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Since the mid-1990s, the radio industry has actively focused on implementing 

more and more radio functions in the digital domain. This has been furthered by 

availability of high speed, high performance data converters and faster digital processors. 

In 1993, Joe Mitola, III coined the term 'Software Radio (SR)' for a radio system that uses 

DSP primitives to perform signal manipulation instead of the traditional analog hardware. 

Such a system is more robust, compact, power-efficient and highly reconfigurable. An 

ideal Software Radio system consists of a transmitting/receiving antenna, high speed data 

converter and a powerful digital processor. However, the state of current technology is 

such that this can only be partially achieved. Due to speed and performance limitations of 

existing data converters and digital processors, it is customary to use an RF front-end 

between the antenna and the data converter. Such a system is then termed as a Software-

Defined Radio (SDR). 
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This thesis deals with the design and implementation of a low-cost SDR receiver 

which bandpass samples AM Intermediate Frequency (IF) and demodulates it in real-time 

using quadrature demodulation. The system uses an AM/FM trainer kit to obtain an AM 

IF, a high speed PCI-based data acquisition (DAQ) card for analog-to-digital (A/D) 

conversion, MATLAB to perform signal processing in the digital domain and a sound 

card to produce the demodulated analog signal. A Graphical User Interface (GUI) is 

developed which allows the user to start/stop the program, select a suitable bandpass 

sampling frequency and view the time and frequency domain representation of the 

demodulated signal. This work also discusses bandpass sampling and quadrature 

demodulation followed by a rigid mathematical analysis to point out advantages and 

disadvantages of the two techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

ACKNOWLEDGEMENTS 

 

I am grateful to my parents Anil and Maya, my brother Akshay and my close 

relatives for providing me financial and emotional support to study in United States. I 

thank my friends Anjani, Gautham, Pradeep, Kashi, Shaman, Santosh and Nitin for 

providing me accommodation during my weekend trips to Auburn.  

My deepest respect and appreciation goes out to my advisor, Dr. Richard C. 

Jaeger, without whose support this work could not be completed. He strongly encouraged 

me to accept the job offer at Siemens VDO Automotive and continue studies while 

working. I greatly acknowledge his technical guidance and financial support which was 

necessary to complete this work. I am also grateful to Dr. Fa Foster Dai, Dr. Bogdan 

Wilamowski and Dr. Ramesh Ramadoss for having served on my committee and for their 

valuable inputs and suggestions. I wish to thank Mr. Joe Haggerty for his advice and help 

on electronics equipment. Last but not the least, I express my gratitude to Siemens VDO 

mentor Mr. Paul Evans and manager Mr. Blane McCoy who motivated me to complete 

my Masters. 

I would like to dedicate this thesis to my spiritual guru, Paramahansa Yogananda, 

whose life and teachings have had a significant impact on me during my stay in United 

States.



 viii 

Format of body: Auburn University Graduate School: Guide to preparation and 

submission of theses and dissertations. 

Computer software used: Microsoft Office Professional 2003 

                                         MATLAB Release 14 



 ix 

TABLE OF CONTENTS 

LIST OF FIGURES                                                                                                             x 

LIST OF TABLES                                                                                                              xi 

INTRODUCTION .............................................................................................................. 3 

1.1 Software Defined Radio (SDR) ...................................................................... 2 

1.2 Applications of SDR....................................................................................... 5 

BACKGROUND AND LITERATURE REVIEW ............................................................ 8 

2.1 RF Front-end Architectures ............................................................................ 8 

2.2 Sampling Techniques.................................................................................... 13 

2.3 Data Conversion Challenges......................................................................... 18 

2.4 Digital Signal Processing Alternatives ......................................................... 20 

SYSTEM DESIGN ........................................................................................................... 22 

3.1 AM/FM Trainer Kit ...................................................................................... 22 

3.2 DAS4020/12 PCI-based DAQ Card ............................................................. 24 

3.3 MATLAB with Data Acquisition Toolbox (DAQ) ...................................... 27 

3.4 PC with Speakers .......................................................................................... 27 

DSP ALGORITHMS........................................................................................................ 29 

4.1 Bandpass Sampling....................................................................................... 29 

4.2 Quadrature Demodulation............................................................................. 32 

MATLAB IMPLEMENTATION..................................................................................... 37 

5.1 DAQ Devices Hardware Setup ..................................................................... 37 

5.2 Finding Translated IF frequency................................................................... 40 

5.3 Demodulation................................................................................................ 40 

5.4 Downsampling and Normalization ............................................................... 41 

5.5 Graphical User Interface (GUI) .................................................................... 42 

RESULTS AND FUTURE IMPROVEMENTS .............................................................. 44 

6.1 Results........................................................................................................... 44 

6.2 Future Improvements .................................................................................... 46 

REFERENCES ................................................................................................................. 49 

APPENDIX....................................................................................................................... 51 

A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF.......... 51 

A.2 MATLAB Software Code............................................................................. 54 
 

 

 



 x 

LIST OF FIGURES 

Figure 1.1.1: An Ideal Software Radio (ISR) ..................................................................... 3 

Figure 1.1.2: A Software-Define Radio (SDR) .................................................................. 4 

Figure 1.2.1: FlexRadio SDR-1000 .................................................................................... 6 

Figure 1.2.2: Software Defined Radio receiver for AM Band............................................ 7 

Figure 2.1.1: Heterodyne (or superheterodyne) architecture ............................................ 10 

Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture.......... 11 

Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing .......................... 12 

Figure 2.1.3: Low-IF (or digital-IF) architecture.............................................................. 13 

Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal .................... 15 

Figure 2.2.1: (b) Spectrum of the signal sampled at fs = 2fmax ......................................... 16 

Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax.......................................... 16 

Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax ......................................... 16 

Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component ... 17 

Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax ......................................... 17 

Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF ........................................ 18 

Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF .............................. 18 

Figure 3.1.1 (a): Assembled AM/FM Trainer kit ............................................................. 22 

Figure 3.1.1 (b): Schematic of AM/FM Trainer kit .......................................................... 23 

Figure 3.1.2: Block diagram of AM section of the kit...................................................... 23 

Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card ..................................................... 25 

Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12...................................................... 26 

Figure 4.2.1: Quadrature demodulation architecture for AM band .................................. 33 

Figure 5.3.1: Magnitude and Phase response of 50
th

 order FIR filter with fc = 5 kHz ..... 42 

Figure 5.5.1: SDR GUI ..................................................................................................... 43 

Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz .......................... 45 

Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz .......................... 46 

 

 



 xi 

LIST OF TABLES 

Table 3.2.1: Electrical specifications of the DAQ card .................................................... 26 

Table 4.1.1: Bandpass sampling frequencies and the corresponding translated frequencies        

                    for 455 kHz AM IF ....................................................................................... 32 

 



 1 

CHAPTER 1 

INTRODUCTION 

 

Prior to the infusion of digital signal processing technology, most of the functions 

in a radio system were implemented using analog circuitry. This had several limitations. 

First of all, such a system was not reconfigurable. Any modification was possible only 

through physical intervention. Secondly, complex communication algorithms were 

difficult to implement in the analog domain due to the size of the components, associated 

costs and power consumption. Also, performance of analog radio was dependent on 

external parameters like noise, temperature, etc. With increase in speed of data converters 

and signal processors, it became possible to implement analog functions in the digital 

domain. The ultimate goal was to directly digitize the RF signal at the output of the 

receiving antenna and implement all receiver functions in either digital hardware or 

software. This gave birth to the software-defined radio (SDR) concept.  An SDR system 

is a radio communication system which uses software for modulation and demodulation 

of radio signals [3].  

