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Abstract

In the setting where sample size n is sufficiently large relative to the number of features

p, a classical result is that fitting a logistic model by means of maximum likelihood produces

estimates that are approximately normal, unbiased and efficient. The usual claim is that these

estimations are approximately valid if there are about 5-10 observations per unknown param-

eter. Sur and Candès (2019) shows in the context of the logistic regression that in the modern

setting where the sample size and number of features are large and comparable, this claim is

misleading and untrue, and hence, inferences based upon the results of common software pack-

ages can be unreliable. This dissertation considers the logistics regression with ℓ1− penalty

and extends the results of Sur and Candès (2019) to the asymptotic regime where the dimen-

sion p of the covariates, and the sample size n grow together to infinity in such a way that

n/p → δ ∈ (0,∞). There are two major contributions made here. First, it explicitly char-

acterizes the asymptotic mean square error of the ℓ1-penalized logistic regression estimators.

Secondly, it provides empirical evidence of the existence and the location of a phase transi-

tion in the accuracy of signal recovery of the logistic lasso estimator in the two-dimensional

sparsity-undersampling phase space. The formalism here is based on the asymptotic analysis of

the GAMP algorithm. The findings offer theoretical insights into high-dimensional regression

methods. For example, it can be used to tune the regularization parameter since it provides

explicit characterization of the asymptotic MSE. Also, the phase transition result provides a

guide for when the ℓ1-regularized estimator is reliable in the context of the logistic regression.
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Chapter 1

Introduction

1.1 Big data era and high-dimensional problem

Not too long ago, a gigabyte of data was considered quite large. However, with recent advance-

ments in data technologies, organizations are now managing hundreds of petabytes of data. The

world is currently witnessing a rapid data explosion, rendering previous data creations, acqui-

sitions, and storage trivial in comparison. A vast amount of data is now routinely generated in

various fields, including scientific research, medical imaging, satellite imagery, climate stud-

ies, social media, surveillance videos, and omics data. Today, data has become one of the most

crucial assets for businesses, playing a central role in transformative innovations such as artifi-

cial intelligence (AI) and machine learning. According to a report by IDC (International Data

Corporation) Reinsel et al. (2017), the global data volume was predicted to grow exponentially

from 4.4 zettabytes in 2013 to 44 zettabytes in 2020, and is projected to reach an astonishing

163 zettabytes by 2025.

The value offered by the largest companies in the world now largely stems from their data,

which they continuously analyze to develop new products and enhance efficiency. The meaning

and utilization of data have been completely transformed by today’s cutting-edge computers,

sensors, tablets, mobile devices, and similar technologies. These highly advanced computing

and electronic devices have the ability to perform tasks and generate data across multiple plat-

forms simultaneously. It is now possible to capture numerous features of observations, resulting

in a situation where the number of observed features (p) often greatly surpasses the number of

observations (n). Instead of dealing with a small number of variables and a few hundred or

fewer observations as in the past, scientists and researchers now grapple with the challenge of
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big data. But, while having access to vast amounts of data is generally beneficial, it is only

valuable when its true worth is uncovered.

The term“Big data” has emerged to describe extremely large data sets that are character-

ized by their variety, velocities, and volumes. The definition of what constitutes ”big data” can

vary from organization to organization depending on their available resources. For some, en-

countering hundreds of gigabytes of data may prompt a reevaluation of their data management

strategies, while for others, it may take significantly larger amounts of data before size becomes

a significant concern.

Although big data offers many opportunities, it also presents challenges. Data volumes

are doubling every few years, and organizations struggle to keep up with the pace and to find

effective ways to store it. Additionally, data cleanliness is a concern, as data must be stored in

a way that allows for meaningful analysis. Classical statistical theory and methods are often

inefficient and infeasible in this context. Dealing with big data involves three levels of chal-

lenges: acquisition, management, and analysis. The contribution in this work focuses on the

area of analysis.

There is an urgent need for new statistical ideas, scalable algorithms, parsimonious mod-

els, and accurate theory to analyze and interpret such data. The primary objective of this work

is to gain a deeper understanding of the ℓ1−penalized logistics regression by examining its

asymptotic behavior as the sample size n and the number of predictors p increase together at a

fixed rate, i.e., n/p→ δ. This scenario is known as the large-n-large-p asymptotics.

The logistic regression model is a specific instance of a broader class known as General-

ized Linear Models (GLMs) which will now be presented.

1.2 Generalized Linear Models

A problem that naturally occurs with high dimensional data is that, with increasing dimension,

the relationship between a response y, and a vector of covariates x ∈ Rp, compounds very

quickly in complexity and applicable procedure of analysis are nontrivial even for traditional

techniques. Under certain mild assumptions, the linear regression model has been successfully
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applied for high dimensional problems. When the assumptions of a normally distributed re-

sponse variable with constant variance are not met, methods such as weighted least squares and

data transformation have also proven effective for modeling purposes. But it turns out, how-

ever, that linear regression techniques, are restrictive as they are limited only to settings where

some form of linearity assumption is reasonable. The GLMs generalise the linear model idea

to a broader framework that includes both the linear and nonlinear regression models and also

allows the incorporation of non-normal response distributions. A key assumption in the GLMs

is that the distribution of the response variable y, must belong to the exponential family which

includes many popular examples like the binomial, Poisson, exponential, gamma and normal

distributions. McCullagh and Nelder (1983) provide an in-depth coverage on the algorithms,

statistical inference, and theory on GLMs.

