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Abstract

The human gut microbiome consists of all the microbes that make up the human intestinal

tract, and many diseases are associated with certain microbial compositions in the gut. First, a

mathematical model describing the growth of gut microbiome inside and on the wall of the gut

is developed based on the chemostat model with wall growth. Both the concentration and flow

rate of the nutrient input are time-dependent, which results in a system of non-autonomous

differential equations. First the stability of each meaningful equilibrium is studied for the

autonomous counterpart. Then the existence of pullback attractors and its detailed structures

for the nonautonomous system are investigated using theory and techniques of nonautonomous

dynamical systems. In particular, sufficient conditions under which the microbiome vanishes or

persists are constructed. Numerical simulations are provided to illustrate the theoretical results.

Then a second model is developed describing the growth of one beneficial bacterial population

with time-varying controlled rate of the input flow of the nutrient. First the stability of each

meaningful equilibrium is studied for a constant input case. Then schemes are developed using

optimal control theory to find an optimal time-varying rate of input flow. Numerical comparison

simulations are provided.
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Chapter 1

Introduction

The human microbiome is the collection of microscopic organisms that live in the body, and it

contains representatives from all domains of life [28]. The list of genes in the human micro-

biome discovered thus far is so extensive that biologists refer to the human microbiome as the

“second genome” [54]. There is strong evidence that the microbiome interacts with the rest of

a human body, immune system, and brain, and plays an important role in a variety of human

diseases, such as infections, arthritis, food allergy, cancer, inflammatory bowel disease, neu-

rological diseases, obesity, and diabetes (see, e.g., [23, 24, 26, 29, 31, 33, 41, 42, 43, 45] and

references therein). Not only does the human microbiome play a role in physical well-being,

but some studies in mice have shown that differing microbiome compositions are related to

levels of social engagement and anxiety [54].

The human gut microbiome consists of all the microbes that make up the human intestinal

tract, and many diseases are associated with certain microbial compositions in the gut (see, e.g.,

[26, 31, 32, 41, 43, 45]). For example, in a recent report by Curry [25], it was mentioned that

correlations have been found between lower diversity of bacteria in the gut and higher rates of

certain medical conditions. Over time, the makeup and diversity of the human gut microbiome

change. In one recent archaeological finding, 1000-year old piles of feces indicate significant

evolution in the diversity of the bacterial populations in the human gut [25]. With the advent

of modern medicine, and specifically the discovery of penicillin in the twentieth century, come

new health issues such as the deadly disease C diff [55].

Studies in Spain and the United States have shown there may be certain gut microbes

that affect cardiovascular health and risk of strokes. According to Cyprien Rivier, a researcher

at Yale University, “Bacteria can release toxins into the blood, they can also produce certain
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proteins that interfere with physiological processes. There is also what we call the microbiota-

gut-brain axis – a bidirectional pathway between the brain and the microbiome, whereby the

brain is influencing the gut through the nerves, and the microbiome is in turn influencing the

organs, including the brain, mainly through altering the blood pressure” [53]. In Israel, they are

using faecal microbial transfers (FMT) to help cancer patients who have become resistant to

treatment [52]. There is still much we do not know about FMT, but research has shown it helps

to restore the metabolism of bile, and contributes to “resetting” the gut’s immunology [55].

The critical role of gut microbes in health has stimulated research by scientists and clin-

icians. While the human gut microbiome is too diverse to analyze, a mathematical approach

was developed in [30] to model interactions between gut bacteria in fruit flies. A model of

networks was presented in [34] to study the role of microbiota in evolution. A method to infer

microbial community ecology from time resolved metagenomics was introduced in [47]. An-

other important step toward designing bacteriotherapies was made by Gibson by mapping out

microbial interactions and predicting population dynamics of the ecosystem [27].

It was indicated in a number of references mentioned above that understanding the pop-

ulation dynamics of these systems provides crucial insights into the complex mechanisms of

the gut microbiome. The aim of this work is to study in the simplistic setting how the gut

microbiome grows by feeding on intakes of nutrients, by using dynamical analysis and optimal

control to explore how to promote persistence and maximization of good bacteria.

In both models considered in this dissertation, Dynamics and Optimal Control of the

Growth of the Gut Microbiome with Varying Nutrient, we use a chemostat model. The chemo-

stat model consists of microorganisms feeding on a single growth-limiting nutrient. It can be

regarded as a laboratory idealization of nature to study competitions for the same resource,

e.g. a common food supply of a growth-limiting nutrient, between two or more populations

[16] and thus has been widely used in theoretical ecology [5, 6, 7, 8, 9, 10, 12, 13], waste

water treatment [1, 4], recombinant problems in genetically altered organisms [14, 15], etc. A

chemostat consists of three interconnected vessels, used to grow microorganisms in a cultured

environment. See the figure for an illustration of a simple chemostat.
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Figure 1.1: Design of a chemostat model with continuous agitation and aeration [2]

The first vessel is a feed bottle which contains nutrients to grow the microorganism(s), one

of which is a limiting nutrient. The second is the culture vessel, where microorganisms grow

feeding on the nutrients supplied from the feed bottle. We assume the culture is continuously

stirred such that all the organisms have equal access to the nutrient. The last component of the

chemostat is the collection vessel which contains nutrients, microorganisms and the products

produced by the microorganisms. [17].
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Chapter 2

A nonautonomous chemostat model for the growth of gut microbiome with varying
nutrient

Noticing that the chemostat consists of microorganisms feeding on growth-limiting nutrients

(see, e.g., [44, 46] and references therein), in Chapter 2, we develop a mathematical model

based on a chemostat with a wall population for the evolution of one certain type of gut mi-

crobe that grows not only in the reservoir but also on the wall of gut. The input of the nutrient

is considered to vary with respect to time, which gives rise to a nonautonomous chemostat sys-

tem (see, e.g., [18, 19, 20]). We are interested in studying dynamical behavior of the resulting

chemostat-microbiome model, and in particular, sufficient conditions under which the microbe

vanishes or persists over time. In [11], the authors studied a model with antibiotics injection

controlled by measured metagenomic data. In [3], they studied a chemostat model with an ar-

bitrary number of competing species, looking for designed control laws to promote persistence.

What makes our problem novel is the consideration of the sub-population that attaches to the

wall of the intestine.

2.1 Introduction of the Model and Basic Properties of Solutions

For t ∈ R, let y1(t) and y2(t) make up a total population of the same bacterial microorganism

at time t, with y1(t) representing the amount of bacteria in the gut and y2(t) representing the

amount of bacteria on the wall. These bacteria may switch their categories at any time, i.e., the

microorganisms on the wall may join those in the gut, or the biomass in the medium may attach

to the wall. Let r1 and r2 represent the rates at which the microorganisms stick onto and shear

off from the wall, respectively.
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The nutrients are assumed to be supplied to the gut through a flow at a time-dependent rate

and concentration. Let x(t) be the amount of nutrients in the gut at time t, and denote by D(t)

and I(t) the input flow rate and input concentration of the aggregate nutrition, respectively.

Both bacterial microorganisms inside the gut and on the gut wall consume the nutrient at a

maximum consumption rate of a. The consumption function is assumed to take the Michaelis-

Menten (or Holling Type II) form x
m+x

where m is the half-saturation constant. Let b be the

factor that describes how efficient the consumption contributes to the growth. Due to the lim-

itation of nutrients, intra-specific competitions are assumed to exist. In particular, let α and γ

be the intra-specific competition rates of microbe population inside and on the wall of the gut.

The classical chemostat has the same in and out flow rate because the vessel is large

enough that the flow rate remains almost unchanged by the microbes. But the gut has a much

smaller volume and in the gut, nutrient or energy is extracted, and thus the out flow rate may

not be the same as input flow rate. Considering that the aggregate output may consist of unused

nutrition, produced energy used elsewhere in the organism and excrement, etc., here we model

the outflow rate as proportional to the input flow rate D(t) with a suitable scaling factor of µ.

Another difference from chemostat in laboratories is that the rate of flows that carry a nu-

trient through human bodies are low. Therefore the microorganisms may die naturally before

being washed out, and moreover, the dead microorganisms in the reservoir are subject to bacte-

rial decomposition which may lead to regeneration of the nutrient. Denote by ν the collective

death rate of the microorganisms and δ the fraction of dead biomass that is recycled as nutrient.

Expecting not a 100% of recycling, δ ∈ (0, 1). For the reader’s convenience, interpretations of

all model parameters are summarized in Table 2.1 below.

Summarizing the above, we obtain the following chemostat type model for the gut micro-

biome described by a system of ordinary differential equations

dx(t)

dt
= D(t)

(
I(t)− µx

)
− ax

m+ x

(
y1 + y2

)
+ δνy1, (2.1)

dy1(t)

dt
= −

(
ν + µD(t)

)
y1 + y1

(
bx

m+ x
− αy1 − γy2

)
+ r2y2 − r1y1, (2.2)

dy2(t)

dt
= −νy2 + y2

(
bx

m+ x
− αy1 − γy2

)
− r2y2 + r1y1, (2.3)

5



Table 2.1: Wall growth model parameters

Parameter Meaning
D(t) > 0 input and output flow rate
I(t) > 0 input concentration of the nutrient
µ > 0 ratio between output and input flow rates
a > 0 maximum consumption rate of the nutrient by the microorganisms
b ≥ 0 growth rate of the microorganisms due to consumption
m > 0 half-saturation rate of the consumption function
δ ∈ (0, 1) recycle rate from dead microorganisms to new microbe biomass
ν ≥ 0 collective death rate of microorganisms
r1 ≥ 0 rate at which microbe attaches to the wall
r2 ≥ 0 rate at which microbe detaches from wall
α ≥ 0 intra-specific competition rate of microbe population in reservoir
γ ≥ 0 intra-specific competition rate of wall population of microbe

where x, y1, y2 on the right hand sides of equations stand for x(t), y1(t), and y2(t) in short,

respectively. In this work, we will investigate detailed dynamics of the above system subject to

the initial conditions

x(t0) = x0 ≥ 0, y1(t0) = y1,0 > 0, y2(t0) = y2,0 > 0. (2.4)

Throughout this work it is assumed that the input nutrient flow rate and concentration vary

continuously in time, e.g., periodically or randomly, in bounded non-negative intervals. More

precisely, assume that

(A1) the functions D : R → [Dm, DM ] and I : R → [Im, IM ] are continuous, with 0 < Dm ≤

DM <∞ and 0 < Im ≤ IM <∞.

For simplicity of notations, set u(t) = (x(t), y1(t), y2(t))
T ∈ R3. Then the system

(2.1)–(2.4) can be written in the matrix form as

du

dt
= Γu+ f (u) , u(t0) = u0 := (x0, y1,0, y2,0)

T (2.5)

6



where

Γ =


−µD(t) δν 0

0 −ν − µD(t)− r1 r2

0 r1 −ν − r2

 , f (u) =


D(t)I(t)− ax

m+x

(
y1 + x

)
y1

(
bx

m+x
− αy1 − γy2

)
y2

(
bx

m+x
− αy1 − γy2

)
 .

Define the non-negative quadrant

R3
+ := {(x, y1, y2) ∈ R3 : x ≥ 0, y1 ≥ 0, y2 ≥ 0}.

Consider the following definitions and theorems from classical theory for ordinary differential

equations.

Let f : (a,+∞) × Rd ⊆ Rd+1 → Rd be a continuous mapping, and let (t0, x0) be a point in

(a,+∞)× Rd. The we can formulate the following IVP

dx(t)

dt
= f(t, x), x(t0) = x0. (2.6)

Definition 1. [20] Let I ⊆ (a,+∞) be a time interval. A solution to (2.6) on I is a mapping

φ : I → Rd which is continuously differentiable on I , i.e., φ ∈ C1(I;Rd), and satisfies:

• d
dt
φ(t) = f(t, φ(t)) for all t ∈ I;

• φ(t0) = x0

Theorem 1. [20] Assume that f : (a,+∞) × Rd → Rd is continuously differentiable, i.e., its

partial derivatives of first order are continuous functions, and there exist non-negative contin-

uous mappings h, k : (a,+∞) → R such that

|f(t, x)| ≤ h(t)|x|+ k(t), for all (t, x) ∈ (a,+∞)× Rd

Then, there exists a unique solution to (2.6) which is defined globally in time.

Remark 1. [20] The existence and uniqueness of a local solution to (2.6), that is defined on a

finite time interval, can be proved by using a fixed point theorem. This local solution may only
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be defined on a small time interval but can always be extended to a larger time interval as long

as it remains bounded. As a consequence, if the local solution does not blow up within finite

time, then it can be defined globally in time.

We now apply these definitions and theorems from classical theory to our system and

prove existence and uniqueness of solutions.

Lemma 1. Let Assumption (A1) hold. In addition assume that

(A2) a(ν + µDm) > bδν.

Then given any (t0,u0) ∈ R × R3
+, the system (2.5) admits a unique global solution.

Moreover, the solution is non-negative and bounded for all t ≥ t0.

Proof. First, since the functions D(t) and I(t) are bounded, the operator Γ generates an evo-

lution system on R3. In addition, since D(t) and I(t) are continuous in t, the function f is

continuously differentiable with respect to u for x ̸= −m.

∂f

∂u
=

[
∂fi
∂uj

]
=


a
(
y1 + x

)(
x

(m+x)2
− 1

m+x

)
− ax

m+x
− ax

m+x

y1b
(

1
m+x

− x
(m+x)2

)
bx

m+x
− 2αy1 −γy1

y2b
(

1
m+x

− x
(m+x)2

)
−αy2 bx

m+x
− 2γy2


Then f is locally Lipschitz with respect to u ∈ R3

+. Therefore by classical theory for

ordinary differential equations (see Theorem 1), the system (2.5) has a unique local solution,

u(t; t0,u0) ∈ C([t0, Tmax),R3).

We next show that the solution u(t; t0,u0) is always non-negative on its existence interval.

Notice that given u0 := (x0, y1,0, y2,0)
T ∈ R3

+ by continuity of solutions, each of x(t), y1(t)

and y2(t) has to take value 0 before it becomes negative. Now consider the scenarios when x,

y1, or y2 first reaches zero, respectively, we have

dx(t)

dt

∣∣∣∣
x=0,y1,y2≥0

= D(t)I(t) + δν
(
y1 + y2

)
≥ 0,

dy1(t)

dt

∣∣∣∣
y1=0,x,y2≥0

= r2y2 ≥ 0,

dy2(t)

dt

∣∣∣∣
y2=0,x,y1≥0

= r1y1 ≥ 0.
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This implies that any solution to the system (2.5) with u0 ∈ R3
+ will stay within R3

+ for all t in

its existence interval.