This thesis presents the design of a low-cost SDR receiver which bandpass 

samples an AM Intermediate Frequency (IF) and demodulates it in digital domain using 

quadrature demodulation. This work can form the foundation of an undergraduate 
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wireless education or a graduate wireless research laboratory. The thesis is organized as 

follows: 

i. Chapter 1 is a primer on the SDR concept, its advantages and potential 

applications. An overview of the SDR system designed and implemented for this 

project is also presented. 

ii. Chapter 2 is a literature review of different RF front-end architectures, sampling 

techniques and signal processing options.  

iii. Chapter 3 explains the system design of the SDR receiver. The components used 

for building the system are explained in detail. 

iv. Chapter 4 deals with the algorithms used in this project and the mathematics 

behind them. Bandpass sampling and quadrature demodulation are discussed in 

detail here. 

v. Chapter 5 explains the implementation of the algorithms in MATLAB using its 

Data Acquisition Toolbox. It also explains the Graphical User Interface (GUI) 

created for the end user. 

vi. Chapter 6 presents the results and suggests future improvements. 

vii. Appendix contains the entire MATLAB code along with appropriate comments. 

 

1.1 Software Defined Radio (SDR) 

 As suggested in [4], radio systems can be classified into 5 tiers depending upon 

their capability and flexibility. Tier 0 includes strictly a Hardware Radio (HR) which can 

be modified through physical intervention only. All traditional analog radio systems with 

no software element are included in this group. Tier 1 includes a Software Controlled 
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Radio (SCR) which has limited functions changeable using software. Tier 2 includes 

Software Defined Radio (SDR) which uses software for the modulation and 

demodulation of radio signals. Some RF front-end processing is still necessary in such a 

system. Tier 3 includes Ideal Software Radio (ISR) which eliminates the RF front-end 

processing completely. The antenna is directly connected to the data converter in this 

system. Tier 4 includes Ultimate Software Radio (USR) which is a fully programmable 

radio which can support broad range of frequencies and multiple air-interfaces. 

 Figure 1.1.1 illustrates an ISR. Here, the DSP does the modulation and 

demodulation in addition to baseband signal processing, thus eliminating the need of RF 

front end. The user can alter the functionality of the radio simply by reprogramming the 

DSP. However in practicality, it is not possible to attach the antenna directly to the data 

converter due to a variety of reasons (discussed in Chapter 2). Use of RF front end 

therefore becomes necessary converting the radio from ISR to SDR. 

 

 

Figure 1.1.1: An Ideal Software Radio (ISR) 
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Figure 1.1.2: A Software-Define Radio (SDR) 

 

 Figure 1.1.2 illustrates a practical SDR architecture. In the receive path, the 

antenna signal is amplified by the Low Noise Amplifier (LNA). It is then mixed and 

bandpass filtered (BPF) to generate the IF signal. This IF signal is then digitized by a 

high speed ADC. The DSP downconverts the IF signal to baseband and subsequently 

demodulates it in digital domain. The demodulated signal is played on a speaker. 

 Likewise, in the transmit path, the DAC outputs the modulated signal at the IF 

frequency. It is then upconverted and bandpass filtered to generate the RF signal. The RF 

signal is further amplified by the Power Amplifier (PA) and fed to the antenna. 

 Radios built using SDR concept have the following advantages: 

1) Increased system performance, flexibility and cost efficiency as the digitization is 

done at an early stage. 

2) A standard architecture can be used for a wide range of communication products [4]. 

Hence, interoperability is possible. 
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3) Increased adaptability. The radio can be reprogrammed to improve performance or 

add more functionality. 

4) Software modifications can be done at a fraction of the time of hardware 

modifications. This can drastically reduce time to market and life-cycle costs. 

 

1.2 Applications of SDR 

Software defined radios have significant use in military and wireless industry 

because both of them have a variety of changing radio protocols in real time. One of the 

first software defined radios was a US military project called SPEAKeasy [3]. The goal 

of the project was to develop a radio for US military that could operate from 2 MHz to 2 

GHz. Its architecture was identical to Fig. 1.1.2. It was one of the first projects to use 

Field Programmable Gate Arrays (FPGA) for digital signal processing of radio data.  

Another project, called Joint Tactical Radio Systems (JTRS), is a US and allied 

program to make radios which provide flexible and interoperable communications. It is 

based on the Software Communications Architecture (SCA). 

A potential application of SDR is in the automotive industry. Many OEM 

manufacturers, including Siemens VDO Automotive, are researching the option of 

eliminating bulky RF tuners in car radio and digitizing entire AM/FM bands. Multiple 

AM/FM channels can be demodulated simultaneously in digital domain. This will allow 

playing of one radio channel on the main radio and another on Rear Seat Entertainment 

(RSE). 

In academia, research in SDR field is being in pursued in top universities like 

Georgia Tech, MIT and UCLA. MIT is investigating the use of SDR in Radio Frequency 
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Identification (RFID) where devices use various communication protocols to operate on 

various frequencies. Recently, UCLA introduced a practical SDR receiver which can tune 

and detect any desired RF signal in the 800MHz to 5GHz band [12]. Key blocks for the 

receiver are wideband LNA, highly linear low-flicker mixer, wide tuning range 

synthesizer, and programmable anti-aliasing filters. 

SDR has also crept in the amateur radio field. In [13], a PC-based SDR is 

described that downconverts RF to low-IF in the audio frequency range. It then uses PC 

sound card to sample and demodulate the signal. The FlexRadio SDR-1000 [14], shown 

in Fig. 1.2.1, is based on this concept. It can demodulate desired RF signal from 12 kHz 

to 60 MHz. 

 

Figure 1.2.1: FlexRadio SDR-1000 
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 The basic block diagram of the low-cost SDR receiver designed for this project is 

shown in Fig. 1.2.2. The AM/FM trainer kit is used to convert the AM signal to amplified 

AM IF signal. It is then undersampled using the high speed ADC of Measurement 

Computing's PCI-based DAS4020/12 data acquisition board. Quadrature demodulation is 

used to demodulate the signal in and play it in real-time on PC speakers. DSP algorithms 

are written in MATLAB which is a simulation and mathematical software from The 

Mathworks Inc.  

 

 

Figure 1.2.2: Software Defined Radio Receiver for AM Band 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

This chapter discusses common RF front-end architectures and uniform sampling 

techniques used in radio receivers. It also talks about the data conversion challenges for 

software-defined radio implementation. Finally it concludes with digital signal processing 

alternatives for SDR. 

  

2.1 RF Front-end Architectures 

The primary criteria in selecting any RF front-end architecture are complexity, 

cost, power distribution and number of external components. There are three RF front-

end architectures in popular use today. They are heterodyne (or superhetrodyne), 

homodyne (or direct conversion or zero-IF) and low-IF (or digital-IF) architecture.  

 

2.1.1 Heterodyne Architecture 

In heterodyne architecture, the RF signal is translated to lower IF frequencies in 

multiple stages by mixing it with a local oscillator signal. Figure 2.1.1 depicts such a 

design. The RF signal is passed through the BPF and amplified by the LNA. Before the 

signal is mixed with first local oscillator (fLO1) to generate first IF (fIF1), it is passed 

through the image reject filter (IRF). The IRF rejects the image frequency located at the 

sum of the LO and IF frequencies (fLO + fIF1). If the image is not rejected then it will fall 
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directly on the IF after mixing and corrupt the signal information. The channel select 

filter rejects adjacent channels and improves channel selectivity. The first IF signal is 

mixed with second local oscillator (fLO2) to obtain the second IF signal (fIF2). 

