

DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO

RECEIVER FOR AM BAND

Except where reference is made to the work of others, the work described in this thesis is

my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Kalpesh Anil Shetye

Certificate of Approval:

______________________________ _____________________________

Bogdan M. Wilamowski Richard C. Jaeger, Chair

Professor Distinguished University Professor

Electrical and Computer Engineering Electrical and Computer Engineering

______________________________ _____________________________

Fa Foster Dai Ramesh Ramadoss

Associate Professor Assistant Professor

Electrical and Computer Engineering Electrical and Computer Engineering

 Joe F. Pittman

 Interim Dean

 Graduate School

DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO

RECEIVER FOR AM BAND

Kalpesh Anil Shetye

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Masters of Science

Auburn, Alabama

August 4, 2007

iii

DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO

RECEIVER FOR AM BAND

Kalpesh Anil Shetye

Permission is granted to Auburn University to make copies of this thesis at its discretion,

upon request of individuals or institutions and at their expense. The author reserves all

publication rights.

Signature of Author

Date of Graduation

iv

VITA

Kalpesh Shetye was born in Mumbai, India, on June 14, 1980. He is the eldest son of

Anil and Maya Shetye. He completed his Bachelor of Engineering in Electronics degree

from University of Mumbai, India in 2002. After completing his Bachelors he pursued

his Masters program at Auburn University in Spring 2003, where he started working on

Analog / Mixed-signal circuit design and subsequently Software-Defined Radio concepts.

His primary areas of interest are Analog / Mixed-signal circuit design, RF IC design and

DSP for Software Defined Radio. He is currently employed with Siemens VDO

Automotive, Huntsville as Design Engineer – Electrical R&D.

v

THESIS ABSTRACT

DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO

RECEIVER FOR AM BAND

Kalpesh Shetye

Master of Science, August 4, 2007

(Bachelor of Engineering, University of Mumbai, 2002)

75 Typed Pages

Directed by Richard C. Jaeger

Since the mid-1990s, the radio industry has actively focused on implementing

more and more radio functions in the digital domain. This has been furthered by

availability of high speed, high performance data converters and faster digital processors.

In 1993, Joe Mitola, III coined the term 'Software Radio (SR)' for a radio system that uses

DSP primitives to perform signal manipulation instead of the traditional analog hardware.

Such a system is more robust, compact, power-efficient and highly reconfigurable. An

ideal Software Radio system consists of a transmitting/receiving antenna, high speed data

converter and a powerful digital processor. However, the state of current technology is

such that this can only be partially achieved. Due to speed and performance limitations of

existing data converters and digital processors, it is customary to use an RF front-end

between the antenna and the data converter. Such a system is then termed as a Software-

Defined Radio (SDR).

vi

This thesis deals with the design and implementation of a low-cost SDR receiver

which bandpass samples AM Intermediate Frequency (IF) and demodulates it in real-time

using quadrature demodulation. The system uses an AM/FM trainer kit to obtain an AM

IF, a high speed PCI-based data acquisition (DAQ) card for analog-to-digital (A/D)

conversion, MATLAB to perform signal processing in the digital domain and a sound

card to produce the demodulated analog signal. A Graphical User Interface (GUI) is

developed which allows the user to start/stop the program, select a suitable bandpass

sampling frequency and view the time and frequency domain representation of the

demodulated signal. This work also discusses bandpass sampling and quadrature

demodulation followed by a rigid mathematical analysis to point out advantages and

disadvantages of the two techniques.

vii

ACKNOWLEDGEMENTS

I am grateful to my parents Anil and Maya, my brother Akshay and my close

relatives for providing me financial and emotional support to study in United States. I

thank my friends Anjani, Gautham, Pradeep, Kashi, Shaman, Santosh and Nitin for

providing me accommodation during my weekend trips to Auburn.

My deepest respect and appreciation goes out to my advisor, Dr. Richard C.

Jaeger, without whose support this work could not be completed. He strongly encouraged

me to accept the job offer at Siemens VDO Automotive and continue studies while

working. I greatly acknowledge his technical guidance and financial support which was

necessary to complete this work. I am also grateful to Dr. Fa Foster Dai, Dr. Bogdan

Wilamowski and Dr. Ramesh Ramadoss for having served on my committee and for their

valuable inputs and suggestions. I wish to thank Mr. Joe Haggerty for his advice and help

on electronics equipment. Last but not the least, I express my gratitude to Siemens VDO

mentor Mr. Paul Evans and manager Mr. Blane McCoy who motivated me to complete

my Masters.

I would like to dedicate this thesis to my spiritual guru, Paramahansa Yogananda,

whose life and teachings have had a significant impact on me during my stay in United

States.

 viii

Format of body: Auburn University Graduate School: Guide to preparation and

submission of theses and dissertations.

Computer software used: Microsoft Office Professional 2003

 MATLAB Release 14

 ix

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xi

INTRODUCTION .. 3

1.1 Software Defined Radio (SDR) .. 2

1.2 Applications of SDR... 5

BACKGROUND AND LITERATURE REVIEW .. 8

2.1 RF Front-end Architectures .. 8

2.2 Sampling Techniques.. 13

2.3 Data Conversion Challenges... 18

2.4 Digital Signal Processing Alternatives ... 20

SYSTEM DESIGN ... 22

3.1 AM/FM Trainer Kit .. 22

3.2 DAS4020/12 PCI-based DAQ Card ... 24

3.3 MATLAB with Data Acquisition Toolbox (DAQ) 27

3.4 PC with Speakers .. 27

DSP ALGORITHMS.. 29

4.1 Bandpass Sampling... 29

4.2 Quadrature Demodulation... 32

MATLAB IMPLEMENTATION... 37

5.1 DAQ Devices Hardware Setup ... 37

5.2 Finding Translated IF frequency... 40

5.3 Demodulation.. 40

5.4 Downsampling and Normalization ... 41

5.5 Graphical User Interface (GUI) .. 42

RESULTS AND FUTURE IMPROVEMENTS .. 44

6.1 Results... 44

6.2 Future Improvements .. 46

REFERENCES ... 49

APPENDIX... 51

A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF.......... 51

A.2 MATLAB Software Code... 54

 x

LIST OF FIGURES

Figure 1.1.1: An Ideal Software Radio (ISR) ... 3

Figure 1.1.2: A Software-Define Radio (SDR) .. 4

Figure 1.2.1: FlexRadio SDR-1000 .. 6

Figure 1.2.2: Software Defined Radio receiver for AM Band.. 7

Figure 2.1.1: Heterodyne (or superheterodyne) architecture .. 10

Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture.......... 11

Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing 12

Figure 2.1.3: Low-IF (or digital-IF) architecture.. 13

Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal 15

Figure 2.2.1: (b) Spectrum of the signal sampled at fs = 2fmax ... 16

Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax.. 16

Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax ... 16

Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component ... 17

Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax ... 17

Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF .. 18

Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF 18

Figure 3.1.1 (a): Assembled AM/FM Trainer kit ... 22

Figure 3.1.1 (b): Schematic of AM/FM Trainer kit .. 23

Figure 3.1.2: Block diagram of AM section of the kit.. 23

Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card ... 25

Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12.. 26

Figure 4.2.1: Quadrature demodulation architecture for AM band 33

Figure 5.3.1: Magnitude and Phase response of 50
th

 order FIR filter with fc = 5 kHz 42

Figure 5.5.1: SDR GUI ... 43

Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz 45

Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz 46

 xi

LIST OF TABLES

Table 3.2.1: Electrical specifications of the DAQ card .. 26

Table 4.1.1: Bandpass sampling frequencies and the corresponding translated frequencies

 for 455 kHz AM IF ... 32

 1

CHAPTER 1

INTRODUCTION

Prior to the infusion of digital signal processing technology, most of the functions

in a radio system were implemented using analog circuitry. This had several limitations.

First of all, such a system was not reconfigurable. Any modification was possible only

through physical intervention. Secondly, complex communication algorithms were

difficult to implement in the analog domain due to the size of the components, associated

costs and power consumption. Also, performance of analog radio was dependent on

external parameters like noise, temperature, etc. With increase in speed of data converters

and signal processors, it became possible to implement analog functions in the digital

domain. The ultimate goal was to directly digitize the RF signal at the output of the

receiving antenna and implement all receiver functions in either digital hardware or

software. This gave birth to the software-defined radio (SDR) concept. An SDR system

is a radio communication system which uses software for modulation and demodulation

of radio signals [3].