It remains to show that the solution u(t; t0,u0) is bounded. To that end, consider the linear

combination z(t) := bx(t) + ay1(t) + ay2(t) which satisfies the ODE

dz(t)

dt
=b

dx

dt
+ a

dy1
dt

+ a
dy2
dt

=bD(t)(I − x) + b2νy1 − aαy21 − aγy2y1 − aνy2 − aαy2y1

− aγy22 − a(ν + µD(t))y1

≤bD(t)(I − x) + b2νy1 − aνy2 − aαy2y1 − a(ν + µD(t))y1

By Assumption (A1),

dz(t)

dt
≤ bDMIM − µDm · bx−

(
ν + µDm − b

a
δν

)
ay1 − νay2

Then by using Assumption (A2) and that x, y1, y2 ≥ 0.

dz(t)

dt
≤ bDMIM − κz(t) (2.7)

where

κ = min

{
µDm, ν + µDm − b

a
δν, ν

}
> 0. (2.8)

Integrating the differential inequality (2.7) from t0 to t with z(t0) = bx0 + a (y1,0 + y2,0) gives

z(t) ≤ bx0 + a (y1,0 + y2,0) +
bDMIM

κ
, t ∈ [t0, Tmax).

Now using x(t), y1(t), y2(t) ≥ 0 we have

x(t) + y1(t) + y2(t) ≤
z(t)

min{a, b}
≤ 1

min{a, b}

(
bx0 + a (y1,0 + y2,0) +

bDMIM
κ

)
, (2.9)

which implies that u(t) is uniformly bounded for all t. Therefore the unique local solution

u(t; t0,u0) ∈ C([t0, Tmax),R3
+) can be extended to a unique global solution u(t; t0,u0) ∈

9



C([t0,∞),R3
+). Moreover, the global solution still satisfies the inequality (2.9). The proof is

complete.

Remark 2. When the growth rate b is less than the maximum consumption rate a, i.e., the

amount of nutrient consumed does not result in 100% of growth of the microorganisms, As-

sumption (A2) is automatically fulfilled because δ < 1.

Remark 3. The parameter κ defined in (2.8) plays an important role in long term dynamics of

the system (2.5).

Lemma 1 ensures that the chemostat-microbiome model (2.1)–(2.4) is biologically well-

posed. In the following sections we will study detailed dynamics of the system (2.1)–(2.4). To

facilitate analysis in the sequel, we first transform the system by defining two new variables

Y (t) and R(t) by

Y (t) = y1(t) + y2(t), Y (t)R(t) = y1(t). (2.10)

Notice that Y (t) represents the total amount of microorganisms in the gut and on the wall,

and R(t) represents the percentage of the microorganisms that are inside the gut. R(t) = 0

corresponds to the case when y1(t) = 0 and y2(t) ̸= 0, i.e., all microorganisms stay on the

wall. On the other side, R(t) = 1 corresponds to the case when y1(t) ̸= 0 and y2(t) = 0, i.e.,

all microorganisms stay in the reservoir.

With the transformation (2.10), the equations (2.1)–(2.3) become

dx(t)

dt
= D(t)(I(t)− µx)− axY

m+ x
+ δνRY, (2.11)

dY (t)

dt
= γ(R− 1)Y 2 − αRY 2 − νY +

bxY

m+ x
− µD(t)RY, (2.12)

dR(t)

dt
= µD(t)R2 − (µD(t) + r1 + r2)R + r2, (2.13)

where x, Y , R on the right hand sides of equations stand for x(t), Y (t), and R(t) in short,

respectively. The equivalent initial condition to (2.4) is

x(t0) = x0 ≥ 0, Y (t0) = y1,0 + y2,0 := Y0 > 0, R(t0) =
y1,0
Y0

:= R0 (2.14)
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Notice that now the equation for R(t) is a Riccati equation which is decoupled from the equa-

tions for x(t) and Y (t). Moreover, under Assumption (A1)

dR(t)

dt

∣∣∣∣
R=1

= −r1 < 0,
dR(t)

dt

∣∣∣∣
R=0

= r2 > 0.

Therefore the interval (0, 1) is positive invariant for R. Notice that R0 ∈ (0, 1) because y1,0 ≤

Y0, and thus

R(t) ∈ (0, 1) for all t ∈ R. (2.15)

Remark 4. R(t) represents the percentage of the microorganisms living in the reservoir of the

gut over the total population inside and on the wall of the gut. Therefore R(t) ∈ (0, 1) makes

biological sense.

In the following sections we will analyze the equation ofR(t) first, and then use it to study

dynamics of x(t) and Y (t).

2.2 The Autonomous Chemostat Microbiome Model

In this section we consider the special case where D(t) ≡ D > 0 and I(t) ≡ I > 0 and

study the stability of each steady state of the system (2.11)–(2.13). Since the coefficients in the

Riccati equation (2.13) are constants, then it can be solved explicitly to obtain

R(t) =
R1(R0 −R2) +R2(R1 −R0)e

√
(µD+r1+R2)2−4r2µDt

(R0 −R2) + (R1 −R0)e
√

(µD+r1+R2)2−4r2µDt
, with (2.16)

R1 =
1

2µD

(
µD + r1 + r2 +

√
(µD + r1 + r2)2 − 4r2µD

)
> 1,

R2 =
1

2µD

(
µD + r1 + r2 −

√
(µD + r1 + r2)2 − 4r2µD

)
∈ (0, 1). (2.17)

It is straightforward to check from (2.16) that limt→∞R(t) = R2 for any R0 ∈ [0, 1], i.e., R2 is

a unique asymptotically stable equilibrium for R(t).
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Consequently the (x, Y ) components of steady states of the system (2.11)–(2.13) satisfy

the algebraic equations

0 = D(I − µx)− axY

m+ x
+ δνR2Y,

0 = γ(R2 − 1)Y 2 − αR2Y
2 − νY +

bxY

m+ x
− µDR2Y,

which has an axial root (I/µ, 0) and non-trivial roots (x∗, Y ∗) satisfying

Y ∗ =
ν − bx∗

m+x∗ + µDR2

γ(R2 − 1)− αR2

, (2.18)

D(I − µx∗) =

(
ax∗

m+x∗ − δνR2

) (
ν − bx∗

m+x∗ + µDR2

)
γ(R2 − 1)− αR2

. (2.19)

To examine the stability of steady states, first calculate the Jacobian of the vector field for

the sub-ODE system (2.11)–(2.12) at R(t) = R2 to be

J =

−µD − aY m
(m+x)2

δνR2 − ax
m+x

bmY
(m+x)2

2
(
γ(R2 − 1)− αR2

)
Y + bx

m+x
− ν − µDR2

 ,
which has the trace and determinant

Tr(J) = −µD − aY m

(m+ x)2
+ 2
(
γ(R2 − 1)− αR2

)
Y +

bx

m+ x
− ν − µDR2,(2.20)

Det(J) =
(
µD +

aY m

(m+ x)2

)(
2
(
γ(1−R2) + αR2

)
Y + ν + µDR2

)
− bµDx

m+ x
− bδmνR2Y

(m+ x)2
. (2.21)

Notice that for the autonomous system, the Assumption (A2) now becomes

(A2’) a(ν + µD) > bδν.
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Theorem 2. Let Assumption (A2’) hold and let R2 be defined as in (2.17). Then the steady

state (I/µ, 0, R2) is stable provided

ν + µDR2 >
bI

mµ+ I
. (2.22)

Proof. It follows immediately from (2.20)–(2.21) and (2.22) that

Det(J)|(I/µ,0) = µD

(
ν + µDR2 −

bI

mµ+ I

)
> 0,

Tr(J)|(I/µ,0) = −µD − ν +
bI

mµ+ I
− µDR2 < 0.

The proof is complete.

Remark 5. The assumption (2.22) can be fulfilled if a simpler but stricter assumption ν ≥ bI
m+I

is satisfied. This means that if the collective death rate is not smaller than the growth rate due

to consumption, then both microorganisms in and on the wall of gut will eventually die out.

The assumption (2.22) implies that even if the collective death rate is indeed smaller than

the growth rate due to consumption, the microorganisms can still die out, and the larger the

quantity µDR2 is, the easier it becomes for the microorganisms to go extinct.

We next investigate stability of the strictly positive steady states (x∗, Y ∗, R2), where x∗

and Y ∗ satisfy the equations (2.18)–(2.19), and R2 is defined as in (2.17). Notice that since

R2 < 1, the denominator of Y ∗ is negative. Therefore for the steady state to be meaningful,

i.e., Y ∗ > 0, we focus our attention to steady states satisfying

ν + µDR2 <
bx∗

m+ x∗
. (2.23)

Theorem 3. Let Assumption (A2’) hold and let R2 be defined as in (2.17). Then a steady state

(x∗, Y ∗, R2) satisfying (2.18)–(2.19) and (2.23) is stable provided

aν + aµDR2 − bδνR2 > 0. (2.24)
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Proof. First evaluating Tr(J) at (x∗, Y ∗) and using (2.18) gives

Tr(J)|(x∗,Y ∗) = −µD − aY ∗m

(m+ x∗)2
+
(
γ(R2 − 1)− αR2

)
Y ∗ < 0,

due to the fact that R2 < 1. We next estimate Det(J) at (x∗, Y ∗). Using (2.18) again and

simplifying the resultant equality we obtain

Det(J)|(x∗,Y ∗) =
(
µD +

amY ∗

(m+ x∗)2

)( 2bx∗

m+ x∗
− ν − µDR2

)
− bµDx∗

m+ x∗
− bδmνR2Y

∗

(m+ x∗)2

= µD
( bx∗

m+ x∗
− ν − µDR2

)
+

mY ∗

(m+ x∗)2

( 2abx∗

m+ x∗
− aν − aµDR2 − bδνR2

)
.

It then follows from (2.23) and (2.24) that

Det(J)|(x∗,Y ∗) >
mY ∗

(m+ x∗)2

(
aν + aµDR2 − bδνR2

)
> 0,

which implies the stability of the steady state (x∗, Y ∗, R2).

Remark 6. For the case when b ≤ a, Assumption (2.24) is automatically fulfilled, because

aν ≥ bδνR2. The key condition for a non-trivial steady state to be stable is in fact the Assump-

tion (2.23).

Remark 7. The system of algebraic equations (2.18)–(2.19) can have up to 3 different non-

trivial roots (x∗, Y ∗). While no theoretical proof is available, numerical experiments show that

there is at least one, and likely only one, positive root that satisfies the condition (2.23).

2.3 The Nonautonomous Chemostat Microbiome Model

In this section we study the long term dynamics of the nonautonomous system (2.11)–(2.13),

using theory of nonautonomous dynamical systems. For the reader’s convenience, a brief in-

troduction of the process formulation of nonautonomous dynamical systems is given in Section
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2.3.1. Then in Section 2.3.2 we show that the nonautonomous system (2.11)–(2.13) has a

unique pullback attractor. Detailed long term dynamics of R(t), x(t) and Y (t) will be studied

in terms of structures of the pullback attractor in Section 2.3.3.

2.3.1 Preliminaries on Nonautonomous Dynamical Systems

In this subsection we provide some background information from the theory of nonautonomous

dynamical systems [17, 37, 38] that we require in the sequel. Our situation is, in fact, somewhat

simpler, but to facilitate the reader’s access to the literature we give more general definitions

here. Define

R2
≥ := {(t, t0) ∈ R2 : t ≥ t0}.

Definition 2. A process ψ on space Rd is a family of mappings

ψ(t, t0, ·) : Rd → Rd, (t, t0) ∈ R2
≥,

which satisfies

(i) initial value property: ψ(t0, t0, x) = x for all x ∈ Rd and any t0 ∈ R;

(ii) two-parameter semigroup property: ψ(t2, t0, x) = ψ (t2, t1, ψ(t1, t0, x)) for all x ∈ Rd

and (t2, t1), (t1, t0) ∈ R2
≥;

(iii) continuity property: the mapping (t, t0, x) 7→ ψ(t, t0, x) is continuous on R2
≥ × Rd.

Definition 3. Let ψ be a process on Rd. A family B = {B(t) : t ∈ R} of nonempty subsets

of Rd is said to be ψ-invariant if ψ (t, t0, B(t0)) = B(t) for all (t, t0) ∈ R2
≥ and ψ- positively

invariant if ψ (t, t0, B(t0)) ⊆ B(t) for all (t, t0) ∈ R2
≥.

Definition 4. Let ψ be a process on Rd. A ψ-invariant family A= {A(t) : t ∈ R} of nonempty

compact subsets of Rd is called a forward attractor of ψ if it forward attracts all families D =

{D(t) : t ∈ R} of nonempty bounded subsets of Rd, i.e.,

dist (ψ(t, t0, D(t0)), A(t)) → 0 as t→ ∞ (t0 fixed),
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and is called a pullback attractor of ψ if it pullback attracts all families D = {D(t) : t ∈ R} of

nonempty bounded subsets of Rd, i.e.,

dist (ψ(t, t0, D(t0)), A(t)) → 0 as t0 → −∞ (t fixed).

The existence of a pullback attractor follows from that of a pullback absorbing family,

which is usually more easily determined.

Definition 5. A family B = {B(t) : t ∈ R} of nonempty compact subsets of Rd is called a pull-

back absorbing family for a process ψ if for each t1 ∈ R and every family D = {D(t) : t ∈ R}

of nonempty bounded subsets of Rd there exists some T = T (t1,D) ∈ R+ such that

ψ (t1, t0, D(t0)) ⊆ B(t1) for all t0 ∈ R with t0 ≤ t1 − T.

The proof of the following theorem is well known, see e.g., [17, 37].

Theorem 4. Suppose that a process ψ on Rd has a ψ-positively invariant pullback absorbing

family B = {B(t) : t ∈ R} of nonempty compact subsets of Rd.

Then ψ has a unique global pullback attractor A = {A(t) : t ∈ R} with its component

sets determined by

A(t) =
⋂
t0≤t

ψ (t, t0, B(t0)) for each t ∈ R.

If B is not ψ-positively invariant, then

A(t) =
⋂
s≥0

⋃
t0≤t−s

ψ (t, t0, B(t0)) for each t ∈ R.