The major disadvantage of heterodyne topology is the number of required 

components. For example, a two stage heterodyne receiver employs two mixers, two 

local oscillators, one image reject filter and two channel select filters. The choice of IF 

also depends on trade-offs among three parameters: the amount of image noise present, 

the spacing between the desired band and the image and the loss of the image-reject filter 

[5]. A low IF allows great suppression of nearby interferers whereas a high IF leads to 

better image rejection. Thus heterodyne topology exhibits tradeoff between selectivity 

and sensitivity. Another problem which exits is the half IF effect due to the second order 

non-linearity in the RF and IF paths. Assume that there is a strong interferer at half of the 

IF from the desired band towards the LO ((fin + fLO)/2) and it undergoes second order 

distortion in the RF path. If the LO signal contains its second harmonic then the interferer 

falls on the IF (|2fLO – (fin - fLO)| = fIF) after mixing. Another possibility is that the 

interferer gets translated to (fin - fLO)/2 = fIF/2. If the IF path exhibits second order non-

linearity then the interferer will still fall on the IF. 

Most AM/FM radios use heterodyne architecture with two stages of 

downconversion. The second IF frequency for AM and FM band is 455 kHz and 10.1 

MHz respectively. 
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Figure 2.1.1: Heterodyne (or superheterodyne) architecture 
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is not infinite. There is a finite amount of feedthrough from the LO to these inputs called 

as LO leakage [5]. The leakage signal mixes with the LO signal to produce a DC offset. 

This can cause corruption of the baseband signal and can saturate the following stages of 

a receiver. A similar effect is seen when a strong interferer leaks from the LNA or mixer 

input to the LO and mixes with itself. In phase and frequency modulation schemes, where 

quadrature downconversion is employed, amplitude and phase mismatch between I and Q 

can corrupt the downconverted signal. Also if the architecture is implemented using MOS 

devices, then flicker noise (1/f noise) can be a potential source of corruption. 

 

 

 

 

Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture 
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Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing 
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more than half the sampling frequency will fold over in the digital domain. This can 

cause baseband corruption. 

 

 

Figure 2.1.3: Low-IF (or digital-IF) architecture 
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F (f) is repeated at integral multiples of the sampling frequency, fs. In other words, F (f) 

becomes periodic. This is shown in Fig. 2.2.1 (a), (b). 

The four commonly used uniform sampling techniques are – Nyquist sampling, 

over-sampling, quadrature sampling and bandpass sampling. 

 

2.2.1 Nyquist sampling 

 The Nyquist sampling theorem says that exact reconstruction of a continuous time 

analog signal from its samples is possible if the signal is bandlimited and the sampling 

frequency is greater than twice the signal bandwidth. The sampling frequency at twice the 

signal bandwidth is called as Nyquist frequency or Critical frequency. If fmax is the 

maximum frequency component of an analog signal then spectrum of the signal sampled 

at the Nyquist frequency is shown in Fig. 2.2.1 (b). 

 If the signal is sampled at less than the Nyquist frequency (called undersampling), 

the spectral replicas overlap causing aliasing. The sampled signal gets corrupted and 

cannot be exactly recovered. Figure 2.2.1 (d) depicts aliasing due to undersampling. In 

order to avoid aliasing, an anti-aliasing filter is used before the ADC. The cut-off 

frequency of the anti-aliasing filter is one half of the sampling frequency. Nyquist 

sampling demands an extremely sharp cut-off anti-aliasing filter. Unfortunately, practical 

realizable filters cannot provide this type of ‘brickwall’ response. 

Even in Nyquist sampling, if an undesired (i.e. out-of-band) signal is present 

along with the analog signal, it folds over and causes spectral overlap thus corrupting the 

signal of interest. This is shown in Figure 2.2.2. The anti-aliasing filter serves the purpose 

of attenuating the undesired signal too.  
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2.2.2 Oversampling 

 In oversampling, the signal is sampled at much more than twice the Nyquist rate. 

As depicted in Fig. 2.2.1 (c), the main advantage of this technique is that the spectral 

replicas of the sampled signal are spaced further apart from each. This relaxes the steep 

cut-off frequency requirements of the anti-aliasing filter.  

 

2.2.3 Quadrature sampling 

 As explained in section 2.1.2, the homodyne architecture for phase and frequency 

modulated systems use quadrature downconversion to generate the 'I' and 'Q' quadrature 

components. These are complex valued signals and contain twice the information as the 

real valued signal. Hence, they can be sampled at one half the sampling rate of the real 

valued signal. This type of sampling is called as quadrature sampling. The only 

disadvantage is that ADC needs to have two input channels for digitizing the two 

components. 

 

 

 

Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal 
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Figure 2.2.1: (b) Spectrum of the signal sampled at fs = 2fmax 

 

 

 

 
Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax 

 

 

 

 
Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax 
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Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component 

 

Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax 
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creating interference. 

-fmax fmax 

Fs (f) 

0 fs 2fs -fs -2fs 

fs = 2fmax 

……. ……. 

F (f) 

-fmax fmax 0 

Desired signal 

Undesired signal 
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 For bandpass sampling to work effectively, a very steep roll-off bandpass filter is 

required to attenuate undesired signals outside the band of interest. Another severe 

limitation is that the ADC should be able to effectively operate on the highest frequency 

component in the RF signal. 

 Like most other SDR projects, this project also uses bandpass sampling to sample 

the AM IF signal. 

 

 
 

Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF 

 

Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF 

 

2.3 Data Conversion Challenges 

The critical limiting factor in software radio implementation is the sluggish ADC 

technology. The antenna cannot be hooked directly to the ADC because it doesn’t have 

sufficient analog input bandwidth and dynamic range to digitize the RF signal directly. 

Fs (f) 

……. 

fIF,trans fIF,trans + fs fIF,trans + 2fs fIF,trans + 3fs fIF,trans + 4fs 

……. 

fIF 

F (f) 

0 

fs < fIF 
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Another important limitation is the power consumption of the ADC. A common Figure of 

Merit (FoM) used for ADCs is: 

ADC

ENOB

P

BW
FoM

•
=

•22
                                                         (2.3.1) 

where ENOB = Effective Number of Bits 

BW = Full–power Analog Input Bandwidth of the ADC 

PADC = Power Consumption of the ADC 

ENOB is directly proportional to the signal-to-noise and distortion ratio (SINAD) of the 

ADC. Full-power analog input bandwidth is the range from DC to the frequency where, 

for a full-scale input, the amplitude of the output of the ADC falls to 3 dB below the 

maximum output level [7].  Equation (2.3.1) indicates that for a given FoM, the power 

consumption of the ADC increases as ENOB and BW increase.  

 There is a strong trade-off between ADC sampling frequency and its performance. 

Normally, as the sampling frequency of the ADC increases its performance decreases. In 

radio receivers using IF or RF digitization, the ADC should have high linearity, signal-to-

noise ratio (SNR) and spurious free dynamic range (SFDR). SFDR is defined as the ratio 

of the signal power to the peak power of the largest spurious product. Whereas SNR 

indicates ADC’s sensitivity to small signals, SFDR is a measure of the ADC’s capability 

to reject undesired interferers. SNR is inversely proportional to the aperture jitter and 

sampling frequency of the ADC. Aperture jitter is the variation in time of the exact 

sampling instant.  
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 In comparison, DAC technology is not much of a limiting factor in software radio 

development. The operating frequencies of the current DACs surpass the ability of 

current lower-power signal processors. 

