zero turn provides a tutorial experience for players who may be new to the
game. 31

4.5 The footer provides a clear picture of a player’s resources during gameplay. . . 32

4.6 The multipanel serves to help players access multiple areas of the game from
one location. 33

4.7 The Earth panel provides access to features such as the world map and ground-
station placement. 34

4.8 The Space panel provides access to features such as the Space Deck and launch-
ing satellites. 34

4.9 The Social panel provides a place for players to interact with each other directly. 35

4.10 The Analytic panel gives players important statistical data about the game. . . . 36

4.11 The scoreboard displays how well players fared against their competitors after
a game has ended. 37

6.1 Output from a successful game between two agents using the A2C model in
Stable Baselines 3. 47

ix

List of Tables

2.1 Table comparing different RL & MARL frameworks 13

2.2 Table comparing different competitive multi-agent environments. 18

x

Chapter 1

Introduction

Many real-world situations are naturally modeled as asynchronous adversarial multi-player

games, from economic competitions to warfare. However, there is a lack of research frame-

works capable of modeling such games with support for both human players via GUI clients

and AI players via standardized AI gym interfaces. This thesis describes the creation of such

a framework for the specific scenario of economic competition in satellite constellations, both

the general components and the scenario specific ones.

Reinforcement Learning (RL) is one of the primary types of machine learning (ML), a

subset of Artificial Intelligence (AI) [16]. It is of critical importance to the development of RL

to have high-quality standardized benchmark environments to perform rigorous comparisons of

different RL algorithms, often referred to as AI gyms. The primary contribution of this thesis

is to describe the development of a framework to support complex, state-of-the-art real-time

asynchronous multi-agent simulations with human involvement.

Satellite Tycoon, further referred to as Sat-Tycoon for short, is a multiplayer satellite con-

stellation strategy-simulation game reminiscent of Tycoon Games (e.g., Zoo Tycoon, Jurassic

World Evolution, Railroad Tycoon, Plague Inc., and RollerCoaster Tycoon). These games tend

to border on economic simulations where the goal is to develop a strategy to build the most

profitable business. Players in Sat-Tycoon compete to see who can build the most profitable

satellite constellation to provide internet service to different regions of the world.

Sat-Tycoon presents AI with a complex, adversarial, multi-agent economic competition.

Using a custom framework it provides a real-time asynchronous competitive environment in

which to benchmark against both other AI agents as well as human players. This type of

1

framework should be of particular interest to the RL community. The author has done an ad-

mittedly non-comprehensive review of several similar environments and found this framework

to be novel in supporting asynchronous real-time training and competition over the internet.

This review can be found in Chapter 2.

This framework provides a general framework for research supporting custom built clients

using WebSockets and a JSON API. It also provides two premade clients, one for humans using

JavaScript and React, and one for RL agents using Python and OpenAI Gym. The benefits of

this framework for researchers are covered in more detail in Chapter 6.

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a method to train AI agents through trial-and-error, using

a pre-constructed environment. This environment is primarily exposed to the agent as a set

of observations, actions, and rewards. Much work has been done in the field of RL, with

many rich, challenging environments being developed for agents to learn in. Many of these

environments have been created using OpenAI’s Gym [3] API. OpenAI has set the standard

for RL environments with their Gym framework, which is one of the reasons Sat-Tycoon’s

AI learning environment was originally built using OpenAI Gym. As of the writing of this

Thesis, all maintenance and development of OpenAI Gym has ceased and the development

team has forked the project to be continued as Gymnasium1. However, the provided AI gym

client originally used OpenAI Gym and was converted to Gymnasium during the writing of this

thesis. This thesis will discuss the gym version of the provided AI client.

1.2 AI Gyms

AI Gyms are environments designed and developed to provide an easy API for training RL

agents by playing games. Their most prominent use among the RL community is to benchmark

and compare RL algorithms. One of the leading standards in AI gyms is the OpenAI Gym API.

1https://gymnasium.farama.org/

2

https://gymnasium.farama.org/

Figure 1.1: An agent sends actions to an environment which returns the next state and reward.

1.3 OpenAI Gym

OpenAI Gym is a framework developed for building environments in which to train RL agents.

OpenAI’s gym API has become one of the leading standards in the RL community for training

RL algorithms. It utilizes an episodic structure that seeks to maximize total reward per episode.

OpenAI is well known for their work in developing agents to play the game DotA 2, a real-time

asynchronous game that faces many challenges similar to Sat-Tycoon. They have also done

important work in many other areas of AI, including their large language models such as GPT-

3. Sat-Tycoon includes an OpenAI Gym environment called Sat-Arena to allow agents to train

on the Sat-Tycoon game. The Sat-Arena environment is covered in more detail in Section 1.4.1.

Figure 1.1 visualizes a simple example of an OpenAI Gym.

1.3.1 Step Function

The step function is the main function of an AI gym environment. It receives the action an

agent intends to take, and the current observed state. It returns four variables; state, reward,

info, and done. The state is the next state, calculated using the action provided. The reward

is calculated based on a reward function defined by the gym creator, and is used to give the

3

agent feedback on what is or isn’t good. The info variable is used to communicate any extra

information such as debugging data, or sometimes extra information for libraries such as stable

baselines to use. The done variable is used to determine when the game has ended and a new

game should be started.

1.3.2 Reset Function

The reset function serves to clean the slate after an episode and prepare the environment to run

new experiments. It should clear out all of the variables, and return the environment to its initial

state.

1.3.3 Spaces

Spaces are data structures used by Gyms to define the format for actions and observations.

This dictates what actions must look like for agents and also defines what observations will

look like. A space can be formatted in many different ways depending on the environment’s

needs. The space types supported by OpenAI Gym are Box, Dict, Discrete, Graph, MultiBi-

nary, MultiDiscrete, Sequence, Text, and Tuple. In Section 5.1, Sat-Tycoon’s use of these types

is detailed.

1.3.4 Action Space

Action spaces are used by AI Gym environments to represent the set of all actions that can

be taken by an agent, as well as legal ranges for those actions. For example, in Sat-Tycoon

the action space dictates that the inclination for a satellite launch must be between 0 and 180

degrees. Any action an agent takes must be selected from the corresponding action space for

the environment and fall within the provided valid parameters.

1.3.5 Observation Space

Observation spaces are used by AI Gym environments to represent what the environment the

agent is exploring looks like. They should contain all of the information an agent would need

to learn and play a game. For example, an observation space may contain spatial and positional

4

data or even quantitative data. In Sat-Arena, these are matrices describing a wide variety of

things ranging from global population data on Earth to the locations of satellites in space for

each player.

1.4 DotA 2 and StarCraft II

DotA 22 is a Multiplayer Online Battle Arena (MOBA) developed by Valve3 in which ten

human players compete against each other in two teams of five. Each player is in control of a

single hero, and must manage that hero’s items and abilities, level up the hero and select new

abilities each level, as well as work together with teammates to complete objectives. DotA 2 is

a highly complex environment, involving a roster of more than one hundred selectable heroes,

a partially observable state, and dozens of other units and buildings. OpenAI4 developed their

RL agent OpenAI Five [2] to play DotA 2. OpenAI Five trained by playing 10,000 years of

DotA 2 matches against itself. It handles the complexity of DotA 2 by discretizing the action

space, and setting a few limitations. It only supports 17 of the total of 117 heroes in DotA 2,

and does not support any items which require a player to temporarily control multiple units at

the same time. In April 2019, OpenAI’s agent OpenAI Five beat the DotA 2 world champions5.

While OpenAI developed OpenAI Five to play DotA 2, DeepMind developed AlphaStar6,

the first AI to beat professional StarCraft II players. StarCraft II7 is a real time strategy game

developed by Blizzard Entertainment. Unlike DotA 2, in StarCraft II the player is in control

of an entire army instead of a single hero. The player must manage resources for production

of units, construction of buildings, and completion of goals like defeating enemy players in

battle. A game generally consists of two to eight players of varying team sizes. StarCraft II

is a partial information game, only revealing to players their own information, what their units

can see, and parts of the map they have explored. Opposing player information is hidden,

and unexplored portions of the map are covered in a “fog of war”, preventing the player from

2https://www.dota2.com/home
3https://www.valvesoftware.com/en
4https://openai.com/
5https://openai.com/research/openai-five-defeats-dota-2-world-champions
6https://www.deepmind.com/blog/alphastar-mastering-the-real-time-

strategy-game-starcraft-ii
7https://starcraft2.blizzard.com/en-us/

5

https://www.dota2.com/home
https://www.valvesoftware.com/en
https://openai.com/
https://openai.com/research/openai-five-defeats-dota-2-world-champions
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://starcraft2.blizzard.com/en-us/

seeing those areas. DeepMind released the StarCraft II Learning Environment (SC2LE) [19]for

RL agents to play StarCraft II. SC2LE consists of three parts: a Linux binary for StarCraft II,

an API for communicating with the StarCraft II game, and the PySC2 environment. PySC2

utilizes StarCraft II’s built-in map editor to create several simpler mini games for agents to

tackle before attempting to learn to play the whole game. Sat-Tycoon is similar in providing

both an API for communication with the game as well as a gym environment for running RL

agents. The Sat-Tycoon API provides networking functionality for communication with the

game server, and just like the SC2LE API it provides functionality for starting a game, sending

actions, and receiving observations. It does not currently provide functionality for reviewing

replays, but implementation of this functionality would not be difficult in future work.

Sat-Tycoon shares many challenges with DotA 2 and StarCraft II. Like these games, Sat-

Tycoon has a partially observed state, as players cannot see the budget, revenue, number of

owned satellites, or researched technology of other players. Sat-Tycoon also has a highly di-

mensional observation space, containing multiple grids representing maps of global data such

as population, customers, data-rate, coverage, and even satellites in space. In addition to these

challenges, Sat-Tycoon is also a real-time asynchronous game. Handling the step function can

be challenging in real-time games, and in DotA 2, OpenAI Five conveniently addresses this

by tying the step function to the frame-rate of the game. Since the Sat-Tycoon game does not

have a frame-rate the step function cannot be tied to it. Instead, Sat-Arena’s step function be-

haves in a more real-time manner, with each step not being tied to a particular environmental

factor. Instead, agents may make steps as quickly as they are capable, and at the end of each

month agents receive environment updates. This results in a delayed reward system, and may

not uphold the Markov Property, which is covered in more detail in Subsection 6.1.1.