This thesis presents the design of a low-cost SDR receiver which bandpass

samples an AM Intermediate Frequency (IF) and demodulates it in digital domain using

quadrature demodulation. This work can form the foundation of an undergraduate

2

wireless education or a graduate wireless research laboratory. The thesis is organized as

follows:

i. Chapter 1 is a primer on the SDR concept, its advantages and potential

applications. An overview of the SDR system designed and implemented for this

project is also presented.

ii. Chapter 2 is a literature review of different RF front-end architectures, sampling

techniques and signal processing options.

iii. Chapter 3 explains the system design of the SDR receiver. The components used

for building the system are explained in detail.

iv. Chapter 4 deals with the algorithms used in this project and the mathematics

behind them. Bandpass sampling and quadrature demodulation are discussed in

detail here.

v. Chapter 5 explains the implementation of the algorithms in MATLAB using its

Data Acquisition Toolbox. It also explains the Graphical User Interface (GUI)

created for the end user.

vi. Chapter 6 presents the results and suggests future improvements.

vii. Appendix contains the entire MATLAB code along with appropriate comments.

1.1 Software Defined Radio (SDR)

 As suggested in [4], radio systems can be classified into 5 tiers depending upon

their capability and flexibility. Tier 0 includes strictly a Hardware Radio (HR) which can

be modified through physical intervention only. All traditional analog radio systems with

no software element are included in this group. Tier 1 includes a Software Controlled

3

Radio (SCR) which has limited functions changeable using software. Tier 2 includes

Software Defined Radio (SDR) which uses software for the modulation and

demodulation of radio signals. Some RF front-end processing is still necessary in such a

system. Tier 3 includes Ideal Software Radio (ISR) which eliminates the RF front-end

processing completely. The antenna is directly connected to the data converter in this

system. Tier 4 includes Ultimate Software Radio (USR) which is a fully programmable

radio which can support broad range of frequencies and multiple air-interfaces.

 Figure 1.1.1 illustrates an ISR. Here, the DSP does the modulation and

demodulation in addition to baseband signal processing, thus eliminating the need of RF

front end. The user can alter the functionality of the radio simply by reprogramming the

DSP. However in practicality, it is not possible to attach the antenna directly to the data

converter due to a variety of reasons (discussed in Chapter 2). Use of RF front end

therefore becomes necessary converting the radio from ISR to SDR.

Figure 1.1.1: An Ideal Software Radio (ISR)

Antenna

Switch

ADC

DAC

Digital

Signal

Processing

(DSP)

Speaker

User

Interface

Microphone

fin

fout

4

Figure 1.1.2: A Software-Define Radio (SDR)

 Figure 1.1.2 illustrates a practical SDR architecture. In the receive path, the

antenna signal is amplified by the Low Noise Amplifier (LNA). It is then mixed and

bandpass filtered (BPF) to generate the IF signal. This IF signal is then digitized by a

high speed ADC. The DSP downconverts the IF signal to baseband and subsequently

demodulates it in digital domain. The demodulated signal is played on a speaker.

 Likewise, in the transmit path, the DAC outputs the modulated signal at the IF

frequency. It is then upconverted and bandpass filtered to generate the RF signal. The RF

signal is further amplified by the Power Amplifier (PA) and fed to the antenna.

 Radios built using SDR concept have the following advantages:

1) Increased system performance, flexibility and cost efficiency as the digitization is

done at an early stage.

2) A standard architecture can be used for a wide range of communication products [4].

Hence, interoperability is possible.

LO

User

Interface

Antenna

BPF

LO

Switch

ADC

DAC

Digital

Signal

Processing

(DSP)

Speaker

Microphone

BPF

fIF

fIF

X

X

Mixer

Mixer

fLO

fLO

LNA

PA

fin

fout

5

3) Increased adaptability. The radio can be reprogrammed to improve performance or

add more functionality.

4) Software modifications can be done at a fraction of the time of hardware

modifications. This can drastically reduce time to market and life-cycle costs.

1.2 Applications of SDR

Software defined radios have significant use in military and wireless industry

because both of them have a variety of changing radio protocols in real time. One of the

first software defined radios was a US military project called SPEAKeasy [3]. The goal

of the project was to develop a radio for US military that could operate from 2 MHz to 2

GHz. Its architecture was identical to Fig. 1.1.2. It was one of the first projects to use

Field Programmable Gate Arrays (FPGA) for digital signal processing of radio data.

Another project, called Joint Tactical Radio Systems (JTRS), is a US and allied

program to make radios which provide flexible and interoperable communications. It is

based on the Software Communications Architecture (SCA).

A potential application of SDR is in the automotive industry. Many OEM

manufacturers, including Siemens VDO Automotive, are researching the option of

eliminating bulky RF tuners in car radio and digitizing entire AM/FM bands. Multiple

AM/FM channels can be demodulated simultaneously in digital domain. This will allow

playing of one radio channel on the main radio and another on Rear Seat Entertainment

(RSE).

In academia, research in SDR field is being in pursued in top universities like

Georgia Tech, MIT and UCLA. MIT is investigating the use of SDR in Radio Frequency

6

Identification (RFID) where devices use various communication protocols to operate on

various frequencies. Recently, UCLA introduced a practical SDR receiver which can tune

and detect any desired RF signal in the 800MHz to 5GHz band [12]. Key blocks for the

receiver are wideband LNA, highly linear low-flicker mixer, wide tuning range

synthesizer, and programmable anti-aliasing filters.

SDR has also crept in the amateur radio field. In [13], a PC-based SDR is

described that downconverts RF to low-IF in the audio frequency range. It then uses PC

sound card to sample and demodulate the signal. The FlexRadio SDR-1000 [14], shown

in Fig. 1.2.1, is based on this concept. It can demodulate desired RF signal from 12 kHz

to 60 MHz.

Figure 1.2.1: FlexRadio SDR-1000

7

 The basic block diagram of the low-cost SDR receiver designed for this project is

shown in Fig. 1.2.2. The AM/FM trainer kit is used to convert the AM signal to amplified

AM IF signal. It is then undersampled using the high speed ADC of Measurement

Computing's PCI-based DAS4020/12 data acquisition board. Quadrature demodulation is

used to demodulate the signal in and play it in real-time on PC speakers. DSP algorithms

are written in MATLAB which is a simulation and mathematical software from The

Mathworks Inc.

Figure 1.2.2: Software Defined Radio Receiver for AM Band

Speaker

Antenna

ADC of

DAS4020

/12

PC with

MATLAB

and its

DAQ

toolbox

RF to IF

frontend

Elenco AM/FM

Trainer Kit

AM IF

8

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter discusses common RF front-end architectures and uniform sampling

techniques used in radio receivers. It also talks about the data conversion challenges for

software-defined radio implementation. Finally it concludes with digital signal processing

alternatives for SDR.

2.1 RF Front-end Architectures

The primary criteria in selecting any RF front-end architecture are complexity,

cost, power distribution and number of external components. There are three RF front-

end architectures in popular use today. They are heterodyne (or superhetrodyne),

homodyne (or direct conversion or zero-IF) and low-IF (or digital-IF) architecture.

2.1.1 Heterodyne Architecture

In heterodyne architecture, the RF signal is translated to lower IF frequencies in

multiple stages by mixing it with a local oscillator signal. Figure 2.1.1 depicts such a

design. The RF signal is passed through the BPF and amplified by the LNA. Before the

signal is mixed with first local oscillator (fLO1) to generate first IF (fIF1), it is passed

through the image reject filter (IRF). The IRF rejects the image frequency located at the

sum of the LO and IF frequencies (fLO + fIF1). If the image is not rejected then it will fall

9

directly on the IF after mixing and corrupt the signal information. The channel select

filter rejects adjacent channels and improves channel selectivity. The first IF signal is

mixed with second local oscillator (fLO2) to obtain the second IF signal (fIF2).