 

2.4 Digital Signal Processing Alternatives 

 The alternatives available for digital signal processing are - Application Specific 

Integrated Circuits (ASIC), Digital Signal Processors (DSP) and field programmable gate 

arrays (FPGA).  

 ASICs are integrated circuits customized to accomplish specific tasks at high 

performance levels. They are unrivaled in speed, power efficiency and computational 

density. Because of their high design and production cost, they are usually used in high 

volume designs. The major disadvantage is that they are not reconfigurable. They can be 

used for implementing limited to standard static functions. Because of these limitations, 

their use in SDRs is limited. 

 A DSP is a specialized microprocessor designed specifically for digital signal 

processing, generally in real-time computing. It has an optimized signal processing 

instruction set and can be programmed using high level programming languages like C 

and C++. On a performance matrix, DSPs fall in between ASICs and FPGAs. They have 

moderate costs but very short times to market. They are the backbone of most SDR 

systems today. Many leading semiconductor companies are currently developing SDR 

specific DSPs. Texas Instruments (TI) is one of them. 

 An FPGA is a semiconductor device containing programmable logic components 

and programmable interconnects. The functionality of basic logic gates (AND, OR, XOR, 
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NOT) or more complex combinational functions such as decoders and simple math 

functions can be duplicated by programming logic components of the FPGA. Most 

FPGAs today include memory blocks too. Different logic components are connected 

together by a hierarchy of programmable interconnects. Hardware descriptive languages 

like VHDL or VERILOG are used to program FPGAs. They are generally slower than 

the ASICs and more power hungry. Many SDRs today use FPGAs for signal processing. 
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CHAPTER 3 

SYSTEM DESIGN 

 

This chapter gives a brief system level overview of the SDR receiver. The four 

major components that make the system are: AM/FM Trainer kit, PCI-DAS4020/12 DAQ 

card, MATLAB with DAQ toolbox and PC with soundcard. 

 

3.1 AM/FM Trainer Kit 

This trainer kit, manufactured by Elenco Electronics, Inc., is a low cost receiver 

kit used in undergraduate laboratories for demonstrating principles of communication. It 

is a superheterodyne receiver of the standard AM and FM frequencies. Figure 3.1.1 (a) 

shows the assembled AM/FM Trainer kit and Fig. 3.1.1 (b) shows its schematic [8].  

 

Figure 3.1.1 (a): Assembled AM/FM Trainer kit 
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Figure 3.1.1 (b): Schematic of AM/FM Trainer kit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2: Block diagram of AM section of the kit 

 

Figure 3.1.2 shows the block diagram of the AM section of the receiver. The 

antenna signal is fed to the mixer which downconverts the RF signal to an IF of 455 kHz. 

This is accomplished by heterodyning the RF signal with the Local Oscillator (LO) 

signal. The weak IF signal from the mixer is amplified by the first IF amplifier which is 

tuned to 455 kHz. The first IF amplifier has a variable gain which depends upon the 
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voltage of the AGC (Automatic Gain Control) stage. The AGC stage feeds back a DC 

voltage to the first AM IF amplifier in order to maintain a near constant level of audio at 

the detector. The second IF amplifier is also tuned to 455 kHz and has a fixed gain of 

about 50. It selectively amplifies the IF signal and feeds it to the AM Detector. The AM 

Detector converts the IF signal to a low level audio signal. The Audio Amplifier stage 

increases the power of the demodulated audio signal received from the AM Detector to a 

power level capable of driving the speaker. 

For this project, the IF signal is taped out at the output of the second IF amplifier. 

The gain is set so that the IF signal at the output of second IF amplifier is in the range of 

+/- 1V. 

 

3.2 DAS4020/12 PCI-based DAQ Card 

The AM IF signal from the AM/FM trainer kit is converted into digital domain by 

Measurement Computing (MMC)'s DAS4020/12 PCI-based DAQ card. Figure 3.2.1 (a) 

and Figure 3.2.1 (b) depict the card and its block diagram respectively [9]. 

The PCI-DAS4020/12 is a high speed, analog data acquisition board for PCI bus 

computers.  Its features are: 

1. Wide analog BW - 20MHz total throughput rate  

2. 12-bit A/D resolution 

3. 4 analog input channels 

4. Software selectable input ranges 

5. One A/D Converter per Channel 

6. Dual 12-bit D/A Converter 
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7. Fully Plug-and-Play  

8. Fully Autocalibrating 

9. Data acquisition through MATLAB, LabVIEW, Visual Studio.net 

The main advantage of using this card is its seamless operation with standard 

engineering softwares like MATLAB and LabVIEW. Most undergraduate / graduate 

schools use these softwares in their laboratories. Table 3.2.1 lists some electrical 

specifications that are of relevance to this project. 

 

 

Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card 
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Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12 

 

Sr No Parameter Value 

1 Minimum sampling frequency 1 kHz 

2 Input programmable range ±5 V, ±1 V (software configurable) 

3 Input impedance 1.5MOhm (default), 50Ohm 

4 Typical Accuracy ±3.0 LSB error (either range) 

5 SNR (Signal-to-Noise Ratio) 66.6dB 

6 SFDR (Spurious Free Dynamic Range)  80dB 

7 THD (Total Harmonic Distortion) 80dB 

8 ENOB (Effective Number Of Bits) 10 

 

Table 3.2.1: Electrical specifications of the DAQ card 
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3.3 MATLAB with Data Acquisition Toolbox (DAQ) 

MathWorks' MATLAB is a high-level technical computing language and 

interactive environment for algorithm development, data visualization, data analysis, and 

numeric computation [10]. It has command line, scripting, modular, and graphical 

programming modes. In this project modular and graphical programming is employed. 

Add-on toolboxes like DAQ Toolbox, Signal Processing Toolbox, Communications 

Toolbox, etc extend the MATLAB environment to solve problems pertaining to the areas 

of signal/image processing, communications and control design.  

For this project we use MATLAB's DAQ Toolbox to control and communicate 

with the DAQ card and PC soundcard.  The DAQ Toolbox provides a complete set of 

tools for analog input, analog output and digital I/O from a variety of PC-compatible data 

acquisition hardware including those from Measurement Computing [11]. The toolbox 

allows configuring external hardware devices, reading data into MATLAB for immediate 

analysis, and sending out data. Together, MATLAB and DAQ Toolbox offer a single, 

integrated environment to support the entire data acquisition and analysis process. 

MATLAB's Graphical User Interface Development Environment (GUIDE) is 

used to build the Graphical User Interface (GUI). GUIDE provides a set of tools that 

simplify the process of laying out and programming GUIs. 

 

3.4 PC with Speakers 

 A PC is required to run MATLAB to acquire data, perform signal processing and 

output the processed data to the speakers through the soundcard. For this work, the PC 
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used is a standard 2.4 GHz Pentium desktop with 512 MB RAM, standard soundcard and 

options from Dell Computer Corporation. 
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CHAPTER 4 

DSP ALGORITHMS 

 

 This chapter discusses the DSP algorithms used to sample and demodulate the 

AM IF signal. Bandpass sampling and quadrature demodulation are discussed along with 

mathematical analysis.  