1.4.1 The Sat-Arena Gym for Sat-Tycoon

Sat-Arena is an OpenAI Gym developed specifically for use with the framework. Written in

Python, the gym offers a simplified environment to showcase the framework’s ability to support

RL gyms and AI. When designing a gym for use with the framework, there are two immediate

options. The first option is a more traditional multi-agent environment in which several agents

6

play in the same gym environment, as illustrated in Figure 1.2b. Using this method, a single

gym client would connect to the server to allow multiple agents to play using a single gym.

Because the server treats each individual WebSocket connection as a single player, it does not

currently support a gym environment where multiple agents play as different players in one

gym. However, it may be possible to train multiple agents to work together to manage a single

player’s actions using such a gym design. This style of gym client was not chosen for Sat-

Tycoon because it is not ideal for a real-time, asynchronous game. Due to the asynchronous

nature, agents sharing an environment may find themselves waiting for each other. In this case

if there are three agents, the first agent to finish its step function will not see the resulting

state and reward from its action until the next two agents also finish making their steps. The

alternative is that agents take sequential turns, which is not faithful to Sat-Tycoon’s real-time

asynchronous nature.

Sat-Arena solves this problem by being a single agent environment designed to network

with other single agent environments, as shown in Figure 1.2a. This allows the agents to take

their steps completely independently, and play at their own pace asynchronously. The agent

makes their action during the step phase, and waits to hear back from the server with their

corresponding result. The client receives and accrues responses from the server in the response

queue until the response to the agent’s action is received. Each action contains a parameter

indicating which player the action is associated with, so that the listener can loop through the

response queue until it finds the response to the agent’s last action. In this way, the agent gets

all of the environment updates since their last action.

Networking multiple single agent environments also more naturally facilitates scalability

than a single multi-agent environment, as each agent can be in its own environment on its own

machine, and does not have to share system resources. Alternatively, an environment could

achieve more scalability by utilizing multiple cores of a single machine.

However, it is not a perfect solution and there are some drawbacks that may need to be

addressed. For example, if an opponent were to send updates at a fast enough rate while the

agent was looping through responses, they could lock out or delay the agent from receiving its

7

(a) many gyms (b) one gym

Figure 1.2: Two alternatives for implementing multi-agent gyms in the framework

own response. This wouldn’t be a problem in the first design, where agents share an environ-

ment, as no agent can continue making actions until all agents have acted or agents are playing

synchronously in a turn-based system. The environment is also simplified and designed specif-

ically to work with the more rudimentary algorithms provided by the Stable Baselines library,

and a more complex gym environment may need to be developed to support more advanced

algorithms.

Stable Baselines 3

Sat-Arena does not implement or provide any implementations of RL algorithms, but has been

tested using the Stable Baselines 3 library [14]. Stable Baselines 3 provides a set of commonly

used model-free, single-agent algorithms that have been thoroughly tested and benchmarked.

Sat-Arena has been tested specifically with the Advantage Actor Critic (A2C) [11] algorithm,

but there may be other suitable algorithms for Sat-Tycoon as well both within the Stable Base-

lines 3 library and outside of it. Sat-Arena behaves the same as any other standard OpenAI

gym environment and can be used as such, allowing researchers to write and develop their own

custom algorithms and agents to train in it.

Scalability

The framework has no hard coded limit on the number of connections the server can receive

at once. Complementing this, the Sat-Tycoon game itself has no maximum player limit. The

advantage of this is that large scale games are inherently supported at the software level by

8

both the game logic and the server; however, limitations may still be encountered depending

on the hardware the server is hosted on. In addition, the game mechanics may begin to break

down as the number of players is increased. While Sat-Tycoon has no strictly enforced player

limit, certain game elements like orbital planes on the space deck will quickly see crowding

with too many players. The provided gym client is also not without scaling limitations as the

method used to listen for an agent’s state updates is not ideal for very large scale games. This

is because the agent will listen to environment updates until it receives one that is indicated

as being a result of its own action. This means that if the agent receives enough environment

updates quickly enough, it may be locked out from receiving the result of its last action. This

effectively prevents the agent from finishing its step function, and prevents the agent from

continuing to play.

1.5 Sat-Tycoon

Sat-Tycoon is a competitive multi-player economic simulation played asynchronously in real-

time. The goal of the game is for players to build the most profitable satellite internet service

by constructing the best satellite constellation. The game runs on a simulated clock and players

can make as many actions as they like, as often as they like. Players receive updates to their

customer and revenue values every in-game month, representing their overall performance in

the game.

1.5.1 Simulation of Time

The game takes place over a set amount of time measured in months and years, during which

players can make any number of actions. This runs on an iterative clock that represents one

second as two days. Months are normalized to thirty days for consistency, and to allow the

game to be better used by any possible future local gym environments that may need a clear

step function. Updates to the game state such as revenue and customers rely on the clock,

arriving monthly.

9

1.5.2 Making Actions

Players have a number of actions available to them in Sat-Tycoon, all with the purpose of

building a satellite constellation to provide internet service to customers. Actions can be or-

ganized into two major categories: Earth and Space. As the name implies, Earth actions are

those related to more terrestrial pursuits such as building ground stations and setting the inter-

net price customers need to pay for service. Space actions, in contrast, are related to building

and launching satellites.

1.5.3 Direct Player Interaction

In every multiplayer game, player interaction is a vital part of the experience. Sat-Tycoon is no

different, and provides player interaction via the social panel. Players can chat while playing

using the chat box, or see which players are currently online and playing.

1.5.4 Information Framing

Sat-Tycoon is a partial information game. Players can see their own funds, internet price,

ground stations. technology research and satellites. However, they can only see the ground

stations and launched satellites of opponents, other opponent resources are hidden from them.

1.5.5 Ending the Game

When the predetermined number of years has passed, the game will end and scores will be

sent to players. The scores tracked and provided at the end of the game are total number of

customers and revenue gained.

1.6 Contributions

This thesis contributes a general framework for the modeling of real-time, asynchronous ad-

versarial games, and a demonstration of that framework in use. The framework supports adver-

sarial modeling for games such as economic simulations, attacker/defender games, and more

using a real-time, client agnostic server authoritative architecture. This architecture makes the

10

framework perfect for real-time asynchronous multi-agent RL, as it allows for users to develop

their own clients and thus their own gym environments. The framework is demonstrated using

the Satellite Tycoon [6] game, which models economic competition from the perspective of

satellite constellation management. While Sat-Tycoon simulates economic competition, it can

be also be used in education, national defense, business, and recreation. With very little modifi-

cation the game would have the information and mechanics necessary to educate about P-LEO

satellite constellations, or to model the attack and defense of P-LEO constellations between

two entities such as nation states. With slightly more gamification the game could become a

recreational game for satellite enthusiasts as well. The author of this thesis has co-authored

several papers [7, 13] and contributed to a report [6] on the framework and the demonstrative

game Sat-Tycoon.

1.7 Outline

Chapter 2 covers related work and details how each work compares to the framework. Chap-

ter 3 introduces the more technical details of the client/server architecture, setting the stage for

chapters 4 and 5 to lay out the provided human and AI clients built in JavaScript/React and

Python respectively. Chapter 6 covers what makes the framework a good tool for researchers.

Chapter 7 wraps everything up and discussions limitations of the framework and potential fu-

ture work.

11

Chapter 2

Related Work

This framework is not the first Multi-Agent RL (MARL) framework to be developed; however,

the way in which it operates and handles MARL may be quite novel. Other frameworks focus

on being able to universally handle as many types of MARL games as possible, while Sat-

Tycoon’s framework is purpose-built to handle real-time asynchronous games. Another major

difference is that this framework is designed to support playing with human players. Many if

not all frameworks opt to use some kind of proxy or surrogate in place of a real human player

for efficiency.

2.1 OpenSpiel

OpenSpiel [9] provides not only a framework for testing different algorithms but also for writ-

ing different games to test algorithms in. The games are written in C++ and wrapped in Python,

and the algorithms are in both Python and C++. Games in OpenSpiel are represented as mostly

Extensive-Form Games (EFG), but may also occasionally be represented using Markov De-

cision Processes (MDP). EFGs are explained in more detail in Subsection 6.1.2, and Markov

Decision Processes are explained in Subsection 6.1.1.

2.2 PettingZoo

PettingZoo [18] is a library of environments inspired by OpenAI’s gym that was created with

the goal of having a single standardized way to handle MARL. To this end, the PettingZoo

developers wanted the PettingZoo API to be as familiar to gym’s API as possible. The use

12

of PettingZoo was considered for Sat-Tycoon; however, it was determined that for purposes

of reaching a wider audience, Sat-Tycoon would use OpenAI’s gym instead. In addition, Sat-

Tycoon is not a traditional MARL game, being real-time asynchronous in nature. This means

that it is not ideal for a synchronous environment like PettingZoo would provide. Given that

neither PettingZoo nor OpenAI have solutions to the real time asynchronous challenge, it would

need to be addressed regardless of which API was chosen. In PettingZoo, the agents step

sequentially using the agent environment cycle games model.

2.2.1 Agent Environment Cycle

The agent environment cycle (AEC) is a sequential model in which agents take turns seeing

their observations, taking actions, and receiving rewards. In AEC models, the environment acts

as an agent itself, its actions representing the updating of the environment in response to agent

actions. This sequential model results in a turn-based game, which is directly in conflict with

the real-time asynchronous nature of Sat-Tycoon.

2.3 Dopamine

Dopamine [4] is a tensorflow1 based framework focused on being simple and compact, so that

anyone can pick it up and use it regardless of experience level with RL. It initially only focuses

on the Arcade Learning Environment [1], but the Dopamine team has plans to expand it later.

While there is no clear statement on MARL support, with its focus on simplicity, compactness,

and reliability, it is not likely to support MARL without modification. Sat-Tycoon boasts a

simple API, but it is almost definitely not a simple, compact framework like Dopamine.

