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Abstract

Rendezvous maneuvers are designed to match the position and velocity vectors of a tar-

get body (e.g., planet, comet, satellite) whereas transfer maneuvers are designed to match the

orbital elements of the target body, except for the true anomaly under a two-body dynamical

model. The question of how many impulsive maneuvers are necessary to minimize the total

delta-v, ∆v, for a transfer-type maneuver, has remained open for decades. In addition, effi-

cient maneuver placement is an important step to generate impulsive trajectories. Recently, the

introduction of optimal switching surfaces revealed the existence of iso-impulse trajectories

with different numbers of impulses for fixed-time rendezvous maneuvers. The multiplicity of

minimum-∆v impulsive trajectories for long-time-horizon maneuvers is studied in this work.

One notable feature of these extremal impulsive trajectories is that many of the impulses are

applied at a specific position, highlighting the significance of what we coin as “impulse anchor

positions.” The impulse anchor position is chosen to break up the total impulse into multiple

impulsive maneuvers while respecting the primer vector theory. It is demonstrated that under

the inverse-square gravity model, multiple-impulse, minimum-∆v solutions can be generated

using a fundamental two-impulse solution, which provides the impulse anchor positions as

well as the impulse direction and magnitude. Leveraging the two-impulse base impulsive so-

lution, an analytic method is developed to generate multiple-impulse minimum-∆v trajectories

by forming algebraic ∆v− allocation problems.

In addition to recovering all impulsive solutions for a multi-revolution benchmark prob-

lem from the Earth to asteroid Dionysus, the minimum-∆v solutions are classified and it is

shown that there are infinitely many optimal iso-∆v solutions (i.e., requiring the same total

∆v). The proposed method allows providing analytic bounds on the lower (required) and upper

(allowable) number of impulses for three important classes of maneuvers: fixed-terminal-time

rendezvous, free-terminal-time rendezvous, and phase-free transfer. A new interpretation of

the primer vector for impulsive extremals with phasing orbits is proposed.
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Chapter 1

Introduction

Exploration of space is one of the ongoing goals of mankind. Exploring the universe around

our planet, and even exploring our planet, is enabled by space exploration. Starting from Ke-

pler, defining laws of planetary motion, and continuing with Newton deriving inverse-square

law and gravitational force relations, we first wanted to understand the motion of the celes-

tial bodies. Fast forward to technological advancements, the first spacecraft was launched into

Earth’s orbit. Later advancements include accomplishing the first human steps on the Moon.

Since then, more and more spacecraft have been designed and built to serve: scientific missions,

telecommunication, reconnaissance, and permanent establishment beyond the low Earth orbits.

To accomplish all of these challenging tasks, the spacecraft has to travel an optimal trajectory

(with respect to an optimality objective/goal) as well as use the limited resources on board ef-

ficiently. Therefore, it is crucial to generate optimal trajectories for successful missions, which

leads to the typical classes of minimum-time and minimum-fuel problems for spacecraft tra-

jectory optimization. These problems are challenging since the dynamics are nonlinear, there

exist discontinuities in the state and control variables, there are disturbing forces acting on the

spacecraft, and the number of required maneuvers is not usually known a priori [1].

1.1 Motivation

Impulsive trajectory optimization remains one of the fundamental tasks in designing space

missions. Optimal impulsive trajectories minimize the total ∆v (delta-v) needed to perform a

mission. The total ∆v can be defined as the sum of all velocity changes due to the acceleration
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exerted on the spacecraft by its propulsion system. The total ∆v can be related to the propellant

consumption through the Tsiolkovsky rocket equation.

An important aspect of impulsive trajectories is the optimal placement of the impulsive

maneuvers along the trajectory, as well as the total number of impulses needed to perform

minimum-∆v maneuvers. Among those who studied space flights, Theodore Edelbaum’s re-

search on trajectory optimization began in 1954, and he became one of the pioneering contrib-

utors to the rapidly growing field of space trajectory optimization. In 1967, he wrote an influ-

ential paper titled “How many impulses?” with a survey on the number of impulses required

for different minimum-∆v impulsive trajectories [2]. This is a fundamental and challenging

question in astrodynamics and has been rigorously studied by some of the greatest intellectuals

in astrodynamics/trajectory optimization for decades [3].

In a recent study, Taheri and Junkins introduced the idea of the optimal switching sur-

faces using a continuation-based method [4]. The switching surface notion establishes an in-

tuitive, but rigorous connection between (continuous) low-thrust and impulsive trajectories.

The switching surface is obtained by solving a minimum-fuel low-thrust trajectory optimiza-

tion problem and applying a natural parameter continuation on the maximum acceleration or

maximum thrust parameter. Increasing the acceleration gradually guides the solution closer to

an impulsive solution. Optimal switching surface information provides an initial guess for the

placement of the impulses. Taheri and Junkins also investigated the “How many impulses?”

question and concluded that, in general, there is no unique answer to this question when total

∆v is used as the only criterion under the inverse-square gravity model. In addition, they have

shown that for the fixed-time rendezvous trajectories, there exist solutions with different num-

bers of impulses but the total value of ∆v is identical (up to seven digits) on a few extremal

multiple-impulse solutions for a benchmark problem from the Earth to asteroid Dionysus.

While Taheri and Junkins have answered Edelbaum’s question within the context of fixed-

time rendezvous maneuvers, the necessary number of impulses required for a transfer-type

maneuver has remained open for decades. In this thesis, the solutions that have equal ∆v

values are defined as iso-impulse or iso-∆v solutions.
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After consideration of the iso-impulse solutions, it is important to address the common

features of these iso-impulse, long-time-horizon, and minimum-∆v trajectories. The work

is extended to answer the question of “How many impulses?” for orbit-to-orbit transfer-type

maneuvers or simply transfer maneuvers, as well as determining what are the upper and lower

bounds on the number of impulses required for an impulsive transfer.

1.2 Objectives

This investigation aims to contribute to the generation of impulsive trajectories with a long-time

horizon in the setting of a benchmark Earth to asteroid Dionysus (Earth-Dionysus) transfer- or

rendezvous-type maneuvers. The method is motivated by the Earth-Dionysus problem. How-

ever, results can be expanded to different transfer problems. The generalization of the de-

veloped method is also demonstrated by solving two planet-centric impulsive trajectory opti-

mization problems. Solving the Earth-Dionysus problem better demonstrates the utility of the

method, since the Earth-Dionysus problem has a long time of flight. The common features

among the iso-impulse solutions of the Earth-Dionysus problem are investigated to understand

how these solutions can be generated without going through the steps of any continuation-based

methods. The lower (required) and upper (possible) bounds on the number of impulses for the

class of long-time horizon minimum-∆v trajectory optimization problems are given.

The goals are addressed by answering the following three questions:

1. How these iso-impulse solutions can be generated for long-time-horizon multiple-revolution

impulsive trajectories?

As will be shown herein, the existence of multiple phasing orbits is leveraged to re-

cover the known impulsive solutions as well as the infinitely many solutions. An an-

alytical method is proposed to generate infinitely many solutions starting from a base

two-impulse solution. Obviously, solving a set of algebraic equations is computation-

ally more efficient (by orders of magnitude) compared to existing methods that solve

two-point boundary-value problems (TPBVPs) to generate the continuation-based initial

3



guess for the formulated direct-based Nonlinear Programming (NLP) problem. There-

fore, this method removes the step to go through solving multiple TPBVPs and solving

an NLP problem. The problem of generating iso-impulse solutions reduces to solving a

family of analytic ∆v-allocation problems.

2. How can we classify iso-impulse solutions? and what is the solution space for these fam-

ilies of solutions?

Impulsive trajectories are classified based on the number of revolutions a spacecraft

makes on a) the initial orbit, b) on a finite, yet unknown number of phasing orbits, c)

a phase-free two-impulse arc, and d) the target orbit. The solution envelopes (with re-

spect to the orbital periods) are also presented to identify the solution space for a family

of solutions.

3. Can the infinitely many solutions be used to determine the upper and lower number of

impulses for long-time-horizon multiple-revolution trajectories?

The analytic bounds on the lower and upper number of impulses are presented using an

important feasibility relation (corresponding to the available time for performing phas-

ing maneuvers). The classes of maneuvers that are characterized by the proposed method

are extended to a) fixed-terminal-time rendezvous maneuvers, b) free-terminal-time ren-

dezvous maneuvers, and c) free-terminal-time transfer maneuvers.

In this thesis, first, the benchmark Earth-Dionysus problem is considered. However, the

results are applicable to general long-time-horizon, many-revolution impulsive trajectories. In

order to show the utility of the method, two planet-centric problems are solved.

1.3 Previous Contributions

Previous contributions to the topics studied in this research effort are reviewed in this chapter.
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1.3.1 Primer Vector Theory

One approach to finding optimal impulsive trajectories is to use Lawden’s primer vector the-

ory [5]. The primer vector theory provides the necessary conditions for optimality. The nec-

essary conditions are defined in terms of the magnitude of the primer vector (i.e., the costate

associated with the velocity vector, p = −λv, where p is the primer vector and λv is the costate

associated with the velocity vector). Note that the negative coefficient is because the minimum

principle is used.

Due to the importance of Lawden’s impulsive necessary conditions, they are repeated here:

1. the primer vector and its first derivative are continuous everywhere,

2. the magnitude of the primer vector remains less than unity, i.e., p = ∥p∥ < 1 except for

the impulse times when ∥p∥ = 1,

3. at the impulse time instance, the primer vector is a unit vector along the optimal direction

of impulse, and

4. at any intermediate impulse time, dp/dt = ṗ = ṗ⊤p = 0.

The violation of necessary conditions provides several ways to obtain an improved impul-

sive solution, through adding mid-course impulses, adjusting impulse locations or times, and

addition of terminal coast arcs [6, 7].

For linearized dynamics [8, 9], the set of necessary conditions become sufficient condi-

tions and it is proven that the number of impulses is, at most, equal to the number of speci-

fied/fixed states at the final orbit [10]. The primer vector theory is also used for verifying the

local optimality of the obtained impulsive solutions and it provides the optimal direction for

the impulses. Linearized dynamics are mostly used for close-proximity problems that consider

the rendezvous of two spacecraft. These rendezvous impulsive trajectories are considered for

debris-removal, in-orbit operations, and docking maneuvers [11, 12, 13, 14, 15]
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1.3.2 Impulsive Trajectory Optimization

Prior to the development of electric thrusters, spacecraft trajectories included only impulsive

maneuvers, since the spacecraft are equipped with chemical rockets. Chemical rockets produce

a large amount of thrust during a relatively short time interval of operation. This leads to con-

tinuous change in the velocity of the spacecraft, which is ideally modeled as an instantaneous

velocity change, introducing a discontinuity to the velocity along the trajectories. Under a two-

body dynamical model and in-between consecutive impulses, the motion of the spacecraft is

governed by the (restricted) two-body dynamics. Then, the design variables for the impulsive

trajectories are the location, time, direction, and magnitude of the impulse.

Early work on the impulsive trajectories is focused on the transfer, rendezvous, and in-

tercept trajectories [16]. Impulsive trajectories can also offer reachability insights to show the

reachability of the spacecraft with different constraints on the direction and the magnitude of

the impulse [17, 18, 19]. Another constraint defining impulsive trajectories is having free-

time and fixed-time trajectories. Oftentimes, the analytical approaches are used for preliminary

analysis purposes. Analytical investigations of impulsive trajectories play an important role in

classifying solutions. One notable analytical method is the Hohmann transfer [20]. Hohmann

transfer can be used for analyzing transfers between circular coplanar orbits. It is proved that

the optimal two-impulse transfer is cotangential to the circles at the periapsis and apoapsis of

the connecting elliptical orbit. Also, it is shown that the Hohmann transfer is the global optimal

solution [21] for a certain range of ratios of the radii of the final and initial orbits. Hohmann

transfer can also be used for analyzing transfer maneuvers between coaxial, coplanar elliptical

orbits. In order to improve two-impulse solutions for circular to circular planar transfers, the bi-

elliptic transfer is introduced [22, 23]. Some of the studies considering specific geometrical or-

bit shapes and a constrained number of impulses are given in References [24, 25, 26, 27, 28, 29].

The survey paper of Gobetz and Doll includes the early studies, until 1969 [16].

As mentioned earlier, efficient maneuver placement for impulsive trajectories can also be

achieved using the primer vector information. When a two-impulse solution is obtained for a

trajectory, the time history of the primer vector magnitude provides information on the impulse
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time and place to improve the solution. In doing so, a feasible sub-optimal impulsive solution

can be improved to a local extremal solution that satisfied Lawden’s optimality conditions.

Typically, a hybrid solution approach is considered for such cases. The design variables are

chosen as the impulse times and positions and the continuation of the trajectory is accomplished

by solving Lambert’s problem in the inner level of a Nonlinear Programming (NLP) solver.