 

4.1 Bandpass Sampling 

 Chapter 2, discussed different sampling techniques that can be used for directly 

digitizing RF / IF signal. The usual method of sampling at twice the Nyquist rate is not 

practically feasible due to system limitations. The MCC DAQ card has a very wide 

bandwidth and can easily sample AM RF or IF signal at more than twice the Nyquist rate. 

For example, in the AM IF case this sampling rate could 1 MHz. But the amount of data 

that MATLAB would have to handle and process will put it out of sync with the sound 

card. In other words, a real time system implementation will not be possible. 

Data per sample = 1.5 Bytes (12 bits) 

Samples / second = 1 M 

Total data / second = 1.5 Bytes * 1 M = 1.5 MB 

Soundcard Output rate = 8 kS / second 
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This means that MATLAB + DAQ will have to process 188 kB data in less than 125µs 

and output it to the sound card. Given the current CPU and MATLAB speed, this is not 

feasible. Hence bandpass sampling is used in this project. 

Bandpass sampling is the technique of undersampling a modulated signal to 

achieve frequency translation by intentional aliasing. As stated in [6], the mathematical 

relationship describing the translation of the actual IF fIF frequency and translated IF 

frequency fIF,trans is: 
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Here, fix (a) is the truncated portion of argument a and rem (a, b) is the remainder after 

dividsion of a by b. Associated with this translated IF are the corresponding modulation 

sidelobes that contain information bandwidth of interest. It is important to make sure that 

no portion of the information bandwidth of the signal folds on top if itself, creating 

interference. Hence the following two constraints should be met. 
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For AM frequencies, fIF = 455 kHz and BW = 10 kHz. Based on equation (4.1.1), 

Appendix A.1 lists the translated AM IF frequencies for the sampling frequencies from 1 
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kHz to 100 kHz. It also specifies whether constraints (4.1.2) and (4.1.3) are satisfied or 

not. The lower limit of 1 kHz is set by the minimum sampling rate of the DAQ card. The 

higher limit of 100 kHz is decided by maximum processing speed that would make the 

system real time. It is dependent on DSP algorithm and processor speed.  

Table 4.1.1 lists the useful bandpass sampling frequencies in the 1 kHz - 100 kHz 

range and their corresponding translated frequencies for 455 kHz AM IF. These 

frequencies are used in the GUI of SDR. User can select any of these sampling 

frequencies to demodulate the incoming signal.  

 

Actual IF, fIF = 455 kHz 

BW = 10 kHz 

 

Useful Bandpass Sampling 

Frequency, 

fs (kHz) 

 

 

Translated IF frequency, 

fIF,trans (kHz) 

28 7 

29 9 

31 10 

32 7 

33 7 

37 11 

39 13 

42 7 

44 15 

47 15 

49 14 

52 13 

55 15 

56 7 

58 9 

59 17 

62 21 

63 14 
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64 7 

66 7 

67 14 

68 21 

69 28 

71 29 

72 23 

73 17 

74 11 

77 7 

78 13 

79 19 

80 25 

81 31 

84 35 

85 30 

86 25 

87 20 

88 15 

89 10 

93 10 

94 15 

95 20 

96 25 

97 30 

98 35 

99 40 

 

 

Table 4.1.1: Useful bandpass sampling frequencies and the corresponding translated 

frequencies for 455 kHz AM IF 

 

4.2 Quadrature Demodulation 

In this project, the digitized AM IF signal is demodulated using quadrature 

demodulation. Quadrature demodulation has some interesting properties when used for 
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AM demodulation. To appreciate these properties, it is necessary to understand the 

scheme mathematically. 

 

 

Figure 4.2.1: Quadrature demodulation architecture for AM band 

Figure 4.2.1 depicts the quadrature demodulation scheme. The AM IF signal is 

mixed with the local oscillator to directly convert to baseband. The output is passed 

through a low-pass filter (LPF) to reject all the high frequency components. It is then 

squared and fed to the adder. Likewise the AM IF signal is also mixed with the 

quadrature component of the local oscillator. The output is then passed through LPF, 

squared and fed to the adder. The adder outputs the summation of the two inputs which is 

then square-rooted to produce the demodulated signal. The reason for squaring, adding 

and then finally square-rooting will become clear soon. 
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For the sake of argument, consider that the AM IF signal and local oscillator 

signal are continuous and have unit amplitude.  The input AM IF signal can then be 

ideally represented as: 

])cos[(
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1
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)cos( Φ+−+Φ+++Φ+= twwtwwtwx mIFmIFIF            (4.2.1) 

where  wIF = AM carrier frequency 

   wm = modulating signal 

Φ = phase difference between the carrier frequency and the  

local oscillator frequency 

This signal mixes with the local oscillator signal to give, 
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Similarly, at point b we have, 
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The output of the mixer is passed through the LPF whose cut-off frequency is at least 

(|wIF - wO| + wm). Thus, at point c we have, 
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Similarly, at point d we have, 
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Squaring and adding we get, at point g, 
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twfeg m+=+=      (4.2.6) 

Taking square-root results in demodulated AM signal with dc offset which can be easily 

removed,  

)]cos(1[  
2

1
twgy m+==     (4.2.7) 

An identical mathematical analysis proves that this demodulation scheme works for 

single sideband (SSB) as well as double sideband suppressed carrier (DSB-SC) 

transmissions.  

 From the above analysis, one can conclude that so long as (|wIF - wO| + wm) is 

passed by the LPF, the signal can be demodulated using quadrature demodulation. When 

this scheme is implemented in digital domain, the LO is an accurate digitally generated 

sine wave. For AM signal, maximum fm is 5 kHz. If the LPF cut-off is at 10 kHz, then so 
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long as the offset between the IF and local oscillator frequency is less than 5 kHz, signal 

can be successfully demodulated. In other words, the AM IF at input of the ADC need 

not be exactly 455 kHz. This is a very useful property of quadrature demodulation as it 

relaxes the tight requirements on the LO in the RF front-end. 

Also, if the above architecture is implemented in digital domain, self-mixing can 

be avoided and I / Q mismatch can be minimized. 
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CHAPTER 5 

MATLAB IMPLEMENTATION 

 

This chapter deals with the MATLAB implementation of the SDR. It explains the 

MATLAB code used to initialize and run the DAQ card, digitally process the acquired 

data using the DSP algorithms discussed earlier and output the processed data through the 

soundcard. There is also a brief explanation of creating GUI using GUIDE. Only relevant 

MATLAB code is shown here in italics. The entire MATLAB code is included in the 

Appendix A.2. 

 

5.1 DAQ Devices Hardware Setup 

As discussed in Chapter 3, the DAQ card and soundcard can be configured using 

MATLAB's DAQ toolbox. Before doing that, it is necessary to reset all the data 

acquisition hardware present.  

daqreset; 

Since the system has to operate in real time, both the DAQ devices need to be 

initialized and they should work in tandem. Data acquisition objects for these devices are 

created by issuing the following commands. 

ai=analoginput('mcc',2); 

ao=analogoutput('winsound'); 
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First command creates an analog data input object called 'ai' that communicates with card 

#2 from mcc. mcc is the hardware vendor that MATLAB has assigned for Measurement 

Computing boards. ai configures and controls various parameters of the DAQ card. 

Likewise, the second command creates an analog data output object called ao that 

communicates with the sound card.  