A pullback attractor consists of entire solutions, i.e., functions ξ : R→ R such that ξ(t) =

ψ(t, t0, ξ(t0)) for all (t, t0) ∈ R2
≥. In special cases it consists of a single entire solution.

Definition 6. A nonautonomous dynamical system ψ is said to satisfy a uniform strictly con-

tracting property if for each r > 0, there exist positive constants K and α such that

∥ψ(t, t0, x0)− ψ(t, t0, y0)∥2 ≤ Ke−α(t−t0) · ∥x0 − y0∥2 (2.25)
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for all (t, t0) ∈ R2
≥ and x0, y0 ∈ Br, where Br is the closed ball in Rd centered at the origin with

radius r > 0.

This property suffices in combination with a pullback absorbing set to ensure the existence

of an attractor in both the forward and pullback sense that consists of singleton sets, i.e., a single

entire solution. The proof of the following result involves the construction of an appropriate

Cauchy sequence which converges to a unique limit, see [35, 36].

Theorem 5. Suppose that a process ψ on Rd is uniform strictly contracting on a ψ-positively

invariant pullback absorbing family B = {B(t) : t ∈ R} of nonempty compact subsets of Rd.

Then the process ψ has a unique global forward and pullback attractor A = {A(t) : t ∈ R}

with component sets consisting of singleton sets, i.e., A(t) = {ξ∗(t)} for each t ∈ R, where ξ∗

is an entire solution of the process.

2.3.2 Existence of a Pullback Attractor

Denote by ũ(t) = (x(t), Y (t), R(t)). Recall that x(t), Y (t) ≥ 0 and R(t) ∈ (0, 1) for all

(t, t0) ∈ R2
≥; we focus on the subspace Ω := R2

+×(0, 1) of R3. Then due to Lemma 1, given any

t0 ∈ R and ũ0 ∈ Ω the system (2.11)–(2.13) has a global solution ũ(·; t0, ũ0) ∈ C
(
[t0,∞),Ω

)
.

For (t, t0) ∈ R2
≥ define a mapping ψ(t, t0, ·) : Ω → Ω by

ψ(t, t0, ũ0) = u(t; t0, ũ0), (t, t0) ∈ R2
≥ (2.26)

where u(t; t0, ũ0) is the solution to the system (2.11)–(2.13). It is straightforward to check

that {ψ(t)}(t,t0)∈R2
≥

is a process. From now on, it is referred to as the process defined by the

system (2.11)–(2.13). The main goal of this subsection is to show that {ψ(t)}(t,t0)∈R2
≥

has a

unique pullback attractor. To that end we first construct an absorbing set for {ψ(t)}(t,t0)∈R2
≥

in

the following Lemma.

Lemma 2. Let Assumptions (A1)–(A2) hold. Then the process {ψ(t)}(t,t0)∈R2
≥

defined by the

system (2.11)–(2.13) has an absorbing set defined as in (2.32).
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Proof. Consider first the decoupled Ricatti equation (2.13). SinceR(t) ∈ (0, 1), thenR2−R <

0 and along with Assumption (A1) we obtain

−(µDM + r1 + r2)R(t) +R2 <
dR(t)

dt
< −(r1 + r2)R(t) + r2.

Integrating the differential inequalities above from t0 to t gives

R(t) <
r2

r1 + r2
+ e−(r1+r2)(t−t0)

(
R0 −

r2
r1 + r2

)
, (2.27)

R(t) >
r2

r1 + r2 + µDM

+ e−(r1+r2+µDM )(t−t0)

(
R0 −

r2
r1 + r2 + µDM

)
. (2.28)

It then follows immediately that given any ϵ > 0 there exists Tϵ > 0 such that

r2
r1 + r2 + µDM

− ϵ ≤ R(t) ≤ r2
r1 + r2

+ ϵ, t− t0 ≥ Tϵ. (2.29)

Next, consider z(t) := bx(t)+aY (t), and integrating the differential inequality (2.7) from

t0 to t results in

z(t) ≤ bDMIM
κ

+ e−κ(t−t0)

(
bx0 + aY0 −

bDMIM
κ

)
. (2.30)

Thus given any ϵ > 0 there exists Tϵ > 0 such that

bx(t) + aY (t) ≤ bDMIM
κ

+ ϵ, t− t0 ≥ Tϵ. (2.31)

Now define the bounded set B in Ω by

B :=
{
(x, Y,R) ∈ Ω : bx+ aY ≤ bDMIM

κ
+ ϵ

r2
r1 + r2 + µDM

− ϵ ≤ R ≤ r2
r1 + r2

+ ϵ
}
. (2.32)

Then it follows directly from (2.29) and (2.31) that B is an absorbing set (in both pullback and

forward sense) for the process {ψ(t)}(t,t0)∈R2
≥

. The proof is complete.
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Theorem 6. Let Assumptions (A1)–(A2) hold. Then the process {ψ(t)}(t,t0)∈R2
≥

defined by

the system (2.11)–(2.13) possesses a unique pullback attractor A = {A(t) : t ∈ R} with

component subsets given by A(t) =
⋂

t0≤t ψ(t, t0,B) for each t ∈ R where B is defined in

(2.32).

Proof. With Lemma 2, it remains to show that B is positive invariant for the process {ψ(t)}(t,t0)∈R2
≥

.

In fact, given any ũ0 = (x0, Y0, R0) ∈ B, it follows immediately from (2.27), (2.28), and (2.30)

that

r2
r1 + r2 + µDM

− ϵ ≤ R(t; t0, ũ0) ≤
r2

r1 + r2
+ ϵ, ∀ (t, t0) ∈ R2

≥,

bx(t; t0, ũ0) + aY (t; t0, ũ0) ≤ bDMIM
κ

+ ϵ, ∀ (t, t0) ∈ R2
≥,

i.e., the set B is positive invariant under the process {ψ(t)}(t,t0)∈R2
≥

. Therefore by Theorem 4 the

process {ψ(t)}(t,t0)∈R2
≥

has a unique global pullback attractor A = {A(t) : t ∈ R} consisting

of nonempty compact subsets of Ω that are contained in B. More specifically, the component

subsets are given by A(t) =
⋂

t0≤t ψ(t, t0,B) for each t ∈ R. The proof is complete.

2.3.3 Detailed Long Term Dynamics

In this subsection we investigate dynamics of x(t), Y (t), and R(t) in greater detail. These

dynamics characterize the structure of the pullback attractor A for the process {ψ(t)}(t,t0)∈R2
≥

defined by the system (2.11)–(2.13). In particular, we first study the dynamics ofR(t), followed

by the dynamics of x(t) and Y (t).

Recall that when D(t) ≡ D, the Riccati equation (2.13) has a steady state R2 ∈ (0, 1) that

attracts all solutions of (2.13) with R0 ∈ (0, 1) as t → ∞. Now for general time-dependent

D(t), the steady state no longer exists. Instead, the asymptotic dynamics can be characterized

by a time-dependent singleton trajectory, if exists, that attracts all other solutions as t → ∞ or

t0 → −∞. In Lemma 3 below, we prove the existence of such a trajectory.

Lemma 3. Let Assumptions (A1)–(A2) hold. Then there exists a singleton trajectory R∗(t)

that both forward and pullback attracts all solutions of (2.13), provided
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(A3) µ(2DM −Dm) < r1 + r2.

Proof. Consider any two solutions of the equation (2.13) with different initial values R(t0) =

R0,1 and R(t0) = R0,2, denoted by R(t; t0, R0,1) and R(t; t0, R0,2), respectively. Set ∆R(t) =

R(t; t0, R0,1)−R(t; t0, R0,2). Then ∆R(t) satisfies the differential equation

d∆R(t)

dt
= µD(t)

(
R(t; t0, R0,1) +R(t; t0, R0,2)

)
∆R(t)− (µD(t) + r1 + r2)∆R(t). (2.33)

Without loss of generality, assume that R0,1 > R0,2. Then by uniqueness of solutions,

∆R(t) > 0 for all t ≥ t0. Using (2.27) and Assumption (A1) in (2.33) gives

d∆R(t)

dt
≤ (µDM(R0,1 +R0,2)− µDm − r1 − r2)∆R(t)

which can be integrated to obtain

∆R(t) ≤ ∆R(t0)e

(
−(µDm+r1+r2)+µDM (R0,1+R0,2)

)
(t−t0), (t, t0) ∈ R2

≥.

It then follows immediately from R0,1, R0,2 ∈ (0, 1) and Assumption (A3) that

∆R(t) ≤ ∆R(t0)e

(
−µDm+r1+r2+2µDM

)
(t−t0), (t, t0) ∈ R2

≥,

i.e., R(t) is uniformly strictly contracting. The desired assertion then follows from Theorem

5.

We next study the dynamics of x(t) and Y (t) as a pair. First, it can be clearly observed

that Y = 0 is still a steady state for the nonautonomous equation (2.12). In Lemma 4 below, a

sufficient condition for Y = 0 to be stable is constructed.

Lemma 4. Let Assumptions (A1) – (A2) hold. Then Y (t; t0, ũ0) → 0 as t → ∞ and t0 fixed,

or t fixed and t0 → −∞ if

(A4) ν + µr2Dm

r1+r2+µDM
> b.
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Proof. First using R < 1 in the equation (2.12) gives

dY (t)

dt
< −

(
ν + µD(t)R− bx

m+ x

)
Y (t).

Given arbitrarily small ϵ > 0, by (2.29) there exists Tϵ > 0 such that

dY (t)

dt
< −

(
ν + µDm

(
r2

r1 + r2 + µDM

− ϵ

)
− bx

m+ x

)
Y (t)

< −
(
ν + µDm

(
r2

r1 + r2 + µDM

)
− b

)
Y (t).

The desired assertion then follows immediately from Assumption (A4).

Collecting results in Lemmas 3 and 4, setting Y = 0 in the equation (2.11) and integrating

the resultant equation, we have following theorem.

Theorem 7. Under the Assumptions (A1)–(A4) the pullback attractor A for the process ψ

defined by the system (2.11)–(2.13) consists of a singleton trajectory (x∗(t), 0, R∗(t)) where

x∗(t) =

∫ t

−∞
D(τ)I(τ)e−µ

∫ t
τ D(s)dsdτ.

The theorem above provides a sufficient condition under which all microorganisms die

out. The singleton solution R∗(t) of the equation (2.13) provides the important information

on the ratio of bacteria inside and on the wall, even though they both approach zero. On the

other side, when all microorganisms die out and no more nutrient is consumed, the asymptotic

amount of nutrient in the gut simply becomes the accumulated nutrient input over time given

by x∗(t).

In the following theorem we construct sufficient conditions for the persistence of microor-

ganisms, i.e., Y (t) does not approach zero.

Theorem 8. Let Assumptions (A1)–(A2) hold. The pullback attractor A for the process ψ

defined by the system (2.11)–(2.13) contains points strictly inside the subspace (0,∞)2× (0, 1)

of Ω if the following two additional assumptions are satisfied

21



(A5) bκDmIm
mDM (κµ+bIM )+bκDmIm

> ν + µDM
r1

r1+r2
,

(A6) κ2DmIm < bDMIM(κµDM + bDMIM).

Proof. First we derive a lower bound for x(t). Set ℓx = κDmIm
DM (κµ+bIM )

. Then by Lemma 2 for

any ϵ > 0 there exists Tϵ > 0 such that aY (t) ≤ bDM IM
κ

+ ϵ for t− t0 > Tϵ. Thus

dx(t)

dt

∣∣∣∣
x≤ℓx

≥ DmIm − µDMℓx −
ℓx

m+ ℓx

(
bDMIM

κ
+ ϵ

)
≥ DmIm −

(
µDM +

bDMIM
κ

)
ℓx = 0, t− t0 > Tϵ,

which implies that x(t) ≥ ℓx for all t− t0 > Tϵ.

Since x
m+x

is an increasing function of x, it then follows from Assumption (A1) and equa-

tion (2.12) that

dY (t)

dt
≥ Y

(
bℓx

m+ ℓx
− ν − µDMR− (γ(1−R) + αR)Y

)
, t− t0 > Tϵ. (2.34)

Notice that the Assumption (A5) implies that

bℓx
m+ ℓx

> ν + µDM

(
r1

r1 + r2
+ ϵ

)
≥ ν + µDMR(t), t− t0 > Tϵ. (2.35)

Now set ℓY :=
bℓx

m+ℓx
−ν−µDM

r1
r1+r2

γ(r2+DM )

r1+r2+DM
+

αr1
r1+r2

. Clearly ℓY > 0, and by (2.27)–(2.28) we have for some T

large enough

(γ(1−R) + αR)ℓY <

(
γ(r2 +DM)

r1 + r2 +DM

+
αr1

r1 + r2

) bℓx
m+ℓx

− ν − µDM
r1

r1+r2
γ(r2+DM )
r1+r2+DM

+ αr1
r1+r2

=
bℓx

m+ ℓx
− ν − µDM

r1
r1 + r2

, for t− t0 > T. (2.36)

Inserting (2.35)–(2.36) into (2.34), we obtain

dY (t)

dt

∣∣∣∣
Y≤ℓY

≥ 0, for t− t0 large enough. (2.37)
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The magnitude of ℓY can be scaled by any positive parameter for which (2.37) still holds.

In addition, Assumption (A6) ensures that the set

B̃ := {(x, Y,R) ∈ B : x ≥ ℓx, Y ≥ ℓY }

is non-empty. Moreover, B̃ is positive invariant and absorbing for the process ψ. Therefore

the attractor A has component sets within B̃, which implies that both x(t) and Y (t) are strictly

positive as t− t0 → ∞.

2.4 Numerical Simulations

The numerical examples in this section aim to verify some of the theoretical properties estab-

lished in the previous sections. Assume the system starts at time 0 and ends at time T . In

comparisons between the autonomous and nonautonomous systems, we consider 2 different

scenarios with the same average nutrient input, i.e., with the same value of 1
T

∫ T

0
D(t)I(t)dt:

1. constant injection rate and constant injection concentration

D(t) ≡ D̃, I(t) ≡ Ĩ;

2. periodic injection rate and injection concentration

D(t) =
Dm +DM

2
+
DM −Dm

2
sin

2kπ

T
t,

I(t) =
Im + IM

2
+
IM − Im

2
sin

2kπ

T
t, k ∈ Z,

where D̃ and Ĩ are chosen to ensure

D̃Ĩ =

(
Dm +DM

2

)(
Im + IM

2

)
+

1

2

(
DM −Dm

2

)(
IM − Im

2

)
.