The major disadvantage of heterodyne topology is the number of required

components. For example, a two stage heterodyne receiver employs two mixers, two

local oscillators, one image reject filter and two channel select filters. The choice of IF

also depends on trade-offs among three parameters: the amount of image noise present,

the spacing between the desired band and the image and the loss of the image-reject filter

[5]. A low IF allows great suppression of nearby interferers whereas a high IF leads to

better image rejection. Thus heterodyne topology exhibits tradeoff between selectivity

and sensitivity. Another problem which exits is the half IF effect due to the second order

non-linearity in the RF and IF paths. Assume that there is a strong interferer at half of the

IF from the desired band towards the LO ((fin + fLO)/2) and it undergoes second order

distortion in the RF path. If the LO signal contains its second harmonic then the interferer

falls on the IF (|2fLO – (fin - fLO)| = fIF) after mixing. Another possibility is that the

interferer gets translated to (fin - fLO)/2 = fIF/2. If the IF path exhibits second order non-

linearity then the interferer will still fall on the IF.

Most AM/FM radios use heterodyne architecture with two stages of

downconversion. The second IF frequency for AM and FM band is 455 kHz and 10.1

MHz respectively.

10

Figure 2.1.1: Heterodyne (or superheterodyne) architecture

2.1.2 Homodyne Architecture

In homodyne architecture, the RF signal is directly translated to baseband by

mixing it with LO signal whose frequency is same as the carrier frequency. This is

illustrated in Fig. 2.1.2 (a). For double-sided AM signal, this technique works well

because it overlaps positive and negative parts of the input spectrum. However for FM

and phase-modulated signals, quadrature downconversion (In-phase ‘I’ and Quadrature

‘Q’) is necessary to avoid loss of information. This is shown in Fig. 2.1.2 (b).

The simplicity of the homodyne topology has its own advantages and

disadvantages. No image reject filter is required. Also, the LPF and amplifier operate at

lower frequencies and their monolithic integration is possible. The channel filtering can

be done in digital domain provided the ADC has high linearity and sufficient spurious-

free dynamic range (SFDR). A serious disadvantage of homodyne topology is self-

mixing of the LO signal. The isolation between the LO and inputs of the LNA and mixer

Channel

Select

Filter

BPF

LO1

BPF

fLO1

BPF

fIF1

X

Image

Reject

Filter

Band

Select

Filter

Channel

Select

Filter

 LNA

 AMP

Mixer

X

BPF

fIF2

LO2

fin

fLO2

Antenna

11

is not infinite. There is a finite amount of feedthrough from the LO to these inputs called

as LO leakage [5]. The leakage signal mixes with the LO signal to produce a DC offset.

This can cause corruption of the baseband signal and can saturate the following stages of

a receiver. A similar effect is seen when a strong interferer leaks from the LNA or mixer

input to the LO and mixes with itself. In phase and frequency modulation schemes, where

quadrature downconversion is employed, amplitude and phase mismatch between I and Q

can corrupt the downconverted signal. Also if the architecture is implemented using MOS

devices, then flicker noise (1/f noise) can be a potential source of corruption.

Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture

Antenna

ADC

LO

LPF

fLO

fin fIF

X LNA AMP

Mixer

fin = fLO

12

Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing

2.1.3 Low-IF Architecture

 The low-IF architecture is hybrid of heterodyne and homodyne architectures.

Here, the RF signal is converted into a low-IF signal and then digitized. Downconversion

from low-IF to baseband takes place in the digital domain. This is shown in Fig. 2.1.3.

Unlike the homodyne topology, problem of self-mixing does not exist. Also I and Q

mismatch can be minimized due to digitization of the IF signal. Mixing and filtering can

be done efficiently in the digital domain. However, the ADC requirements are more

stringent. The ADC should have sufficient input analog bandwidth. The dynamic range of

the ADC must be wide enough to accommodate variations in the signal level due to path

loss and multipath fading. Also, the SFDR should be sufficiently high to keep the

baseband signal from getting corrupted. The BPF filter before the ADC should have

sharp cut-off frequencies to attenuate out-of-band signals. Any signal with frequency

Mixer

Antenna

ADC

LO

LPF

LPF

+90°

I

Q

X

X
Mixer

fLO

f'LO

fin

 AMP

 AMP

 LNA
fin = fLO

LNA

13

more than half the sampling frequency will fold over in the digital domain. This can

cause baseband corruption.

Figure 2.1.3: Low-IF (or digital-IF) architecture

 Because of the advantages listed above, the low-IF architecture is the most

commonly used architecture in SDRs like in [13], [14] and in this project.

2.2 Sampling Techniques

The sampling process is very important in radio receivers using digitization at the

RF or IF. The content of the sampled signal is mainly dependent upon the sampling rate

and the minimum and maximum frequency components of the analog input signal [7].

When a continuous time signal is uniformly sampled, the spectrum of the original signal

Antenna

ADC

LO

LPF Q I

BPF

BPF

DIGITAL

SINEWAVE

GENERATOR

LPF

+90°

Low fIF

X
Mixer

X X
Digital

Mixer

Digital

Mixer

 LNA

fLO1 f'LO1

fIF fIF

fIF = fLO1

fin

fLO

14

F (f) is repeated at integral multiples of the sampling frequency, fs. In other words, F (f)

becomes periodic. This is shown in Fig. 2.2.1 (a), (b).

The four commonly used uniform sampling techniques are – Nyquist sampling,

over-sampling, quadrature sampling and bandpass sampling.

2.2.1 Nyquist sampling

 The Nyquist sampling theorem says that exact reconstruction of a continuous time

analog signal from its samples is possible if the signal is bandlimited and the sampling

frequency is greater than twice the signal bandwidth. The sampling frequency at twice the

signal bandwidth is called as Nyquist frequency or Critical frequency. If fmax is the

maximum frequency component of an analog signal then spectrum of the signal sampled

at the Nyquist frequency is shown in Fig. 2.2.1 (b).

 If the signal is sampled at less than the Nyquist frequency (called undersampling),

the spectral replicas overlap causing aliasing. The sampled signal gets corrupted and

cannot be exactly recovered. Figure 2.2.1 (d) depicts aliasing due to undersampling. In

order to avoid aliasing, an anti-aliasing filter is used before the ADC. The cut-off

frequency of the anti-aliasing filter is one half of the sampling frequency. Nyquist

sampling demands an extremely sharp cut-off anti-aliasing filter. Unfortunately, practical

realizable filters cannot provide this type of ‘brickwall’ response.

Even in Nyquist sampling, if an undesired (i.e. out-of-band) signal is present

along with the analog signal, it folds over and causes spectral overlap thus corrupting the

signal of interest. This is shown in Figure 2.2.2. The anti-aliasing filter serves the purpose

of attenuating the undesired signal too.

15

2.2.2 Oversampling

 In oversampling, the signal is sampled at much more than twice the Nyquist rate.

As depicted in Fig. 2.2.1 (c), the main advantage of this technique is that the spectral

replicas of the sampled signal are spaced further apart from each. This relaxes the steep

cut-off frequency requirements of the anti-aliasing filter.

2.2.3 Quadrature sampling

 As explained in section 2.1.2, the homodyne architecture for phase and frequency

modulated systems use quadrature downconversion to generate the 'I' and 'Q' quadrature

components. These are complex valued signals and contain twice the information as the

real valued signal. Hence, they can be sampled at one half the sampling rate of the real

valued signal. This type of sampling is called as quadrature sampling. The only

disadvantage is that ADC needs to have two input channels for digitizing the two

components.

Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal

-fmax fmax

F (f)

0

16

Figure 2.2.1: (b) Spectrum of the signal sampled at fs = 2fmax

Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax

Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax

Fs (f)

0 fs 2fs -fs -2fs

fs < 2fmax

……. …….

-fmax fmax

Fs (f)

0 fs 2fs -fs -2fs

fs > 2fmax

……. …….

-fmax fmax

Fs (f)

0 fs 2fs -fs -2fs

fs = 2fmax

……. …….

17

Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component

Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax

2.2.4 Bandpass Sampling

 RF signals are typically bandpass signals. The information bandwidth of an RF

signal is much less than it’s RF or IF frequency. Bandpass sampling is the technique of

undersampling a modulated signal to achieve frequency translation by intentional aliasing

[6]. Here, the sampling frequency is based on the information bandwidth of the RF signal

and not on the carrier or IF. Radio receivers that digitize at RF or IF usually use bandpass

sampling. The concept is graphically depicted in Fig. 2.2.3. The mathematical

relationship between the sampling frequency fs and the translated RF or IF frequency

fIF,trans is explained in detail in Chapter 5. Since aliasing takes place, it is necessary to

make sure that no portion of the information bandwidth of the signal folds on top if itself,

creating interference.