Since DAQ card has four input channels, it is necessary to tell MATLAB which 

ones to use for acquisition. In this project, Channel 2 is used to acquire data. Similarly, 

for soundcard Channel 1 is used. 

addchannel(ai,2); 

addchannel(ao,1); 

Next, the input range of the DAQ card is set to + 1V using the following command. 

ai.Channel.InputRange=[-1 1]; 

The input and output sampling rates are set by using the following functions. 

set(ai,'SampleRate',fs); 

set(ao,'SampleRate',fs_out); 

Here fs and fs_out are MATLAB variables which are initialized to 80k and 8k 

respectively. The GUI allows the user to change the value of fs but not the value of 

fs_out. 

The type of trigger for the data acquisition objects is decided by the TriggerType 

property. When set to Manual, the trigger occurs immediately after the trigger function is 

issued. 

set([ai ao],'TriggerType','Manual'); 

The number of input samples to be acquired per trigger is set by using the command: 
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set(ai,'SamplesPerTrigger',inf); 

Since the SamplesPerTrigger is set to infinity, the DAQ card acquires samples for 1 

second and transfers them from its hardware FIFO to PC memory. This is repeated 

infinitely until the device is stopped.  

For soundcard, the SamplesOutputFcn property decides which function to call 

after outputting # Output_samples samples. When SamplesOutputFcnCount equals 

Output_samples, function qmoredatanew is called with hObject passed as a parameter. 

hObject is handle to the figure of the GUI. 

set(ao,'SamplesOutputFcn',{'qmoredatanew', hObject})  

set(ao,'SamplesOutputFcnCount',Output_samples); 

The card is set to Direct Memory Access (DMA) transfer mode. This allows the 

DAQ card to access system memory independently of the CPU. The CPU can therefore 

concentrate on DSP related tasks. The size of the contiguous memory allocated for DMA 

transfer is decided by the software provided by MCC. This allocation is performed during 

the PC bootup sequence. 

set(ai,'TransferMode','DMA'); 

After setting all the parameters, the DAQ devices can be started and triggered to 

start acquiring data and logging it to memory. 

start([ai ao]); 

trigger([ai ao]); 

The start command will inform the devices to acquire data. DAQ card's internal clock 

will start. The trigger command will start the process of data acquisition. 
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The data logged into memory is retrieved by the DAQ Toolbox using getdata() 

function. It returns data and absolute time at which each sample was taken in a matrix 

format. The processed data is written to sound card using putdata() function. 

[y t]=getdata(ai,fs); 

putdata(ao,y) 

The data acquisition can be halted by using the stop() function. 

stop([ai ao]) 

 

5.2 Finding Translated IF frequency 

Though the translated IF frequency, fIF,trans, can be known from Table 4.1.1, it can 

also be determined from the Fast Fourier Transform (FFT) of the bandpass sampled 

signal. The peak of the FFT will occur at the translated IF frequency, fIF,trans. The 

following code takes the FFT of the sampled signal, finds the peak of the FFT and the 

corresponding frequency associated with the peak. 

fft_y=fft(y);                                            % Find FFT of the bandpass sampled signal 

[m,imax]=max(abs(fft_y(1:end/2)));      % Index of max peak 

freq_vec=fs*(1:length(y))/length(y);      % Generate frequency vector 

freq_carrier=freq_vec(imax);                % Find IF frequency 

 

5.3 Demodulation 

As discussed in Chapter 4, Quadrature demodulation scheme is used in this 

project. First the in-phase and out-phase components of the local oscillator are created to 

downconvert the translated IF to baseband. 
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fo=sin(2*pi*freq_carrier.*t);     % In-phase component 

fo_90=cos(2*pi*freq_carrier.*t);  % Out-phase component 

The input sampled signal is averaged out to filter the dc component and then normalized.  

y=y-mean(y); 

y=y/max(abs(y)); 

The normalized signal is then mixed with the in-phase and out-phase component 

of local oscillator and the product is passed through a low pass filter (LPF). The LPF is a 

50
th

 order FIR filter with a linear phase and cut-off frequency, fc, of 10 kHz.  

b1=fir1(50,10e3/fs); 

The magnitude and phase response of the filter for a sampling frequency of 80 kHz is 

shown in Fig. 5.3.1. 

x1=filter(b1,1,fo.*y);                        % Multiplication with in-phase and subsequent LPF 

x2=filter(b1,1,fo_90.*y);                  % Multiplication with out-phase and subsequent LPF 

The two outputs are then squared, summed up and square rooted to get the 

demodulated output. 

x=sqrt(x1.^2+x2.^2); 

 

5.4 Downsampling and Normalization 

The demodulated output is downsampled from the bandpass sampling rate to the 

output sample rate. It is then averaged out and normalized to remove the dc component. 

z=x(1:(fs/fs_out):length(x)); 

z=z-mean(z); 

z=z/max(abs(z)); 
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Figure 5.3.1: Magnitude and Phase response of 50
th

 order FIR filter with fc = 5 kHz 

 

5.5 Graphical User Interface (GUI) 

The GUI for SDR is shown in Fig. 5.51. The pop menu at the left-hand side 

allows the user to select one of the appropriate bandpass sampling frequencies listed in 

table 4.1.1. If nothing is selected then sampling is done at the default rate of 80 kS/s. 

After selecting the frequency, the user has to press the ON/OFF toggle button to start the 

DAQ devices. The time domain representation of the demodulated signal is displayed in 

the top plot. The X-axis range is for 1 second. The bottom plot shows the frequency 

domain representation. The Y-axis range is from -4 kHz to 4 kHz as the demodulated 

data is sent to the soundcard at the rate of 8 kHz. To stop the devices, the user has to 
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depress the ON/OFF button. The following GUIDE components are used to build the 

GUI: 

1. Popup Menu 

2. Axes 

3. Toggle Button 

4. Static Text 

Their details can be found in [10] and are not discussed here. 

 

 

Figure 5.5.1: SDR GUI 
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CHAPTER 6 

RESULTS AND FUTURE IMPROVEMENTS 

 

The results of the project are presented in this chapter. Qualitative aspect of the 

SDR performance is also discussed. Though this project is fully functional, by no way it 

is a complete one. There is plenty of room for improvement. Continuous improvement is 

needed in the areas of RF downconversion, sampling and efficient DSP algorithms. 

 

6.1 Results 

The AU SDR (AM Band) v4.0 is used to demodulate WAUD 1230 AM which is 

Auburn's local station. Figure 6.1.1 shows the GUI display for a sampling frequency of 

80 kHz. 

The demodulated signal appears a little noisy as can also be seen from its 

frequency spectrum. This is because the signal reception is not very good in the 

laboratory where this test was run. Also the receiver is a low-cost radio and hence has a 

relatively poor performance for weak signals. There is no noise reducing DSP algorithm 

implemented in this project.  
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Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz 

 

Figure 6.1.2 shows the demodulated WAUD 1230 AM station for a sampling 

frequency of 32 kHz. Here it can also be seen that that there is a peak at about 4 kHz 

which causes a whistling sound in audio output. The source of this peak is still unknown 

but it is a matter of further investigation. 
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Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz 

 

6.2 Future Improvements 

Instead of converting RF to IF, the whole AM band could be bandpass sampled. 

This will allow demodulation of multiple AM channels at the same time. As per the 

equations given in Chapter 4, the minimum bandpass sampling frequency for AM band 

(530 kHz - 1710 kHz) would be 3421 kHz (assuming that the sampling can be adjusted in 

steps of 1 kHz). However this will require an amplifier with a sharp bandpass response to 

reject all out-of-band signals. This amplifier will be placed between the antenna and the 

DAQ card. 
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The project could be extended to include other modulation schemes as well like 

FM, SW, CB, etc. Quadrature demodulation can be used for FM if two analog input 

channels are available. Noise canceling / squelch algorithms can also be implemented to 

further improve signal to noise ratio. 