1https://www.tensorflow.org/

Table 2.1: Table comparing different RL & MARL frameworks

Environment MARL Async Real-time
Sat-Tycoon Yes Yes Yes
PettingZoo Yes No No
OpenSpiel Yes No No
Dopamine No No No

13

https://www.tensorflow.org/

2.4 Related Aerospace Gyms

Similar aerospace reinforcement learning environments to Sat-Tycoon have been made, but

they do not have the same breadth and complexity as Sat-Tycoon. Being single player, single

agent while also having a smaller scale, more detail-oriented focus.

2.4.1 Deep Replacement: Reinforcement learning based constellation management and au-

tonomous replacement

The Deep Replacement [8] environment focuses on monitoring the health of a constellation and

optimally replacing damaged satellites. This is more focused on the intricate details of Satellite

management, unlike Sat-Tycoon, which puts the focus on the construction and management

of an entire constellation including not only the satellites, but also the ground stations and

company finances.

The actions for the Deep Replacement environment are discretized into a set of finite

discrete actions. They are “No Action”, “Build Piece Parts”, “Build Components”, “Build

Subsystems”, “Build S/C”, and “Launch S/C”. These are more focused on the micromanage-

ment of actual satellites than the actions available in Sat-Tycoon’s much broader focus on the

construction and management of an entire satellite constellation.

2.4.2 StarCraft II

Following the development of the StarCraft II Learning Environment (SC2LE) [19], StarCraft

II has become a popular environment for training RL agents. StarCraft II is provided to agents

as an environment via its programmatic API, and environments such as PySC2 are built on top

of this API.

PySC2

PySC22 is DeepMind’s3 open source Python environment for RL agents provided as part of

SC2LE. It provides action and observation spaces, as well as a handful of example agents

2https://www.deepmind.com/open-source/pysc2
3https://www.deepmind.com/

14

https://www.deepmind.com/open-source/pysc2
https://www.deepmind.com/

including a random agent. Included in the environment are mini games, challenges, and visual-

ization tools to assist in understanding the agent’s capabilities in the environment. The provided

mini-games and challenges allow developers to train agents on smaller individual objectives in

the game instead of an entire match of StarCraft II. These can be objectives such as building a

unit, traversing the game map, or collecting a resource. Such mini-games and challenges would

be a great addition to the provided Sat-Tycoon game’s environment and are discussed further

in Section 7.2.

2.5 Multi-Agent Reinforcement Learning

Multi-Agent RL is a subset of RL in which multiple RL agents learn together. This is usually

done with multiple agents in a single gym, but in the case of Sat-Tycoon, which is a real-time

asynchronous game, it must be done using multiple gyms connected to a single game.

2.6 Multi-Agent Reinforcement Learning Gyms

There are several MARL gyms already, and many of them share similarities with Sat-Arena.

However, Sat-Arena meets some very specific needs not found in these other gyms. Namely,

very few of them support human interaction and none of them support real time asynchronous

play.

2.6.1 TanksWorld

TanksWorld [15] is a multi-agent environment in which two teams of N tanks compete in a

battle. Unlike Sat-Tycoon, in TanksWorld states are represented using 128x128 4-channel

images. The four channels are position and orientation of allies, position and orientation of

visible threats, position of neutral tanks, and position of obstacles. Agents in TanksWorld have

three different continuous actions at their disposal. They can adjust their velocity, turn their

tank, or shoot their tank’s gun. Tanks in the TanksWorld environments may communicate with

teammates, and the environment includes the communication range between teammates. Team-

mates can then inform each other of which opponents are in their field of view. This creates

a cooperative dynamic between agents, encouraging teammates to manage their distance from

15

each other to effectively communicate vital information. The TanksWorld environment mod-

els uncertainty with known-unknowns and unknown-unknowns in mind. To accomplish this,

TanksWorld provides several modifiable parameters to change things like the range a tank can

observe around itself, the range at which a tank can communicate with teammates, and even

the quality of communication which can occur. Sat-Tycoon is a partial information game with

uncertainty built in at a fundamental level. Agents are completely isolated into their own gyms,

and are unable to perceive what moves their opponents may be ready to make. This can result

in situations where an ideal orbit shell location is taken, or an opponent drastically lowers their

internet price. Sat-Tycoon also allows agents to communicate, albeit in a much more advanced

form. Agents in Sat-Tycoon can communicate via text messages, and to any other players or

agents in their lobby. Unlike TanksWorld, agent communication in Sat-Tycoon is not restricted

to teammates. Sat-Tycoon also allows for human players to join and play in games directly,

where TanksWorld only allows for human surrogate policies using behavior cloning [10]. Hu-

man surrogate policies are generally used because it is not feasible for a human player to sit

down and play the number of games it would take for an agent to be trained, and even if they

could it would take an unacceptable amount of time. However, there is no reason that Sat-

Tycoon would not be able to also support human-surrogate policies as well, allowing for swift

agent-only games.

2.6.2 Battlesnake Challenge

Battlesnake Challenge [5] is an AI gym for the game Battlesnake, which is a multiplayer ex-

tension of the classic game Snake. in Battlesnake, multiple snakes compete against each other

for food while trying to avoid being eliminated. Snakes are eliminated either by not collecting

enough food and starving to death, or by being eaten by a larger snake. Battlesnake Challenge

is an agent-agnostic, heuristics-agnostic RL framework that allows developers to design their

own RL agents and algorithms then showcase them in an online competitive environment. The

Battlesnake framework offers both an offline environment for agent training and an online envi-

ronment for agent competition. Sat-Tycoon does not have different modes, but the framework

can be used both online and offline. Sat-Tycoon can support high speed local offline training by

16

utilizing its conveniently separated game logic with an offline gym environment. Battlesnake

Challenge utilizes “Human In The Loop” (HIL) methods, allowing the use of human knowledge

to assist in training an agent. This knowledge is provided either through real-time observation

and feedback, or handcrafted rules to guide and alter agent behavior. Like human surrogate

policies, this is another alternative to real-time human players playing alongside agents. Sat-

Tycoon does not currently support this, but it could be added in future work.

2.7 Competitive Multi-Agent Environments

Table 2.2 shows a comparison of key characteristics of different competitive multi-agent envi-

ronments with the Sat-Tycoon environment. They are compared based on player count, whether

or not they are competitive or cooperative environments, whether or not they feature online

networking, whether they have asynchronous turns, and whether or not they are real-time envi-

ronments.

Of the reviewed environments, only Sat-Tycoon, NeuralMMO, and AIRPG implement

networking code. Sat-Tycoon and AIRPG support network play, while NeuralMMO appears

to only support a visualizer over the network. Sat-Tycoon and NeuralMMO both utilize Web-

Sockets, allowing for the use of web browsers. Since AIRPG utilizes regular TCP sockets, it

does not natively support modern web browsers. However, it appears to provide a Python GUI

client for the game. Battlesnake Challenge uses offline training, but then provides an online

environment for the trained agents to compete in.

Of the reviewed environments, NeuralMMO has the highest max player count with mil-

lions of agents playing at the same time. AIRPG did performance testing with 8 agents, but

does not mention how many players their environment can handle at once. Battlesnake Chal-

lenge tested their environment with 6 agents but also does not make mention of a maximum

player count.

2.7.1 NeuralMMO

NeuralMMO [17] is a large scale PettingZoo compliant MARL environment, inspired by the

MMORPG genre of video games. The framework supports up to 1024 concurrent agents on

17

maps up to 1024x1024 in size, making it much larger in scale than the Sat-Tycoon game is

intended to be. NeuralMMO is not just large however, it also features ample complexity for

agents. The game mechanics offer complexity in the form of resources that deplete at each

timestep, combat between agents, skills and abilities to level up, scripted non-player characters

to interact with and fight, and equipment to wear. The environment also offers reward complex-

ity through in-game achievements such as exploring the entire map or defeating X number of

players. The provided gym environment for Sat-Tycoon features a rather simple reward func-

tion, but the game offers ample opportunity to implement a complex achievement system, and

such achievements could easily be implemented and tracked on the server.

2.7.2 Online RPG For Reinforcement Learning

AIRPG [12] is another environment inspired by MMORPG games. In the same vein as Neu-

ralMMO, agents in AIRPG have finite resources on a vast shared map. Like Sat-Tycoon,

AIRPG uses OpenAI Gym clients for RL. AIRPG also appears to use a similar server author-

itative architecture to Sat-Tycoon where the server handles data management and game logic

for the clients. It also uses concurrency to handle the different loops required on the server, one

for game logic, one for network communication, and one for enemy AI. Their client is based on

OpenCV4, and acts as a GUI to manage rewards. The developers of AIRPG claim the proposed

environment is compatible with OpenAI Gym, but it is unclear if it is using OpenAI gym, or

how much the client actually does with regard to the gym. Their environment may be running

locally on the server, and the client may simply be a visualizer. The AIRPG paper mentions

4https://opencv.org/

Table 2.2: Table comparing different competitive multi-agent environments.

Environment Player Count Cooperative Online Async Real-time
Sat-Tycoon 4 No Yes Yes Yes

NeuralMMO Millions Yes No No No
AIRPG 8 Yes Yes No No

Battlesnake Challenge 6 No No No No
TanksWorld 10 Yes No No No

18

https://opencv.org/

using threading for concurrent programming, but it is unclear how they do so without the in-

terference of the Global Interpreter Lock. Data between their threads is also being shared on a

queue, which could just be a coincidence, but is a popular way of sharing data between multiple

processes in Python so it is possible that they meant to say “process” instead of “thread”.

19

Chapter 3

Client/Server Architecture and Model/View Separation

3.1 Clients

Sat-Tycoon has a client agnostic architecture that allows any client using the WebSocket1 pro-

tocol to connect to the server and play. For human players who do not wish to develop a client,

a graphical client has been developed and provided using JavaScript and React2. For Reinforce-

ment Learning developers, a non-graphical OpenAI Gym client has been developed in Python

that utilizes the Sat-Tycoon API. Sat-Tycoon also allows any client utilizing WebSockets to

connect to and play the game using the provided custom API. Sat-Tycoon was developed this

way to facilitate its use as a research environment, allowing for the development and use of

many different AI agents.

3.2 Server

Sat-Tycoon is hosted on an authoritative Python WebSocket server. It handles all data manage-

ment and game logic for players. The server does not distinguish whether a player is a human

or an AI agent, and is client agnostic.