Therefore, these approaches are called hybrid methods, as they combine indirect-based primer

vectors with direct solvers. Primer vector theory has been applied to many different types of

impulsive trajectory optimization problems. For instance, optimization based on the primer

vector theory is considered for coplanar and noncoplanar, circle-to-circle, and low-eccentricity

fixed-time rendezvous problems for determining placement and the number of maneuvers [7,

30, 25, 31, 32, 33]. In these approaches, an initial feasible solution is obtained. The initial

solution might have two or more impulses. Later, the primer vector norm and its derivative are

plotted to determine the violations of the necessary conditions. Depending on that information,

the addition of impulse or coast arcs can be considered [34, 35, 36]. However, these additions

of impulses to the trajectory have to be done in an incremental manner. If there are multiple

violations, the order of the introducing impulses can affect the final trajectory.

Application of the primer vector for determining the number of impulses on multi-gravity-

assist trajectories is also demonstrated in [37]. An algorithm to optimize the number of im-

pulses for the fuel-optimal linear impulsive rendezvous problem is proposed in [38] by utiliz-

ing the primer vector theory. Analytical solutions for impulsive elliptic out-of-plane rendezvous

problems via primer vector theory are presented in [33].

Impulsive trajectories for interplanetary missions can be solved using broad-search algo-

rithms, especially for multiple objectives, and multiple-impulse trajectories [39]. These meth-

ods consist of a large decision space that offers the flexibility of applicability to a greater variety

of missions for automated trajectory search, often considering multiple flybys and V∞ maneu-

vers [40, 41]. Landau [42] has developed an algorithm based on the primer vector theory for

efficient maneuver placement for automated trajectory design that includes multiple gravity-

assist maneuvers. The proposed primer-based maneuver-placement method does not increase
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the dimension of the decision variables significantly. These automated trajectory design meth-

ods typically consist of multiple objectives and have discrete and continuous decision variables

[43, 44]. Evolutionary algorithms seek the global optimal solution and do not require an ini-

tial guess, but they do not offer high-accuracy solutions for impulsive trajectories [45]. Some

example studies are given in the References [46, 47, 48, 49, 50].

As an alternative method, the location and time of the impulses for an impulsive tra-

jectory can be obtained by applying continuation-based methods. A homotopy-based and/or

continuation-based approach is used for the indirect-based impulsive trajectories [31]. For in-

stance, Zhu et al. considered a continuation procedure to be applied on the thrust parameter

to obtain low-thrust solutions starting from a two-impulse Lambert solution [51]. Recently,

Taheri and Junkins [4] introduced and utilized the concept of optimal switching surfaces and

have shown that a bottom-up approach, leveraging continuous-thrust solutions, can be used

to generate multiple-impulse minimum-∆v solutions. They performed a natural parameter

continuation on the maximum thrust parameter to get a high-quality initial guess for the di-

rect methods-based impulsive trajectory optimization tool. Another version of this approach

is proposed where the optimal control problem is formulated using the acceleration to sim-

plify the formulation, and the continuation is performed in the maximum acceleration parame-

ter [52, 53, 54].

1.4 Current Work

This research effort investigates the multiplicity of minimum-∆v trajectories first reported in

the literature for the Earth-to-Dionysus problem. The investigation of iso-impulse minimum-

∆v solutions leads to an analytical ∆v-allocation problem. First, a two-impulse base problem

is solved. The base solution provides information on the location of what we coin as the

impulse anchor positions and the impulse directions from the primer vector theory. We show

that at the impulse anchor positions, the required impulse can be divided into multiple smaller-

magnitude impulses, which leads to ∆v-allocation problems. We note that all the impulses are

applied in the same direction not to affect the ∆v-optimality where this direction is determined

8



from the primer vector theory. We show that these smaller impulses inject the spacecraft into

intermediate phasing orbits.

A schematic for an example heliocentric trajectory is shown in Fig. 1.1. The connecting

Figure 1.1: An example trajectory. Cross markers indicate impulses. Purple and orange orbits
are intermediate phasing orbits. The green arc is the connecting arc generated from a two-
impulse base solution. All the impulses at the first impulse anchor position are applied in the
same direction.

arc (green in Fig. 1.1) is obtained from the two-impulse base solution. At the first impulse

anchor position, the total impulse is divided into smaller magnitude impulses so that the orange

and purple phasing orbits are added to the trajectory. In this process, the total ∆v of the problem

is not affected. Different number of revolutions on different segments of the trajectory creates

different families of minimum-∆v iso-impulse solutions. Each family consists of infinitely

many solutions. The solution to the ∆v-allocation problem will result in the generation of im-

pulsive trajectories for long-time-horizon multiple-revolution solutions. The proposed method
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is generalized to prove that it is not only applicable to the Earth-Dionysus problem but also

to planet-centric problems. The study also aims to answer the lower and upper bounds on the

number of impulses for long-time-horizon problems. The existence of infinitely-many solutions

offers flexibility for the mission design process to satisfy the constraints of the thruster since

the impulses can be divided into small-magnitude impulses without the loss of ∆v-optimality

with the cost of increasing mission time for some of cases.

The thesis is organized as follows. In Chapter 2, the dynamical models, Lambert’s prob-

lem, and primer vector theory are reviewed. In addition, the continuation-based method that is

used for generating impulsive maneuvers is explained. Continuation-based methods are among

the recent class of problems, and the solutions obtained using the continuation-based methods

serve as the baseline solutions for comparison purposes. In Chapter 3, starting from a funda-

mental two-impulse solution, the generation of many multiple-impulse trajectories is explained.

In Chapter 4, the analytical relations derived for generating solution envelopes are described.

In Chapter 5, the results of the continuation-based method are given. Additionally, some of the

trajectories belonging to different families of solutions are included, which are obtained ana-

lytically by the proposed method. Obtained solution envelopes for solution families are also

shown in Chapter 5. In Chapter 6, a discussion on the upper and lower bounds of the number of

impulses is presented for impulsive trajectories. In Chapter 7, a new interpretation of the primer

vector for trajectories including phasing orbits is shown. Portions of the study presented in this

thesis are previously published in the References [53, 55, 56].
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Chapter 2

Continuation-Based Impulsive Trajectory Optimization

In this chapter, some of the fundamental methods and the dynamics of the problem are ex-

plained. Additionally, a continuation-based method to generate extremal impulsive solutions

is explained. The continuation-based method utilizes a high-acceleration initial guess obtained

by applying a continuation to the maximum acceleration parameter to generate impulsive tra-

jectories [4, 52]. For spacecraft trajectory optimization using impulsive maneuvers, a hybrid

method is developed based on the work presented in [36]. The hybrid method is a combination

of a direct-based NLP solver and the indirect-based primer vector theory necessary conditions.

We would like to emphasize that the continuation-based method is not the main contribution of

this thesis. However, it allows obtaining a baseline solution for Earth-Dionysus problem and

serves as an example to explain the multiplicity of the solutions.

2.1 Two-Body Dynamics and Lambert’s Problem

The dynamics of the system are represented with two-body equations. Lambert’s problem is

solved by generating a position-continuous trajectory.

2.1.1 Two-Body Dynamics

The two-body dynamics are useful for initial analysis for trajectory generation. Higher-fidelity

models incorporate the perturbing acceleration due to other bodies as third-body perturbations.

The equations of motion for two-body dynamics only consider the gravitational force from the

central body.
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For the restricted two-body dynamics, the mass of the spacecraft is assumed to be negligi-

ble. The central body is treated as a point mass. The equations are derived in the inertial frame.

Let, r = [x, y, z]⊤ denote the position vector pointing from the central body to the spacecraft,

using Newton’s second and the universal gravitational laws, the inertial acceleration can be

written as [57]:

r̈ = −Gmcentral

r2
r

r
, (2.1)

where mcentral denotes the mass of the central body (i.e., mcentral = m⊙ for heliocentric phases

of flight and mcentral = m⊕ for Earth-centric maneuvers). In Eq. (2.1), G is the gravitational

constant. Defining the gravitational parameter µ = Gm() (with m() denoting the mass of the

central body), the second-order vector-form of the differential equations can be written as

r̈ = − µ

r3
r. (2.2)

2.1.2 Lambert’s Problem

Lambert’s problem determines the conic arc between two separate positions in space (given the

time of flight between the two points). Given the initial and target positions as well as the time

of flight, Lambert’s problem can be solved to determine the initial and target point velocity.

Thus, the required impulse magnitude can be calculated. Lambert’s problem can be applied to

problems such as initial orbit determination and targeting [57, 58].

In this work, Lambert’s problem is used and solved as part of an inner-loop segment of

an optimization algorithm to generate the connecting arc between two impulses. The discon-

tinuity in the velocity vectors serves as the impulse at the corresponding impulse location. To

ensure the continuity of the position and velocity, Lambert’s problem between two consecutive

impulses is solved. There exist different algorithms to solve Lambert’s problem, given in Ref-

erences [59, 9, 60, 61, 62, 63]. In this study, Gooding’s method is used, which is one of the

robust, fast, and accurate solvers [61].
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2.2 Earth-to-Dionysus Problem

The Earth-to-Asteroid Dionysus (Earth-Dionysus) is a long-time-horizon rendezvous-type ma-

neuver that has become a benchmark problem for testing and validating the efficiency of

new methods in solving spacecraft trajectory optimization problems [64]. In this thesis, a

rendezvous-type maneuver is used to express that the initial and target points are fixed on the

initial and target orbits. One of the features of the Earth-Dionysus problem is that the spacecraft

maneuver correspond to a large change in the inclination. In addition, the Earth-Dionysus prob-

lem requires a maneuver from the relatively circular orbit of the Earth to the highly-elliptical

orbit of asteroid Dionysus. The boundary conditions in Cartesian coordinates are given in Ta-

ble 2.1. The problem is scaled using canonical units, where one astronomical unit (AU) is equal

to 149.6× 106 km and a time unit (TU) is equal to 5022750.126364 seconds. The fixed maneu-

ver time is 3534 days. As will be shown later, since the time of flight is large for this problem, it

creates a larger minimum-∆v iso-impulse solution space. Having a long-time-horizon bench-

mark example demonstrates the versatility of the proposed approach on a wider trade space of

phasing orbit revolutions.

A comprehensive review of the minimum-fuel low-thrust and impulsive solutions for the

Earth-Dionysus problem is given in Reference [4]. It is found that there exists iso-impulse

(equal magnitude total impulse) solutions to the Earth-Dionysus problem with different num-

bers of impulses consisting of four-, five-, six-, and seven-impulse solutions. Remarkably, the

magnitude of the iso-impulse is ∆v = 9.907425 km/s for all the reported solutions. A peculiar

feature among the iso-impulse minimum-∆v solutions is that the impulses occur at two distinct

points. The impulse locations are defined here as the “impulse anchor positions.” In this thesis,

the significance of impulse anchor positions and how these multiple iso-impulse solutions are

formed are discussed. We emphasize that the iso-impulse solutions reported in Reference [4]

are obtained originally by applying a continuation-based method on the magnitude of the thrust

of the propulsion system.
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Table 2.1: Cartesian boundary conditions for the Earth-Dionysus problem.

Parameter Value
Initial Position (km) [−3637871.082, 147099798.784, −2261.441]
Initial Velocity (km/s) [−30.265, −0.849, 5.053× 10−5]
Final Position (km) [−302452014.884, 316097179.632, 82872290.075]
Final Velocity (km/s) [−4.533, −13.110, 0.656]
Time of flight (days) 3534

2.3 Acceleration-Based Switching Surfaces

The acceleration-based indirect method can be used as a first step of an impulsive trajectory

optimization framework [52]. In other words, the original impulsive trajectory optimization

problem can be solved initially by assuming that the spacecraft is equipped with a propulsion

system that has the throttling capability and can operate over finite-time segments with a given

maximum thrust acceleration level, amax. Upon increasing the maximum acceleration level (by

a natural parameter continuation, i.e., amax → ∞) we can create a dynamics-informed high-

quality initial guess for impulsive trajectory optimization problems. However, one has to solve

a TPBVP associated with a minimum-integral-acceleration formulation.

The key idea in the acceleration-based method is to establish a direct connection between

continuous, bounded-acceleration trajectory optimization problems and minimum-∆v impul-

sive maneuvers [52]. This can be achieved by removing the mass, thrust magnitude, and spe-

cific impulse from the minimum-fuel problem formulation. Note that the minimum-fuel for-

mulation was originally proposed and used in [4]. However, in the acceleration-based method,

numerical continuation has to be performed on the maximum value of the acceleration, amax,

to generate near-impulsive trajectories. From a spacecraft design point of view, it is always

preferred to keep the spacecraft design generic and acceleration due to the propulsion system

serves as a more fundamental quantity than thrust or mass values [65].

Let x(t) denote the vector of states and/or coordinates. Equations of motion of the space-

craft in a control-affine form can be written as

ẋ(t) = A(x) + B(x)a(t), → ẋ(t) = A(x) + B(x)amaxδ(t)α̂(t), (2.3)
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where α̂(t) defines the acceleration steering unit vector (i.e., ||α̂(t)|| = 1). Note that the ac-

celeration vector due to the propulsion system, a(t), is parameterized as a(t) = amaxδ(t)α̂(t).

This particular parametrization is adopted since it allows us to use the primer vector theory of

Lawden and also modulate the acceleration magnitude through a throttle input, δ ∈ [0, 1], in

a simple manner. The expressions for vector A(x) and matrix B(x) depend on the choice of

coordinates/elements. In this thesis, the set of modified equinoctial elements [66] is used since

it has noticeable advantages (regularity and non-singularity) in solving low-thrust trajectory

optimization problems [64, 67].

