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Dissertation Abstract

Doubly-Selective Channel Estimation and Equalization Using Superimposed

Training and Basis Expansion Models

Shuangchi He

Doctor of Philosophy, August 4, 2007
(M.S., Tsinghua University, 2003)
(B.E., Tsinghua University, 2000)

261 Typed Pages

Directed by Jitendra K. Tugnait

Owing to multipath propagation and Doppler spread, typical wireless channels are

both frequency- and time-selective (doubly-selective). In this dissertation, we concentrate

on channel estimation and equalization over doubly-selective channels, by exploiting both

superimposed training and basis expansion models (BEM).

In contrast to the conventional time-multiplexed (TM) training schemes, at the trans-

mitter, a periodic training sequence is arithmetically added at low power to the information

sequence in superimposed training schemes. There is no loss in data transmission rate,

but some useful power has to be allocated to superimposed training. We also employ vari-

ous BEM’s to describe the temporal variations of the doubly-selective channel so that the

estimation of a time-varying process can be reduced to estimating fewer invariant BEM

coefficients.

Firstly, a channel estimator is presented using superimposed training and the first-order

statistics of the observations, based on various BEM’s, where information sequences act as
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interference in channel estimation. By using user-specific training sequences, the estimator

can be extended to multiple-user systems.

We next analyze the information-induced self-interference of this estimator. The per-

formance analysis and the parameter optimizations are investigated.

We propose two schemes to alleviate the self-interference in channel estimation. Us-

ing the channel estimates by the first-order statistics-based estimator as an initial guess, a

deterministic maximum likelihood (DML) approach is used to jointly estimate the channel

and the information sequence. Exploiting the channel estimates and the detected informa-

tion data from the previous iteration, the self-interference can be significantly reduced at

the present iteration. We also propose a data-dependent superimposed training scheme.

The training sequence is designed based on the current information sequence so that the

self-interference can be entirely eliminated at the receiver. However, total elimination of

the interference may lead to information loss. We then modify the scheme to the partially-

data-dependent (PDD) training, striking a compromise between interference cancelation

and information integrity.

Using superimposed training and a BEM, direct equalization of doubly-selective chan-

nels is also considered, without estimating the channel first. The direct equalizer is also

extended to a multiple-user scenario, which can be used in a wireless ad hoc network.

The proposed approaches are illustrated by computer simulation examples, and com-

pared with conventional TM training-based approaches. When self-interference is suffi-

ciently suppressed by our proposed schemes, the performance of superimposed training-

based approaches are competitive with the ones using the conventional TM training, without

incurring any data-rate loss.
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Chapter 1

Introduction

With the emergence of next-generation wireless mobile communications, multimedia

services have increasing demands for higher data rates, better quality of service, and higher

network capacity. In efforts to support such demands, researchers have paid special atten-

tion to wireless channels. Phenomena occurring in wireless channels, such as fading, delay

spread, Doppler spread, co-channel interference, and multi-user interference, may impair

signal transmission and data reception. A wireless channel is a challenging communica-

tions medium with limited bandwidth, relatively low capacity per unit bandwidth, random

amplitude and phase fluctuations, and inter-symbol interference (ISI). To design a physical

link with data rates approaching the fundamental information capacity limits of the wireless

channel, accurate knowledge of the channel state information (CSI) becomes a prerequisite

for many physical layer approaches. Channel estimation thus plays a key role. At the re-

ceive ends, equalizers are usually used to compensate for the signal distortion. One may

design an equalizer based on a channel estimate, or by directly using the received signals.

Traditionally, receivers rely on a transmitter-assisted training session to extract the

desired reference signal for channel estimation or equalization [64]. In a fast-varying envi-

ronment, training sessions have to be transmitted frequently and periodically to keep up

with the temporal variation of the channel. For a band-limited wireless application, frequent

use of training sessions decreases the effective information rate. To save valuable spectrum

resources, blind (self-recovering) channel estimation and equalization, based solely on the

noisy received data, exploiting the statistical or other properties, has attracted researchers’
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interest, where no training sessions are available nor are used [23]. Semi-blind channel es-

timation, combining explicit (time-multiplexed) training and blind cost functions, has also

attracted considerable attention due to the need for fast and robust channel estimation

and the fact that, for many packet transmission systems, embedded known symbols can be

exploited for channel estimation. In semi-blind approaches, there are training sessions but

one uses information data also to improve the training-based results [23,87]. More recently,

superimposed training-based approaches have been explored where the training sequence is

“on” all the time, and is transmitted (at low power) concurrently with (superimposed on)

the information data. In contrast to explicit training, there is no loss in data transmission

rate. On the other hand, some useful power is wasted in superimposed training sequences

which could have otherwise been allocated to the information data.

In this dissertation, we will discuss doubly-selective channel estimation and equalization

using superimposed training. Common wireless channels are frequency-selective (due to

delay spread and multipath propagation) and time-selective (due to mobility). An accurate

model of realistic wireless channels can be complicated and involve too many parameters

for estimation purposes. Therefore, a parsimonious representation is preferred. We employ

basis expansion models (BEM) to represent the doubly-selective channel with many fewer

parameters [24]. In a BEM, the channel is represented as a finite impulse response (FIR)

filter where each tap is a superposition of distinct basis functions that describe the temporal

variations of the channel. Three BEM’s are considered: the complex exponential basis

expansion model (CE-BEM), the orthogonal polynomial basis expansion model (OP-BEM),

and the discrete prolate spheroidal basis expansion model (DPS-BEM).
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1.1 Previous Work

In this section, we summarize the previous research work on superimposed training-

based channel estimation, equalization, and related areas.

To the best of our knowledge, the idea of superimposed training (simultaneous trans-

mission of information-bearing signal and channel sounding) was first proposed in [36] in

1965 for analog communications, where a pseudo-random channel sounding signal was su-

perimposed upon a frequency-modulated (FM) information-bearing signal by amplitude

modulation (AM). This idea was extended to digital systems in [17] in 1995, where both

least squares (LS) and least mean squares (LMS) methods were considered to build an adap-

tive filter, treating the known superimposed training sequence as the input and the received

signal as the desired output. Periodic superimposed training sequences allowed for the use

of first-order statistics (time-varying mean) of the received signal, which were also exploited

for time-invariant channel estimation in [59, 82, 98], among others. Using CE-BEM, such

periodic superimposed training schemes were extended to doubly-selective channel environ-

ments in [81,97]. Direct design of FIR equalizers using periodic superimposed training was

investigated in [58] for time-invariant channels. The Cramér-Rao lower bound (CRLB) on

channel estimation variance was given in [98], under the assumption of Gaussian source

symbols for a special class of training sequences. Such bounds were extended to a general

class of training sequences in [59]. Non-periodic random or pseudo-noise (PN) superim-

posed training sequences (known at the receiver) were used in [33, 44]. A linear predictor

was designed in [33] to estimate the time-varying flat fading channel, and based on the

minimum mean square error (MMSE) criterion channel estimation and equalization were

discussed in [44] for M -quadrature amplitude modulated (QAM) symbols.
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The formulations of [59, 82] allowed for the presence of an unknown “direct current”

(DC) offset at the receiver, whereas [17, 98] did not. The two schemes in [59, 82] were

compared by [45], where their structural equivalence was verified and therefore identical

estimates would be got for zero (or known) DC offset. In the presence of an unknown DC

offset, the basic approach of [59] yielded biased channel estimates, so that estimation of the

DC offset was required by using the biased estimates and received data by finding the roots

of a fifth-degree polynomial [59]. In contrast, the method of [82] yielded unbiased channel

estimates directly. Performance analysis (a closed-form solution for the channel estimation

variance) was also performed in [59] for zero (or known) DC offset, which was then used

for an optimal training sequence synthesis to yield a channel-independent performance.

Unfortunately, the synthesized training sequences in [59] do not necessarily have a small

peak-to-average power ratio, whereas that of the training sequence in [82] has the optimal

value of one. The performance analysis that is valid for any DC offset of the approach pro-

posed by [82] was conducted in [84,85], where power allocation for superimposed training in

Rayleigh fading channels was also addressed by maximizing the equivalent signal-to-noise

ratio (SNR) for equalizer design under a fixed power constraint. As in [17], the period

of the superimposed training sequence of [59] was equal to the number of channel taps,

whereas this condition was relaxed in [82] to be greater or equal to the number of chan-

nel taps. Synchronization of the training sequence (frame synchronization), based on the

correlation and the fourth-order cumulant functions of the observations, was also discussed

in [59]. Under mis-synchronization, however, the estimated channel will consequently yield

a circularly shifted estimate whose “shift” cannot be resolved via the first-order statistics

of the data [59]. Synchronization of the approach in [82] was discussed in [83, 85], where
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the problem of shifted channel estimate was avoided. A synchronization technique based

on subspace projections was discussed in [1]. The estimator proposed in [82] offers the

fundamental approach to channel estimation in this dissertation.

To exploit the enormous capacity potential of multiple-input multiple-output (MIMO)

communications [18], superimposed training-based channel estimation was considered in

[4, 5, 21, 47, 48] for MIMO systems. Superimposed training in multi-carrier systems was

considered in [9, 10, 13, 93]. We also note that a more general framework of superimposed

training, engaged in affine precoding, has now attracted much interest and was investigated

in [42,56,89], among others.

Since superimposed training-based methods usually use statistical properties of the

information data, they can be treated as semi-blind approaches [17]. In contrast to slow

convergence and possible convergence toward incorrect solutions occurring in blind meth-

ods [92], identifiability conditions for superimposed training-based methods are much less

stringent [17]. Furthermore, blind approaches cannot resolve complex scaling factor ambi-

guity, so that differential coding and decoding resulting in 3 dB SNR loss is required [85],

whereas power allocated to superimposed training is typically much less than 3dB (1 dB or

less in [17]).

In superimposed training-based approaches, the unknown information data are typi-

cally incorporated in the noise term, in essence yielding a lower SNR [73]. In other words,

the information data may act as interference at the receiver to the superimposed training

and adversely affect channel estimation and data detection performance—no loss in data

transmission rate might be at the price of degradation in data reception.
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Several methods were investigated to reduce the interference from information data

(we call it self-interference in this dissertation since it comes from the transmitted signal

itself). A selective superimposed training scheme was proposed in [76], where the selection

of the training sequence depends on each frame of information data. From a candidate

set of orthogonal sequences maintained at the transmitter, a training sequence is chosen

and superimposed on the incoming information frame so as to minimize the correlation be-

tween training and the information frame. In [20], a data-dependent superimposed training

scheme was proposed for time-invariant channel estimation, where the training sequence

is distorted before transmission in order that the self-interference is eliminated at the re-

ceiver. This scheme was extended to MIMO systems in [21], and was modified to allow for

unknown DC offset in [19]. However, in Chapter 6 we will show that the cost of using data-

dependent superimposed training for interference cancelation is information loss to some

extent. Channel estimation and data detection can also be enhanced in an iterative way,

i.e., the detected data can be utilized to cancel the self-interference in the next iteration.

Such applications are available in [13,49–51,97].

Now, one may wonder, in comparison with conventional time-multiplexed (TM) train-

ing, what are the advantages and disadvantages of superimposed training? Since the ulti-

mate goal of communications is to improve the capacity of communication systems to the

Shannon bound, how can superimposed training help?

A superimposed training-based scheme for space-time coded transmission over flat

block fading (quasi-static) channels was considered in [8]. The analysis revealed the weak-

ness of superimposed training in block-stationary (and thus time-invariant) environments,

showing that superimposed training has higher CRLB than that of TM training due to
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the presence of self-interference. On the other hand, if training must be included in every

block and the channel estimation is accurate, the superimposed scheme gives higher mutual

information (capacity) [8]. Performance bounds for TM and superimposed training-based

semi-blind estimation of time-varying flat fading channels were considered in [16]. Under the

same overall power allocation, it was shown that the superimposed training performs better

for fast fading channels, which confirms the intuition that the constant presence of training

has considerable benefit. For slow fading and high SNR, such an advantage disappears and

there is a penalty for using superimposed training, since data transmission interferes with

channel estimation [74]. This viewpoint was also confirmed by [73], which showed that

when the coherence time is relatively short (compared with the time devoted to training in

each block), superimposed training achieves higher capacity than that of TM training. It is

because superimposed training allows for data transmission over the entire block, whereas

TM training sessions occupy a large portion of time in this situation and hence not much

time remains for information transmission. Capacity of superimposed training-based MIMO

systems was considered in [5], where similar results have been derived, i.e., in the scenarios

of high SNR, many receiver antennas, and short coherence time, it is beneficial to employ

superimposed training; otherwise, TM training will be better.

An important conclusion appeared in [4], where the author answered the following

question: How much will the capacity increase by allowing re-estimation of the channel when

the detected symbols are available? It was shown that the capacity after re-estimation can

be very close to the fundamental capacity of the non-coherent channel, especially when the

channel coherence time is short. After iterations, significant improvement is achieved—of

course, at the expense of increased complexity.
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1.2 Contributions

In this dissertation, we investigate superimposed training-based approaches to the es-

timation and equalization of doubly-selective channels. In order to model channel variation

by a parsimonious representation, we explore various BEM’s, including CE-, OP-, and

DPS-BEM’s, to approximate the multipath channel with Doppler spread.

Our starting point is the first-order statistics-based estimator proposed by [81], us-

ing CE-BEM. In approximating band-limited time-varying channels, the modeling error of

CE-BEM is noticeable. Therefore, we extend this estimator using DPS- and OP-BEM’s

to reduce the modeling error. A more general estimator that applies to arbitrary BEM’s

is also provided. We then further apply this estimator to a multiple-user scenario. Chan-

nel estimation across different users is decoupled by means of user-specific superimposed

training sequences.

Performance analysis is then conducted for the first-order statistics-based estimator

for doubly-selective channels, in which we demonstrate that the interference in estimation

mainly comes from the unknown information sequence (self-interference). Based on the

results of the performance analysis, we cast the issues of power allocation and bias-variance

trade-off as ones of optimizing an SNR for equalizer design, following the method proposed

for time-invariant channels in [85].

The major drawback of superimposed training is that the self-interference from infor-

mation data may adversely affect channel estimation and data reception performance. To

alleviate the effect of self-interference, we propose two methods: A deterministic maximum

likelihood (DML) approach is employed at the receiver, to enhance the channel estimation
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iteratively, exploiting the detected symbols from the previous iteration to reduce the self-

interference. We can also achieve this by transmitter-end processing—the superimposed

training sequence is modified based on the information sequence, or equivalently, the in-

formation sequence is distorted before transmission so that training and information data

occupy distinct frequencies and hence can be separated at the receiver. However, distor-

tion of the information sequence may cause “information” loss before transmission, which

cannot be fully recovered by receiver-end processing. A partially-data-dependent (PDD)

superimposed training scheme is proposed in order to strike a trade-off between interference

cancelation and information integrity.

We also design a direct equalizer, without first estimating the channel, using superim-

posed training and CE-BEM. With the aid of periodic white training sequences, we show

that the optimal linear equalizer for the training sequence is also a scaled version of the op-

timal equalizer for the information sequence. By employing user-specific training sequences,

this direct equalizer can be extended to a multiple-user scenario, which can be used in a

wireless ad hoc network.

Computer simulation examples illustrate our proposed approaches. Analytical results

are also compared with simulation results to show their validity. Comparisons with con-

ventional TM training-based approaches are also presented—when self-interference is suf-

ficiently suppressed by our proposed schemes, the performance of superimposed training-

based approaches are competitive with the ones using TM training, without incurring any

data-rate loss.
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1.3 Organization

The rest of this dissertation is organized as follows.

In Chapter 2, representations of time-varying wireless channels are briefly reviewed,

including Jakes’ model, CE-, OP-, and DPS-BEM’s.

Chapter 3 introduces the first-order statistics-based channel estimator using super-

imposed training. We explore this estimator under different channel representations, and

extend it from a single-user scenario to a multiple-user situation by exploiting user-specific

superimposed training sequences.

We consider performance analysis for the first-order statistics-based estimators in Chap-

ter 4. Training power allocation and bias-variance trade-off are also optimized from the

viewpoint of equalization.

The DML approach is considered in Chapter 5. Exploiting detected symbols from the

previous iteration, the self-interference is reduced at the current iteration and therefore,

channel estimation and data reception performance are improved. A multiple-user scenario

is also considered.

In Chapter 6, we investigate the data-dependent superimposed training scheme. The

data-dependent processing at the transmitter results in information loss. We propose a PDD

superimposed training scheme to mend this problem. Performance analysis and parameter

design are also provided.

Superimposed training-based direct equalization is considered in Chapter 7, by the aid

of periodic white training sequences. This algorithm is also extended to a multiple-user

wireless ad hoc network.

The dissertation concludes in Chapter 8. Future directions are also suggested.
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Chapter 2

Representations of Wireless Channels

2.1 Introduction

Due to multipath propagation and Doppler spread, wireless channels are characterized

by frequency- and time-selectivity [66]. A radio signal, experiencing distortions through

transmission by fading, background noise, and interference of every sort, becomes stochastic

to an observer at the receiver. Small-scale fading (or simply fading) is the term to describe

the rapid fluctuations of the amplitudes, phases, or multipath delays of a signal over a short

period of time or travel distance, so that large-scale path loss may be ignored [66]. The

goal of channel estimation and equalization is mainly to combat small-scale fading.

Fading can be attributed to physical factors including multipath propagation, relative

motion between the transmitter and the receiver or surrounding objects, and the trans-

mission bandwidth of the signal, etc [35]. The presence of reflecting objects and scatterers

makes the wireless channel constantly changing, which dissipates the signal energy and dis-

torts the signal in amplitude, phase, and time. Multiple versions of the transmitted signal

arrive at the receiver through different paths. The random amplitudes and phases of the

different multipath components induce fading. The relative motion between the transmitter

and the receiver as well as the motion of the objects within the wireless channel, induces

Doppler spreads, which are typically time-varying and become a source of fading also.
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For channel estimation or tracking purposes, accurate modeling of the temporal evo-

lution of the channel plays an important role. A parsimonious and accurate channel repre-

sentation is always preferred. Among various models for channel time variations, the au-

toregressive (AR) process, particularly the first-order AR model, is regarded as a tractable

model to describe a time-varying channel, where the channel is assumed to be Markovian,

i.e., for the current channel symbol, the effect of channel symbols other than the immediately

preceding one is negligible [90]. This Markovian assumption has been verified for Rayleigh

fading channels in [90], by considering the mutual information between channel symbols.

The AR model has been used for time-varying channel estimation in [7, 11,16,37,38].

The AR model, based on symbol-by-symbol update, is suitable for sequential time-

domain processing. When we deal with block processing schemes, it is more convenient to

use block-based channel models such as BEM’s.

The BEM that is optimal in MSE is the discrete Karhuen-Loève BEM (DKL-BEM),

which is a reduced-rank decomposition of a certain type of Doppler spectrum [72]. The

CE-BEM can be viewed as a special DKL-BEM based on a white Doppler spectrum, and

the DPS-BEM corresponds to the DKL-BEM with a rectangular Doppler spectrum [72].

In this chapter, we briefly review representations of time-varying channels. In Section

2.2, Jakes’ model is introduced, which will be used as the model of the “real” channel in

the simulation examples of this dissertation. In Sections 2.3–2.5, CE-, OP-, and DPS-BEM

representations are discussed. The modeling error of these BEM’s is compared one another

in Section 2.6 via a simulation example. Section 2.7 summarizes this chapter.
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2.2 Jakes’ Model

If we assume that many statistically independent scattering waves with random am-

plitudes and phases reach the receiver with the phases uniformly lying in [0, 2π), and there

is no dominant non-fading signal component present (no line-of-sight), by the central limit

theorem, the real and imaginary parts of the sum of the scattering waves are both Gaussian.

The signal envelope A as a function of time t obeys a Rayleigh distribution, which has a

probability density function (pdf) given by

fA (a) :=







a
σ2 exp

(

− a2

2σ2

)

a ≥ 0,

0 a < 0

(2.1)

with σ2 being the time-average power of the received signal before envelope detection. The

phase θ of the received signal is uniformly distributed with pdf

fΘ (θ) :=
1

2π
, θ ∈ [0, 2π) . (2.2)

The autocorrelation function of the received signal for two-dimensional isotropic scattering

and an omnidirectional receiving antenna is given by [12,71]

RA(τ) = σ2 cos(ωcτ)J0(ωmτ) (2.3)

where ωc is the carrier radian frequency, J0(·) is the zero-order Bessel function of the first

kind and ωm is the maximum Doppler radian frequency spread. Any model that attempts

to model the Rayleigh flat fading narrow-band wireless channel has to exhibit the statistical

behaviors given by (2.1)–(2.3).
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Clarke summarized the important characteristics of fading channels and provided a use-

ful mathematical model [12]. According to this model, Jakes proposed a sum-of-sinusoids-

based simulator [35] that has been widely used and studied over the past decades. The

simulator supposes the received signal S (t) to be a superposition of waves

S (t) = E0

N∑

n=1

Cn cos (ωct+ ωmt cosAn + Φn)

where E0 is the amplitude of the transmitted cosine wave, Cn is a random variable repre-

senting the attenuation of the n-th path, An is a random variable representing the angle

of arrival of the n-th ray with respect to the direction of motion of the receiver, Φn is a

random variable representing the phase shift undergone by the n-th ray. Note that the

stochastic signal S (t) representing the flat fading signal can be characterized by N sets

of triples (Cn, An,Φn). The random variables Cn, An, and Φn are assumed statistically

independent.

To reduce the complexity, Jakes’ model selects

Cn =
1√
N
, n = 1, 2, ..., N, (2.4a)

An =
2πn

N
, n = 1, 2, ..., N, (2.4b)

Φn = 0, n = 1, 2, ..., N. (2.4c)

Furthermore, N is of the form N = 4M + 2 where M is a positive integer.

However, the simplification in (2.4) makes this simulation model deterministic and

wide-sense nonstationary [63, 96]. In [96], a modified Jakes’ simulator was proposed. It

is wide-sense stationary and its autocorrelation and cross correlation functions match the

14



desired reference model exactly. Following [96], the normalized low-pass fading process of

the statistical sum-of-sinusoids simulation model is defined by

X (t) = Xc (t) + jXs (t) , (2.5a)

Xc (t) =
2√
M

M∑

n=1

cos (ψn) cos (ωmt cosαn + φ) , (2.5b)

Xs (t) =
2√
M

M∑

n=1

sin (ψn) cos (ωmt cosαn + φ) (2.5c)

with

αn =
2πn− π + θ

4M
, n = 1, 2, ...,M

where θ, φ, and ψn are statistically independent and uniformly distributed over [−π, π)

for all n. As M → ∞, the envelope |X| is Rayleigh distributed and the phase ΘX (t) is

uniformly distributed over [−π, π), for which the pdf’s are given by

f|X| (x) = x exp

(

−x
2

2

)

, x ≥ 0,

fΘX
(θ) =

1

2π
, θ ∈ [−π, π) .

A minor defect, however, occurs in model (2.5) when ωm = 0 or the Doppler spread

is small: A Rayleigh distribution cannot be guaranteed [94]. This problem can be easily

resolved by replacing a common phase φ by φn, which is also uniformly distributed over
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[−π, π) for all n. The simulation model is revised as [94]:

X (t) = Xc (t) + jXs (t) , (2.6a)

Xc (t) =
2√
M

M∑

n=1

cos (ψn) cos (ωmt cosαn + φn) , (2.6b)

Xs (t) =
2√
M

M∑

n=1

sin (ψn) cos (ωmt cosαn + φn) . (2.6c)

2.3 Complex Exponential Basis Expansion Model (CE-BEM)

Recently, deterministic complex exponential basis expansion models (CE-BEM) have

been widely investigated in wireless applications, especially when the multipath is caused

by a few strong reflectors, and path delays exhibit variations due to the kinematics of the

mobiles [24]. In these models, the time-varying taps are expressed as a superposition of

time-varying basis functions in modeling Doppler effects, with time-invariant coefficients.

By assigning temporal variations to basis functions, rapidly fading channels with coherence

time as small as a few tens of symbols can be captured. If the delay spread and the Doppler

spread of the channel (or at least the upper bounds of them) are known, one can infer the

basis functions of the CE-BEM [40]. Treating the basis functions as known parameters,

estimation of a time-varying process is reduced to estimate time-invariant coefficients.

Consider a time-varying channel with impulse response h(t; τ) (response at time t to a

unit impulse at time t−τ) which includes transmit-receive filters as well as doubly-selective

propagation effects. Let s(t) denote the complex baseband, continuous-time input signal

(with symbol duration Ts), and x(t) denote the complex baseband, continuous-time received

signal. The noise-free received signal x (t) is the convolution of s (t) and h (t; τ) [64]:
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x(t) =

∫ ∞

0
h(t; τ)s(t− τ)dτ. (2.7)

Let H(f ; τ) =
∫∞
−∞ h(t; τ)e−j2πftdt be the Fourier transform of h(t; τ). If |H(f ; τ)| ≈ 0

for |τ | > τd, then τd is defined as the delay-spread of the channel; if |H(f ; τ)| ≈ 0 for

|f | > fd, then fd is defined as the Doppler spread of the channel [40]. Sampling s(t), x(t)

and h(t; τ) in (2.7) at the symbol rate, then for t = nTs ∈ [t0, t0 + TTs), the sampled signal

x(n) := x(t)|t=nTs has the representation

x(n) =

L∑

l=0

h(n; l)s(n − l). (2.8)

Over the block interval of [t0, t0 + TTs), the channel impulse response {h (n; l)}T−1
n=0 can be

represented by Q coefficients {hq (l)}Q
q=1 (which remain invariant throughout this block but

are allowed to change at the next block) and the corresponding Q Fourier basis functions

that are common for each block. Then over the interval [t0, t0 + TTs), the discrete-time

baseband equivalent channel model for the block can be described as [39,40]:

h(n; l) =

Q
∑

q=1

hq(l)e
jωqn (2.9a)

Q := 2⌈fdTTs⌉ + 1, (2.9b)

L := ⌊τd/Ts⌋, (2.9c)

ωq :=
2π

T
(q − Q+ 1

2
), q = 1, . . . , Q. (2.9d)
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2.4 Orthogonal Polynomial Basis Expansion Model (OP-BEM)

A time-varying channel over a fixed time interval can also be expressed as a superpo-

sition of polynomials with invariant coefficients. Following [6], by a Taylor series expan-

sion, the continuous-time channel impulse response h(t; τ) within a window of time interval

[t0, t0 + TTs) with respect to a midpoint nTs + t0 is given by

h(t; τ) =

K∑

i=0

α
(i)
n (τ)

(
t− nTs − t0

Ts

)i

+RK(t; τ), (2.10)

where the coefficients α
(i)
n (τ) are defined as

α
(i)
n (τ) :=

T i
s

i!

[
dih(t; τ)

dti

]

t=nTs+t0

(2.11)

and RK(t; τ) is the remainder of the Taylor series, given by

RK(t; τ) :=
(t− nTs − t0)

K+1

(K + 1)!

[
dK+1h(t; τ)

dtK+1

]

t=s′
(2.12)

for some s′ ∈ [t, nTs + t0]. The polynomials [(t− nTs − t0) /Ts]
i (i = 0, 1, . . .,K) serve as

the basis functions in (2.10). In mobile wireless channels, the bandwidth of h(t; τ) in t (the

Doppler spread) is strictly bounded above by v/λ where v is the velocity of the mobile

and λ is the carrier wavelength. Therefore, h(t; τ) can be differentiated to any order with

respect to t in the mean square sense, and so (2.11) and (2.12) are well defined [6].

Since h(t; τ) is band-limited in t, for a given window size T , limK→∞ |RK(t; τ)|2 = 0.

Thus with increasing K, the polynomial approximation becomes more and more accurate.

As pointed out in [6], increasing the polynomial order K allows the window size to be
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increased significantly, without the remainder term (2.12) becoming large. Sampling h(t; τ)

every Ts seconds (t = nTs + t0 ∈ [t0, t0 + TTs)) and ignoring the error remainder term, we

have the discrete time-varying channel impulse response as follows

h(n; l) =

K∑

i=0

α(i)(l)(n − n)i, (2.13)

which is valid over a duration of TTs seconds (T samples).

The polynomials {1, t, t2, . . ., tK} are linearly independent over [−1, 1], but not or-

thogonal. A QR-decomposition was suggested in [6] and generated a unitary matrix of-

fering an orthonormal set of basis vectors. Or equivalently, via the Gram-Schmidt pro-

cedure over the interval [−1, 1], we get the Legendre polynomials [53]. By appropri-

ate scaling and translation of the (original) Legendre polynomials, we can obtain modi-

fied Legendre polynomials which are orthonormal over the interval [t0, t0 + TTs]. Sam-

pling these polynomials at the symbol interval Ts, we get the orthogonal polynomial ba-

sis expansion model (OP-BEM). Let p(i)(t̃) denote the orthonormal Legendre polynomial

of degree (order) i over the interval [−1, 1]. To extend [−1, 1] to [t0, t0 + TTs], we set

t = (TTs/2)t̃ + t0 + (TTs/2), leading to t̃ = (2/(TTs))[t − t0] − 1 and modified Legendre

polynomials p(i)′(t) = p(i)((2/(TTs))[t− t0]− 1) orthonormal over the interval [t0, t0 +TTs].

Sample p(i)′(t)’s at t = nTs + t0, (n = 0, 1, . . .) to obtain the discretized modified Legendre

polynomials

ϕi(n) := p(i)(
2n

T
− 1). (2.14)
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The discretized modified Legendre polynomials up to degree (order) five are as follows:

ϕ0(n) = 1,

ϕ1(n) = c1

[
2

T
n− 1

]

,

ϕ2(n) = c2

[

(
2

T
n− 1)2 − 1

3

]

,

ϕ3(n) = c3

[

(
2

T
n− 1)3 − 3

5
(
2

T
n− 1)

]

,

ϕ4(n) = c4

[

(
2

T
n− 1)4 − 6

7
(
2

T
n− 1)2 +

3

35

]

,

ϕ5(n) = c5

[

(
2

T
n− 1)5 − 10

9
(
2

T
n− 1)3 +

5

21
(
2

T
n− 1)

]

where 0 ≤ n ≤ T − 1 and ci = 1/
√
∑T−1

n=0 ϕi(n)2 for i = 0, 1, . . ., 5.

Using the basis functions of (2.14), the polynomial representation of equation (2.13) is

written as

h(n; l) =
K∑

i=0

hi(l)ϕi(n), 0 ≤ l ≤ L. (2.15)

Note that the number of basis functions is Q = K + 1.

2.5 Discrete Prolate Spheroidal Basis Expansion Model (DPS-BEM)

Using CE-BEM to describe a band-limited channel, it has been observed that this

truncated discrete Fourier transform (DFT)-based model has the following drawback: The

rectangular window associated with the DFT introduces spectral leakage—the energy at

each individual frequency leaks to the full frequency range [65]. An effect similar to Gibbs

phenomenon results in significant amplitude and phase distortion at the beginning and the

end of the block [94]. The modeling error of CE-BEM may cause a noticeable floor in bit
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error rate (BER) curves, as shown in [2]. Taking advantage of OP-BEM will reduce the

spectral leakage to some extent [51], whereas the polynomial functions are neither time-

limited nor band-limited. Its square bias varies significantly over the range of the Doppler

spread [94].

An ideal basis function should have at least two properties: It is band-limited to the

normalized frequency range [−fdTs, fdTs]; and its energy is time-concentrated in a certain

time interval 0 ≤ n ≤ T − 1. Given the maximum normalized Doppler bandwidth fdTs and

the window size T , we seek a sequence to maximize

λ =

∑T−1
n=0 |u (n)|2

∑∞
m=−∞ |u (m)|2

(2.16)

with the band-limited constraint

u (n) =

∫ fdTs

−fdTs

U (f) ej2πfndf

where U (f) =
∑∞

m=−∞ u (m) e−j2πfm.

The discrete prolate spheroidal (DPS) sequences {ui (n)} give us the solution of the

above constrained maximization problem [69], which is defined as the real-valued solution

of
T−1∑

n=0

sin [2π (n−m) fdTs]

π (n−m)
ui (n) = λiui (m)

for i = 1, . . ., T and −∞ < m < ∞. For the discrete time index 0 ≤ n ≤ T − 1, the i-th

time-limited DPS vector ui :=

[

ui (0) ui (1) · · · ui (T − 1)

]T

is the i-th eigenvector of

a matrix C:

Cui = λiui, (2.17)
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where the (n,m)-th entry of the T × T matrix C is

[C]n,m =
sin [2π (n−m) fdTs]

π (n−m)

and λ1 ≥ λ2 ≥ . . . ≥ λT are the eigenvalues of C.

The DPS sequences are orthonormal on the finite time interval 0 ≤ n ≤ T − 1, and

orthogonal on the doubly infinite interval, i.e.,

T−1∑

n=0

ui (n)uk (n) = λi

∞∑

m=−∞

ui (m) uk (m) = δ (i− k) .

The band-limited (infinite) sequence {u1 (m)} has the maximum energy concentration in

0 ≤ m ≤ T − 1, {u2 (m)} is the next band-limited sequence that has the most energy

concentration among the DPS sequences orthogonal to {u1 (m)}, and so on. By (2.16),

the eigenvalues λi’s are a measure for energy concentration, which are clustered near 1 for

i ≤ ⌈2fdTsT ⌉+ 1 and drop rapidly toward zero when i > ⌈2fdTsT ⌉+ 1 [94]. Therefore, the

number of dimensions of time-limited snapshots of a band-limited channel is approximately

given by [69]

Q = ⌈2fdTsT ⌉ + 1. (2.18)

All the properties described so far make it possible to greatly reduce spectral leakage induced

by the CE-BEM, by using several DPS sequences to form the basis set to approximate a

band-limited time-varying channel.
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In a DPS-BEM representation, we assume that

h (n; l) =

Q
∑

q=1

hq (l) uq (n) . (2.19)

The square bias of the DPS-BEM to approximate a time-varying channel is several magni-

tudes lower than that of the CE-BEM over the range of Doppler spreads [94].

2.6 Modeling Error of BEM’s

We illustrate the modeling error of CE-, OP-, and DPS-BEM’s by a simulation example.

2.6.1 LS Approximation by Basis Expansion Models

In a BEM, we assume that the time-varying channel satisfies

h (n; l) =

Q
∑

q=1

hq (l)ψq (n) , (2.20)

where ψq (n) is the q-th basis function (corresponding to ejωqn in (2.9), ϕq−1(n) in (2.15),

and uq (n) in (2.19)), and Q is the number of basis functions (Q = K + 1 for (2.15)).

However, the true channel may not exactly follow this expression, for modeling error always

occurs. We revise (2.20) as

h (n; l) =

Q
∑

q=1

hq (l)ψq (n) + e (n; l)

where e (n; l) denotes the modeling error. By the orthogonality principle, e (n; l) is or-

thogonal to the basis set {ψq (n)}Q
q=1 when the square error

∑T−1
n=0 |e (n; l)|2 is minimized.
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Then
T−1∑

n=0

h (n; l)ψ∗
q′ (n) =

Q
∑

q=1

hq (l)

T−1∑

n=0

ψq (n)ψ∗
q′ (n) = hq′ (l)

T−1∑

n=0

∣
∣ψq′ (n)

∣
∣2 .

Therefore

hq′ (l) =

∑T−1
n=0 h (n; l)ψ∗

q′ (n)
∑T−1

n=0

∣
∣ψq′ (n)

∣
∣2

.

The LS approximation by a BEM is given by

ĥ (n; l) =

Q
∑

q=1

∑T−1
n=0 h (n; l) |ψq (n)|2
∑T−1

n=0 |ψq (n)|2
. (2.21)

2.6.2 Simulation Model

In the simulations of this dissertation, we use the modified Jakes’ model (2.6) to rep-

resent the “real” channel. We emphasize that BEM representations are only used for pro-

cessing at the receiver. A discrete-time baseband Rayleigh fading channel (which can be

SISO, SIMO, or MIMO in the subsequent chapters) of order L is generated (see (2.8)). For

different taps (i.e., different l’s), h (n; l)’s are mutually independent, and for a given tap, we

follow (2.6) to generate h (n; l) by sampling X (t) with symbol period Ts:

h (n; l) = X (t) |t=nTs .

In simulations, we take M = 25 in (2.6).
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Figure 2.1: Modeling error of CE-, OP-, and DPS-BEM’s in approximating a three-tap
(L = 2) Rayleigh fading channel following Jakes’ model.

2.6.3 Simulation Example: Modeling Error of CE-, OP-, and DPS-BEM’s in

Approximating a Doubly-Selective Channel

We consider a system with carrier frequency of 2GHz, data rate of 40 kBd (kilo-Bauds),

therefore, Ts = 25µs. The maximum Doppler spread (in Hz) fd = ωm/2π ranges from 0Hz

to 200Hz (or the normalized Doppler shift ranges from 0 to 0.005), corresponding to a

maximum mobile velocity in the range 0 to 108km /h.