3.2.1 Lobbies

The Sat-Tycoon server organizes games into lobbies which manage the user objects associated

with clients connected to the server. This structure can be seen in Figure 3.1. Upon connecting

1https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
2https://react.dev/

20

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://react.dev/

Figure 3.1: The server organizes players into lobbies.

to the server for the first time, a client must register a name and the intended lobby it would

like to create or join. Lobbies are a class object written in Python on the server that facilitate

the ability to play multiple games of Sat-Tycoon at the same time. Lobby objects are stored

in a global dictionary on the server, so that it can access any lobby at any time. Due to being

stored in a dictionary using their name as the key, lobby names must be unique. Each lobby

contains a Game class object that handles running that lobby’s game loop.This means multiple

games can be running at the same time. A lobby has functions to add a player, remove a player,

broadcast a message to all player clients in the lobby, start a game, and toggle whether or not a

game is being played. The current implementation is rather basic and could easily be improved

by providing players with a list of existing lobbies they can join, as opposed to simply asking

for a name string. Lobbies could also be upgraded to allow private lobbies, where a player can

provide a password string to limit who can join.

3.2.2 Users

When a client connects to the server, a User object will either be created for it or assigned

to it depending on if a “User” object with the requested player name already exists on the

21

server and is not in use. This User dictionary object is stored and used by the server in a

Python dictionary with other User objects. A User consists of the client’s chosen name, the

client’s unique WebSocket connection, an online status, and the name of the lobby the client

has joined. This user object is separate from the player object stored on the game state, which

is identified using the chosen name and lobby values stored on the user object. This separation

of players and users allows for future development of consistent user accounts, and the ability

to join and leave different lobbies.

3.2.3 Multiprocessing

There are two concurrent loops running on the server during a game: the networking loop and

the game loop. To implement these two loops, multi-processing was used. The game loop and

the networking loop are separated into two different processes and communicate using a queue.

The networking process uses an asynchronous loop to handle many different clients at once.The

alternative to multi-processing is multi-threading; however, due to Python’s threading imple-

mentation this may not be the ideal choice when it comes to concurrent programming. This is

because Python’s memory management is not thread safe, so it has to use the Global Interpreter

Lock3, or GIL for short. This single-lock implementation increases Python’s single-threaded

performance, but may introduce locking inefficiencies in situations like multi-threading. This is

because the GIL can effectively prevent threads from executing simultaneously and can cause

Python threads to execute in serial, not in parallel.

This means it is usually safer to use multiprocessing for concurrency in Python; however,

this comes with its own challenge. Processes in Python cannot share data between each other

directly. This is solved by utilizing a “Manager” from Python’s multiprocessing library to

create shared variables to share data between processes. The game loop updates a dictionary

called the game state with any information clients may need, and this dictionary is shared via

a multiprocessing manager. When a client requests game data, the server process checks this

shared dictionary for the data it needs.

3https://realpython.com/python-gil/

22

https://realpython.com/python-gil/

3.2.4 Game Logic

Sat-Tycoon’s game logic is separated from the networking logic in order to facilitate the ability

for the game to be run as quickly and efficiently as possible locally. The Game class contains

the game logic, the game clock and several functions to facilitate calculating and updating the

global population, player customers, and player revenues. These functions are called in the

game loop at the appropriate time intervals using the game clock. A local client could opt to

use the entire game loop and adhere to its clock or just use the game logic and simulate the

passage of time in the game itself. A major advantage to this design is the ability for future

researchers to develop their own game logic and API calls to play a different game entirely.

Game Clock

The game clock runs on a simple loop timer counting the days and months of the year. This

loop is timed using the monotonic clock instead of wall time, so that it is not affected by

potential variations. This ensures that the loop runs for a stable duration. To simplify dates

and calculations months have been normalized to be 30 days long. Each iteration of the loop

currently spans two days, however this number is easily adjustable allowing the pace of the

game to be sped up or slowed down as necessary. The date is returned in a UTC timestamp

using milliseconds so that the date is flexible and robust, allowing calculations to be done

with it if necessary while also allowing it to be converted into a string for readability. On the

provided React client, this UTC timestamp is interpreted as a string for human players using

the JavaScript Date object however something like an AI agent may not need to convert it from

milliseconds at all.

Game State

The game class maintains a Python dictionary called the game state that contains all of the

data needed to see a snapshot of the game at any time. Updates happen to the game state at

several different points in the game. Most notably when the date is updated each month, when

a player makes an action, and when customer, population, and revenue data is updated each

23

month. The game state is important in facilitating an OpenAI gym in providing data to be used

as the observation state for the gym environment. It also packages convenient snapshots of the

game for logging purposes.

3.2.5 Ending the Game

The game ends after a predetermined number of years, currently set to ten years. When the

game ends, the game loop will update a Boolean game state variable called “ended” that sig-

nifies the game is over, before terminating the game loop. The next time a client requests the

date, they will be informed that the game has ended. After receiving notification that the game

has ended, the React client will redirect the player to the scoreboard and display score data for

each of the players. Sat-Arena, if it still has timesteps remaining will call the reset function.

This will reset the gym’s observation space, disconnect and reconnect to the server, and start a

new game.

3.3 Multiprocessing

The server uses multiprocessing in a few different ways, the most significant of which is to

facilitate the use of WebSockets to communicate with clients asynchronously. In order for the

WebSocket server to handle multiple different clients at once, it uses an asynchronous event

loop with the library asyncio4. The main event loop is called the server-loop, and this is where

“tasks” are “scheduled”.

3.4 Server Authoritative Architecture

The framework implements a server authoritative architecture. As an authoritative server, it

manages and maintains the game state for the clients. Clients cannot modify the game state,

but instead are required to make a request to the server to interact with it. In this way, clients

act more like a video game controller between the player and the game.

4https://docs.python.org/3/library/asyncio.html

24

https://docs.python.org/3/library/asyncio.html

All game logic is performed server side, and all game clients pull from the same central

data set hosted on the server. The clients then maintain a local game state on their end using the

data received from the server. This can be seen in Figure 3.2a. This helps to prevent clock and

data synchronization problems between clients during gameplay. This also reduces cheating as

a malicious agent will need to access the server directly in order to alter the game state.

The server receives requests to act upon the game state from clients as “actions.” These

actions are formatted as JSON objects containing a plain English “action” string and a data

payload. This exchange can be seen in Figure 3.2a. JSON was chosen because in order to

be sent over sockets, and therefore over WebSockets, data must be serializable. In this JSON

object the action string informs the server about what the client would like to do, such as build

a ground station. The data payload contains parameters for that action, such as the latitude and

longitude at which to build the ground station. To help create a more secure, robust environment

the server maintains a set of acceptable actions. This allows the server to ignore malicious or

incorrect requests from clients.

Server responses are formatted identically to actions, utilizing the same JSON structure.

Upon receiving an action from a client the server will check against the predetermined set of

acceptable actions to find which action it has received. If the action is not valid, it will send the

client an error message. If the action is valid, however, then the server will validate the payload

data before responding. Action validation involves making sure that the payload’s parameter

values are legal within the bounds of the game as well as making sure that the action includes

the correct parameters. For example, if if a client has no money then they cannot purchase a

ground station, and a client also cannot purchase a non-integer or negative number of ground

stations. Invalid parameters such as these will also result in the client receiving an appropriate

error message. The flow of an action through the server can be seen in Figure 3.2c. The flow

of a response being processed by a gym client can be seen in Figure 3.2b.

The server handles actions on a first come, first serve basis. This means if an agent sends

an invalid action, the server sends a response informing them and immediately starts processing

the next action in the queue. The easiest way to think about this is that the agent essentially

loses their spot in line and has to hop back in at the back of the line. This maintains the

25

real-time nature of the provided Sat-Tycoon game environment. If an opponent isn’t faster, or

doesn’t have an action waiting, the agent may still have their action act first if they put it back

in fast enough. This can be easily changed by simply changing how the server handles actions,

such as giving it a player order so that it checks to make sure the next action processed is the

player whose turn it is in the provided order. It is important to note this would make the game

turn-based instead of real-time.

Upon performing an invalid action and receiving an error response in return, the game

state will remain unchanged by that invalid action, as the action is not processed. However,

opponent actions may continue to occur. The client will continue to receive these environmental

updates based on opponent actions as well as normal scheduled environmental updates such as

population changes. From the perspective of the client, their game state continues to change

along with the game as if they had not made an action. It is then up to the player to handle how

to respond to this situation. A human player will likely just correct the action and try the same

action again, but an AI agent may move on and try something completely different.

26

Figure 3.2: The exchange of data between the server and a gym client, and the internal data
flow for each.

(a) Example of client/server communications, with action validation.

(b) The flow of an action through the Sat-Arena gym client and the reception of a response.

(c) The flow of an action through the server and the return of a response.

27

Chapter 4

The React Client for Human Players

The provided human player client for Sat-Tycoon was developed using the React library for

JavaScript. React is a graphical user interface (GUI) framework primarily used to develop web

applications. This gives a couple distinct advantages over using a more traditional game engine

like Pygame1 while also meeting Sat-Tycoon’s specific needs better than a web-based game

engine like Phaser2. This is because Sat-Tycoon does not require many features offered by a

game engine such as physics, animations, and controller interfaces. Sat-Tycoon is an economic

game, and therefore very data heavy. It benefits most from robust user interfaces such as those

made easier to create by React. Using React also makes it easy for the client be hosted online,

allowing players to connect to and play Sat-Tycoon from anywhere using a web browser.

There are several competitors in the web app development space, but the two most popular

options are React and Angular. React is a JavaScript library developed by Facebook, and

Angular3 is a framework developed by Google. Both are built for the purpose of developing

robust, flexible web interfaces. React and Angular are quite similar, with the major difference

being that React is a library and could technically even be used in an Angular app. However,

a key advantage of React is its use of the Document Object Model, or DOM for short. The

DOM is essentially a tree of the different documents that make up a single page application.

React uses what is called a Virtual DOM, where-as Angular uses the real DOM. Using the

virtual DOM, React does not need to update the entire page when updating data. The virtual

DOM acts as a kind of blueprint, where it can figure out what needs updated and how before
1https://www.pygame.org/
2https://phaser.io/
3https://angular.io/

28

https://www.pygame.org/
https://phaser.io/
https://angular.io/

Figure 4.1: The initial title screen for the React player client.

making any changes to the real DOM. This gives React meaningful performance and stability

advantages, as updating fewer moving parts results in faster speeds and fewer points of failure.