-fmax fmax

Fs (f)

0 fs 2fs -fs -2fs

fs = 2fmax

……. …….

F (f)

-fmax fmax 0

Desired signal

Undesired signal

18

 For bandpass sampling to work effectively, a very steep roll-off bandpass filter is

required to attenuate undesired signals outside the band of interest. Another severe

limitation is that the ADC should be able to effectively operate on the highest frequency

component in the RF signal.

 Like most other SDR projects, this project also uses bandpass sampling to sample

the AM IF signal.

Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF

Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF

2.3 Data Conversion Challenges

The critical limiting factor in software radio implementation is the sluggish ADC

technology. The antenna cannot be hooked directly to the ADC because it doesn’t have

sufficient analog input bandwidth and dynamic range to digitize the RF signal directly.

Fs (f)

…….

fIF,trans fIF,trans + fs fIF,trans + 2fs fIF,trans + 3fs fIF,trans + 4fs

…….

fIF

F (f)

0

fs < fIF

19

Another important limitation is the power consumption of the ADC. A common Figure of

Merit (FoM) used for ADCs is:

ADC

ENOB

P

BW
FoM

•
=

•22
 (2.3.1)

where ENOB = Effective Number of Bits

BW = Full–power Analog Input Bandwidth of the ADC

PADC = Power Consumption of the ADC

ENOB is directly proportional to the signal-to-noise and distortion ratio (SINAD) of the

ADC. Full-power analog input bandwidth is the range from DC to the frequency where,

for a full-scale input, the amplitude of the output of the ADC falls to 3 dB below the

maximum output level [7]. Equation (2.3.1) indicates that for a given FoM, the power

consumption of the ADC increases as ENOB and BW increase.

 There is a strong trade-off between ADC sampling frequency and its performance.

Normally, as the sampling frequency of the ADC increases its performance decreases. In

radio receivers using IF or RF digitization, the ADC should have high linearity, signal-to-

noise ratio (SNR) and spurious free dynamic range (SFDR). SFDR is defined as the ratio

of the signal power to the peak power of the largest spurious product. Whereas SNR

indicates ADC’s sensitivity to small signals, SFDR is a measure of the ADC’s capability

to reject undesired interferers. SNR is inversely proportional to the aperture jitter and

sampling frequency of the ADC. Aperture jitter is the variation in time of the exact

sampling instant.

20

 In comparison, DAC technology is not much of a limiting factor in software radio

development. The operating frequencies of the current DACs surpass the ability of

current lower-power signal processors.

2.4 Digital Signal Processing Alternatives

 The alternatives available for digital signal processing are - Application Specific

Integrated Circuits (ASIC), Digital Signal Processors (DSP) and field programmable gate

arrays (FPGA).

 ASICs are integrated circuits customized to accomplish specific tasks at high

performance levels. They are unrivaled in speed, power efficiency and computational

density. Because of their high design and production cost, they are usually used in high

volume designs. The major disadvantage is that they are not reconfigurable. They can be

used for implementing limited to standard static functions. Because of these limitations,

their use in SDRs is limited.

 A DSP is a specialized microprocessor designed specifically for digital signal

processing, generally in real-time computing. It has an optimized signal processing

instruction set and can be programmed using high level programming languages like C

and C++. On a performance matrix, DSPs fall in between ASICs and FPGAs. They have

moderate costs but very short times to market. They are the backbone of most SDR

systems today. Many leading semiconductor companies are currently developing SDR

specific DSPs. Texas Instruments (TI) is one of them.

 An FPGA is a semiconductor device containing programmable logic components

and programmable interconnects. The functionality of basic logic gates (AND, OR, XOR,

21

NOT) or more complex combinational functions such as decoders and simple math

functions can be duplicated by programming logic components of the FPGA. Most

FPGAs today include memory blocks too. Different logic components are connected

together by a hierarchy of programmable interconnects. Hardware descriptive languages

like VHDL or VERILOG are used to program FPGAs. They are generally slower than

the ASICs and more power hungry. Many SDRs today use FPGAs for signal processing.

22

CHAPTER 3

SYSTEM DESIGN

This chapter gives a brief system level overview of the SDR receiver. The four

major components that make the system are: AM/FM Trainer kit, PCI-DAS4020/12 DAQ

card, MATLAB with DAQ toolbox and PC with soundcard.

3.1 AM/FM Trainer Kit

This trainer kit, manufactured by Elenco Electronics, Inc., is a low cost receiver

kit used in undergraduate laboratories for demonstrating principles of communication. It

is a superheterodyne receiver of the standard AM and FM frequencies. Figure 3.1.1 (a)

shows the assembled AM/FM Trainer kit and Fig. 3.1.1 (b) shows its schematic [8].

Figure 3.1.1 (a): Assembled AM/FM Trainer kit

23

Figure 3.1.1 (b): Schematic of AM/FM Trainer kit

Figure 3.1.2: Block diagram of AM section of the kit

Figure 3.1.2 shows the block diagram of the AM section of the receiver. The

antenna signal is fed to the mixer which downconverts the RF signal to an IF of 455 kHz.

This is accomplished by heterodyning the RF signal with the Local Oscillator (LO)

signal. The weak IF signal from the mixer is amplified by the first IF amplifier which is

tuned to 455 kHz. The first IF amplifier has a variable gain which depends upon the

Mixer

LO

First IF

Amplifier

Second IF

Amplifier

AM

Detector

Audio

Amplifier

AGC

Speaker

Antenna To

DAS4020/12

24

voltage of the AGC (Automatic Gain Control) stage. The AGC stage feeds back a DC

voltage to the first AM IF amplifier in order to maintain a near constant level of audio at

the detector. The second IF amplifier is also tuned to 455 kHz and has a fixed gain of

about 50. It selectively amplifies the IF signal and feeds it to the AM Detector. The AM

Detector converts the IF signal to a low level audio signal. The Audio Amplifier stage

increases the power of the demodulated audio signal received from the AM Detector to a

power level capable of driving the speaker.

For this project, the IF signal is taped out at the output of the second IF amplifier.

The gain is set so that the IF signal at the output of second IF amplifier is in the range of

+/- 1V.

3.2 DAS4020/12 PCI-based DAQ Card

The AM IF signal from the AM/FM trainer kit is converted into digital domain by

Measurement Computing (MMC)'s DAS4020/12 PCI-based DAQ card. Figure 3.2.1 (a)

and Figure 3.2.1 (b) depict the card and its block diagram respectively [9].

The PCI-DAS4020/12 is a high speed, analog data acquisition board for PCI bus

computers. Its features are:

1. Wide analog BW - 20MHz total throughput rate

2. 12-bit A/D resolution

3. 4 analog input channels

4. Software selectable input ranges

5. One A/D Converter per Channel

6. Dual 12-bit D/A Converter

25

7. Fully Plug-and-Play

8. Fully Autocalibrating

9. Data acquisition through MATLAB, LabVIEW, Visual Studio.net

The main advantage of using this card is its seamless operation with standard

engineering softwares like MATLAB and LabVIEW. Most undergraduate / graduate

schools use these softwares in their laboratories. Table 3.2.1 lists some electrical

specifications that are of relevance to this project.

Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card

26

Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12

Sr No Parameter Value

1 Minimum sampling frequency 1 kHz

2 Input programmable range ±5 V, ±1 V (software configurable)

3 Input impedance 1.5MOhm (default), 50Ohm

4 Typical Accuracy ±3.0 LSB error (either range)

5 SNR (Signal-to-Noise Ratio) 66.6dB

6 SFDR (Spurious Free Dynamic Range) 80dB

7 THD (Total Harmonic Distortion) 80dB

8 ENOB (Effective Number Of Bits) 10

Table 3.2.1: Electrical specifications of the DAQ card

27

3.3 MATLAB with Data Acquisition Toolbox (DAQ)

MathWorks' MATLAB is a high-level technical computing language and

interactive environment for algorithm development, data visualization, data analysis, and

numeric computation [10]. It has command line, scripting, modular, and graphical

programming modes. In this project modular and graphical programming is employed.

Add-on toolboxes like DAQ Toolbox, Signal Processing Toolbox, Communications

Toolbox, etc extend the MATLAB environment to solve problems pertaining to the areas

of signal/image processing, communications and control design.