Example 1. The first example illustrates the existence of absorbing sets for the nutrient x, total

bacteria population Y , and the fraction R of bacteria in the gut, as established in Lemma 2 and

23



Theorem 6. The parameter values, given by Dm = 0.5, DM = 1, Im = 1, IM = 3, µ = 5,

a = 10, b = 5, m = 2, δ = 0.85, r1 = 5, r2 = 1, α = 1, and γ = 1, are chosen to satisfy

Assumptions (A1) and (A2). Figure 2.1 shows the fraction R(t) of bacteria in the gut over

the time interval [0, 2] for a variety of initial conditions in (0, 1), whereas Figure 2.2 plots the

trajectories (x(t), Y (t)) of the nutrient x and the total bacteria Y over the same time interval.

Note that, while the paths (x(t), Y (t)) intersect, those of the triplet (x(t), Y (t), R(t)) do not,

in line with uniqueness results. Evidently, the path (x(t), Y (t), R(t)) enters and remains in the

absorbing set defined in (2.32) for all initial conditions considered.
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Figure 2.1: Plot of the fraction R(t) of bacteria in the gut for different initial conditions.

Example 2. The second example explores the long term dynamics of the non-autonomous

system established in Lemma 3, Lemma 4, and Theorem 7. The parameters Dm = 0.5, DM =

2, Im = 1, IM = 3, µ = 3, a = 5, b = 1, m = 2, δ = 0.85, ν = 0.1, r1 = 1, r2 = 1,

α = 1, and γ = 1 satisfy Assumptions (A1), (A2), and (A3) resulting, by Lemma 3, in the

convergence of the function R(t) to a singleton trajectory R∗(t), as shown in Figure 2.3a.

Since Assumption (A4) does not hold for these parameters, the total bacteria population need

not die out, which is evident from Figure 2.3b. An increase in the collective death rate of the

bacteria from ν = 0.1 to ν = 0.9, while leaving the remaining parameters unchanged, now

guarantees that Assumptions (A1) – (A4) hold. Consequently, the total bacteria population

Y (t) dies out, according to Lemma 4, as shown in Figure 2.4a. Moreover, Figure 2.3b shows
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Figure 2.2: Plot showing the joint dynamics of the nutrient x(t) and the total bacteria Y (t) over
the time interval [0, 2] under assumptions (A1) and (A2). The arrows indicate the trajectory
directions.

(a) R(t) converges to R∗(t) (b) Y (t) persists.

Figure 2.3: The time evolution of the fraction R(t) of bacteria in the gut and the total bacteria
Y (t) under nonautonomous, periodic forcing with parameters satisfying Assumptions (A1),
(A2), and (A3), but not (A4).

how the nutrition level x(t) converges to the steady state function x∗(t), defined in Theorem 7.

Since the fraction R(t) depends only on parameters D(t), µ, r1, and r2, its dynamics remain

unchanged. Lastly, Figure 2.5 shows the joint dynamics of the nutrient x, the bacteria in the gut

y1, and the bacteria on the wall y2 in the time interval [0, 10]. Clearly, all trajectories converge

towards the region the x-axis indicated in red.

Example 3. Finally, we verify numerically conditions under which the total population Y (t)

persists. In this simulation, the parameters were chosen as Dm = 1.6, DM = 1.7, IM = 0.5,
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(a) Y (t) dies out.

(b) x(t) converges to x∗(t).

Figure 2.4: Plots showing the convergence of the total bacteria Y (t) to 0 and that of the nutrition
level x(t) to x∗(t) under nonautonomous, periodic forcing and Assumptions (A1)–(A4).

Figure 2.5: Joint trajectories of the nutrition x, the bacteria in the gut y1, and the bacteria on
the wall y2 subject to nonautonomous, periodic forcing, with parameters safisfying (A1)–(A4).
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IM = 1, µ = 0.23, a = 2, b = 1, m = 0.18, δ = 0.85, ν = 0.2, r1 = 0.1, r2 = 5, α = 1, and

γ = 1, ensuring that Assumptions (A1)–(A3), (A5), and (A6) hold. Figure 2.6 shows the joint

trajectories of the nutrient x and the total bacterial population Y during the time interval [0, 50]

for a variety of initial conditions. Evidently, all trajectories enter and remain in the absorbing

set defined in (2.32) and are bounded below by ℓx and ℓy defined in Theorem 8, respectively.

Figure 2.7 plots these trajectories again on a logarithmic scale to show the total population’s

persistence behavior more clearly.
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Figure 2.6: Plot of the joint dynamics of the nutrition level x and the total bacteria population Y
under nonautonomous, periodic forcing, with parameters satisfying Assumptions (A1)–(A3),
(A5), and (A6).
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Figure 2.7: Plot of the trajectories in Figure 2.6 on a logarithmic scale.
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Figure 2.8: Trajectory plot (x(t), Y (t)) in the time interval [0, 50] of the nutrition x and the
total bacteria population Y under constant nutrient injection for various initial conditions.

We now demonstrate that the persistent long term behavior shown above for the nonau-

tonomous system cannot be achieved by the equivalent autonomous system. Keeping all other

parameters the same as above, we chose the constant injection rate Ĩ and injection concentration

D̃ to yield the same average nutrient input and to ensure that Assumptions (A1)–(A3), (A5),

and (A6) hold. Figures 2.8 and 2.9 show how the solutions (x, Y,R) of system (2.11)–(2.13)

corresponding to various initial conditions converge to the steady state (Ĩ/µ, 0, R2) whose sta-

bility was established by Theorem 2.
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Figure 2.9: Plot of the fraction of bacteria in the gut over time under autonomous forcing and
Assumptions (A1)–(A3), (A5), and (A6).
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Chapter 3

An optimal control analysis of a model of a chemostat model for the growth of gut
microbiome with varying nutrient

Motivated by the interesting discovery that time-dependent input of nutrient may result in

asymptotic behavior different from constant input, we are interested in investigating how the

growth of a particular type of bacteria can be boosted or inhibited to maintain a healthy gut.

The second part of my dissertation project involves looking at a new aspect of analyzing the

microbial population dynamics: optimal control. In particular, we consider a modified model

for the dynamics of an intestinal microbiome with one beneficial bacterial microorganism that

we are trying to promote by the infusion of some probiotic along with one limiting resource

of nutrient population over a given finite time interval, [0, T ]. In order to find an optimal con-

trolled rate of the input flow, we turn to results from mathematicians during the Cold War. In

the 1950s, a race began between the United States and the Soviet Union to answer a very im-

portant question: How can we move our aircrafts from their cruising position to a beneficial

attack position optimally? [48] Pontryagin and his colleagues developed the Maximum Princi-

ple to apply to certain types of control problems. We use this theory for our system to find the

optimal control.

The research to date for using optimal control chemostat models is primarily applied to

waste-water treatment processes. In [39], they model a single microorganism species and sub-

strate concentration and do time-optimal control analysis, seeking to steer the system to a target

state in minimal time. In [40], they show using optimal control theory that the averaged con-

version rate can be improved by a periodic dilution rate under certain conditions.
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In our model, we consider a setting in which a microorganism’s average concentration

is maximized over a given time interval. This model could be used to promote maximal pro-

duction of a given beneficial bacteria in the gut over a specific time interval. Similarly, the

results could be used to minimize a harmful bacteria over a given time interval, for example,

attempting to get rid of an infection.

3.1 Introduction of the Model and Basic Properties of Solutions

A probiotic is a substance which stimulates the growth of microorganisms, especially those

with beneficial properties. At any time t, we let x(t), y(t), and z(t) denote the concentration

of the nutrient, the concentration of the microorganism, and the concentration of the probiotic

inside the gut, respectively. The model that we consider reads

dx(t)

dt
= (Ix − µx(t))u(t)− y(t)

αx(t)

m+ x(t)
, x(t0) = x0 (3.1)

dy(t)

dt
= y(t)

(
β

αx(t)

m+ x(t)
− µu(t)− ν

)
+ γy(t)M(z(t)), y(t0) = y0 (3.2)

dz(t)

dt
= (Iz − µz(t))u(t)− y(t)M(z(t)), z(t0) = z0 (3.3)

Table 3.1: Optimal control model parameters

Parameter Meaning
u(t) ∈ [0, umax] input flow rate
Ix > 0 input concentration of the nutrient
Iz > 0 input concentration of the probiotic
µ > 0 ratio between output and input flow rates (“fudge” factor)
α > 0 maximum consumption rate of the nutrient by the microorganism
β ≥ 0 yielding factor
m ≥ 0 half-saturation constant of the nutrient
γ > 0 gain factor of microorganism by probiotic consumption
M(z(t)) consumption function of probiotic by microorganism

where u(t) is the controlled rate of the input flow, which brings the nutrient and probiotic

into the gut. Note that the variable u has a different meaning in Chapter 2, where it denotes

the state vector. Here Ix and Iz are constant input concentration of the nutrient and probiotic,

respectively, α is the maximum consumption rate of the microorganism on the nutrient,m is the
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half-saturation constant of the nutrient, β is the yielding factor, ν is the collective death rate of

the microorganism, and µ is the fudge factor, same as in Chapter 2. The functionM(·) describes

the consumption of probiotic by the microorganism that results in a gain in the microorganism

by a factor of γ in turn. We make the following assumptions on M : R+ → R+ (see [19]):

• M(0) = 0, M(z) > 0 for all z > 0;

• limz→∞M(z) = L, where L <∞;

• M is continuously differentiable;

• M is monotonically increasing.

Remark 8 (Notation on Derivatives). Since we will make extensive use of various derivatives of

composite functions in the following sections, we would like to specify notation in this regard.

Let h : R × Rn → R be a scalar multivariate function, mapping (t,x) 7→ h(t, x), where

x = (x1, ..., xn) ∈ Rn. The scalar function ∂h
∂t

= ht(t,x) := limδt→0
h(t+δt,x)−h(t,x)

δt
denotes

the partial derivative of h with respect to the t-variable, while the row vector hx(t,x) =

[hx1(t,x), ..., hxn(t,x)] ∈ (Rn)∗ denotes its Jacobian with respect to x. For a vector-valued

function h : R × Rn → Rm, mapping (t,x) 7→ h(t,x) = [h1(t,x), ..., hm(t,x)]
T ∈ Rm we

use the column vector ht(t,x) =
[
∂h1

∂t
(t,x), ..., ∂hm

∂t
(t,x)

]T
to denote the Jacobian of h with

respect to the t-variable, while

∂h

∂x
= hx(t,x) :=


∂h1

∂x1
(t,x) . . . ∂h1

∂xn
(t,x)

... . . . ...

∂hm

∂x1
(t,x) . . . ∂hm

∂xn
(t,x)


denotes the Jacobian of h(t,x) with respect to the variable x = (x1, ..., xn). Finally, suppose

t 7→ x(t) and h(t,x) is the vector-valued function defined above, then the derivative of the

composite mapping t 7→ h(t,x(t) with respect to t is determined by the multivariate chain

rule, i.e.,
dh

dt
(t,x(t)) = ht(t,x(t))) + hx(t,x(t))

dx

dt
.
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3.1.1 Existence and Uniqueness of Solutions

We let x(t) = (x(t), y(t), z(t)) denote the state vector and summarize the autonomous initial

value problem (3.1)–(3.3) as

dx(t)

dt
= f(x(t), u(t)), x(0) = x0, (3.4)

where x0 = (x0, y0, z0) denotes the initial condition.

In this subsection, we establish the existence and uniqueness of solutions to the IVP (3.4)

for any continuous control function u within the set U of admissible controls given by

U := {u(t)|u(t) ∈ C([0, T ]), 0 ≤ u(t) ≤ umax}. (3.5)

To this end, we separate the vector field f(x, u) into a linear part A(u) and a nonlinear part

g(x, u). Specifically,

f(x, u) = A(u)x+ g(x, u),

where

A =


−u(t) 0 0

0 −(µu(t) + ν) 0

0 0 µu(t)

 and g (x) =


Ixu(t)− αxy

m+x

αβxy
m+x

+ γyM(z)

Izu(t)− yM(z)

 .

The initial value problem (3.4) can thus be rewritten as

dx

dt
= A(u)x+ g(x, u), x(0) = x0. (3.6)

Define the non-negative octant

R3
+ := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, z ≥ 0}.
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Lemma 5. Given any x0 ∈ R3
+ and u ∈ U , the system (3.6) admits a unique global solution.

Moreover, the solution is non-negative and bounded for all t ∈ [0, T ].

Proof. First, since the function u(t) is bounded, the operator A generates an evolution system

on R3. In addition, since u(t) is continuous in t, the function g is continuously differentiable

with respect to x for x ̸= −m, with derivative

∂g

∂x
=


αmy

(m+x)2
αx

m+x
0

αβmy
(m+x)2

αβx
m+x

γyM ′(z)

0 −M(z) −yM ′(z)

 .

So g is locally Lipschitz with respect to x ∈ R3
+. Therefore by classical theory for ordinary

differential equations (as stated in Theorem 1 in Section 2.1), the system (3.6) has a unique

local solution, x ∈ C([0, T ),R3).

We next show that the solution x(t) is always non-negative on its existence interval [0, T ].

Notice that given x0 := (x0, y0, z0)
T ∈ R3

+ by continuity of solutions, each of x(t), y(t), and

z(t) has to take value 0 before it becomes negative. Now consider the scenarios when x, y, or

z first reaches zero, respectively, we have

dx(t)

dt

∣∣∣∣
x=0,y≥0,z≥0

= Ixu(t) ≥ 0,

dy(t)

dt

∣∣∣∣
y=0,x≥0,z≥0

= 0 ≥ 0,

dz(t)

dt

∣∣∣∣
z=0,x≥0,y≥0

= Izu(t) ≥ 0

This implies that any solution to the system (3.6) with x0 ∈ R3
+ will stay within R3

+ for all t in

its existence interval.