A Lagrange-form cost functional for the fixed-time, minimum-acceleration problem can

be defined as

minimize
δ(t)∈[0,1] & ||α̂(t)||=1

J = ∆v =

∫ tf

t0

amaxδ(t) dt, (2.4)

where t0 and tf denote the fixed initial and final time instances, respectively, and amax denotes

the maximum acceleration produced by the propulsion system. It is assumed that amax is fixed

for each TPBVP, but its value will be used as a continuation parameter to obtain near-impulsive

solutions. The admissible set of acceleration values is from a minimum value, amax,L, for

which it is possible to find a minimum-acceleration trajectory. The upper value for amax is ∞

(in theory) at which it is possible to find an actual impulsive extremal solution.

We proceed by forming the optimal control Hamiltonian associated with the cost func-

tional given in Eq. (2.4) and the state dynamics given in Eq. (2.3) as

H = amaxδ(t) + λ
⊤
x [A(x) + B(x)amaxδ(t)α̂(t)] , (2.5)

where λx ∈ R6 denotes the costate vector. The differential equation for the costate vector is

λ̇x(t) = −
[
∂H

∂x

]⊤
. (2.6)
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Expressions for the optimal control inputs can be determined using Pontryagin’s Minimum

Principle and Lawden’s primer vector theory as

α̂∗(t) = − B⊤λx

∥B⊤λx∥
, δ∗(t) =


1, if S > 0,

∈ [0, 1], if S = 0,

0, if S < 0

S =
∥∥B⊤λx

∥∥− 1, (2.7)

where S = S(x,λx) denotes the acceleration switching function. It is possible for an optimal

throttle solution profile to consist of singular control arcs (i.e., when S = 0 for one or multiple

non-zero finite time intervals), however, singular control arcs are rare in space flights [68] and

are ignored in this work. To alleviate the issues associated with the non-smooth bang-off-bang

throttle, the hyperbolic tangent smoothing method is used [69] as

δ∗(S; ρ) =
1

2

[
1 + tanh

(
S

ρ

)]
, (2.8)

where ρ ∈ (0,∞) is a smoothing parameter. Here, a numerical continuation is performed over

the value of ρ. First, a relatively high value of ρ is used to solve a relatively easier solution.

Then, the value of ρ is decreased gradually to make the throttle profile closer to the theoretically

optimal bang-off-bang profile. Fixed-time, rendezvous-type maneuvers are considered in this

paper. Thus, the spacecraft’s initial and final times and states are defined. Then, the boundary

conditions can be expressed as

ψi = x (t0)− xi = 0, ψf = x (tf )− xf = 0, (2.9)

where x(tf ) is the vector of final values for the states (obtained from the numerical propagation

of state dynamics); xi and xf denote the fixed initial and final values of the states and/or

coordinates, respectively. As a result, the minimum-integral-acceleration problem is reduced

to a TPBVP with the following components: state and costate differential equations given

in Eqs. (2.3) and (2.6), respectively, the optimal steering unit vector given in Eq. (2.7), the

optimal throttle input given in Eq. (2.8) with the switching function, S, given in Eq. (2.7), and
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the terminal vector constraints given in Eq. (2.9). This two-parameter family of TPBVPs can

be written as a non-linear root-solving problem as

ψf (λx(t0); ρ, amax) = x (tf )− xf = 0, (2.10)

where λx(t0) is the unknown initial costate vector; ρ and amax denote the continuation parame-

ters that are constants for each TPBVP. For a fixed value of ρ and a relatively low value for amax,

the resulting shooting problem is typically solved using a root-solving solver (e.g., MATLAB’s

fsolve) through multiple initial guesses for λx(t0). Upon finding a solution, a numerical

continuation can be performed over the two parameters such that ρ → 0 and amax → ∞. The

resulting solution to the two-parameter family of TPBVPs, which is a near-impulsive solution

(since in practice amax < ∞) is used as an initial guess to an optimization procedure for finding

exact impulsive solutions.

A switching surface is a by-product of the application of the continuation process. Usually,

first, the ρ parameter is decreased to a sufficiently small level. Afterward, the continuation

of the acceleration parameter is performed. As the TPBVP is solved for each different amax

parameter, each solution results in a switching function, S, that represents the bang-off-bang

structure of the throttle. The time history of each S is concatenated to obtain a surface. The

switching surface can provide insights into the evolution of the thrust and coast arcs, as well as

the number of thrusting arcs.

2.4 Primer Vector Theory

Primer vector theory is fundamental to both impulsive and continuous-thrust problems. Primer

vector theory is attributed as an indirect method, since its derivation is based on minimizing the

optimal control Hamiltonian [1]. However, it can be used to evaluate the solution of a direct

method or it can be combined with a direct method. The combination of the direct method

and the primer vector is called the hybrid method. For continuous-time trajectory optimization

problems, the direction of the acceleration vector (i.e., the control) is defined in terms of the
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primer vector. For impulsive problems, the locations and times of impulses can be determined

using the primer vector.

Necessary conditions for optimal impulsive trajectories were derived by Lawden in his

seminal work [5] in terms of the primer vector norm and its derivative. Primer vector is defined

as, p(t) = −λv(t), where λv is the costate vector associated with the velocity vector. The

primer vector defines the optimal direction of the impulse vector. The negative sign is due to

the fact that applying Pontryagin’s Minimum Principle. On an extremal trajectory, the primer

vector norm should satisfy the following relation

∥p(t)∥ ≤ 1, (2.11)

where equality holds at the time of impulses. At the i-th impulse, the primer vector is a unit

vector in the impulse direction

p(ti) =
∆vi
∆vi

,⇒ ||p(ti)|| = 1, (2.12)

where ∆vi = ||∆vi||. Let v denote the velocity vector, the costate vector associated with

the position vector, λr, which is the derivative of the primer vector, can be obtained using the

Euler-Lagrange equation written compactly as

λ̇
⊤
v = −∂H

∂v
= −λ⊤

r ⇒ ṗ(t) = λr(t), (2.13)

where H denotes the Hamiltonian associated with the minimum-∆v formulation [1]. In ad-

dition to the above conditions, the primer vector and its first derivative should be continuous

along an extremal trajectory [5]. The norm of the primer vector has a local maximum at the

instance of an impulse. Therefore, for the intermediate impulses, its derivative should be equal

to zero, which can be stated as

ṗ(ti) = ṗ⊤(ti)p(ti) = 0. (2.14)
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Equation (2.14) only applies to the initial and final impulses if they are surrounded by coast

arcs. Example primer vector time histories for continuous-thrust and impulsive trajectories are

shown in the top and bottom subplots, respectively, in Fig. 2.1. The impulses are denoted with

circles. For instance, the lower plot in Fig. 2.1 shows an extremal solution with six impulses,

however, all impulses are “intermediate” impulses, and Eq. (2.14) holds at the time of impulses.

The first and last impulses are preceded and followed by coast arcs. The lower plot satisfies the

necessary conditions since the primer magnitude is below 1 during the coasting arcs between

two impulses. However, in the upper plot, the primer magnitude exceeds the value of 1 and

those regions represent the thrusting arcs.

Figure 2.1: Primer vector magnitude (∥p(t)∥) vs. time for a high-acceleration continuous thrust
solution (top) and impulsive solution (bottom). Circles indicate impulses.

To evaluate the primer vector time history between two successive impulses, the state

transition matrix (STM) can be used [1]. Primer vector and its time derivative can be mapped

between two consecutive impulses applied at t = t0 and t as

 p(t)

ṗ(t)

 = Φ(t, t0)

 p(t0)

ṗ(t0)

 , (2.15)

where Φ(t, t0) denotes the STM with its derivation during a coast arc given by Glandorf [70].

The initial value of the derivative of the primer vector should be calculated. Upon defining
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sub-partitions of the STM as

Φ(t, t0) =

 Φ1 Φ2

Φ3 Φ4


6×6

, (2.16)

it can be shown that [70]

 λr (t0)

λr (tf)

 =

 Φ−1
2 Φ1 −Φ−1

2

Φ4Φ
−1
2 Φ1 −Φ3 Φ4Φ

−1
2


 λv (t0)

λv (tf)

 . (2.17)

Therefore, the boundary values of the derivative of the primer vector between two consec-

utive impulses can be determined, which can be used to plot the time histories of the primer

vector magnitude and its derivative.

2.5 Impulsive Trajectory Optimization with A Hybrid Method

The hybrid method to obtain impulsive trajectories is to utilize the primer vector theory. This

method combines the gradient-based optimizer with primer vector-based gradient information

to improve convergence. The initial guess is important for convergence. Therefore, using the

high-acceleration solution is the key step in this formulation since it is a dynamics-informed,

high-resolution initial guess. In the hybrid impulsive trajectory optimization tool, there are two

layers. The outer layer is a gradient-based solver that provides the position and time infor-

mation of the impulses. The inner layer creates a continuous trajectory in terms of position

and velocity by solving Lambert’s problem and the discontinuity in the velocity becomes the

required impulse.

The optimization problem for designing multiple-impulse, minimum-∆v trajectories can

be stated as

minimize
η

J =
N∑
k=1

∥∆vk∥ , (2.18)

where N is the total number of impulses, ∆vk denotes the k-th impulse vector and η represents

the vector of decision variables (see Eq. (2.19)). Position continuity is enforced by solving
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Lambert’s problem at each leg. Thus, the trajectory is prescribed to have multiple legs. Each

leg represents the coasting arc between two successive impulses. The time at which an impulse

occurs and the impulse position vector at that time instant are the design variables for that

specific leg of the trajectory. Therefore, the vector of decision variables is

η =

[
t1, t2, . . . , tN , r⊤2+, r⊤3+, . . . , r⊤N−1+

]⊤
, (2.19)

where tk is the impulse time and rk+ denotes the k-th impulse position (for k = 1, . . . , N ).

The subscript “+” represents the position just after the k-th impulse. Note that the initial and

final times (t0 and tf , respectively) and position vectors are fixed and not included as decision

variables since a fixed-time, rendezvous-type problem is considered (i.e., the Earth-Dionysus

problem). If the initial position and time are design variables too, the decision variable vector

is simply extended by including those variables.

The gradient of the cost with respect to decision variables is given using the primer vector

and its derivative [1]. Therefore, for the initial and final coast arcs, gradients with respect to

first and last impulse times and inner impulse positions and times can be calculated as

∂J

∂t1
= −∆v1ṗ

⊤
1 p1,

∂J

∂tN
= −∆vN ṗ

⊤
NpN ,

dJ

dri+
= ṗ⊤

i+ − ṗ⊤
i−,

dJ

dti
= −(ṗ⊤

i+vi+ − ṗ⊤
i−vi−),

(2.20)

in which subscripts “−” and “+” represent the values just before and after an impulse. Also,

i = 2, . . . , N − 1 for the inner impulses. Any NLP solver can be used to solve the optimiza-

tion problem defined in Eq. (2.18) by supplying the analytical expressions for the required

gradients. In this thesis, MATLAB’s fmincon is used with the option of user-defined

gradients. The analytic gradients obtained using Eq. (2.20) are based on the implicit satis-

faction of Lawden’s necessary conditions for the optimality of impulsive solutions. Since the

number of impulses is known from the near-impulsive solution obtained using the procedure

outlined in Section 2.3, there is no need to consider the addition of impulses or terminal coasts

for fixed-time problems.
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Chapter 3

Generation of Many Multiple-Impulse Minimum-∆v Trajectories

The traditional procedure for obtaining minimum-∆v impulsive trajectories using either stan-

dard methods or continuation-based optimal switching surfaces method is reviewed in Chap-

ter 2. In this chapter, the motivation and key steps in generating many multiple-impulse,

minimum-∆v trajectories are explained for the Earth-Dionysus problem, which is known to

have many local minimum-fuel solutions.

For the class of fixed-time, rendezvous-type, minimum-fuel trajectories, the global so-

lution can be obtained by enforcing the number of orbital revolutions, Nrev, around the Sun

[4] and by investigating integer values of Nrev. For the Earth-Dionysus problem, four ex-

tremal multiple-impulse trajectories are reported with the same total value of ∆v = 9.907425

km/s [4], but with different numbers of impulses and different Nrev values. The solution in

Fig. 3.1 reproduces one of these extremals using the acceleration-based method reviewed in

Section 2.3 where ‘au’ stands for the astronomical unit. However, in this thesis, a new method

is proposed to generate multi-impulse, minimum-∆v solutions faster compared to continuation-

based methods. The first five impulses are located at what we define as a potential “impulse

anchor position.” This point is common in different cases that have different numbers of revo-

lutions [4]. The arc between two impulses is common for each solution as well as the initial and

final coast arcs. The direction of the first five impulses is in the same direction in all extremal

solutions. These key features set the stage for the generation of iso-∆v solutions.
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Figure 3.1: Six-impulse minimum-∆v Earth-Dionysus trajectory with Nrev = 5.