A SISO three-tap (L = 2) Rayleigh fading channel is generated using (2.6). We try

to approximate this Jakes’ model using different BEM’s: CE-BEM, OP-BEM, DPS-BEM

with known Doppler spread, and DPS-BEM with Doppler spread unknown. If the Doppler

spread is known, we can follow (2.17) to obtain the DPS sequences using the exact Doppler
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spread; whereas we can only use predetermined DPS sequences if the Doppler spread is

unknown. In this example, we assume fd = 200Hz in (2.17) to get the DPS sequences.

We pick up a data record length of 400 symbols, average over 1000 realizations of

randomly generated channels, and plot the normalized channel mean square error (NCMSE)

defined as

NCMSE :=

∑1000
i=1

∑T−1
n=0

∑2
l=0

∣
∣
∣h(i) (n; l) − ĥ(i) (n; l)

∣
∣
∣

2

∑1000
i=1

∑T−1
n=0

∑2
l=0

∣
∣h(i) (n; l)

∣
∣2

,

where h(i) (n; l) denotes the realization of the channel in the i-th run, and ĥ(i) (n; l) denotes

the BEM-based approximation by (2.21). For CE-BEM, we plot the NCMSE curves with

Q = 3, 5, and 7 (note that in (2.9), only odd Q is allowed). For OP- and DPS-BEM

representations, we take Q = 4, 5, and 6.

Using more basis functions apparently reduces modeling error, which is confirmed by

Figure 2.1. The OP- and DPS-BEM with known Doppler spreads outperform CE-BEM

significantly for small fd’s. As fd grows, OP-BEM deteriorates quickly, whereas DPS-BEM

with known Doppler spread is still much better than the other two. If the Doppler spread is

unknown, the performance of DPS-BEM is a little worse, but it still outperforms CE-BEM.

In Figure 2.1, the NCMSE of DPS-BEM is at least two orders of magnitude lower than that

of the CE-BEM, whether with known Doppler spread or not—DPS-BEM is undoubtedly

the best among the three to describe a band-limited channel.

For a fixed Q, the NCMSE’s of the CE-BEM and DPS-BEM with unknown Doppler

spread fluctuate mildly over the range of Doppler spreads. In these two scenarios, the

BEM’s are both band-limited. If the “true” channel (that is also band-limited within the

Doppler shifts) lies within the frequency band of the BEM, the resulting error should not

fluctuate significantly for different Doppler spreads.
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2.7 Conclusions

In this chapter, we reviewed characteristics and representations of wireless channels.

We first discussed Jakes’ model, which will be used as the “real” channel in simulation

examples in the following chapters. For channel estimation and data processing at the

receiver, a BEM, a more parsimonious representation that is independent of the “real”

channel, will be used to describe the temporal variation of the channel. We discussed

CE-, OP-, and DPS-BEM’s. Although the CE-BEM is more convenient in the theoretical

analysis, its modeling error is noticeable due to the spectral leakage. We may employ OP-

and DPS-BEM’s to reduce this phenomenon. We also compared the modeling error of

the three BEM’s—the DPS-BEM has the minimum modeling error among the three, since

spectral leakage is greatly reduced due to the energy concentration of the DPS sequences.
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Chapter 3

First-Order Statistics-Based Estimation of Doubly-Selective Channels

3.1 Introduction

An estimator for time-invariant frequency-selective channels, using periodic superim-

posed training and the first-order statistics of the observations, was proposed in [82]. This

estimator was soon extended to doubly-selective channels by exploiting CE-BEM in [81].

We start with this CE-BEM-based channel estimator in [81], which offers us the basic

framework of our superimposed training-based channel estimation schemes.

In this chapter, we first review the first-order statistics-based doubly-selective channel

estimator of [81] in Section 3.2. By exploiting the band-limitedness of DPS sequences, in

Section 3.3 this estimator is extended to DPS-BEM. Since polynomial models are not band-

limited, we propose a more general estimator for OP-BEM in Section 3.4, which can apply

to arbitrary BEM representations. In Section 3.5, we extend our CE- and DPS-BEM-based

channel estimators to multiuser systems. Exploiting the band-limitedness of CE- and DPS-

BEM’s, the channel estimation across different users is decoupled by assigning user-specific

training sequences to different frequencies for distinct users. Our approaches are illustrated

by simulation examples in Section 3.6. Section 3.7 concludes this chapter.

3.2 First-Order Statistics-Based Channel Estimation Using CE-BEM [81]

Consider a single-input multiple-output (SIMO) discrete-time baseband communication

system. Let {s (n)} denote the input symbol sequence that is transmitted over an FIR linear

channel with N outputs and discrete-time impulse response {h (n; l)} (N -column vector
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channel response at time n to a unit input at time n− l). The vector channel may be the

result of multiple receiver antennas or over-sampling at the receiver. The channel output is

given by

x(n) =
L∑

l=0

h(n; l)s(n − l). (3.1)

The noisy measurement is given by

y(n) = x(n) + v(n) (3.2)

where v(n) is an N -column white complex-Gaussian noise vector. To allow for mean-value

ambiguity, we take E{v(n)} = m, with m unknown. In practice, linear systems arise

because of linearization about some operating (set) point—“bias” in BJT/FET amplifiers.

These set points are typically unknown (at least not known precisely) a priori, and one does

not normally worry about them since unknown means are estimated and removed before

processing (blocked by capacitor-coupling etc.) and they are not needed in any processing.

However, we will initially use the first-order statistics, i.e., E{y(n)}, of the noisy data.

Then we must include a term such as nonzero m.

Channel taps are superpositions of complex exponentials weighted by time-invariant

coefficients in CE-BEM. The time-varying SIMO channel response is given by (2.9)

h(n; l) =

Q
∑

q=1

hq(l)e
jωqn, (3.3)
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for

Q := 2⌈fdTTs⌉ + 1,

L := ⌊τd/Ts⌋,

ωq :=
2π

T

(

q − 1

2
− Q

2

)

, q = 1, 2, . . ., Q,

where τd is the (multipath) delay-spread and fd is the Doppler spread. The above represen-

tation is valid over a duration of TTs sec. with symbol interval Ts sec. If τd and fd (or their

upper bounds) are known (typically true), then h(n; l) is unknown up to only time-invariant

quantities hq(l)’s.

In superimposed training, the transmitted signal {s(n)} is the superposition of the

information sequence {b(n)} and a training sequence {c(n)}, i.e.,

s(n) = b(n) + c(n). (3.4)

Assume the following:

(H3.2.1) The time-varying channel {h(n; l)} satisfies (3.3) where the frequencies ωq’s (q =

1, 2, . . ., Q) are distinct and known with ωq ∈ [0, 2π). Also N ≥ 1.

(H3.2.2) The information sequence {b(n)} is zero-mean, white with E{| b(n)|2} = σ2
b .

(H3.2.3) The measurement noise {v(n)} may be nonzero-mean (E{v(n)} = m), white, uncor-

related with {b(n)}, with E{[v(n + τ) − m][v(n) − m]H} = σ2
vINδ(τ). The mean

vector m may be unknown.
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(H3.2.4) The superimposed training sequence c(n) = c(n+P ) for all n is a non-random periodic

sequence with period P .

By (H3.2.4), we have

cm :=
1

P

P−1∑

n=0

c(n)e−jαmn, (3.5a)

c(n) =

P−1∑

m=0

cme
jαmn, for all n, (3.5b)

αm = 2πm/P, m = 0, 1, . . ., P − 1. (3.5c)

The coefficients cm’s are known at the receiver since the training sequence {c(n)} is known.

We then have

y(n) =

L∑

l=0

Q
∑

q=1

hq(l)e
jωqn

[

b(n− l) +

P−1∑

m=0

cme
jαm(n−l)

]

+ v(n).

By (H3.2.2) and (H3.2.3), the expectation of the observation at time n is

E{y(n)} =

Q
∑

q=1

P−1∑

m=0

[
L∑

l=0

cmhq(l)e
−jαml

]

ej(ωq+αm)n + m.

Defining

dmq :=

L∑

l=0

cmhq(l)e
−jαml, (3.6)

we then have

E{y(n)} =

Q
∑

q=1

P−1∑

m=0

dmqe
j(ωq+αm)n + m. (3.7)
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Suppose that we pick P to be such that (ωq + αm)’s are all distinct for any choice of

m and q; for instance, take TP−1 ≥ Q. In fact, we will take TP−1 = K ≥ Q where K is

an integer, so that ωq’s and αm’s are on the same frequency grid of resolution T−1. Then

the sequence E{y(n)} is periodic with cycle frequencies (ωq + αm), for 1 ≤ q ≤ Q and

0 ≤ m ≤ P − 1.

By (3.7),

y (n) = E{y(n)} + e (n) =

Q
∑

q=1

P−1∑

m=0

dmqe
j(ωq+αm)n + m + e (n)

where {e (n)} is a zero-mean random “error” sequence.

Define the cost function

J =

T−1∑

n=0

‖e (n)‖2 =

T−1∑

n=0

∥
∥
∥
∥
∥
∥

y (n) −
Q
∑

q=1

P−1∑

m=0

dmqe
j(ωq+αm)n + m

∥
∥
∥
∥
∥
∥

2

. (3.8)

Choose dmq’s to minimize J . We must have

∂J

∂d∗
mq

∣
∣
∣
∣
dmq=d̂mq

=

T−1∑

n=0

e−j(ωq+αm)n



y (n) −
Q
∑

q′=1

P−1∑

m′=0

dmqe
j(ωq′+αm′ )n + m



 = 0

for each dmq. A consistent mean-square (m.s.) estimate of dmq, for ωq +αm 6= 0, follows as

d̂mq =
1

T

T−1∑

n=0

y(n)e−j(ωq+αm)n. (3.9)

It follows from (3.7) and (3.9) that

E
{

d̂mq

}

= dmq (3.10)
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for ωq + αm 6= 0. As T → ∞, d̂mq → dmq m.s. if ωq + αm 6= 0, and d̂mq → dmq + m m.s. if

ωq + αm = 0.

It is established in [82] that given dmq for 1 ≤ q ≤ Q and 1 ≤ m ≤ P − 1, we can

(uniquely) estimate hq(l)’s if P ≥ L + 2, αm 6= 0, and cm 6= 0 for all m 6= 0. Since m is

unknown and ωq + αm = 0 only when m = 0, we will omit the term m = 0 for further

discussion. For 1 ≤ m ≤ P − 1, define the NQ-column vector

Dm := [dT
m1, dT

m2, . . ., dT
mQ]T , (3.11)

and for 0 ≤ l ≤ L, define the NQ-column vector

Hl := [hT
1 (l), hT

2 (l), . . ., hT
Q(l)]T . (3.12)

Then by (3.6), we have

Dm =
L∑

l=0

cme
−jαmlHl

for 1 ≤ m ≤ P − 1. Define the NQ(P − 1) ×NQ(L+ 1) matrix

C := (diag {c1, . . ., cP−1}V) ⊗ INQ (3.13)

where

V :=














1 e−jα1 · · · e−jα1L

1 e−jα2 · · · e−jα2L

...
...

. . .
...

1 e−jαP−1 · · · e−jαP−1L














, (3.14)
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the NQ(L+ 1)-column vector

H :=

[

HT
0 , HT

1 , . . ., HT
L

]T

, (3.15)

and the NQ(P − 1)-column vector

D :=

[

DT
1 , DT

2 , . . ., DT
P−1

]T

. (3.16)

Then (3.6) leads to

CH = D. (3.17)

Since αm’s are distinct and cm 6= 0 for all m, rank(C) = NQ(L+ 1) if P ≥ L+ 2; hence, we

can determine hq(l)’s uniquely. Define D̂m as in (3.11) with dmq replaced with d̂mq. Define

D̂ as in (3.16) with Dm replaced with D̂m. Then the estimate of H is given by

Ĥ = (CHC)−1CHD̂. (3.18)

By (3.10) and (3.17), it follows that

E
{

Ĥ
}

= H. (3.19)

Denote the corresponding estimate of hq(l) by ĥq(l) for q = 1, 2, . . ., Q and l = 0, 1, . . ., L.

Following (3.3), the time-varying channel coefficients are given by

ĥ(n; l) =

Q
∑

q=1

ĥq(l)e
jωqn, l = 0, 1, . . ., L, 0 ≤ n ≤ T − 1. (3.20)
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We summarize this estimator in the following lemmas:

Lemma 3.2.1: Under assumptions (H3.2.1)–(H3.2.4), the channel estimator (3.18)

is unbiased by (3.19) if the periodic training sequence is such that cm 6= 0 for all m 6= 0,

P ≥ L+ 2, and P and T are such that T = KP for integer K ≥ Q.

Lemma 3.2.2: Under assumptions (H3.2.1)–(H3.2.4), the channel estimator (3.18)

is consistent in probability if the periodic training sequence is such that cm 6= 0 for all

m 6= 0, P ≥ L+ 2 and P is such that ωq + αm 6= 0 for q = 1, 2, . . ., Q and m 6= 0, and Q is

fixed as T becomes large.

Remark 3.2.1: If the channel length L is unknown, an upper bound Lu will suffices.

Then we are estimating ĥ(n; l) for l = 0, 1, . . ., Lu and limT→∞ ĥ(n; l) = 0 for l > L.

Remark 3.2.2: We do not need cm 6= 0 for every m. We need at least L+ 2 nonzero

cm’s.

Remark 3.2.3: If the noise v (n) is zero-mean, i.e., m = 0, we do not have to discard

d0q. Thus, by setting

Ṽ :=














1 1 · · · 1

1 e−jα1 · · · e−jα1L

...
...

. . .
...

1 e−jαP−1 · · · e−jαP−1L














, (3.21)

C̃ := (diag {c0, c1, . . ., cP−1}V) ⊗ INQ, (3.22)

D̃ :=

[

DT
0 , DT

1 , . . ., DT
P−1

]T

, (3.23)

then we have C̃H = D̃ and

Ĥ = (C̃H C̃)−1C̃H ˆ̃D. (3.24)
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To identify the BEM coefficients, we now need P ≥ L + 1. All our results hold true if we

use appropriate substitutions.

3.3 First-Order Statistics-Based Channel Estimation Using DPS-BEM

The first-order statistics-based channel estimator described in Section 3.2, using CE-

BEM representation, can be easily extended to DPS-BEM.

As we discussed in Section 2.5, band-limitedness and energy-concentration of DPS

sequences greatly reduce the spectral leakage intrinsic to CE-BEM. Therefore, better per-

formance can be expected if we use DPS-BEM instead in the first-order statistics-based

estimator.

In the DPS-BEM representation, we assume that

h (n; l) =

Q
∑

q=1

hq (l)uq (n) , (3.25)

where {uq (n)} is the q-th DPS sequence.

Similar to (H3.2.1)–(H3.2.4), we assume:

(H3.3.1) The time-varying channel {h(n; l)} satisfies (3.25) with the DPS sequences {uq (n)}

known at the receiver. Also N ≥ 1.

(H3.3.2) The information sequence {b(n)} is zero-mean, white with E{| b(n)|2} = σ2
b .

(H3.3.3) The measurement noise {v(n)} is zero-mean, white, uncorrelated with {b(n)}, with

E{v(n + τ)vH(n)} = σ2
vINδ(τ).

(H3.3.4) The superimposed training sequence c(n) = c(n+P ) for all n is a non-random periodic

sequence with period P .
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Note that for the time being we assume that the measurement noise is zero-mean, i.e.,

m = 0.

By the SIMO channel model (3.1), (3.2), and the DPS-BEM representation (3.25), we

have

y(n) =

L∑

l=0

Q
∑

q=1

hq(l)uq (n) [b(n− l) + c(n − l)] + v(n)

=

L∑

l=0

Q
∑

q=1

hq(l)uq (n)

[

b(n − l) +

P−1∑

m=0

cme
jαm(n−l)

]

+ v(n).

By (H3.3.2) and (H3.3.3), the expectation of the observation at time n is

E{y(n)} =

Q
∑

q=1

P−1∑

m=0

[
L∑

l=0

cmhq(l)e
−jαml

]

uq (n) ejαmn. (3.26)

Using (3.6), we have

E{y(n)} =

Q
∑

q=1

P−1∑

m=0

dmquq (n) ejαmn. (3.27)

It follows that

y (n) =

Q
∑

q=1

P−1∑

m=0

dmquq (n) ejαmn+e (n)

where {e (n)} is a zero-mean random sequence.

Define the cost function as in (3.8)

J =

T−1∑

n=0

‖e (n)‖2 =

T−1∑

n=0

∥
∥
∥
∥
∥
∥

y (n) −
Q
∑

q=1

P−1∑

m=0

dmquq (n) ejαmn

∥
∥
∥
∥
∥
∥

2

.
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Choose dmq’s to minimize J . We must have

∂J

∂d∗
mq

∣
∣
∣
∣
dmq=d̂mq

=

T−1∑

n=0



y (n) −
Q
∑

q′=1

P−1∑

m′=0

dm′q′uq′ (n) ejαm′n



uq (n) e−jαmn = 0,

which leads to

Q
∑

q′=1

P−1∑

m′=0

d̂m′q′

[
T−1∑

n=0

uq′ (n)uq (n) ej(αm′−αm)n

]

=
T−1∑

n=0

y (n)uq (n) e−jαmn. (3.28)

We then define

gmq :=
T−1∑

n=0

y (n)uq (n) e−jαmn

and substitute it into (3.28)

gmq =

Q
∑

q′=1

P−1∑

m′=0

d̂m′q′

[
T−1∑

n=0

uq′ (n)uq (n) ej(αm′−αm)n

]

. (3.29)

By the definitions (3.11), (3.12), (3.15), and (3.21)–(3.23), we also have

C̃H = D̃. (3.30)

If P ≥ L+ 1, then rank
(

C̃
)

= NQ (L+ 1) [82]. We can determine the hq (l)’s uniquely.

Define ˆ̃D and G in the similar way as (3.23) with dmq replaced with d̂mq or gmq, then

(3.29) turns out to be

G =(Ψ⊗ IN ) D̃
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where the entries of the PQ× PQ matrix Ψ are

[Ψ]mQ+q,m′Q+q′ =

T−1∑

n=0

uq′ (n)uq (n) ej(αm′−αm)n.

The estimate of D̃ is given by

ˆ̃D =
(
Ψ−1⊗IN

)
G. (3.31)

By (3.30) and (3.31) we have the estimate of channel coefficient

Ĥ = C† ˆ̃D =
(

C̃H C̃
)−1

C̃H
(
Ψ−1⊗IN

)
G. (3.32)

The channel estimate is then given by

ĥ (n; l) =

Q
∑

q=1

ĥq (l)uq (n) . (3.33)

Remark 3.3.1: Since DPS sequences are approximately band-limited to the normal-

ized frequency range [−fdTs, fdTs], it follows that

T−1∑

n=0

uq′ (n)uq (n) ej(αm′−αm)n ≈ δ
(
m′ −m

)
δ
(
q′ − q

)
(3.34)

when fdTs ≪ 1/P and T is a multiple of P or T is “large”. This is usually true, and a short

period P helps to achieve it. Under the assumption (3.34),

Ψ ≈ IPQ.

39



By (3.28) and (3.34),

d̂mq =

T−1∑

n=0

y (n)uq (n) e−jαmn. (3.35)

The estimate (3.32) is then given by

Ĥ =
(

C̃H C̃
)−1

C̃H ˆ̃D. (3.36)

Remark 3.3.2: If the mean of the noise v (n) is unknown, suppose E {v (n)} = m.

Under the approximation (3.34), we should omit the first row (corresponding to α0) of Ṽ

in (3.21) (denote the resulting (P − 1) × (L+ 1) matrix by V, as in (3.14)), and also omit

the block D0 from D̃ in (3.23) (denote the resulting matrix by D, as in (3.16)). We have

CH = D and

Ĥ = (CHC)−1CHD̂, (3.37)

where C is defined in (3.13) and D̂ is acquired by (3.35). To identify the BEM coefficients,

we now need P ≥ L+ 2. All our results hold true if appropriate substitutions are used.

3.4 First-Order Statistics-Based Channel Estimation Using OP-BEM

The first-order statistics-based channel estimators, using CE-and DPS-BEM’s, exploit

band-limitedness of the basis functions. OP-BEM, however, does not have this property.

We assume the SIMO channel with N outputs satisfies the OP-BEM representation

(2.15), i.e.,

h(n; l) =

K∑

q=0

hq(l)ϕq(n), 0 ≤ l ≤ L (3.38)

where ϕq(n) is the discretized modified Legendre polynomial of degree q.
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We make the following assumptions:

(H3.4.1) The time-varying channel {h(n; l)} satisfies (3.38) where {ϕq (n)}K
q=0 are known at

the receiver. N ≥ 1.

(H3.4.2) The information sequence {b(n)} is zero-mean, white with E{| b(n)|2} = σ2
b .

(H3.4.3) The measurement noise {v(n)} may be nonzero-mean (E{v(n)} = m), white, uncor-

related with {b(n)}, with E{[v(n + τ) − m][v(n) − m]H} = σ2
vINδ(τ). The mean

vector m may be unknown.

(H3.4.4) The superimposed training sequence c(n) = c(n+P ) for all n is a non-random periodic

sequence with period P .

By the SIMO channel model (3.1)–(3.2), and the OP-BEM representation (3.38), we

have

y(n) =

L∑

l=0

K∑

q=0

hq(l)ϕq (n) [b(n− l) + c(n − l)] + v(n)

with mean

E{y(n)} =
L∑

l=0

K∑

q=0

hq(l)ϕq (n) c(n− l) + m.

It follows that

y (n) = E{y(n)} + e (n)

where {e (n)} is a zero-mean random “error” sequence and

e (n) = y (n) −
L∑

l=0

K∑

q=0

hq (l)ϕq (n) c (n− l) − m.
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We define the cost function as

J =

T−1∑

n=0

‖e (n)‖2 =

T−1∑

n=0

∥
∥
∥
∥
∥
∥

y (n) −
L∑

l=0

K∑

q=0

hq (l)ϕq (n) c (n− l) −m

∥
∥
∥
∥
∥
∥

2

.

Choose m and hq (l)’s (q = 0, 1, . . .,K; l = 0, 1, . . ., L) to minimize the cost function J . We

must have

∂J

∂m∗

∣
∣
∣
∣
∣

m=m̂

hq(l)=ĥq(l)

= 0 , and
∂J

∂h∗
q (l)

∣
∣
∣
∣
∣
∣

m=m̂

hq(l)=ĥq(l)

= 0 ,

leading to

m̂ =
1

T

T−1∑

n=0



y (n) −
L∑

l=0

K∑

q=0

hq (l)ϕq (n) c (n− l)



 (3.39)

and

L∑

l=0

K∑

q=0

ĥq (l)

[

1

T

T−1∑

n=0

ϕq (n)ϕ∗
q1

(n) c (n− l) c∗ (n− l1)

]

=
1

T

T−1∑

n=0

[y (n) − m̂]ϕ∗
q1

(n) c∗ (n− l1) . (3.40)

Substitute (3.39) in (3.40), we then have

L∑

l=0

K∑

q=0

ĥq (l)φ [(q, l) , (q1, l1)] =
1

T

T−1∑

n=0

y (n)

[

ϕ∗
q1

(n) c∗ (n− l1) −
1

T

T−1∑

n=0

ϕ∗
q1

(n) c∗ (n− l1)

]

,

(3.41)

where we define

φ [(q, l) , (q1, l1)] :=
1

T

T−1∑

n=0

ϕq (n)ϕ∗
q1

(n) c (n− l) c∗ (n− l1)

−
[

1

T

T−1∑

n=0

ϕq (n) c (n− l)

] [

1

T

T−1∑

n=0

ϕ∗
q1

(n) c∗ (n− l1)

]

. (3.42)
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We further define a (K + 1) (L+ 1) × (K + 1) (L+ 1) matrix

ΦOP :=

























φ [(0, 0) , (0, 0)] · · · φ [(K, 0) , (0, 0)] · · · φ [(K, 1) , (0, 0)] · · · φ [(K,L) , (0, 0)]

...
. . .

...
. . .

...
. . .

...

φ [(0, 0) , (K, 0)] · · · φ [(K, 0) , (K, 0)] · · · φ [(K, 1) , (K, 0)] · · · φ [(K,L) , (K, 0)]

...
. . .

...
. . .

...
. . .

...

φ [(0, 0) , (K, 1)] · · · φ [(K, 0) , (K, 1)] · · · φ [(K, 1) , (K, 1)] · · · φ [(K,L) , (K, 1)]

...
. . .

...
. . .

...
. . .

...

φ [(0, 0) , (K,L)] · · · φ [(K, 0) , (K,L)] · · · φ [(K, 1) , (K,L)] · · · φ [(K,L) , (K,L)]

























(3.43)

whose [(K + 1) l1 + q1 + 1, (K + 1) l + q + 1]-th entry is φ [(q, l) , (q1, l1)], a (K + 1) (L+ 1)-

column vector

∆ (n) :=





























ϕ∗
0 (n) c∗ (n) − 1

T

∑T−1
n=0 ϕ

∗
0 (n) c∗ (n)

...

ϕ∗
K (n) c∗ (n) − 1

T

∑T−1
n=0 ϕ

∗
K (n) c∗ (n)

ϕ∗
0 (n) c∗ (n− 1) − 1

T

∑T−1
n=0 ϕ

∗
0 (n) c∗ (n− 1)

...

ϕ∗
K (n) c∗ (n− 1) − 1

T

∑T−1
n=0 ϕ

∗
K (n) c∗ (n− 1)

...

ϕ∗
K (n) c∗ (n− L) − 1

T

∑T−1
n=0 ϕ

∗
K (n) c∗ (n− L)





























,
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and the channel coefficient vectors

Ĥl :=

[

ĥT
0 (l) ĥT

1 (l) · · · ĥT
K (l)

]T

, (3.44)

Ĥ : =

[

ĤT
0 ĤT

1 · · · ĤT
L

]T

. (3.45)

We also define Hl and H as the vectors of true values of channel coefficients, corresponding

to (3.44) and (3.45), respectively. Then (3.41) can be written into

(ΦOP ⊗ IN ) Ĥ =
1

T

T−1∑

n=0

∆ (n) ⊗ y (n) ,

which yields

Ĥ =
1

T

T−1∑

n=0

Φ†
OP∆ (n) ⊗ y (n) . (3.46)

The estimate of the time-varying channel h (n; l) is then given by

ĥ (n; l) =

K∑

q=0

ĥq (l)ϕq (n) . (3.47)

Remark 3.4.1: We did not use assumption (H3.4.4) throughout the manipulations,

so that aperiodic training can be used also.

Remark 3.4.2: Neither orthogonality nor properties of polynomials was used to ob-

tain (3.46). We can use any basis set {ψq (n)}T−1
n=0 (q = 1, 2, . . ., Q), as in (2.20), instead

of polynomials in (3.46). The basis functions are only required to be linearly indepen-

dent, not necessarily orthogonal. This offers a general channel estimator using BEM’s and

superimposed training.
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If we consider CE-BEM in (3.42) and replace ϕq (n) with ψq (n) = ejωqn for ωq :=

2π
T (q − 1

2 − Q
2 ), we have

φ [(q, l) , (q1, l1)] =
1

T

T−1∑

n=0

ejωqne−jωq1nc (n− l) c∗ (n− l1)

−
[

1

T

T−1∑

n=0

ejωqnc (n− l)

][

1

T

T−1∑

n=0

e−jωq1nc∗ (n− l1)

]

. (3.48)

Taking (3.5) into account, we have

1

T

T−1∑

n=0

ejωqne−jωq1nc (n− l) c∗ (n− l1) =

P−1∑

m=0

|cm|2 e−jαm(l−l′)δ (q − q1) (3.49)

and

1

T

T−1∑

n=0

ejωqnc (n− l) = c0δ

(

q − Q+ 1

2

)

, (3.50)

so that (3.48) becomes

φ [(q, l) , (q1, l1)] =

P−1∑

m=0

|cm|2 e−jαm(l−l1)δ (q − q1) − |c0|2 δ
(

q − Q+ 1

2

)

δ

(

q1 −
Q+ 1

2

)

.

(3.51)

Substituting (3.50) and (3.51) into (3.41), it follows that

P−1∑

m=0

c∗me
jαml1

[
L∑

l=0

cmĥq (l) e−jαml

]

−
L∑

l=0

ĥQ+1
2

(l) |c0|2 δ
(

q − Q+ 1

2

)

=

P−1∑

m=0

c∗me
jαml1

[

1

T

T−1∑

n=0

y (n) e−j(ωq+αm)n

]

− 1

T

T−1∑

n=0

y (n) c∗0δ

(

q − Q+ 1

2

)

. (3.52)
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By (3.6) and (3.9) we have

L∑

l=0

cmĥq(l)e
−jαml =

1

T

T−1∑

n=0

y(n)e−j(ωq+αm)n (3.53)

for q = 1, 2, . . ., Q and m = 1, 2, . . ., P − 1. If we discard the terms corresponding to m = 0,

then (3.52) reduces to

P−1∑

m=1

c∗me
jαml1

[
L∑

l=0

cmĥq (l) e−jαml

]

=

P−1∑

m=1

c∗me
jαml1

[

1

T

T−1∑

n=0

y (n) e−j(ωq+αm)n

]

(3.54)

for q = 1, 2, . . ., Q. The solution to (3.54) coincides with that of (3.53) if the matrix C in

(3.13) has full column rank. This result demonstrates that the estimator given by (3.46)

is indeed the same as the one proposed in Section 3.2. The only difference appears that

since m is unknown, we simply discard all the terms corresponding to m = 0 in Section

3.2. However, omitting the terms corresponding to ωq + αm = 0 is enough, and the terms

corresponding to m = 0 but ωq + αm 6= 0 are still useful—this is the estimator proposed in

this section. Using the band-limitedness of the DPS-BEM (3.34), we have

L∑

l=0

cmĥq(l)e
−jαml =

T−1∑

n=0

y (n)uq (n) e−jαmn,

which is similar to (3.53). Thus the estimator proposed in Section 3.3 is also a special case

of the estimator defined by (3.41).
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Remark 3.4.3: If the mean value of the noise m is zero or known, then instead of

(3.41), the solution of the estimator is given by (3.40) with m̂ = m. We define

φ̃ [(q, l) , (q1, l1)] :=
1

T

T−1∑

n=0

ϕq (n)ϕ∗
q1

(n) c (n− l) c∗ (n− l1) (3.55)

and Φ̃OP in the same way as in (3.43) with φ [(q, l) , (q1, l1)] replaced with φ̃ [(q, l) , (q1, l1)].

Also define

∆̃ (n) :=

[

c∗ (n) · · · c∗ (n− L)

]T

⊗
[

ϕ∗
0 (n) · · · ϕ∗

K (n)

]T

.

The estimator is given by

Ĥ =
1

T

T−1∑

n=0

Φ̃†
OP∆̃ (n) ⊗ y (n) . (3.56)

Note that the estimators given by (3.24) and (3.36), with zero or known m, are special cases

of the estimator of (3.56), using CE- and DPS-BEM respectively.

3.5 First-Order Statistics-Based Channel Estimation: Multiple-User (MIMO)

Channels

The first-order statistics-based channel estimator using CE- or DPS-BEM can be easily

extended to a multiple-user (MIMO) system, by exploiting the band-limitedness of the basis

functions.

Consider an MIMO FIR linear channel with K inputs and N outputs. Let {sk(n)}

denote k-th user’s information sequence which is input to the MIMO channel with the k-th
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user’s time-varying discrete-time impulse response {hk(n; l)} (channel response for the k-th

user at time instance n to a unit input at time instance n− l). The symbol-rate, N -column

channel output vector is given by

x(n) =

K∑

k=1

L∑

l=0

hk(n; l)sk(n− l). (3.57)

The noisy measurement is given by

y(n) = x(n) + v(n), (3.58)

where v(n) is the additive N -column vector white complex Gaussian noise.

In superimposed training-based approaches, for the k-th user, one takes

sk(n) = bk(n) + ck(n) (3.59)

where {bk(n)} and {ck(n)} are information sequence and non-random periodic training

sequence of the k-th user. Then the noisy channel output becomes

y(n) =

K∑

k=1

L∑

l=0

hk(n; l)[bk(n− l) + ck(n− l)] + v(n).

Assume the following:

(H3.5.1) The time-varying channel {hk(n; l)} satisfies CE- or DPS-BEM, i.e.,

hk(n; l) =

Q
∑

q=1

hqk(l)e
jωqn (3.60)
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where hqk(l) is the N -column time-invariant coefficient vector for the k-th user, or

hk (n; l) =

Q
∑

q=1

hqk (l) uq (n) . (3.61)

Also N ≥ 1.

(H3.5.2) The information sequence {bk(n)} is zero-mean, white with E{|bk(n)|2} = σ2
bk and

mutually independent for k = 1, 2, . . .,K.

(H3.5.3) The measurement noise {v(n)} is zero-mean, white, uncorrelated with {bk(n)}, with

E{v(n + τ)vH(n)} = σ2
vINδ(τ).

(H3.5.4) The superimposed training sequence ck(n) = ck(n + P ) for all n is a non-random

periodic sequence with period P such that cmk 6= 0 for all m,k, and P̃ is integer with

P = P̃K.

The expected value of the noisy channel output is given by

E{y(n)} =

K∑

k=1

L∑

l=0

hk(n; l)ck(n− l). (3.62)

We pick user-specific training sequences so that channel estimation is decoupled across

various users—this allows us to use the single user superimposed training based approach

outlined in Section 3.2. We assign distinct cycle frequencies of the periodic training se-

quences to distinct users. Suppose that for each user k, {ck(n)} is periodic with period

P = P̃K where P̃ is a positive integer. Then

ck(n) =

P−1∑

m′=0

cm′ke
j(2πm′/P )n for all n.
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Define

cm′k :=
1

P

P−1∑

n=0

ck(n)e−j(2πm′/P )n.

Pick {ck(n)} so that only P̃ coefficients (out of total P ) cm′k’s, associated with P̃ distinct

frequencies, are nonzero. For instance, we may choose

ck(n) =

P̃−1∑

m=0

cmke
j(2π/P )(Km+k−1)n, for all n (3.63)

such that cmk 6= 0 for all m,k. Define the frequencies

αmk :=
2π

P
(Km+ k − 1) (3.64)

for m = 0, 1, . . ., P̃ − 1 and k = 1, 2, . . .,K. For example, we show how to use m-sequences

(maximal length pseudo-random binary sequences) for training. Pick P̃ = 2n − 1 for some

integer n such that P̃ ≥ L + 2. Let {c̄0 (n)} be an m-sequence of length P̃ . Pick the

superimposed training sequence {c1 (n)}P−1
n=0 for user 1 asK repetitions of {c̄0 (n)} multiplied

by a factor σc1 so that P−1
∑P−1

n=0 |c1 (n)|2 = σ2
c1. This choice satisfies (3.63) and (3.64) for

k = 1. Pick c̄k (n) = c̄1 (n) ej(2π/P )(k−1)n for k = 2, 3, . . .,K and ck (n) = σckc̄k (n). Then

{ck (n)}P−1
n=0 satisfies (3.63) and (3.64) for k ≥ 2. The above procedures can be used to

generate a user-specific training sequence of period P = P̃K from a sequence of period P̃ .

It follows that

E{y(n)} =
K∑

k=1

L∑

l=0

hk(n; l)





P̃−1∑

m=0

cmke
jαmk



 , for all n. (3.65)
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We can write (3.60) and (3.61) into a unified form as (2.20)

hk (n; l) =

Q
∑

q=1

hqk (l)ψq (n) , (3.66)

where ψq (n) = ejωqn in CE-BEM, and ψq (n) = uq (n) in DPS-BEM. The expected value

of the observations (3.65) can be rewritten as

E{y(n)} =
K∑

k=1

P̃−1∑

m=0

Q
∑

q=1

[
L∑

l=0

hqk(l)cmke
−jαmkl

]

ψq (n) ejαmkn, for all n.

Define

dmqk :=
L∑

l=0

hqk(l)cmke
−jαmkl. (3.67)

We have

E{y(n)} =

K∑

k=1

P̃−1∑

m=0

Q
∑

q=1

dmqkψq (n) ejαmkn.

It follows that

y (n) =
K∑

k=1

Q
∑

q=1

P−1∑

m=0

dmqkψq (n) ejαmkn+e (n) (3.68)

where {e (n)} is a zero-mean random sequence.