It remains to show that the solution x(t) is bounded. To that end, consider the linear

combination ζ(t) := βx(t) + y(t) + z(t) which satisfies the ODE

dζ(t)

dt
= βIxu(t)− µu(t)y(t)− νy(t) + (Iz − µz(t))u(t)− y(t)M(z(t))

33



Then by using the assumption 0 ≤ u(t) ≤ umax and that x, y, z ≥ 0 and the assumptions

on M(z(t)) we obtain

dz(t)

dt
≤ βIxumax − µu(t)y(t)− νy(t) + Izumax − µz(t)u(t)− y(t)M(z(t)) (3.7)

≤ (βIx + Iz)umax > 0, (3.8)

which implies that x(t) is uniformly bounded for all t ∈ [0, T ]. Therefore the unique local

solution x ∈ C([0, T ),R3
+) can be extended to a unique global solution x ∈ C([0,∞),R3

+).

The proof is complete.

3.1.2 Model without the Probiotic

As an initial step, we consider the special case without the probiotic, i.e. z(t) is constant, so

dz(t)
dt

= 0. Then our system takes the following form:

dx(t)

dt
= (I − µx(t))u(t)− y(t)

αx(t)

m+ x(t)
, x(0) = x0 (3.9)

dy(t)

dt
= y(t)

(
β

αx(t)

m+ x(t)
− µu(t)− ν

)
, y(0) = y0, (3.10)

defined over a fixed time interval [0, T ], where I is the simplified notation for Ix. Addition-

ally, we now will use x(t) = (x(t), y(t)) to denote the state vector and we summarize the

autonomous initial value problem (3.9)–(3.10) as

dx(t)

dt
= f(x(t), u(t)), x(0) = x0, (3.11)

where x0 = (x0, y0) denotes the initial condition.
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Analysis of Equilibria under Constant Control

In this subsection, we determine steady-states and analyze their stability in the special case

where u(t) ≡ u ∈ R, i.e., when the control function is constant. Then our system is au-

tonomous and the steady-states can be found explicitly.

0 = (I − µx)u− yαx

m+ x
(3.12)

0 = y
(
β

αx

m+ x
− µu− ν

)
(3.13)

From Equation (3.13), we get our first steady-state, which is trivial, y = 0. Substituting y = 0

into Equation (3.12), we get x = I
µ

, so our axial steady-state is
(

I
µ
, 0
)
.

For the nontrivial steady-state, set β αx∗

m+x∗ − µu− ν = 0 and solve explicitly for x ≡ x∗.

We get

x∗ =
m(µu+ ν)

αβ − µu− ν
(3.14)

Then substituting x∗ into Equation (3.12), we can explicitly solve for y∗ and obtain

y∗ = βu

(
I

µu+ ν
− µm

αβ − µu− ν

)
(3.15)

This yields our nontrivial steady-state

(x∗, y∗) =
( m(µu+ ν)

αβ − µu− ν
, βu

( I

µu+ ν
− µm

αβ − µu− ν

))
(3.16)

In order for (x∗, y∗) to be positive, we need the following to be true:

αβ > µu+ ν (3.17)

I

µu+ ν
>

µm

αβ − µu− ν
(3.18)

35



Remark 9. Note that assumptions (3.17) and (3.18) are easily satisified when u is small. How-

ever, in order for y∗ to be maximized, we see in (3.15) that u needs to be large. Thus, the

optimization of y∗ depends on a trade-off of how large u is, while still needing u to be small in

order for (x∗, y∗) to be stable.

From our system (3.11), we have the following Jacobian matrix:

fx =

−µu− αmy
(m+x)2

−αx
m+x

αβmy
(m+x)2

αβx
m+x

− µu− ν


And we have the following determinant and trace:

Det(fx) = −
(
µu+

αmy

(m+ x)2

)( αβx

m+ x
− µ− ν

)
+
α2βmxy

(m+ x)3
(3.19)

Tr(fx) = −2µu− αmy

(m+ x)2
− ν +

αβx

m+ x
(3.20)

Lemma 6. The axial steady-state (I/µ, 0) is stable provided that µu+ ν > αβI
µm+I

.

Proof.

Det(fx)|(I/µ,0) = −µu

(
αβI

µm+ I
− µu− ν

)
> 0

Tr(fx)|(I/µ,0) = −2µu− ν +
αβI

µm+ I

Lemma 7. The non-trivial steady-state (x∗, y∗) is stable provided (3.17) and (3.18) are true.

Proof. Recall β αx∗

m+x∗ − µu− ν = 0, so

Det(fx)|(x∗,y∗) =
α2βx∗y∗

(m+ x∗)3
> 0

Tr(fx)|(x∗,y∗) = −µu− αmy∗

(m+ x∗)2
< 0
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3.2 The Optimal Control Problem

We are interested in finding a control u(t) within an admissible set U such that the average

concentration of the microorganism over time [0, T ] is maximized. We formulate this task as

a minimization problem, according to the conventions of control theory literature, and add a

regularization term to penalize large controls, i.e.,

min
u∈U

JT (u) =

∫ T

0

−y(t) + c

2
u2(t)dt,

subject to ẋ = f(x(t), u(t)), x(0) = x0,

(3.21)

where c > 0 is the regularization parameter and the admissible set U is given in Equation

(3.5). In the following two sections, we will invoke the Pontryagin Maximum Principle (PMP)

to establish a set of first order necessary conditions that are satisfied by the minimizer u∗ of

Problem (3.21). To this end, we will first recall some preliminary definitions and give a general

statement of the PMP (Theorem 9) in Subsection 3.2.1. In Subsection 3.2.2, we will show that

our control problem (3.21) satisfies the conditions of Theorem 9 and use the resulting necessary

conditions to determine the optimal control u∗. Specifically, we show that u∗ can be expressed

explicitly in terms of the solution vector p of the Hamiltonian boundary value problem given

by Equations (3.30)–(3.33).

3.2.1 Preliminaries on Optimal Control Theory

In this section, we will cover the preliminaries of optimal control theory. We first define various

notions related to control systems and then state a general form of the Pontryagin Maximum

Principle that is appropriate to Problem (3.21).

Definition 7 ([50]). A control system is a 4-tuple Σ = (X,U, f ,U ) consisting of a state space

X ⊂ Rn representing the range of the state vector x(t), a control set U ⊂ Rm specifying the

range of the control variable u, a vector field f specifying the dynamics of the state, and a class

U of admissible control functions.

We make some assumptions about the the data defining the control system:
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1. The state space X is an open and connected subset of Rn.

2. The control set U is a subset of Rm.

3. The dynamics ẋ = f(t,x, u) is defined by a family of time-varying vector fields f

parametrized by the control values u ∈ U ,

f : R×X × U → Rn, (t,x, u) 7→ f(t,x, u)

4. The class U of admissible controls is taken to be piecewise continuous functions u de-

fined on a compact interval I ⊂ R with values in the control set U . Without loss of

generality, we assume that controls are continuous from the left.

Definition 8. [50] Given a piecewise continuous control u ∈ U defined over some open inter-

val J , consider the following initial value problem (IVP):

dx(t)

dt
= f(t,x(t), u(t)), x(t0) = x0 (3.22)

defined over some maximal interval (τ−, τ+) ⊂ J such that t0 ∈ (τ−, τ+).

Given an admissible u ∈ U defined over an interval J , let x be the unique solution to the IVP

(3.11) with a maximal interval of definition I = (τ−, τ+). We call this solution x the trajectory

corresponding to the control u and call the pair (x, u) an admissible controlled trajectory over

the interval I .

An optimal control problem then consists of a control system Σ with an objective func-

tional to be minimized:

min
u∈U

J (u) = min
u∈U

∫ T

t0

L (s,x(s), u(s))ds+ φ(T,x(T )), (3.23)

s.t.
dx(t)

dt
= f(t,x(t), u(t)), x(t0) = x0 (3.24)

Ψ(T,x(T )) = 0, (3.25)
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where the Lagrangian functional (t, u(t)) 7→ L (t,x(t), u(t)) represents the running cost over

the time interval [t0, T ] associated with a given control function, φ(T,x(T )) represents a ter-

minal cost, and the set N = {(t,x) ∈ R× R2 : Ψ(t,x) = 0} represents a terminal constraint.

Definition 9. [50] The (control) Hamiltonian function H of the optimal control problem (3.23)

is defined as

H : R× [0,∞)× (Rn)∗ × Rn × Rm → R

with

H(t, λ0, λ,x, u) = λ0L (t,x, u) + λf(t,x, u).

Theorem 9. Pontryagin Maximum Principle [50] Consider a control system (X,U, f,U ). Let

(x∗, u∗) be a controlled trajectory defined over the interval [t0, T ] with the control u∗ piecewise

continuous. If (x∗, u∗) is optimal, then there exist a constant λ0 ≥ 0 and a covector λ :

[t0, T ] → (Rn)∗, the so-called adjoint variable, such that the following conditions are satisfied:

1. Nontriviality of the multipliers:
(
λ0, (λ(t)

)
̸= 0 for all t ∈ [t0, T ].

2. Adjoint equation: the adjoint variable λ is a solution to the time-varying linear differen-

tial equation

dλ

dt
= −λ0Lx(t,x

∗(t), u∗(t))− λ(t)fx(t,x
∗(t), u∗(t))

3. Minimum condition: everywhere in [t0, T ] we have that

H(t, λ0,λ(t),x
∗(t), u∗(t)) = min

u∈U
H(t, λ0,λ(t),x

∗(t), u)

4. Transversality condition: at the endpoint of the controlled trajectory, the covector

(
H+

λ0φt,−λ + λ0φx

)
is orthogonal to the terminal constraint represented by the level set

Ψ(T,x∗(T )) = 0, i.e., the covector is parallel to (Ψt(T,x
∗(T )),Ψx(T,x

∗(T ))).
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3.2.2 Optimal Control for the Gut Microbiome System

We now consider our optimal control problem (3.11) with objective functional (3.21). Un-

der assumptions (3.17) and (3.18), we have that our optimal trajectory (x∗, y∗) is stable for

x0 > 0, y0 > 0. Therefore, our x(t), y(t) are strictly positive. So our state space is X =

{(x, y) ∈ R2 : x > 0, y > 0}, which is an open and connected subset of R2. Our control

set is U = [0, umax] ⊂ R. Our dynamics are given by the system of differential equations

(3.11). From (3.21), we have L (t,x(t), u(t)) = −y(t) + c
2
u2(t) and no terminal cost, i.e.

φ(t,x) = 0 for all (t,x) ∈ [0, T ] × X . Moreover, we take the terminal constraint function

to be Ψ(t,x) := t − T . Since neither the Lagrangian functional L nor the vector field f de-

pend explicitly on time t, the control Hamiltonian function for Problem (3.21) is a mapping

H : R+ × (R2)∗ × R2
+ × R+ → R is of the form,

H(λ0,λ,x, u) = λ0L (x, u) + λf(x, u),

or more explicitly,

H(λ0, (λ1, λ2), (x, y)
T , u)

= λ0

(
−y + c

2
u2
)
+ λ1

(
(I − µx)u− yαx

m+ x

)
+ λ2y

(
β

αx

m+ x
− µu− ν

)
. (3.26)

Let ((x∗, y∗)T , u∗) be a controlled trajectory defined over the interval [0, T ] and associated

with the optimal control u∗ ∈ U . Then, according to Theorem 9, there exist a constant λ0 > 0

and a covector (λ1, λ2) : [0, T ] → (R2)∗ such that the following conditions are satisfied:

1. Nontriviality of the multipliers:
(
λ0, (λ1(t), λ2(t)

)
̸= 0 for all t ∈ [0, T ].

2. Adjoint equation: the adjoint variable (λ1, λ2) is a solution to the differential equation

λ̇ = −Hx(λ0,λ,x, u) = −λ0Lx(x, u)− λfx(x, u),
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or more explicitly

d

dt

 λ1(t)

λ2(t)

 = −λ0

 0

−1

− [λ1 λ2]

 −µu∗ − αmy∗

(m+x∗)2
− αx∗

m+x∗

αβmy∗

(m+x∗)2
αβx∗

m+x∗ − µu∗ − ν

 .(3.27)

Note that all extremals are normal, since if λ0 = 0, then λ(t) is a solution to a homoge-

neous linear equation with zero boundary conditions (which result from the transversality

conditions discussed below), hence identically zero, which contradicts the nontriviality

statement. So without loss of generality, we normalize λ0 = 1.

3. Minimum condition: at every t ∈ [0, T ] we have

H(λ(t),x∗(t), u∗(t)) = min
u∈[0,umax]

H(λ(t),x∗(t), u),

where λ0 = 1 as established above. The mapping u 7→ H(λ(t),x∗(t), u) is quadratic in

the variable u, specifically,

H(λ(t),x∗(t), u) =
c

2
u2+

(
λ1(I−µx)−λ2µy

)
u+

(
−y − λ1

yαx

m+ x
+ λ2y

(
β

αx

m+ x
− ν
))

.

Moreover for any t ∈ [0, T ], its second partial derivative

∂2H

∂u2
(λ(t),x∗(t), u) = c > 0,

which implies that H(λ(t),x∗(t), u) is strictly convex in u and its unconstrained mini-

mizer is thus given by the stationary point ũ computed as

ũ =
1

c

(
λ1(µx− I) + λ2µy

)
.

The minimizer u∗(t) of H(λ(t),x∗(t), u) over the set [0, umax] can thus be written as

u∗(t) = min(max(0, ũ), umax). (3.28)
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This equation expresses the optimal control function explicitly in terms of the optimal

state variables x∗ and adjoint variables λ, which in turn are determined dynamically by

the state equations (3.11) and adjoint equations (3.27) respectively. It also shows that the

optimal control u∗(t) is in fact a continuous function.

4. Transversality condition: Finally, we use the transversality conditions to establish the

terminal conditions satisfied by the adjoint variables λ at the endpoint T . Applying

Theorem 9 to Problem (3.21) with Ψ(t,x) = t − T and φ(t,x) = 0, we obtain that

the co-vector (H(λ(T ),x∗(T ), u∗(T )),−λ(T )) associated with the optimal controlled

trajectory is parallel to (Ψt(T,x
∗(T )),Ψx(T,x

∗(T ))) = (1, 0), implying that λ(T ) = 0.