For this project we use MATLAB's DAQ Toolbox to control and communicate

with the DAQ card and PC soundcard. The DAQ Toolbox provides a complete set of

tools for analog input, analog output and digital I/O from a variety of PC-compatible data

acquisition hardware including those from Measurement Computing [11]. The toolbox

allows configuring external hardware devices, reading data into MATLAB for immediate

analysis, and sending out data. Together, MATLAB and DAQ Toolbox offer a single,

integrated environment to support the entire data acquisition and analysis process.

MATLAB's Graphical User Interface Development Environment (GUIDE) is

used to build the Graphical User Interface (GUI). GUIDE provides a set of tools that

simplify the process of laying out and programming GUIs.

3.4 PC with Speakers

 A PC is required to run MATLAB to acquire data, perform signal processing and

output the processed data to the speakers through the soundcard. For this work, the PC

28

used is a standard 2.4 GHz Pentium desktop with 512 MB RAM, standard soundcard and

options from Dell Computer Corporation.

29

CHAPTER 4

DSP ALGORITHMS

 This chapter discusses the DSP algorithms used to sample and demodulate the

AM IF signal. Bandpass sampling and quadrature demodulation are discussed along with

mathematical analysis.

4.1 Bandpass Sampling

 Chapter 2, discussed different sampling techniques that can be used for directly

digitizing RF / IF signal. The usual method of sampling at twice the Nyquist rate is not

practically feasible due to system limitations. The MCC DAQ card has a very wide

bandwidth and can easily sample AM RF or IF signal at more than twice the Nyquist rate.

For example, in the AM IF case this sampling rate could 1 MHz. But the amount of data

that MATLAB would have to handle and process will put it out of sync with the sound

card. In other words, a real time system implementation will not be possible.

Data per sample = 1.5 Bytes (12 bits)

Samples / second = 1 M

Total data / second = 1.5 Bytes * 1 M = 1.5 MB

Soundcard Output rate = 8 kS / second

30

This means that MATLAB + DAQ will have to process 188 kB data in less than 125µs

and output it to the sound card. Given the current CPU and MATLAB speed, this is not

feasible. Hence bandpass sampling is used in this project.

Bandpass sampling is the technique of undersampling a modulated signal to

achieve frequency translation by intentional aliasing. As stated in [6], the mathematical

relationship describing the translation of the actual IF fIF frequency and translated IF

frequency fIF,trans is:

()

()sIFstransIF

sIFtransIF

s

IF

ffremffodd

ffremfeven
f

f
fix

,,

,,

2

,

,

−==

==



















 (4.1.1)

Here, fix (a) is the truncated portion of argument a and rem (a, b) is the remainder after

dividsion of a by b. Associated with this translated IF are the corresponding modulation

sidelobes that contain information bandwidth of interest. It is important to make sure that

no portion of the information bandwidth of the signal folds on top if itself, creating

interference. Hence the following two constraints should be met.

2
,

BW
f transIF > (4.1.2)

22
,

BWf
f s

transIF −< (4.1.3)

For AM frequencies, fIF = 455 kHz and BW = 10 kHz. Based on equation (4.1.1),

Appendix A.1 lists the translated AM IF frequencies for the sampling frequencies from 1

31

kHz to 100 kHz. It also specifies whether constraints (4.1.2) and (4.1.3) are satisfied or

not. The lower limit of 1 kHz is set by the minimum sampling rate of the DAQ card. The

higher limit of 100 kHz is decided by maximum processing speed that would make the

system real time. It is dependent on DSP algorithm and processor speed.

Table 4.1.1 lists the useful bandpass sampling frequencies in the 1 kHz - 100 kHz

range and their corresponding translated frequencies for 455 kHz AM IF. These

frequencies are used in the GUI of SDR. User can select any of these sampling

frequencies to demodulate the incoming signal.

Actual IF, fIF = 455 kHz

BW = 10 kHz

Useful Bandpass Sampling

Frequency,

fs (kHz)

Translated IF frequency,

fIF,trans (kHz)

28 7

29 9

31 10

32 7

33 7

37 11

39 13

42 7

44 15

47 15

49 14

52 13

55 15

56 7

58 9

59 17

62 21

63 14

32

64 7

66 7

67 14

68 21

69 28

71 29

72 23

73 17

74 11

77 7

78 13

79 19

80 25

81 31

84 35

85 30

86 25

87 20

88 15

89 10

93 10

94 15

95 20

96 25

97 30

98 35

99 40

Table 4.1.1: Useful bandpass sampling frequencies and the corresponding translated

frequencies for 455 kHz AM IF

4.2 Quadrature Demodulation

In this project, the digitized AM IF signal is demodulated using quadrature

demodulation. Quadrature demodulation has some interesting properties when used for

33

AM demodulation. To appreciate these properties, it is necessary to understand the

scheme mathematically.

Figure 4.2.1: Quadrature demodulation architecture for AM band

Figure 4.2.1 depicts the quadrature demodulation scheme. The AM IF signal is

mixed with the local oscillator to directly convert to baseband. The output is passed

through a low-pass filter (LPF) to reject all the high frequency components. It is then

squared and fed to the adder. Likewise the AM IF signal is also mixed with the

quadrature component of the local oscillator. The output is then passed through LPF,

squared and fed to the adder. The adder outputs the summation of the two inputs which is

then square-rooted to produce the demodulated signal. The reason for squaring, adding

and then finally square-rooting will become clear soon.

X

X

)sin(twO

)cos(twO

LPF

LPF

2
) (

2) (

a

+

b

c

d

e

f

 g y x

AM IF

Signal

34

For the sake of argument, consider that the AM IF signal and local oscillator

signal are continuous and have unit amplitude. The input AM IF signal can then be

ideally represented as:

])cos[(
2

1
])cos[(

2

1
)cos(Φ+−+Φ+++Φ+= twwtwwtwx mIFmIFIF (4.2.1)

where wIF = AM carrier frequency

 wm = modulating signal

Φ = phase difference between the carrier frequency and the

local oscillator frequency

This signal mixes with the local oscillator signal to give,

(4.2.2)])sin[(
4

1
])sin[(

4

1

])sin[(
4

1
])sin[(

4

1

])sin[(
2

1
])sin[(

2

1

)sin(w])cos[(
2

1
)sin(w])cos[(

2

1
)sin(w)cos(OOO

Φ+−−−Φ+−++

Φ++−−Φ++++

Φ+−−Φ++=

Φ+−+Φ+++Φ+=

twwwtwww

twwwtwww

twwtww

ttwwttwwttwa

mOIFmOIF

mOIFmOIF

OIFOIF

mIFmIFIF

Similarly, at point b we have,

(4.2.3)])cos[(
4

1
])cos[(

4

1

])cos[(
4

1
])cos[(

4

1

])cos[(
2

1
])cos[(

2

1

)cos(w])cos[(
2

1
)cos(w])cos[(

2

1
)cos(w)cos(OOO

Φ+−++Φ+−−+

Φ++++Φ++−+

Φ++−Φ+−=

Φ+−+Φ+++Φ+=

twwwtwww

twwwtwww

twwtww

ttwwttwwttwb

mOIFmOIF

mOIFmOIF

OIFOIF

mIFmIFIF

35

The output of the mixer is passed through the LPF whose cut-off frequency is at least

(|wIF - wO| + wm). Thus, at point c we have,

(4.2.4))]cos(1[])sin[(
2

1

])sin[(
4

1
])sin[(

4

1
])sin[(

2

1
)(

twtww

twwwtwwwtwwaLPFc

mOIF

mOIFmOIFOIF

+Φ+−−=

Φ+−−−Φ++−−Φ+−−==

Similarly, at point d we have,

(4.2.5))]cos(1[])cos[(
2

1

])cos[(
4

1
])cos[(

4

1
])cos[(

2

1
)(

twtww

twwwtwwwtwwbLPFd

mOIF

mOIFmOIFOIF

+Φ+−=

Φ+−−+Φ++−+Φ+−==

Squaring and adding we get, at point g,

)]cos(1[
4

1 2
twfeg m+=+= (4.2.6)

Taking square-root results in demodulated AM signal with dc offset which can be easily

removed,

)]cos(1[
2

1
twgy m+== (4.2.7)

An identical mathematical analysis proves that this demodulation scheme works for

single sideband (SSB) as well as double sideband suppressed carrier (DSB-SC)

transmissions.