Define the cost function by (3.68)

J =
T−1∑

n=0

‖e (n)‖2 =
T−1∑

n=0

∥
∥
∥
∥
∥
∥

y (n) −
K∑

k=1

Q
∑

q=1

P−1∑

m=0

dmqkψq (n) ejαmkn

∥
∥
∥
∥
∥
∥

2

.
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Choose dmqk’s to minimize J . We must have

∂J

∂d∗
mqk

∣
∣
∣
∣
∣
dmqk=d̂mqk

=

T−1∑

n=0



y (n) −
K∑

k′=1

Q
∑

q′=1

P−1∑

m′=0

dm′q′k′ψq′ (n) ejαm′k′n



ψ∗
q (n) e−jαmkn

= 0,

leading to

K∑

k′=1

Q
∑

q′=1

P−1∑

m′=0

d̂m′q′k′

[
T−1∑

n=0

ψq′ (n)ψ∗
q (n) ej(αm′k′−αmk)n

]

=

T−1∑

n=0

y (n)ψ∗
q (n) e−jαmkn. (3.69)

For CE-BEM, suppose that we pick P to be such that (ωq + αmk)’s are all distinct for

any choice of m, k and q, e.g., take T/P ≥ Q. Then the sequence E{y(n)} is periodic [14]

with cycle frequencies (ωq + αmk), where 1 ≤ q ≤ Q, 0 ≤ m ≤ P − 1 and 1 ≤ k ≤ K, so

that we have

T−1∑

n=0

ej(ωq′−ωq+αm′k′−αmk)n = Tδ
(
m′ −m

)
δ
(
k′ − k

)
δ
(
q′ − q

)
. (3.70)

It follows that

d̂mqk =
1

T

T∑

n=1

y(n)e−j(ωq+αmk)n. (3.71)
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If DPS-BEM applies, we use the fact that DPS sequences are approximately band-limited

to the normalized frequency range [−fdTs, fdTs]. Then if 2fdTs ≪ 1/P , we use the approx-

imation
T−1∑

n=0

uq′ (n)uq (n) ej(αm′k′−αmk)n ≈ δ
(
k′ − k

)
δ
(
m′ −m

)
δ
(
q′ − q

)
. (3.72)

By using the approximation (3.72),

d̂mqk =
T∑

n=1

y(n)uq (n) e−jαmkn. (3.73)

For 0 ≤ m ≤ P̃ − 1 and 1 ≤ k ≤ K, define an NQ-column vector

Dmk :=

[

dT
m1k dT

m2k · · · dT
mQk

]T

, (3.74)

and for 0 ≤ l ≤ L and 1 ≤ k ≤ K, define an NQ-column vector

Hkl :=

[

hH
1k(l) hH

2k(l) · · · hH
Qk(l)

]H

.

Then by equation (3.67), we have

Dmk =

L∑

l=0

cmke
−jαmklHkl (3.75)

for 0 ≤ m ≤ P̃ − 1 and 1 ≤ k ≤ K. Define a P̃ × (L+ 1) matrix
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Ṽk :=














1 e−jα0k · · · e−jα0kL

1 e−jα1k · · · e−jα1kL

...
...

. . .
...

1 e
−jα(P̃−1)k · · · e

−jα(P̃−1)k
L














, (3.76)

an NQP̃ ×NQ(L+ 1) matrix

C̃k :=
(
diag

{
c0k, c1k, . . ., c(P−1)k

}
Vk

)
⊗ INQ,

an NQ(L+ 1)-column vector

Hk =

[

HH
k0 HH

k1 · · · HH
kL

]H

(3.77)

and an NQP -column vector

D̃k =

[

DH
0k DH

1k · · · DH
(P̃−1)k

]H

. (3.78)

Then (3.75) leads to

C̃kHk = D̃k. (3.79)

Since αmk’s are distinct and cmk 6= 0 for all m,k, rank (Ck) = NQ(L+ 1) if P̃ ≥ L+ 1;

hence, we can determine hqk(l)’s uniquely. Define D̂mk as in (3.74) with dmqk replaced with

d̂mqk and define ˆ̃Dk as in (3.78) with Dmk replaced with D̂mk. The estimate of Hk is given

by

Ĥk = (C̃H
k C̃k)

−1CH
k

ˆ̃Dk. (3.80)
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Figure 3.1: First-order statistics-based estimator (SISO): BER vs SNR under fd = 0Hz
(time-invariant) and K = N = 1. The curves for CE-, OP- and DPS-BEM’s completely
overlap, since the three basis functions are all constant for time-invariant channels (Q = 1).
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; OP: OP-BEM;
DPS: DPS-BEM.)

Denote the corresponding estimate of hqk(l) as ĥqk(l). Following (3.66), for k = 1, 2, . . .,K,

l = 0, 1, . . ., L and for all n, the estimate of time-varying channel is given by

ĥk(n; l) =

Q
∑

q=1

ĥqk(l)ψq (n) . (3.81)

Remark 3.5.1: If the additive noise v (n) is nonzero-mean (E {v (n)} = m) with the

mean unknown. Then (3.69) can be modified as

K∑

k′=1

Q
∑

q′=1

P−1∑

m′=0

d̂m′q′k′

[
T−1∑

n=0

ψq′ (n)ψ∗
q (n) ej(αm′k′−αmk)n

]

=

T−1∑

n=0

[y (n) − m]ψ∗
q (n) e−jαmkn.
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Figure 3.2: First-order statistics-based estimator (SISO): BER vs SNR under fd = 50Hz
and K = N = 1. (SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM;
OP: OP-BEM; DPS: DPS-BEM.)

Note that
T−1∑

n=0

e−j(ωq+αmk)n = Tδ (ωq + αmk) ,

and if 2fdTs ≪ 1/P , approximately we have

T−1∑

n=0

uq (n) e−jαmkn ≈ 0, for all αmk 6= 0.

Since T/P ≥ Q and αmk = 0 only happens when m = 0 and k = 1, if m = 0 we have

T−1∑

n=0

mψ∗
q (n) e−jαmkn = 0.
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Figure 3.3: First-order statistics-based estimator (SISO): BER vs SNR under fd = 100Hz
and K = N = 1. (SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM;
OP: OP-BEM; DPS: DPS-BEM.)

We hence omit the terms corresponding to m = 0, and then m has no effect on estimation.

We should only omit the first row of Ṽk in (3.76), and the resulting
(

P̃ − 1
)

× (L+ 1)

matrix is denoted by

Vk :=














1 e−jα1k · · · e−jα1kL

1 e−jα2k · · · e−jα2kL

...
...

. . .
...

1 e
−jα(P̃−1)k · · · e

−jα(P̃−1)k
L














.

We also define an NQ
(

P̃ − 1
)

×NQ (L+ 1) matrix

Ck :=
(

diag
{

c1k, c2k, . . ., c(P̃−1)k

}

Vk

)

⊗ INQ
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Figure 3.4: First-order statistics-based estimator (SISO): BER vs SNR under fd = 200Hz
and K = N = 1. (SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM;
OP: OP-BEM; DPS: DPS-BEM.)

and an NQ (P − 1)-column vector

Dk =

[

DH
1k DH

2k · · · DH
(P̃−1)k

]H

.

Then as in (3.79), we have

CkHk = Dk,

so that the channel estimation is given by

Ĥk = (CH
k Ck)

−1CH
k D̂k,

where D̂k is also acquired by (3.73). For identifiability, we now need P̃ ≥ L+ 2.
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Figure 3.5: First-order statistics-based estimator (SISO): NCMSE vs SNR under fd = 0Hz
(time-invariant) and K = N = 1. The curves for CE-, OP- and DPS-BEM’s completely
overlap, since the three basis functions are all constant for time-invariant channels (Q = 1).
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; OP: OP-BEM;
DPS: DPS-BEM.)

3.6 Simulation Examples

3.6.1 First-Order Statistics-Based Estimator: Single User

In this example, we generate a doubly-selective Rayleigh fading channel as we men-

tioned in Section 2.6.2, with N = 1 and L = 2, satisfying modified Jakes’ model. We also

employ the communication system described in Section 2.6.3. We emphasize again that

BEM’s are only used for processing at the receiver; the “true” channel follows Jakes’ model,

not BEM’s.

In simulations, we pick a data record length of 420 symbols (time duration of approxi-

mately 10ms). We consider the system operating under different Doppler spreads. For the
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Figure 3.6: First-order statistics-based estimator (SISO): NCMSE vs SNR under fd = 50Hz
and K = N = 1. (SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM;
OP: OP-BEM; DPS: DPS-BEM.)

Doppler spreads fd = 0, 50, 100, and 200Hz, we take Q = 1, 3, 5, and 7 in CE-BEM by

(2.9b), andQ = 1, 3, 4, and 6 for OP- and DPS-BEM representations by (2.18). The average

transmitted power in {c (n)} is 0.3 of that in {b (n)}, leading to a training-to-information

power ratio (TIR) of 0.3.

We consider a single-user scenario. The information sequence {b(n)} and the train-

ing sequence {c(n)} are all modulated by binary phase-shift keying (BPSK). The periodic

training sequence {c(n)} is generated from the m-sequence of period P = 7, one period of

which is given by

{c1(n)}6
n=0 = {1,−1,−1, 1, 1, 1,−1}. (3.82)

60



0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

SNR (dB)

N
or

m
al

iz
ed

 C
ha

nn
el

 M
S

E
 (

dB
)

K=N=1, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=100Hz, 500 runs.

 

 

SI&CE
SI&OP
SI&DPS
TM&CE
TM&OP
TM&DPS

Figure 3.7: First-order statistics-based estimator (SISO): NCMSE vs SNR under fd =
100Hz and K = N = 1. (SI: superimposed training; TM: time-multiplexed training; CE:
CE-BEM; OP: OP-BEM; DPS: DPS-BEM.)

To explore different estimators under equal conditions, we assume the additive noise

{v(n)} is zero-mean (i.e., m = 0), white complex-Gaussian, uncorrelated with {b(n)} with

E{v(n + τ)vH(n)} = σ2
vINδ(τ), so that no terms are discarded. The (receiver) SNR refers

to the energy per bit over one-sided noise spectral density with both information and su-

perimposed training sequence counting toward the bit energy.

The result are shown in Figures 3.1–3.8 for various Doppler spreads and SNR’s. The re-

sults are based on 500 Monte Carlo runs for Viterbi detectors (see Appendix B.1). For com-

parison, CE-, OP- and DPS-BEM-based periodically placed TM training with zero-padding

(see Appendix A) is also considered for doubly-selective channel estimation. We take a train-

ing session of length 2L + 1 = 5 symbols with the training sequence
{
0, 0,

√
2L+ 1, 0, 0

}
,

and at the receiver an LS estimation is performed. A data session of 17 symbols is inserted
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Figure 3.8: First-order statistics-based estimator (SISO): NCMSE vs SNR under fd =
200Hz and K = N = 1. (SI: superimposed training; TM: time-multiplexed training; CE:
CE-BEM; OP: OP-BEM; DPS: DPS-BEM.)

between two such training sessions to form a frame of length 22 symbols. Such a block is

repeated over a record length of 418 symbols. Thus, we have training-to-information bit

ratio as well as training-to-information power ratio of about 0.3.

For comparison, we plot the results of CE-, OP-, and DPS-based superimposed and

TM training approaches in each figure. Figures 3.1–3.4 show the BER’s with a Viterbi

detector at the receiver. Figures 3.5–3.8 show the normalized channel mean square error

(NCMSE) correspondingly, which is defined as

NCMSE :=

∑Mc

i=1

∑T−1
n=0

∑2
l=0

∥
∥
∥h(i) (n; l) − ĥ(i) (n; l)

∥
∥
∥

2

∑Mc

i=1

∑T−1
n=0

∑2
l=0

∥
∥h(i) (n; l)

∥
∥2 (3.83)
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Figure 3.9: First-order statistics-based estimator (MIMO): BER vs SNR under fd = 0Hz
(time-invariant) and K = N = 2. The curves for CE- and DPS-BEM’s completely overlap,
since the two basis functions are both constant for time-invariant channels (Q = 1). (SI:
superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
Kalman: a Kalman filter as the symbol detector; Viterbi: a Viterbi detector as the symbol
detector.)

where Mc denotes the number of Monte Carlo runs, h(i) (n; l) denotes the i-th realization

of the time-varying channel, and ĥ(i) (n; l) denotes the acquired channel estimate.

It is seen from the figures that the DPS-BEM-based estimators, no matter whether

superimposed or TM training is used, outperform the CE- and OP-BEM-based solutions.

(For fd = 0 and Q = 1, all the three models gives the same results, since the three models all

use constants as the basis functions. The performances of superimposed and TM training,

however, are different.) It is consistent with the fact that DPS-BEM can efficiently remove

spectral leakage, and it is a much better model in describing a band-limited channel. Due

to severe spectral leakage, the CE-BEM-based results are often the worst among the three.
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Figure 3.10: First-order statistics-based estimator (MIMO): BER vs SNR under fd = 50Hz
and K = N = 2. (SI: superimposed training; TM: time-multiplexed training; CE: CE-
BEM; DPS: DPS-BEM; Kalman: a Kalman filter as the symbol detector; Viterbi: a Viterbi
detector as the symbol detector.)

Comparing superimposed training with TM training, we see that the superimposed

training-based estimators performs worse than their TM counterparts, although superim-

posed training can offer higher data transmission rate. As we have discussed in Chapter

1, the major issue of superimposed training is the information-induced interference (self-

interference), which results in a notable error floor at BER and NCMSE curves. We will

discuss the issue of self-interference in Chapters 4–6.

3.6.2 First-Order Statistics-Based Estimator: Multiple Users

In this example, we follow the conditions addressed in Section 3.6.1 except that a

multiple-user scenario is considered.
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Figure 3.11: First-order statistics-based estimator (MIMO): BER vs SNR under fd = 100Hz
and K = N = 2. (SI: superimposed training; TM: time-multiplexed training; CE: CE-
BEM; DPS: DPS-BEM; Kalman: a Kalman filter as the symbol detector; Viterbi: a Viterbi
detector as the symbol detector.)

In simulations, all the users have the same transmitted power in training and in-

formation data. The average transmitted power in {ck (n)} is 0.3 of that in {bk (n)}

(k = 1, 2, . . .K), leading to the same TIR as in Section 3.6.1. We consider a simple two-user

scenario, i.e., K = 2, with two receive antennas, i.e., N = 2. The information sequences

{bk(n)} and the training sequences {ck(n)} are all BPSK modulated. The training sequence

is generated from the m-sequence of period P̃ = 7 by the procedure we introduced in Sec-

tion 3.5. The training sequences are of length P = 14, and the training sequence for the

first user is

{c1(n)}13
n=0 = {1,−1,−1, 1, 1, 1,−1, 1,−1,−1, 1, 1, 1,−1}, (3.84)

the repetitions of the m-sequence of period P̃ = 7.
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Figure 3.12: First-order statistics-based estimator (MIMO): BER vs SNR under fd = 200Hz
and K = N = 2. (SI: superimposed training; TM: time-multiplexed training; CE: CE-
BEM; DPS: DPS-BEM; Kalman: a Kalman filter as the symbol detector; Viterbi: a Viterbi
detector as the symbol detector.)

The additive noise {v(n)} is also zero-mean, white complex-Gaussian, uncorrelated

with {bk(n)} with E{v(n + τ)vH(n)} = σ2
vI2δ(τ). The (receiver) SNR refers to the energy

per bit per user over one-sided noise spectral density with both information and superim-

posed training sequence counting toward the bit energy.

At the receiver end, a Viterbi detector or a Kalman filter (see Appendix B.2) acts as

the symbol detector. We consider different Doppler spreads of fd = 0, 50, 100, and 200Hz

for this communications system. We also pick Q for CE-BEM as 1, 3, 5, 7 by (2.9b) and

DPS-BEM as 1, 3, 4, 6 by (2.18).

The results for a record length of T = 420 symbols are shown in Figures 3.9–3.16

for various Doppler spreads and SNR’s. The results are based on 500 Monte Carlo runs
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Figure 3.13: First-order statistics-based estimator (MIMO): NCMSE vs SNR under fd =
0Hz (time-invariant) and K = N = 2. The curves for CE- and DPS-BEM’s completely
overlap, since the two basis functions are both constant for time-invariant channels (Q =
1). (SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-
BEM.)

for Viterbi detectors, and 1000 runs for Kalman filters. For comparison, CE-BEM and

DPS-BEM-based periodically placed TM training (see Appendix A) is also considered for

doubly-selective channel estimation. We take a training session of length of (K + 1)L+K =

8 symbols with the first user’s training sequence
{

0, 0,
√

(K + 1)L+K, 0, 0, 0, 0, 0
}

and

the second user’s
{

0, 0, 0, 0, 0,
√

(K + 1)L+K, 0, 0
}

. An information data session of 27

symbols is inserted between two such training sessions to form a frame of length 35 symbols.

Such a frame is repeated over a record length of 420 symbols. Thus, we have a training-

to-information bit and power ratio of about 0.3. For multiple-user communications, the
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Figure 3.14: First-order statistics-based estimator (MIMO): NCMSE vs SNR under fd =
50Hz and K = N = 2. (SI: superimposed training; TM: time-multiplexed training; CE:
CE-BEM; DPS: DPS-BEM.)

NCMSE is defined as

NCMSE :=

∑K
k=1

∑Mc

i=1

∑T−1
n=0

∑2
l=0

∥
∥
∥h

(i)
k (n; l) − ĥ

(i)
k (n; l)

∥
∥
∥

2

∑K
k=1

∑Mc

i=1

∑T−1
n=0

∑2
l=0

∥
∥
∥h

(i)
k (n; l)

∥
∥
∥

2 (3.85)

We plot the curves for Viterbi detectors and Kalman filters in each figure. The discus-

sion in Section 3.6.1 for the SISO channel applies to the MIMO channel also: DPS-BEM

performs best and CE-BEM is the worst; TM training outperforms its superimposed rival.

The optimal Viterbi detector shows its advantage in error probability over the Kalman

filter, at the expense of increased computational complexity.
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Figure 3.15: First-order statistics-based estimator (MIMO): NCMSE vs SNR under fd =
100Hz and K = N = 2. (SI: superimposed training; TM: time-multiplexed training; CE:
CE-BEM; DPS: DPS-BEM.)

3.7 Conclusions

In this chapter, we discussed a first-order statistics-based estimator of doubly-selective

channels using superimposed training and BEM’s. Our starting point was the CE-BEM-

based estimator proposed by [81]. Due to the spectral leakage of CE-BEM, this estimator

does not perform well in estimating a band-limited channel. We thus extended the estimator

to using DPS- and OP-BEM’s to reduce the modeling error. We further considered this

estimator in a multiple-user scenario. By assigning distinct cycle frequencies of the periodic

training sequences to distinct users, channel estimation across various users is decoupled

so that the single-user estimator can be used. Our schemes are illustrated by simulation

examples, and compared with the conventional TM training: Although higher transmission

rate has been achieved by superimposed training, the performance of the proposed estimator
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Figure 3.16: First-order statistics-based estimator (MIMO): NCMSE vs SNR under fd =
200Hz and K = N = 2. (SI: superimposed training; TM: time-multiplexed training; CE:
CE-BEM; DPS: DPS-BEM.)

using superimposed training is inferior to that of TM training, due to the existence of

information-induced self-interference. Analyzing and reducing self-interference will be the

topic of the following three chapters.
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Chapter 4

Performance Analysis and Parameter Design for First-Order

Statistics-Based Estimator

4.1 Introduction

A first-order statistics-based channel estimator, using superimposed training and vari-

ous BEM’s, was discussed in Chapter 3. We present performance analysis of this estimator

in this chapter.

Several parameters may affect the performance of the estimator. For example, a por-

tion of transmitted power is allocated to the superimposed training, and this portion will

apparently affect the estimator’s behavior—more training power leads to higher estimation

accuracy, but suppression of information power worsens the effective information SNR in

the meantime. Therefore, a trade-off must be made to achieve a balance for the power

allocation between training and information.

A similar consideration lies in selecting the number of basis functions for BEM’s. More

basis functions yield more accurate approximation (or less bias, see Section 2.6), and higher

estimation variance. A trade-off between bias and variance should also be studied to achieve

better estimation.

In Section 4.2, assuming that the “true” channel follows a BEM, performance analysis

for the estimators using CE-, DPS-, and OP-BEM’s is explored; performance analysis for

the estimator of multiple-user channels is also discussed in this section. In Section 4.3,

modeling error of a BEM is counted in performance analysis. Based on the results of

performance analysis, we cast the issues of power allocation (Section 4.4) and bias-variance
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trade-off (Section 4.5) as ones of optimizing an SNR for equalizer design. Simulation results

are provided in Section 4.6. Section 4.7 concludes this chapter.

4.2 Performance Analysis for the First-Order Statistics-Based Estimator Us-

ing BEM

We assume the following.

(H4.2.1) The SIMO channel satisfies a BEM representation as in (2.20), i.e.,

h (n; l) = hBEM (n; l) =

Q
∑

q=1

hq (l)ψq (n) , (4.1)

where ψq (n) is the q-th basis function (corresponding to ejωqn in CE-BEM (2.9),

ϕq−1(n) in OP-BEM (2.15), and uq (n) in DPS-BEM (2.19)), and Q is the number of

basis functions (note that Q = K + 1 for K in (2.15)). Also N ≥ 1.

(H4.2.2) The information sequence {b(n)} is zero-mean, white with E{| b(n)|2} = σ2
b .

(H4.2.3) The measurement noise {v(n)} is zero-mean, white, uncorrelated with {b(n)},

with E{v(n + τ)vH(n)} = σ2
vINδ(τ).

(H4.2.4) The superimposed training sequence c(n) = c(n + P ) for all n is a non-random

periodic sequence with period P , with average power σ2
c :=

∑P−1
n=0 |c (n)|2 /P .

(H4.2.5) The time-varying channel {h (n; l)} is zero-mean, complex Gaussian with vari-

ance σ2
h, and mutually independent for distinct l’s: E

{
h (n; l)hH (n; l)

}
= σ2

hIN and

E{h (n1; l1)h
H (n2; l2)} = 0, for l1 6= l2, for all n1, n2, i.e., different channel taps are
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independent of each other and are identically distributed zero-mean complex Gaus-

sian.

We wish to evaluate the MSE of channel estimation when the true channel follows

(4.1). The MSE of estimation is defined as

MSE1 =
1

T

T−1∑

n=0

L∑

l=0

E

{∥
∥
∥hBEM (n; l) − ĥBEM (n; l)

∥
∥
∥

2
}

(4.2)

where ĥBEM (n; l) is also given by the BEM

ĥBEM (n; l) =

Q
∑

q=1

ĥq (l)ψq (n) . (4.3)

By (H4.2.4), we define the normalized training sequence as

c̄ (n) = c (n) /σc, for all n

and

c̄m := cm/σc, m = 0, 1, . . ., P − 1

where

cm :=
1

P

P−1∑

n=0

c(n)e−jαmn,

c(n) =
P−1∑

m=0

cme
jαmn, for all n,

αm = 2πm/P, m = 0, 1, . . ., P − 1.
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4.2.1 Performance Analysis for CE-BEM-Based Estimator

Since we have assumed the measurement noise {v(n)} is zero-mean, the CE-BEM based

channel estimate is acquired through (3.24), and

ĥBEM(n; l) =

Q
∑

q=1

ĥq(l)e
jωqn, l = 0, 1, . . ., L, 0 ≤ n ≤ T − 1.

Let

Em (n) =

[

e−j(ω1+αm)n e−j(ω2+αm)n · · · e−j(ωQ+αm)n
]T

,

and

E (n) =

[

EH
0 (n) EH

1 (n) · · · EH
P−1 (n)

]H

. (4.4)

By (3.6),

ˆ̃D =
1

T

T−1∑

n=0

E (n) ⊗ y (n) ,

and by (3.24), we have

Ĥ =
1

T
(C̃H C̃)−1C̃H

T−1∑

n=0

E (n) ⊗ y (n) . (4.5)

We define

x̃ (n) := y (n) − E {y (n)|H} =
L∑

l=0

h (n; l) b (n− l) + v (n) , (4.6)
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then

E
{
x̃ (n1) x̃

H (n2)
∣
∣H
}

=
L∑

l1=0

L∑

l2=0

h (n1; l1)h
H (n2; l2) σ

2
b δ (n1 − n2 − l1 + l2) + σ2

vINδ (n1 − n2) .

Using (H4.2.5),

EH

{
E
{
x̃ (n1) x̃

H (n2)
∣
∣H
}}

=
[
(L+ 1) σ2

hσ
2
b + σ2

v

]
INδ (n1 − n2) .

Since
∑T−1

n=0 E (n) EH (n) = T IPQ, by defining cov{Ĥ, Ĥ | H} := E{[Ĥ − H][Ĥ − H]
H} and

using (4.5) we have (see also (3.21)–(3.23))

EH

{

cov
{

Ĥ, Ĥ
∣
∣
∣H
}}

=
1

T 2
(C̃H C̃)−1C̃H cov

{
T−1∑

n=0

E (n) ⊗ y (n) ,
T−1∑

n=0

E (n) ⊗ y (n)

}

C̃H(C̃H C̃)−1

=
1

T 2
(C̃H C̃)−1C̃H

[
T−1∑

n1=0

T−1∑

n2=0

E (n1) EH (n2)

]

⊗ cov {y (n) ,y (n)} C̃H(C̃H C̃)−1

=
(L+ 1) σ2

hσ
2
b + σ2

v

T 2
(C̃H C̃)−1C̃H

[
T−1∑

n1=0

T−1∑

n2=0

E (n1) EH (n2)

]

⊗ INδ (n1 − n2) C̃H(C̃H C̃)−1

=
(L+ 1) σ2

hσ
2
b + σ2

v

T
(C̃H C̃)−1C̃HIPQ ⊗ IN C̃H(C̃H C̃)−1

=
(L+ 1) σ2

hσ
2
b + σ2

v

T

(

C̃H C̃
)−1

=
(L+ 1) σ2σ2

b + σ2
v

T

(

ṼH diag
{

|c0|2 , |c1|2 , . . ., |cP−1|2
}

Ṽ
)−1

⊗ INQ.
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Since ˆ̃D = C̃Ĥ, then E{ ˆ̃D} = C̃E{Ĥ}. By (3.9), it follows that

E{d̂mq} =
1

T

T−1∑

n=0

E {y (n)} e−j(ωq+αm)n

=
1

T

T−1∑

n=0

L∑

l=0

h (n; l) c (n− l) e−j(ωq+αm)n

=
L∑

l=0

Q
∑

q′=1

hq′ (l)
P−1∑

m′=0

cm′e−jαm′ l

[

1

T

T−1∑

n=0

e−j(ωq−ωq′+αm−αm′)n

]

=
L∑

l=0

Q
∑

q′=1

hq′ (l)
P−1∑

m′=0

cm′e−jαm′ lδ
(
m−m′

)
δ
(
q − q′

)

=
L∑

l=0

hq (l) cme
−jαml.

Therefore, E{ ˆ̃D} = C̃H, or C̃E
{

Ĥ
}

= C̃H. Since C̃ is full column-rank and P ≥ L+ 1, we

have E
{

Ĥ
}

= H. Now we evaluate the MSE of the channel estimate given by (4.3):

MSE1

=
1

T

T−1∑

n=0

L∑

l=0

E











Q
∑

q1=1

[

hq1 (l) − ĥq1 (l)
]H

e−jωq1n









Q
∑

q2=1

[

hq2 (l) − ĥq2 (l)
]

ejωq2n











=

L∑

l=0

E







Q
∑

q1=1

Q
∑

q2=1

[

hq1 (l) − ĥq1 (l)
]H [

hq2 (l) − ĥq2 (l)
]
[

1

T

T−1∑

n=0

e−j(ωq1−ωq2)n

]






=
L∑

l=0

E







Q
∑

q1=1

Q
∑

q2=1

[

hq1 (l) − ĥq1 (l)
]H [

hq2 (l) − ĥq2 (l)
]

δ (q1 − q2)







= tr
{

EH

{

cov
{

Ĥ, Ĥ
∣
∣
∣H
}}}

=

[
(L+ 1) σ2

hσ
2
b + σ2

v

]
NQ

Tσ2
c

tr

{(

ṼH diag
{

|c̄0|2 , |c̄1|2 , . . ., |c̄P−1|2
}

Ṽ
)−1

}

. (4.7)
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Remark 4.2.1.1: If the zero-mean assumption of (H4.2.1.3) is relaxed, i.e., we follow

the assumption (H3.2.3) instead, then the estimator follows (3.18) and the terms corre-

sponding to m = 0 are discarded. We omit the entry E0 (n) in (4.4), and use C, V, and

D̂ in (3.13) (3.14), and (3.16) instead of C̃, Ṽ, and ˆ̃D. We have the MSE of the channel

estimation when the mean of the noise is unknown:

MSE1 =

[
(L+ 1) σ2

hσ
2
b + σ2

v

]
NQ

Tσ2
c

tr

{(

VH diag
{

|c̄1|2 , |c̄2|2 , . . ., |c̄P−1|2
}

V
)−1

}

. (4.8)

Remark 4.2.1.2: If we define an interference factor If as

If =
NQ

Tσ2
c

tr

{(

ṼH diag
{

|c̄0|2 , |c̄1|2 , . . ., |c̄P−1|2
}

Ṽ
)−1

}

or

If =
NQ

Tσ2
c

tr

{(

VH diag
{

|c̄1|2 , |c̄2|2 , . . ., |c̄P−1|2
}

V
)−1

}

,

we can clearly see that the MSE of the channel estimation consists of two parts: one is

given by (L+ 1) σ2
hσ

2
bIf coming from the self-interference, and the other one σ2

vIf is the

noise-induced part. Normally (L+ 1) σ2
hσ

2
b ≫ σ2

v , so that the estimation error mainly comes

from the interference from information data.

4.2.2 Performance Analysis for DPS-BEM-Based Estimator

Consider (3.35). From observation y (n), the estimate d̂mq has contributions from the

information sequence {b (n)}, which is unknown at the receiver, the superimposed training

{c (n)}, which is known at the receiver, and the measurement noise v (n). It follows (3.1),
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(3.2), (3.4), (3.25), and (3.35) that

d̂mq =

T−1∑

n=0

y (n)uq (n) e−jαmn

=
T−1∑

n=0

[
L∑

l=0

h (n; l) c (n− l) +
L∑

l=0

h (n; l) b (n− l) + v (n)

]

uq (n) e−jαmn

=
T−1∑

n=0

[

E {y (n)} +
L∑

l=0

h (n; l) b (n− l) + v (n)

]

uq (n) e−jαmn.

Then by (H4.2.1)–(H4.2.4), (3.27), (3.34), and (3.35)

E{d̂mq} =
T−1∑

n=0

E {y (n)}uq (n) e−jαmn

=

T−1∑

n=0

Q
∑

q′=1

P−1∑

m′=0

dm′q′uq′ (n) ejαm′nuq (n) e−jαmn

=

Q
∑

q′=1

P−1∑

m′=0

dm′q′δ
(
m′ −m

)
δ
(
q′ − q

)

= dmq. (4.9)

Define

wmq :=

T−1∑

n=0

v (n)uq (n) e−jαmn,

which is zero-mean and by (H4.2.3) and (3.34)

E
{
wm′q′w

H
mq

}
=

T−1∑

n=0

T−1∑

n′=0

E
{
v
(
n′
)
vH (n)

}
uq′
(
n′
)
uq (n) ej(αmn−αm′n′)

=

T−1∑

n=0

T−1∑

n′=0

σ2
vINδ

(
n′ − n

)
uq′
(
n′
)
uq (n) ej(αmn−αm′n′)

= σ2
vINδ

(
m′ −m

)
δ
(
q′ − q

)
. (4.10)
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Thus,

d̂mq = dmq + smq + wmq, (4.11)

where

smq :=
T−1∑

n=0

[
L∑

l=0

h (n; l) b (n− l)

]

uq (n) e−jαmn. (4.12)

Clearly, the information sequence’s contribution, which is given by smq above, interferes with

the estimation of dmq, hence with channel estimation from the observations (see (3.36)).

Since C̃ is full column-rank when P ≥ L+ 1, by (3.30) and (4.9), we have E{ ˆ̃D} = D̃

and E{Ĥ} = H. Then from (3.36)

cov
{

Ĥ, Ĥ
∣
∣
∣H
}

=
(

C̃H C̃
)−1

C̃H cov{ ˆ̃D, ˆ̃D}C̃
(

C̃H C̃
)−1

. (4.13)

Consider the zero-mean interference smq in (4.12), by (H4.2.2), (H4.2.5), and (3.34)

E
{
sm′q′s

H
mq

}
=

T−1∑

n′=0

L∑

l′=0

T−1∑

n=0

L∑

l=0

E
{
h
(
n′; l′

)
hH (n; l)

}
E
{
b
(
n′ − l′

)
b∗ (n− l)

}

× uq (n) uq′
(
n′
)
ej(αmn−αm′n′)

= (L+ 1) σ2
hσ

2
b IN

T−1∑

n=0

uq (n) uq′ (n) ej(αm−αm′ )n

= (L+ 1) σ2
hσ

2
b INδ

(
m′ −m

)
δ
(
q′ − q

)
. (4.14)

By (H4.2.3), since the noise v(n) uncorrelated with the zero-mean information sequence

{b(n)}

E
{
sm′q′w

H
mq

}
= 0.
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Then by (4.10), (4.11) and (4.14),

E
{

[d̂mq − dmq][d̂m′q′ − dm′q′ ]
H
}

= E
{

[smq + wmq]
[
sm′q′ + wm′q′

]H
}

= E
{
sm′q′s

H
mq

}
+ E

{
wm′q′w

H
mq

}

=
[
(L+ 1) σ2

hσ
2
b + σ2

v

]
INδ

(
m′ −m

)
δ
(
q′ − q

)
.

We further have

cov{ ˆ̃D, ˆ̃D} =
[
(L+ 1) σ2

hσ
2
b + σ2

v

]
INPQ. (4.15)

Substitute (4.15) for (4.13)

cov
{

Ĥ, Ĥ
∣
∣
∣H
}

=
[
(L+ 1) σ2

hσ
2
b + σ2

v

] (

C̃H C̃
)−1

.

Using the orthonormality of the DPS sequence, the MSE in channel estimation (4.2) is then

given by

MSE1

=
1

T

T−1∑

n=0

L∑

l=0

E











Q
∑

q1=1

[

hq1 (l) − ĥq1 (l)
]H

uq1 (n)









Q
∑

q2=1

[

hq2 (l) − ĥq2 (l)
]

uq2 (n)











=
1

T

L∑

l=0

E







Q
∑

q1=1

Q
∑

q2=1

[

hq1 (l) − ĥq1 (l)
]H [

hq2 (l) − ĥq2 (l)
]

δ (q1 − q2)







=
1

T
tr{cov

{

Ĥ, Ĥ
∣
∣
∣H
}

}

=

[
(L+ 1) σ2

hσ
2
b + σ2

v

]
NQ

Tσ2
c

tr

{(

ṼH diag
{

|c̄0|2 , |c̄1|2 , . . ., |c̄P−1|2
}

Ṽ
)−1

}

. (4.16)
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Remark 4.2.2.1: If the mean of noise v (n) is unknown, we replace C̃ in (4.16) with

C as in (3.13). Then the MSE in channel estimation is

MSE1 =

[
(L+ 1) σ2

hσ
2
b + σ2

v

]
NQ

Tσ2
c

tr

{(

VH diag
{

|c̄1|2 , |c̄2|2 , . . ., |c̄P−1|2
}

V
)−1

}

. (4.17)

Whether the noise is zero-mean or not, the interference from the information sequence

contributes a majority of the estimation error.

Remark 4.2.2.2: We assume (3.34) which holds precisely for CE-BEM if replacing

uq (n) with ejωqn, so that the CE-BEM-based estimator and the DPS-BEM-based estimator

give us the same MSE results (compare (4.7) and (4.8) with (4.16) and (4.17)), given the

assumption that the “true” channel follows CE- or DPS-BEM respectively. In this section,

the modeling error of a BEM in describing a real channel has been omitted.