Note that since Hλ(λ,x, u) = f(x, u), the first order necessary optimality conditions at

the optimal controlled trajectory (x∗, u∗) arising from the Pontryagin Maximum Principle can

be written abstractly as the Hamiltonian boundary value problem

ẋ = Hλ(λ,x, u), x(0) = x0,

λ̇ = −Hx(λ,x, u), λ(T ) = 0,

(3.29)

where u is given by Equation (3.28). More explicitly,

dx(t)

dt
= (I − µx(t))u∗(t)− y(t)

αx(t)

m+ x(t)
, x(0) = x0 > 0, (3.30)

dy(t)

dt
= y(t)

(
β

αx(t)

m+ x(t)
− µu∗(t)− ν

)
, y(0) = y0 ≥ 0, (3.31)

dλ1(t)

dt
= λ1

(
µu∗(t) +

αmy

(m+ x)2

)
− λ2

αβmy

(m+ x)2
, λ1(T ) = 0, (3.32)

dλ2(t)

dt
= 1 + λ1

αx

m+ x
− λ2

(
αβx

m+ x
− µu∗(t)− ν

)
, λ2(T ) = 0. (3.33)
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It now follows directly from Equation (3.29) that the Hamiltonian is constant in time along

the optimal trajectory. Specifically, using the chain rule, we obtain

d

dt
H(λ(t),x(t), u(t))

= Hλ(λ(t),x
∗(t), u∗(t))λ̇(t) +Hx(λ(t),x

∗(t), u∗(t))ẋ(t) +Hu(λ(t),x
∗(t), u∗(t))u̇∗(t)

= ẋ(t)λ̇(t)− ẋ(t)λ̇(t) +Hu(λ(t),x
∗(t), u∗(t))u̇∗(t).

It remains to show that the last term is zero for all t ∈ [0, T ]. When the stationary point

ũ(t) ∈ [0, umax], then Hu(λ(t),x
∗(t), u∗(t)) = Hu(λ(t),x

∗(t), ũ) = 0 and hence the term

vanishes. On the other hand, if ũ(t) /∈ [0, umax], then u∗(t) ∈ {0, umax} is constant, which

implies u̇∗(t) = 0 and hence the term vanishes as well.

3.2.3 The Hamiltonian Boundary Value Problem and the Associated Linearized System

We re-write (3.30)–(3.33), letting p(t) = (x(t), y(t), λ1(t), λ2(t)) and

Φ1(p;u) = (I − µx(t))u(t)− y(t)
αx(t)

m+ x(t)
, x(0) = x0,

Φ2(p;u) = y(t)
(
β

αx(t)

m+ x(t)
− µu(t)− ν

)
, y(0) = y0,

Φ3(p;u) = λ1

(
µu+

αmy

(m+ x)2

)
− λ2

αβmy

(m+ x)2
, λ1(T ) = 0,

Φ4(p;u) = 1 + λ1
αx

m+ x
− λ2

(
αβx

m+ x
− µu− ν

)
λ2(T ) = 0

using Φ(p) = [Φ1,Φ2,Φ3,Φ4]
T to denote the vector-valued function describing the dynamics

of p. Moreover, let g : R4×R4 → R4 be defined by g(a,b) = (a1−x0, a2−y0, b3, b4)T , so that

the associated boundary conditions of (3.30)–(3.33) can be described by g(p(0),p(T )) = 0.

Note that since the optimal control u can be written explicitly as a function of the state and

adjoint variables via Equation (3.28), we sometimes write u(p) to emphasize this dependence.

The Hamiltonian boundary value problem can thus be represented by

dp

dt
= Φ(p;u(p)), g(p(0),p(T )) = 0. (3.34)
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In the ensuing discussion we will often require the linearization of the dynamical system

Φ(p, u) along a given trajectory p, which we will derive the linearized system matrix dΦ
dp

in the

following pages. First recall that by the chain rule,

dΦ

dp
=
∂Φ

∂p
+
∂Φ

∂u

du

dp
.

Moreover,

Φ(p, u(p)) =

 f(x, u(p))

−Hx(λ,x, u(p))

 =

 f(x, u(p))

−Lx(x, u(p))− fx(x, u(x))
Tλ

 .
Now1

∂Φ

∂p
=

 fx(x, u(p)) 0

−Hxx(λ,x, u(p)) −fx(x, u(p))
T

 .
Differentiating the right hand side of Equations (3.9) and (3.10) gives

fx(x, u) =

 −µu− αmy
(m+x)2

− αx
(m+x)

αβmy
(m+x)2

αβx
(m+x)

− µu− ν


while the derivative Lx(x, u) of the Lagrangian functional L (x, u) = −y + c

2
u2 is given by

the row vector Lx(x, u) = [0, 1], which is constant, i.e.

Hx(λ,x, u) = −Lx(x, u(p))− fx(x, u(x))
Tλ =

[
λ1
∂f1
∂x

+ λ2
∂f2
∂x

, 1 + λ1
∂f1
∂y

+ λ2
∂f2
∂y

]T
.

1Note that in writing the system, we have converted the row vector λ to a column vector.
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Using these formulas, we can compute −Hxx component-wise as

−∂
2H

∂x2
= λ1

∂2f1
∂x2

+ λ2
∂2f2
∂x2

= −2λ1
αmy

(m+ x)3
+ 2λ2

αβmy

(m+ x)3
=

2αmy(βλ2 − λ1)

(m+ x)3

−∂
2H

∂y2
= λ1

∂2f1
∂y2

+ λ2
∂2f2
∂y2

=
∂

∂y

[
1 + λ1

αm

(m+ x)
+ λ2(µu+ ν − αβx

(m+ x
)

]
= 0

− ∂2H

∂x∂y
= − ∂2H

∂y∂x
= λ1

αm

(m+ x)2
− λ2

αβm

(m+ x)2
=
αm(λ1 − βλ2)

(m+ x)2
,

so that

Hxx =

 2αmy(βλ2−λ1)
(m+x)3

αm(λ1−βλ2)
(m+x)2

αm(λ1−βλ2)
(m+x)2

0

 .
Combining the expressions for Hxx and fx above, finally obtain

∂Φ

∂p
=



−µu− αmy
(m+x)2

− αx
(m+x)

0 0

αβmy
(m+x)2

αβx
(m+x)

− µu− ν 0 0

2αmy(βλ2−λ1)
(m+x)3

αm(λ1−βλ2)
(m+x)2

µu+ αmy
(m+x)2

− αβmy
(m+x)2

αm(λ1−βλ2)
(m+x)2

0 αx
(m+x)

− αβx
(m+x)

+ µu+ ν


. (3.35)

To compute the partial derivative ∂Φ
∂u

, we use the above expressions (or Equations (3.30)–(3.33)

directly) to obtain

∂Φ

∂u
=

∂

∂u

 f(x, u)

−Lx(x, u)− fx(x, u)
Tλ

 =



(I − µx)

−µy

µλ1

µλ2


. (3.36)

Lastly, recall from Equation (3.28) that the optimal control u∗(t) is defined in terms of the state

p as

u∗(p) =

 ũ := 1
c
(λ1(µx− I) + λ2µy), if ũ ∈ [0, umax]

0, otherwise
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Its derivative with respect to p is therefore

du

dp
=


dũ
dp
, if ũ ∈ [0, umax]

0, otherwise

=


1
c
[µλ1, µλ2, µx− I, µy], if ũ ∈ [0, umax]

0, otherwise
. (3.37)

The following lemma establishes well-posedness of the boundary value problem (3.34).

Lemma 8 (Isolated root, see [49]). Problem (3.34) has a unique, isolated solution p∗ ∈

C([0, T ],R4).

Proof. The linearized system is
δp

dt
=
dΦ

dp
δp

where we define dΦ
dp

in Subsection 3.3.1, with boundary conditions



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


δp(0) +



0 0 0 0

0 0 0 0

0 0 1 0

0 0 1 0


δp(T ) = 0.

An equivalent way of stating these boundary conditions is

δp1(0) = 1, δp2(0) = 1, δp3(T ) = 1, δp4(T ) = 1.

This system is well-posed since dΦ
dp

is linear and therefore has a unique solution. Clearly, the

trivial solution satisfies this BVP, so δp = 0 is the only solution. Therefore, p∗ is an isolated

solution of (3.34).

Since the Pontryagin Maximum Principle gives rise to a BVP, (3.30)–(3.33), we next look

at some numerical methods for solving this BVP. In particular, we use will use shooting meth-

ods to solve the BVP.
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3.3 Shooting Methods

The Pontryagin Maximum Principle applied to our system in the previous section provides a

set of necessary optimality conditions that must be satisfied under the optimal control function

u∗. Specifically, the minimum condition, Condition 3, allows us to express the optimal control

explicitly in terms of the state x = (x, y) and adjoint vectors λ = (λ1, λ2), which jointly solve

the two-point boundary value problem (BVP) (3.30)–(3.33). It is challenging to analytically

find an explicit solution for thia BVP and must therefore be solved numerically. While there are

numerical methods available to solve the BVP directly, it is often more convenient to formulate

an equivalent initial value problem (IVP), i.e. one with the same solutions, which can then be

solved using standard numerical integrators. Given a BVP, we can use shooting methods to

transform the BVP into an IVP considering the boundary conditions as a function propogated

by the different possible initial conditions.

Shooting methods aim to find a associated initial value problem (IVP) of the form

dp

dt
= Φ(p;u(p)), p(0) = s, (3.38)

where s = (s1, s2, s3, s4)
T are the initial conditions, two of which are known, i.e., s1 = x0

and s2 = y0, and two of which are to be determined numerically, i.e., s3 and s4. Denote the

solutions to (3.38) with initial conditions s as p(t; s).

Clearly, the solution p∗(t) of the boundary value problem (3.34) satisfies the initial value

problem (3.38) for s∗ = p∗(0). We can evaluate the accuracy of any approximation s ≈ s∗

by computing the residual, which is just the function g evaluated at the boundary conditions

propagated by our guess s, i.e.

r(s) := g(s,p(T ; s)).

Our goal is to find an s∗ := [x0, y0, s
∗
3, s

∗
4]

T such that ∥r(s∗)∥ = 0. Then, by uniqueness

we have that p(t; s∗) is a solution to (3.34). We will approximate s∗ iteratively by means of

a Newton-Rhapson rootfinding method with initial guess s0. At the k-th iteration, the current
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estimate sk will thus be updated to

sk+1 = sk − J(sk)
−1r(sk),

where J(s) = dr
ds

is the 4 × 4 Jacobian matrix computed at the current iterate sk. Using the

definition of residual

r(s,p(T, s)) =



s1 − x0

s2 − y0

λ1(T, s)

λ2(T, s)


,

we can compute the Jacobian explicitly as

dr

ds
=



1 0 0 0

0 1 0 0

w3,1(T ) w3,2(T ) w3,3(T ) w3,4(T )

w4,1(T ) w4,2(T ) w4,3(T ) w4,4(T )


,

wherewi,j =
dpi
dsj

are the sensitivities of the solution p(t, s) with respect to the initial conditions,

which are treated in detail in Subsection 3.3.1. Two questions that arise in this context are: ‘For

which values of s is the initial value problem (3.38) well-posed?’ and ‘Under what conditions

are the sensitivies well-defined?’ Lemma 9 shows that well-posedness is guaranteed for all s

close enough to s∗. To this end, let

Sρ(s
∗) = {s ∈ R4 : ∥s− s∗∥ < ρ} (3.39)

denote a neighborhood of radius ρ > 0 around s∗, and let

Tδ{p∗} := {(t,p) : 0 ≤ t ≤ T, ||p∗(t)− p|| ≤ δ} ⊂ [0, T ]× R4 (3.40)

be the δ-region around the optimal trajectory p∗(t).
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Lemma 9 (Well-posedness of nearby IVPs and their linearizations). Let p∗(t) be a solution of

(3.34). Then there is a δ > 0 so that the mapping p 7→ Φ(p, u(p)) is continuously differentiable

in p in Tδ{p∗}. Therefore

(i) For each s ∈ Sρ(s
∗), where ρ = δe−KT , there exists a unique solution p(t, s) of (3.38)

on 0 ≤ t ≤ T , where K > 0 is the Lipschitz constant so that

||Φ(p, u(p))−Φ(p̃, u(p̃))|| ≤ K||p− p̃||, for all (t,p), (t, p̃) ∈ Tδ{p∗}.

(ii) The sensitivityW (t) = dp
ds

exists and is the solution of the linearized (sensitivity) equation

Ẇ =
dΦ

dp
W, W (0) = I.

Proof. It suffices to show that p 7→ Φ(p, u(p)) is continuously differentiable, in which case

the result follows from Lemma 1.25 in [49]. Explicit expressions for dΦ
dp

, ∂Φ
∂u

, and du
dp

, given

in Equations (3.35), (3.36), and (3.37) respectively, show that this can be achieved as long

as δ > 0 is chosen small enough to ensure that x remains bounded away from −m, e.g., by

guaranteeing that x ≥ −m
2

.

3.3.1 Sensitivity Equations

In this subsection, we formally derive the sensitivities ∂p
∂s

of solutions p(t, s) to the the initial

value problem (3.38) with respect to the initial conditions s. These will take the form of so-

lutions of the sensitivity equations (See Equation (3.41)). Let W = ∂p
∂s

denote the matrix of

sensitivities of the vector-valued function p(t, s) with respect to initial conditions s. Specifi-

cally, let

W =



∂x
∂s1

∂x
∂s2

∂x
∂s3

∂x
∂s4

∂y
∂s1

∂y
∂s2

∂y
∂s3

∂y
∂s4

∂λ1

∂s1

∂λ1

∂s2

∂λ1

∂s3

∂λ1

∂s4

∂λ2

∂s1

∂λ2

∂s2

∂λ2

∂s3

∂λ2

∂s4


.

49



As before, we will refer to the (i, j)-th entry of W as wi,j = ∂pi
∂sj

. Moreover, we will use

wi =
∂pi
∂s

to refer to the i-th row of W . For each fixed value of s, W represents a time-varying

matrix-valued function. We will now derive a linear system of differential equations satisfied

by W . To this end, we formally differentiate both sides of Equation (3.38) as well as its initial

conditions with respect to s. Interchanging the order of differentiation in the resulting system

gives rise to the sensitivity equations. Indeed, recall that Equation (3.38) takes the form

ṗ = Φ(p, u(p)), p(0) = s.

We can differentiate the initial condition with respect to s to obtain

∂

∂s
p(0, s) =

ds

ds
= I,

where I represents the 4 × 4 identity matrix. Differentiating both sides of the differential

equation and using the chain rule yields

∂

∂s

[
∂p

∂t

]
=

∂

∂s
[Φ(p, u(p))] =

dΦ

dp

∂p

∂s
.