4.1 Player Login

Upon initially connecting to the server, the client displays a simple login screen requesting

players to provide the name they wish to use to represent themselves in the game, and the name

of the lobby they would like to join. Two text input boxes are provided to enter this data. This

screen is followed by a lobby screen that displays the players who have joined the game. From

the lobby screen, players can click the ready button to signal that they are ready to play the

game. When all players have readied, the game will begin.

4.1.1 Zero Turn

Players begin in an optional “zero turn” shown in Figure 4.4 where they can set up an initial

constellation, and are given a set amount of funds. The zero turn is designed to act as a kind of

tutorial, or soft entry into the game mechanics of Sat-Tycoon. As such, it offers three different

experiences to players upon entering: Beginner, Experienced, and Professional. Players that

29

Figure 4.2: The login page allows players to choose a name and lobby.

Figure 4.3: The lobby page shows which players have joined the game, and lets a player signal
they are ready to play.

30

Figure 4.4: The zero turn provides a tutorial experience for players who may be new to the
game.

select the beginner option will be presented with brief explanations of each game mechanic,

and how to interact with the game. Players who select experienced will just be given the ability

to make these initial game decisions, and those that choose professional skip the zero turn

entirely.

4.2 Components

React structures an app into multiple purpose-built “components”. Components are reusable

pieces of code that are organized in a parent-child object oriented structure. There are two

types of components in React, “class” components and “function” components. Sat-Tycoon

uses class components.

4.2.1 Footer

The footer in Figure 4.5 is a persistent UI feature that can be seen on any page of the game. It

serves to always provide players with a clear picture of how many customers they have, how

much funding they have left, which technology they have selected, and what their name is.

31

Figure 4.5: The footer provides a clear picture of a player’s resources during gameplay.

Using the technology buttons on the footer, players can change which technology they have

selected from any page.

4.2.2 Multi-Panel

Instead of making players navigate back and forth between different pages for the many dif-

ferent elements of Sat-Tycoon, the user interface was designed with a “multipanel” as seen in

Figure 4.6, that features tabs to switch between several different panels. Each panel represents

a different element of Sat-Tycoon, and as a player switches between them the main gameplay

area changes as well. For example, the Earth panel will change the main game screen to display

a map of the Earth, while the Space panel displays the SpaceDeck.

4.2.3 Earth Panel

The Earth panel in Figure 4.7 is the initial panel displayed when the game starts. It con-

tains game elements related to the Earth, namely ground stations and customer internet prices.

There are text input boxes for manual entry of latitude and longitude, but given that not all

researchers or players may have an aerospace background, a list of predetermined locations is

also provided.

4.2.4 Space Panel

The Space panel in Figure 4.8 handles the purchase of Satellites and displays an animated

map of the coverage a satellite will provide after being launched into a certain orbit plane. It

is complimented on the main screen by the SpaceDeck, which allows players to select orbit

planes for either launching satellites to or viewing their coverage.

32

Figure 4.6: The multipanel serves to help players access multiple areas of the game from one
location.

33

Figure 4.7: The Earth panel provides access to features such as the world map and groundsta-
tion placement.

Figure 4.8: The Space panel provides access to features such as the Space Deck and launching
satellites.

34

Figure 4.9: The Social panel provides a place for players to interact with each other directly.

4.2.5 Social Panel

The social panel in Figure 4.9 is an early implementation of a more interactive player experi-

ence in Sat-Tycoon. It has a list of all players online in all lobbies, as well as a list of players

online specifically in the current player’s lobby. It also has a chatbox where a player may chat

with the players in their lobby. It would be easy in the future to add more features to the chat

box, such as the ability to create and join chatrooms, as well as the ability to privately message

a single user. The chat box can also function as a place for system broadcasts from the server

to be displayed, although in such a case a visual cue for players not currently looking at the

chatbox may be necessary to inform them that a broadcast has arrived. Another option would

be to put a smaller chatbox in the footer.

4.2.6 Analytic Panel

The analytic panel in Figure 4.10 shows players useful information about the data visible to

them in the game. It is currently a proof of concept that contains three sections: Earth, Science,

and Finances. The Earth section shows data related to the Earth panel such as customer history,

current customers, and internet price history. The Space section similarly shows data related to

35

Figure 4.10: The Analytic panel gives players important statistical data about the game.

the Space panel. The finance section is self explanatory, showing data about monthly revenue,

total funds, and other economic information.

4.2.7 Scoreboard

After a game has been completed, players are presented with a scoreboard page as seen in

Figure 4.11 that showcases how they performed compared to competing players. It features tabs

for customer count and revenue, but may easily be expanded with more values to be compared

in the future.

4.3 Redux State

The parent-child structure of React means that it can be difficult when you need to share data

back up the hierarchy, from a child to a parent. It can also be difficult to share data from

one child to another child whom may not be a direct sibling. Sat-Tycoon solves both of these

challenges using Redux. Redux is a state manager for React, allowing the application to instead

store data in a Redux state on a Redux “store.” Components are then connected to Redux so

36

Figure 4.11: The scoreboard displays how well players fared against their competitors after a
game has ended.

that they may access the different Redux stores. This provides the client with a sort of global

state, while also cleanly organizing all of Sat-Tycoon’s game state data in one place.

4.4 Networking

Sat-Tycoon is built with a server authoritative network architecture. The game logic and the

user interface are hosted separately, divided into any number of connected clients and a single

server. Connecting these clients to the server is the WebSocket protocol. The WebSocket pro-

tocol was chosen for its ability to easily allow web browsers to connect to the server alongside

more traditional clients. In this architecture, the server maintains a ”master copy” of the game

state that only it can modify. When clients want to make an action in the game, they send a re-

quest to the server requesting an action be made on their behalf and receive the resulting game

state changes back. This interaction is illustrated in Figure 3.2a. This makes it challenging to

cheat in Sat-Tycoon as a client would need to access the server and modify the master game

state directly to do so. It also prevents data synchronization issues that may be seen in a more

distributed architecture like peer-to-peer.

37

4.4.1 API

The framework’s API is designed using the JSON data structure. When developing the API, a

standardized object was necessary to represent the actions and their related information being

sent between the server and clients. In addition, any data structure used to transfer data over a

socket or WebSocket connection needs to be serializable. For this purpose JSON was chosen.

The JSON data structure is widely accepted with many programming languages supporting it.

It is nearly identical to a Python dictionary in structure, and it is trivial for the server to convert

between the two.

The JSON API objects are designed with two primary elements in mind: The action

and the payload. The action is a simple string object describing what action the agent wants

to perform, such as building a groundstation (“build groundstation”) or launching satellites

(“launch satellites”). The accompanying payload is a dictionary describing the necessary data

to perform this action. So the action to build a groundstation would have a payload including

the “latitude” and “longitude” elements in its payload.

Every JSON response object sent back by the server also includes supporting elements,

that may be of use to clients but are not required to play the game. These are a timestamp and

a player name. The timestamp is a millisecond representation of the number of seconds passed

since the 1970 time epoch. This allows the timestamp to be recognizable and usable by any

programming language a client may be written in, and is the most robust, flexible option. The

player’s name is used to attribute the response to the client who made corresponding action. In

cases where there was no corresponding action, like a date request or population update, the

player is “system.”

38

Chapter 5

The Sat-Arena OpenAI Gym Client

A client to allow a reinforcement learning agent to play the game using a custom OpenAI gym

environment was developed using Python. The gym client runs entirely from the command

line, and does not present the user with a graphical user interface.

5.1 Simplified Environment

A simplified Sat-Tycoon gym environment is provided which reduces the action and observa-

tion spaces to Box spaces, representing the action and observation spaces as matrices. This

simple gym is important in allowing more standard policies to be utilized with Sat-Tycoon.

The stable baselines library in particular is compatible with the simplified gym allowing quick

access to RL training and testing in Sat-Tycoon. To develop a more standard gym environment,

a custom policy may be necessary requiring more overhead from a developer before training

may begin.

The action space consists of all actions from the standard environment but compacted into

a single box space, This box space contains values for the parameters of every possible action,

as well as a number denoting which action has been chosen. The environment will use this

chosen action value to determine which parameters to use, for example when building a ground

station the quantity and internet price parameters go unused.

The observation space simplifies the original drastically, transforming it into a single linear

array of all observed values. The observation data is stored in its native format, and the 2D

arrays are flattened into 1D arrays that are then concatenated into the observation space array.

39

This method of linearizing the observation space is a dated technique, but will allow researchers

to run more basic algorithms and policies such as those found in the Stable Baselines library

on Sat-Tycoon.

5.2 Step

The step function serves to calculate the next state and reward for the agent. In order to do this,

the step function takes an action from the agent. This action is parsed and used to generate a

valid action to be sent to the server using the API. The step function in Sat-Arena also serves

to handle interfacing with the networking API. At the beginning of each step, it checks for a

connection process and whether or not there is a verified connection to the server. If either of

these things are not there, it calls a connection handler function to initiate a new connection

to the server. The step function then handles creating actions to send to the server as well as

interpreting responses received from the server, all with the purpose of calculating the next state

and reward.

5.3 Reset

The reset function sets all of the environment variables in the observation space back to their

initial values, preparing the environment for a new game of Sat-Tycoon to be started. As

such, it is called at the end of a game. This function specifically resets the data structures

containing the observation variables, and clears out the game state. Since Sat-Tycoon is an

online multiplayer game, the reset function also calls a function responsible for handling the

network connection. This function is the same one used at the beginning of the step function. It

checks for a connection process, and if one exists terminates it before creating a new connection

process and starting a new connection with the server.

40

5.4 Timesteps

When training an agent using Stable Baselines, a number of Timesteps for which to run the gym

needs to be provided. Stable Baselines will continue training the agent until these timesteps are

exhausted, calling the reset function as necessary when a game ends.