3.1 Phase-free two-impulse solution

Upon inspecting a number of multiple-revolution impulsive solutions of the Earth-Dionysus

problem (see Figures 51-53 in [4]), we notice that all intermediate impulses, only appear in two

locations. We determine potential impulse anchor positions at which the impulse is divided into

several smaller-magnitude, same-direction impulses. For instance, in Fig. 3.1, there are two

potential impulse anchor positions. Five impulses are applied at one anchor position and one

impulse is applied at the other anchor position to achieve an early rendezvous. We analyze the

impulse anchor position at which five impulses are applied since the magnitude of the impulse

is large at that potential impulse anchor position. The procedure for determining the impulse

anchor positions is given in this chapter. Therefore, as a first step of generating many multiple-

impulse trajectories, we need to determine the impulse anchor positions and the connecting arc

between the two potential impulse anchor positions. We choose the first position as the impulse

anchor position since the magnitude of the total impulse applied at that position is higher and

provides a larger solution space.
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Upon analyzing the reported multiple-impulse solutions, the location of the first impulse

coincides with the Earth’s location, since there exists a late-departure coast. The first impulse

is not applied at the specified initial time of the mission. Since all consequent impulses (except

for the last impulse) are also applied at the same position, we can conclude that the intermediate

impulses place the spacecraft on a number of phasing orbits that satisfy the timing constraints

of the fixed-time problem. Also, in all reported impulsive solutions, the last impulse occurs

at the same location on the orbit of asteroid Dionysus. This indicates that a phase-free two-

impulse arc can be used to determine the time available for phasing orbits through optimizing

the time of flight on the connecting arc, the location of the impulse anchor position, and the

magnitude of the impulses. Then, we can add phasing orbits to the trajectory by maintaining

the ∆v-optimality if we keep the direction of the applied ∆v indicated by the primer vector

theory.

The formulation of the phase-free two-impulse problem can be stated mathematically as,

minimize
θi, θf , tpf

||∆vi||+ ||∆vf ||, (3.1)

where θi ∈ [0, 2π] and θf ∈ [0, 2π] denote the true anomaly values at the departure point from

the initial orbit and at the arrival point on the final orbit, respectively, and tpf is the time of

flight on the phase-free transfer arc; ∆vi and ∆vf denote the initial and final impulse vectors

on the phase-free arc, respectively. The parametric optimization problem, which can be solved

efficiently, uses a zero-revolution formulation of Lambert’s problem [59, 71]. Solving the

optimization problem defined in Eq. (3.1) circumvents the step of generating switching surfaces

completely. With the proposed computationally-efficient method, we can generate optimal

multiple-impulsive, minimum-∆v solutions in orders of magnitude faster time compared to

the acceleration-based method [53] or methods that are based on solving a continuous optimal

control problem [4]. Since the phase-free two-impulse arc is part of all impulsive solutions, this

phase-free two-impulse arc is the starting point to generate infinitely many multiple-impulsive

minimum-∆v solutions. The initial and final coast arcs are determined from the obtained true
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anomaly information (θi and θf ) and the true anomaly of the Earth and Dionysus at the initial

and final position.

Upon inspecting Fig. 3.1, we can conclude that for a multiple-impulse solution, the sum of

the magnitudes of all ∆v vectors except for the last one (at the rendezvous point with asteroid

Dionysus) should be equal to the magnitude of the first ∆v of the phase-free two-impulse arc.

In addition, from the extremal solution, the direction of the impulses is equal for all the impulses

at the impulse anchor position. Therefore, we can divide the impulse (totaling 7.521545 km/s)

to introduce multiple phasing orbits to the trajectory. These phasing orbits return to the impulse

anchor position after one (or multiple) revolution(s). The primer vector also cycles with the

orbit and its value is equal to its final value. As a result, the next impulse primer vector points

in the same direction as the previous phasing orbit or the phase-free arc. The procedure of

introducing phasing orbits for generating families of solutions with three, four, and more-than-

four impulses (by breaking up the total impulse at the impulse anchor position) is explained in

the following sections.

3.2 Three-impulse solutions

Starting from the phase-free two-impulse arc, the addition of a single phasing orbit creates a

three-impulse trajectory that satisfies the phasing time of flight (TOF ) constraint. Since the

total time of flight of the mission is fixed, the time that can be spent on the phasing orbit is

fixed and limited. To satisfy the constraint on the time available for phasing, the following

relation is written:

M TE +N Tp +ND TD +Npf Tpf = TOF, (3.2)

where Tp is the orbital period of a phasing orbit, TE is the orbital period of the Earth; M

and N are the numbers of integer orbital revolutions on the Earth’s orbit, and on the phasing

orbit, respectively. In Eq. (3.2), TOF denotes the time available for phasing orbits (note that

TOF is not the time-of-flight for the entire mission); TD and Tpf denote the orbital periods of

the asteroid Dionysus and the phase-free two-impulse arc; ND, Npf ∈ {0, 1, · · · } are integer

number of revolutions on the Dionysus and phase-free arc.
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Under the assumption that M = ND = Npf = 0, it is shown (in Section 5.2) that three

arcs are common among all solutions, including 1) a coast arc on Earth’s orbit, 2) a phase-

free two-impulse arc, and 3) a coast arc on the orbit of asteroid Dionysus. The coast arcs on

the Earth’s and Dionysus’ orbits correspond to late-departure and early-arrival coast arcs. By

subtracting the times spent on these three arcs from the total mission flight time, we can obtain

the remaining time of flight that can be distributed among four phases. This remaining time of

flight is denoted by TOF in the right-hand side of Eq. (3.2) and throughout the manuscript. In

Eq. (3.2), the only unknown is the orbital period of the phasing orbit, Tp, which can be easily

determined since over a range of integer values for M and N (and the known TOF value), we

can solve for Tp. Once the orbital period of the phasing orbit is determined, the needed ∆v can

be calculated. The phasing orbit is an intermediate step in the maneuver. Primer vector time

history for the phase-free two-impulse solution shows that having two impulses at the impulse

anchor positions generates an extremal solution with a minimum ∆v. We apply a maneuver

only when the magnitude of the primer vector becomes 1, and the primer vector defines the

impulse direction. The phasing orbits are added to the trajectory by applying impulses in the

same direction. This direction is obtained from the phase-free two-impulse solution primer

vector. The initial value of the primer vector is the same at each impulse at the anchor position

and it cycles with each orbital period of phasing orbits. Therefore, the direction of the required

impulse should not change, which means that the only missing component is the magnitude of

the ∆v vector, which itself depends on the period of the phasing orbit.

Once the orbital period of the phasing orbit is determined, the phasing orbit velocity mag-

nitude can be determined. The semi-major axis, ap, of the phasing orbit can be obtained from

the orbital period of the phasing orbit as

Tp =

√
a3p
µ
2π, (3.3)
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where µ is the gravitational parameter of the Sun. Using the orbit energy equation, and the

value of ap, the phasing orbit velocity magnitude, vp = ||vp||, can be obtained as

E =
v2p
2

− µ

r
= − µ

2ap
, (3.4)

where r denotes the magnitude of the position vector of the impulse anchor position. In Fig. 3.2,

schematics associated with the introduction of one phasing orbit are shown. The direction of

the velocity vectors is arbitrary and shown for the purpose of clarity. Here, the red ∆v vector

is the first impulse of the phase-free two-impulse arc, which is also equivalent to the sum of

all impulses in Fig. 3.1 except for the last impulse. The orange vector represents the velocity

of the transfer orbit or the phase-free arc. The blue vector represents the velocity of the Earth.

The impulse required to place the spacecraft on the phasing orbit is shown as ∆v1 (dashed

green vector). At the time of impulse, the velocity of the Earth, vE , is known. The ∆v1 vector

is in the direction of the total ∆v as shown in Fig. 3.2, which is known from the phase-free

two-impulse solution. Therefore, the primer vector magnitude is equal to 1 at this point and

the impulse direction is known. Then, the optimal direction to apply the impulse is obtained

from the primer vector information. In addition, it is graphically evident that if the direction of

the ∆v1 points in any other direction, it results in a higher total ∆v. When ∆v1 is pointed in

any other direction, the remaining impulse is applied in a direction that it brings the velocity to

the transfer orbit velocity. The addition of those two impulses will be higher than the total ∆v.

Here, the direction of the total ∆v is drawn arbitrarily to qualitatively illustrate the ideas using

representative schematics. The following relation can be formed to determine the magnitude of

Figure 3.2: Distribution of the velocity vectors for the case with one intermediate phasing orbit.
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the ∆v1:

∥vE +∆v1∥ = ∥vp∥ = vp. (3.5)

Since ∆v1 is applied in the direction of the ∆v, we can express it in terms of the total ∆v

as

∆v1 = α∆v, (3.6)

where α ∈ (0, 1) denotes the ∆v ratio parameter. The phasing orbit periods are functions of

α parameters. We can obtain the corresponding orbital period value combining Eqs. (3.3) and

(3.4) as,

Tp = 2πµ

√√√√√√
− 1

8
(

v2p
2
− µ

r

)3
, (3.7)

where v2p is obtained from Eq. (3.5) as

v2p = ∥vE + α∆v∥2 . (3.8)

Parameter α can be determined by combining Eqs. (3.3), (3.7) and (3.8) as,

∥vE + α∆v∥2 = −2

(
µ2π2

2Tp

)1/3

+
2µ

r
, (3.9)

which results in a quadratic equation as,

v⊤EvE + 2αv⊤E∆v + α2∆v⊤∆v + 2

(
µ2π2

2T 2
p

)1/3

− 2µ

r
= 0, (3.10)

where the solution to α is found using the quadratic formula (with the root satisfying α ∈

(0, 1) as the solution). The sum of the roots of the quadratic equation is −b/a, where b is

the coefficient of the linear part and a is the coefficient of the quadratic part. In Eq. (3.10),

a = ∆v⊤∆v, which is always positive. Also, b = 2v⊤E∆v is positive in our case. Therefore,

the summation of two roots is always negative. This means that either both of the roots are

negative or one of them is positive and one of them is negative with greater absolute value.
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Therefore, the positive root is the only feasible solution. As a result, the problem of determining

the velocity (to place the spacecraft on one phasing orbit) is solved analytically. The value of Tp

can be determined from Eq. (3.2) and using Tp, α parameter is calculated by solving Eq. (3.10).

Then, a feasible solution is obtained if α ∈ (0, 1).

Another approach is first a feasible α is chosen in between (0, 1) range. The corresponding

Tp is calculated using Eq. (3.7). Then, the feasibility of the solution is verified by checking the

constraint in Eq. (3.2).

Once the value of α is determined, the required velocity change is known. The remaining

∆v vector (i.e., ∆v − ∆v1) is applied to inject the spacecraft on the phase-free arc toward

asteroid Dionysus. The last impulse, required to rendezvous with asteroid Dionysus, is the

second impulse of the phase-free two-impulse arc. All analyses and discussions are related to

the first impulse of the phase-free two-impulse solution at the location of the impulse anchor

position (see Fig. 3.1).

3.3 Four-impulse solutions

Four-impulse solutions add one more unknown to Eq. (3.2) by introducing one more phasing

orbit to the trajectory. The new relation between phasing orbits’ and Earth’s orbital periods can

be written as,

N1T1(α1) +N2T2(α2) +MTE +ND TD +Npf Tpf = TOF, (3.11)

where N1 and N2 are the (integer) number of orbital revolutions on the first and second phasing

orbits; T1 and T2 are orbital periods of the first and second phasing orbits, which are expressed

as functions of α1 and α2. This is the case in which another phasing orbit is added to the

schematics shown in Fig. 3.2 and the respective relations between the velocity vectors are

depicted in Fig. 3.3. The ∆v required for the second phasing orbit is ∆v2 added to the Earth’s

velocity vector, vE . Discussion on the direction of the impulses explained in Section 3.2 also

applies for every case when phasing orbits are added to the trajectory. Therefore, ∆v1, ∆v2 and

∆v should be in the same direction for obtaining minimum-∆v solutions. Geometrically, as

29



shown in Fig. 3.3b, when the required impulses are not aligned with the ∆v, the total impulse

will be higher. In Fig. 3.3b, it is geometrically evident that ∆v1+∆v2+∆v3 > ∆v. Also, ∆v

vectors are drawn slightly off to make them appear distinctly. The constraints on parameters

(a) Impulses are aligned with ∆v (b) Impulses are not aligned with ∆v

Figure 3.3: Schematic for the addition of two intermediate phasing orbits.

are listed as,

0 < α1 < α2 < 1, T1 > 0, T2 > 0, (3.12)

where it is also evident in Fig. 3.3 that α2 > α1. Since the system is under-determined (with

one constraint, Eq. (3.11), but two unknowns, α1 and α2), there exist infinitely many solutions

satisfying the constraints of the problem. Infinitely-many solutions are equally optimal in terms

of the total ∆v. We define these solutions as iso-impulse solutions. It means they all require the

exact same amount of total ∆v. However, the distribution of the impulse magnitude is different

for each intermediate impulse for introducing phasing orbits.

We can discretize the α1 parameter in the range [0, 1] and calculate the corresponding T1

value from Eq. (3.7), and solve for α2 using Eq. (3.11). More explicitly, T2 is obtained from

Eq. (3.11) as

T2(α2) = (TOF −MTE −N1T1(α1)−NDTD −NpfTpf)/N2. (3.13)

When the value of T2 is determined, α2 can also be determined by solving Eq. (3.10).