Interchanging the order of differentiation then leads to the matrix system

Ẇ =
dΦ

dp
W, W (0) = I.

W = [w1,w2,w3,w4]
T =

[
∂x
∂s
, ∂y
∂s
, ∂λ1

∂s
, ∂λ2

∂s

]T
and = wi,j =

∂Φi

∂sj
so then differentiating (3.38)

with respect to s looks like:

Note that x and y are not dependent on s3 or s4, so

 ∂x
∂s3

∂x
∂s4

∂y
∂s3

∂y
∂s4

 =

0 0

0 0

 . Therefore, we

have:

W =



∂x
∂s1

∂x
∂s2

0 0

∂y
∂s1

∂x
∂s2

0 0

∂λ1

∂s1

∂λ2

∂s4

∂λ1

∂s3

∂λ1

∂s4

∂λ2

∂s1

∂λ2

∂s2

∂λ2

∂s3

∂λ2

∂s4


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To be able to evaluate the entries of ∂r
∂s

, we want to be able to evaluate the entries of W ,

since

∂r

∂s
=

∂

∂s



s1 − x0

s2 − y0

λ1(T, s)

λ2(T, s)


=



1 0 0 0

0 1 0 0

0 0 ∂
∂s3
λ1(T, s)

∂
∂s4
λ1(T, s)

0 0 ∂
∂s3
λ2(T, s)

∂
∂s4
λ2(T, s)


=



1 0 0 0

0 1 0 0

0 0 w3,3(T ) w3,4(T )

0 0 w4,3(T ) w4,4(T )


.

Therefore, we take the derivative our IVP, equation (3.38) with respect to s.

∂

∂s

dp

dt
=

∂

∂s
Φ(p, u),

∂

∂s
p0(0) =

∂

∂s
[s1, s2, s3, s4]

T

d

dt

∂p

∂s
=

∂

∂s
Φ(p, u), W (0) =



1 0 0 0

0 1 0 0

0 0 ∂s3
∂s3

∂s3
∂s4

0 0 ∂s4
∂s3

∂s4
∂s4


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


:= W 0

dW

dt
= F(p,W, u), W (0) = W0

where F(p,W, u) = ∂
∂s
Φ(p, u).

Thus we get our system of sensitivity equations

dW

dt
= F(p,W, u), W (0) = W0. (3.41)
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To explicitly find our F , we switch the order of differentiation to get the following:

d

dt

(∂Φ1

∂s

)
=

∂

∂s

(
(I − µx(t))u(t)− y(t)

αx(t)

m+ x(t)

)

d

dt

(∂Φ2

∂s

)
=

∂

∂s

(
y(t)

(
β

αx(t)

m+ x(t)
− µu(t)− ν

))

d

dt

(∂Φ3

∂s

)
=

∂

∂s

(
λ1

(
µu+

αmy

(m+ x)2

)
− λ2

αβmy

(m+ x)2

)
d

dt

(∂Φ4

∂s

)
=

∂

∂s

(
1 + λ1

αx

m+ x
− λ2

(
αβx

m+ x
− µu− ν

))

Making the appropriate substitutions, W = [w1,w2,w3,w4]
T =

[
∂x
∂s
, ∂y
∂s
, ∂λ1

∂s
, ∂λ2

∂s

]T
, and

differentiating, we get the following system of sensitivity equations:

dw1

dt
= −µw1u+ (I − µx)

∂u

∂s
− α((m+ x)w2x+mw1y)

(m+ x)2
(3.42)

dw2

dt
= w2

(
αβx

(m+ x)
− µu− ν

)
+ y

(
αβw1m

(m+ x)2
− µ

∂u

∂s

)
(3.43)

dw3

dt
= µuw3 +

αm

(m+ x)2
(yw3 + λ1w2 − βw4y − βλ2w2) (3.44)

+
2αmyw1(βλ2 − λ1)

(m+ x)3
+ µλ1

∂u

∂s

dw4

dt
=

αxw3

(m+ x)
+
αmλ1w1

(m+ x)2
−w4

(
αβx

(m+ x)
− µu− v

)
(3.45)

− λ2

(
αβmw1

(m+ x)2
− µ

∂u

∂s

)

where u = u∗ and ∂u
∂s

= −1
c
(w3I − µ(w3x + w1λ1 + w4y + w2λ2)) if u∗ = ũ, but ∂u

∂s
=

0 if u∗ ∈ {0, umax}.
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This means dW
dt

= F (p,W, u) is a matrix-valued system of ordinary differential equations:

dW

dt
=



−µu+ αmy
(m+x)2

αx
m+x 0 0

αβmy
(m+x)2

αβx
(m+x) − µu− ν 0 0

2αmy(βλ2−λ1)
(m+x)3

αm(λ1−βλ2)
(m+x)2

µu+ αmy
(m+x)2

−αβmy
(m+x)2

αm(λ1−βλ2)
(m+x)2

0 αx
(m+x) − αβx

(m+x) + µu+ ν





w1

w2

w3

w4


+



I − µx

−µy

µλ1

µλ2


∂u

∂s
,

with initial condition W (0) = W0.

Let W (t) denote the solution to equations (3.42)–(3.45) with initial condition W0 at time t

propogated by the initial condition to (3.38) equal to s. These solutions evaluated at time t = T

give us the unknown entries of the Jacobian. We will denote the Jacobian associated with s as

J(s). Then

J(s) =



1 0 0 0

0 1 0 0

w3,1(T ) w3,2(T ) w3,3(T ) w3,4(T )

w4,1(T ) w4,2(T ) w4,3(T ) w4,4(T )


(3.46)

Note that J is dependent upon s since the solutions to (3.42)–(3.45) are dependent on

finding p(t, s).

Therefore, given the kth guess for the initial conditions, sk, we can find the next guess

sk+1 = sk − J(sk)
−1r(sk) for k ≥ 1.

3.3.2 Single Shooting Method

Set desired tolerance tol = ε and maximum desired number of iterations imax.
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Now we can define the Jacobian at the kth iteration to be:

J(sk) :=



1 0 0 0

0 1 0 0

w3,1(T ) w3,2(T ) w3,3(T ) w3,4(T )

w4,1(T ) w4,2(T ) w4,3(T ) w4,4(T )


(3.47)

Then we execute the following algorithm:

Algorithm 1 Single Shooting Method

1: Choose s1 ∈ R4, ε > 0, and kmax ∈ N.
2: for k = 1, . . . , kmax do
3: Solve (3.38).
4: Compute r(sk).
5: if ||r(sk)|| < ε then
6: Stop. Use sk as adjoint initial conditions.
7: else
8: Compute Jk as defined in (3.47).
9: sk+1 = sk − J(sk)

−1r(sk).
10: end if
11: end for

Remark 10. Note that since the initial values s1 = x0 and s2 = y0 are known, the first two

components of the remainder function r(s1) will be zero at the beginning of the first iteration.

Writing the Jacobian in (3.47) in block matrix form

J(s) =

 I 0

W3:4,1:2 W3:4,3:4

 ,
we can rewrite the linear system satisfied by J(s)δs = r(s) as

 I 0

W3:4,1:2 W3:4,3:4




δs1

δs2

δs3

δs4


=



0

0

r3(s1)

r4(s1)


,
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which implies  s1

s2

 =

 0

0

 , and

 s3

s4

 = W
(−1)
3:4,3:4

 r3(s)

r4(s)

 ,
so that

s2 = s1 −



0

0

δs3

δs4


.

Thus the Newton method only updates the third and fourth components of sk.

The following theorem, taken from Theorem 1.29 in [49] guarantees that if we start close

enough to the optimal initial conditions s∗, we get quadratic convergence, provided that the

Jacobian is Lipschitz continuous and boundedly invertible.

Theorem 10 (from [49]). Let s∗ be the isolated, optimal initial condition associated with the

Hamiltonian boundary value problem (3.34), and let ρ∗ > 0 be such that

(i) The inverse Jacobian J−1(s) is uniformly bounded on Sρ∗(s
∗), i.e.,

||J−1(s∗)|| ≤ β, s ∈ Sρ∗(s
∗), and

(ii) The Jacobian J(s) is uniformly Lipshitz continuous on Sρ∗(s
∗), i.e., the is some γ > 0

||J(s)− J(s′)|| ≤ γ||s− s′|| for all s, s′ ∈ Sρ∗(s
∗), and

(iii) The radius ρ∗, the bound β, and the Lipschitz constant γ satisfy the constraint ρ∗βγ < 2
3
.

Then for every initial guess s1 ∈ Sρ∗(s
∗) the iterates in the single shooting algorithm

remain in Sρ∗(s
∗) and converge quadratically to s∗; in fact, for all k = 1, 2, ...

||sk+1 − s∗|| ≦ a||sk − s∗||2, where a :=
βγ

2(1− ρ∗βγ)
<

1

ρ∗
.
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In view of Remark 10, it suffices to consider the continuity and bounded invertibility of the

submatrix W3:4,3:4, consisting of sensitivies of the two adjoint variables with respect to both of

their initial conditions. These in turn can be related, through classical results (e.g. see [51]), to

the linear system defining the sensitivity equations. Indeed, as long as x+m remains bounded

away from 0 Theorem 7.4 and Theorem 7.5 in [51] imply that the sensitivities are continuously

differentiable functions of the initial conditions s. Moreover, using properties of the block

matrix J , we have det(J) = det(W3:4,3:4). We thus require the sensitivies

 w3,3(T ) w3,4(T )

w4,3(T ) w4,4(T )


to be linearly independent at the interval endpoint.

The major problem with the single shooting method is the radius of convergence. In par-

ticular, the radius ρ∗ > 0 in Lemma 10 depends on the radius ρ > 0 in Lemma 9, which in turn

is exponentially decaying in the variable T . Larger time intervals therefore guarantee a fairly

small radius of convergence. The multple shooting method, discussed in the following section

addresses this shortcoming by first subdividing the time interval into many shorter subintervals,

thereby effectively increasing the radius of convergence.

3.3.3 Multiple Shooting Method

Part of the problem with the single shooting method is that when we transform our BVP into

an IVP, the IVP may be unstable even though the related BVP was well-posed and stable.

However, in some instance, the single shooting method works fine for a very small interval

of time. The multiple shooting method essentially breaks up the entire time interval into sub-

intervals and solves the system on each sub-interval. Now our residual does not only take

into account the boundary conditions, but we also impose patching conditions for continuity

amongst sub-intervals.

We start by partitioning our interval [0, T ] into N sub-intervals, calling the endpoints of

the sub-intervals nodes.

0 = t0 < t1 < ... < tN = T

56



Then our first guess s is actually a set of guesses for initial conditions on each sub-interval.

So for the ith iteration, let si = [s1, s2, s3, s4, ..., s4N ]
T . While we know the initial conditions

on x and y at time t0 = 0, we have to start with an initial guess for the initial conditions on each

sub-interval. Let sij = [sij, s
i
j+1, s

i
j+2, s

i
j+3]

T denote the initial conditions for the jth interval on

the ith iteration. Then we have si1 = x0, s
i
2 = y0.

Let xj(t), yj(t), λ1j(t), λ2j(t) denote the phase solutions on the jth sub-interval. Then for

1 ≤ j ≤ N the solutions for the jth sub-interval are found by solving the following IVP on

t ∈ [tj−1, tj]:

dx(t)

dt
= (I − µx(t))u(t)− y(t)

αx(t)

m+ x(t)
, x(tj−1) = s4j−3, (3.48)

dy(t)

dt
= y(t)

(
β

αx(t)

m+ x(t)
− µu(t)− ν

)
, y(tj−1) = s4j−2, (3.49)

dλ1(t)

dt
= λ1

(
µu+

αmy

(m+ x)2

)
− λ2

αβmy

(m+ x)2
, λ1(tj−1) = s4j−1, (3.50)

dλ2(t)

dt
= 1 + λ1

αx

m+ x
− λ2

(
αβx

m+ x
− µu− ν

)
, λ2(tj−1) = s4j, (3.51)

Let pj(t, sj) = [xj(t), yj(t), λ1j(t), λ2j(t)]
T be the phase solutions on the jth interval

and let pi
j(t, s

i
j) = [xij(t), y

i
j(t), λ

j
1i
(t), λj2i(t)]

T be the solutions on the jth interval at the ith

iteration.

The following lemma establishes a radius around s∗ around which the initial value prob-

lems (3.48)–(3.51) and their sensitivity equations are well-posed, showing explicitly how mul-

tiple shooting improves the radius of convergence.

Lemma 10 (Well-posedness of multiple shooting IVPs (see [49]). Let the hypotheses of Lemma

9 hold, with δ > 0 being the radius around s∗ within which p 7→ Φ(p, u(p)) is uniformly

Lipschitz continuous with Lipschitz constant K. Then the initial value problems (3.48)–(3.51),

as well as the associated sensitivity equations are well-posed for any

s ∈ Sρ̂(s
∗), ρ̂ := δe−KT/N ,
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Specifically,

ρ̂ = eKT (1− 1
N
)ρ.

Now our residual function does not just measure whether the target boundary conditions

are being met, but we also impose continuity conditions between sub-intervals. So our residual

function looks like:

r(s) =



g(s1,pN(T, sN))

p1(t1, s1)− s2
...

pN−1(tN−1, sN−1)− sN


(3.52)

where g(s1,pN(T, sN)) = [s1 − x0, s2 − y0, λ
N
1 (T, sN), λ

N
2 (T, sN)]

T .

And now when we evaluate the Jacobian, we differentiate with respect to s, which yields

the following:

J =



∂g
∂s

∂p1

∂s
− ∂s2

∂s

...

∂pN−1

∂s
− ∂sN

∂s


For the first row of the Jacobian, the entries denote the partial derivative of g with respect to s,

which is derived by taking the derivative of g with respect to sj for 1 ≤ j ≤ N. So the entries

of the first row are ∂g
∂s1
, ∂g
∂s2
, . . . , ∂g

∂sN
.

For each of the rest of theN rows, we have entries ∂pj−1

∂s1
− ∂sj

∂s1
,
∂pj−1

∂s2
− ∂sj

∂s2
, . . . ,

∂pj−1

∂sj
− ∂sj

∂sj

for 2 ≤ j ≤ N. Therefore our Jacobian takes the form:

J =



∂g
∂s1

∂g
∂s2

. . . ∂g
∂sN

∂p1

∂s1
− ∂s2

∂s1

∂p1

∂s2
− ∂s2

∂s2
. . . ∂p1

∂sN
− ∂s2

∂sN

... . . . . . .
...