 From the above analysis, one can conclude that so long as (|wIF - wO| + wm) is

passed by the LPF, the signal can be demodulated using quadrature demodulation. When

this scheme is implemented in digital domain, the LO is an accurate digitally generated

sine wave. For AM signal, maximum fm is 5 kHz. If the LPF cut-off is at 10 kHz, then so

36

long as the offset between the IF and local oscillator frequency is less than 5 kHz, signal

can be successfully demodulated. In other words, the AM IF at input of the ADC need

not be exactly 455 kHz. This is a very useful property of quadrature demodulation as it

relaxes the tight requirements on the LO in the RF front-end.

Also, if the above architecture is implemented in digital domain, self-mixing can

be avoided and I / Q mismatch can be minimized.

37

CHAPTER 5

MATLAB IMPLEMENTATION

This chapter deals with the MATLAB implementation of the SDR. It explains the

MATLAB code used to initialize and run the DAQ card, digitally process the acquired

data using the DSP algorithms discussed earlier and output the processed data through the

soundcard. There is also a brief explanation of creating GUI using GUIDE. Only relevant

MATLAB code is shown here in italics. The entire MATLAB code is included in the

Appendix A.2.

5.1 DAQ Devices Hardware Setup

As discussed in Chapter 3, the DAQ card and soundcard can be configured using

MATLAB's DAQ toolbox. Before doing that, it is necessary to reset all the data

acquisition hardware present.

daqreset;

Since the system has to operate in real time, both the DAQ devices need to be

initialized and they should work in tandem. Data acquisition objects for these devices are

created by issuing the following commands.

ai=analoginput('mcc',2);

ao=analogoutput('winsound');

38

First command creates an analog data input object called 'ai' that communicates with card

#2 from mcc. mcc is the hardware vendor that MATLAB has assigned for Measurement

Computing boards. ai configures and controls various parameters of the DAQ card.

Likewise, the second command creates an analog data output object called ao that

communicates with the sound card.

Since DAQ card has four input channels, it is necessary to tell MATLAB which

ones to use for acquisition. In this project, Channel 2 is used to acquire data. Similarly,

for soundcard Channel 1 is used.

addchannel(ai,2);

addchannel(ao,1);

Next, the input range of the DAQ card is set to + 1V using the following command.

ai.Channel.InputRange=[-1 1];

The input and output sampling rates are set by using the following functions.

set(ai,'SampleRate',fs);

set(ao,'SampleRate',fs_out);

Here fs and fs_out are MATLAB variables which are initialized to 80k and 8k

respectively. The GUI allows the user to change the value of fs but not the value of

fs_out.

The type of trigger for the data acquisition objects is decided by the TriggerType

property. When set to Manual, the trigger occurs immediately after the trigger function is

issued.

set([ai ao],'TriggerType','Manual');

The number of input samples to be acquired per trigger is set by using the command:

39

set(ai,'SamplesPerTrigger',inf);

Since the SamplesPerTrigger is set to infinity, the DAQ card acquires samples for 1

second and transfers them from its hardware FIFO to PC memory. This is repeated

infinitely until the device is stopped.

For soundcard, the SamplesOutputFcn property decides which function to call

after outputting # Output_samples samples. When SamplesOutputFcnCount equals

Output_samples, function qmoredatanew is called with hObject passed as a parameter.

hObject is handle to the figure of the GUI.

set(ao,'SamplesOutputFcn',{'qmoredatanew', hObject})

set(ao,'SamplesOutputFcnCount',Output_samples);

The card is set to Direct Memory Access (DMA) transfer mode. This allows the

DAQ card to access system memory independently of the CPU. The CPU can therefore

concentrate on DSP related tasks. The size of the contiguous memory allocated for DMA

transfer is decided by the software provided by MCC. This allocation is performed during

the PC bootup sequence.

set(ai,'TransferMode','DMA');

After setting all the parameters, the DAQ devices can be started and triggered to

start acquiring data and logging it to memory.

start([ai ao]);

trigger([ai ao]);

The start command will inform the devices to acquire data. DAQ card's internal clock

will start. The trigger command will start the process of data acquisition.

40

The data logged into memory is retrieved by the DAQ Toolbox using getdata()

function. It returns data and absolute time at which each sample was taken in a matrix

format. The processed data is written to sound card using putdata() function.

[y t]=getdata(ai,fs);

putdata(ao,y)

The data acquisition can be halted by using the stop() function.

stop([ai ao])

5.2 Finding Translated IF frequency

Though the translated IF frequency, fIF,trans, can be known from Table 4.1.1, it can

also be determined from the Fast Fourier Transform (FFT) of the bandpass sampled

signal. The peak of the FFT will occur at the translated IF frequency, fIF,trans. The

following code takes the FFT of the sampled signal, finds the peak of the FFT and the

corresponding frequency associated with the peak.

fft_y=fft(y); % Find FFT of the bandpass sampled signal

[m,imax]=max(abs(fft_y(1:end/2))); % Index of max peak

freq_vec=fs*(1:length(y))/length(y); % Generate frequency vector

freq_carrier=freq_vec(imax); % Find IF frequency

5.3 Demodulation

As discussed in Chapter 4, Quadrature demodulation scheme is used in this

project. First the in-phase and out-phase components of the local oscillator are created to

downconvert the translated IF to baseband.

41

fo=sin(2*pi*freq_carrier.*t); % In-phase component

fo_90=cos(2*pi*freq_carrier.*t); % Out-phase component

The input sampled signal is averaged out to filter the dc component and then normalized.

y=y-mean(y);

y=y/max(abs(y));

The normalized signal is then mixed with the in-phase and out-phase component

of local oscillator and the product is passed through a low pass filter (LPF). The LPF is a

50
th

 order FIR filter with a linear phase and cut-off frequency, fc, of 10 kHz.

b1=fir1(50,10e3/fs);

The magnitude and phase response of the filter for a sampling frequency of 80 kHz is

shown in Fig. 5.3.1.

x1=filter(b1,1,fo.*y); % Multiplication with in-phase and subsequent LPF

x2=filter(b1,1,fo_90.*y); % Multiplication with out-phase and subsequent LPF

The two outputs are then squared, summed up and square rooted to get the

demodulated output.

x=sqrt(x1.^2+x2.^2);

5.4 Downsampling and Normalization

The demodulated output is downsampled from the bandpass sampling rate to the

output sample rate. It is then averaged out and normalized to remove the dc component.

z=x(1:(fs/fs_out):length(x));

z=z-mean(z);

z=z/max(abs(z));

42

Figure 5.3.1: Magnitude and Phase response of 50
th

 order FIR filter with fc = 5 kHz

5.5 Graphical User Interface (GUI)

The GUI for SDR is shown in Fig. 5.51. The pop menu at the left-hand side

allows the user to select one of the appropriate bandpass sampling frequencies listed in

table 4.1.1. If nothing is selected then sampling is done at the default rate of 80 kS/s.

After selecting the frequency, the user has to press the ON/OFF toggle button to start the

DAQ devices. The time domain representation of the demodulated signal is displayed in

the top plot. The X-axis range is for 1 second. The bottom plot shows the frequency

domain representation. The Y-axis range is from -4 kHz to 4 kHz as the demodulated

data is sent to the soundcard at the rate of 8 kHz. To stop the devices, the user has to

43

depress the ON/OFF button. The following GUIDE components are used to build the

GUI:

1. Popup Menu

2. Axes

3. Toggle Button

4. Static Text

Their details can be found in [10] and are not discussed here.

Figure 5.5.1: SDR GUI

44

CHAPTER 6

RESULTS AND FUTURE IMPROVEMENTS

The results of the project are presented in this chapter. Qualitative aspect of the

SDR performance is also discussed. Though this project is fully functional, by no way it

is a complete one. There is plenty of room for improvement. Continuous improvement is

needed in the areas of RF downconversion, sampling and efficient DSP algorithms.

6.1 Results

The AU SDR (AM Band) v4.0 is used to demodulate WAUD 1230 AM which is

Auburn's local station. Figure 6.1.1 shows the GUI display for a sampling frequency of

80 kHz.