4.2.3 Performance Analysis for OP-BEM-Based Estimator

Now we turn to the OP-BEM-based channel estimator (3.46). The noise v (n) is of

unknown mean m. Similar to (4.6) we define

x̃ (n) := y (n) −E {y (n)| H} =

L∑

l=0

h (n; l) b (n− l) + v (n) − m,

then

E
{
x̃ (n1) x̃

H (n2)
∣
∣H
}

=
L∑

l1=0

L∑

l2=0

h (n1; l1)h
H (n2; l2) σ

2
b δ (n1 − n2 − l1 + l2) + σ2

vINδ (n1 − n2) .
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Since h (n; l)’s are independent for different l’s,

EH

{
E
{
x̃ (n1) x̃

H (n2)
∣
∣H
}}

= E

{
L∑

l=0

h (n1; l)h
H (n2; l)

}

σ2
b δ (n1 − n2) + σ2

vINδ (n1 − n2)

=
[
(L+ 1) σ2

hσ
2
b + σ2

v

]
INδ (n1 − n2) . (4.18)

By (3.46) and (4.18), we have

EH

{

cov
{

Ĥ, Ĥ
∣
∣
∣H
}}

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

Φ†
OP∆ (n1)∆

H (n2)Φ
†H
OP ⊗EH

{
E
{
x̃ (n1) x̃

H (n2)
∣
∣H
}}

=

[
(L+ 1) σ2

hσ
2
b + σ2

v

]

T 2
Φ†

OP

[
T−1∑

n=0

∆ (n)∆H (n)

]

Φ†H
OP ⊗ IN . (4.19)

Note that 1
T

∑T−1
n=0 ∆ (n)∆H (n) = ΦOP and ΦOP = ΦH

OP. We define the normalized

Φ̄OP := ΦOP/σ
2
c , then (4.19) becomes

EH

{

cov
{

Ĥ, Ĥ
∣
∣
∣H
}}

=

[
(L+ 1) σ2

hσ
2
b + σ2

v

]

Tσ2
c

Φ̄†
OP ⊗ IN .

Let

Φ (n) =

[

ϕ0 (n) IN ϕ1 (n) IN · · · ϕK (n) IN

]

,

Ψ (n) = IL+1 ⊗ Φ (n) .
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By the orthonormality of {ϕq (n)}T−1
n=0 ,

∑T
n=1 ΨH (n)Ψ (n) = IN(L+1)(K+1). It follows the

OP-BEM (3.38) and (3.47) that

hBEM (n; l) = Φ (n)Hl and ĥBEM (n; l) = Φ (n) Ĥl.

The estimation MSE is given by

MSE1 =
1

T

T−1∑

n=0

L∑

l=0

EHE

{{∣
∣
∣ĥBEM (n; l) − hBEM (n; l)

∣
∣
∣

2
∣
∣
∣
∣
H
}}

=
1

T

T−1∑

n=0

tr
{

Ψ (n)EH

{

cov
{

Ĥ, Ĥ
∣
∣
∣H
}}

ΨH (n)
}

=
(L+ 1) σ2

hσ
2
b + σ2

v

T 2σ2
c

T−1∑

n=0

tr
{

Ψ (n)
(

Φ̄†
OP ⊗ IN

)

ΨH (n)
}

=
(L+ 1) σ2

hσ
2
b + σ2

v

T 2σ2
c

T−1∑

n=0

tr
{

IN(L+1)(K+1)

(

Φ̄†
OP ⊗ IN

)}

=

[
(L+ 1) σ2

hσ
2
b + σ2

v

]
N

T 2σ2
c

tr Φ̄†
OP.

Remark 4.2.3.1: If the measurement noise is zero-mean, i.e., m = 0, the channel

MSE is given by

MSE1 =

[
(L+ 1) σ2

hσ
2
b + σ2

v

]
N

T 2σ2
c

tr ˜̄Φ
†

OP, (4.20)

where ˜̄ΦOP = Φ̃OP/σ
2
c (see Remark 3.4.3 for the definition of Φ̃OP and related discus-

sions).

Remark 4.2.3.2: In Remark 3.4.2, we have shown that this estimator can apply to

any BEM representation. To reconfirm this, we now consider the channel MSE given by

(4.7), (4.16), and (4.20), where we assume m = 0 in all the three cases. The entries of ˜̄ΦOP
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are

˜̄φ (q, q1, l, l1) :=
1

T

T−1∑

n=0

ϕq (n)ϕ∗
q1

(n) c̄ (n− l) c̄∗ (n− l1) .

We denote ˜̄ΦCE and ˜̄ΦDPS if we replace ϕq (n) with ejωqn/
√
T and uq (n) in ˜̄ΦOP. Since we

have

1

T

T−1∑

n=0

ejωqn

√
T

e−jωq1n

√
T

c̄ (n− l) c̄∗ (n− l1) =
1

T

P−1∑

m=0

|c̄m|2 e−jαm(l−l′)δ (q − q1)

by (3.49), and

1

T

T−1∑

n=0

uq (n)uq1 (n) c̄ (n− l) c̄∗ (n− l1) =
1

T

P−1∑

m=0

|c̄m|2 e−jαm(l−l′)δ (q − q1)

by (3.34), then it follows that

˜̄ΦDPS ≈ ˜̄ΦCE = ṼH diag
{

|c0|2 , |c1|2 , . . ., |cP−1|2
}

Ṽ ⊗ IQ.

Thus, if we replace ϕq (n) with ejωqn/
√
T or uq (n) in ˜̄ΦOP, (4.20) gives us the same result

as (4.7) or (4.16).

4.2.4 Performance Analysis for Multiple-User (MIMO) Channels

We now analyze the estimation performance of the MIMO estimator proposed in Sec-

tion 3.5.

Due to band-limitedness, the analysis approach used in Section 4.2.2 can also apply to

CE-BEM. We hence consider the performance of CE- and DPS-BEM-based MIMO channel

estimator in this way.
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We assume the following:

(H4.2.4.1) The time-varying channel satisfies a BEM representation, as in (2.20), i.e.,

hk (n; l) = hBEM k (n; l) =

Q
∑

q=1

hqk (l)ψq (n) ,

where ψq (n) is the q-th basis function (corresponding to ejωqn in CE-BEM (2.9) and

uq (n) in DPS-BEM (2.19)), and Q is the number of basis functions. Also N ≥ 1.

(H4.2.4.2) The information sequence {bk(n)} is zero-mean, white with E{| bk(n)|2} = σ2
bk

and mutually independent for k = 1, 2, . . .,K.

(H4.2.4.3) The measurement noise {v(n)} is zero-mean (m = 0), white, uncorrelated with

{bk(n)}, with E{v(n + τ)vH(n)} = σ2
vINδ(τ).

(H4.2.4.4) The superimposed training sequence ck(n) = ck(n + P ) for all n is a non-

random periodic sequence with period P and average power σ2
ck :=

∑P−1
n=0 |ck (n)|2 /P

such that cmk 6= 0 for all m,k, and P̃ is integer with P = P̃K.

(H4.2.4.5) The time-varying channel {hk (n; l)} is zero-mean, complex Gaussian with vari-

ance σ2
hk, and mutually independent for distinct l’s: E

{
hk (n; l)hH

k (n; l)
}

= σ2
hIN

and E{hk (n1; l1)h
H
k (n2; l2)} = 0, for l1 6= l2, for all n1, n2, i.e., different channel

taps are independent of each other and are identically distributed zero-mean complex

Gaussian. In addition, E{hk′ (n1; l1)h
H
k (n2; l2)} = 0 for for all n1, n2, l1, and l2 if

k′ 6= k, i.e., the channels of different users are mutually independent.
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Considering (3.71) and (3.73), we have

d̂mqk =

T∑

n=1

y(n)ψ∗
q (n) e−jαmkn, (4.21)

where ψq (n) := ejωqn/
√
T for the CE-BEM and ψq (n) := uq (n) for the DPS-BEM. By

(3.70) and (3.72),

T−1∑

n=0

ψq′ (n)ψ∗
q (n) ej(αm′k′−αmk)n ≈ δ

(
k′ − k

)
δ
(
m′ −m

)
δ
(
q′ − q

)
. (4.22)

From y (n), the estimate d̂mqk has contributions from the information sequence {bk (n)}

(k = 1, 2, . . .,K) unknown at the receiver, the superimposed training {ck (n)} known at the

receiver, and the measurement noise v (n). It follows (3.57)–(3.59) that

d̂mqk =
T−1∑

n=0

y (n)ψ∗
q (n) e−jαmkn

=

T−1∑

n=0

[

E {y (n)} +

K∑

k=1

L∑

l=0

hk (n; l) b (n− l) + v (n)

]

ψ∗
q (n) e−jαmkn.

By (H4.2.4.1)–(H4.2.4.5), (3.62) (note that m = 0), (4.21), and (4.22)

E{d̂mqk} =

T−1∑

n=0

E {y (n)}ψ∗
q (n) e−jαmkn

=
T−1∑

n=0

K∑

k=1

P̃−1∑

m=0

Q
∑

q=1

dm′q′k′ψq′ (n) ejαm′k′nψ∗
q (n) e−jαmkn

= dmqk. (4.23)
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Define

wmqk :=

T−1∑

n=0

v (n)ψq (n) e−jαmkn,

which is zero-mean and by (H4.2.4.3) and (4.22)

E
{
wm′q′k′wH

mqk

}
=

T−1∑

n=0

T−1∑

n′=0

E
{
v
(
n′
)
vH (n)

}
ψq′
(
n′
)
ψ∗

q (n) ej(αmkn−αm′k′n
′)

= σ2
vINδ

(
m′ −m

)
δ
(
q′ − q

)
δ
(
k′ − k

)
. (4.24)

Thus d̂mqk = dmqk + smqk + wmqk where

smqk :=
T−1∑

n=0

[
K∑

k′=1

L∑

l=0

hk′ (n; l) bk′ (n− l)

]

ψ∗
q (n) e−jαmkn. (4.25)

Also, the information sequence’s contribution, given by smqk above, interferes with the

estimation of dmqk, hence with channel estimation from the observations.

Since C̃k is full column-rank when P̃ ≥ L+1, by (3.79) and (4.23), we have E{ ˆ̃Dk} = D̃k

and E{Ĥk} = Hk. Then by (3.79)

cov
{

Ĥk, Ĥk

∣
∣
∣Hk

}

=
(

C̃H
k C̃k

)−1
C̃H

k cov{ ˆ̃Dk,
ˆ̃Dk}C̃k

(

C̃H
k C̃k

)−1
. (4.26)

Consider the zero-mean interference smqk in (4.25), by (H4.2.4.2), (H4.2.4.5), and (4.22)

E
{
sm′q′k′sH

mqk

}

=

T−1∑

n′=0

L∑

l′=0

T−1∑

n=0

L∑

l=0

K∑

k′=1

K∑

k=1

E
{
hk′

(
n′; l′

)
hH

k (n; l)
}
E
{
bk′

(
n′ − l′

)
b∗k (n− l)

}
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× ψq (n)ψ∗
q′
(
n′
)
ej(αmkn−αm′k′n

′)

=

T−1∑

n=0

L∑

l=0

K∑

k′=1

K∑

k=1

E
{
hk (n; l)hH

k (n; l)
}
σ2

bkδ
(
k′ − k

)
ψq (n)ψ∗

q′ (n) ej(αmkn−αm′k′n)

=

K∑

k=1

(L+ 1) σ2
hkσ

2
bkIN

T−1∑

n=0

ψq (n)ψ∗
q′ (n) ej(αmkn−αm′k′n)

= (L+ 1) IN

(
K∑

k=1

σ2
hkσ

2
bk

)

δ
(
m′ −m

)
δ
(
q′ − q

)
δ
(
k′ − k

)
. (4.27)

By (H4.2.4.3), since the noise v(n) are uncorrelated with {bk(n)}, E
{

sm′q′k′wH
mqk

}

= 0.

Then by (4.24) and (4.27),

E
{

[d̂mqk − dmqk][d̂m′q′k′ − dm′q′k′ ]H
}

= E
{
sm′q′k′sH

mqk

}
+ E

{
wm′q′k′wH

mqk

}

=

[

(L+ 1)
K∑

k=1

σ2
hkσ

2
bk + σ2

v

]

INδ
(
m′ −m

)
δ
(
q′ − q

)
δ
(
k′ − k

)
.

We have

cov{ ˆ̃Dk,
ˆ̃Dk} =

[

(L+ 1)
K∑

k=1

σ2
hkσ

2
bk + σ2

v

]

INP̃Q. (4.28)

Substitute (4.28) for (4.26)

cov
{

Ĥk, Ĥk

∣
∣
∣Hk

}

=

[

(L+ 1)
K∑

k=1

σ2
hkσ

2
bk + σ2

v

]
(

C̃H
k C̃k

)−1
.

Using orthonormality of the basis functions, the channel MSE for the k-th user is then given

by

MSE1k =
1

T

T−1∑

n=0

L∑

l=0

E







∥
∥
∥
∥
∥
∥

Q
∑

q=1

[

hqk (l) − ĥqk (l)
]H

ψ∗
qk (n)

∥
∥
∥
∥
∥
∥

2



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=
1

T
tr{cov

{

Ĥk, Ĥk

∣
∣
∣Hk

}

}

=

[

(L+ 1)

K∑

k=1

σ2
hkσ

2
bk + σ2

v

]

tr

{(

C̃H
k C̃k

)−1
}

=

[

(L+ 1)
∑K

k=1 σ
2
hkσ

2
bk + σ2

v

]

NQ

Tσ2
c

tr

{(

ṼH
k diag

{

|c̄0|2 , |c̄1|2 , . . .,
∣
∣c̄P̃−1

∣
∣2
}

Ṽk

)−1
}

.

(4.29)

Remark 4.2.4.1: If the mean of v (n) is unknown, we have

MSE1k

=

[

(L+ 1)
∑K

k=1 σ
2
hkσ

2
bk + σ2

v

]

NQ

Tσ2
c

tr

{(

VH
k diag

{

|c̄1|2 , |c̄2|2 , . . .,
∣
∣c̄P̃−1

∣
∣2
}

Vk

)−1
}

.

Remark 4.2.4.2: Compare (4.29) with (4.7) and (4.16), we can see that for the esti-

mation of a multiple-user channel, multiple-user interference (MUI) exists and information

data from all users act as interference. The MUI linearly increases as more users join the

system.

4.3 Performance Analysis for the First-Order Statistics-Based Estimator: with

Modeling Error

In Section 4.2, we assumed that the channel (SIMO or MIMO) follows a BEM rep-

resentation, i.e., the modeling error was omitted. In practice, modeling error always exits

(see Section 2.6). In approximating a band-limited channel, CE-, OP-, and DPS-BEM have
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distinct performances. If modeling error is considered, (4.1) is now revised as

h (n; l) = hBEM (n; l) + eBEM (n; l) =

Q
∑

q=1

hq (l)ψq (n) + eBEM (n; l)

where eBEM (n; l) is the modeling error that is intrinsic to the BEM representation and

has nothing to do with BEM-based channel estimation. Therefore, the MSE of channel

estimation consists of two parts: One comes from the estimation, which has been discussed

in Section 4.2; the other part arises from the modeling error.

Consider a “complete” basis matrix

ΨT :=














ψ1 (0) ψ2 (0) · · · ψT (0)

ψ1 (1) ψ2 (1) · · · ψT (1)

...
...

. . .
...

ψ1 (T − 1) ψ2 (T − 1) · · · ψT (T − 1)














,

where {ψq (n)}T
q=1 represents

{

ej2π[q−(T+1)/2]/T /
√
T
}T

q=1
in CE-BEM, or modified Legendre

polynomials of degree 0 to T − 1 in OP-BEM, or the total T eigenvectors of the matrix C

defined in (2.17). Note that ΨT is unitary, and for an arbitrary channel {h (n; l)}T−1
n=0 , the

following formula is always true:

h (n; l) =

T∑

q=1

hq (l)ψq (n) ,
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or equivalently

[

hT (0; l) hT (1; l) · · · hT (T − 1; l)

]T

= (ΨT ⊗ IN )

[

hT
1 (l) hT

2 (l) · · · hT
T (l)

]T

,

(4.30)

where

hq (l) =

T−1∑

n=0

h (n; l)ψ∗
q (n) . (4.31)

Given the above representations, one may view the BEM representation (2.20) as an ap-

proximation where we use only Q (out of total T ) basis functions to describe the channel.

In a BEM, (4.30) is approximated by using

[

hT
BEM (0; l) hT

BEM (1; l) · · · hT
BEM (T − 1; l)

]T

= (ΨQ ⊗ IN )

[

hT
1 (l) hT

2 (l) · · · hT
Q (l)

]T

where ΨQ consists of the first Q columns of ΨT . The modeling error is given by

[

eT
BEM (0; l) eT

BEM (1; l) · · · eT
BEM (T − 1; l)

]T

= (ΨT−Q ⊗ IN )

[

hT
Q+1 (l) hT

Q+2 (l) · · · hT
T (l)

]T

, (4.32)

where ΨT−Q consists of the last T −Q columns of ΨT .

The MSE in channel estimation is now given by

MSEc =
1

T

T−1∑

n=0

L∑

l=0

E

{∥
∥
∥h (n; l) − ĥBEM (n; l)

∥
∥
∥

2
}

(4.33)
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where ĥBEM (n; l) follows (4.3). Since ΨH
QΨT−Q = 0, we have

1

T

T−1∑

n=0

[

hBEM (n; l) − ĥBEM (n; l)
]H

eBEM (n; l) = 0,

so that

MSEc =
1

T

T−1∑

n=0

L∑

l=0

E

{∥
∥
∥hBEM (n; l) − ĥBEM (n; l)

∥
∥
∥

2
}

+
1

T

T−1∑

n=0

L∑

l=0

E
{

‖eBEM (n; l)‖2
}

= MSE1 + MSE2 (4.34)

where we define

MSE2 :=
1

T

T−1∑

n=0

L∑

l=0

E
{

‖eBEM (n; l)‖2
}

as the mean square modeling error. It follows by (4.31) and (4.32) that

MSE2 =
1

T

T∑

q=Q+1

L∑

l=0

E
{

‖hq (l)‖2
}

=
1

T

T∑

q=Q+1

L∑

l=0

T−1∑

n1=0

T−1∑

n2=0

Rh (n1;n2)ψq (n1)ψ
∗
q (n2)

where

Rh (n1, n2; l) := E
{
hH (n1; l)h (n2; l)

}
.

For example, we consider the CE-BEM representation for a modified Jakes’ channel.

We follow all the other assumptions in Section 4.2 except (H4.2.1). Then

Rh (n1, n2; l) = Nσ2
hJ0 (2πfdTs (n1 − n2))
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where J0 (·) denotes the zero-th order Bessel function of the first kind. We have

MSE2 =
L+ 1

T 2

T−1∑

n1=0

T−1∑

n2=0

Nσ2
hJ0 (2πfdTs (n1 − n2))






T−Q+1
2∑

q= Q+1
2

ej
2πq(n1−n2)

T






=
L+ 1

T
Nσ2

h

[

(T −Q) − 2

T−1∑

τ=1

(

1 − τ

T

)

J0 (2πfdTsτ)
sin πτQ

T

sin πτ
T

]

. (4.35)

4.4 Training Power Allocation

We address the issue of superimposed training power allocation in this section, i.e., we

seek the optimal power assignment to training and information under a fixed transmitted

power budget. To this end, the more general OP-BEM-based estimator in Section 3.4 is

considered that can easily apply to other BEM representations. For our convenience, we

assume (H4.2.1) holds, i.e., the channel satisfies a BEM so that modeling error is omitted.

We define the training power overhead β as

β :=
1
P

∑P
n=1 |c (n)|2

1
P

∑P
n=1E

{

|s (n)|2
} =

σ2
c

σ2
b + σ2

c

. (4.36)

For a fixed SNR or transmitted power budget, higher β implies smaller effective SNR at the

receiver, due to decreased power in the information sequence, but higher channel estimation

accuracy. Removing the estimated time-varying mean from the received data, define

ỹ (n) := y (n) −
L∑

l=0

ĥBEM (n; l) c (n− l) − m̂.
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Assuming that m̂ = m, we have

ỹ (n) ≈
L∑

l=0

ĥBEM (n; l) b (n− l)

+

L∑

l=0

[

hBEM (n; l) − ĥBEM (n; l)
]

[b (n− l) + c (n− l)] + ṽ (n) . (4.37)

In (4.37), define the effective signal as

xs (n) :=

L∑

l=0

ĥBEM (n; l) b (n− l) , (4.38)

and the effective noise as

w (n) :=
L∑

l=0

[

hBEM (n; l) − ĥBEM (n; l)
]

[b (n− l) + c (n− l)] + ṽ (n) . (4.39)

When using ĥBEM (n; l) for equalization or detection, the variance of the effective noise

w (n) contains channel estimation error variance as a component, which in turn depends

on β. An “optimum” value of β for the superimposed training method may be obtained by

maximizing the SNR in (4.37) with respect to β, which is defined as

SNRe (β, n) =
σ2

xs (n)

σ2
w (n)

(4.40)
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under the constraint of a fixed transmitted power, i.e., σ2
b + σ2

c = PT . In (4.38), the signal

power at time n is given by

σ2
xs (n) = E

{

‖xs (n)‖2
}

= σ2
b

L∑

l=0

EH

{

E

{∥
∥
∥ĥBEM (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

+O
(
1/T 2

)

= σ2
b

L∑

l=0

[

EH

{

E

{∥
∥
∥hBEM (n; l) − ĥBEM (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

+ E
{

‖hBEM (n; l)‖2
}]

+O
(
1/T 2

)
, (4.41)

where the O
(
1/T 2

)
term accounts for the dependence between {ĥBEM (n; l)} and {b (n)}

(see Appendix of [32] for the corresponding details in the time-invariant case). Therefore,

the time average of signal power is given by (omitting O
(
1/T 2

)
terms)

σ̄2
xs :=

1

T

T−1∑

n=0

σ2
xs (n) = σ2

b

[
MSE1 + (L+ 1) σ2

h

]
. (4.42)

The noise power at time n is given by

σ2
w (n) = E

{

‖w (n)‖2
}

= σ2
b

L∑

l=0

EH

{

E

{∥
∥
∥hBEM (n; l) − ĥBEM (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

+Nσ2
v

+ σ2
c

L∑

l1=0

L∑

l2=0

E

{[

ĥBEM (n; l1) − hBEM (n; l1)
]H [

ĥBEM (n; l2) − hBEM (n; l2)
]}

× c̄ (n− l1)
∗ c̄ (n− l2) +O

(
1/T 2

)
, (4.43)
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where in a manner similar to (3.41), the O
(
1/T 2

)
term accounts for the dependence between

{ĥBEM (n; l)} and {b (n)}. We define

E (n) :=

[

c̄ (n) IN(K+1) c̄ (n− 1) IN(K+1) · · · c̄ (n− L) IN(K+1)

]

and consider

L∑

l1=0

L∑

l2=0

E

{[

ĥBEM (n; l1) − hBEM (n; l1)
]H [

ĥBEM (n; l2) − hBEM (n; l2)
]}

× c̄ (n− l1)
∗ c̄ (n− l2)

=

L∑

l1=0

L∑

l2=0

EH

{

E

{

Φ (n)
(

Ĥl1 −Hl1

)(

Ĥl2 −Hl2

)H
ΦH (n)

∣
∣
∣
∣
H
}}

c̄ (n− l1) c̄
∗ (n− l2)

= Φ (n)EH

{

E

{

E (n)
(

Ĥ − H
)(

Ĥ − H
)H

EH (n)

∣
∣
∣
∣
H
}}

ΦH (n)

=

[
(L+ 1) σ2

hσ
2
b + σ2

v

]

Tσ2
c

tr
{(

Φ̄†
OP ⊗ IN

)

EH (n)ΦH (n)Φ (n) E (n)
}

.

Therefore (4.43) can be written as

σ2
w (n) = σ2

b

L∑

l=0

EH

{

E

{∥
∥
∥hBEM (n; l) − ĥBEM (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

+Nσ2
v +O

(
1/T 2

)

+

[
(L+ 1) σ2

hσ
2
b + σ2

v

]

T
tr
{(

Φ̄†
OP ⊗ IN

)

EH (n)ΦH (n)Φ (n) E (n)
}

.

Taking time average of the noise power and omitting O
(
1/T 2

)
terms, we have

σ̄2
w :=

1

T

T−1∑

n=0

σ2
w (n) = σ2

b MSE1 +Nσ2
v +

[
(L+ 1) σ2σ2

b + σ2
v

]

T 2
tr
{(

Φ̄†
OP ⊗ IN

)

K
}

, (4.44)
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where

K :=

T∑

n=1

EH (n)ΦH (n)Φ (n) E (n) .

We define the time average version of (4.40) as

SNRd (β) =
σ̄2

xs

σ̄2
w

. (4.45)

Using the constraint σ2
b + σ2

c = PT , we have σ2
c = βPT and σ2

b = (1 − β)PT . Incorporating

these constraint-carrying variables in (4.42), (4.44), and (4.45), we have an unconstrained

cost

SNRd (β) =
f1β

2 + f2β + f3

g1β2 + g2β + g3
,

where

f1 = (L+ 1) σ2
h

(

N tr Φ̄†
OP − T 2

)

,

f2 = − (L+ 1) σ2
h

(

2N tr Φ̄†
OP − T 2

)

− σ2
vN tr Φ̄†

OP

PT
,

f3 = (L+ 1) σ2
hN tr Φ̄†

OP +
Nσ2

v tr Φ̄†
OP

PT
,

g1 = (L+ 1) σ2
h

(

N tr Φ̄†
OP − tr

{(

Φ̄†
OP ⊗ IN

)

K
})

,

g2 = − (L+ 1) σ2
h

(

2N tr Φ̄†
OP − tr

{(

Φ̄†
OP ⊗ IN

)

K
})

+
σ2

v

(

tr
{(

Φ̄†
OP ⊗ IN

)

K
}

−N tr Φ̄†
OP + T 2

)

PT
,

g3 = f3.
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We seek the optimum value of β by taking the derivative

d [SNRd (β)]

dβ
=

(f1g2 − f2g1) β
2 + 2 (f1g3 − f3g1)β + f2g3 − f3g2

(g1β2 + g2β + g3)
2 = 0,

the root of which lying in [0, 1] is

βopt = (f1g2 − f2g1)
−1 (f3g1 − f1g3

−
√

−f1f2g2g3 − 2f1f3g1g3 − f2f3g1g2 + f2
2 g1g3 + f1f3g

2
2 + f2

1 g
2
3 + f2

3g
2
1

)

(4.46)

Since h (n; l)’s are mutually independent for different l’s, the calculation can be sim-

plified if we suppose ĥBEM (n; l)’s are also approximately uncorrelated for distinct l’s, i.e.,

E

{[

ĥBEM (n; l1) − h (n; l1)
]H [

ĥBEM (n; l2) − h (n; l2)
]}

≈ 0, for l1 6= l2.

Then (4.43) becomes (omitting O
(
1/T 2

)
terms)

σ2
w (n) ≈ σ2

b

L∑

l=0

EH

{

E

{∥
∥
∥ĥBEM (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

+Nσ2
v

+ σ2
c

L∑

l=0

E

{∥
∥
∥ĥBEM (n; l) − hBEM (n; l)

∥
∥
∥

2
}

c̄∗ (n− l) c̄ (n− l) . (4.47)

In addition, if c̄∗ (n) c̄ (n) keeps constant for all n (e.g., c̄ (n) = ±1), (4.47) can be further

reduced to

σ2
w (n) ≈

L∑

l=0

EH

{

E

{∥
∥
∥ĥBEM (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

(
σ2

b + σ2
c

)
+ σ2

v .

Then

σ̄2
xs = σ2

b

[
MSE1 + (L+ 1) σ2

h

]
and σ̄2

w = MSE1

(
σ2

b + σ2
c

)
+ σ2

v ,
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and

SNRd (β) =
σ̄2

xs

σ̄2
w

=
f1β

2 + f2β + f3

g′1β + g′2

where

f1 = (L+ 1) σ2
(

N tr Φ̄†
OP − T 2

)

,

f2 = − (L+ 1) σ2
(

2N tr Φ̄†
OP − T 2

)

− Nσ2
v tr Φ̄†

OP

PT
,

f3 = (L+ 1) σ2N tr Φ̄†
OP +

Nσ2
v tr Φ̄†

OP

PT
,

g′1 =
σ2

vT
2

PT
− (L+ 1) σ2N tr Φ̄†

OP,

g′2 = f3.

Setting the first derivative of SNRd (β) to be zero to get the optimum β, we have

β′opt =
g′2
g′1

[

−1 +

√

1 +
g′1 (f3g′1 − f2g′2)

g′22 f1

]

. (4.48)

4.5 Bias-Variance Trade-Off

In Section 4.4, we have addressed the issue of training power allocation from an equal-

ization viewpoint by maximizing SNR for data detection. This method can also be applied

in selection of the number of basis functions Q, since SNRd in (4.45) is also a function of Q.

In this section, we give the CE-BEM-based analysis as an example to clarify our trade-off.

Note that modeling error of a BEM must be considered in this issue.

Consider (4.37)–(4.39), which will be used for equalization with xs (n) acting as “signal”

and w (n) as “noise”. Since the modeling error is now considered, by (4.41) the time-average
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of σ2
xs (n) now becomes (omitting O

(
1/T 2

)
terms)

σ̄2
xs :=

1

T

T−1∑

n=0

σ2
xs (n) = σ2

b

[

MSE1 +
1

T

T−1∑

n=0

L∑

l=0

E
{

‖hBEM (n; l)‖2
}
]

= σ2
b

[

MSE1 +
1

T

T−1∑

n=0

L∑

l=0

E
{

‖h (n; l)‖2
}

− 1

T

T−1∑

n=0

L∑

l=0

E
{

‖eBEM (n; l)‖2
}
]

= σ2
b

[
MSE1 +N (L+ 1) σ2

h − MSE2

]
.

Next consider the power of the noise (4.43), the time-average of which (omitting O
(
1/T 2

)

terms) is given by

σ̄2
w :=

1

T

T−1∑

n=0

σ2
w (n) = σ2

b MSEc +Nσ2
v + R

where we define

R :=
1

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

E
{
eH

2 (n; l1) e2 (n; l2)
}
c∗ (n− l1) c (n− l2)

e1 (n; l) := ĥBEM (n; l) − hBEM (n; l) ,

e2 (n; l) := e1 (n; l) − eBEM (n; l) .

It turns out that R = R1 + R2, where

R1 :=
1

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

E
{
eH

1 (n; l1) e1 (n; l2)
}
c∗ (n− l1) c (n− l2) ,

R2 :=
1

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

E
{
eH

BEM (n; l1) eBEM (n; l2)
}
c∗ (n− l1) c (n− l2) .
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By (H4.2.5), then E
{
eH

BEM (n; l1) eBEM (n; l2)
}

= 0 for l1 6= l2. Thus

R2 =
1

T

T−1∑

n=0

L∑

l=0

E
{
eH

BEM (n; l) eBEM (n; l)
}

P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1−αm2)le−j(αm1−αm2)n

=
L∑

l=0

E







T−Q+1
2∑

q1=
Q+1

2

T−Q+1
2∑

q2=
Q+1

2

hH
q1

(l)hq2 (l)







[

1

T

T−1∑

n=0

ej(ωq2−ωq1−αm1+αm2)n

]

×
P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1−αm2)l.

We consider the correlation between hq1 (l) and hq2 (l),

E
{
hH

q1
(l)hq2 (l)

}
=

1

T 2

T−1∑

n1=0

T−1∑

n2=0

E
{
hH (n1; l)h (n2; l)

}
e−jωq1n1ejωq2n2 .

By defining

Rh (n1 − n2; l) := E
{
hH (n1; l)h (n2; l)

}

and setting τ := n1 − n2, we have

E
{
hH

q1
(l)hq2 (l)

}
=

1

T

T−1∑

τ=−(T−1)

Rh (τ ; l) e−jωq1τ




1

T

min(T−1,T−1−τ)
∑

n2=max(0,−τ)

ej(ωq2−ωq1)n2



 .

Note that ∣
∣
∣
∣
∣
∣

1

T

min(T−1,T−1−τ)
∑

n2=max(0,−τ)

ej(ωq2−ωq1)n2 − 1

T

T−1∑

n2=0

ej(ωq2−ωq1)n2

∣
∣
∣
∣
∣
∣

≤ |τ |
T
.
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Since the coherence time of the channel is limited, we can select a number Tcoh such that

|Rh (n1 − n2; l)| ≈ 0 for |τ | > Tcoh. Therefore,

1

T

min(T−1,T−1−τ)
∑

n2=max(0,−τ)

ej(ωq2−ωq1)n2 = δ (q1 − q2) +O

(
1

T

)

.

This fact leads to

E
{
hH

q1
(l)hq2 (l)

}
≈ 0 (4.49)

for q1 6= q2 and “large” T . Omitting the O (1/T ) term, R2 can be rewritten as

R2 =
L∑

l=0

E







T−Q+1
2∑

q1=
Q+1

2

T−Q+1
2∑

q2=
Q+1

2

hH
q1

(l)hq2 (l)







δ (q1 − q2) δ (m1 −m2)

×
P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1−αm2)l

=
L∑

l=0

E







T−Q+1
2∑

q= Q+1
2

hH
q (l)hq (l)







P−1∑

m=0

|cm|2 = MSE2

P−1∑

m=0

|cm|2 .

For the first part of R, by using (4.49)

R1 =

L∑

l1=0

L∑

l2=0

E







Q
∑

q1=1

Q
∑

q2=1

[

ĥH
q1

(l1) − hH
q1

(l1)
] [

ĥq2 (l2) − hq2 (l2)
]







×
P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1 l1−αm2 l2)

[

1

T

T−1∑

n=0

ej(ωq2−ωq1−αm1+αm2)n

]

=
L∑

l1=0

L∑

l2=0

E







Q−1
2∑

q1=−Q−1
2

Q−1
2∑

q2=−Q−1
2

[

ĥH
q1

(l1) − hH
q1

(l1)
] [

ĥq2 (l2) − hq2 (l2)
]






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Figure 4.1: Estimation variance: NCMSE vs SNR under fd = 0Hz (time-invariant). The
curves for CE-, OP- and DPS-BEM’s completely overlap, since the three basis functions are
all constant for time-invariant channels (Q = 1). (SI: superimposed training; CE: CE-BEM;
OP: OP-BEM; DPS: DPS-BEM; MSE1: defined in (4.2); MSE: defined in (4.33).)

×
P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1 l1−αm2 l2)δ (q1 − q2) δ (m1 −m2)

= E







[
L∑

l=0

(

Ĥl − Hl

)

e−jαml

]H [ L∑

l=0

(

Ĥl − Hl

)

e−jαml

]






P−1∑

m=0

|cm|2 .

Define

B (m) :=

[

1 e−jαm · · · e−jαmL

]

,
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Figure 4.2: Estimation variance: NCMSE vs SNR under fd = 50Hz. (SI: superimposed
training; CE: CE-BEM; OP: OP-BEM; DPS: DPS-BEM; MSE1: defined in (4.2); MSE:
defined in (4.33).)

then R1 becomes

R1 = E

{[

B (m) ⊗ INQ

(

Ĥ − H
)]H [

B (m) ⊗ INQ

(

Ĥ − H
)]} P−1∑

m=0

|cm|2

= E

{(

Ĥ −H
)H

CHC
(

Ĥ − H
)}

=
(L+ 1) σ2

hσ
2
b + σ2

v

T
(L+ 1)NQ.

Thus

R =
(L+ 1) σ2

hσ
2
b + σ2

v

T
(L+ 1)NQ+ MSE2 σ

2
c ,

and

σ̄2
w = σ2

b MSEc +Nσ2
v +

(L+ 1) σ2
hσ

2
b + σ2

v

T
(L+ 1)NQ+ MSE2 σ

2
c .
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Figure 4.3: Estimation variance: NCMSE vs SNR under fd = 100Hz. (SI: superimposed
training; CE: CE-BEM; OP: OP-BEM; DPS: DPS-BEM; MSE1: defined in (4.2); MSE:
defined in (4.33).)

From an equalization viewpoint, based on (4.37)–(4.39), an equivalent SNR for data detec-

tion is defined as

SNRd (Q) =
σ̄2

xs (Q)

σ̄2
w (Q)

=
σ2

b

[
MSE1 + (L+ 1)Nσ2

h − MSE2

]

σ2
b MSEc +Nσ2

v +
(L+1)σ2

h
σ2

b
+σ2

v

T (L+ 1)NQ+ MSE2 σ2
c

. (4.50)

We pick Q to maximize SNRd (Q) as we expect the detection performance to improve with

increasing SNRd (Q).
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Figure 4.4: Estimation variance: NCMSE vs SNR under fd = 200Hz. (SI: superimposed
training; CE: CE-BEM; OP: OP-BEM; DPS: DPS-BEM; MSE1: defined in (4.2); MSE:
defined in (4.33).)

4.6 Simulation Examples

4.6.1 Performance Analysis for the First-Order Statistics-Based Estimator

In this example, we explore the variance of channel estimation of the first-order statistics-

based estimator. Simulation results are compared with theoretical results to show the va-

lidity of our analysis.

We employ the same model for simulation as in Section 3.6, i.e., a doubly-selective

Rayleigh fading channel with L = 2, satisfying modified Jakes’ model. Performance of the

channel estimation for both SISO (K = N = 1) and MIMO (K = N = 2) channels is

investigated. One more time, we emphasize that BEM’s are only used for processing at the

receiver; random channels are generated using Jakes’ model, not BEM representations.
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SI&CE
SI&OP
SI&DPS

Figure 4.5: Training power allocation: BER vs β under fd = 0Hz (time-invariant). The
curves for CE-, OP- and DPS-BEM’s completely overlap, since the three basis functions are
all constant for time-invariant channels (Q = 1). (SI: superimposed training; CE: CE-BEM;
OP: OP-BEM; DPS: DPS-BEM.)