5.5 Networking

Being designed for use with an online framework, Sat-Arena was developed with network con-

nectivity in mind. Because many researchers use wrappers and other add-ons in their training

methods for their agents, they often need a gym to allow for method ambiguity. The best way

to allow for this is to make sure that the gym operates as closely to a standard gym environment

as possible. For this reason, Sat-Arena is designed so that it can be installed and run like any

other OpenAI Gym environment, and the networking functionality is an unobstructive part of

the regular run of the gym environment.

5.5.1 The Connection Class

The gym connects to the server via WebSockets using a connection class that is initialized

during the agent’s first step function. This connection class has a member function called

connectToServer that creates an asyncio event loop to run another member function called the

websocketHandler on. The websocketHandler member function is the core of the networking

logic for the client. This is where the client makes the connection to the server using the

“async with connect” loop. It is important that the gym environment be started first and call

this code from inside of its loop as opposed to starting the networking code first and then

initializing and starting the gym environment. When the connection is made first, and then

the gym environment is initialized and started inside of the connection loop, it is harder for

researchers to use things like wrappers because the gym environment is obfuscated.

41

5.5.2 Connecting

At the beginning of the step function, the gym checks if it is connected or not. If it isn’t, it

will connect to the server. After the initial call to create the connection, all connection related

activities are handled in a separate process parallel to the gym environment. The agent will

not send a ready signal to the server to begin playing until the indicated number of players

in the environment’s shared connection state dictionary are connected. This allows time for

other agents or even human players to join the lobby with the agent before starting the game.

The environment’s step function uses the connection object’s action queue to communicate ac-

tions with the server, and has a listener member function used to check the connection object’s

response queue for receiving responses back from the server.

5.6 Multiprocessing

The gym client utilizes multiprocessing to run the gym and a WebSocket connection to the

server in parallel. When the gym enters the first step of the game, it runs a function to check

to see if there is an existing connection process. If there isn’t, it creates one. If there is, it ter-

minates it and creates a new one. This new process runs a function to create a new connection

class object, and then make a connection to the server using a member function. These two pro-

cesses communicate between each other using a Python multiprocessing Manager that handles

shared variables for them. There are three shared variables: The action queue, the response

queue, and the connection state dictionary.

5.6.1 Action Queue

The action queue is used to share actions the agent wishes to take with the connection process.

The agent puts an action to send on the queue, which is then removed from the queue and sent

in the connection process.

42

5.6.2 Response Queue

The response queue is used to share actions the client has received from the server with the

agent. The connection process puts a response on the queue when it receives it, and the agent

takes the received responses off the queue in the listener function at the end of each step.

5.6.3 Connection State Dictionary

The connection state dictionary is used to share any variables or data related to the network

connection, between the agent’s process and the connection process. This includes things like

whether or not the connection is verified, what host and port to use, the agent’s name, which

lobby the agent wants to play in, and how many players are currently connected.

43

Chapter 6

Sat-Tycoon as a Research Framework

6.1 Supported Games

Sat-Tycoon is a real-time asynchronous game, and as such can be a difficult game to model. Sat-

Arena has its own solution to this, however, the framework may support other, more common

types of games. With some slight modification it would be possible to support models such as

Markov Decision Process (MDP) or Extensive-Form Games (EFG). A guide on changing the

framework’s environment to support environments/games other than Sat-Tycoon can be found

in Appendix A.

6.1.1 Markov Decision Process

The Markov Decision Process is used to mathematically model partially random games in

which ML agents are faced with a cost/reward optimization problem. According to the Markov

Property, only the current state matters when calculating the next state. This means that only

the immediately previous state matters when calculating the current state. This property is

challenging to maintain for a MARL environment, where every agent is making actions that

affect the environment, and therefore the next state. While it is certainly possible to maintain

the Markov property in traditional, sequential MARL, it is much harder if not impossible in a

real-time asynchronous environment like Sat-Arena.

44

6.1.2 Extensive-Form Games

An extensive-form game (EFG), is a game which can be described in its entirety using a tree.

The tree should represent every player, their potential actions, their visible information, and

the reward for each possible action combination. While these games are typically sequential in

nature, they can also represent synchronous games. However, it would be infeasible to represent

a game like Sat-Tycoon using EFG due to the difficulty in representing every possible state of

the game.

6.2 Independent Gym Environments in Multi-Agent Learning

The framework includes a prebuilt OpenAI gym environment designed so that every agent is

run in its own independent environment. This means that agents are completely isolated from

each other, and there is no chance for information to be accidentally shared between agents.

This allows for a pure hidden information environment.

Another advantage of the framework’s independent gyms is the ability to take advantage of

distributed computing. MARL agents do not have to be sharing an environment, therefore they

do not even have to be on the same system. Agents can have full access to system resources

without sharing between other agents.

6.3 Client Agnostic Design

As for clients, the framework is designed with a client agnostic design in mind. The server does

not know what kind of client it is connected to, or who is on the other end. This means that a

researcher or player can develop their very own Sat-Tycoon client to meet their specific needs.

The requirements for a Sat-Tycoon client are simple: the client must connect to the server using

the WebSocket protocol, and communicate with the server using Sat-Tycoon’s JSON API calls.

In the case that a researcher has built their own game in the likeness of Sat-Tycoon using the

framework, they would of course use their own API calls instead.

Designing the framework to be client-agnostic has drawbacks, however. When designing

new features for the game or framework, care needs to be taken that one particular client design

45

isn’t being favored. For example, one should not design an API call that sends data in a specific

way that one particular client needs it, but should instead send the data in a raw format that

clients can then manipulate to suit their particular needs. When developing clients for a research

environment in which humans and AI will be playing together, this is especially important to

insure that the AI has access to the same information that a human player does.

6.4 Possibilities

The major benefit to the framework being built this way is the near-infinite possibilities it

presents to researchers looking to develop their own research tools or games. Any program-

ming language that supports WebSockets can connect to and utilize the Sat-Tycoon server and

framework; this makes the possibilities feel truly endless as there is even a WebSocket im-

plementation for embedded systems in the C programming language. More information on

developing a new game or environment for the framework can be found in AppendixA.

6.5 Results

Figure 6.1 shows the output of a successful game of Sat-Tycoon between two agents using the

Actor Critic algorithm A2C from the Stable Baselines 3 library to showcase the environment’s

compatibility with the library.

46

Figure 6.1: Output from a successful game between two agents using the A2C model in Stable
Baselines 3.

47

Chapter 7

Conclusion

This thesis presented a state-of-the-art research framework for asynchronous real-time multi-

player games, both for human and AI players. This general purpose framework utilizes a robust,

flexible JSON API over the WebSocket protocol to provide a client-agnostic environment ideal

for research, business, education, or recreation. Utilizing a server authoritative architecture

makes the framework robust and secure for AI to play without information leakage or cheating.

The framework’s simple API and separation of logic means it can be repurposed for any num-

ber of games, and with little modification supports many different kinds of games including

MDP and EFG games. The provided Sat-Tycoon game provides an interesting playground for

AI with rich, expansive action and observation spaces.

The following sections detail its known limitations and potential future lines of inquiry.

7.1 Limitations

The current framework has several types of limitations related to reinforcement learning, de-

sign, hardware, and networking as detailed in the following subsections.

7.1.1 Reinforcement Learning

While the framework supports reinforcement learning agents, it may not have all of the fea-

tures that seasoned reinforcement learning experts may need. The provided RL gym does not

maintain the Markov Property, for example. There may be changes that could be made to either

the server, the game, or the gym to allow the framework to maintain the Markov Property for

future researchers.

48

The framework also uses client-based gyms, which means there can be network latency

involved when training or playing the game. A better idea may be to run the gyms on the server,

and create clients that submit their agents remotely from the client’s location to be run in a gym

environment locally at the server’s location.

7.1.2 Design

The framework was designed with a client-agnostic philosophy. While this offers many advan-

tages, it also comes with drawbacks. This means that all design decisions, fixes, and feature

additions have been made in a server-first fashion. This can make some things less straight

forward, or off-load work onto the clients. For example, instead of sending geoJSON1 data

from the server to the React player client, the raw map data should ideally be sent instead and

then converted on the client’s end. This way, other clients are not forced to use the geoJSON

format.

7.1.3 Hardware

The framework relies heavily on the hardware for scalability and performance. The better the

server hardware, the more scalable and the more performant the game will be. This extends to

clients, especially RL clients, which will greatly benefit from more computational power.

7.1.4 Networking

The game being networked inevitably means that there will be limitations involving network

latency, packet loss, or even potential disconnections disrupting gameplay. This can be reme-

died by using localhost to play offline, or by developing an offline gym to utilize the game logic

independently from the server.

7.2 Future Work

The following subsections will outline future work. This work includes improvements to the

human player experience in the form of improvements to the React player client and a visualizer

1https://geojson.org/

49

https://geojson.org/

client, as well as persistent data storage on the server. It also covers improvements to the RL

research experience which also benefits from the addition of a visualizer client and adding more

complex gym environments.

7.2.1 Converting React Client to Functional Components

The current version of the Sat-Tycoon human player client in React uses React class compo-

nents. While this works, and there is nothing inherently wrong with using this type of compo-

nent it is outdated and the React community no longer uses them. It would be worthwhile to

update the client to use functional components as recommended by the React team, which may

even come with some improvements.

7.2.2 More Complex Gym Environments

The current provided gym environment is a simplified example designed to be compatible with

the Stable Baselines 3 library of RL algorithms. It maybe worthwhile to develop a more com-

plex environment to support more advanced RL algorithms and policies. Such an environment

could use dict spaces for the action and observation spaces, utilizing a one-hot configuration

for agents to decide which action to select.

7.2.3 Mini-games and Challenges for RL Agents

The provided Sat-Tycoon game is a very complex environment, and it may be fruitful to develop

smaller challenges for AI to complete much like the ones that were developed for StarCraft II.

Such challenges or mini-games could include things as simple as launching satellites, or more

complex goals like attaining a certain amount of profit or subscribing customers in a certain

region of the world for example.

7.2.4 Visualizer Client

A client designed specifically to visualize and present the game to spectators could serve many

purposes. It can be useful for AI developers to be able to see exactly what their agent is doing

in a game and observe behaviors that way. It can also be fun for human players to spectate

50

each other, or even to use such a visualizer client to display games on a stream or broadcast at

an event for many people to see. This can make events where matches between different AI

happen much more interesting for human attendees.