Then, the α1 and α2 satisfying Eq. (3.12) are feasible solutions.
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3.4 General solutions with more than four impulses

Impulsive solutions can be generalized to problems with more phasing orbits. For each case,

one more phasing orbit will be added to the trajectory, which only changes the number of

constraints. The equality constraint on the time available for phasing (TOF ) can be generalized

as,
np∑
k=1

NkTk +MTE +ND TD +Npf Tpf = TOF, (3.14)

where np represents the number of intermediate phasing orbits. Generalizing the equality con-

straint for any transfer between an initial and target orbit,

np∑
k=1

NkTk +N0T0 +Nf Tf +Npf Tpf = TOF, (3.15)

where N0 and T0 are the integer number of revolutions and the orbital period of the initial orbit;

Nf and Tf are for the final orbit. Therefore, all of the equations are valid and general when TE

become T0 and TD become Tf . Similarly for the integer number of revolutions, M become N0

and ND become Nf . Inequality constraints for the general solution can be defined as,

0 < α1 < · · · < αnp < 1, Ti > 0, for i = 1, . . . , np, (3.16)

where Ti denotes orbital period of the i-th phasing orbit. The analytical approach can be

generalized by discretizing α1, · · · , α(np−1) in [0, 1] range to solve for corresponding Tj for

j = 1, · · · , (np − 1) using Eq. (3.7). Then, Tnp is determined from Eq. (3.14). From Tnp

information, the quadratic equation is solved to obtain αnp as,

v⊤EvE + 2αnpv
⊤
E∆v + α2

np
∆v⊤∆v + 2

(
µ2π2

2T 2
np

)1/3

− 2µ

r
= 0. (3.17)

where there exists two solutions for αnp . The solution in [0, 1] is chosen, as we explained in

Section 3.2.
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The complexity of the problem increases with the resolution of discretization of α param-

eters, and with the total number of phasing orbits when we want to generate all solution spaces

for each combination of Nk and M values. However, we can actually solve for boundaries of

the solution spaces to have a general representation of the solution spaces, as we will present

the details in Chapter 4.

On the other hand, if the goal is to check whether there exist infinitely many solutions for a

particular combination of Nk,M parameters, the inequality that characterizes feasible solutions

can be written as,

T (α = 0) ≤ T =
TOF −NDTD −NpfTpf −MTE∑np

k=1Nk

≤ T (α = 1), (3.18)

where T (α = 0) is the minimum value of orbital period and T (α = 1) is the maximum

orbital period of the phasing orbits. When
∑np

k=1Nk = 0, there is no phasing orbit on the

resulting trajectory. Therefore, phasing time, TOF , can be spent on Earth’s orbit, Dionysus,

or the phase-free two-impulse arc orbit. Equation (3.18) is derived based on one extreme case

(within the family of feasible solutions) in which all intermediate phasing orbits will have the

same orbital period value. In other words, if the inequalities in Eq. (3.18) are violated, the

considered combination of M and Nk values (for k ≥ 1 and
∑np

k=1Nk ̸= 0) has no feasible

solution (see Section 4 for details on the family of solutions).

To generate the remaining segments of the trajectory, the remaining impulse is applied at

the first impulse anchor position, which is calculated as ∆v−αnp∆v. This last impulse puts the

spacecraft into the phase-free arc. As the time of flight spend on the phase-free arc is obtained

by the solution of the two-impulse problem, one can propagate the Keplerian motion. At the

end of the arc, the last impulse is applied to match the velocity of the target body, such as the

Dionysus.

32



Chapter 4

Generation of Solution Envelopes for the Family of Solutions

It is possible to perform a systematic study based on the discretization of the αi (for i ∈

{1, · · · , np}) values to obtain a complete set of solutions for each combination of M , Ni (for

i ≥ 1), ND and Npf values. This systematic study is actually made possible due to the algebraic

nature of the ∆v−allocation problems.

The most general way to obtain solution envelopes for different families of solutions is

by calculating the minimum and maximum values of the orbital period values for each phasing

orbit. This way, the corners of the solution envelope can be determined to gain insights on the

solution space and relations between orbital periods of the phasing orbits. Then, the minimum

and maximum values of orbital periods when the first phasing orbit period is T (α = 0) is

Ts,min = TE = 365.25 days,

Tnp,min =
TOF −N1T1,min∑np

k=2 Nk

,

Tnp,max =
TOF −

∑np−1
k=1 NkTk,min

Nnp

,

T1,max =
TOF∑np

k=1Nk

,

Tm,max =
TOF −

∑m−1
k=1 NkTk,min∑np

k=m Nk

,

(4.1)

for s = 1, · · · , (np−1) and m = 2, · · · , (np−1). If Tnp,max > T (α = 1), then the upper bound

of Tnp is equal to the maximum value of orbital periods, T (α = 1). We set Tnp,max = T (α = 1)

and solve for the additional corner that corresponds to the case Tnp−1 = T1 and Tnp = T (α =

1):
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T1 = Tnp−1 =
TOF −NnpTnp,max∑np−1

k=1 Nk

. (4.2)

In the case where there exists an additional corner (as corner ‘4’ in Fig. 5.18b), the mini-

mum value of Tnp−1 ̸= TE . Therefore, Tnp−1,min and Tnp−1,max are calculated as

Tnp−1,max =
TOF −

∑np−2
k=1 NkTk,min∑np

k=np−1Nk

, Tnp−1,min =
TOF −NnpTnp,max −N1T1,min∑np−1

k=2 Nk

. (4.3)

Finally, the bifurcation point, where all the orbital periods are equal, is determined T1,··· ,np =

TOF/np. As a result, we are able to determine the corner points that create these solution re-

gions analytically. The application of the solution envelope calculations are explained in Sec-

tion 4. We emphasize that these solution envelopes are useful for understanding the ranges of

the orbital periods, which can be related to the required impulse information. If we know the

orbital period, we can calculate the α parameter to obtain the required impulse. The solution

envelopes obtained for the Earth-Dionysus problem are presented in Section 5.5.
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Chapter 5

Results

The results obtained for the defined methods in the previous chapters are presented in this

chapter. First, the application of the continuation-based method to generate initial guess for a

hybrid impulsive trajectory optimization method is shown for the Earth-Dionysus problem in

Section 5.1. Then, infinitely many iso-impulse solutions are given with the proposed analytical

∆v-allocation method in Section 5.2. To generalize the method, GTO-GEO, and LEO-GEO

problems are solved in Section 5.3 and Section 5.4. The generated solution envelopes for the

Earth-Dionysus problem are presented in Section 5.5.

5.1 Continuation-Based Impulsive Trajectory Solution

5.1.1 A Near-Impulsive Solution

The fixed boundary values on the position and velocity vectors for the Earth-Dionysus problem

are given in Table 2.1. The problem is scaled using canonical units where one astronomical

unit (au) is equal to 149.6× 106 km and a time unit (TU) is equal to 5022750.126364 seconds.

To generate the near-impulsive solution, first, the corresponding minimum acceleration prob-

lem is solved using a single-shooting scheme [52]. Numerical continuation is performed over

the smoothing parameter to obtain a solution with a particular value for amax. The maximum

acceleration value is increased until there is no significant improvement in the total ∆v value.

Thus, the near-impulsive solution is obtained at this “relatively high” acceleration value.
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The acceleration switching surface for a range of acceleration values is shown in Fig. 5.1,

where S represents the switching function associated with the acceleration [52]. The red-

colored switching function corresponds to the smallest value for amax for which the entire

switching function is positive (i.e., no switching occurs in the acceleration throttle profile).

As the acceleration parameter, amax, is increased gradually, the switching function is pushed

below the S = 0 plane (cyan-colored plane). This means that the duration of the accelera-

tion arcs gets smaller. At high values of amax, the duration of acceleration arcs becomes small,

which is closest to the impulsive maneuvers. Also, terminal coasts (before the first impulse and

after the last impulse) are evident in the switching surface.

Figure 5.1: Switching surface for the Earth-Dionysus problem with Nrev = 5 generated using
the acceleration-based method.

Figure 5.2a shows the trajectory for amax = 2.66 × 10−4 m/s2 where the thrust arcs are

shown with purple arrows. The yellow colored path is the obtained trajectory. Dashed blue

and black orbits are the Earth’s and Dionysus’ orbits, respectively. Thrusting duration got

smaller compared to the low-acceleration solutions. Also, late-departure and early-arrival

arcs, introduced in [4], can be observed. First, five thrust arcs are concentrated at the perihelion
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(when the spacecraft is on the closest point of the orbit to the Sun) of the intermediate quasi-

elliptical orbits. This solution gives information about the impulsive solution too. It is expected

to have impulse locations closer to these thrust arcs. Using the steps outlined in Section 2.4

primer vector time history of the near-impulsive solution is plotted in Fig. 5.2b. The largest

value of primer vector time history is 1.08. Since it only exceeds the unity by a small value,

this solution qualifies to be a high-resolution initial guess for obtaining an impulsive solution.

(a) (b)

Figure 5.2: a) Near-impulsive solution for amax = 2.66× 10−4 m/s2. b) Primer vector magni-
tude time history for the same near-impulsive solution.

5.1.2 A Multiple-Impulse Solution

The near-impulsive solution reported in the previous section is used as an initial guess to obtain

the exact impulsive solution according to the optimization methodology outlined in Section 2.

The impulsive solution is shown in Fig. 5.3. This trajectory is the exact same trajectory, shown

in Fig. 5.10a. Thus, the proposed method is able to generate this trajectory without going

through the steps of the continuation-based method. The cross markers represent the location

of the impulses. Each colored orbit is the intermediate orbit. The initial and terminal coast arcs

are shown in light blue and dark red.

The primer vector magnitude and the derivative of its magnitude (see Eq. (2.17)) are plot-

ted versus time in Fig. 5.4. Circles indicates the impulses. The color of the primer magnitude

and its derivative is the same with the associated segment of the trajectory given in Fig. 5.3.

37



Figure 5.3: Minimum-∆v trajectory for the Earth-Dionysus problem with Nrev = 5. X marker
denotes the location of impulses.

When the near-impulsive solution’s primer vector magnitude and the current plots are com-

pared, the necessary conditions are successfully satisfied. Circles indicate impulses in the plots.

At the impulse positions, primer vector magnitude has a local maxima at unity. Also, for in-

termediate impulses (which include all the impulses for this solution), the derivative of the

norm of the primer vector is continuous, and ṗ = 0 is satisfied. The total ∆v value matches

the known optimal solution, i.e., ∆v = 9.907425 km/s reported in [4]. It is evident that the

first five impulses are approximately at the same position as seen in the near-impulsive solution

shown in Fig. 5.2a. Thus, impulses are concentrated at two distinct locations. Location of the

impulses suggests that these two separate impulse positions are also the impulse positions for

a phase-free two-impulse Lambert arc with the same total ∆v.

5.2 Infinitely Many Iso-impulse Solutions

Results of continuation-based methods lead to a number of key observations that paved the way

to generate the iso-impulse solutions. Recall that the impulses only appear in two locations

(see Fig. 3.1). Upon solving the phase-free two-impulse problem, given in Eq. (3.1), the time

of flight on the Lambert arc is 348.46 days. The magnitude of the first ∆v is equal to 7.521545
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Figure 5.4: Primer vector norm and ṗ vs. time for the Earth-Dionysus problem with Nrev = 5.
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km/s and the magnitude of the second ∆v is equal to 2.38588 km/s. The solution of the phase-

free problem determines the initial and final true anomaly of the impulses, θi = 179.27◦ and

θf = 149.20◦. We also know the true anomalies of Earth and Dionysus at the beginning and end

of the mission from the boundary values given in Table 2.1. Thus, we can calculate the times

spent on the coast arcs. Projection of the coast arcs on the Earth’s and Dionysus’ orbits and

the phase-free two-impulse solution onto the x − y plane (the 2D view) is shown in Fig. 5.5a.

The locations of impulses are denoted with “X” markers. The initial and target orbit are shon

with dashed blue and black orbits. The inital and terminal coast arcs shown in light blue and

green. The phase-free connecting arc is shown in yellow. The location of the Earth and the

Dionysus are shown with blue and black dot markers. The primer vector magnitude vs. time

for the phase-free trajectory is plotted in Fig. 5.6. The circles indicate the location of impulses

where the primer magnitude stays below 1 during the coasting between impulses and it is equal

to 1 at the impulse locations. Thus, the phase-free trajectory is an extremal solution.

(a) Two-dimensional view of the trajectory (b) Three-dimensional view of the trajectory

Figure 5.5: Phase-free two-impulse, minimum-∆V solution. X marker denotes the location of
impulses.

Now, we can characterize the three main coast phases. A coast arc of approximately

193.24 days on the Earth’s orbit (solid blue line) and a coast arc of approximately 501.81 days

on Dionysus’ orbit (solid green line) and a time of flight of tpf = 348.46 days on the phase-free

two-impulse arc are common among all impulsive solutions. Thus, a difference in the timing

of TOF = 3534− 1043.51 = 2490.48 days is available to be distributed among several orbits.
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Figure 5.6: Primer vector magnitude vs. time for the phase-free two-impulse solution.