∂pN−1

∂s1
− ∂sN

∂s1

∂pN−1

∂s2
− ∂sN

∂s2
. . . ∂pN−1

∂sN
− ∂sN

∂sN


(3.53)
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But since g = [s1 − x0, s2 − y0, λ
N
1 (T, sN), λ

N
2 (T, sN)]

T , we have ∂g
∂sj

= 0 for all j /∈

{1, N}, while

∂g

∂sN
=



0 0 0 0

0 0 0 0

∂λ1N

∂sN−3

∂λ1N

∂sN−2

∂λ1N

∂sN−1

∂λ1N

∂sN

∂λ2N

∂sN−3

∂λ2N

∂sN−2

∂λ2N

∂sN−1

∂λ2N

∂sN


We also note that s1 = [s1, s2, s3, s4]

T = [x0, y0, s3, s4]
T , so that

dg

ds1
=



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


.

Let’s denote J1 :=

 ∂λ1N

∂sN−3

∂λ1N

∂sN−2

∂λ1N

∂sN−1

∂λ1N

∂sN

∂λ2N

∂sN−3

∂λ2N

∂sN−2

∂λ2N

∂sN−1

∂λ2N

∂sN

 .
And then we can see now that our Jacobian so far looks like:

J =



1 0
0 1

0 0 0 0
0 0 0 0 . . . 0 0 0 0

0 0 0 0

0 0
0 0

0 0 0 0
0 0 0 0 . . . J1

∂p1

∂s1
− ∂s2

∂s1

∂p1

∂s2
− ∂s2

∂s2
. . . ∂p1

∂sN
− ∂s2

∂sN

... . . . . . .
...

∂pN−1

∂s1
− ∂sN

∂s1

∂pN−1

∂s2
− ∂sN

∂s2
. . . ∂pN−1

∂sN
− ∂sN

∂sN


Note that since the solution in the jth sub-interval is independent of the initial conditions in

any other interval, and the initial conditions in the jth sub-interval are independent of the initial

conditions in any other interval, we have: ∂pj

∂sk
= 0 and ∂sj

∂sk
= 0 for all j ̸= k, 1 ≤ j, k ≤ N.

Similarly, the initial conditions for x, y, λ1, λ2 in a given interval are independent of each other,

so ∂sj
∂sk

= 0 for all j ̸= k, 5 ≤ j, k ≤ 4N. Also, ∂sj
∂sj

= 1 for all 4 ≤ j ≤ 4N . So along the

diagonal beginning from the second row, we will have blocks of −I4,
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where I4 is the identity matrix, I4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

So now we can see that so far our Jacobian looks like:

J =



1 0
0 1

0 0 0 0
0 0 0 0 . . . . . . . . . 0 0 0 0

0 0 0 0

0 0
0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 . . . 0 0 0 0

0 0 0 0 J1

∂p1

∂s1
−I4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. . .
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0

∂p2

∂s2
−I4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. . .
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

... . . . . . .
... . . . ...

0 0
0 0
0 0
0 0

. . . . . .
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∂pN−1

∂sN−1
−I4


What’s left is to define our unknown blocks, ∂p1

∂s1
and ∂pj

∂sj
, for 2 ≤ j ≤ N − 1 :

∂p1

∂s1
=



∂x1

∂s3

∂x1

∂s4

∂y1
∂s3

∂y1
∂s4

∂λ11

∂s3

∂λ11

∂s4

∂λ21

∂s3

∂λ21

∂s4


and

∂pj

∂sj
=



∂xj

∂s4j−7

∂xj

∂s4j−6

∂xj

∂s4j−5

∂xj

∂s4(j−1)

∂yj
∂s4j−7

∂yj
∂s4j−6

∂yj
∂s4j−5

∂yj
∂s4(j−1)

∂λ1j

∂s4j−7

∂λ1j

∂s4j−6

∂λ1j

∂s4j−5

∂λ1j

∂s4(j−1)

∂λ2j

∂s4j−7

∂λ2j

∂s4j−6

∂λ2j

∂s4j−5

∂λ2j

∂s4(j−1)


Let’s define J2 :=

∂p1

∂s1
and Jj :=

∂pj−1

∂sj−1
, for 3 ≤ j ≤ N .

Recall
[
∂x
∂s
, ∂y
∂s
, ∂λ1

∂s
, ∂λ2

∂s

]
= [w1, w2, w3, w4]T = w, so for the jth sub-interval, we have[

∂x
∂sj
, ∂y
∂sj
, ∂λ1

∂sj
, ∂λ2

∂sj

]
= [w1

j , w
2
j , w

3
j , w

4
j ]

T = wj . Therefore, the entries of Jj, 1 ≤ j ≤ N

are found by solving the sensitivity equations on the interval [tj−1, tj] under initial conditions

[1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T , [0, 0, 0, 1]T when differentiating with respect to s4k−3, s4k−2,

s4k−1, and s4k respectively, where 1 ≤ k ≤ N , evaluated at the endpoint of the corresponding

sub-interval.

Let’s call the solutions to the sensitivity equations with these initial conditions as follows:

w1(t),w2(t),w3(t),w4(t).
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Doing so, we see

J1 =

w3
1(T ) w3

2(T ) w3
3(T ) w3

4(T )

w4
1(T ) w4

2(T ) w4
3(T ) w4

4(T )

 , (3.54)

J2 =



w1
3(t1) w1

4(t1)

w2
3(t1) w2

4(t1)

w3
3(t1) w3

4(t1)

w4
3(t1) w4

4(t1)


, (3.55)

and for 3 ≤ j ≤ N,

Jj =



w1
1(tj−1) w1

2(tj−1) w1
3(tj−1) w1

4(tj−1)

w2
1(tj−1) w2

2(tj−1) w2
3(tj−1) w2

4(tj−1)

w3
1(tj−1) w3

2(tj−1) w3
3(tj−1) w3

4(tj−1)

w4
1(tj−1) w4

2(tj−1) w4
3(tj−1) w4

4(tj−1)


. (3.56)

Let 0m×n be a matrix of dimension m rows by n columns with all entries = 0. Let In be

the identity matrix of size n× n. Then our Jacobian, J can be defined as follows:

J =



I2 02×4 . . . . . . . . . . . . 02×4

02×2 02×4 . . . . . . . . . 02×4 J1

J2 −I4 04×4 . . . . . . . . . 04×4

... . . .
. . . . . . . . . . . .

...

04×2 . . . Jj −I4 04×4 . . . 04×4

... . . .
. . . . . . . . . . . .

...

04×2 . . . . . . . . . 04×4 JN −I4



(3.57)

Using this residual and Jacobian imposes patching conditions after each iteration and

forces the solutions to converge to be continuous in addition to the previous need to satisfy

the terminal conditions. For example, here is an example of the progression with N = 4

sub-intervals.
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(a) k = 1 First iteration
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(b) k = 2 Second iteration
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(c) k = 5 Fifth iteration
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(d) k = 20 Twentieth iteration

Figure 3.1: An example of multiple shooting method’s convergence with parameter values
given by I = 2, µ = 0.8, α = 2, β = 2, m = 0.1, ν = 0.5, c = 1, and umax = 5.
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Let ski be the initial conditions for the ith sub-interval on the kth iteration.We will denote

by J(sk) the Jacobian for the kth iteration. We then set desired tolerance tol = ε, number of

sub-intervals subs = N , maximum desired number of iterations imax. Then we execute the

multiple shooting method by implementing the following algorithm.

Algorithm 2 Multiple Shooting Method

1: Set N ∈ N, s1 ∈ R4N , ε > 0, and imax ∈ N.
2: for i = 1, . . . , imax do
3: Simultaneously solve (3.48) – (3.51) with initial conditions si = [si1, s

i
2, . . . , s

i
N ].

4: Compute r(si).
5: if ||r(si)|| < ε then
6: Stop. Use si3, s

i
4 as adjoint initial conditions.

7: else
8: Compute Ji as defined in (3.57).
9: si+1 = si − J−1(si)r(si).

10: end if
11: end for

3.4 Numerical Simulations

Here we illustrate some examples numerically justifying our results.

3.4.1 Example 1: Single Shooting Method

First, we show some simulations using the Single Shooting Method. Our initial conditions for

the state variables are x0 = 0.1, y0 = 0.1. Our initial guess for the adjoint initial conditions is

s = [−0.1,−3]T , and the method converges with a 8.944282 × 10−13 residual norm, ending

with λ1(0) = −0.0245076454076917, λ2(0) = −0.229827769589335.
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Figure 3.2: Plot of the joint dynamics of the nutrition level x and the bacterial population y,
along with adjoint trajectories λ1 and λ2 with parameters I = 2, µ = 0.8, α = 2, β = 2,
m = 0.1, ν = 0.5, c = 1, and umax = 5.
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(a) Optimal Control u∗(t)
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(b) Residual

Figure 3.3: Plots from the Single Shooting Method of the optimal control u and the norm of the
residual r after 40 iterations with parameters I = 2, µ = 0.8, α = 2, β = 2, m = 0.1, ν = 0.5,
c = 1, and umax = 5.
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3.4.2 Example 2: Single Shooting Fails, Multiple Shooting Converges

Our next simulation illustrates an example where the Single Shooting Method fails to converge,

but the Multiple Shooting Method does converge. For the Single Shooting method, we use ini-

tial guesses for the adjoint initial conditions s = [−0.155752318086413,−0.728016286737916]T

and the method fails to yield correct initial conditions for λ1 and λ2 to reach 0. Note that resid-

ual norm does not converge to 0, but actually begins to oscillate through the values

{0.12837210010308, 0.323123408311658, 0.608671342895119, 0.793190350561888,

0.1283721001030640.323123408311807, 0.608671342895419}. In contrast, using the Multiple

Shooting Method with N = 10 sub-intervals, the residual norm converges within only 7 iter-

ations. We used sj = [1, 1, 1, 1]T for 1 ≤ j ≤ 10 as the adjoint initial conditions on each

sub-interval. The adjoint initial conditions produced by the algorithm are

λ1(0) = −0.155752318086413, λ2(0) = −0.728016286737916.
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(a) Single Shooting Method
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(b) Multiple Shooting Method

Figure 3.4: A contrast between Single Shooting failure and Multiple Shooting convergence,
both with time interval t ∈ [0, .5] and parameters I = 2, µ = 0.8, α = 2, β = 2, m = 0.1,
ν = 0.5, c = 1, and umax = 5.
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3.4.3 Example 3: Multiple Shooting Method

Next we look at a simulation of the Multiple Shooting Method on a longer time interval, [0, 1].

Here we also plot the Hamiltonian to show it is conserved along the optimal u∗ trajectory. We

used sj = [1, 1, 1, 1]T for 1 ≤ j ≤ 10 as the adjoint initial conditions on each sub-interval. The

method converges after 8 iterations. The adjoint initial conditions produced by the algorithm

are λ1(0) = −0.544639271150085, λ2(0) = −2.77751948107959.
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Figure 3.5: An example of Multiple Shooting Method with convergence with parameters I = 2,
µ = 0.8, α = 2, β = 2, m = 0.1, ν = 0.5, c = 1, and umax = 5.
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Next we contrast the cost yielded by the optimal u∗(t) given above with a constant control

u(t) = ū ∈ R where ū is equal to the average value of u∗(t) on [0, T ], i.e. ū ≡ 1
T

∫ T

0
u∗(t)dt.

We compute the cost functional, J(u) =
∫ T

0

(
− y(t) + c

2
u2(t)

)
dt, for u = ū and u = u∗(t),

and get J(ū) = −0.261672237985602, while J(u∗(t)) = −0.752313227989741. So we can

see that the optimal control u∗(t) minimizes the cost functional over a constant control with the

same average value.
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Figure 3.6: The control functions are plotted over [0, 1] for u∗(t) and ū = 1
T

∫ T

0
u∗(t)dt with

parameters I = 2, µ = 0.8, α = 2, β = 2, m = 0.1, ν = 0.5, c = 1, and umax = 5. Below
that, the Lagrangian cost functions L(t,x(t), u∗(t)) and L(t,x(t), ū) are plotted, showing the
area under the curve of the optimal control is more negative than the area under the curve of
the constant control.
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Chapter 4

Conclusion and Future Work

In Chapter 2, a simple but novel model on the growth mechanisms of the gut microbiome was

developed and studied. While in a simplistic setting, the model considers growth of the bacteria

both on and inside the gut wall, intra-specific competition among bacterias in different groups,

in addition to their growth due to consumption of nutrient and natural collective death. The

highlight of this work is the consideration of variable nutrient inputs, that gives rise to a sys-

tem of nonautonomous differential equations. Using theory and techniques of nonautonomous

dynamical systems, sufficient conditions under which the bacteria dies out or persists are es-

tablished and compared to those of the autonomous counterpart. In particular, it was both

theoretically and numerically shown that time-dependent inputs may promote persistence of

the bacteria. More precisely, with the same average nutrient input over a specific period of

time, bacteria can persist when the inputs are time-dependent, but die out when the inputs are

constant.

A natural extension of this problem would be to consider a larger model where we in-

troduce the dynamics of another microorganism that can compete with our Y (t). Another

direction may be to model “leaky-gut syndrome,” where the bacteria can not only attach to the

wall but also break through the lining of the intestine.

Since Chapter 2 showed that time-dependent input of nutrient may result in asymptotic

behavior different from constant input of nutrient, in Chapter 3 we investigated how the growth

of a particular type of bacteria can be boosted or inhibited to maintain a healthy gut. In this

chapter, a different model on the growth mechanisms of the gut microbiome was developed,
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studied, and optimized. We used Pontryagin’s Maximum Principle to find an optimal piece-

wise continuous control function, u∗(t) for a given time interval [0, T ]. We applied shooting

methods to solve the boundary value problem that arises from PMP. Then we showed numeri-

cal simulations of the theoretical results that a time-varying input maximizes the growth of the

beneficial microorganism over a constant input rate.

Further work on this problem will feature including the probiotic population. Another

variation we are interested in is changing the optimality problem. In this dissertation, we con-

sidered one beneficial bacterial population and maximized the growth of this microorganism

over a given time interval. Other interesting variations of the problem would be trying to erad-

icate a harmful bacteria efficiently while promoting persistence of the beneficial bacteria.
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