In simulations, we pick a data record length of 399 symbols (time duration of approxi-

mately 10ms). We consider the system operating under different Doppler spreads. For the

Doppler spreads fd = 0, 50, 100, and 200Hz, we take the number of basis functions Q = 1,

3, 5, and 7 for CE-BEM, and Q = 1, 3, 4, and 6 for OP- and DPS-BEM representations.

The average transmitted power in {c (n)} is 0.3 of that in {b (n)}, leading to TIR = 0.3.

In the single-user scenario, the information sequences {b(n)} and the training sequences

{c(n)} are all BPSK modulated. The periodic training sequence {c(n)} is generated from

the m-sequence of period P = 7, one period of which is given by (3.82).

For the MIMO (multiple-user) case with K = N = 2, all the users have the same

transmitted power in training and information data. The average transmitted power in
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Figure 4.6: Training power allocation: BER vs β under fd = 50Hz. (SI: superimposed
training; CE: CE-BEM; OP: OP-BEM; DPS: DPS-BEM.)

{ck (n)} is 0.3 of that in {bk (n)} (k = 1, 2, . . .,K). The information sequences {bk(n)} and

the training sequences {ck(n)} are also both BPSK modulated. The training sequence is

generated from the above m-sequence of period P̃ = 7 by the procedure we introduced in

Section 3.5. The training sequences are of length P = 14, and the training sequence for the

first user is given by (3.84).

To explore different estimators in equal conditions, we assume the additive noise {v(n)}

is zero-mean (i.e., m = 0), white complex-Gaussian, uncorrelated with {b(n)} with E{v(n+

τ)vH(n)} = σ2
vINδ(τ), so that no terms are discarded. The (receiver) SNR refers to the

energy per bit per user over one-sided noise spectral density with both information and

superimposed training sequence counting toward the bit energy. The results for SISO and

MIMO scenarios are shown in Figures 4.1–4.4, for various Doppler spreads and SNR’s, based

on 500 Monte Carlo runs.
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Figure 4.7: Training power allocation: BER vs β under fd = 100Hz. (SI: superimposed
training; CE: CE-BEM; OP: OP-BEM; DPS: DPS-BEM.)

In each figure, performances of CE-, OP-, and DPS-BEM-based estimators using first-

order statistics are shown for the SISO case, together with CE- and DPS-BEM-based MIMO

estimators. The normalized channel MSE in simulation is defined as (3.83) for the SISO

channel and (3.85) for the MIMO channel. Simulation results are compared with the theo-

retical analysis of the “pure” estimation error MSE1 (defined in (4.2)) as well as the “entire”

error MSEc (defined in (4.33)) counting modeling error. We plot MSE1 based on CE- (using

(4.7)), DPS- (using (4.16)), and OP-BEM (using (4.20)), for SISO and MIMO respectively,

and MSEc based only on CE-BEM (using (4.7), (4.34), and (4.35)).

Figure 4.1 exhibits the normalized channel MSE for simulation and theoretical results

for Doppler spread fd = 0Hz. Note that since the channel is time-invariant, the basis sets of

CE-, OP-, and DPS-BEM are the same (constant sequences), leading to the same simulated

and analytical results. Since no modeling error is present, MSE1 and MSEc are equal. From
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Figure 4.8: Training power allocation: BER vs β under fd = 200Hz. (SI: superimposed
training; CE: CE-BEM; OP: OP-BEM; DPS: DPS-BEM.)

this figure, we can see that the simulation results and the analytical results agree very well,

whether the channel is SISO or MIMO.

For time-varying channels, the modeling error cannot be eliminated. Considering Fig-

ures 4.2–4.4 corresponding to fd = 50, 100, and 200Hz, different channel models now give

distinct estimation error. The CE-BEM-based estimator has the highest estimation vari-

ance, and that of DPS-BEM is the lowest. For low Doppler spreads (slow fading channel),

the OP-BEM-based solution has similar performance as that of the DPS-BEM-based one

(see Figure 4.2), for the modeling errors are both tiny. As the Doppler spreads increases,

however, the OP-BEM-based estimator deteriorates until reaching similar performance as

the CE-BEM-based estimator for fd = 200Hz. In these three figures, the theoretically

derived MSE1 fits the simulation results of the DPS-BEM-based estimator very well, which

confirms the fact that DPS-BEM offers the smallest (usually negligible) modeling error
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Figure 4.9: Training power allocation: optimum β vs SNR for CE-BEM. (“sim.”: simulation
results; “analy.”: βopt in (4.46); “analy. app.”: β′opt in (4.48).)

among the three. Counting the modeling error, the curves for MSEc (based on CE-BEM)

also fit the simulation results of the CE-BEM-based estimator well.

4.6.2 Training Power Allocation

Under the same settings, we now consider the issue of training power allocation for the

first-order statistics-based estimator. Only the SISO scenario is considered.

Figures 4.5–4.8 show the curves for BER versus different β’s (defined in (4.36)) that

stands for the ratio of the power assigned to superimposed training to the total transmitted

power, for different Doppler spreads. At the receiver, a Kalman filter is applied based on

the estimated channel to detect the information sequence. All three BEM representations

are studied.
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Figure 4.10: Training power allocation: optimum β vs SNR for OP-BEM. (“sim.”: simula-
tion results; “analy.”: βopt in (4.46); “analy. app.”: β′opt in (4.48).)

We choose the optimal β as that corresponding to the smallest BER. As we expected,

the optimal β grows with increasing SNR—at low SNR’s, more power assigned to training

for better channel estimation cannot offset the effective SNR loss for information symbols,

so that we should allocate more power to information for higher effective SNR; for higher

SNR, noise is no longer the key factor, so that more training power for better estimation

can achieve better BER’s.

Figures 4.9–4.11 compare the analytical results of the optimal β with the simulated

results based on a Kalman filter. We consider three cases: the value of β minimizing the

BER (denoted by “sim.” in the figures), the theoretical result βopt in (4.46) (denoted by

“analy.” in the figures), and an approximation of it in (4.48) (denoted by “analy. app.”

in the figures). Note that we select β that minimizes the BER from Figures 4.5–4.8. The
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Figure 4.11: Training power allocation: optimum β vs SNR for DPS-BEM. (“sim.”: simu-
lation results; “analy.”: βopt in (4.46); “analy. app.”: β′opt in (4.48).)

analytical results in (4.46) and (4.48) may produce negative solutions if the SNR is extremely

low (e.g., 0dB)—we simply take β = 0 in that case. In the three figures, the approximation

solution of (4.48) agrees well with that of (4.46). It is also seen that for all the curves, the

optimal β grows as SNR increases.

We do not consider the modeling error in (4.46) and (4.48). In simulations, modeling

error acts as a noise term in data reception, decreasing the actual SNRd (β), so that at high

SNR’s the simulated optimal β is smaller than that of the analytical one. Due to larger

modeling errors, the simulated optimal β for CE- and OP-BEM is smaller than that of the

DPS-BEM. The simulation results for DPS-BEM fit the analytical solutions well for the

range of SNR from 5dB to 20dB.
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Figure 4.12: Bias-variance trade-off: BER vs Q under TIR = 0.3 for different fd’s.

fd = 0Hz fd = 50Hz fd = 100Hz fd = 200Hz

Analytical 1 5 3 5
TIR = 0.3 Simulation 1 5 3 5

(2.9b) 1 3 3 5

Analytical 1 7 5 7
TIR = 1.0 Simulation 1 7 5 7

(2.9b) 1 3 3 5

Table 4.1: Selected optimal Q.

4.6.3 Bias-Variance Trade-Off

Under the same settings, we now consider the problem of bias-variance trade-off, i.e.,

selecting appropriate basis functions. Only CE-BEM and SISO channels are considered.

Figure 4.12 shows BER’s for different Q, the number of basis functions employed in

CE-BEM, for Doppler spreads fd = 0, 50, 100, and 200Hz where we choose TIR = 0.3.

At the receiver, a Kalman filter is adopted for information symbol detection. Figure 4.14

displays those of TIR = 1.0. Figures 4.13 and 4.15 show the detection SNR defined in
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Figure 4.13: Bias-variance trade-off: SNRd (Q) (defined in (4.50)) vs Q under TIR = 0.3
for different fd’s.

(4.50), as a function of Q. The agreement between the two sets of figures is very good:

BER’s are minimized for the same values of Q that maximize SNRd (Q).

In CE-BEM, the number of basis functions is usually given by (2.9b). Using super-

imposed training, TIR needs also to be considered to select Q: If more power has been

assigned to superimposed training, more basis functions can be employed to get more accu-

rate estimation, and vice versa. In Table 4.1, we compare the selected Q by simulation, and

that maximize SNRd (Q) (denoted by “Analytical”), and by (2.9b). Our analytical results

agree with the simulation better than that given by (2.9b).
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Figure 4.14: Bias-variance trade-off: BER vs Q under TIR = 1.0 for different fd’s.

4.7 Conclusions

In this chapter, performance analysis of the first-order statistics-based estimator pro-

posed in the previous chapter was discussed, under different BEM settings. Modeling error

was also considered. We clearly showed that in this estimator, the major interference using

superimposed training comes from the unknown information sequences. Power allocation

and bias-variance trade-off of the first-order statistics-based estimator were also considered

in this chapter, based on the results of performance analysis. We cast these optimization

issues as maximization of an SNR for equalizer design. Numerical examples illustrated good

agreement of our analytical results with the simulations.
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Figure 4.15: Bias-variance trade-off: SNRd (Q) (defined in (4.50)) vs Q under TIR = 1.0
for different fd’s.
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Chapter 5

Deterministic Maximum Likelihood (DML) Approach

5.1 Introduction

By the performance analysis in Chapter 4, we can clearly see that the first-order

statistics-based estimator proposed in Chapter 3 views the information sequence as interfer-

ence in channel estimation, which leads to a poor received SNR. Since the training and infor-

mation sequences pass through an identical channel, we exploit this fact to enhance channel

estimation. Now we consider joint channel and information sequence estimation via an

iterative DML approach, assuming that the noise v (n) is complex Gaussian. Convergence

to a local extremum is guaranteed, and moreover, if the initial superimposed training-based

solution is “good”, the global extremum (minimum error probability sequence detector) can

be achieved by the DML approach.

We discuss the DML approach in this chapter. Section 5.2 deals with the single-user

scenario and Section 5.3 considers the multiple-user case. Simulation examples illustrate

our approach in Section 5.4, and Section 5.5 concludes this chapter.

5.2 DML Approach Using BEM

Consider the first-order statistics-based channel estimator described in Chapter 3. As

in (3.1) and (3.2), the SIMO channel output is given by

x(n) =

L∑

l=0

h(n; l)s(n − l), (5.1)
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and its noisy measurement is given by

y(n) = x(n) + v(n). (5.2)

We make the following assumptions:

(H5.2.1) The time-varying channel {h(n; l)} satisfies a BEM representation as in (2.20)

h (n; l) =

Q
∑

q=1

hq (l)ψq (n) (5.3)

where the basis functions {ψq (n)}Q
q=1 are known at the receiver. Also N ≥ 1.

(H5.2.2) The complex Gaussian noise {v(n)} may be of unknown mean E{v(n)} = m, white,

uncorrelated with {b(n)}, and E{[v(n + τ) − m][v(n) −m]H} = σ2
vINδ(τ).

We collect T − L samples of the observations into the vector

Y : =

[

yT (T − 1) yT (T − 2) · · · yT (L)

]T

. (5.4)

Define

s :=

[

s (T − 1) s (T − 2) · · · s (0)

]T

,

and let

ṽ (n) := v (n) − m.
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Given the vectors of the BEM coefficients in (3.12) and (3.15),

Hl := [hT
1 (l), hT

2 (l), . . ., hT
Q(l)]T ,

H :=

[

HT
0 , HT

1 , . . ., HT
L

]T

.

Define

Ṽ :=

[

ṽT (T − 1) ṽT (T − 2) · · · ṽT (L)

]T

,

M :=

[

mT mT · · · mT

]T

where M is of the same size as Ṽ, and V = Ṽ+M is a column-vector consisting of samples

of noise {v (n)} in a manner similar to (5.4). Using (5.1)–(5.3) we have the following linear

model

Y = T (s)H + Ṽ+M (5.5)

where T (s) is a block Hankel matrix (a block Hankel matrix has identical block entries on

its antidiagonals) given by

T (s) :=














s (T − 1) ΣT−1 s (T − 2) ΣT−1 · · · s (T − L− 1) ΣT−1

s (T − 2) ΣT−2 s (T − 3) ΣT−2 · · · s (T − L− 2) ΣT−2

...
...

. . .
...

s (L)ΣL s (L− 1) ΣL · · · s (0)ΣL














,

Σn :=

[

ψ1 (n) IN ψ2 (n) IN ... ψQ (n) IN

]

.
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Also using (5.1) and (5.2), an alternative linear model for Y is given by

Y = F (H) s + Ṽ+M (5.6)

where

F (H) :=










h (T − 1; 0) · · · h (T − 1;L)

. . .
. . .

h (L; 0) · · · h (L;L)










is a “filtering matrix”.

Consider (5.1), (5.2), and (5.5). Under the assumption of temporally white complex

Gaussian measurement noise, consider the joint estimation

{

Ĥ, ŝ, m̂
}

= arg min
H,s,m

‖Y − T (s)H−M‖2 , (5.7)

where ŝ is the estimate of s. We follow a DML approach assuming no statistical model for

the input sequence {s (n)}. Under a white Gaussian noise assumption, the DML estimates

are obtained by the nonlinear LS optimization (5.7). Using (5.5) and (5.6), we have a

separable nonlinear LS problem that can be solved sequentially as (joint optimization with

respect to H and m can be further “separated”)

{

Ĥ, ŝ, m̂
}

= arg min
s

{

min
H,m

‖Y − T (s)H−M‖2

}

= arg min
H,m

{

min
s

‖Y −F (H) s−M‖
}

.
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The finite alphabet properties of the information sequences can also be incorporated

into the DML methods. These algorithms, first proposed by [68] and also applied in [50],

iterate between estimates of the channel and the input sequences. At iteration i, with

an initial guess of the channel H(i) and the mean m(i), the algorithm estimates the input

sequence s(i) and the channel H(i+1) and mean m(i+1) for the next iteration by

s(i) = arg min
s∈S

∥
∥
∥Y −F

(

H(i)
)

s−M(i)
∥
∥
∥

2
, (5.8a)

H(i+1) = arg min
H

∥
∥
∥Y − T

(

s(i)
)

H−M(i)
∥
∥
∥

2
, (5.8b)

m(i+1) = arg min
m

∥
∥
∥Y − T

(

s(i)
)

H(i+1)−M
∥
∥
∥

2
(5.8c)

where S is the (discrete) domain of s. The optimizations in (5.8b) and (5.8c) are linear

LS problems whereas the optimization in (5.8a) can be achieved by using the Viterbi al-

gorithm. Since the above iterative procedure involving (5.8a)–(5.8c) decreases the cost at

every iteration, one achieves a local minimum of the nonlinear LS cost (local maximum of

DML function).

The maximum likelihood estimation of the noise mean in the optimization (5.8c) may

be obtained by letting

∂
∥
∥Y − T

(
s(i)
)
H(i+1)−M

∥
∥

2

∂m

∣
∣
∣
∣
∣
m=m(i+1)

= 0,

which yields

m(i+1) =
1

T − L

T−1∑

n=L

[

y (n) −
L∑

l=0

h(i+1) (n; l) s(i) (n− l)

]

.
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We now summarize our DML approach:

1. a. Use the first-order statistics-based approach described in Chapter 3 to estimate

the channel. Denote the estimate of the channel coefficients by Ĥ(1) and ĥ
(1)
q (l).

In this method {c (n)} is known and {b (n)} is regarded as interference. (If we

assume m = 0 or known, the following steps to estimate m should be skipped

and simply set m̂ = 0 or the known value.)

b. Estimate the mean m̂(1) as

m̂(1) :=
1

T

T−1∑

n=0

[

y (n) −
L∑

l=0

ĥ(1) (n; l) c (n− l)

]

(5.9)

where ĥ(1) (n; l) :=
∑Q

q=1 ĥ
(1)
q (l)ψq (n) is given by (5.3).

c. Design a Viterbi sequence detector (see Appendix B.1) to estimate {s (n)} as

{ŝ (n)} using the estimated channel Ĥ(1), mean m̂(1), and cost function in (5.8a)

with i = 1. Note that knowledge of {c (n)} is used in s (n) = b (n) + c (n),

therefore, we are in essence estimating {b (n)}.

2. a. Substitute s̃ (n) for s (n) in (5.1) and use the corresponding formulation in (5.5)

to estimate the channel H as

Ĥ(2) = T † (̃s)
[

Y − M̂(1)
]

.

Following (5.9) the mean m is estimated as m̂(2) for i = 1.

b. Design a Viterbi sequence detector using the estimated channel Ĥ(2), the mean

m̂(2), and cost (5.8a) with i = 2, as in Step 1.c.
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3. Step 2 provides one iteration of (5.8a)–(5.8c). Repeat a few times till any (relative)

improvement in channel estimation over previous iteration is below a pre-specified

threshold.

Since the Viterbi detector used in the proposed DML approach is computationally

burdensome, we can replace it with a Kalman filter with hard decisions to expedite the

iterations—at the expense of a little BER loss. This iterative method can follow these

steps:

1. a. As Step 1.a of the DML approach.

b. As Step 1.b of the DML approach.

c. Design a Kalman filter (see Appendix B.2) of delay d to estimate {s (n)} as {ŝ (n)}

using the estimated channel Ĥ(1) and mean m̂(1). Quantize {ŝ (n)} into {s̃ (n)}

with the knowledge of the symbol alphabet (hard decisions). Note that knowledge

of {c (n)} is used in s (n) = b (n) + c (n), therefore, we are in essence estimating

{b (n)}.

2. a. As Step 2.a of the DML approach.

b. Design a Kalman filter using the estimated channel Ĥ(2), the mean m̂(2), as in

Step 1.c.

3. Step 2 provides one iteration of our proposed iterative method. Repeat a few times

till any (relative) improvement in channel estimation over previous iteration is below

a pre-specified threshold.
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5.3 DML Approach: Multiple-User (MIMO) Channels

In this section we extend the DML approach to multiple-user (MIMO) channels corre-

sponding to the estimator described in Section 3.5.

We collect T − L samples of the observations to form the N(T − L)-column vector as

in (5.4)

Y : =

[

yT (T − 1) yT (T − 2) · · · yT (L)

]T

and the KT -column vector

s : =

[

s1(T − 1) · · · sK(T − 1) · · · s1(0) · · · sK(0)

]T

. (5.10)

Define the N ×NQ matrix

Σn :=

[

ψ1 (n) IN ψ2 (n) IN · · · ψQ (n) IN

]

,

the N(T − L) ×NQ(L+ 1)K matrix

T (s) :=













s1(T − 1)ΣT−1 · · · s1(T − L− 1)ΣT−1 · · · sK(T − L− 1)ΣT−1

s1(T − 2)ΣT−2 · · · s1(T − L− 2)ΣT−2 · · · sK(T − L− 2)ΣT−2

...
. . .

...
. . .

...

s1(L)ΣL · · · s1(0)ΣL · · · sK(0)ΣL













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the NQ(L+ 1)K-column vector (by (3.77))

H :=

[

HT
1 HT

2 · · · HT
K

]T

,

and the N(T − L)-column vector

Ṽ : =

[

ṽT (T − 1), ṽT (T − 2), . . ., ṽT (L)

]T

where ṽ(n) := v(n) − m. We also have the following linear model

Y = T (s)H + Ṽ + M (5.11)

where M :=

[

mT mT · · · mT

]T

.

We further define the N(T − L) ×K(L+ 1) matrix

F(H) :=









h1(T − 1; 0) · · · hK(T − 1; 0) · · · hK(T − 1;L)

. . .
. . .

. . .

h1(L; 0) · · · h1(L;L) · · · hK(L;L)










and obtain another linear model as follows

Y = F(H)s + Ṽ + M. (5.12)

126



By (5.11) and (5.12), the DML approach described in Section 5.2 can be followed.

Under the assumption of white complex Gaussian measurement noise, the joint estimators

of the relevant parameters are given by the following nonlinear optimization problem

{Ĥ, ŝ, m̂} = arg

{

min
H,s,m

‖Y − T (s) −M‖2

}

= arg

{

min
H,s,m

‖Y −F (H) −M‖2

}

.

We also follow the DML approach assuming no statistical model for the input sequences

{sk(n)}. We may separate the nonlinear LS problem sequentially as

{Ĥ, ŝ, m̂} = arg min
s

{min
H,m

||Y − T (s)H−M||2}

= arg min
H,m

{min
s

||Y −F(H)s −M||2}.

At iteration i, with an initial guess of the channel H(i) and the mean m(i), the algorithm

estimates the input sequence s(i) and the channel H(i+1) and mean m(i+1) for the next

iteration by

s(i) = arg min
s∈S

||Y − C(H(i))s −M(i)||2, (5.13a)

H(i+1) = arg min
H

||Y − T (s(i))H−M(i)||2, (5.13b)

m(i+1) = arg min
m

||Y − T (s(i))H(i+1) −M||2. (5.13c)

We now summarize our MIMO DML approach:
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Viterbi detector: K=N=1, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=0Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.1: DML approach (SISO): BER vs SNR under fd = 0Hz (time-invariant) and
K = N = 1. The curves for CE- and DPS-BEM’s completely overlap, since the two basis
functions are both constant for time-invariant channels (Q = 1). (SI: superimposed training;
TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM; “step 1”: the first-order
statistics-based estimator; “1st iter.”: the first DML iteration; “2nd iter.”: the second DML
iteration; “3rd iter.”: the third DML iteration.)

1. a. Use (3.80) and (3.81) to estimate the channel. Denote the channel estimates by

Ĥ(1)
k and ĥ

(1)
k (n; l). In this method {ck(n)} is known and {bk(n)} is regarded as

interference.

b. The noise mean m is estimated as

m̂(1) =
1

T

T∑

n=1

[

y(n) −
K∑

k=1

L∑

l=0

ĥ
(1)
k (n; l)ck(n− l)

]

. (5.14)

c. Design a Viterbi sequence detector (see Appendix B.1) to estimate {sk(n)} as

{s̃k(n)} using the estimated channel Ĥ(1), mean m̂(1) and cost (5.13a) with i = 1.
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Viterbi detector: K=N=1, L=2, T=420, T
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SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.2: DML approach (SISO): BER vs SNR under fd = 50Hz and K = N = 1. (SI:
superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration;
“2nd iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

Note that knowledge of {ck(n)} is used in sk(n) = bk(n) + ck(n), therefore, we

are in essence estimating bk(n) in the Viterbi detector.

2. a. Substitute s̃k(n) for sk(n) in (5.10) and use the corresponding formulation in

equation (5.13b) to estimate the time-invariant channel coefficient matrix H as

Ĥ(2) = T †(̃s)
[

Y − M̂(1)
]

and estimate the time-varying channel as ĥ
(2)
k (n; l) using (3.81). The mean m is

estimated as m̂(2) using (5.14) with ĥ
(1)
k (n; l) replaced with ĥ

(2)
k (n; l).
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Viterbi detector: K=N=1, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f
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=100Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.3: DML approach (SISO): BER vs SNR under fd = 100Hz and K = N = 1. (SI:
superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration;
“2nd iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

b. Design a Viterbi sequence detector using the estimated channel Ĥ(2), mean m̂(2)

and cost (5.13a) with i = 2, as in Step 1.c.

3. Step 2 provides one iteration of (5.13a)–(5.13c). Repeat a few times until reaching

the desired point.

An approximation of the MIMO DML approach by replacing Viterbi detector with

multiple-user Kalman filter is given by the following steps:

1. a. As Step 1.a of the MIMO DML approach.

b. As Step 1.b of the MIMO DML approach.
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SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
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TM&CE

Figure 5.4: DML approach (SISO): BER vs SNR under fd = 200Hz and K = N = 1. (SI:
superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration;
“2nd iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

c. Design a multiple-user Kalman filter (see Appendix B.2) of delay d to estimate

{sk (n)} as {ŝk (n)} using the estimated channel Ĥ(1) and mean m̂(1). Quan-

tize {ŝk (n)} into {s̃k (n)} with the knowledge of the symbol alphabet (hard

decisions). Note that knowledge of {ck (n)} is used in sk (n) = bk (n) + ck (n),

therefore, we are in essence estimating {bk (n)}.

2. a. As Step 2.a of the DML approach.

b. Design a multiple-user Kalman filter using the estimated channel Ĥ(2), the mean

m̂(2), as in Step 1.c.
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Viterbi detector: K=N=1, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f
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=0Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.5: DML approach (SISO): NCMSE vs SNR under fd = 0Hz (time-invariant) and
K = N = 1. The curves for CE- and DPS-BEM’s completely overlap, since the two basis
functions are both constant for time-invariant channels (Q = 1). (SI: superimposed training;
TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM; “step 1”: the first-order
statistics-based estimator; “1st iter.”: the first DML iteration; “2nd iter.”: the second DML
iteration; “3rd iter.”: the third DML iteration.)

3. Step 2 provides one iteration of our proposed iterative method. Repeat a few times

till any (relative) improvement in channel estimation over previous iteration is below

a pre-specified threshold.

5.4 Simulation Examples

5.4.1 DML Approach: Single User

In this example, we adopt the same simulation conditions as in Section 3.6.1 to perform

a comparison between the first-order statistics-based estimator in Chapter 3 and our DML
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Viterbi detector: K=N=1, L=2, T=420, T
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SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.6: DML approach (SISO): NCMSE vs SNR under fd = 50Hz and K = N = 1.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

approach. We generate a doubly-selective Rayleigh fading channel following Jakes’ model

with N = 1 and L = 2.

In simulations, we pick a data record length of 420 symbols (time duration of approx-

imately 10ms). We consider the system operating under different Doppler spreads with

different number of basis functions Q. For the Doppler spreads fd = 0, 50, 100, and 200Hz,

we take Q = 1, 3, 5, and 7 for the CE-BEM-based solution, and Q = 1, 3, 4, and 6 for

the DPS-BEM representations. The average transmitted power in {c (n)} is 0.3 of that in

{b (n)}, leading to TIR of 0.3.
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Viterbi detector: K=N=1, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=100Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.7: DML approach (SISO): NCMSE vs SNR under fd = 100Hz and K = N = 1.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

We first consider a single-user scenario. The information sequences {b(n)} and the

training sequences {c(n)} are all BPSK modulated. The periodic training sequence {c(n)}

is generated from the m-sequence of period P = 7, one period of which is given by (3.82).

To explore different estimators and their iterative versions under identical conditions,

we assume the additive noise {v(n)} is zero-mean (i.e., m = 0), white complex-Gaussian,

uncorrelated with {b(n)} with E{v(n + τ)vH(n)} = σ2
vINδ(τ), so that no terms are dis-

carded in the first-order statistics-based estimator, the first step of our DML approach. The

(receiver) SNR refers to the energy per bit over one-sided noise spectral density with both

information and superimposed training sequence counting toward the bit energy. At the

receiver, a Viterbi detector is used for data reception.
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Viterbi detector: K=N=1, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=200Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.8: DML approach (SISO): NCMSE vs SNR under fd = 200Hz and K = N = 1.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

The results for a record length of T = 420 symbols are shown in Figures 5.1–5.8 for

various Doppler spreads and SNR’s. The results are based on 500 Monte Carlo runs. To

compare with other possible approaches, CE- and DPS-BEM-based TM training described

in Appendix A is also considered for doubly-selective channel estimation. Training sessions

are periodically inserted in the transmitted symbol frame. We take a training session of

length of 2L + 1 = 5 symbols with the training sequence
{
0, 0,

√
2L+ 1, 0, 0

}
, and at the

receiver an LS estimation is performed. A data session of 18 symbols is inserted between

two successive training sessions to form a frame of length 23 symbols. Such a frame is

repeated over a record length of 418 symbols. Thus, we have a training-to-information bit

and power ratio of about 0.3.
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SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.9: DML approach (MIMO): BER vs SNR under fd = 0Hz (time-invariant) and
K = N = 2. The curves for CE- and DPS-BEM’s completely overlap, since the two basis
functions are both constant for time-invariant channels (Q = 1). (SI: superimposed training;
TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM; “step 1”: the first-order
statistics-based estimator; “1st iter.”: the first DML iteration; “2nd iter.”: the second DML
iteration; “3rd iter.”: the third DML iteration.)

For comparison, we plot the results of the CE- and DPS-BEM-based superimposed

training schemes (denoted as SI in the figures), including the first-order statistics-based

estimator (denoted as “step 1” in the figures), and the DML approach after one, two, and

three iterations (denoted as “1st iter.”, “2nd iter.”, and “3rd iter.” in the figures), and

TM training approaches (denoted as TM in the figures). Figures 5.1–5.4 show BER’s for

fd = 0, 50, 100, and 200 respectively. Figures 5.5–5.8 show the normalized channel MSE

correspondingly, which is defined as (3.83).

From the eight figures, we can see that after iterations, superimposed training-based

estimation and detection performances improve a lot, because the information data that
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Viterbi detector: K=N=2, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=50Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.10: DML approach (MIMO): BER vs SNR under fd = 50Hz and K = N = 2. (SI:
superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration;
“2nd iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

are viewed as interference by the first-order statistics-based estimator are now exploited to

enhance the channel estimation for the next iteration. Therefore, the self-interference is

efficiently removed after iterations. The DML approach provides comparable error perfor-

mance with TM training, but at a higher data transmission rate. The valuable bandwidth

resources can thus be saved by using iterative estimation, at the expense of increased com-

putational complexity.

Since we assume the channel satisfies a BEM, the modeling error of the prescribed

BEM sets a limit for the estimation performance. Except for fd = 0Hz, the DPS-BEM is

much more accurate in describing a band-limited time-varying channel, so that it provides

much better estimation performance than the CE-BEM. For both BER and NCMSE curves,
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Viterbi detector: K=N=2, L=2, T=420, T
s
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d
=100Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.11: DML approach (MIMO): BER vs SNR under fd = 100Hz and K = N = 2.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

the error floors of the DPS-BEM-based solutions are lower than that of the CE-BEM-based

ones.

As the Doppler spread fd increases, the performance of the DML-based superimposed

training deteriorates compared with the TM training. Figures 5.4 and 5.8 for fd = 200Hz

clearly show this result. It is partially because the first-order statistics-based estimator

performs worse for fast fading channels, since more basis functions involved to represent the

channel result in higher estimation variance. More iterations are required to approach the

performance of TM training.
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Viterbi detector: K=N=2, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=200Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.12: DML approach (MIMO): BER vs SNR under fd = 200Hz and K = N = 2.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

5.4.2 DML Approach: Multiple Users

In this example, we follow the settings in Section 5.4.1 except that a multiple-user

scenario is considered. It can also be viewed as an extension of Section 3.6.2, for now the

iterative DML approach based on the multiple-user channel estimator using the first-order

statistics is considered.

In simulations, we assume that all the users have the same transmitted power in training

and information data. The average transmitted power in {ck (n)} is 0.3 of that in {bk (n)}

(k = 1, 2, . . . ,K), leading to the same TIR as in Section 5.4.1. We consider a simple two-user

scenario, i.e., K = 2, each user with two receive antennas, i.e., N = 2. The information

sequences {bk(n)} and the training sequences {ck(n)} are all BPSK modulated. The training
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Viterbi detector: K=N=2, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=0Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.13: DML approach (MIMO): NCMSE vs SNR under fd = 0Hz (time-invariant)
and K = N = 2. The curves for CE- and DPS-BEM’s completely overlap, since the two
basis functions are both constant for time-invariant channels (Q = 1). (SI: superimposed
training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM; “step 1”: the
first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd iter.”: the
second DML iteration; “3rd iter.”: the third DML iteration.)

sequence is generated from the m-sequence of period P̃ = 7 by the procedure we introduced

in Section 3.5.

The additive noise {v(n)} is also zero-mean, white complex-Gaussian, uncorrelated

with {bk(n)} with E{v(n + τ)vH(n)} = σ2
vI2δ(τ). The (receiver) SNR refers to the energy

per bit per user over one-sided noise spectral density with both information and superim-

posed training sequence counting toward the bit energy.

At the receive end, a Viterbi detector is used for symbol detection. We consider different

Doppler spreads of fd = 0, 50, 100, and 200Hz for this communications system. We also

pick Q of CE-BEM as 1, 3, 5, 7 and DPS-BEM as 1, 3, 4, 6.
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Viterbi detector: K=N=2, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
=50Hz, 500 runs.

 

 

SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.14: DML approach (MIMO): NCMSE vs SNR under fd = 50Hz and K = N = 2.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

The results for a record length of T = 420 symbols are shown in Figures 5.9–5.16 for var-

ious Doppler spreads and SNR’s. The results are based on 500 Monte Carlo runs. For com-

parison, CE-BEM and DPS-BEM-based periodically placed TM training with zero-padding,

as we described in Appendix A, is also considered. We take a training session of length

(K + 1)L+K = 8 symbols with the first user’s training
{

01×2,
√

(K + 1)L+K,01×5

}

and

the second user’s
{

01×5,
√

(K + 1)L+K,01×2

}

. A data session of 27 symbols is inserted

between two such training sessions to form a frame of length 35 symbols. Such a frame is

repeated over a record length of 420 bits. Thus, we have a training-to-information bit and

power ratio of about 0.3. At the receiver an LS estimation is performed.
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Viterbi detector: K=N=2, L=2, T=420, T
s
=25µs, TIR=0.3, P=7, f

d
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SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
TM&DPS
TM&CE

Figure 5.15: DML approach (MIMO): NCMSE vs SNR under fd = 100Hz and K = N = 2.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

Figures 5.9–5.16 show similar results as in the SISO case: The DML approach enhances

the channel estimation and data detection performances significantly over the first-order

statistics-based estimator for a multiple-user channel; DPS-BEM well outperforms CE-

BEM, so that it appears to be a good choice to approximate the time-varying channel.

5.5 Conclusions

We explored the DML approach in this chapter. By exploiting the fact that training

and information sequences pass through an identical channel, the iterative DML approach

was used to jointly improve the channel and sequence estimation. Beginning with the

first-order statistics-based channel estimator, the detected data symbols from the preceding
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SI&DPS: step 1
SI&DPS: 1st iter.
SI&DPS: 2nd iter.
SI&DPS: 3rd iter.
SI&CE: step 1
SI&CE: 1st iter.
SI&CE: 2nd iter.
SI&CE: 3rd iter.
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TM&CE

Figure 5.16: DML approach (MIMO): NCMSE vs SNR under fd = 200Hz and K = N = 2.
(SI: superimposed training; TM: time-multiplexed training; CE: CE-BEM; DPS: DPS-BEM;
“step 1”: the first-order statistics-based estimator; “1st iter.”: the first DML iteration; “2nd
iter.”: the second DML iteration; “3rd iter.”: the third DML iteration.)

iteration are used to reduce the self-interference at the current iteration. A local maximum

of DML function is guaranteed. Symbol detection techniques such as Kalman filtering can

also be adopted instead of Viterbi algorithm to reduce the computational complexity in

iterations—the method can be viewed as an approximation of the DML approach.
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Chapter 6

Doubly-Selective Channel Estimation Using Data-Dependent Superimposed

Training

6.1 Introduction

For the first-order statistics-based channel estimator proposed in Chapter 3, the infor-

mation sequence acts as interference resulting in a poor training SNR. Simulation results

have shown that noticeable error floors occur in BER and channel MSE curves for this

estimator. Although we can employ the DML method described in Chapter 5 to reduce

the interference, DML iterations add to computational complexity and delay in symbol

detection at the receiver.

Inspired by the work of [20], where the training sequence is distorted according to

the information data before transmission so as to eliminate the self-interference on recep-

tion, we extend this data-dependent method to time-varying channels by the aid of BEM

representations.

For the first-order statistics-based estimator using CE- or DPS-BEM, (4.11) addresses

the source of the estimation error (see Remark 4.2.2.2 for a detailed discussion):

d̂mq = dmq + smq + wmq,
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where the information sequence’s contribution, given by smq, interferes with the estimation

of dmq from d̂mq, and hence with channel estimation from the observations. For the CE-

BEM-based estimator,

smq :=
1

T

T−1∑

n=0

{
L∑

l=0

h (n; l) b (n− l)

}

e−j(ωq+αm)n, (6.1)

and for the DPS-BEM-based estimator,

smq :=

T−1∑

n=0

[
L∑

l=0

h (n; l) b (n− l)

]

uq (n) e−jαmn (6.2)

as in (4.12). Our goal of the data-dependent superimposed training is to null out the

influence of smq on the channel estimation by transmitter-end processing.