MATLAB is a powerful computing tool but it is very resource hungry. It is not as 

efficient as C/C++ for performing DSP tasks like FFT. Also the use of GUI in MATLAB 

slows down signal processing further. The efficiency can be significantly improved if the 

coding is done entirely in C/C++. The code will then be portable to other operating 

systems. To make the system even more portable, USB based data-acquisition can be 

used. 
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APPENDIX 

 

A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF 

Actual IF, fIF = 455 kHz 

BW = 10 kHz 

 

Sampling 

Frequency, 

fs (kHz) 

 

 

Translated IF 

frequency, 

fIF,trans (kHz) 

 

Equation 

(4.1.2) satisfied 

 

Equation 

(4.1.3) satisfied 

 

Equations 

(4.1.2) and 

(4.1.3) 

satisfied 

1 0 FALSE FALSE FALSE 

2 1 FALSE FALSE FALSE 

3 1 FALSE FALSE FALSE 

4 1 FALSE FALSE FALSE 

5 0 FALSE FALSE FALSE 

6 1 FALSE FALSE FALSE 

7 0 FALSE FALSE FALSE 

8 1 FALSE FALSE FALSE 

9 4 FALSE FALSE FALSE 

10 5 FALSE FALSE FALSE 

11 4 FALSE FALSE FALSE 

12 1 FALSE FALSE FALSE 

13 0 FALSE TRUE FALSE 

14 7 TRUE FALSE FALSE 

15 5 FALSE FALSE FALSE 

16 7 TRUE FALSE FALSE 

17 4 FALSE FALSE FALSE 

18 5 FALSE FALSE FALSE 

19 1 FALSE TRUE FALSE 

20 5 FALSE FALSE FALSE 

21 7 TRUE FALSE FALSE 

22 7 TRUE FALSE FALSE 

23 5 FALSE TRUE FALSE 

24 1 FALSE TRUE FALSE 
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25 5 FALSE TRUE FALSE 

26 13 TRUE FALSE FALSE 

27 4 FALSE TRUE FALSE 

28 7 TRUE TRUE TRUE 

29 9 TRUE TRUE TRUE 

30 5 FALSE TRUE FALSE 

31 10 TRUE TRUE TRUE 

32 7 TRUE TRUE TRUE 

33 7 TRUE TRUE TRUE 

34 13 TRUE FALSE FALSE 

35 0 FALSE TRUE FALSE 

36 13 TRUE FALSE FALSE 

37 11 TRUE TRUE TRUE 

38 1 FALSE TRUE FALSE 

39 13 TRUE TRUE TRUE 

40 15 TRUE FALSE FALSE 

41 4 FALSE TRUE FALSE 

42 7 TRUE TRUE TRUE 

43 18 TRUE FALSE FALSE 

44 15 TRUE TRUE TRUE 

45 5 FALSE TRUE FALSE 

46 5 FALSE TRUE FALSE 

47 15 TRUE TRUE TRUE 

48 23 TRUE FALSE FALSE 

49 14 TRUE TRUE TRUE 

50 5 FALSE TRUE FALSE 

51 4 FALSE TRUE FALSE 

52 13 TRUE TRUE TRUE 

53 22 TRUE FALSE FALSE 

54 23 TRUE FALSE FALSE 

55 15 TRUE TRUE TRUE 

56 7 TRUE TRUE TRUE 

57 1 FALSE TRUE FALSE 

58 9 TRUE TRUE TRUE 

59 17 TRUE TRUE TRUE 

60 25 TRUE FALSE FALSE 

61 28 TRUE FALSE FALSE 

62 21 TRUE TRUE TRUE 

63 14 TRUE TRUE TRUE 

64 7 TRUE TRUE TRUE 
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65 0 FALSE TRUE FALSE 

66 7 TRUE TRUE TRUE 

67 14 TRUE TRUE TRUE 

68 21 TRUE TRUE TRUE 

69 28 TRUE TRUE TRUE 

70 35 TRUE FALSE FALSE 

71 29 TRUE TRUE TRUE 

72 23 TRUE TRUE TRUE 

73 17 TRUE TRUE TRUE 

74 11 TRUE TRUE TRUE 

75 5 FALSE TRUE FALSE 

76 1 FALSE TRUE FALSE 

77 7 TRUE TRUE TRUE 

78 13 TRUE TRUE TRUE 

79 19 TRUE TRUE TRUE 

80 25 TRUE TRUE TRUE 

81 31 TRUE TRUE TRUE 

82 37 TRUE FALSE FALSE 

83 40 TRUE FALSE FALSE 

84 35 TRUE TRUE TRUE 

85 30 TRUE TRUE TRUE 

86 25 TRUE TRUE TRUE 

87 20 TRUE TRUE TRUE 

88 15 TRUE TRUE TRUE 

89 10 TRUE TRUE TRUE 

90 5 FALSE TRUE FALSE 

91 0 FALSE TRUE FALSE 

92 5 FALSE TRUE FALSE 

93 10 TRUE TRUE TRUE 

94 15 TRUE TRUE TRUE 

95 20 TRUE TRUE TRUE 

96 25 TRUE TRUE TRUE 

97 30 TRUE TRUE TRUE 

98 35 TRUE TRUE TRUE 

99 40 TRUE TRUE TRUE 

100 45 TRUE FALSE FALSE 
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A.2 MATLAB Software Code 

 This is the main file (IF455_SDR_GUI_v4.m) which creates and controls the 

GUI, takes user input, calls different signal processing functions and displays messages 

on the MATLAB command window. 

 

function varargout = IF455_SDR_GUI_v4(varargin) 

% IF455_SDR_GUI_V4 M-file for IF455_SDR_GUI_v4.fig 

%      IF455_SDR_GUI_V4, by itself, creates a new IF455_SDR_GUI_V4 or raises the  

%      existing  singleton*. 

%      H = IF455_SDR_GUI_V4 returns the handle to a new IF455_SDR_GUI_V4 or  

%      the handle to the existing singleton*. 

%      IF455_SDR_GUI_V4('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in IF455_SDR_GUI_V4.M with the given input  

%      arguments. 

%      IF455_SDR_GUI_V4('Property','Value',...) creates a new IF455_SDR_GUI_V4 or  

%     raises the existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before IF455_SDR_GUI_v4_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to IF455_SDR_GUI_v4_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 
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% See also: GUIDE, GUIDATA, GUIHANDLES 

% Edit the above text to modify the response to help IF455_SDR_GUI_v4 

% Last Modified by GUIDE v2.5 17-Sep-2006 13:58:24 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @IF455_SDR_GUI_v4_OpeningFcn, ... 

                   'gui_OutputFcn',  @IF455_SDR_GUI_v4_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

% --- Executes just before IF455_SDR_GUI_v4 is made visible. 