7.2.5 Server-side Gym Environments

The development of a client capable of receiving submitted agents and sending them to the

server to be run on a gym environment local to the server would greatly improve the efficiency

of training. Network latency and response time would no longer be an issue and the client

would simply act as a visualizer to display training data to the user. Using this client model,

the agents could also maintain the ability to play online with humans if desired.

7.2.6 Persistent Data

The current server implementation stores player data and game data in volatile memory. This

means everything is stored in variables during the live run of the program, and as soon as

the program ends or is restarted all of that data is lost. It would be rather straight-forward to

implement a database system to store this data locally on the server allowing the framework

to store and pull from persistent storage. This allows for great quality of life improvements

to the framework, such as saving replays of games, maintaining persistent player accounts,

maintaining player match histories, and even leader-board rankings for the best players or AI

agents.

51

References

[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota

2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[4] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G

Bellemare. Dopamine: A research framework for deep reinforcement learning. arXiv

preprint arXiv:1812.06110, 2018.

[5] Jonathan Chung, Anna Luo, Xavier Raffin, and Scott Perry. Battlesnake challenge: A

multi-agent reinforcement learning playground with human-in-the-loop. arXiv preprint

arXiv:2007.10504, 2020.

[6] Davide Guzzetti and Daniel Tauritz. Modeling Economic Competition in the Business of

Mega-Constellations. Technical report, Auburn University, 2022.

[7] Davide Guzzetti, Daniel R Tauritz, Rehman Qureshi, Cody Roberts, Manuel Indaco, Lucy

Bone, and Emily Kimbrel. Satellite Tycoon: Modeling Economic Competition in the

Business of P-LEO Constellations. 11th International Workshop on Satellite and Con-

stellations Formation Flying, 2022.

52

[8] Joseph Kopacz, Jason Roney, and Roman Herschitz. Deep replacement: Reinforcement

learning based constellation management and autonomous replacement. Engineering Ap-

plications of Artificial Intelligence, 104:104316, September 2021.

[9] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki

Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan

Omidshafiei, et al. OpenSpiel: A framework for reinforcement learning in games. arXiv

preprint arXiv:1908.09453, 2019.

[10] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise

injection for robust imitation learning. In Conference on robot learning, pages 143–156.

PMLR, 2017.

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lil-

licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for

deep reinforcement learning. In International conference on machine learning, pages

1928–1937. PMLR, 2016.

[12] Gabor David Pasztor and Marton Szemenyei. Online RPG Environment for Reinforce-

ment Learning. In Proceedings of the 23rd International Symposium on Measurement

and Control in Robotics (ISMCR), pages 1–6. IEEE, 2020.

[13] Rehman Qureshi, Cody Roberts, Manuel Indaco, Lucy Bone, Emily Kimbrell, Samuel

Mulder, Daniel R Tauritz, and Davide Guzzetti. Modeling and Gamification Framework

of Business Competition Between P-LEO Constellations. In AIAA/AAS Astrodynamics

Specialist Conference, 2022.

[14] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and

Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations.

The Journal of Machine Learning Research, 22(1):12348–12355, 2021.

53

[15] Corban G Rivera, Olivia Lyons, Arielle Summitt, Ayman Fatima, Ji Pak, William Shao,

Robert Chalmers, Aryeh Englander, Edward W Staley, I Wang, et al. Tanksworld: a

multi-agent environment for AI safety research. arXiv preprint arXiv:2002.11174, 2020.

[16] S.J. Russell, P. Norvig, and E. Davis. Artificial Intelligence: A Modern Approach. Prentice

Hall series in artificial intelligence. Prentice Hall, 2010.

[17] Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural MMO: A massively

multiagent game environment for training and evaluating intelligent agents. arXiv preprint

arXiv:1903.00784, 2019.

[18] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sul-

livan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al.

Pettingzoo: Gym for multi-agent reinforcement learning. Advances in Neural Information

Processing Systems, 34:15032–15043, 2021.

[19] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezh-

nevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrit-

twieser, et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv preprint

arXiv:1708.04782, 2017.

54

Appendices

55

Appendix A

Changing the Environment

Sat-Tycoon is simply a provided demonstration of the capabilities of this framework. The

framework is specifically designed with the ability to change its environment (i.e., simula-

tion/game). This section serves as a guide to do that.

A.1 Changing the Game Logic

The first step in instantiating a new environment/game with the framework is to swap out the

game logic. All game logic code is conveniently located in a directory titled “game logic”.

Most of the files in the provided example directory are going to be exclusive to the Sat-Tycoon

game. The major file that will very likely be important to any game is the game.py file. The

game.py file is where the main game loop is defined and game logic from other files that hap-

pens on a schedule is called. For example, in Sat-Tycoon monthly updates to the population

and customer count get called each month on the game loop’s clock. The other file that may

be of note to other games is the player.py file, as every game will have players. The player file

will likely look completely different from game to game, however, as different games will have

different player data to manage and store. This file will still serve as a good blueprint for other

games. The rest of the files in this directory are fairly exclusive to Sat-Tycoon, but may still be

of use as examples for future developers looking to build a game for use on the framework.

56

A.2 Changing the API

This next step is dependent on game logic being complete, or at least drafted. Now that the

game logic is in place, there needs to be a way for players to interact with it and actually

play the game. This is where the network API comes into the picture. In the directory titled

“networking” there is another directory called “api”. This is where the different network APIs

a game may require are stored. For Sat-Tycoon it uses a single file called “api.py”. With the

exception of a couple API calls, each function in this file corresponds to an action a player

client may request the server to take on their behalf. The exceptions are the “toggle ready” and

“verify handshake” API calls. The toggle ready and verify handshake calls are used to make

sure a client is prepared to play the game. Toggle ready is used to let players inform the client

that they are ready to start playing so that the server doesn’t start the game before everyone is

ready, and the verify handshake call is used by both the client and the server to make sure that

they are successfully communicating.

Each API call in this file is listed in a dictionary named “responses” in the “getResponse”

function. The key for each entry is a string that identifies the API call, which will need to

exactly match the string sent by clients in the “action” parameter on the JSON object they send

to the server. The value associated with this key generally matches that string as closely as

possible, and is a function call to the corresponding function for that API call. It is important to

look at and note that these functions are merely referenced here, not called. The entry matching

the string from the client gets called at the bottom of the function, where a short if/else statement

determines if there are included parameters that need to be included in the function call or not.

Every API call function in this file ends with a send function call from the WebSocket

library, using the appropriate WebSocket for that API call. For example, “update players”

sends a WebSocket call to every user, since all clients in Sat-Tycoon are supposed to know who

is online. While “request budget” only sends a WebSocket call to the current user, since they

were the one making the request and it wouldn’t make sense to share the results of their personal

budget inquiry with everyone. The other thing that needs done in some of these function calls

is to pull data from the game state. Examples of doing this can be seen in functions such as

57

“launch satellites” for a complex example, or “request date” for a simpler example. Sometimes

in the case of Sat-Tycoon, player data needs to be sent to a client. Examples of this can be found

in functions such as “request budget” and “request customers”.

For the Sat-Tycoon game specifically a single game related API call needs to happen to

initialize some game data outside the api.py file. This is a call to “update budget”, and it

happens a couple times in the “server.py” file found in the “networking” directory. These calls

can be changed or removed as needed, but are a good example of how and when a developer

may need to make a game related call outside of the “api.py” file.

A.3 Other files

Sat-Tycoon requires a few other files that have been organized into the “json data”, “plots”,

and “utility” directories. The JSON data directory contains raw data that is used by the game,

and gets called by the game logic and player file as necessary. This includes things like map

data, population data, and tech tree data. The utility file contains Python files with scripts

that are used for non-game related utility like generating population data, converting data to

geoJSON format for the React player client map, and generating track data for plotting orbit

ground tracks. Other games may have similar needs, and these things serve as good examples

of how to handle them.

A.4 Developing clients

Once the game has been changed, it is important to note that the provided clients for Sat-Tycoon

will no longer be compatible. New clients will need to be developed to fit with the new game.

The only hard requirement for a client is that it uses the WebSocket protocol to connect and

communicate with the server using the framework’s JSON API. This API is explained in more

detail in Section 4.4.1. The provided clients and Sat-Tycoon game also have plenty of examples

of API usage. Clients can be developed using any language compatible with WebSockets and

can be anything including graphical user interfaces for players, command line only interfaces

for AI, or even visualizer clients that involve little or no player interaction at all.

58

Appendix B

Getting Started

This section serves as a guide to help get started using the framework with the provided Sat-

Tycoon environment as an example. It covers downloading and setting up the Python server,

React client, Gym client, and how to host the Python server and React client. It also covers

setting up the development environments for each. Development for these environments has

only been performed and tested using a Linux environment, and this guide covers setting up

such an environment as well.

B.1 Setting up Linux

The recommended operating system for development work on the framework is Linux1. The

framework and Sat-Tycoon were specifically developed on the Linux distribution Ubuntu2 ver-

sion 20.04.6 LTS3.

B.1.1 Setting up Linux using WSL2 in Windows 10/11

The framework was developed almost exclusively using Microsoft’s Windows Subsystem for

Linux 2 (WSL2) environment. This is the easiest method for most people, as they already have a

Windows 10 or Windows 11 machine capable of running WSL2. Official WSL documentation

can be found at https://learn.microsoft.com/en-us/windows/wsl/, and an

official installation guide can be found at https://learn.microsoft.com/en-us/

1https://www.linux.com/what-is-linux/
2https://ubuntu.com/
3https://www.releases.ubuntu.com/focal/

59

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.linux.com/what-is-linux/
https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.releases.ubuntu.com/focal/
https://learn.microsoft.com/en-us/windows/wsl/install

windows/wsl/install. The Ubuntu version 20.04.6 LTS operating system can be found

in the official Microsoft Store in Windows 10/11 at https://apps.microsoft.com/

store/detail/ubuntu/9PDXGNCFSCZV. Ubuntu also has an official guide on installing

their operating system on WSL at https://ubuntu.com/tutorials/install-ubuntu-

on-wsl2-on-windows-11-with-gui-support#1-overview.