In this chapter, we focus on transmitter-end processing techniques to reduce self-

interference of superimposed training. In Section 6.2, we present the data-dependent su-

perimposed training based on CE-BEM; this scheme is extended to channels satisfying

DPS-BEM representation in Section 6.3, where the approach of partially-data-dependent

superimposed training is also proposed. Our approaches are demonstrated by simulation

examples in Section 6.4, and Section 6.5 concludes this chapter.

6.2 Data-Dependent Superimposed Training Using CE-BEM

We assume:

(H6.2.1) The time-varying channel satisfies CE-BEM (3.3) where the frequencies ωq’s (q =

1, 2, . . ., Q) are distinct and known with ωq ∈ [0, 2π). Also N ≥ 1.

145



(H6.2.2) The information data sequence {b (n)} is zero-mean and white, with the variance

E{|b (n)|2} = σ2
b ;

(H6.2.3) The measurement noise {v (n)} is zero-mean, white, and uncorrelated with {b (n)},

with the autocorrelation E
{
v (n+ τ)vH (n)

}
= σ2

vINδ (τ);

(H6.2.4) The superimposed training sequence c (n) = c (n+ P ) for all n is a non-random

periodic sequence with period P and average power σ2
c :=

∑P−1
n=0 |c (n)|2 /P .

6.2.1 Data-Dependent Processing at the Transmitter

Consider the DFT of information sequence {b (n)} over the block n = 0, 1, . . ., T − 1,

br :=
1

T

T−1∑

n=0

b (n) e−jωrn, ωr :=
2πr

T
, (6.3)

for r = 0, 1, . . ., T − 1 and b (n) =
∑T−1

r=0 bre
jωrn. Then the interference smq of (6.1) can be

expressed as

smq =
1

T

T−1∑

n=0







Q
∑

q1=1

L∑

l=0

hq1 (l) ejωq1n
T−1∑

r=0

bre
jωr(n−l)






e−j(ωq+αm)n

=

Q
∑

q1=1

L∑

l=0

T−1∑

r=0

[

hq1 (l) e−jωrlbr

]
[

1

T

T−1∑

n=0

ej(ωq1−ωq+ωr−αm)n

]

=

Q
∑

q1=1

L∑

l=0

T−1∑

r=0

[

hq1 (l) e−jωrlbr

]

δ ((q1 − q + r −mK)modT ) .

Therefore, if we can make br = 0 for r = q +mK − q1, 1 ≤ q, q1 ≤ Q, m = 0, 1, . . ., P − 1,

then smq = 0. We do so by modifying {c (n)} based on {b (n)} (at the transmitter).
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Define a set

Ω := {r : − (Q− 1) +mK ≤ r ≤ (Q− 1) +mK, m = 0, 1, . . ., P − 1} . (6.4)

The frequency components {br : r ∈ Ω} of the information sequence are hence the “self-

interference”. Define a “self-interference” sequence

be (n) :=
∑

r∈Ω

bre
j 2πrn

T (6.5)

and a data-dependent superimposed training c̃ (n) over the block n = 0, 1, . . ., T − 1 such

that

c̃ (n) := c (n) − be (n) . (6.6)

Note that {c̃ (n)} is no longer periodic with period P . At the transmitter, we transmit

c̃ (n) + b (n) = c (n) + [b (n) − be (n)] .

The model (3.1)–(3.4) holds with c (n) replaced with c̃ (n). By construction, the DFT of

b (n) − be (n) over the block n = 0, 1, . . ., T − 1 vanishes at frequencies in the set Ω. Also

the DFT of b (n− l) − be (n− l) over the block n = 0, 1, . . ., T − 1 vanishes at frequencies

in the set Ω provided that a cyclic prefix of length M ≥ L is used. A cyclic prefix of length

M is added at the transmitter by choosing

s (−i) = s (T − i) , i = 1, 2, . . .,M ≥ L

147



where s (i) = c̃ (i) + b (i). This allows linear convolution in (3.1) to be equal to circular

convolution (implicit in the DFT operation) over the block length n = 0, 1, . . ., T − 1.

We summarize our data-dependent channel estimation solution as follows:

1. At the transmitter, we are given information sequence over a block as {b (n)} for

n = 0, 1, . . ., T − 1 with T chosen as T = KP , K ≥ Q. Calculate the DFT by (6.3).

2. To eliminate interference with channel estimation at the receiver, we need to set br’s

to be zero for r ∈ Ω. Define the self-interference sequence {be (n)} as in (6.5).

3. Define the data-dependent superimposed training c̃ (n) as in (6.6). Use a cyclic prefix

of length M ≥ L and transmit.

The channel estimation given in (3.18) stays the same for data-dependent superimposed

training, because we still use periodic {c (n)} at the receiver, and we do not know be (n) or

b (n) at the receiver. It is easily established that now there is no contribution of {b (n)} to

d̂mq for 0 ≤ m ≤ P − 1 and 1 ≤ q ≤ Q.

6.2.2 Data Detection

Now the “information sequence” is {b (n) − be (n)} whereas we are interested in {b (n)}.

We will follow an iterative solution, similar to the time-invariant results of [20]. The first

step in our solution is to use the estimated channel to detect {b (n)} via Viterbi algorithm

(ignoring be (n) but accounting for the known {c (n)}). Use the detected {b (n)} to estimate

{be (n)}, and iterate the detection procedure (but not channel estimation) with known

{c (n)} and estimate
{

b̂e (e)
}

from the previous iteration. Note that although iterations
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are also employed, as the DML algorithm, we do not have to re-estimate the channel in the

subsequent iterations.

6.2.3 Performance Analysis

If the true channel follows the CE-BEM representation (3.3), the MSE in channel esti-

mation is then given by (4.2). We now relax the assumption (H6.2.3), i.e., the measurement

noise {v(n)} may be nonzero-mean, as in (H3.2.3). We further assume that

(H6.2.5) The time-varying channel {h (n; l)} is zero-mean, complex Gaussian with vari-

ance σ2
h, and mutually independent for distinct l’s: E

{
h (n; l)hH (n; l)

}
= σ2

hIN and

E{h (n1; l1)h
H (n2; l2)} = 0, for l1 6= l2, for all n1, n2, i.e., different channel taps are

independent of each other and are identically distributed zero-mean complex Gaus-

sian.

In the data-dependent superimposed training, the interference from the information

sequence {b (n)} has been canceled out, so smq = 0. Then by (4.11), d̂mq = dmq + wmq, so

that

E
{

[d̂m1q1 − dm1q1][d̂m2q2 − dm2q2]
H
}

= E
{
wm1q1w

H
m2q2

}

=
1

T
σ2

vINδ (m1 −m2) δ (q1 − q2) .

By (3.11) and (3.16), it follows that

cov{D̂, D̂} =
1

T
σ2

vINQ(P−1). (6.7)
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By (3.18), we also have

cov
{

Ĥ, Ĥ
}

:= E

{(

Ĥ −H
)(

Ĥ − H
)H
}

= (CHC)−1CH cov
{

D̂, D̂
}

C(CHC)−1. (6.8)

Substitute (6.7) into (6.8), we have

cov
{

Ĥ, Ĥ
}

=
1

T
σ2

v(CHC)−1.

In a manner similar to (4.16), it then follows that

MSE1 = E







L∑

l=0

Q
∑

q=1

∥
∥
∥hq (l) − ĥq (l)

∥
∥
∥

2







=
NQσ2

v

T
tr

{(

VH diag
{

|c1|2 , |c2|2 , . . ., |cP−1|2
}

V
)−1

}

.

We note that the real channel over a block cannot be exactly equal to the CE-BEM

representation. Counting the modeling error, the total channel MSE can be expressed by

(4.34)

MSEc = MSE1 + MSE2,

where MSE1 comes from the estimation and MSE2 is the mean square modeling error.

Under the assumption (H4.2.5) and Jakes’ model, the modeling error of CE-BEM is given

by (4.35).
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6.3 Data-Dependent Superimposed Training Using DPS-BEM

Exploiting the fact that DPS sequences are also approximately band-limited, in this

section we extend the data-dependent superimposed training to DPS-BEM, so that spectral

leakage arising from CE-BEM is efficiently reduced.

We follow the assumptions:

(H6.3.1) The time-varying channel {h(n; l)} satisfies (3.25) with the DPS sequences {uq (n)}

known at the receiver. Also N ≥ 1.

(H6.3.2) The information sequence {b(n)} is zero-mean, white with E{| b(n)|2} = σ2
b .

(H6.3.3) The measurement noise {v(n)} is zero-mean, white, uncorrelated with {b(n)}, with

E{v(n + τ)vH(n)} = σ2
vINδ(τ).

(H6.3.4) The superimposed training sequence c(n) = c(n+P ) for all n is a non-random periodic

sequence with period P .

Consider the interference smq in (6.2), which can be expressed by using (6.3) as

smq =
T−1∑

n=0

[
L∑

l=0

h (n; l) b (n− l)

]

uq (n) e−jαmn

=
T−1∑

n=0







Q
∑

q1=1

L∑

l=0

hq1 (l) uq1 (n)
T−1∑

r=0

bre
jωr(n−l)






uq (n) e−jαmn

=

Q
∑

q1=1

L∑

l=0

T−1∑

r=0

[

hq1 (l) e−jωrlbr

]
[

T−1∑

n=0

uq1 (n)uq (n) ej
2π(r−mK)

T
n

]

.
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We exploit the approximate band-limitedness of the time-limited DPS sequences, assuming

that
T−1∑

n=0

uq′ (n)uq (n) ej2π(r−mK)n/T ≈ 0

for |r −mK| ≥ Q+ k, where k is an integer and (Q+ k) /T > 2fdTs (k ≥ −1). Therefore,

the information-induced interference comes from the frequency components br’s for those

r’s belonging to a set

Ω := {r : − (Q+ k) +mK ≤ r ≤ (Q+ k) +mK,m = 0, . . ., P − 1} . (6.9)

The frequency components {br : r ∈ Ω} of the information sequence are hence the self-

interference. If we set br = 0 for those r ∈ Ω, then smq = 0. We do so by modifying {c (n)}

based on {b (n)} at the transmitter. Define a self-interference sequence

be (n) :=

T−1∑

r=0,r∈Ω

bre
jωrn (6.10)

and a data-dependent superimposed training sequence {c̃ (n)}T−1
n=0 such that

c̃ (n) := c (n) − be (n) .

All the other steps for the DPS-BEM-based channel estimator using data-dependent super-

imposed training just follow the steps described in Section 6.2.1. For symbol detection, we

can also follow the iterative approach addressed in Section 6.2.2.
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6.3.1 Partially-Data-Dependent (PDD) Superimposed Training

In the data-dependent superimposed training method, by setting br = 0 for r ∈ Ω

before transmission, we discard the “frequency components” of the information sequence

corresponding to Ω, so that information-induced self-interference is eliminated. By (6.9),

however, the information contained at those P (2Q + 2k + 1) (among total T ) frequencies

is also discarded. Though it may be partially recovered by other properties (e.g., the finite

alphabet of the information sequence [22]), it can cause severe detection errors under severe

frequency loss.

For the first-order statistics-based estimator we discussed in Section 3.3, the sequence

{be (n)} acts as self-interference in channel estimation, whereas it also bears “information”

so that it should not be totally discarded. Given {be (n)} as in (6.10), we now transmit

s (n) = c (n) + b (n) − (1 − γ) be (n) (6.11)

at the transmitter, where 0 ≤ γ ≤ 1 is the self-interference factor. When γ = 1, the

information sequence {b (n)} keeps intact, corresponding to the first-order statistics-based

estimator in Section 3.3. When γ = 0, the interference-induced frequency components br’s

(r ∈ Ω) are totally annihilated, corresponding to the data-dependent solution described in

Section 6.2 and Section 6.3. If 0 < γ ≪ 1, which is the partially-data-dependent (PDD)

case, at each r ∈ Ω the frequency component br is reduced to γbr. Then the self-interference

will be “sufficiently” suppressed when conducting channel estimation, while the frequency

components at r ∈ Ω remain “partially” intact. Note that in this PDD method, the self-

interference is not completely removed, so that the channel estimation is not as accurate
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as that of the data-dependent solution. But since no information-bearing frequencies are

nulled out, the information contained there can be recovered in data reception.

Our PDD superimposed training-based channel estimation follows the data-dependent

solution described in Section 6.2, except that we define the PDD superimposed training

sequence as

c̃ (n) := c (n) − (1 − γ) be (n)

instead of (6.6) with a prescribed interference factor γ.

For data detection at the receiver, the “information sequence” is {b (n)−(1 − γ) be (n)}

(0 ≤ γ ≤ 1), while we are interested in {b (n)}. We can first use the estimated channel to

detect {b (n)} via Viterbi algorithm (ignoring (1 − γ) be (n) but accounting for the known

{c (n)}). Since the training and information sequences pass through an identical channel, the

DML approach described in Section 5.2 can be exploited to recover the suppressed frequency

components br’s (r ∈ Ω), as well as enhance the channel estimation, in an iterative way (see

Section 6.3.4).

6.3.2 Performance Analysis

We wish to evaluate the MSE in channel estimation, defined in (4.2), using PDD

superimposed training when the true channel follows DPS-BEM. We make the following

assumption about the channel h (n; l):

(H6.3.5) The time-varying channel {h (n; l)} is zero-mean, complex Gaussian with vari-

ance σ2
h, and mutually independent for distinct l’s: E

{
h (n; l)hH (n; l)

}
= σ2

hIN and

E{h (n1; l1)h
H (n2; l2)} = 0, for l1 6= l2, for all n1, n2, i.e., different channel taps are
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independent of each other and are identically distributed zero-mean complex Gaus-

sian.

Note that in PDD superimposed training, (4.11) still holds if smq is revised as

smq :=
T−1∑

n=0

{
L∑

l=0

h (n; l) [b (n− l) − (1 − γ) be (n)]

}

uq (n) e−jαmn.

By (3.34) and (6.10), we have

E
{
sm′q′s

H
mq

}
= γ2 (L+ 1)σ2

hσ
2
b INδ

(
m′ −m

)
δ
(
q′ − q

)
. (6.12)

Then from (3.36)

cov{Ĥ, Ĥ} := E{[Ĥ − H][Ĥ − H]
H} =

(

C̃H C̃
)−1

C̃H cov{ ˆ̃D, ˆ̃D}C̃
(

C̃H C̃
)−1

. (6.13)

Since

E
{

[d̂mq − dmq][d̂m′q′ − dm′q′ ]
H
}

= E
{
sm′q′s

H
mq

}
+ E

{
wm′q′w

H
mq

}
,

by (4.10) and (6.12) we have

cov{D̂, D̂} =
[
γ2 (L+ 1) σ2

hσ
2
b + σ2

v

]
INPQ. (6.14)

Substitute (6.14) for (6.13)

cov{Ĥ, Ĥ} =
[
γ2 (L+ 1) σ2

hσ
2
b + σ2

v

] (

C̃H C̃
)−1

.
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Using orthonormality of DPS sequences, the MSE in channel estimation is given by

MSE1 =
1

T
E







L∑

l=0

Q
∑

q=1

∥
∥
∥hq (l) − ĥq (l)

∥
∥
∥

2






=

1

T
tr{cov{Ĥ, Ĥ}}

=
γ2 (L+ 1) σ2

hσ
2
b + σ2

v

T
tr{
(

C̃H C̃
)−1

}. (6.15)

The MSE of the first-order statistics-based channel estimator in Section 3.3 is given by

(6.15) for γ = 1, and that of the data-dependent solution in Section 6.3 is corresponding to

γ = 0. For a PDD scheme with 0 < γ ≪ 1, the interference is significantly suppressed.

6.3.3 Power Allocation and Self-Interference Suppression

We consider the issues of superimposed training power allocation and self-interference

suppression under the channel assumption (H6.3.5). Using the channel estimation variance

developed in (6.15), we cast power allocation and self-interference suppression as jointly

optimizing an SNR for equalizer design, as we discussed in Section 4.4. Since the channel

estimate is used for equalizer design, we set up a model for the received signal, in which an

estimation error-related term and the additive noise act as effective noise, while the effective

signal is given by the output of the estimated channel driven by the information sequence.

This SNR is maximized under a transmission power constraint.

Removing the estimated time-varying mean from the received data, define

ỹ (n) := y (n) −
L∑

l=0

ĥ (n; l) c (n− l) .

156



We then have

ỹ (n) =

L∑

l=0

ĥ (n; l) b (n− l)

︸ ︷︷ ︸

=:xs(n)

+

L∑

l=0

[

h (n; l) − ĥ (n; l)
]

[b (n− l) + c (n− l)] −
L∑

l=0

h (n; l) (1 − γ) be (n− l) + v (n)

︸ ︷︷ ︸

=:w(n)

.

(6.16)

The power of the “signal” part xs (n) at time n is

E
{

‖xs (n)‖2
}

= σ2
b

L∑

l=0

E

{∥
∥
∥ĥ (n; l)

∥
∥
∥

2
}

+O
(
1/T 2

)
(6.17)

where O
(
1/T 2

)
term accounts for dependence between ĥq (l) and {b (n)} (see the Appendix

of [32] for details). Furthermore,

L∑

l=0

E

{∥
∥
∥ĥ (n; l)

∥
∥
∥

2
}

=

L∑

l=0

[

EH

{

E

{∥
∥
∥ĥ (n; l) − h (n; l)

∥
∥
∥

2
∣
∣
∣
∣
H
}}

+ E
{

‖h (n; l)‖2
}]

= MSE+N (L+ 1) σ2
h. (6.18)

Taking the time-average of E
{

‖xs (n)‖2
}

, by (6.17) and (6.18) we obtain (neglecting

O
(
1/T 2

)
term)

σ̄2
xs :=

1

T

T−1∑

n=0

E
{

‖xs (n)‖2
}

= σ2
b

[
MSE1 +N (L+ 1) σ2

h

]
. (6.19)
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The time-averaged “noise” power in (6.16) is given by

σ̄2
w :=

1

T

T−1∑

n=0

E
{

‖w (n)‖2
}

= σ2
b MSE1 +Nσ2

v + B + R− S1 − S2 +O
(
1/T 2

)
,

where

B =
(1 − γ)2

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

E
{
hH (n; l1)h (n; l2)

}
E {b∗e (n− l1) be (n− l2)} ;

R =
1

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

E

{[

ĥ (n; l1) − h (n; l1)
]H [

ĥ (n; l2) − h (n; l2)
]}

× c (n− l1)
∗ c (n− l2) ;

S1 =
1 − γ

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

E

{[

h (n; l1) − ĥ (n; l1)
]H

h (n; l2)

}

E {b∗ (n− l1) be (n− l2)} ;

S2 = SH
1 .

Since

E

{[

h (n; l1) − ĥ (n; l1)
]H

h (n; l2)

}

= EH

{

E

{[

h (n; l1) − ĥ (n; l1)
]H

h (n; l2)

∣
∣
∣
∣
H
}}

= EH

{

[h (n; l1) − h (n; l1)]
H h (n; l2)

}

= 0,

we have S1 = SH
2 = 0.
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Note that |Ω| = P (2Q+ 2k + 1). Consider

E {be (n− l) b∗e (n− l)} = E







∑

r1∈Ω

∑

r2∈Ω

br1b
∗
r2
ej

2π
T

(r1−r2)(n−l)







=
1

T 2
E







∑

r1∈Ω

∑

r2∈Ω

T−1∑

n1=0

T−1∑

n2=0

b (n1) b
∗ (n2) e

−j 2π
T

r1n1ej
2π
T

r2n2ej
2π
T

(r1−r2)(n−l)







=
σ2

b

T 2

∑

r1∈Ω

∑

r2∈Ω

T−1∑

n1=0

e−j 2π
T

(r1−r2)n1ej
2π
T

(r1−r2)(n−l) =
P (2Q+ 2k + 1) σ2

b

T
.

Therefore,

B =
(1 − γ)2

T

T−1∑

n=0

L∑

l1=0

L∑

l2=0

Nσ2
hδ (l1 − l2)E {b∗e (n− l1) be (n− l2)}

=
N (L+ 1)P

T
(2Q+ 2k + 1) (1 − γ)2 σ2

hσ
2
b .

Now we consider R,

R =
1

T

L∑

l1=0

L∑

l2=0

Q
∑

q1=1

Q
∑

q2=1

E
{[

ĥH
q1

(l1) − hH
q1

(l1)
] [

ĥq2 (l2) − hq2 (l2)
]}

×
P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1 l1−αm2 l2)

[
T−1∑

n=0

uq1 (n)uq2 (n) ej(αm2−αm1)n

]

=
1

T

L∑

l1=0

L∑

l2=0

Q
∑

q1=1

Q
∑

q2=1

E
{[

ĥH
q1

(l1) − hH
q1

(l1)
] [

ĥq2 (l2) − hq2 (l2)
]}

×
P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

j(αm1 l1−αm2 l2)δ (q1 − q2) δ (m1 −m2)

=
1

T
E







[
L∑

l=0

(

Ĥl − Hl

)

e−jαml

]H [ L∑

l=0

(

Ĥl − Hl

)

e−jαml

]






P−1∑

m=0

|cm|2 .
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Define E (m) :=

[

1 e−jαm · · · e−jαmL

]

, then R becomes

R =
1

T
E

{[

E (m) ⊗ INQ

(

Ĥ − H
)]H [

E (m) ⊗ INQ

(

Ĥ − H
)]} P−1∑

m=0

|cm|2

=
1

T
E

{(

Ĥ − H
)H

CHC
(

Ĥ − H
)}

=
1

T
tr
{

cov
{

Ĥ, Ĥ
}

CHC
}

=
NQ (L+ 1)

T

[
γ2 (L+ 1) σ2

hσ
2
b + σ2

v

]
.

Using these expressions we obtain (also neglecting O
(
1/T 2

)
term)

σ̄2
w = σ2

b MSE+Nσ2
v +

N (L+ 1)P

T
(2Q+ 2k + 1) (1 − γ)2 σ2

hσ
2
b

+
NQ (L+ 1)

T

[
γ2 (L+ 1) σ2

hσ
2
b + σ2

v

]
. (6.20)

We define the training power overhead β as

β :=
1
P

∑P−1
n=0 |c (n)|2

1
P

∑P−1
n=0 E

{

|b (n) + c (n)|2
} =

σ2
c

σ2
b + σ2

c

. (6.21)

For a fixed SNR or transmitted power budget, higher β implies smaller effective SNR at the

receiver due to decreased power in the information sequence but higher channel estimation

accuracy; similarly, higher γ in (6.11) implies less “information” impairment but higher

self-interference remaining. A trade-off must be considered in choosing appropriate β and

γ for the PDD superimposed training.

The equalization SNR of (6.16), as a function of β and γ, is (implicitly) obtained as

SNRd (β, γ) :=
σ̄2

xs (β, γ)

σ̄2
w (β, γ)

. (6.22)
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Our objective is to maximize SNRd (β, γ) with respect to β and γ under the constraint

of a fixed power: PT := σ2
b + σ2

c is fixed. Then σ2
c = PTβ and σ2

b = PT (1 − β). Incor-

porating these constraint-carrying variables in (6.22) via (6.19) and (6.20), we obtain an

unconstrained cost

SNRd (β, γ) =
f1β

2 + f2β + f3

g1β2 + g2β + g3

where with C̄ := σ−1
c C̃

f1 = (L+ 1)σ2
hPT

[

γ2 tr{
(
C̄H C̄

)−1} −NT
]

,

f2 = N (L+ 1) σ2
hPTT −

[
2γ2 (L+ 1) σ2

hPT + σ2
v

]
tr{
(
C̄H C̄

)−1},

f3 =
[
γ2 (L+ 1) σ2

hPT + σ2
v

]
tr{
(
C̄H C̄

)−1},

g1 = (L+ 1) σ2
hPT

[

γ2 tr{
(
C̄H C̄

)−1} −NP (2Q+ 2k + 1) (1 − γ)2 −N (L+ 1)Qγ2
]

,

g2 = −
[
2γ2 (L+ 1) σ2

hPT + σ2
v

]
tr{
(
C̄H C̄

)−1}

+N (L+ 1) σ2
hPT

[

P (2Q+ 2k + 1) (1 − γ)2 + (L+ 1)Qγ2
]

+Nσ2
v [Q (L+ 1) + T ] ,

g3 = f3.

Similarly, this unconstrained cost can also be expressed as

SNRd (β, γ) =
f ′1γ

2 + f ′2γ + f ′3
g′1γ

2 + g′2γ + g′3

161



where

f ′1 = (L+ 1) σ2
hPT (1 − β)2 tr{

(
C̄H C̄

)−1}, f ′2 = 0,

f ′3 = NT (L+ 1) σ2
hPTβ (1 − β) + σ2

v (1 − β) tr{
(
C̄H C̄

)−1},

g′1 = (L+ 1) σ2
hPT (1 − β)

×
[
(1 − β) tr{(C̄H C̄)−1} +NP (2Q+ 2k + 1) β +NQ (L+ 1) β

]
,

g′2 = −2N (L+ 1) σ2
hP (2Q+ 2k + 1)PT (1 − β) β,

g′3 = σ2
v tr{

(
C̄H C̄

)−1} (1 − β) +N (L+ 1) σ2
hPTP (2Q+ 2k + 1) (1 − β) β

+Nσ2
vβ [Q (L+ 1) + T ] .

We seek the optimum value of β and γ by setting the partial derivatives of the uncon-

strained cost (6.22) to zero:

∂ [SNRd (β, γ)]

∂β
= 0, and

∂ [SNRd (β, γ)]

∂γ
= 0.

The above quadratic in β has two roots, of which the root lying in [0, 1] is

βo (γ) = (f1g2 − f2g1)
−1 (f3g1 − f1g3

−
√

−f1f2g2g3 − 2f1f3g1g3 − f2f3g1g2 + f2
2g1g3 + f1f3g2

2 + f2
1 g

2
3 + f2

3 g
2
1

)

. (6.23)

Note that this optimum β is a function of γ. The optimum γ, which is a function of β

likewise, can be acquired in the same way as in (6.23) with fi and gi (i = 1, 2, 3) replaced
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with f ′i and g′i:

γo (β) =
(
f ′1g

′
2 − f ′2g

′
1

)−1 (
f ′3g

′
1 − f ′1g

′
3

−
√

−f ′1f ′2g′2g′3 − 2f ′1f
′
3g

′
1g

′
3 − f ′2f

′
3g

′
1g

′
2 + f ′22 g

′
1g

′
3 + f ′1f

′
3g

′2
2 + f ′21 g

′2
3 + f ′23 g

′2
1

)

.

(6.24)

The joint optimization of β and γ can be achieved by applying (6.23) and (6.24) iteratively:

The result of (6.23) is substituted in (6.24) and vice-versa; there is no guarantee of global

optimization. An alternative is to do a two-dimensional grid search for joint optimization of

(6.22) with respect to β and γ, both restricted to [0, 1], to obtain a “coarse” optimization,

and then follow up with a “fine” optimization via iterative computation of (6.23) and (6.24).

6.3.4 Recovery of Suppressed Frequencies via DML Approach

We now consider joint channel and information sequence estimation via an iterative

DML approach assuming that the noise v (n) is complex Gaussian. As noted in Section 6.3.1,

for data detection at the receiver, now the “information sequence” is {b (n) − (1 − γ) be (n)}

(0 ≤ γ ≤ 1), while we are interested in {b (n)}. We can first use the estimated channel to

detect {b (n)} via Viterbi algorithm (ignoring (1 − γ) be (n) but accounting for the known

{c (n)}). Since the training and information sequences pass through an identical channel,

this fact can be exploited to recover the suppressed frequency components br’s (r ∈ Ω), as

well as enhance the channel estimation, in an iterative way. In subsequent iterations, we

regenerate be (n) as b̂e (n) using the detected b (n) from the previous iteration, and so on.
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To consider a general case, we assume the measurement noise v (n) is complex Gaussian,

but may be nonzero-mean as in Section 5.2 (E {v (n)} = m, with m unknown). We define

Y : =

[

yT (T − 1) yT (T − 2) · · · yT (L)

]T

,

s :=

[

s (T − 1) s (T − 2) · · · s (0)

]T

, (6.25)

and similarly define b, be, and c from b (n), be (n), and c (n), respectively, following (6.25).

Therefore,

s := b + c+ (1 − γ)be.

Let ṽ (n) := v (n) − m. We then have the linear model

Y = T (s)H +










ṽ (T − 1)

...

ṽ (L)










︸ ︷︷ ︸

=:Ṽ

+










m

...

m










︸ ︷︷ ︸

=:M

(6.26)

where T (s) is a block Hankel matrix given by

T (s) :=










s (T − 1) ΣT−1 ... s (T − L− 1) ΣT−1

...
. . .

...

s (L)ΣL ... s (0) ΣL










Σn :=

[

u1 (n) IN u2 (n) IN ... uQ (n) IN

]

.
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Also, an alternative linear model for Y is given by

Y = F (H) s + Ṽ+M (6.27)

where

F (H) :=










h (T − 1; 0) · · · h (T − 1;L)

. . .
. . .

h (L; 0) · · · h (L;L)










is a “filtering matrix”.

By (6.26), consider the joint estimation

{

Ĥ, ŝ, m̂
}

= arg min
H,s,m

‖Y − T (s)H−M‖2 , (6.28)

where, when we estimate s, we are estimating b with known or estimated values of c and

be. Under the white Gaussian noise assumption, the DML estimations are obtained by the

nonlinear least-squares optimization (6.28). Using (6.26) and (6.27), we have a separable

nonlinear LS problem that can be solved sequentially as

{

Ĥ, ŝ, m̂
}

= arg min
s

{

min
H,m

‖Y − T (s)H−M‖2

}

= arg min
H,m

{

min
s

‖Y −F (H) s−M‖
}

.

The finite alphabet properties of the information sequences can also be incorporated

into the DML methods. These algorithms iterate between estimates of the channel and the

input sequences. At iteration i, with an initial guess of the channel H(i), self-interference
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b
(i)
e and the mean m(i), the algorithm estimates the input sequence s(i) and the channel

H(i+1) and mean m(i+1) for the next iteration by

s(i) = arg min
b∈B

∥
∥
∥Y −F

(

H(i)
)

s−M(i)
∥
∥
∥

2
, with s := b + c+ (1 − γ)b(i)

e (6.29)

H(i+1) = arg min
H

∥
∥
∥Y − T

(

s(i)
)

H−M(i)
∥
∥
∥

2
, (6.30)

m(i+1) = arg min
m

∥
∥
∥Y − T

(

s(i)
)

H(i+1)−M
∥
∥
∥

2
(6.31)

where B is the (discrete) domain of b. The optimizations in (6.30) and (6.31) are linear LS

problems having the solutions

m(i+1) =
1

T − L

T−1∑

n=L

[

y (n) −
L∑

l=0

h(i+1) (n; l) s(i) (n− l)

]

.

Ĥ(i+1) = T †
(

s(i)
) [

Y −M(i)
]

.

whereas the optimization in (6.29) can be achieved by using the Viterbi algorithm (see

Appendix B.1 for details).

During the “start-up” (Step 1), b
(1)
e = 0 and Ĥ(1) is obtained from the end of Section

6.3.1. Since the above iterative procedure involving (6.29)–(6.31) decreases the cost at every

iteration, one achieves a local minimum of the nonlinear least-squares cost (local maximum

of DML function).
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s
=25µs, TIR=0.1, P=7, 500 runs.
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Figure 6.1: Data-dependent superimposed training (CE-BEM): BER vs SNR for non-data-
dependent, data-dependent, and time-multiplexed training, under fd = 0 and 50Hz. (SI:
superimposed training; TM: time-multiplexed training; γ = 1: non-data-dependent train-
ing; γ = 0: total elimination of self-interference.)

6.4 Simulation Examples

6.4.1 Data-Dependent Superimposed Training Using CE-BEM

We first consider a doubly-selective Rayleigh fading channel following the Jakes’ model

with N = 1, 2, or 3, and L = 5 (6 taps). We scale {h (n; l)} to achieve an exponential power

delay profile given by E
{

|h (n; l)|2
}

= e−0.2l/(L+1). We employ the communications system

described in Section 2.6.3 with Ts = 25µs. We consider the system operating under different

Doppler spreads with different number of basis functions Q. For the Doppler spreads fd = 0,

50, 100, and 200Hz (corresponding to the normalized Doppler spreads fdTs = 0, 0.00125,

0.0025, and 0.005), we take Q = 1, 5, 7, and 11.
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Viterbi detector: K=N=1, L=5, T=840, T
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=25µs, TIR=0.1, P=7, 500 runs.
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Figure 6.2: Data-dependent superimposed training (CE-BEM): BER vs SNR for non-data-
dependent, data-dependent, and time-multiplexed training, under fd = 100 and 200Hz.
(SI: superimposed training; TM: time-multiplexed training; γ = 1: non-data-dependent
training; γ = 0: total elimination of self-interference.)

Additive noise in each example is zero-mean complex white Gaussian. The (receiver)

SNR refers to the energy per symbol over one-sided noise spectral density with both informa-

tion and superimposed training sequence counting toward the symbol energy. Information

sequences are BPSK. We take the superimposed training sequence period P = 7; it is given

by c (n) = σce
jπn(n+ν)/P where ν = 1 if P is odd, and ν = 2 if P is even, as in [59]. For

superimposed training, the average transmitted power in {c (n)} is 0.1 of that in {b (n)},

leading to TIR of 0.1. All the simulation results are based on 500 Monte Carlo runs.

The results for a data record length of T = 840 symbols are shown in Figures 6.1–

6.4 for various Doppler spreads and SNR’s. We use the formulation suggested in Section

3.2 by omitting terms corresponding to α0 in (3.5c). For comparison, CE-BEM-based TM

training described in Appendix A is also considered, where training sessions are periodically
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Figure 6.3: Data-dependent superimposed training (CE-BEM): NCMSE vs SNR for non-
data-dependent, data-dependent, and time-multiplexed training, under fd = 0 and 50Hz.
(SI: superimposed training; TM: time-multiplexed training; γ = 1: non-data-dependent
training; γ = 0: total elimination of self-interference.)

inserted between information data sessions. We take a training session of length of 2L+1 =

11 symbols with the training sequence
{
01×5,

√
2L+ 1,01×5

}
, and at the receiver an LS

estimation is performed. A data session of 110 symbols is inserted between two successive

training sessions to form a frame of length 121 symbols. Such a frame is repeated over a

record length of 847 symbols, i.e., a block consists nf = 7 such frames. Therefore, we have

a training-to-information bit and power ratio of about 0.1. The normalized channel MSE

(NCMSE) in channel estimation shown in the figures is defined in (3.83). The corresponding

detection results are based on Viterbi algorithm utilizing the estimated channel.

It is seen that the data-dependent superimposed training (γ = 0) yields superior results

compared with the common (non-data dependent) superimposed training (γ = 1), and

furthermore it is competitive with TM training without incurring the 10% training overhead
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Figure 6.4: Data-dependent superimposed training (CE-BEM): NCMSE vs SNR for non-
data-dependent, data-dependent, and time-multiplexed training, under fd = 100 and
200Hz. (SI: superimposed training; TM: time-multiplexed training; γ = 1: non-data-
dependent training; γ = 0: total elimination of self-interference.)

penalty resulting in a data transmission rate loss. Compared with TM training, the proposed

data-dependent superimposed training yields slightly better BER for SNR ≥ 15 dB when

fd 6= 0, and (slightly) worse BER for SNR ≤ 10 dB. There is an error floor with increasing

SNR for all nonzero fd’s due to modeling errors of CE-BEM. Notice the lack of error floor

for fd = 0 (no modeling error) in Figures 6.1 and 6.3. When Q = 11 (corresponding to

fd = 200Hz), for TM training we cannot satisfy training-to-information bit and power

ratio of 0.1, since the number of basis functions is larger than the number of frames in one

block, i.e., Q > nf . We had to settle for nf = 7 leading to loss of parameter identifiability

(more unknown than equations). In Figures 6.2 and 6.4 we also show the results for nf = 11

leading to a shorter data session with training-to-information bit and power ratio of 0.167—

it is so labeled in Figures 6.2 and 6.4. The performance clearly improves and it is better
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Figure 6.5: Data-dependent superimposed training (CE-BEM): BER vs SNR for non-data-
dependent, data-dependent, and time-multiplexed training, under fd = 100Hz and N = 1,
2, and 3. (SI: superimposed training; TM: time-multiplexed training; γ = 1: non-data-
dependent training; γ = 0: total elimination of self-interference.)

than that of data-dependent superimposed training, but at the cost of 16.7% reduction in

transmission rate.