The demodulated signal appears a little noisy as can also be seen from its

frequency spectrum. This is because the signal reception is not very good in the

laboratory where this test was run. Also the receiver is a low-cost radio and hence has a

relatively poor performance for weak signals. There is no noise reducing DSP algorithm

implemented in this project.

45

Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz

Figure 6.1.2 shows the demodulated WAUD 1230 AM station for a sampling

frequency of 32 kHz. Here it can also be seen that that there is a peak at about 4 kHz

which causes a whistling sound in audio output. The source of this peak is still unknown

but it is a matter of further investigation.

46

Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz

6.2 Future Improvements

Instead of converting RF to IF, the whole AM band could be bandpass sampled.

This will allow demodulation of multiple AM channels at the same time. As per the

equations given in Chapter 4, the minimum bandpass sampling frequency for AM band

(530 kHz - 1710 kHz) would be 3421 kHz (assuming that the sampling can be adjusted in

steps of 1 kHz). However this will require an amplifier with a sharp bandpass response to

reject all out-of-band signals. This amplifier will be placed between the antenna and the

DAQ card.

47

The project could be extended to include other modulation schemes as well like

FM, SW, CB, etc. Quadrature demodulation can be used for FM if two analog input

channels are available. Noise canceling / squelch algorithms can also be implemented to

further improve signal to noise ratio.

MATLAB is a powerful computing tool but it is very resource hungry. It is not as

efficient as C/C++ for performing DSP tasks like FFT. Also the use of GUI in MATLAB

slows down signal processing further. The efficiency can be significantly improved if the

coding is done entirely in C/C++. The code will then be portable to other operating

systems. To make the system even more portable, USB based data-acquisition can be

used.

49

REFERENCES

[1] J. Mitola III, “Software Radios Survey, Critical Evaluation and Future

Directions,” IEEE AES Systems Magazine, pp. 25-35, April 1993

[2] J. Mitola III, “Software Radio Architecture,” IEEE Communications Magazine,

pp. 26-36, May 1995

[3] Wikipedia, http://en.wikipedia.org/wiki/Software_defined_radio

[4] SDR Forum, http://www.sdrforum.org

[5] B. Razavi, “RF Microelectronics,” Upper Saddle River, NJ: Prentice Hall PTR,

1998, Chapter 5

[6] Dennis M. Akos, Michael Stockmaster, James B. Y. Tsui, Joe Caschera, “Direct

Bandpass Sampling of Multiple Distinct RF Signals,” IEEE Trans. on

Communications, vol. 47, pp. 983-988, July 1999

[7] Jeffery A. Wepman, “Analog-to-Digital Convereters and Their Application in

Radio Receivers,” IEEE Communications Magazine, pp. 39-45, May 1995

[8] Elenco Electronics, Inc., “AM/FM Radio Kit Assembly and Instruction,” 150

Carpenter Ave, Wheeling, IL 60090

[9] Measurement Computing Corporation, "PCI-DAS4020 User's Guide," 10

Commerce Way, Norton, MA 02766

[10] The Mathworks, Inc., http://www.mathworks.com/access/helpdesk/help/techdoc/

[11] The Mathworks, Inc., "Data Acquisition Toolbox for Use with MATLAB User’s

Guide Version 2," The Mathworks Inc., 2001

[12] Rahim Bagheri, Ahmad Mirzaei, Mohammad E. Heidari, Saeed Chehrazi, Minjae

Lee, Mohyee Mikhemar, Wai K. Tang, and Asad A. Abidi, “Software-Defined

Radio Receiver: Dream to Reality,” IEEE Communications Magazine, pp. 111-

118, August 2006

50

[13] Flex Radio Corporation, http://www.flex-radio.com, 12100 Technology Blvd,

Austin, TX 78727

[14] Fraidun Akhi, “Design and implementation of a software radio testset for research

and laboratory instruction.” MS Thesis, Auburn University, 2003

51

APPENDIX

A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF

Actual IF, fIF = 455 kHz

BW = 10 kHz

Sampling

Frequency,

fs (kHz)

Translated IF

frequency,

fIF,trans (kHz)

Equation

(4.1.2) satisfied

Equation

(4.1.3) satisfied

Equations

(4.1.2) and

(4.1.3)

satisfied

1 0 FALSE FALSE FALSE

2 1 FALSE FALSE FALSE

3 1 FALSE FALSE FALSE

4 1 FALSE FALSE FALSE

5 0 FALSE FALSE FALSE

6 1 FALSE FALSE FALSE

7 0 FALSE FALSE FALSE

8 1 FALSE FALSE FALSE

9 4 FALSE FALSE FALSE

10 5 FALSE FALSE FALSE

11 4 FALSE FALSE FALSE

12 1 FALSE FALSE FALSE

13 0 FALSE TRUE FALSE

14 7 TRUE FALSE FALSE

15 5 FALSE FALSE FALSE

16 7 TRUE FALSE FALSE

17 4 FALSE FALSE FALSE

18 5 FALSE FALSE FALSE

19 1 FALSE TRUE FALSE

20 5 FALSE FALSE FALSE

21 7 TRUE FALSE FALSE

22 7 TRUE FALSE FALSE

23 5 FALSE TRUE FALSE

24 1 FALSE TRUE FALSE

52

25 5 FALSE TRUE FALSE

26 13 TRUE FALSE FALSE

27 4 FALSE TRUE FALSE

28 7 TRUE TRUE TRUE

29 9 TRUE TRUE TRUE

30 5 FALSE TRUE FALSE

31 10 TRUE TRUE TRUE

32 7 TRUE TRUE TRUE

33 7 TRUE TRUE TRUE

34 13 TRUE FALSE FALSE

35 0 FALSE TRUE FALSE

36 13 TRUE FALSE FALSE

37 11 TRUE TRUE TRUE

38 1 FALSE TRUE FALSE

39 13 TRUE TRUE TRUE

40 15 TRUE FALSE FALSE

41 4 FALSE TRUE FALSE

42 7 TRUE TRUE TRUE

43 18 TRUE FALSE FALSE

44 15 TRUE TRUE TRUE

45 5 FALSE TRUE FALSE

46 5 FALSE TRUE FALSE

47 15 TRUE TRUE TRUE

48 23 TRUE FALSE FALSE

49 14 TRUE TRUE TRUE

50 5 FALSE TRUE FALSE

51 4 FALSE TRUE FALSE

52 13 TRUE TRUE TRUE

53 22 TRUE FALSE FALSE

54 23 TRUE FALSE FALSE

55 15 TRUE TRUE TRUE

56 7 TRUE TRUE TRUE

57 1 FALSE TRUE FALSE

58 9 TRUE TRUE TRUE

59 17 TRUE TRUE TRUE

60 25 TRUE FALSE FALSE

61 28 TRUE FALSE FALSE

62 21 TRUE TRUE TRUE

63 14 TRUE TRUE TRUE

64 7 TRUE TRUE TRUE

53

65 0 FALSE TRUE FALSE

66 7 TRUE TRUE TRUE

67 14 TRUE TRUE TRUE

68 21 TRUE TRUE TRUE

69 28 TRUE TRUE TRUE

70 35 TRUE FALSE FALSE

71 29 TRUE TRUE TRUE

72 23 TRUE TRUE TRUE

73 17 TRUE TRUE TRUE

74 11 TRUE TRUE TRUE

75 5 FALSE TRUE FALSE

76 1 FALSE TRUE FALSE

77 7 TRUE TRUE TRUE

78 13 TRUE TRUE TRUE

79 19 TRUE TRUE TRUE

80 25 TRUE TRUE TRUE

81 31 TRUE TRUE TRUE

82 37 TRUE FALSE FALSE

83 40 TRUE FALSE FALSE

84 35 TRUE TRUE TRUE

85 30 TRUE TRUE TRUE

86 25 TRUE TRUE TRUE

87 20 TRUE TRUE TRUE

88 15 TRUE TRUE TRUE

89 10 TRUE TRUE TRUE

90 5 FALSE TRUE FALSE

91 0 FALSE TRUE FALSE

92 5 FALSE TRUE FALSE

93 10 TRUE TRUE TRUE

94 15 TRUE TRUE TRUE

95 20 TRUE TRUE TRUE

96 25 TRUE TRUE TRUE

97 30 TRUE TRUE TRUE

98 35 TRUE TRUE TRUE

99 40 TRUE TRUE TRUE

100 45 TRUE FALSE FALSE

54

A.2 MATLAB Software Code

 This is the main file (IF455_SDR_GUI_v4.m) which creates and controls the

GUI, takes user input, calls different signal processing functions and displays messages

on the MATLAB command window.

function varargout = IF455_SDR_GUI_v4(varargin)

% IF455_SDR_GUI_V4 M-file for IF455_SDR_GUI_v4.fig

% IF455_SDR_GUI_V4, by itself, creates a new IF455_SDR_GUI_V4 or raises the

% existing singleton*.