Here, 193.24 + 348.46 + 501.81 = 1043.51 days, and 3534 days is the total time of flight of

the original problem (see Table 2.1).

If we consider a standard two-impulse Lambert problem (from Earth to asteroid Dionysus)

with the decision variables being the coast times on the Earth and Dionysus orbits and solve

a two-impulse, minimum-∆v problem, the value of the required total ∆v will be greater than

the ∆v = 9.907425 km/s since we have formulated a phase-constrained problem. There is

no phase-constrained two-impulse solution with a total impulse equal to or less than ∆v =

9.907425 km/s.

The main reason for the existence of the different multiple-impulse local minima (first

reported in [4]) is that we can insert a number of phasing orbits that take up the missing TOF =

2490.48 days. To be more precise, the time can be spent on 1) Earth’s orbit, 2) a number of

phasing orbits, 3) the phase-free arc, and 4) the orbit of asteroid Dionysus. This is stated as a

TOF constraint in Eq. (3.14). For the case of phasing orbits, the unknown number of phasing

orbits breaks up the initial 7.521545 km/s impulse (shown as a red ∆v vector in Fig. 3.2) into

many minor impulsive maneuvers. However, the sum of the impulses is equal to the same total

∆v = 9.907425 km/s. In essence, this step can be viewed as a ∆v-allocation problem in which

one can consider many opportunities to distribute the first ∆v = 7.521545 km/s among a to-be-

determined number of phasing orbits. In the remainder of this section, we only present a few

important solutions for a number of combinations of M , N , ND and Npf values.
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(a) M = 0, N1 = 3 (b) M = 5, N1 = 1

(c) M = 0, N1 = 6 (d) M = 0, N1 = 3, Npf = 1

Figure 5.7: Three-impulse trajectories with a) three revolutions on a phasing orbit; b) five
revolutions on the Earth’s orbit and one revolution on a phasing orbit; c) six revolutions on a
phasing orbit; d) three revolutions on a phasing orbit and one revolution on the phase-free leg
of the trajectory. X marker denotes the location of impulses.
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Three-impulse families of solutions only have one phasing orbit, which breaks up the first

∆v = 7.521545 km/s into two impulses. In all trajectory plots; Earth’s and Dionysus’ orbits

are shown with blue and black dashed orbits. Impulses are denoted with red cross markers.

The location of the Earth and the Dionysus are shown at the initial and final time with blue

and black dot markers. Following the steps in Section 3.2, some of the three-impulse solutions

are shown in Fig. 5.7. For all impulsive solutions, the total impulse value matches the known

optimal value (9.907425 km/s). Phasing orbits are shown in yellow. In Fig. 5.7a, the spacecraft

makes three revolutions on the phasing orbit to take up the TOF = 2490.48 days with an

orbital period of 830.16 days. When Earth revolutions are added, as shown in Fig. 5.7b, the

time spent on the phasing orbit is reduced. Thus, the phasing orbit in Fig. 5.7b has a period of

664.23 days, and the spacecraft makes one revolution around the Sun on the phasing orbit. In

Fig. 5.7c, a solution with zero revolution on the Earth’s orbit is shown, whereas six revolutions

on the phasing orbit occur. Comparing the trajectories in Figs. 5.7c and 5.7a, it is visible that

the period of the phasing orbit gets shorter than the case with a smaller number of revolutions

on the phasing orbit.

A second important family of solutions corresponds to those trajectories that make multi-

ple revolutions on the orbit corresponding to the phase-free two-impulse arc (i.e., when Npf ̸=

0). For instance, in Fig. 5.7d, we have Npf = 1. According to Eq. (3.14), TOF = 2490.48 −

1161.47 = 1329.01 days, which is different from the previous cases with TOF = 2490.48

days. The orbital period associated with the phase-free two-impulse arc is Tpf = 1161.47

days. The phasing orbit has three revolutions with an orbital period of 443.00 days. In total,

26 three-impulses families were obtained based on different combinations of M and N1 val-

ues: 6 solutions with four revolutions, 9 solutions with five revolutions, 5 solutions with six

revolutions, and 6 solutions with seven revolutions.

Four-impulse solutions that consist of two phasing orbits are shown in Fig. 5.8 with yellow

and green colors. Another important family of solutions is plotted in Fig. 5.8a, where the

TOF = 2490.48− 1191.88 = 1298.60 days since ND = 1 with the orbital period of Dionysus

equal to TD = 1191.88 days. In Fig. 5.8a, the first phasing orbit period is close to the Earth’s

orbit period, since the first ∆v is significantly small. The rest of the trajectories in Fig. 5.8
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have a phasing time equal to TOF = 2490.48 days. In Fig. 5.8b, the second phasing orbit

period is more prominent and has two revolutions, resulting in the first phasing orbit having a

shorter period. Fig. 5.8c shows that when one Earth revolution is added, both phasing orbits’

periods get smaller. Looking at Fig. 5.8d, having more revolutions on both phasing orbits leads

to having the shortest period among the plots shown here. In total, 42 different four-impulse

families are obtained based on feasible combinations of M , Ni (for i ∈ {1, 2}), ND ∈ {0, 1}

and Npf ∈ {0, 1} values.

Two five-impulse solutions with three phasing orbits are shown in Fig. 5.9 with yellow,

green and red colors. In Fig. 5.9a, the first impulse required to transfer to the first phasing

orbit is a relatively small impulse compared to the rest of the impulses. Thus, this first phasing

orbit is close to the Earth’s orbit. Four revolutions on this orbit do not take up much time. In

Fig. 5.9b, phasing orbits are more evenly distributed along the trajectory than in the previous

solution. Also, two revolutions occur on the Earth’s orbit. In total, 37 different five-impulse

families are obtained based on feasible combinations of M and Ni (for i ∈ {1, 2, 3}) values.

Two six-impulse solutions are plotted in Fig. 5.10 with yellow, green, red and orange

colors. Both trajectories do not have any revolutions on the Earth’s orbit. Inner phasing orbits

are uniformly distributed along the trajectory, gradually increasing the orbit inclination. In

Fig. 5.10b, the spacecraft stays closer to the Earth’s orbit by performing minuscule impulses.

In total, 21 different six-impulse families are obtained based on feasible combinations of M

and Ni (for i ∈ {1, 2, 3, 4}) values.

Seven-impulse trajectories consist of five phasing orbits, which decreases the total pos-

sibilities of multiple revolutions on the phasing orbits. All solutions have either one or two

revolutions on their phasing orbits. Two of the solutions are shown in Fig. 5.11 with phasing

orbits having yellow, green, red, orange and purple colors. The first solution is presented in

Fig. 5.11a. Similar to the six-impulse solution shown in Fig. 5.10a, this trajectory also has

phasing orbits with increasing values for both periods and the semi-major axis. In Fig. 5.11b,

the first four phasing orbits have periods closer to each other. This closeness results in the

first four impulse values also being smaller compared to the last phasing orbit. Additionally,

this solution has one Earth revolution that decreases the time spent on the phasing orbits. In
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(a) M = 0, N1 = 2, N2 = 1, ND = 1 (b) M = 0, N1 = 1, N2 = 2

(c) M = 1, N1 = 2, N2 = 2 (d) M = 1, N1 = 1, N2 = 4

Figure 5.8: Four-impulse trajectories with a) one revolution on both phasing orbits; b) two
revolutions on the first and one revolution on the second phasing orbit; c) two revolutions on
both phasing orbits, and one revolution on the Earth’s orbit; d) one and four revolutions on the
two phasing orbits, and one revolution on the Earth’s orbit. X marker denotes the location of
impulses.
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(a) M = 0, N1 = 4, N2 = N3 = 1 (b) M = 2, N1 = N2 = N3 = 1

Figure 5.9: Five-impulse trajectories with a) four, one, and one revolution on phasing orbits;
b) one, one, and one revolution on phasing orbits and two revolutions on the Earth’s orbit. X
marker denotes the location of impulses.

(a) M = 0, N1 = N2 = N3 = N4 = 1 (b) M = 0, N1 = N2 = N3 = 1, N4 = 3

Figure 5.10: Six-impulse trajectories with a) one revolution on the four phasing orbits; b) one
revolution on the first three phasing orbits, and three revolutions on the last phasing orbit. X
marker denotes the location of impulses.
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total, 7 seven-impulse families are obtained based on feasible combinations of M and Ni (for

i ∈ {1, · · · , 5}) values.

(a) M = 0, N1 = N2 = N3 = N4 = N5 = 1 (b) M = 1, N1 = N2 = N3 = N4 = N5 = 1

Figure 5.11: Seven-impulse trajectories with a) one revolution on each five phasing orbits; b)
one revolution on each five phasing orbits and one revolution on the Earth’s orbit.X marker
denotes the location of impulses.

There is only one eight-impulse solution based on feasible combinations of M and Ni

values (for i ∈ {1, · · · , 6}). The eight-impulse family is shown in Fig. 5.12, which has six

phasing orbits, each with Ni = 1 for i ∈ {1, · · · , 6}. These phasing orbits are shown with

yellow, green, red, orange, purple and light blue colors. In summary, the impulsive solutions

reported in [4] can be recovered by setting the N values equal to 1 (for the appropriate number

of phasing orbits) and M to 0 for the Earth’s orbit. Solutions with three and eight impulses

are new solutions since only four, five, and six-impulse solutions were reported in [4]. One

classification of the solutions is based on the combinations of N and M values for which 134

feasible families have been identified with the same total ∆v = 9.907425 km/s value. Table 5.1

summarizes the total number of multiple-impulse families. We highlight that there are infinitely

many iso-∆v solutions and the presented classification is based on the combinations of M , N ,

ND, and Npf that result in feasible families of solutions. As a special case, there exists one
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unique solution in each solution family for three impulses. Since for this case, one phasing

orbit is added to the trajectory and there is one constraint, the solution is obtained uniquely.

Figure 5.12: The eight-impulse trajectory, where each phasing orbit occurs over one revolu-
tion.X marker denotes the location of impulses.

Table 5.1: Classification of impulsive solution families based on the number of impulses ob-
tained from different feasible combinations for M , Ni (for i ∈ {1, · · · , 6}), ND ∈ {0, 1} and
Npf ∈ {0, 1} values.

Number of Impulses Number of Solution Families
Three 26
Four 42
Five 37
Six 21

Seven 7
Eight 1

Remark: Due to the enforcement of constraints on the total ∆v value, the orbital period

value of the phasing orbits should be greater than the orbital period of the Earth and less than

the orbital period of the orbit associated with the phase-free two-impulse arc (per Eq. (3.18)).

We cannot apply an impulse in the reverse direction of the red ∆v vector in Fig. 3.3 to place

the spacecraft into a phasing orbit with an orbital period less the orbital period of the Earth or

the previous phasing orbit. For these cases, the total ∆v is always greater than ∆v = 9.907425

km/s.
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5.3 GTO to GEO (GTO-GEO) Transfer

To demonstrate that our method is applicable to transfer problems other than the Earth-Dionysus

problem, we solve a GTO-GEO transfer problem. The boundary conditions in Cartesian coor-

dinates are given in Table 5.2. Since the GTO and GEO orbits are tangential to each other at

the apogee of the GTO, a base solution with a single-impulse (∆v = 1.4873346 km/s) at the

apogee of the GTO is sufficient. We start from the single-impulse base solution and break up

the single impulse into smaller impulses without changing the total ∆v of the maneuver.

Table 5.2: Cartesian boundary conditions for the GTO-GEO problem.

Parameter Value
Initial Position (km) [6721.95652173912, 0, 0]
Initial Velocity (km/s) [0, 10.0384360619658, 1.23256496402036]
Final Position (km) [−42165, 0, 0]
Final Velocity (km/s) [0, −3.07462812005026, 0]
Time of flight (days) 2 (Case 1), 12.011 (Case 2)

The addition of two phasing orbits to the trajectory is shown in Fig. 5.13. This trajectory

belongs to the three-impulse family of solutions. Initial and target orbits are shown with blue

and black dashed lines, respectively. The blue dot is the departure point and the black dot is

the arrival point. Red cross markers represent the impulses. There exists an initial coast, since

all impulses are applied at the intersection point of GTO and GEO. Adding two phasing orbits

(yellow and green orbits) to the trajectory results in breaking up the total impulse into three

smaller impulses. In this case, the mission time is constrained to be 2 days. Therefore, it is not

possible to have too many phasing orbits.

Increasing the total time of flight to 12.011 days allows us to introduce more phasing orbits

to the trajectory. We add 16 phasing orbits to the trajectory, with one revolution on each of the

phasing orbits. The trajectory is shown in Fig. 5.14. The initial and target orbits are identical

to the trajectory given in Fig. 5.13. The total ∆v is also identical. As the total time of flight

increases, the available time to spend on the phasing orbits is longer. Having a larger available

time (TOF as shown in Eq. (3.14)) results in having smaller individual impulses to raise the

perigee by adding more phasing orbits.
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(a) Two-dimensional view of the trajectory. (b) Three-dimensional view of the trajectory.