Figure 6.5 shows the detection results (based on estimated channel and Viterbi algo-

rithm) for multiple receivers when fd = 100Hz and N = 1, 2, and 3. Again we see that

data-dependent superimposed training is better than TM training without incurring the

10% training overhead penalty (which results in a transmission rate penalty).

Now we consider a fast fading channel: N = 1, L = 1 (2 taps), a uniform power delay

profile and Ts = 200µs; the rest is as the above channel. Therefore, for fd = 100 and

250Hz, the normalized Doppler spreads fdTs = 0.02 and 0.05 (corresponding value of Q are

35 and 85, respectively). Here we also keep T = 840.
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Figure 6.6: Data-dependent superimposed training (fast fading): BER vs SNR under fd =
100 and 250Hz. (SI: superimposed training; TM: time-multiplexed training; γ = 1: non-
data-dependent training; γ = 0: total elimination of self-interference.)

Now the performance of all schemes is worse because of a large number of unknowns

to be estimated. However, data-dependent superimposed training still outperforms TM

training when we enforce the constraint training-to-information bit and power ratio of 0.1,

because we cannot get nf ≥ Q. With the length of a training session 2L + 1 = 3 bits, we

show in Figure 6.6 the results for nf = 35 and 85 for fd = 100 and 250Hz respectively,

leading to reduced data sessions with training-to-information bit and power ratio of 0.143

or 0.429. The performance clearly improves and it is better than that of data-dependent

superimposed training, but at the cost of 14.3% or 42.9% reduction in the transmission

rate. It is also seen from Figure 6.6 that superimposed training does not perform well for

fd = 250Hz because of loss of “information” due to nulling of contribution from information

sequence at a “large” number of frequencies (related to Q).
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Figure 6.7: Estimation variance: NCMSE vs fd under SNR = 25dB for comparison be-
tween analytical and simulation-based results of non-data-dependent and data-dependent
superimposed training. (γ = 1: non-data-dependent training; γ = 0: total elimination of
self-interference; σ: standard deviation.)

We next consider the performance analysis of our data-dependent superimposed train-

ing scheme. We revise the channel to be with N = 1, L = 2 (3 taps), a uniform power

delay profile and Ts = 25µs. We also omit α0 in the receiver-end processing. In Figure

6.7, we show the channel MSE versus Doppler spreads where we compare our theoretical

expressions with simulation-based MSE results and ±σ bounds. The channel MSE for non-

data-dependent superimposed training is given by (4.8) and (4.35). The agreement is good

between the theoretical and simulations-based results. Note that the discontinuities in the

theoretical curves as a function of fd as we picked Q values based on fd per (2.9b).
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Figure 6.8: PDD superimposed training: NCMSE vs SNR for CE- and DPS-BEM-based
estimators, under fd = 100Hz. (γ = 1: non-data-dependent training; γ = 0: total elim-
ination of self-interference; γ = 0.2: partial elimination of self-interference at the channel
estimation stage.)

6.4.2 (Partially) Data-Dependent Superimposed Training Using DPS-BEM

We consider a random doubly-selective Rayleigh fading channel. We take N = 1 and

L = 4 (5 taps) with h (n; l) as in (H6.3.5) satisfying the Jakes’ model.

We consider a communication system described in Section 2.6.3 with symbol interval

Ts = 25µs, record length T = 420 symbols, and varying Doppler spreads fd in the range

of 0Hz to 200Hz. For fd = 100Hz, the normalized Doppler spread fdTs = 0.0025 and for

fd = 200Hz, fdTs = 0.005. We emphasize that in the simulations the DPS-BEM is used

only for processing at the receiver; the random channels are generated by the Jakes’ model,

not the DPS-BEM. In the processing of channel estimation, we select Q, the number of

basis functions, as in Q = ⌈2fdTsT ⌉ + 1. Using the estimated channel, a Viterbi detector

is used for data symbol detection at the receiver. For the DPS-BEM-based estimator using
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Figure 6.9: PDD superimposed training: BER vs SNR for CE- and DPS-BEM-based esti-
mators, under fd = 100Hz. (γ = 1: non-data-dependent training; γ = 0: total elimination
of self-interference; γ = 0.2: partial elimination of self-interference at the channel estimation
stage.)

PDD superimposed training, we took k = −1 (the minimum allowed value) in (6.9), so that

the information loss is comparatively mild.

The additive noise is zero-mean complex white Gaussian. The (receiver) SNR refers

to the energy per bit over one-sided noise spectral density with both information and

superimposed training sequence counting toward the bit energy. Information sequences

are BPSK. We take the superimposed training sequence of period P = L + 1 = 5 as

c (n) = σce
jπn(n+ν)/P where ν = 1 if P is odd and ν = 2 if P is even, as in [59]. All

simulated results were based on 500 Monte Carlo runs.

To show the advantage of DPS-BEM over the Fourier-based CE-BEM, we compare the

performance of our proposed channel estimators using the two BEM’s. Figure 6.8 shows the

comparison for normalized channel MSE’s (NCMSE). In an environment of fd = 100Hz,
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Figure 6.10: PDD superimposed training: BER vs (β, γ) under SNR = 15dB and fd =
100Hz.

we had Q = 5 for CE-BEM following (2.9b) and Q = 4 for DPS-BEM. The channel

estimators have identical design parameters except for using different basis models. In

the simulation, the average transmitted power σ2
c in c (n) is 0.15 of the power in b (n),

leading to a training-to-information power ratio TIR := σ2
c/σ

2
b = β/ (1 − β) = 0.15 (or

β = 0.13). We consider the CE-BEM-based estimator using superimposed training with

γ = 1 (corresponding to the first-order statistics-based estimator in Chapter 3) and γ = 0

(corresponding to the “fully” data-dependent scheme), and the DPS-BEM-based estimator

using PDD superimposed training with γ = 0, 0.2 , and 1. At the receiver, we follow the

data detection scheme described in Section 6.2.2.

It is seen from Figure 6.8 that the data-dependent (γ = 0) training offers much lower

estimation variance than that of the “non-data-dependent” (γ = 1) training, whether using

CE- or DPS-BEM, since the self-interference is eliminated or greatly reduced with γ = 0.
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analytical: β
analytical: γ
simulated: β
simulated: γ

Figure 6.11: PDD superimposed training: optimum (β, γ) vs SNR under fd = 100Hz.

For the same values of γ’s, the estimator exploiting DPS-BEM provides better estimation

compared with the CE-BEM-based one, because DPS-BEM has smaller modeling error than

CE-BEM. These conclusions are also confirmed by the BER results in Figure 6.9. Note

that for the DPS-BEM-based estimator with γ = 0.2, although the estimation cannot be

as accurate as the “completely-data-dependent” (γ = 0) case, the BER result is still better

since the “information” lost in the “completely-data-dependent” training is now partially

retained.

Figure 6.10 depicts the BER surface as a function of β (defined in (6.21)) and γ,

for SNR = 15dB and fd = 100Hz. The BER performance varies along β- and γ-axes.

We selected the coordinate point (β̃o, γ̃o) corresponding to the minimum value at the BER

surface as the simulation-based optimum value for the given SNR. In Figure 6.11 we compare

the simulation-based optimum value with the “analytical” optimum value (βo, γo) derived

recursively (with the initial value γ = 0) by (6.23) and (6.24). In Figure 6.11, the analytical
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γ=0, step 1
γ=0, 3rd iteration
γ=1, step 1
γ=1, 3rd iteration
γ=0.2, step 1
γ=0.2, 3rd iteration
TM

Figure 6.12: PDD superimposed training: BER vs SNR under fd = 0Hz (time-invariant).
(TM: time-multiplexed training; “step 1”: the data detection scheme in Section 6.2.2;
“3rd iteration”: the third DML iteration; γ = 1: non-data-dependent training; γ = 0:
total elimination of self-interference; γ = 0.2: partial elimination of self-interference at the
channel estimation stage.)

and the simulation-based results follow the same trend, and the agreement between them

is good. It is also seen in Figure 6.11 that as the received signal SNR increases, the

optimum β and γ increase too. Higher β implies that a higher fraction of the transmitted

power is allocated to training, leading to more accurate channel estimates (with smaller

estimation variance). Intuitively, for higher SNR’s, it pays to achieve more accurate channel

estimates in order to achieve a lower effective noise power σ̄2
w. On the other hand, when the

SNR is low, improving channel estimation does not have much effect on the effective noise

power σ̄2
w. Similar comments apply to changes in optimum γ with SNR. Higher γ implies

lower power in effective noise component (1 − γ) be (n− l) but higher self-interference, hence

higher channel estimation variance – these two effects need to be counter-balanced. Finally,
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γ=0, step 1
γ=0, 3rd iteration
γ=1, step 1
γ=1, 3rd iteration
γ=0.2, step 1
γ=0.2, 3rd iteration
TM

Figure 6.13: PDD superimposed training: BER vs SNR under fd = 100Hz. (TM: time-
multiplexed training; “step 1”: the data detection scheme in Section 6.2.2; “3rd iteration”:
the third DML iteration; γ = 1: non-data-dependent training; γ = 0: total elimination of
self-interference; γ = 0.2: partial elimination of self-interference at the channel estimation
stage.)

observe from Figure 6.10 that the “bottom” (corresponding to the neighborhood of the

minimum BER point) of the BER surface is rather “flat”: the BER performance is not

sensitive to changes in β and γ over a rather “wide” area around the minimum, so that the

analysis described in Section 6.3.3 provides us an effective means for power allocation and

interference suppression.

The DML approach is now investigated to enhance the channel estimation and data

detection performance. We considered the channels with Doppler spread fd = 0, 100, and

200Hz respectively, with the corresponding number of basis functions Q = 1, 4, and 6.

Note that the channel with fd = 0Hz is time-invariant; this case is considered because here

there are no modeling errors. The “non-data-dependent” (γ = 1) superimposed training
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γ=0, step 1
γ=0, 3rd iteration
γ=1, step 1
γ=1, 3rd iteration
γ=0.2, step 1
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Figure 6.14: PDD superimposed training: BER vs SNR under fd = 200Hz. (TM: time-
multiplexed training; “step 1”: the data detection scheme in Section 6.2.2; “3rd iteration”:
the third DML iteration; γ = 1: non-data-dependent training; γ = 0: total elimination of
self-interference; γ = 0.2: partial elimination of self-interference at the channel estimation
stage.)

was compared with the “completely” (γ = 0) and “partially” (γ = 0.2) data-dependent

scheme. We again set TIR = 0.15 for the superimposed training. At the receiver, DML

iterations follow the data detection scheme we described at Section 6.2.2 (denoted by “step

1” in the figures). We show NCMSE and BER in Figures 6.12–6.17 where the results of Step

1 and the third iteration only are depicted. It is seen that the DML algorithm significantly

improves the performances.

For the purpose of comparison, the TM training approach described in Appendix A,

originally proposed for CE-BEM as an optimal scheme, is applied to the DPS-BEM case.

We take a training block of 2L + 1 = 9 symbols as
{
0, 0, 0, 0,

√
2L+ 1, 0, 0, 0, 0

}
, which

follows an information data block of length 60 leading to a frame of 69 symbols. This
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γ=0, step 1
γ=0, 3rd iteration
γ=1, step 1
γ=1, 3rd iteration
γ=0.2, step 1
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Figure 6.15: PDD superimposed training: NCMSE vs SNR under fd = 0Hz (time-
invariant). (TM: time-multiplexed training; “step 1”: the data detection scheme in Section
6.2.2; “3rd iteration”: the third DML iteration; γ = 1: non-data-dependent training; γ = 0:
total elimination of self-interference; γ = 0.2: partial elimination of self-interference at the
channel estimation stage.)

subblock was repeated over a record length of 414 symbols with a total of 6 subblocks. The

information data is also BPSK and have unit power. Thus, the training-to-information bit

and power ratios are both 0.15 (the amplitude of the single nonzero training bit was picked

to achieve this power ratio). Using the training sequence, we can uniquely determine hq (l)’s

via an LS approach.

By (6.9) note that |Ω| = P (2Q+ 2k + 1) (k = −1 in the simulations). For the time-

invariant channel (fd = 0) Q = 1, so that the information contained in the self-interference

part of the information sequence is comparatively small. Therefore, total suppression (γ =

0) of the self-interference does not have a significant deleterious effect on the BER, while the

improvement in channel estimation is significant—it is the scenario described by [20] and
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γ=0, step 1
γ=0, 3rd iteration
γ=1, step 1
γ=1, 3rd iteration
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Figure 6.16: PDD superimposed training: NCMSE vs SNR under fd = 100Hz. (TM: time-
multiplexed training; “step 1”: the data detection scheme in Section 6.2.2; “3rd iteration”:
the third DML iteration; γ = 1: non-data-dependent training; γ = 0: total elimination of
self-interference; γ = 0.2: partial elimination of self-interference at the channel estimation
stage.)

depicted in Figures 6.12 and 6.15. Exploiting the PDD scheme (γ = 0.2) in this case does

not have much impact. All the three schemes (γ = 0, 0.2, and 1) after three iterations of

the DML scheme have BER performance in Figure 6.12 similar to that of the TM training.

As the Doppler spread fd increases, we have to employ a larger Q to describe the

channel and the self-interference thus grows. Now total suppression (γ = 0) is no longer a

wise option, whereas the PDD scheme still performs well. In Figures 6.13 and 6.14, with

γ = 0.2 the PDD scheme is superior to the other two superimposed training-based schemes in

data detection, whether before or after DML iterations, since the self-interference has been

greatly suppressed while the information loss has been effectively reduced. In Figures 6.16

and 6.17, although the “completely” data-dependent (γ = 0) training has the best channel

182



0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

5

SNR (dB)

N
or

m
al

iz
ed

 C
ha

nn
el

 M
S

E
 (

dB
)

Viterbi detector: K=N=1, L=4, T=420, T
s
=25µs, TIR=0.15, f

d
=200Hz, P=5, 500 Runs.

 

 

γ=0, step 1
γ=0, 3rd iteration
γ=1, step 1
γ=1, 3rd iteration
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Figure 6.17: PDD superimposed training: NCMSE vs SNR under fd = 200Hz. (TM: time-
multiplexed training; “step 1”: the data detection scheme in Section 6.2.2; “3rd iteration”:
the third DML iteration; γ = 1: non-data-dependent training; γ = 0: total elimination of
self-interference; γ = 0.2: partial elimination of self-interference at the channel estimation
stage.)

estimation before iterations, the PDD scheme with γ = 0.2 yields better performance after

three iterations, due to the lower BER in the DML approach. The BER performance of

the PDD scheme after several DML iterations is competitive with the TM training, without

incurring any training overhead penalty.

6.5 Conclusions

In this chapter, we presented a data-dependent superimposed training scheme to re-

duce the self-interference in channel estimation. Inspired by the work of [20], we observed

that over a channel satisfying a band-limited BEM such as CE- or DPS-BEM, the periodic
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superimposed training components within the received signal occur only at certain fre-

quencies. By designing a data-dependent superimposed training sequence that suppresses

the information sequence at those frequencies, the self-interference adversely affecting the

channel estimation at the receiver is greatly reduced. However, the suppressed frequency

components of the information sequence carry “information” as well. A PDD superimposed

training method was proposed to strike a trade-off between self-interference cancelation and

information integrity. Performance analysis and related optimization of parameters were

also discussed. Computer simulation examples demonstrated that by using PDD superim-

posed training, competitive performance with TM training can be achieved but with no

training overhead penalty.
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Chapter 7

Direct FIR Linear Equalization of Doubly-Selective Channels Based on

Superimposed Training

7.1 Introduction

Two powerful tools have been exploited so far in our previous chapters on channel

estimation: superimposed training, providing us a means to track the temporal variation

of the channel, and BEM’s, reducing the problem of estimation of a time-varying channel

over a period of time to estimation of time-invariant parameters.

In wireless channels, signal distortion due to multipath propagation or band-limited

transmission may cause ISI at reception. An equalizer is the device to compensate ISI at

the receive end. The noise-free received signal is the convolution between the transmitted

symbols and the impulse response of the channel. Therefore, the equalizer, whose task

is to recover the transmitted symbols, is a deconvolution device. Since a doubly-selective

channel can be well described by BEM’s, we expect that an equalizer, as an inverse of

the channel, can also be well represented by BEM’s. Given the knowledge of the time-

varying channel described by CE-BEM, design of serial time-varying FIR equalizers has

been discussed in [2]. Direct design of time-invariant FIR equalizers based on superimposed

training, for time-invariant channels, has been investigated in [58]. In this chapter, we

investigate direct design of time-varying FIR linear equalizers for doubly-selective channels

using superimposed training and without first estimating the underlying channel response.

We exploit the prior results of [2, 58].
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In Section 7.2, the direct FIR linear equalization using superimposed training and

CE-BEM is discussed. By utilizing user-specific training sequences, this direct equalizer is

extended to a multiple-user wireless ad hoc network in Section 7.3.

7.2 Direct FIR Linear Equalization Using CE-BEM

Consider a time-varying SIMO FIR linear channel with N outputs. Let {s(n)} denote a

scalar sequence which is input to the SIMO time-varying channel with discrete-time impulse

response {h(n; l)} (N -vector channel response at time n to a unit input at time n− l). Then

the symbol-rate, channel output vector is given by (3.1)

x(n) :=

L∑

l=0

h(n; l)s(n− l). (7.1)

The noisy measurements of x(n) are given by

y(n) = x(n) + v(n).

In a CE-BEM representation it is assumed that the channel follows (2.9)

h(n; l) =

Q̃
∑

q=1

hq(l)e
jωqn (7.2)

where N -column vectors hq(l) are invariant for the whole block n = 0, 1, . . ., T − 1, and

Q̃ := 2⌈fdTTs⌉ + 1,

L := ⌊τd/Ts⌋,
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ωq :=
2π

T
(q − 1

2
− Q

2
), q = 1, 2, . . ., Q.

In superimposed training one takes

s(n) = b(n) + c(n),

where {b(n)} is the information sequence and {c(n)} is the training sequence added (super-

imposed) at low power to the information sequence at the transmitter before modulation

and transmission.

Given this channel model, the main problem considered here is: how to design an

equalizer to estimate {b(n)} when one knows only {c(n)} but not (obviously) {b(n)} and

one does not also have (frame) synchronization with {c(n)} at the receiver. We will design

an equalizer to estimate {c(n)} with a delay d. We will then show that this equalizer is a

scaled version of the corresponding equalizer designed to estimate {b(n)} with a delay d.

7.2.1 Time-Varying FIR Equalizers

We will restrict ourselves to serial linear equalizers instead of block linear equalizers,

since as shown in [2], the latter are computationally prohibitive (compared with the former).

We look for a time-varying linear equalizer g(n; l) (l = 0, 1, . . ., Le) over the same time block

as the received data with channel model (7.2). We note that for an arbitrary time-varying

impulse response g̃(n; l), the following is always true

g̃(n; l) =

T∑

q=1

g̃q(l)e
jωqn, n = 0, 1, . . ., T − 1.
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We would like to use a more parsimonious (but approximate) representation for g̃(n; l),

denoted by g(n; l), given by

g(n; l) =

Q
∑

q=1

gq(l)e
jωqn, n = 0, 1, . . ., T − 1,

where Q≪ T − 1. In order to estimate the input sequence {s(n)} (see (7.1)), we may seek

a linear time-varying FIR estimator using CE-BEM to yield an estimate with equalization

delay d (0 ≤ d ≤ Le)

ŝ(n− d) =

Le∑

i=0

gH(n; i)y(n − i).

Existence of a zero-forcing linear equalizer has been discussed in [2]. Their conclusion is that

if N is at least two, then with probability one, one has a zero-forcing solution for sufficiently

large Le and Q. For a linear MMSE solution, existence is not an issue, although MMSE

equalizer performance can be expected to be “good” if zero-forcing equalizers exist [2]. Here

we will seek a least squares solution g(n; l) to minimize a cost such as

J =
1

T

T−1∑

n=0

|s(n− d) − ŝ(n− d)|2 .

7.2.2 Linear LS Equalizers Based on CE-BEM

Our algorithm is based on the following model assumptions:

(H7.2.1) The information sequence {b(n)} is zero-mean, i.i.d. (independent and identically

distributed), with E{|b(n)|2} = σ2
b .

(H7.2.2) The measurement noise {v(n)} is zero-mean (E{v(n)} = 0), white, independent of

{b(n)}, with E{[v(n + τ)][v(n)]H} = σ2
vINδ(τ).
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(H7.2.3) The superimposed training sequence c(n) = c(n+P ) for all n is a non-random periodic

sequence with period P . Let σ2
c := (1/P )

∑P
n=1 |c(n)|2.

(H7.2.4) Record length T and period P satisfy TP−1 > Q̃. Moreover, P > L+ Le − d.

As in (3.5), the periodic training sequence of period P can be written as

c(n) =
P−1∑

m=0

cme
jαmn

where αm := 2πm/P . To design the time-varying linear equalizer to estimate a delayed

version of the training sequence c(n − d) (0 ≤ d ≤ Le), we have

ĉ(n− d) =

Le∑

i=0

gH
d (n; i)y(n − i)

where we assume that

gd(n; i) =

Q
∑

q=1

gq(i)e
jωqn.

Choose gq(i)’s to minimize the time-averaged cost

Jc :=
1

T

T−1∑

n=0

|c(n − d) − ĉ(n− d)|2

=
1

T

T−1∑

n=0

∣
∣
∣
∣
∣
∣

c(n − d) −
Le∑

i=0

Q
∑

q=1

gH
q (i)e−jωqny(n − i)

∣
∣
∣
∣
∣
∣

2

.

By taking the derivative and setting it to be zero, we have

∂Jc

∂g∗
q1

(i1)
= − 1

T

T−1∑

n=0

e−jωq1ny(n − i1)



c∗(n− d) −
Le∑

i=0

Q
∑

q=1

ejωqnyH(n− i)gq(i)



 = 0
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for i1 = 0, 1, . . ., Le and q1 = 1, 2, . . ., Q. This leads to

Le∑

i=0

Q
∑

q=1

[

1

T

T−1∑

n=0

ej(ωq−ωq1 )ny(n− i1)y
H(n− i)

]

gq(i)

=
1

T

T−1∑

n=0

c∗(n− d)e−jωq1ny(n − i1) =: Rc(q1, i1). (7.3)

To design the time-varying linear equalizer to estimate the information sequence b(n−d)

(0 ≤ d ≤ Le), we have

b̂(n− d) =

Le∑

i=0

ḡH
d (n; i)y(n − i)

where we assume that

ḡd(n; i) =

Q
∑

q=1

ḡq(i)e
jωqn.

Choose ḡq(s)’s to minimize

Jb :=
1

T

T−1∑

n=0

∣
∣
∣b(n− d) − b̂(n− d)

∣
∣
∣

2
.

Mimicking the results for the superimposed training sequence-based equalization,

Le∑

i=0

Q
∑

q=1

[

1

T

T−1∑

n=0

ej(ωq−ωq1 )ny(n− i1)y
H(n− i)

]

ḡq(i)

=
1

T

T−1∑

n=0

b∗(n− d)e−jωq1ny(n− i1) =: Rb(q1, i1). (7.4)

Comparing (7.3) and (7.4), we see that (ignoring the equalizer coefficients) the left sides

of the two are identical. We now seek to establish that for large T , Rc(q1, i1) = βRb(q1, i1)

for all q1, i1, for some scalar β, so that gq(i) = βḡq(i) for all i.
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We first consider

Rc(q1, i1)

=
1

T

T−1∑

n=0

c∗(n − d)e−jωq1n

{
L∑

l=0

h(n− i1; l) [b(n − i1 − l) + c(n− i1 − l)] + v(n− i1)

}

=
1

T

T−1∑

n=0

P−1∑

m1=0

c∗m1
e−jαm1 (n−d)e−jωq1n

×







L∑

l=0

Q̃
∑

q=1

hq (l) ejωq(n−i1)

[
P−1∑

m2=0

cm2e
jαm2 (n−i1−l) + b (n− i1 − l)

]

+ v (n− i1)







=

Q̃
∑

q=1

L∑

l=0

P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

jαm1de−jαm2 (i1+l)e−jωqi1hq(l)A0

+

Q̃
∑

q=1

L∑

l=0

P−1∑

m1=0

c∗m1
ejαm1de−jωqi1hq(l)A1 +

P−1∑

m1=0

c∗m1
ejαm1dA2

where

A0 :=
1

T

T−1∑

n=0

ej(−αm1+αm2−ωq1+ωq)n,

A1 :=
1

T

T−1∑

n=0

ej(−αm1−ωq1+ωq)nb(n− i1 − l),

A2 :=
1

T

T−1∑

n=0

e−j(αm1+ωq1 )nv(n− i1).

Under the condition TP−1 > Q̃ (then (αm1 + ωq1) = (αm2 + ωq2) if and only if m1 = m2

and q1 = q2), we have

A0 = δ(m1 −m2)δ(q1 − q).
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Furthermore, we have

E
{

|A1|2
}

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

ej(−αm1−ωq1+ωq)(n1−n2)E {b (n1 − i1 − l) b∗ (n2 − i1 − l)}

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

ej(−αm1−ωq1+ωq)(n1−n2)σ2
bδ(n1 − n2) =

σ2
b

T
.

Similarly, it follows that

E
{

‖A2‖2
}

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

e−j(αm1+ωq1)(n1−n2)vH (n1 − i1)v (n2 − i1)

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

e−j(αm1+ωq1)(n1−n2)Nσ2
vδ (n1 − n2)

=
Nσ2

v

T
.

In the mean square sense (and thus in probability), we then have the following two limits

lim
T→∞

A1
m.s.
= 0, and lim

T→∞
A2

m.s.
= 0.

Thus for “large” T , we have

lim
T→∞

Rc(q1, i1)
m.s.
=

Q̃
∑

q=1

L∑

l=0

P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

jαm1de−jαm2 (i1+l)e−jωqi1hq (l)

[

1

T

T−1∑

n=0

ej(−αm1+αm2−ωq1+ωq)n

]

192



=

Q̃
∑

q=1

L∑

l=0

P−1∑

m1=0

P−1∑

m2=0

c∗m1
cm2e

jαm1de−jαm2 (s1+l)e−jωki1hq (l) δ (m1 −m2) δ (q1 − q)

=

Q̃
∑

q=1

L∑

l=0

P−1∑

m=0

|cm|2 ejαm(d−i1−l)e−jωqi1hk (l) δ (q1 − q) .

If the training sequence {c(n)} is periodic white, i.e.,

P−1
P−1∑

n=0

c(n)c∗(n− l) = σ2
cδ(lmodP ),

then
P−1∑

m=0

|cm|2 ejαm(d−i1−l) = σ2
cδ((d − i1 − l) modP ).

This fact then leads to

lim
T→∞

Rc(q1, i1)
m.s.
=







σ2
ce

−jωq1 i1hq1((d − i1)mod P ) if 1 ≤ q1 ≤ Q̃

0 otherwise

(7.5)

for i1 = 0, 1, . . ., Le and q1 = 1, 2, . . ., Q.

Turning to (7.4), we have

Rb (q1, i1) =

Q̃
∑

q=1

L∑

l=0

P−1∑

m=0

cmhq(l)e
−jαm(i1+l)e−jωki1A3 +

Q̃
∑

q=1

L∑

l=0

hq(l)e
−jωqi1A4 + A5

where

A3 :=
1

T

T−1∑

n=0

ej(αm−ωq1+ωq)nb∗(n − d),

A4 :=
1

T

T−1∑

n=0

ej(ωq−ωq1 )nb(n− i1 − l)b∗(n− d),
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A5 :=
1

T

T−1∑

n=0

e−jωq1nv(n − i1)b
∗(n − d).

We can show (as before) that

lim
T→∞

A3
m.s.
= 0,

lim
T→∞

A5
m.s.
= 0.

Consider

A6 :=
1

T

T−1∑

n=0

ej(ωq−ωq1 )n
[
b(n − i1 − l)b∗(n− d) − σ2

bδ(d − i1 − l)
]
.

It then follows that

E
{

|A6|2
}

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

ej(ωq−ωq1)(n1−n2)E
{∣
∣b (n− i1 − l) b∗ (n− d) − σ2

b δ (d− i1 − l)
∣
∣
2
}

=
1

T 2

T−1∑

n1=0

T−1∑

n2=0

ej(ωq−ωq1)(n1−n2)
[

E
{

|b (n)|4
}

− σ4
b

]

δ (n1 − n2) δ (d− i1 − l)

=
1

T

[

E
{

|b(n)|4
}

− σ4
b

]

δ(d− i1 − l).

Therefore, we have limT→∞A6
m.s.
= 0, and consequently

lim
T→∞

A4
m.s.
=

1

T

T−1∑

n=0

ej(ωq−ωq1 )nσ2
b δ(d− i1 − l)

= σ2
bδ(d − i1 − l)δ(q1 − q).
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Hence, for “large” T , we have

lim
T→∞

Rb (q1, i1)
m.s.
=

Q̃
∑

q=1

L∑

l=0

hq(l)e
−jωqi1σ2

bδ(d − i1 − l)δ(q1 − q).

For i1 = 0, 1, . . ., Le and q1 = 1, 2, . . ., Q but q1 ≤ Q̃, we therefore have

lim
T→∞

Rb(q1, i1)
m.s.
= hq1(d− i1)e

−jωq1 i1σ2
b . (7.6)

If P > L+Le−d, then (7.5) equals (7.6) (within a scale factor). Therefore, for “large”

T , Rc(q1, i1) = βRb(q1, i1) for all q1, i1 with β = σ2
c/σ

2
b ; hence gq(i) = βḡq(i) for all i.

For the desired linear time-varying equalizer, we execute the following steps:

1. Pick Le and d (= Le

2 in the following simulations). Pick Q ≥ Q̃, P > L+ Le − d.

2. Solve (7.3), given data y(n), for gq(i) where 0 ≤ i ≤ Le and 1 ≤ q ≤ Q. Then

gd(n; i) =

Q
∑

q=1

gq(i)e
jωqn.

3. The equalized output is then given by

e1(n) =

Le∑

i=0

gH
d (n; i)y(n − i) ≈ α1c(n − d) + α2b(n− d) + ṽ(n)

where ṽ(n) is the equalized noise. Estimate α1 as

α̂1 =
1
T

∑T−1
n=0 e1(n)c∗(n− d)

1
T

∑T−1
n=0 |c(n− d)|2

=
1
T

∑T−1
n=0 e1(n)c∗(n− d)

σ2
c

.
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4. Define

e2(n) = e1(n) − α̂1c(n− d) ≈ α2b(n− d) + ṽ(n).

Then we hard-quantize e2(n) to estimate b(n− d).

7.3 Direct FIR Linear Equalization: Multiple Users

Multiple access schemes allow multiple users to share a common channel. Random

access methods provide each user with a flexible way of gaining access to the channel

whenever the user has information (packets) to be sent. In random access, typically when

two packets collide, they are discarded and then have to be retransmitted. In wireless ad

hoc networks (also known as mobile ad hoc networks—MANET’s), absence of base stations

limits the use of traditional media access control (MAC) protocols [34]. In ad hoc networks

one needs some sort of distributed MAC requiring some form of random access which makes

avoiding collisions difficult. Collisions arising from uncoordinated users decrease system

throughput and worsen delay performance. Multiple packet reception (MPR) capability (or

signal separation) is one way to resolve packet collisions and thereby enhance throughput,

by using signal processing to separate multiple received signals [75]. Recently, wireless ad

hoc networks with asynchronous transmissions have been considered in [15, 58, 60]. The

approaches of [15, 58] use user-specific modulation induced cyclostationarity coupled with

receive antenna array to achieve MPR for frequency-selective time-invariant channels. In

[60] user-specific superimposed training signals (also called hidden pilots or implicit training)

have been used for MPR for frequency-selective time-invariant channels. The objective of

this section is to investigate approaches using user-specific superimposed training signals
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for MPR in MANET’s for transmissions over doubly-selective channels, with emphasis on

asynchronous networks.

Consider a time-varying MIMO FIR linear channel with K inputs (users) and N out-

puts (receiver array with N elements at the destination node). Let {sk(n)} denote the k-th

user’s information sequence which is input to the MIMO doubly-selective channel with the

k-th user’s discrete-time impulse response {hk(n; l)} (N -vector channel response at time n

to a unit input at time n− l). Consider a typical (one-hop) MANET structure in an asyn-

chronous mode. Assume K active users with a packet length of S symbols, in the coverage

area of the node under evaluation. Each node is equipped with N (≥ 1) receive antennas

and receiver node processes a data record block of size T (≥ S) symbols. Various packets

can be located anywhere within this observation block. Using a sliding block approach (as

in [15, 60]), we assume that the packet of interest is totally within the observation block.

(An energy detector or related approaches can be used to ensure this [15, 60].) The noisy

received (baseband-equivalent, symbol-rate) signal at the node-of-interest at time n is an

N -column vector y(n), n1 ≤ n ≤ n1 + T − 1, given by (n1 is the “initial” time of the

observation block)

y(n) =
K∑

k=1

L∑

l=0

hk(n; l)sk(n− l) + v(n). (7.7)

In a CE-BEM representation it is assumed that the channel for each user follows (2.9)

hk(n; l) =

Q̃
∑

q=1

hqk(l)e
jωqn, k = 1, 2, . . .,K (7.8)
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where N -column vectors hq(l) are invariant for the whole block n = 0, 1, . . ., T − 1, and

Q̃ := 2⌈fdTTs⌉ + 1,

L := ⌊τd/Ts⌋,

ωq :=
2π

T
(q − 1

2
− Q

2
), q = 1, 2, . . ., Q.

In superimposed training-based approaches, for the k-th user, one takes

sk(n) = bk(n) + ck(n)

where {bk(n)} is the information sequence and {ck(n)} is a user-specific non-random periodic

training sequence.

The main problem considered here is: How to design an equalizer to estimate {b1 (n)},

the information sequence of user 1 (the desired user), when one knows only {c1 (n)} but

not (obviously) {b1 (n)} and one does not also have (frame) synchronization with {c1 (n)}

at the receiver. We will design an equalizer to estimate {c1 (n)} with a delay d. In a

manner similar to Section 7.2, we will then show that this equalizer is a scaled version

of the corresponding equalizer designed to estimate {b1 (n)} with a delay d provided that

{ck (n)} satisfies certain properties.
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7.3.1 User-Specific Training Sequences

Each user is assigned (or selects) a user-specific training sequence. The sequences

ck (n) := σck exp

[

j2π

(
n2

P̃
+ αkn

)]

, (7.9a)

αk :=
m− 1

D
, m = 1, 2, . . .,D ≥ K (7.9b)

have been used in [58, 60], which are periodic with period P = DP̃ where D, P̃ , and σck

are design parameters (D and P̃ are coprime). Different users are characterized by different

αk’s and distinct sequences are mutually orthogonal and individually periodic white. (There

is a common code book at each node of size D containing the possible values of αk. During

the “initial contact” period, a given node searches for all possible D signals.) In a different

context, as in Section 3.5, we have proposed the user-specific sequences in (3.63)–(3.64) by

using an m-sequence of periodic P̃ with P = DP̃ . These sequences are periodic with period

P , mutually orthogonal and individually “nearly” periodic-white with period P̃ .

Given the knowledge of the time-varying channel described by CE-BEM, we investi-

gate direct design of time-varying FIR linear equalizers for doubly-selective channels using

superimposed training and without first estimating the underlying channel response.

7.3.2 Linear LS Equalizers for the Desired User

We look for a time-varying linear equalizer g(n; l) (l = 0, 1, . . ., Le) over the same time

block as the received data with channel model (7.8). Following the discussions in Section

7.2.2, we assume

g(n; l) =

Q
∑

q=1

gq(l)e
jωqn, n = 0, 1, . . ., T − 1.
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In order to estimate the input sequence of the desired user (user 1, with no loss of generality)

{s1(n)} (see (7.7)), we may seek a linear time-varying FIR estimator using CE-BEM to yield

an estimate with equalization delay d

ŝ1(n− d) =

Le∑

i=0

gH(n; i)y(n − i).

Similar to Section 7.2, we also seek an LS solution g(n; l) to minimize a cost such as

J =
1

T

T−1∑

n=0

|s1(n− d) − ŝ1(n − d)|2 .

We first state the underlying model assumptions.

(H7.3.1) The information sequence {bk(n)} is zero-mean, i.i.d. (independent and identically

distributed), with E{|bk(n)|2} = σ2
bk. They are also independent across users (k =

1, 2, . . .,K).

(H7.3.2) The measurement noise {v(n)} is zero-mean (E{v(n)} = 0), white, independent of

{bk(n)}, with E{[v(n + τ)][v(n)]H} = σ2
vINδ(τ).

(H7.3.3) The superimposed training sequence ck(n) = ck(n + P ) for all n is a non-random

periodic sequence with period P . Let σ2
ck := (1/P )

∑P
n=1 |ck(n)|2. The sequences are

chosen as in (7.9), or in Section 3.5.