 

function IF455_SDR_GUI_v4_OpeningFcn(hObject, eventdata, handles, varargin) 
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% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to IF455_SDR_GUI_v4 (see VARARGIN) 

clc; 

% Declare parameters shared between different functions as global 

global fs fs_out Output_samples flag; 

warning off; 

% Display welcome message on MATLAB command prompt 

fprintf('Welcome to Auburn University SDR (AM Band) v4.0 program.');  

fprintf('\nSelect the appropriate sampling frequency and then press ON/OFF... 

button to start.\n'); 

% Set default sampling rate as 80 kHz. This can be changed by end user using GUI 

fs=80e3; 

% Set output sample rate as 8 kHz. This is fixed and cant be changed by end  user 

fs_out=8e3; 

Output_samples=8e3; 

% Assign a flag to determine ON/OFF. flag = 1 means ON, flag = 0 means OFF 

flag=1; 

% Generate a 50 Hz sine wave and its FFT 

t = 0:1.25e-4:(1-1.25e-4); 

x=sin(2*pi*50*t); 
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N=length(x); 

Ts=length(t); 

% Frequency vector 

ssf=(-N/2:N/2-1)/(N/fs_out);                    

% Do FFT 

fx=fft(x(1:N));                             

% Shift it for plotting 

fxs=fftshift(fx);                           

% Get structure of handles.  

handles = guihandles(hObject);  

%Plot the sine wave in time and frequency domain. 

axes(handles.axes1) 

plot(t,x) 

set(handles.axes1,'XMinorTick','on') 

set(handles.axes1,'XMinorGrid','on') 

grid on 

axes(handles.axes2) 

plot(ssf,abs(fxs)); 

set(handles.axes2,'XMinorTick','on') 

set(handles.axes2,'XMinorGrid','on') 

grid on 

% Choose default command line output for IF455_SDR_GUI_v4 

handles.output = hObject; 
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% Update handles structure 

guidata(hObject, handles); 

% UIWAIT makes IF455_SDR_GUI_v4 wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

 

% --- Outputs from this function are returned to the command line. 

function varargout = IF455_SDR_GUI_v4_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

% --- Executes on button press in togglebutton1. 

function togglebutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to togglebutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

handles=guihandles(hObject); 

global ai ao fs fs_out Output_samples freq_carrier b1 flag; 

% Get toggle state of ON/OFF button 
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button_state = get(hObject,'Value'); 

if button_state == get(hObject,'Max') 

    % Disable popup menu which selects sampling frequency 

    set(handles.popupmenu1,'Enable','off'); 

    % Reset DAQ devices 

    daqreset; 

    % Configure the DAQ devices  

    ai=analoginput('mcc',2); 

    ao=analogoutput('winsound'); 

    addchannel(ai,2); 

    addchannel(ao,1); 

    ai.Channel.InputRange=[-1 1]; 

    % Determine the translated carrier frequency; 

    freq_carrier=findcarrier(fs,Output_samples);  

    % Determine corfficients of 50th order FIR LPF with cut-off frequency at 5 kHz 

    b1=fir1(50,10e3/fs); 

    set(ai,'SampleRate',fs); 

    set(ao,'SampleRate',fs_out);  %setting the soundcard to 8k out 

    set([ai ao],'TriggerType','Manual'); 

    set(ai,'ManualTriggerHwOn','Trigger'); 

    set(ai,'SamplesPerTrigger',inf); 

    set(ao,'SamplesOutputFcn',{'qmoredatanew',hObject}) 

    set(ao,'SamplesOutputFcnCount',Output_samples); 
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    set([ai ao],'StopFcn',@daqstopped); 

    set(ai,'TransferMode','DMA'); 

    

    % Workaround to get the DAQ devices running in sync 

    y=zeros(Output_samples,1); 

    putdata(ao,y); 

    start([ai ao]); 

    trigger([ai ao]); 

    pause(5); 

    stop([ai ao]); 

 

    % Start the actual Data acquistion 

    putdata(ao,y); 

    start([ai ao]); 

    fprintf('Program started. Press ON/OFF button to stop.\n'); 

    trigger([ai ao]); 

 

elseif button_state == get(hObject,'Min') 

    flag = 0; 

end 

 

% --- Executes during object creation, after setting all properties. 

function axes1_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to axes1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

% Hint: place code in OpeningFcn to populate axes1 

 

 

% --- Executes on mouse press over axes background. 

function axes1_ButtonDownFcn(hObject, eventdata, handles) 

% hObject    handle to axes1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% --- Executes during object creation, after setting all properties. 

function axes2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to axes1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

% Hint: place code in OpeningFcn to populate axes2 

 

% --- Executes on mouse press over axes background. 

function axes2_ButtonDownFcn(hObject, eventdata, handles) 

% hObject    handle to axes1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

 

% --- Executes on selection change in popupmenu1. 

function popupmenu1_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu1 

global fs fs_out Output_samples; 

% Contents  

contents = get(hObject,'String'); 

index_selected = get(hObject,'Value'); 

fs = 1e3*str2double(contents(index_selected)); 

 

% --- Executes during object creation, after setting all properties. 

function popupmenu1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

The main file calls the following function (findcarrier.m) to compute FFT on 'N' 

samples and find out the exact translated carrier frequency after downsampling the input 

at 'fs' kHz. 

 

function freq_carrier=findcarrier(fs,N) 

global ai; 

duration=N/fs; 

set(ai,'SampleRate',fs); 

set(ai,'SamplesPerTrigger',N); 

set(ai,'TriggerType','immediate'); 

start(ai); 

y=getdata(ai); 

fft_y=fft(y); 

[m,imax]=max(abs(fft_y(1:end/2)));      % Index of max peak 

freq_vec=fs*(1:length(y))/length(y);    % Generate frequency vector 

freq_carrier=freq_vec(imax);            % Find IF frequency 

stop(ai); 
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The following function (qmoredatanew.m) is called by the main file to perform 

quadrature demodulation of the AM signal if 'flag' is set to 1 and to stop the DAQ devices 

if 'flag' is set to 0.  

 

function qmoredatanew(obj,event,hObject) 

global ai ao fs fs_out Output_samples freq_carrier b1 flag; 

handles=guidata(hObject); 

if (flag==0) 

    stop([ai ao]); 

    set(handles.popupmenu1,'Enable','on'); 

    fprintf('Program stopped. Press ON/OFF button to start again.\n'); 

    flag=1; 

else 

     [y t]=getdata(ai,fs); 

    y=y-mean(y); 

    y=y/max(abs(y)); 

    fo=sin(2*pi*freq_carrier.*t);        % In-phase component 

    fo_90=cos(2*pi*freq_carrier.*t); % Out-phase component 

    x1=filter(b1,1,fo.*y);                     % Multiplication with in-phase and subsequent LPF 

    x2=filter(b1,1,fo_90.*y);              % Multiplication with out-phase and subsequent LPF 

    x=sqrt(x1.^2+x2.^2); 

    z=x(1:(fs/fs_out):length(x)); 

    z(1)=z(4); z(2)=z(4); z(3)=z(4); 
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    z=z-mean(z); 

    z=z/max(abs(z)); 

    N=length(z);                                    % length of the signal z 

    t1=t(1:(fs/fs_out):length(x)); 

    ssf=(-N/2:N/2-1)/(N/fs);                 % frequency vector 

    fz=fft(z(1:N));                                % Perform DFT/FFT 

    fzs=fftshift(fz);                               % shift it for plotting 

    plot(handles.axes1,t1,z) 

    set(handles.axes1,'XMinorTick','on') 

    set(handles.axes1,'XMinorGrid','on') 

    set(handles.axes1,'YGrid','on') 

    plot(handles.axes2,ssf,abs(fzs)) 

    set(handles.axes2,'XMinorTick','on') 

    set(handles.axes2,'XMinorGrid','on') 

    set(handles.axes2,'YGrid','on') 

    putdata(obj,z); 

end 