B.1.2 Setting up a dedicated Linux install

Another option is to directly install Linux as the sole operating system on a machine. This

my be a preferable option if you are setting up a dedicated hosting machine for the server

or React client, or perhaps your own web-based client. It can also just be useful to have a

dedicated Linux machine for development purposes. The recommended Linux distro for the

framework and Sat-Tycoon is Ubuntu, as that is what both pieces of software were developed

and tested on. If you plan on actively developing on the Ubuntu installation, it may be better

to install the desktop version of the operating system. The official Ubuntu documentation

can be found at https://docs.ubuntu.com/ and an installation tutorial for the desktop

version of the operating system can be found at https://ubuntu.com/tutorials/

install-ubuntu-desktop#1-overview. However, for a dedicated hosting machine

it may be better to use Ubuntu Server. Official Ubuntu server documentation can be found at

https://ubuntu.com/server/docs and an official installation guide can be found at

https://ubuntu.com/server/docs/installation.

B.2 Using Git and GitHub

The source code for the framework and the provided Sat-Tycoon game are available on GitHub

at https://github.com/Sat-Tycoon/Satellite-Tycoon. In order to take ad-

vantage of GitHub and download the source code, you need Git4. Git is a version control

management software widely used by software developers to not only track changes but make

source code public. A guide on installing Git can be found here https://git-scm.com/

4https://git-scm.com/

60

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV
https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-11-with-gui-support#1-overview
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-11-with-gui-support#1-overview
https://docs.ubuntu.com/
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://ubuntu.com/server/docs
https://ubuntu.com/server/docs/installation
https://github.com/Sat-Tycoon/Satellite-Tycoon
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

book/en/v2/Getting-Started-Installing-Git. GitHub has an official quick-

start guide here https://docs.github.com/en/get-started/quickstart/hello-

world and a tutorial on Git in that same guide, located here https://docs.github.

com/en/get-started/using-git/about-git.

B.3 Installing the Backend

The framework’s backend, or server, is located on GitHub here https://github.com/

Sat-Tycoon/Satellite-Tycoon/tree/main/backend. It is written using Python

3, and has a couple dependencies you will need before getting started with it. Python 3

should come preinstalled with Ubuntu, however, if you’ve installed your own choice of Linux

distribution you may need to get Python 3. Python provides documentation on that here

https://docs.python.org/3/using/unix.html. Once you have Python 3 and

you have cloned down the repository for the backend, you will need to install the other de-

pendencies using a package manager for Python such as Python’s preferred package man-

ager, pip. Documentation on pip can be found here https://docs.python.org/3/

installing/index.html. To get the server running, you will need to install numpy5 and

WebSockets6. These should both be installable with the pip install command and their name,

such as “pip install websockets”. However, if you encounter difficulty both have installation

help on their websites in the footnotes.

B.4 Recommended Development Environment

The author of this thesis recommends using Visual Studio Code7 with WSL 2 for development

on the framework and included Sat-Tycoon game. Using Visual Studio Code and WSL 2 in

tandem can be a very streamlined work environment, allowing developers to use a Windows

machine but have a Linux work environment. This is because Visual Studio Code has an

extension allowing it to connect directly to WSL 2, and run a Linux terminal inside the editor.

5https://numpy.org/
6https://pypi.org/project/websockets/
7https://code.visualstudio.com/

61

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.github.com/en/get-started/quickstart/hello-world
https://docs.github.com/en/get-started/quickstart/hello-world
https://docs.github.com/en/get-started/using-git/about-git
https://docs.github.com/en/get-started/using-git/about-git
https://github.com/Sat-Tycoon/Satellite-Tycoon/tree/main/backend
https://github.com/Sat-Tycoon/Satellite-Tycoon/tree/main/backend
https://docs.python.org/3/using/unix.html
https://docs.python.org/3/installing/index.html
https://docs.python.org/3/installing/index.html
https://numpy.org/
https://pypi.org/project/websockets/
https://code.visualstudio.com/

From this terminal you can run the server and clients without needing a separate window for

WSL 2. A guide on setting up Visual Studio Code with WSL as a development environment

can be found here https://code.visualstudio.com/docs/remote/wsl.

B.5 Running the Server

Once you’ve installed the backend, you will want to run the server and make sure it is working.

In the repository, navigate to the backend directory and then to the src directory. From here,

run the command “python3 main.py”, this should start the server. The server will not do much

until a client has connected to it, however. It is recommended to use a client to test the server if

possible.

B.6 Installing the React Client

To install the React client, after downloading the repository navigate to the frontend directory,

then the src directory from there. The React frontend is written in JavaScript, and utilizes

a package manager called Yarn8. It is important to note that simply installing Yarn with the

Linux distribution’s package manager (Such as apt install) usually does not work, and will give

the incorrect software. There are installation instructions on Yarn’s website for their particular

package. In the case that you experience trouble with the corepack software that Yarn recom-

mends, you can also install Yarn directly using Node Package Manager (npm). The command

to do so is “sudo npm install -g yarn”. Yarn will handle installing all of the dependencies the

client requires. To install these dependencies, simply run the command “yarn” from the com-

mand line. Once the dependencies are installed, the React client can be run with the “yarn dev”

command.

B.7 Installing the Gym Client

The Sat-Arena gym is hosted on GitHub alongside the framework. The first step is to clone

down the Sat-Arena repo from there. Once you have it, you need to install Gymnasium9. To

8https://yarnpkg.com/
9https://gymnasium.farama.org/

62

https://code.visualstudio.com/docs/remote/wsl
https://yarnpkg.com/
https://gymnasium.farama.org/

do this, simply use the pip install command: “pip install gymnasium”. After Gymnasium is

installed, you will need to install the actual gym environment. To do this, navigate to the sat-

arena folder located inside the “gym envs” folder, inside the src folder. In this directory you

should see a setup.py file, you don’t need to touch the file, but you need to be in the same

directory as the file. From here, you need to run the command “pip install -e .”. This should

detect and install the gym environment from the local setup.py file. To run the gym, navigate

back to the src directory and run “python3 main.py”.

B.8 Hosting the Server

Before connecting a client, you will need to make sure that the server is hosted and can be

connected to. Start by making sure that the IP address and port are correct. To do this, navigate

to the server.py file located in the networking folder found in the backend directory. In this file

you should see a server class is defined. It has member variables for “production hostname” and

“development hostname”. This is where the IP address for the server machine should be put.

There is a production and development hostname so that a developer working on the framework

can safely test their game locally using the development hostname, instead of risking changing

the hostname a project may be using live in production. To run the server locally, without

going out to the internet, use the localhost address “127.0.0.1”. Once you have changed the IP

address, depending on which of these two environments you wish to use, you need to change

the “env” variable defined in main.py in the src folder. From here, running “main.py” from the

src directory is all that is required to begin hosting the server from the desired IP address.

B.9 Hosting the React Client

The easiest way to host the React Client for testing or personal play purposes is just to run it

from localhost using the “yarn dev” command, as you do not need to set up anything at all. Just

make sure the IP address in the profile.js file in the login directory of the components directory

is set to 127.0.0.1 and the server’s IP address is set to the same. However, if you want to host

the client so that others can play using it, things get a little trickier. The official React client

63

is hosted using an Apache web server on a headless Ubuntu server. Ubuntu has an official

guide on setting up Apache here https://ubuntu.com/tutorials/install-and-

configure-apache#1-overview. In step three of this guide, when the html file is being

created and put in “var/www/”, you should instead put the contents of the dist folder after

running yarn build into there instead. You should notice this will include an html file like they

make in the tutorial, as well as a few other important files the client needs.

64

https://ubuntu.com/tutorials/install-and-configure-apache#1-overview
https://ubuntu.com/tutorials/install-and-configure-apache#1-overview

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	 Introduction
	Reinforcement Learning
	AI Gyms
	 OpenAI Gym
	Step Function
	Reset Function
	Spaces
	Action Space
	Observation Space

	DotA 2 and StarCraft II
	The Sat-Arena Gym for Sat-Tycoon

	 Sat-Tycoon
	Simulation of Time
	Making Actions
	Direct Player Interaction
	Information Framing
	Ending the Game

	Contributions
	Outline

	Related Work
	OpenSpiel
	 PettingZoo
	Agent Environment Cycle

	Dopamine
	 Related Aerospace Gyms
	Deep Replacement: Reinforcement learning based constellation management and autonomous replacement
	StarCraft II

	 Multi-Agent Reinforcement Learning
	 Multi-Agent Reinforcement Learning Gyms
	 TanksWorld
	 Battlesnake Challenge

	 Competitive Multi-Agent Environments
	 NeuralMMO
	 Online RPG For Reinforcement Learning

	Client/Server Architecture and Model/View Separation
	Clients
	Server
	Lobbies
	Users
	Multiprocessing
	Game Logic
	Ending the Game

	Multiprocessing
	Server Authoritative Architecture

	The React Client for Human Players
	Player Login
	Zero Turn

	Components
	Footer
	Multi-Panel
	Earth Panel
	Space Panel
	Social Panel
	Analytic Panel
	Scoreboard

	Redux State
	Networking
	API

	The Sat-Arena OpenAI Gym Client
	Simplified Environment
	Step
	Reset
	Timesteps
	Networking
	The Connection Class
	Connecting

	Multiprocessing
	Action Queue
	Response Queue
	Connection State Dictionary

	Sat-Tycoon as a Research Framework
	Supported Games
	Markov Decision Process
	Extensive-Form Games

	Independent Gym Environments in Multi-Agent Learning
	Client Agnostic Design
	Possibilities
	Results

	Conclusion
	Limitations
	Reinforcement Learning
	Design
	Hardware
	Networking

	Future Work
	Converting React Client to Functional Components
	More Complex Gym Environments
	Mini-games and Challenges for RL Agents
	Visualizer Client
	Server-side Gym Environments
	Persistent Data

	References
	Appendices
	Changing the Environment
	Changing the Game Logic
	Changing the API
	Other files
	Developing clients

	Getting Started
	Setting up Linux
	Setting up Linux using WSL2 in Windows 10/11
	Setting up a dedicated Linux install

	Using Git and GitHub
	Installing the Backend
	Recommended Development Environment
	Running the Server
	Installing the React Client
	Installing the Gym Client
	Hosting the Server
	Hosting the React Client