Figure 5.13: GTO-GEO Case 1: three-impulse minimum-∆v solution. N1 = N2 = 1. X
marker denotes the location of impulses. (1 DU = 6378 km.)

(a) Two-dimensional view of the trajectory. (b) Three-dimensional view of the trajectory.

Figure 5.14: GTO-GEO Case 2: seventeen-impulse minimum-∆v solution (N1, · · ·N16 = 1).
X marker denotes the location of impulses.
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The distribution of the individual impulses in GTO-GEO trajectories is shown in Fig. 5.15.

For the three-impulse trajectory, the first impulse has the largest magnitude needed to change

the inclination. Since the second orbit is closer to the first one in terms of inclination and semi-

major axis, the second and third impulses are relatively smaller. For the seventeen-impulse

trajectory, the impulses are more uniformly distributed. The first two impulses are approxi-

mately 0.2 km/s, whereas the magnitude of the other impulses decreases uniformly until the

last impulse. From an operational point of view, it is possible to increase the time of flight of

a mission without affecting the total required impulse; however, we can extend the flight time

until the magnitude of the largest impulse falls below the impulse that can be produced by the

propulsion system to make the maneuver feasible if individual impulses can not be greater than

a maximum limit.

Figure 5.15: Distribution of individual impulses for GTO-GEO trajectories. Magnitudes of the
impulses on the 17-impulse trajectory are multiplied by a factor of 5.

5.4 LEO to GEO (LEO-GEO) Transfer

A fixed-time rendezvous maneuver from a circular 300 km altitude Low-Earth Orbit (LEO) to

GEO trajectory is generated using the proposed method. The boundaries in Cartesian coordi-

nates are given in Table 5.3, which correspond to a LEO with 28 degrees of inclination. This

is a maneuver between non-intersecting orbits with different inclination values. Therefore, we

start by solving for the two-impulse base solution as explained in Section 3.1.
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Table 5.3: Cartesian boundary conditions for the LEO-GEO problem.

Parameter Value
Initial Position (km) [−6677.99994822088, −0.734261017649844, −0.390413508385778]
Initial Velocity (km/s) [0.000962087495564221, −6.82150753761816, −3.62705989590144]
Final Position (km) [42163.9999975184, −0.457455672469879, 0]
Final Velocity (km/s) [3.33583804464932× 10−5, 3.07466457999987, 0]
Time of flight (days) 1

The two-impulse base solution is plotted in Fig. 5.16. Impulses are shown with red cross

markers. Initial and target orbits are shown with dashed blue and black orbits. The time spent

on the phase-free arc is 0.220 days and the total ∆v is 4.2206849 km/s. The initial and final true

anomaly values coincide with the initial and final boundaries of the trajectory given in Table

5.3. This means that there are no late-departure or early-arrival arcs in the solution. Therefore,

a remaining time of TOF = 1 − 0.220 = 0.780 days is available to be distributed between

several phasing orbits. Even though it seems like changing the inclination only at the apogee of

the phase-free arc would result in a lower ∆v, the minimum-∆v solution distributes inclination

change between both maneuvers, which can be proven (see Chp. 6 in Ref. [72]).

(a) Two-dimensional view of the trajectory. (b) Three-dimensional view of the trajectory.

Figure 5.16: LEO-GEO two-impulse minimum-∆v solution. X marker denotes the location of
impulses.

The trajectory with two phasing orbits is shown in Fig. 5.17. The phase-free arc obtained

is shown in red color. The first impulse is the impulse anchor position and it is divided into

three impulses. The trajectory has four impulses in total. The apogee of the phasing orbits is
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increased gradually. The first impulse to put the spacecraft into the first phasing orbit happens

to be the largest impulse in the trajectory and is equal to 1.944 km/s.

(a) Two-dimensional view of the trajectory (b) Three-dimensional view of the trajectory

Figure 5.17: LEO-GEO four-impulse minimum-∆v solution. N1 = N2 = 1. X marker denotes
the location of impulses.

5.5 Solution Envelopes for the Family of Solutions

Application of the method explained in Chapter 4 is presented. The constraint on the total

TOF determines multiple envelopes of families. Assuming one revolution on each segment

results in TOF = 2490.48 days. The corners of these envelopes correspond to the extreme

cases and define the feasible domain. We plot the solution space and determine the corners

of those regions analytically. In this section, we assume that M = ND = Npf = 0 and

TOF = 2490.48 days. Our method still applies with non-zero revolutions on any combination

of these arcs. In this case, the TOF available for phasing orbits reduces by integer increments

of Earth, Dionysus, or transfer orbit (phase-free arc) period. We assume zero revolutions here

to highlight the versatility of the method with the widest range of orbital periods for phasing

orbits.

Phasing orbit periods are plotted with respect to the first phasing orbit period, T1. Phasing

orbit periods are functions of the α parameters. When α = 0, T (α) = 365.25 days, which

is the orbital period of the Earth (the orbit from which the spacecraft departs). When α = 1,

T (α) = 1161.47 days, which is the orbital period associated with the phase-free arc. These two
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orbital period values are the bounds on the orbital periods of phasing orbits. Another constraint

on the orbital periods is T1 ≤ T2 ≤ · · · ≤ Tnp since the α parameters have the constraints

defined in Eq. (3.16). However, we relax the constraints on the orbital periods by including

equality conditions to analyze the extreme points in the solution space by allowing α values to

be equal.

In Fig. 5.18a, the relation between orbital periods of the first and second phasing or-

bits is shown. As the orbital period of the first phasing orbit increase, the second orbital

period decreases. We can analytically determine the relation between T1 and T2. The min-

imum value of T1 is T1,min = 365.25 days. From the total TOF constraint (i.e., Eq. 3.14),

T2,max = (TOF −N1T1,min)/N2 = 1062.61 days. The maximum value of T1 is when T1,max =

T2,min = TOF/(N1 +N2) = 830.16 days.

Five-impulse solution envelopes are shown in Fig. 5.18b. In Fig. 5.18b, orbital periods for

the second (T2) and third (T3) phasing orbits create polygonal regions in green and gray color.

Infinitely many feasible solutions lie inside these polygonal regions. The region is bounded

below with the value of T1 which is shown with the blue line.

The corners of these regions can be analytically determined. Leftmost corners (corners

‘1’, ‘2’, ‘3’ in Fig. 5.18b) for both regions are when T1,min = 365.25 days, which is the lowest

value for α = 0. Using Eq. (3.16), and considering the T2 ≤ T3 constraint, the minimum value

of T3 is the maximum value of T2 corresponding to corner ‘2’,

T2 + T3 = TOF − T1,min,

T2,max = T3,min = (TOF − T1,min)/2 = 1062.62 days.
(5.1)

The values of T3,max (corner ‘3’) and T2,min (corner ‘1’) are calculated as,

T3,max = T (α = 0) = 1161.47 days, (5.2)

T2,min = TOF − T1,min − T3,max = 963.77 days. (5.3)

Thus, we were able to calculate the leftmost corners (corners ‘1’, ‘2’, ‘3’) of solution

regions for T2 and T3. Additionally, T3,max being the maximum orbital period value, creates
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another corner (corner ‘4’ in Fig. 5.18b) on the solution region of T3, which affects the T2

region too. The lower limit of T2 becomes equal to T1 after this corner point ‘4’. Therefore, at

this corner point T1 = T2 while T3,max. Using Eq. (3.16),

T1,corner = T2,corner = (TOF − T3,max)/2 = 664.51 days. (5.4)

The remaining corner is, corner ‘5’ in Fig. 5.18b, where all the regions converge to the

right-most point, which is obtained as T1 = T2 = T3 = TOF/3 = 830.16 days. This extreme

solution at which the orbital period of all phasing orbits is equal for np = 3 is equivalent to the

case with np = 1 and N1 = 3. Therefore, we were able to identify the corner points of these

regions by utilizing the constraints of the problem. This approach can also be applied to cases

with more intermediate phasing orbits. The relations to obtain the corners of solution regions

can be generalized to cases with more intermediate phasing orbits as explained in Chapter 4.

(a) N1 = 1, N2 = 2 (b) N1 = N2 = N3 = 1

Figure 5.18: Phasing orbit periods for a) Four-impulse solutions; b) Five-impulse solutions.

The solution regions are shown for the six-impulse case in Fig. 5.19 in both two- and three-

dimensional views. The polygonal region for T2 is the green region and shares a common line

with the gray region which is for T4 at the upper line of the green triangular region and the lower

line of the green polygonal region. The yellow region is for T3 and it is on top of the other two

regions. This means that at the intersection of yellow and green, there exist solutions when T2

and T3 are equal. On the intersection of the gray and yellow region, solutions exist where T2 and
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T3 are equal. All the regions share one common line, where T2 = T3 = T4 = (TOF − T1)/3

for T1 ∈ [TE, TOF/4] which is shown with the red colored line in Fig. 5.19a. The upper limit

of the T4 region is on the boundary (T (α = 1)) for a finite interval up until T1 = T2 = 443.00

days.

The solution regions for the seven-impulse case are shown in Fig. 5.20 in both two- and

three-dimensional views. The T5 upper bound is not equal to the upper bound constraint. There-

fore, all orbital period solution regions are triangular. The corners correspond to when all or-

bital periods are equal to each other, and the minimum and maximum range of solutions are

when T1,min = TE . Similar to the six-impulse case, the intersection of all the solution regions

corresponds to T2 = T3 = T4 = T5 = (TOF − T1)/4 where T1 ∈ [TE, TOF/5] as shown

in Fig. 5.20a with the red line. Determining the envelopes of solutions is useful for feasibility

analysis to see the ranges and intersections of the solutions.

(a) N1 = N2 = N3 = 1 (b) N1 = N2 = N3 = 1

Figure 5.19: Phasing orbit periods for a six-impulse family a) two-dimensional view; b) three-
dimensional view.
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(a) N1 = N2 = N3 = N4 = 1 (b) N1 = N2 = N3 = N4 = 1

Figure 5.20: Phasing orbit periods for a seven-impulse family a) two-dimensional view; b)
three-dimensional view.
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Chapter 6

Lower and Upper Bounds on the Number of Impulses

The existence of infinitely many optimal iso-∆v trajectories is a major finding in our quest to

answer the transfer maneuver Edelbaum considered in his seminal 1967 paper [2]. In particular,

the results actually allow us to provide analytic bounds on the lower (required) and upper

(allowable) number of impulses for three important classes of long-time-horizon, minimum-

∆v maneuvers in an inverse-square gravity model:

1. fixed-time-of-flight, rendezvous between two bodies (i.e., time-dependent states corre-

sponding to the two bodies on two different arbitrary orbits),

2. free-terminal-time, rendezvous, but the maneuver is between any two points on two dif-

ferent arbitrary orbits,

3. free-terminal-time, transfer.

The second and third classes and their solutions for multiple-revolution maneuvers have

remained elusive for more than five decades. We have expanded the range of the possible

number of impulses for the benchmark Earth-Dionysus problem. In particular, we have shown

that the three- to eight-impulse family of solutions exist with the same known total optimal ∆v

value. In fact, the solutions that we have obtained correspond to the first class of maneuvers.

For the same optimal ∆v value, the number of impulses can vary from the least three impulses

to a maximum of eight impulses. The key unknown in this step is to consider the lower bound

of Eq. (3.18). For the Earth-Dionysus problem, T (α = 0) is 365.25 days and TOF is 2490.48

days, giving 365.25 < 2490.48
np

, or np < 6.82 giving a maximum of 6 phasing orbits and 8
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impulses. Analysis of the time constraint leads to 1 ≤ np ≤ 6. This is a remarkable result

in the sense of providing analytic relations for determining bounds on the minimum (required)

and maximum (allowable) number of impulses needed for fixed-time rendezvous maneuvers.

It is also applicable to any large, but finite-time-horizon maneuver.

The second class is an extension of the first class but can be connected to the third class.

In other words, while the original Earth-Dionysus problem has been formulated as a fixed-

time-of-flight, minimum-∆v rendezvous between two fixed points on two different orbits, the

free-terminal-time transfer problem between two orbits is embedded in the family of extremal

solutions due to the presence of late-departure and early-arrival arcs that appear in impulsive

trajectories [4]. The solutions consist of a departure point on an initial 6-D manifold to an entry

point on a different 6-D manifold. Moreover, while there is definitely a lower bound on the time

of flight associated with the minimum-∆v transfer maneuver between the two manifolds (i.e.,

the time of flight associated with the phase-free two-impulse arc shown in Fig. 5.5a), it can be

concluded that no upper bound can be defined for the time of flight as long as there is sufficient

time for the spacecraft to spend on the four major phases. This can be achieved, for instance,

by adding integer multiples of the Earth’s orbital period to the current available phasing time

(i.e., TOF = 2490.48 + κTE days and κ ∈ N).

For free-final-time, rendezvous problems, we should also account for the total time by

adding multiples of the orbital periods of the target, e.g., β×TD, where TD is the orbital period

of asteroid Dionysus and β ∈ N. While the total time of flight can be increased, it is always

possible to consider larger M and Ni values (see Eq. (3.14)) for a number of phasing orbits. As

the TOF value increases, the possibilities for introducing more phasing orbits grow, and one

can obtain multiple-impulse solutions with the same total minimum-∆v value. For the Earth-

Dionysus problem, the minimum number of impulses for a phase-free transfer is two, whereas

the minimum number of impulses is three for a phase-constrained version of the problem. The

universal feature of all multi-impulse minimum-∆v solutions, however, is that they require the

same total ∆v value.