% H = IF455_SDR_GUI_V4 returns the handle to a new IF455_SDR_GUI_V4 or

% the handle to the existing singleton*.

% IF455_SDR_GUI_V4('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in IF455_SDR_GUI_V4.M with the given input

% arguments.

% IF455_SDR_GUI_V4('Property','Value',...) creates a new IF455_SDR_GUI_V4 or

% raises the existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before IF455_SDR_GUI_v4_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to IF455_SDR_GUI_v4_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

55

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help IF455_SDR_GUI_v4

% Last Modified by GUIDE v2.5 17-Sep-2006 13:58:24

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @IF455_SDR_GUI_v4_OpeningFcn, ...

 'gui_OutputFcn', @IF455_SDR_GUI_v4_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before IF455_SDR_GUI_v4 is made visible.

function IF455_SDR_GUI_v4_OpeningFcn(hObject, eventdata, handles, varargin)

56

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to IF455_SDR_GUI_v4 (see VARARGIN)

clc;

% Declare parameters shared between different functions as global

global fs fs_out Output_samples flag;

warning off;

% Display welcome message on MATLAB command prompt

fprintf('Welcome to Auburn University SDR (AM Band) v4.0 program.');

fprintf('\nSelect the appropriate sampling frequency and then press ON/OFF...

button to start.\n');

% Set default sampling rate as 80 kHz. This can be changed by end user using GUI

fs=80e3;

% Set output sample rate as 8 kHz. This is fixed and cant be changed by end user

fs_out=8e3;

Output_samples=8e3;

% Assign a flag to determine ON/OFF. flag = 1 means ON, flag = 0 means OFF

flag=1;

% Generate a 50 Hz sine wave and its FFT

t = 0:1.25e-4:(1-1.25e-4);

x=sin(2*pi*50*t);

57

N=length(x);

Ts=length(t);

% Frequency vector

ssf=(-N/2:N/2-1)/(N/fs_out);

% Do FFT

fx=fft(x(1:N));

% Shift it for plotting

fxs=fftshift(fx);

% Get structure of handles.

handles = guihandles(hObject);

%Plot the sine wave in time and frequency domain.

axes(handles.axes1)

plot(t,x)

set(handles.axes1,'XMinorTick','on')

set(handles.axes1,'XMinorGrid','on')

grid on

axes(handles.axes2)

plot(ssf,abs(fxs));

set(handles.axes2,'XMinorTick','on')

set(handles.axes2,'XMinorGrid','on')

grid on

% Choose default command line output for IF455_SDR_GUI_v4

handles.output = hObject;

58

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes IF455_SDR_GUI_v4 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = IF455_SDR_GUI_v4_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in togglebutton1.

function togglebutton1_Callback(hObject, eventdata, handles)

% hObject handle to togglebutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles=guihandles(hObject);

global ai ao fs fs_out Output_samples freq_carrier b1 flag;

% Get toggle state of ON/OFF button

59

button_state = get(hObject,'Value');

if button_state == get(hObject,'Max')

 % Disable popup menu which selects sampling frequency

 set(handles.popupmenu1,'Enable','off');

 % Reset DAQ devices

 daqreset;

 % Configure the DAQ devices

 ai=analoginput('mcc',2);

 ao=analogoutput('winsound');

 addchannel(ai,2);

 addchannel(ao,1);

 ai.Channel.InputRange=[-1 1];

 % Determine the translated carrier frequency;

 freq_carrier=findcarrier(fs,Output_samples);

 % Determine corfficients of 50th order FIR LPF with cut-off frequency at 5 kHz

 b1=fir1(50,10e3/fs);

 set(ai,'SampleRate',fs);

 set(ao,'SampleRate',fs_out); %setting the soundcard to 8k out

 set([ai ao],'TriggerType','Manual');

 set(ai,'ManualTriggerHwOn','Trigger');

 set(ai,'SamplesPerTrigger',inf);

 set(ao,'SamplesOutputFcn',{'qmoredatanew',hObject})

 set(ao,'SamplesOutputFcnCount',Output_samples);

60

 set([ai ao],'StopFcn',@daqstopped);

 set(ai,'TransferMode','DMA');

 % Workaround to get the DAQ devices running in sync

 y=zeros(Output_samples,1);

 putdata(ao,y);

 start([ai ao]);

 trigger([ai ao]);

 pause(5);

 stop([ai ao]);

 % Start the actual Data acquistion

 putdata(ao,y);

 start([ai ao]);

 fprintf('Program started. Press ON/OFF button to stop.\n');

 trigger([ai ao]);

elseif button_state == get(hObject,'Min')

 flag = 0;

end

% --- Executes during object creation, after setting all properties.

function axes1_CreateFcn(hObject, eventdata, handles)

61

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1

% --- Executes on mouse press over axes background.

function axes1_ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function axes2_CreateFcn(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes2

% --- Executes on mouse press over axes background.

function axes2_ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

62

% handles structure with handles and user data (see GUIDATA)

% --- Executes on selection change in popupmenu1.

function popupmenu1_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu1

global fs fs_out Output_samples;

% Contents

contents = get(hObject,'String');

index_selected = get(hObject,'Value');

fs = 1e3*str2double(contents(index_selected));

% --- Executes during object creation, after setting all properties.

function popupmenu1_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

63

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

The main file calls the following function (findcarrier.m) to compute FFT on 'N'

samples and find out the exact translated carrier frequency after downsampling the input

at 'fs' kHz.

function freq_carrier=findcarrier(fs,N)

global ai;

duration=N/fs;

set(ai,'SampleRate',fs);

set(ai,'SamplesPerTrigger',N);

set(ai,'TriggerType','immediate');

start(ai);

y=getdata(ai);

fft_y=fft(y);

[m,imax]=max(abs(fft_y(1:end/2))); % Index of max peak

freq_vec=fs*(1:length(y))/length(y); % Generate frequency vector

freq_carrier=freq_vec(imax); % Find IF frequency

stop(ai);

64

The following function (qmoredatanew.m) is called by the main file to perform

quadrature demodulation of the AM signal if 'flag' is set to 1 and to stop the DAQ devices

if 'flag' is set to 0.

function qmoredatanew(obj,event,hObject)

global ai ao fs fs_out Output_samples freq_carrier b1 flag;

handles=guidata(hObject);

if (flag==0)

 stop([ai ao]);

 set(handles.popupmenu1,'Enable','on');

 fprintf('Program stopped. Press ON/OFF button to start again.\n');

 flag=1;

else

 [y t]=getdata(ai,fs);

 y=y-mean(y);

 y=y/max(abs(y));

 fo=sin(2*pi*freq_carrier.*t); % In-phase component

 fo_90=cos(2*pi*freq_carrier.*t); % Out-phase component

 x1=filter(b1,1,fo.*y); % Multiplication with in-phase and subsequent LPF

 x2=filter(b1,1,fo_90.*y); % Multiplication with out-phase and subsequent LPF

 x=sqrt(x1.^2+x2.^2);

 z=x(1:(fs/fs_out):length(x));

 z(1)=z(4); z(2)=z(4); z(3)=z(4);

65

 z=z-mean(z);

 z=z/max(abs(z));

 N=length(z); % length of the signal z

 t1=t(1:(fs/fs_out):length(x));

 ssf=(-N/2:N/2-1)/(N/fs); % frequency vector

 fz=fft(z(1:N)); % Perform DFT/FFT

 fzs=fftshift(fz); % shift it for plotting

 plot(handles.axes1,t1,z)

 set(handles.axes1,'XMinorTick','on')

 set(handles.axes1,'XMinorGrid','on')

 set(handles.axes1,'YGrid','on')

 plot(handles.axes2,ssf,abs(fzs))

 set(handles.axes2,'XMinorTick','on')

 set(handles.axes2,'XMinorGrid','on')

 set(handles.axes2,'YGrid','on')

 putdata(obj,z);

end