(H7.3.4) Record length T and period P satisfy TP−1 > Q̃ and TP−1 is an integer. Moreover,

P̃ > L+ Le − d where d (≥ 0) is the desired equalization delay.
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It then follows that [58,77]

1

P

P−1∑

n=0

ck (n) c∗m (n− τ) = γk (τ) δ
(

τ mod P̃
)

δ (k −m)

where

γk (τ) =







σ2
cke

j2πkτ/D for (7.9)

σ2
cke

j2π(k−1)τ/P for the sequences in Section 3.5.

The periodic training sequence can be written as

ck(n) =

P−1∑

m=0

ckme
jαmn

where αm := 2πm/P . To design the time-varying linear equalizer to estimate a delayed

version of the desired user’s training sequence c1(n− d) (0 ≤ d ≤ Le), we have

ĉ1(n− d) =

Le∑

i=0

gH
d (n; i)y(n − i)

where we assume that

gd(n; i) =

Q
∑

q=1

gq(i)e
jωqn.

Choose gq(i)’s to minimize the time-averaged cost

Jc :=
1

T

T−1∑

n=0

|c1(n− d) − ĉ1(n− d)|2 ,
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and by taking the derivative of Jc and setting it to be zero, we have

0 =
∂Jc

∂g∗
q1

(i1)

= − 1

T

T−1∑

n=0

e−jωq1ny(n − i1)



c∗(n− d) −
Le∑

i=0

Q
∑

q=1

ejωqnyH(n− i)gq(i)





for i1 = 0, 1, . . ., Le and q1 = 1, 2, . . ., Q. This leads to

Le∑

i=0

Q
∑

q=1

[

1

T

T−1∑

n=0

ej(ωq−ωq1 )ny(n− i1)y
H(n− i)

]

gq(i)

=
1

T

T−1∑

n=0

c∗1(n− d)e−jωq1ny(n − i1) =: Rc(q1, i1). (7.10)

To design the time-varying linear equalizer to estimate the desired user’s information

sequence b1(n− d) (0 ≤ d ≤ Le), we have

b̂1(n − d) =

Le∑

i=0

ḡH
d (n; i)y(n − i)

where we assume that

ḡd(n; i) =

Q
∑

q=1

ḡq(i)e
jωqn.

Choose ḡq(s)’s to minimize

Jb :=
1

T

T−1∑

n=0

∣
∣
∣b1(n− d) − b̂1(n− d)

∣
∣
∣

2
.
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Mimicking the results for the superimposed training sequence-based equalization,

Le∑

i=0

Q
∑

q=1

[

1

T

T−1∑

n=0

ej(ωq−ωq1 )ny(n− i1)y
H(n− i)

]

ḡq(i)

=
1

T

T−1∑

n=0

b∗1(n− d)e−jωq1ny(n− i1) =: Rb(q1, i1). (7.11)

Comparing (7.10) and (7.11), we see that (ignoring the equalizer coefficients) the left

sides of the two are identical. We now seek to establish that for large T , Rc(q1, i1) =

βRb(q1, i1) for all q1, i1, for some scalar β, so that gq(i) = βḡq(i) for all i.

Following similar derivations as in Section 7.2.2, by defining

γ̃1 (i) :=
L∑

l=0

γ∗1 (d− i− l) δ
(

(d− i− l) mod P̃
)

we have

lim
T→∞

Rc(q1, i1)
m.s.
=







γ̃∗1 (i1) e
−jωq1 i1hq1((d − i1)mod P̃ ) if 1 ≤ q1 ≤ Q̃

0 otherwise

(7.12)

for i1 = 0, 1, . . ., Le and q1 = 1, 2, . . ., Q. It is also shown that for i1 = 0, 1, . . ., Le and

q1 = 1, 2, . . ., Q but 1 ≤ q1 ≤ Q̃

lim
T→∞

Rb(q1, i1)
m.s.
= h1q1(d− i1)e

−jωq1 i1σ2
b1. (7.13)

If P̃ > L + Le − d, then (7.12) equals (7.13) (within a scale factor) and γ̃1 (i1) = σ2
c1.

Therefore, for “large” T , Rc(q1, i1) = βRb(q1, i1) for all q1, i1 with β = σ2
c1/σ

2
b1; hence

gq(i) = βḡq(i) for all i.
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For the desired equalizer design, we execute the following steps:

1. Pick Le and d (= Le

2 in the following simulations). Pick Q ≥ Q̃, P > L+ Le − d.

2. Solve (7.10), given data y(n), for gq(i) where 0 ≤ i ≤ Le and 1 ≤ q ≤ Q. Then

gd(n; i) =

Q
∑

q=1

gq(i)e
jωqn.

3. The equalized output is then given by

e1(n) =

Le∑

i=0

gH
d (n; i)y(n − i) ≈ α1c1(n− d) + α2b1(n− d) + ṽ(n)

where ṽ(n) is the equalized noise plus multiple-user interference. Estimate α1 as

α̂1 =
1
T

∑T−1
n=0 e1(n)c∗1(n− d)

1
T

∑T−1
n=0 |c1(n− d)|2

=
1
T

∑T−1
n=0 e1(n)c∗1(n− d)

σ2
c1

.

4. Define

e2(n) = e1(n) − α̂1c1(n− d) ≈ α2b1(n− d) + ṽ(n).

Then we hard-quantize e2(n) to estimate b1(n− d).

7.4 Simulation Examples

7.4.1 Direct FIR Equalization: Single User

In this example, we consider the direct FIR linear equalization using superimposed

training and CE-BEM. We generate a doubly-selective SIMO Rayleigh fading channel fol-

lowing the Jakes’ model with N = 1, 2, and 3, and L = 2 (3 taps) in (7.1). In the simulation,
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Figure 7.1: Single-user direct FIR equalization: BER vs SNR under fd = 0Hz and length
of equalizer Le = 6 with different TIR and number of receivers.

we pick a data record length of T = 405 symbols (time duration of approximately 10ms).

The communications system described in Section 2.6.3 with Ts = 25µs is employed. We

consider the system operating under different Doppler spreads with the number of basis

functions Q = 5. We choose TIR = 0.3, 1.0, and 2.0, so that the average transmitted power

in {c (n)} can be less, equal, or larger than the power in {b (n)}. The information sequence

{b(n)} is BPSK modulated. We take the superimposed training sequence of period P = 15

as c (n) = σce
jπn(n+ν)/P where ν = 1 if P is odd and ν = 2 if P is even, as in [59]—this

sequence is periodic white.

We first consider a single-user scenario. We assume the additive noise {v(n)} is

zero-mean, white complex-Gaussian, uncorrelated with {b(n)} with E{v(n + τ)vH(n)} =

σ2
vINδ(τ). The (receiver) SNR refers to the energy per bit over one-sided noise spectral
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Figure 7.2: Single-user direct FIR equalization: BER vs SNR under fd = 50Hz and length
of equalizer Le = 6 with different TIR and number of receivers.

density with both information and superimposed training sequence counting toward the bit

energy. All simulation results are based on 500 Monte Carlo runs.

The BER results for and various SNR’s and fd = 0, 50, and 100Hz are shown in Figures

7.1–7.3 respectively. We can clearly see that more receive antennas (larger N) will surely

improve the reception, since space diversity can be exploited. However, increasing TIR does

not necessarily benefit the performance, since higher TIR leads to more accurate equalizer

taps as well as lower effective SNR due to less power assigned to information. Therefore,

a trade-off has to made in selecting TIR. Generally speaking, higher SNR or more receive

antennas allows for more power allocated to superimposed training, due to less interference

present. We also note that the error floors at the BER curves, which are partially attributed

to the modeling error of the CE-BEM in approximating the inverse of the channel.
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Figure 7.3: Single-user direct FIR equalization: BER vs SNR under fd = 100Hz and length
of equalizer Le = 6 with different TIR and number of receivers.

7.4.2 Direct FIR Equalization: Multiple Users

In this example, we consider a multiple-user scenario in a wireless ad hoc network. We

set the number of users K = 3. For each user, the channel follows that described in Section

7.4.1, i.e., a doubly-selective SIMO Rayleigh fading channel following Jakes’ model with

L = 2 (3 taps). Now we take the number of receive antennas N = 1, 2, 3, and 4. For different

users, the channel hk (n; l) are mutually independent. We also employ the communications

system described in Section 2.6.3 with Ts = 25µs. In the simulation, we pick a data

record length of T = 832 symbols. We assume the additive noise {v(n)} is zero-mean,

white complex-Gaussian, uncorrelated with {b(n)} with E{v(n + τ)vH(n)} = σ2
vINδ(τ).

The (receiver) SNR refers to the energy per bit over one-sided noise spectral density with
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Figure 7.4: Multiple-user direct FIR equalization (ad hoc): BER vs SNR under fd = 100Hz
and length of equalizer Le = 4 with different number of receivers.

both information and superimposed training sequence counting toward the bit energy. All

simulation results are based on 500 Monte Carlo runs.

Information sequences for each user are BPSK. We take the superimposed training

sequences’ period P = 52 with D = 4 and P̃ = 13 in (7.9). The average transmitted power

in {ck (n)} is equal to the power in {bk (n)}, leading to TIR of 1.0.

In the simulation, we consider an asynchronous case where the observation window fully

contains the desired user’s signal and the other two interfering signals (k = 2, 3) occupy

window [tk, tk + T − 1] where tk is uniformly distributed in [−T + 1, T − 1]; tk changes from

run to run.

Figure 7.4 shows the BER results versus SNR’s for a channel with fd = 100Hz. We

take the equalizer length Le = 4, and the number of basis functions Q = 7. More receive

antennas (larger N) enhance the reception significantly. However, due to the presence of
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Figure 7.5: Multiple-user direct FIR equalization (ad hoc): BER vs Doppler spread fd

under SNR = 25dB and length of equalizer Le = 4 with different number of receivers.

MUI and the modeling error of CE-BEM, noticeable error floors can be observed at each

curves. Figure 7.5 exhibits the BER’s for various Doppler spreads. We also take Le = 4, but

Q = Q̃ = 2⌈fdTTs⌉ + 1, as a function of fd. We can see that gradually BER’s deteriorate

with increasing Doppler spread fd. The curves for BER’s versus the equalizer length Le for

fd = 50Hz are displayed in Figure 7.6. Longer Le may equalize the received signal better,

but more taps add to estimation variance. We can see that Le = 4 is in the neighborhood

of the optimal length. The BER’s in all these figures are rather high, due to MUI. This can

be alleviated by error-correction coding.
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Figure 7.6: Multiple-user direct FIR equalization (ad hoc): BER vs length of equalizer Le

under fd = 50Hz and SNR = 25dB with different number of receivers.

7.5 Conclusions

In this chapter, design of doubly-selective linear equalizers for single- and multiple-user

frequency-selective time-varying channels was considered, using superimposed training and

without first estimating the underlying channel response. Assuming that both the time-

varying channel and the linear equalizers can be described by a CE-BEM representation,

we showed that if periodic white superimposed training sequences are used, the optimal

linear equalizer designed to extract the known training sequence was also a scaled version

of the optimal equalizer for the information sequence. Based on this fact, a single-user

direct equalizer was designed. By employing user-specific training sequences, this equalizer

was extended to a multiple-user scenario, which can be used in a wireless ad hoc network.
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Chapter 8

Concluding Remarks and Future Work

This dissertation considered the issue of channel estimation and equalization and data

detection, using superimposed training and BEM’s, for wireless systems in doubly-selective

channels. With a detailed analysis of the interference from the information sequence in

superimposed training-based methods, our most important contribution is the approaches

to suppress the self-interference.

Typical wireless channels are characterized by time- and frequency-selectivity: Mul-

tipath propagation and limited bandwidth result in frequency selectivity leading to ISI;

temporal variation of the channel is attributed to the relative motion between the trans-

mitter and the receiver, as well as oscillator drifts and phase noises.

In superimposed training-based estimation and equalization, at the transmitter, a pe-

riodic (non-random) training sequence is superimposed (at low power) to the information

sequence, before modulation and transmission. Compared with conventional TM training,

there is no loss in data transmission rate for superimposed training, but some useful power

has been allocated to training sequences.

We described the doubly-selective channel, over a block of symbol intervals, by various

BEM’s (whereas we employed Jakes’ model that is independent to BEM’s to generate the

“true” channel in simulations), including CE-, OP-, and DPS-BEM’s, so that estimating

the time-varying channel was reduced to estimating fewer time-invariant parameters.
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8.1 Summary of Original Work

In Chapter 3, beginning with the first-order statistics-based channel estimator proposed

in [81] that exploits superimposed training and CE-BEM, we modified this estimator to

DPS- and OP-BEM’s so that the spectral leakage induced by CE-BEM can be reduced. The

OP-BEM-based estimator, moreover, can be applied to any BEM representation, and thus

has a more general structure. By utilizing user-specific superimposed training sequences,

we assigned distinct cycle frequencies of the periodic training sequences to distinct users

so that channel estimation across different users is decoupled and the single-user estimator

can be applied to this multiple-user scenario.

Performance analysis of the first-order statistics-based estimator proposed in the pre-

vious chapter was discussed in Chapter 4. Although the modeling error of BEM’s and noise

contribute to the channel estimation mismatch, performance analysis clearly shows that

the major interference using superimposed training comes from the unknown information

sequences. Power allocation and bias-variance trade-off of the first-order statistics-based

estimator are also considered in this chapter, based on the results of performance analysis.

We cast these optimization issues as maximization of an SNR for equalizer design.

How to reduce the information-induced self-interference, was the topic of the following

two chapters. In Chapter 5, by exploiting the fact that training and information sequences

pass through an identical channel, an iterative DML approach was proposed to jointly

improve the channel and sequence estimation. Beginning with the first-order statistics-

based channel estimator, we used the detected data symbols from the preceding iteration to

reduce the self-interference at the current iteration. A local maximum of DML function is

guaranteed by this method. To reduce the computational complexity of the ML detection,
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symbol detection techniques such as Kalman filtering can also be adopted instead of the

Viterbi algorithm used in the DML approach.

In contrast to the receiver-end DML approach, a data-dependent superimposed training

scheme that is a transmitter-end processing technique, was proposed in Chapter 6. Inspired

by the work of [20], we observed that over a channel satisfying a band-limited BEM such as

CE- or DPS-BEM, the periodic superimposed training components within the received sig-

nal occur only at certain frequencies. By designing a data-dependent superimposed training

sequence that suppresses the information sequence at those frequencies, the self-interference

adversely affecting the channel estimation at the receiver is greatly reduced. However, the

suppressed frequency components of the information sequence carry “information” as well.

Therefore, a PDD superimposed training method was proposed to strike a trade-off be-

tween self-interference cancelation and information integrity. Performance analysis and

related optimization of parameters were also discussed.

In Chapter 7, we considered direct equalization, without first estimating the doubly-

selective channel, using superimposed training and CE-BEM. By exploiting periodic white

training sequences, we showed that the optimal linear equalizer designed to extract the

known training sequence was also a scaled version of the optimal equalizer for the informa-

tion sequence. A direct equalizer was designed based on this fact. By employing user-specific

training sequences, this direct equalizer was extended to a multiple-user scenario, which can

be used in a wireless ad hoc network.

Computer simulation examples illustrated the performances of our approaches, and

compared them with the conventional TM training schemes. The performance of the first-

order statistics-based estimator is inferior to that of the TM training-based estimator, due to
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the existence of information-induced self-interference. However, when the self-interference

is sufficiently suppressed by the DML approach or the PDD training, superimposed training

can offer competitive performance with TM training, without incurring any data rate loss,

and thus provides us a promising training-based technique at a higher transmission rate.

8.2 Possible Future Directions

So far we have discussed channel estimation and equalization using superimposed train-

ing and various BEM representations. Future work may include the following areas.

First, the capacity of the system employing superimposed training should be well inves-

tigated. In other words, the fundamental question should be answered—how can superim-

posed training help achieve more capacity than TM training? As we discussed in Chapter

1, several researchers have explored this area (e.g., [4,5,8,73], among others) and obtained

important results; however, conclusive statements for more general situations (e.g., over

time- or frequency-selective channel or doubly-selective channel) are still open.

Another potential direction may lie in incorporating superimposed training into other

widely used techniques. For example, in orthogonal frequency division multiplexing (OFDM)

systems, frequency-multiplexed training is used where equally spaced pilot (training) tones

enable the receiver to achieve MMSE estimate of the channel [54]. This frequency-multiplexed

training scheme, however, can be viewed as superimposed training in the time domain.

Therefore, how to utilize our results of superimposed training in OFDM systems becomes

an interesting topic.
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We should also consider a more general training structure—affine precoding with train-

ing [89] that treats the transmitted data block as

s = Fb + c,

where s =

[

s (0) s (1) · · · s (T − 1)

]T

is a transmitted block, and c is the training

sequence of the same size; b =

[

b (0) b (1) · · · b (Tb − 1)

]T

is the information sequence

of length Tb ≤ T , and the T × Tb matrix F is the affine precoder. We can clearly see that

TM and superimposed training can both be viewed as special cases of affine precoding.

In our data-dependent training scheme, our work is equivalent to designing a precoder F

that assign training and information sequences to different dimensions so as to eliminate

self-interference. The information loss of this scheme is due to F not being full-rank. We

hence design a full-rank F that corresponds to the PDD superimposed training. Therefore,

affine precoding can offer us more freedom in designing the communications system, so that

better performance than superimposed or TM training can be expected—it is also a hopeful

area.
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Appendix A

Optimal Time-Multiplexed Training for Block Transmissions over

Doubly-Selective Channels [40]

Here we summarize the optimal TM training proposed in [40], based on CE-BEM

representations, which acts as a “reference” training scheme in evaluating our superimposed

training-based approaches.

In [40], the authors made the following model assumptions:

(HA.1) The channel satisfies CE-BEM, i.e., (2.9).

(HA.2) The delay spread τd and the Doppler spread fd are bounded, known (or at least

their bounds are known), and satisfy 2fdτd < 1.

(HA.3) The coefficients {hq(l)} are zero-mean complex Gaussian random variables, inde-

pendent one another, and remain invariant per block but are allowed to change at the

next block.

Under the above assumptions, the authors sought to design a TM training scheme that

optimizes channel MSE and ergodic (average) capacity bounds to jointly account not only for

channel estimation performance but also for transmission rate. The optimal block structure

s consists of sub-blocks of training and sub-blocks of information, which are transmitted

alternately:

s =

[

bT
0 cT

0 · · · bT
P−1 cT

P−1

]T

where bp and cp denote the p-th information and training sub-blocks respectively (p =

0, 1, . . ., P −1). The optimal training sequence contains an impulse guarded by zeros (silent
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Parameters Optimal Training

Placement of information symbols Equally long information sub-blocks (length T̄b)
Placement of training symbols Equally long training sub-blocks

Structure of training sub-blocks cp =
[
0T

L c 0T
L

]T
, ∀p

Number of training symbols 2L+ 1 per sub-block
Number of sub-blocks Q training and Q information sub-blocks

Power Allocation α = 1/(1 +
√

(L+ 1) /T̄b)

Table A.1: Optimal TM training.

period). The details are shown in Table A.1, where T̄b denotes the length of the information

sub-block, c is a scalar number denoting the training impulse, and α denotes the training-

to-information power ratio (TIR).

We also apply this TM training structure for OP- and DPS-BEM’s. It is not known

whether it is optimal for these BEM’s, but it can still act as a good reference when studying

our superimposed training schemes.

For a channel satisfying a BEM (2.20), the noisy channel output is given by

y (n) =
L∑

l=0

Q
∑

q=1

hq (l)ψq (n) s (n− l) + v (n) ,

where v (n) is additive white Gaussian noise (AWGN) with zero-mean and variance σ2
v . At

the time slots np,l := T̄b +L+p
(
T̄b + 2L+ 1

)
+ l (l = 0, 1, . . .L), the received signal depends

only on the channel and the training impulse:

y (np,l) = c

Q
∑

q=1

hq (l)ψq (np,l) + v (np,l) . (A.1)
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We define

yc (l) =

[

y (n0,l) y (n1,l) · · · y (nP−1,l)

]T

, (A.2a)

vc (l) =

[

v (n0,l) v (n1,l) · · · v (nP−1,l)

]T

, (A.2b)

Ψc (l) =














ψ1 (n0,l) · · · ψQ (n0,l)

ψ1 (n1,l) · · · ψQ (n1,l)

...
. . .

...

ψ1 (nP−1,l) · · · ψQ (nP−1,l)














, (A.2c)

h (l) =

[

h1 (l) h2 (l) ... hQ (l)

]T

,

then by (A.1)

yc (l) = cΨc (l)h (l) + vc (l) .

The LS estimator of h (l) is given by

ĥLS (l) =
1

c
Ψ†

c (l)yc (l) , (A.3)

and the linear MMSE estimator is given by

ĥMMSE (l) =
c

σ2
v

[

R−1
h (l) +

c2

σ2
v

ΨH
c (l)Ψc (l)

]−1

ΨH
c (l)yc (l) (A.4)

that requires that Rh (l) := E
{
h (l)hH (l)

}
is known at the receiver.
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This optimal TM training can be easily extended to an SIMO channel, since the above

procedures can be carried out for each independent output. For a multiple-user time-

invariant channel, an extension of this scheme was suggested in [41] for MIMO frequency-

selective fading channels. We extend this scheme to a doubly-selective MIMO channel in a

way similar to [40], even though we have no clues about its optimality.

For a multiple-user channel with K users,

y(n) =
K∑

k=1

L∑

l=0

hk(n; l)sk(n− l) + v(n),

where {sk(n)} denotes the k-th user’s information sequence and the corresponding channel

is denoted by {hk(n; l)}. We assume that the channels satisfy BEM representation, i.e.,

hk (n; l) =

Q
∑

q=1

hqk (l)ψq (n) .

The channel output can be expressed as

y(n) =

K∑

k=1

L∑

l=0

Q
∑

q=1

hqk (l)ψq (n) sk(n− l) + v(n).

We design the training sub-block of the k-th user (k = 1, 2, . . .,K) as

ck,p =

[

0T
(k−1)(L+1)+L c 0T

(K−k)(L+1)+L

]T

with length of K (L+ 1) + L symbols. At the time slots

nk,p,l := T̄b + (k − 1) (L+ 1) + L+ p
[
T̄b +K (L+ 1) + L

]
+ l,
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the received signal depends only on the training impulse and the k-th user’s channel. The

channels for different users can thus be decoupled. We have

yc (k, l) = cΨc (k, l)hk (l) + vc (k, l) ,

where yc (k, l), Ψc (k, l), and vc (k, l) are defined as in (A.2), only with np,l replaced with

nk,p,l, and

hk (l) =

[

h1k (l) h2k (l) ... hQk (l)

]T

.

Then similar to (A.3) and (A.4), we have the LS estimator

ĥk,LS (l) =
1

c
Ψ†

c (k, l)yc (k, l) , (A.5)

and the linear MMSE estimator

ĥk,MMSE (l) =
c

σ2
v

[

R−1
h (k, l) +

c2

σ2
v

ΨH
c (k, l)Ψc (k, l)

]−1

ΨH
c (k, l)yc (k, l) (A.6)

if Rh (k, l) := E
{
hk (l)hH

k (l)
}

is known at the receiver.
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Appendix B

Symbol Detection

The role of channel estimation is to aid in extracting the desired information data from

the distorted received symbols. Two symbol detection techniques are reviewed: Viterbi

detector and Kalman filter.

B.1 Maximum Likelihood Sequence Detector (Viterbi Detector) [64]

Consider an SIMO FIR linear channel with N outputs and discrete-time impulse re-

sponse {h (n; l)}. Let {s(n)} denote the input sequence to the SIMO channel. The channel

output is given by

x(n) =

L∑

l=0

h(n; l)s(n − l), (B.1)

and the noisy measurement is given by

y(n) = x(n) + v(n) (B.2)

where v(n) is the AWGN. We assume:

(HB.1) The {v(n)} is uncorrelated with {s(n)}, with possible unknown mean E{v(n)} = m

and E{[v(n + τ) − m][v(n) − m]H} = σ2
vINδ(τ).

Given {s(n)}, {y(n)} is a sequence of N -dimensional Gaussian random vectors with

mean
∑L

l=0 h(n; l)s(n− l)+m and variance σ2
vIN . The joint pdf of y(n) given {s(n), s(n−
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1), . . ., s(n− L)} is

p(y(n)|s(n), . . ., s(n − L)) =
1

(πσv)N
exp






− 1

σ2
v

∥
∥
∥
∥
∥
y(n) −

L∑

l=0

h(n; l)s(n− l) − m

∥
∥
∥
∥
∥

2






where s(n) = 0 for n < 0. The joint pdf of the random vectors y (0) , y (1) , . . ., y (T − 1)

given the transmitted sequence s(0), s(1), . . ., s(T − 1) is

p(y(0), . . .,y(T − 1)|s(0), . . ., s(T − 1))

=
1

(πσv)NT
exp






− 1

σ2
v

T−1∑

n=0

∥
∥
∥
∥
∥
y(n) −

L∑

l=0

h(n; l)s(n− l) − m

∥
∥
∥
∥
∥

2





.

Taking the logarithm on both sides of the equation above, we have

log p(y(0), . . .,y(T − 1)|s(0), . . ., s(T − 1))

= −NT log(πσv) −
1

σ2
v

T−1∑

n=0

∥
∥
∥
∥
∥
y(n) −

L∑

l=0

h(n; l)s(n− l) − m

∥
∥
∥
∥
∥

2

.

The maximum likelihood (ML) estimate of the input sequence {s(0), . . ., s(T − 1)} is the

one that maximizes

p(y(0), . . .,y(T − 1) | s(0), . . ., s(T − 1)),

or equivalently maximizes

log p(y(0), . . .,y(T − 1) | s(0), . . ., s(T − 1)),
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or minimizes the Euclidean distance

T−1∑

n=0

∥
∥
∥
∥
∥
y(n) −

L∑

l=0

h(n; l)s(n− l) − m

∥
∥
∥
∥
∥

2

.

This ML sequence estimation (MLSE) criterion is equivalent to the problem of estimating

the state of a discrete-time “finite-state machine”. In this case, the finite-state machine is

the discrete-time channel with coefficients {h(n; l)} and its state at any time instance n is

represented by the L most recent input symbols

state (n) = (s(n), s(n − 1), . . ., s(n− L+ 1)) (B.3)

where s(n) = 0 for n < 0. If the input symbols are M -ary, the finite-state machine has

ML states. Consequently, the channel is described by an ML-state trellis and the Viterbi

algorithm may be used to determine the most probable path through the trellis. In brief,

we describe the Viterbi algorithm as the following three steps:

Step 1. We begin with y(L), from which we compute the ML+1 metrics

L∑

n=0

∥
∥
∥
∥
∥
y(n) −

L∑

l=0

h(n; l)s(n − l) − m

∥
∥
∥
∥
∥

2

. (B.4)

The ML+1 possible sequences are divided into ML groups according to the ML states.

From each group, we pick the one with the minimum metric, i.e., the most probable

sequence, and assign to the surviving sequence the metric

PM0(s(L), . . ., s(1)) = min
s(0)







L∑

n=0

∥
∥
∥
∥
∥
y(n) −

L∑

l=0

h(n; l)s(n − l) − m

∥
∥
∥
∥
∥

2





. (B.5)
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The M − 1 remaining sequences from each of the ML groups are discarded.

Step 2. Upon reception of y(L+ n), n ≥ 1, compute the ML+1 metrics

∥
∥
∥
∥
∥
y(L+ n) −

L∑

l=0

h(n; l)s(L+ n− l) − m

∥
∥
∥
∥
∥

2

+ PMn−1 (s(L+ n− 1), . . ., s(n)) . (B.6)

Again, the ML+1 sequences are divided into ML groups corresponding to the ML

possible state (s(L + n − 1), s(L + n − 2), . . ., s(n)) and the most probable sequence

from each group is selected while the other M − 1 sequences are discarded. The

surviving metrics are

PMn (s(L+ n), . . ., s(n+ 1))

= min
s(n)







∥
∥
∥
∥
∥
y(L+ n) −

L∑

l=0

h(n; l)s(L+ n− l) − m

∥
∥
∥
∥
∥

2

+ PMn−1 (s(L+ n− 1), . . ., s(n))} . (B.7)

Step 3. If y(L + n) is the last received sample, from the ML survivor sequences, pick

the one as the ML sequence estimator which has the minimum metric; otherwise, set

n = n+ 1 and then go to step 2.

In a multiple-user (of K users) context, the noisy channel input-output is given by

y(n) =
K∑

k=1

L∑

l=0

hk(n; l)sk(n− l) + v(n), (B.8)

where {sk(n)} denotes the k-th user’s information sequence and {hk(n; l)} denotes the k-th

user’s channel impulse response. The state at time n is now represented by the L most
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recent input symbols of all the K users, i.e.,

state (n) = (s1(n), . . ., s1(n− L+ 1), . . ., s2(n− L+ 1), . . ., sK(n− L+ 1)) (B.9)

where sk(n) = 0 for n < 0. The channel is now described by an MKL-state trellis.

To adapt the Viterbi algorithm in for multiple users, we simply replace the state (B.3)

with (B.9), use M ′ = MK instead of M in all the three steps, and substitute the sum

∑K
k=1

∑L
l=0 hk(n; l)sk(n− l) for

∑L
l=0 h(n; l)s(n− l) in (B.4)–(B.7).

B.2 Kalman Filtering

Viterbi detector (or MLSD) is the optimal receiver that provides the minimum BER.

Its computational complexity, however, depends on the number of states. By (B.9), the

Viterbi detector has MKL states, given the M -ary input symbols, K users, and an (L+ 1)-

tap MIMO channel. The computational complexity grows exponentially with the length of

channel, the number of users, and the constellation of transmitted signal. Viterbi detector

may be extremely expensive to implement [64].

Kalman filter, based on MMSE criterion, offers us an alternative symbol detection

technique, with much lower computational complexity than that of the optimal detector—

even though at the expense of a slight sacrifice of error performance.

For the SIMO FIR linear channel with N receivers described by (B.1) and (B.2), we

define a (d+ 1)-column vector (the delay d ≥ L) as the state vector of the Kalman filter:

S (n) :=

[

s (n) s (n− 1) · · · s (n− d)

]T

.
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We also define the state transition matrix

Φ : =






01×d 0

Id 0d×1




 ,

the control-input matrix

Γ : =

[

1 01×d

]T

,

the observation matrix

H (n) : =

[

h (n; 0) h (n; 1) · · · h (n;L) 0N×(d−L)

]

,

and the input

w (n) := s (n+ 1) .

Then we have the time-invariant state equation:

S (n+ 1) = ΦS (n) + Γw (n) . (B.10)

By (B.1) and (B.2), the time-varying observation equation is given by

y (n) = H (n)S (n) + v (n) . (B.11)

We assume the AWGN v(n) is zero-mean. The prior statistics of the above parameters are

given by

E {w (n)} = 0, E {v(n)} = 0, E {S (0)} = µs (0) ,
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E {w (m)w∗ (n)} = Vw (n) δ (m− n) , E
{
v (m)vH (n)

}
= Vv (n) δ (m− n) ,

E
{

w (m)v (n)H
}

= 0, E
{
w (m)SH (n)

}
= 0, E

{
v (m)SH (n)

}
= 0,

E
{

[S (0) − E {S (0)}] [S (0) − E {S (0)}]H
}

= Vs (0) .

Given the state equation (B.10), the observation equation (B.11), and the above prior

statistics, the algorithm of Kalman filter is as follows [70]:

Initialization: For the time n = 0, Ŝ (1 | 0) = µs (0) and Vŝ (1 | 0) = Vs (0).

Filtering: For n = 1, 2, . . .

Vη (n) = H (n)Vŝ (n | n− 1)HH (n) + Vv (n) ;

K (n) = Vŝ (n | n− 1)HH (n)V−1
η (n) ;

η (n) = y (n) − H (n) Ŝ (n | n− 1) ;

Ŝ (n | n) = Ŝ (n | n− 1) + K (n) η (n) ;

Ŝ (n+ 1 | n) = ΦŜ (n | n) ;

Vŝ (n | n) = [I − K (n)H (n)]Vŝ (n | n− 1) ;

Vŝ (n+ 1 | n) = ΦVŝ (n | n)ΦH + ΓVw (n)ΓH .

Since Ŝ (n | n) =

[

ŝ (n | n) ŝ (n− 1 | n) · · · ŝ (n− d | n)

]T

, we extract its last

term ŝ (n− d | n) as the desired equalized output. Then hard-quantize ŝ (n− d | n)

to acquire the detected symbol s̃ (n− d).
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For a multiple-user (MIMO) channel of (B.8) with total K users, the state vector for

the k-th user is

Sk (n) =

[

sk (n) sk (n− 1) · · · sk (n− d)

]T

where we also have d ≥ L. Then the augmented K (d+ 1)-state vector is given by

S (n) =

[

ST
1 (n) ST

2 (n) · · · ST
K (n)

]T

.

In order to apply Kalman filter, we revise the state transition matrix as

Φ : = IK ⊗






01×d 0

Id 0d×1




 ,

the control-input matrix as

Γ : = IK ⊗
[

1 01×d

]T

,

the observation matrix as

Hk (n) : =

[

hk (n; 0) hk (n; 1) · · · hk (n;L) 0N×(d−l)

]

and

H (n) : =

[

H1 (n) H2 (n) · · · HK (n)

]

,

and the input as

w (n) :=

[

s1 (n+ 1) s2 (n+ 1) · · · sK (n+ 1)

]T

.
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Then the state equation (B.10) and the observation equation (B.11) still hold. Then apply

Kalman filtering to obtain

Ŝ (n | n) =

[

ŜT
1 (n | n) ŜT

2 (n | n) · · · ŜT
K (n | n)

]T

,

where ŜT
k (n | n) =

[

ŝk (n | n) ŝk (n− 1 | n) · · · ŝk (n− d | n)

]T

for k = 1, 2, . . .,K. Fi-

nally, we hard-quantize ŝk (n− d | n) as the desired equalized output for the k-th user.

238



Appendix C

Mathematical Notations

≈ approximately equal to

⊗ Kronecker product

0M×N M ×N all zeros matrix

a lower case letters for scalars

⌈a⌉ integer ceiling of a

⌊a⌋ integer floor of a

|a| magnitude of a

a lower case letters in bold face for column vectors

‖a‖ Euclidean norm of a

A upper case letters in bold face for matrices

A∗ complex conjugate of A

A† Moore-Penrose pseudo-inverse operation

AH complex conjugate transpose of A

AT transpose of A

[A]n,m (n,m)-th entry of A

A upper case calligraphic letters for matrices

arg max
x

f (x) value of x for which f (x) attains its maximum

arg min
x
f (x) value of x for which f (x) attains its minimum

cov {·} covariance operator
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δ(·) Kronecker delta function, defined as

δ (n) =







1 if n = 0

0 if n 6= 0, t ∈ Z

diag {a1, . . ., aN} N ×N diagonal matrix with [diag {a1, . . ., aN}]n,n = an

E {·} expectation operator

EH {·} expectation operator with respect to H

IN N ×N identity matrix

max (·) maximum value operator

min (·) minimum value operator

O (·) big O notation: f (x) = O (g (x)) as x→ a (a ∈ R ∪ ±∞),

iff |f (x)| ≤M |g (x)| as x→ a for some constant M > 0

R real field

tr {A} trace of a square matrix A

Z integer field
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Appendix D

Abbreviations

AM amplitude modulation

AR auto-regressive

AWGN additive white Gaussian noise

BEM basis expansion model

BER bit error rate

BPSK binary phase-shift keying

CE-BEM complex exponential basis expansion model

CRLB Cramér-Rao lower bound

CSI channel state information

DC direct current

DFT discrete Fourier transform

DKL-BEM discrete Karhuen-Loève basis expansion model

DML deterministic maximum likelihood

DPS discrete prolate spheroidal

DPS-BEM discrete prolate spheroidal basis expansion model

FIR finite impulse response

FM frequency modulation

ISI inter-symbol interference

LMS least mean squares

LS least squares
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MAC media access control

MANET mobile ad hoc networks

MIMO multiple-input multiple-output

ML maximum likelihood

MLSE maximum likelihood sequence estimation

MSE mean square error

MMSE minimum mean square error

MPR multiple packet reception

m.s. mean-square

MUI multiple-user interference

NCMSE normalized channel mean square error

OFDM orthogonal frequency division multiplexing

OP-BEM orthogonal polynomial basis expansion model

PDD partially-data-dependent

pdf probability density function

PN pseudo-noise

QAM quadrature amplitude modulation

SIMO single-input multiple-output

SISO single-input single-output

SNR signal-to-noise ratio

TIR training-to-information power ratio

TM time-multiplexed
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