In general, if we consider a free-final-time transfer maneuver between two orbits, the upper

number of impulses has no limit if we are allowed to add as much time possible for phasing
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maneuvers per our discussion while the lower number of impulses is two for the free-final-time

transfer problem. Note that time being unbounded does not cause an ambiguity, since the total

optimal ∆v remains the same. However, if the time of flight is large but finite, it is always

possible to determine the maximum (allowed) number of impulses.

In terms of the mathematical formulation of these different maneuver cases, we can also

revisit Eq. (3.1) to generate phase-free maneuvers on free-time transfers. If we consider free-

time rendezvous, then the tpf becomes a function of the initial and final true anomaly, which

potentially increases the total ∆v obtained in the free-time transfer problem. However, the

addition of phasing orbits provides an additional degree of freedom to the problem so that

the minimum ∆v can be recovered. In the proposed formulation, this phasing time parameter

(TOF in the constraint equation Eq. (3.14)) should be between the orbital period of the initial

and target orbits. Since it is a free-time rendezvous problem, the total time of flight can be

increased by adding multiples of the target orbit orbital period to increase flexibility to break

up the total impulse and add more phasing orbits. For the fixed-time rendezvous problem, the

initial and final true anomaly and tpf are fixed. If these were the only design parameters, then

the solution could be obtained by solving Lambert’s problem, resulting in a higher total ∆v.

However, with the proposed method, phasing orbits and coast arcs can be introduced to the

trajectory to achieve minimum-∆v.

Alternatively, every different maneuver case can be obtained first by solving the phase-

free two-impulse arc without altering Eq. (3.1). The current formulation generates the free-time

transfer solution. If the free-time rendezvous maneuver is considered, then adding phasing orbit

and increasing the total mission time can generate the minimum-∆v solution by following the

steps explained in Section 3.4. The available time (TOF ) should be larger than the orbital

period of the initial orbit for the proposed method. For fixed-time rendezvous problems, coast

arcs and/or phasing orbits can be introduced to generate the trajectory with the minimum-

∆v using the proposed method, if the available time (TOF ) is longer than the orbital period

of the initial orbit. In other words, this method can be used for time-feasibility studies of

minimum-∆v maneuvers and allows to recover minimum-∆v for each maneuver type. This

process is explained in Fig. 6.1. In Fig. 6.1, the green arc represents the phase-free arc obtained
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Figure 6.1: Three different maneuver types to obtain minimum-∆v solution.

from solving a phase-free problem which is shown as a free-time transfer maneuver. Then,

a number of phasing orbits are added to the free-time rendezvous maneuver in the middle

example trajectory. Finally, coast arcs and phasing orbits are added to the trajectory for fixed-

time rendezvous at the left-most trajectory in Fig. 6.1.

The benefit of free-time transfer is that it generates the minimum-∆v maneuver regardless

of flight time and phasing. Thus, it is the most general solution. Free-time rendezvous is a

step for incorporating the phasing to match the target body. Fixed-time rendezvous is the most

constrained case but it can match the minimum possible ∆v from free-time transfer with the

addition of phasing orbits and coast arcs. They provide simpler problems to bound the solution

space of the more complex problems.
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Chapter 7

Generation and Interpretation of the Primer Vector for Trajectories with Phasing Orbits

Necessary conditions for optimal impulsive trajectories were derived by Lawden in his seminal

work [5] in terms of the primer vector norm and its derivative. The primer vector defines the

optimal direction of the impulse vector. The details about the primer vector theory are explained

in Chapter 2.4. In order to evaluate the time history of the primer vector, Φ−1
2 has to exist to

solve for the initial value of the primer vector derivative in Eq. (2.17).

For a general phasing orbit, only the velocity magnitude is constrained, and the velocity

direction is free (assuming a direction is not considered). This additional degree of freedom

on phasing orbits results in singularities on Φ2. One revolution on a phasing orbit results in an

identity STM where Φ−1
2 does not exist. In such cases, the primer vector time history cannot

be determined by using Eq. (2.17). However, Lawden’s necessary conditions for optimality

can be utilized to overcome this issue. Since it is known that these solutions are extremal,

we can use the fact that the primer vector derivative is continuous, and that the primer vector

and its derivative are orthogonal at the impulse instances. Thus, the initial value of the primer

vector derivative is simply its value at the next impulse point, since it is continuous. In the

cases that we have considered, the primer vector is also known, since the ∆v is known at the

impulse points of the fundamental phase-free two-impulse arc (see Chapter 3). Therefore, time

histories can be obtained by propagating the primer vector and its derivative backward for the

time of flight spent on all phasing orbits. However, if the spacecraft remains on the phasing

orbit and makes multiple revolutions (as has been the case for many of the solutions that we

have presented) one has to consider a new interpretation of the primer vector time history.

62



(a) (b)

Figure 7.1: a) Primer vector magnitude vs. time when one phasing orbit is added to the trajec-
tory. b) ṗ vs. time with one phasing orbit with three revolutions around the Sun.

An example of primer magnitude and primer derivative is given in Fig. 7.1 where circles

indicate the impulses. Note that the derivative refers to the derivative of the norm given in

Eq. (2.14). These plots are for the solution given in Fig. 5.7a. In this solution, the spacecraft

makes three revolutions on the phasing orbit. This multi-revolution solution is apparent in

the primer vector magnitude time history plotted in Fig. 7.1a as the primer norm cycles with

the same profile in the shaded region.The green curve has three cycles as it returns to the

impulse anchor position and it is possible to have an impulse. As we discussed in Section 3.2,

applying any impulse in a different location would increase the total ∆v. The shaded region

represents the time interval where the spacecraft is in the phasing orbit. It can be seen that

after the impulse at the beginning of the shaded area, there exist three impulse opportunities

as the primer magnitude becomes unity. Thus, on phasing orbits, we are dealing with a new

notion, i.e., potential impulse opportunity. However, only at the last impulse opportunity (on

the phasing orbit), an impulse happens. At these potential impulse opportunities, the derivative

of the norm of the primer vector is equal to zero (shown in Fig. 7.1b) which also indicates

that all the potential impulse opportunities satisfy the necessary conditions of optimality. Here,

it is instructive to note that the np = 1 and N1 = 3 family depicted in Fig. 7.1b lies on the

bifurcation point of the family with np = 3 and T1 = T2 = T3.
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Figure 7.2: Evolution of the primer vector (green) and primer vector derivative (black) on the
phasing orbit, shown as a gray region in Fig. 7.1.

To show the evaluation of the primer vector with time on the phasing orbits, the primer

vector and primer vector derivative are plotted in a three-dimensional plot in Fig. 7.2. Primer

vectors are plotted with green vectors. When there exists an impulse opportunity, the primer

vector norm becomes unity. This is shown with the red arrow. The derivative of the primer

vector, when its magnitude becomes one, is shown with a black arrow that lies on the supporting

plane tangent to the sphere defined by the ||p|| = 1 constraint. Any impulse corresponds to a

point on the surface of the primer vector sphere. However, the derivative of the primer vector

will lie on the supporting hyperplane. In this case, when we are analyzing the impulses at the

impulse anchor position, we will have a unique supporting plane. Whenever there is a potential

impulse opportunity, the primer vector and its derivative are orthogonal and shown with the red

and black colored vectors, respectively. All the shown green vectors correspond to the primer

vector in between the impulses on the phasing orbit, which means that these vectors lie interior

to the unit sphere since the magnitude of the primer vector is less than the unity in between

the impulses on any extremal solution. The tip of the green vectors denotes the locus traced

by the primer vectors on one of the phasing orbits. The evolution of the primer vectors will be

different on different phasing orbits. Still, the same interpretation applies and the location of

the intermediate impulses will be the same on the sphere.
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Chapter 8

Concluding Remarks

Generating fuel-optimal trajectories is critical to utilize the limited sources of a spacecraft for

space exploration. The previous investigations on the Earth-Dionysus problem showed that

there exist trajectories with the exact same impulse magnitude. This thesis explained how

those solutions can be obtained and showed that there exist infinitely many such solutions. The

results are generalized to solve different impulsive trajectories. This work performed in this

thesis contributes to the development of an analytic method to generate iso-impulse trajectories

with multiple phasing orbits. These iso-impulse trajectories are generated starting from a base

two-impulse trajectory. Additionally, the study investigates the upper and lower bounds on

the number of impulses. This research effort aims to propose a fast approach for maneuver

placement for impulsive trajectory generation.

In order to review the main findings of this research effort, the proposed questions in the

introduction section are answered.

1. How these iso-impulse solutions can be generated for long-time-horizon multiple-revolution

impulsive trajectories?

Investigations of different solutions to the Earth-Dionysus problem showed that the im-

pulses are located at two distinct points. From this observation, a phase-free two-impulse

minimum-∆v optimization problem is formulated. In order to satisfy the rendezvous

problem and the fixed total time of flight of the mission, multiple phasing orbits are

added to the trajectory by breaking up the first impulse at the impulse anchor position.

The direction of the impulse is kept constant, since changing the direction increases the
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total ∆v. Therefore, only the magnitude of the impulse is varied without exceeding the

amount of total impulse magnitude. The resulting problem is expressed with a constraint

equation including the number of revolutions and the orbital period of phasing orbits. It

is shown that orbital period information can be calculated once the impulse amount is

known or vice versa. Therefore, the number of unknowns is increased as the number

of phasing orbits is added to the trajectory. For the three-impulse case where there is

one phasing orbit in the trajectory, the solutions obtained are unique since the number

of constraints is equal to the number of unknowns. For the cases when the number of

impulses is four or more than four, the number of unknowns is higher than the number of

constraints. This resulted in having infinitely-many iso-impulse solutions.

For the Earth-to-Dionysus problem, 134 feasible families are obtained, based on the com-

binations of motions on the four phases for one impulse anchor position. The family of

impulsive solutions spans a minimum of three and a maximum of eight impulses for so-

lutions with the same total impulse value. We have obtained 130 new impulsive families

based on the combinations of the four aforementioned phases.

The applicability of the proposed method on different impulsive trajectory optimization

problems is demonstrated by solving GTO-GEO and LEO-GEO problems. Results show

that there exists a family of solutions for each case. In addition, for problems with phas-

ing orbits, the primer vector can be reconstructed using the continuity of the primer vec-

tor and its derivative at the boundary of the phasing orbits. However, when a spacecraft

enters a phasing orbit and makes multiple revolutions, there are a number of “potential

impulse opportunities” all of which satisfy Lawden’s necessary conditions of optimality,

but no impulse is applied at the potential impulse opportunities except for time instants

at the entry to and exit from a phasing orbit.

2. How can we classify iso-impulse solutions and what is the solution space for this family

of solutions?

In order to classify the iso-impulse solutions, different number of revolutions on different

segments of the trajectory is considered. The solutions are classified by the number
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of revolutions on these main segments: the initial orbit or Earth’s orbit, the number of

phasing orbits, a phase-free arc, the target orbit, or Dionysus’ orbit. It is concluded that as

the number of revolutions increased on different segments of the trajectory, it decreases

the possibility of having more revolutions on the rest of the segments due to having a

fixed time problem.

To determine the solution spaces of infinitely-many iso-impulse solutions, the extreme

cases in the family of solutions are investigated. Some of these extreme cases are defined

as when the first phasing orbit is at its minimum when all the phasing orbit periods

are equal to each other when the last phasing orbit is at its maximum value. These

extreme cases are used to derive analytical relations to generate solution envelopes. It

is concluded that the first phasing orbit orbital period bounds the solution space from

below. The solution orbital period lies in between the initial and last phasing orbit orbital

period. All the solution envelopes converge or bifurcate from the point where all orbital

periods are equal to each other.

3. Can the infinitely many solutions be used to determine the upper and lower number of

impulses for long-time-horizon multiple-revolution trajectories?

In order to determine the lower and upper bounds of the impulses, an analytical relation

is derived. This relation includes the lower and upper bound of the orbital periods when

the first impulse placing spacecraft into the phasing orbit is zero and the case where the

total impulse is not distributed but applied at once. It is known that the total time of flight

spent on the phasing orbits is constant. If there exists a solution when all of the orbital

periods of phasing orbits are equal to each other, then one can conclude that there exist

infinitely many solutions for that particular family. When the number of phasing orbits

added to the trajectory is unknown, the inequality relation can be utilized to determine

the range of the number of impulses.

The analysis is extended to free-terminal-time rendezvous maneuvers and free-terminal-

time transfer-type maneuvers. It is discussed that the free final time rendezvous ma-

neuver’s upper number of impulses is infinity since the total time of the mission can be
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increased and more and more phasing orbits can be added to the trajectory. The lower

bound of the number of impulses can be a two or a three-impulse maneuver. For free

final-time transfer maneuvers, there exists a lower bound on the time for the connecting

arc. Therefore, the lower bound can be a two-impulse trajectory, but the upper limit is in-

finity since the total mission time can be increased and more phasing orbits can be added

to the trajectory.
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