The central principle of the GLMs is to establish a linear model for an appropriate function

of the expected value of y, the response variable, i.e., find h : R → R such that

η = h

(
E[Y |X]

)
= h(µ) = Xβ, X = (X1, X2, ..., Xp). (1.1)

Notice here that the covariates Xi ∈ R, affect the distribution of the response y ∈ {0, 1}, only

through the linear combination, XT
i β. The function h, is called the link function. There are

several possible choices of the link function and we give a few of the most popular ones in the

Table 1.1 below.

Overall, GLMs have three basic components:

• Random Component - this sets out the probability distribution of the response variable

Y , such as the normal distribution in the case of classical regression model, or binomial

distribution in the binary logistic regression model. This is the only random component

in the model, and there is not a separate error term.

• Systematic Component - this sets out the explanatory variables in the model in the form

of their linear combination, xTi β.
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• Link Function: η - The relationship between the random and systematic components is

specified via a a monotonic and differentiable link function h.

The table below shows the link functions for some very popular cases.

Table 1.1: Link Functions for the GLMs

Distribution Link Function
Normal η = µ

Logistic η = log
(

πi

1−πi

)
Probit η = Φ−1(µ)
Complementary-log-log η = log{− log(1− µ)}

Φ represents the cdf of the standard normal distribution function. In the case of the logis-

tic regression, the random component relates the response variable is assumed to follow the

binomial distribution with a single trial and success probability E(Y ) = π. The Systematic

component is the linear combination of the explanatory variable by the regression parameters.

The Probit Model, like the logistic regression, is also used to estimate the probability that an

observation with specific attributes falls into a specific one of two categories. Though it was

primarily developed as a way of estimating probabilities of a binary outcome, it has also seen

successful application in binary classification where observations are classified based on their

predicted probabilities. The Complementary-log-log Model is a third option to the Probit and

Logit models. A major difference between the complementary-log-log model and logit/probit

models is that while complementary-log-log is asymmetrical, the other two are symmetrical.

Complementary log-log models are typically employed when the probability of an event falls

in one extreme, i.e., very small or very large.

We note that while linear regression is a very useful apparatus for predicting the values of

a quantitative response variables, there are many important situations where the response is not

quantitative but qualitative or categorical, and there, the linear regression is not applicable and a

different set of tools is needed. For example, consider the problem of predicting a dichotomous

outcomes, such as in medical science to predict the risk of a patient developing a certain disease.

The logistic regression is perhaps the most widely used statistical model for performing such

tasks. In more general terms, unlike with linear regression models, GLMs do not assume a
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linear relationship between the response variable and the explanatory variables. The linear

relationship assumption is between the transformed expected response in terms of the link

function and the explanatory variables. This allows GLMs to extend to a broader framework as

in the examples above and many other important application.

Several interesting problem formulations have been considered by researchers under the

framework of the GLMs, but in this work, we will limit our study to the logistic regression

model. We begin by first highlighting a few important building block and results.

1.2.1 The Setup

Binary data are ubiquitous in application across a broad range of subject areas such as Finance,

Biology, Medicine, Social Sciences, etc. Logistic regression [Cox (1958)] is arguably the most

well known parametric statistical model for fitting binary outcome, Y with a family of covari-

ates X = (X1.X2, ..., Xp), and assessing the significance of their coefficients. For example,

logistic regression may be used to predict: the chance of an online shopper buying or not buy-

ing a particular product based on certain characteristics of the shopper; patients survival or not

from a disease; that an individual will have heart disease or not, and so on. Logistic regression

models are mostly used as a data analysis and inference tool, where the aim is to estimate the

contribution of the input variables in explaining the outcome. Given the frequent occurrence of

this model in applications, graduate students in statistics and other fields involving data analysis

are usually introduced to logistic regression before any other nonlinear multivariate model.

Logistic regression tries to model how the odds of “success” for a binary response variable

Y depend on a set of explanatory variables: Specifically, the model is as follows: let (yi, Xi) be

n independent observations where yi ∈ {0, 1} is the response variable and Xi ∈ Rp the vector

of predictor variables. The logistic regression model computes the conditional probability of a

case given the covariates via

P(yi = 1|Xi) = ρ′(XT
i β) (1.2)
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where β ∈ Rp is the unknown regression vector. The Logistic regression model is fit via the

method of maximum likelihood and in this case, the maximum likelihood estimate (MLE) is

the minimizer of the negative log-likelihood given by:

β̂ = argminβ

∑n
i=1 ℓ(X

T
i β, yi),

where ℓ(z, y) = ρ(z)− yz, ρ(t) = log (1 + et) .
(1.3)

Most standard statistical software have built-in packages that produce p-values for assessing

the significance of their coefficients.

1.2.2 Classical Results

Statistical inference for GLMs is justified by asymptotics. The large-n-fixed-p asymptotics

is the classic setting and dominant in past literature. It makes sense when there are only a

few predictors and the sample size n ≫ p. The main mathematical tool is the Law of Large

Numbers and Central Limit Theorem. The asymptotic analysis starts with the consistency of

an estimator and then goes on to the asymptotic normality (McCullagh and Nelder (1983).

Classical statistical inference for a host of parametric models including logistic regression

relies on maximum likelihood theory. An important fundamental result in classical statistics is

about the asymptotic properties of the MLE which states that under some mild regularity con-

ditions on the underlying model, the MLE β̂ is normally distributed around the true parameter,

with variance given as inverse Fisher’s information scaled by root n (the sample size). i.e.,

√
n(β̂ − β)

d→ N(0, I−1
β ), (1.4)

where I−1
β is the p×p Fisher information matrix evaluated at the true β (Lehmann and Romano

(2006)). Explicating, (1.4) says that the MLE has the following large sample properties:

1. the MLE is consistent: β̂
p→ β,

2. the MLE is Asymptotically normal,
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3. the MLE is asymptotically efficient, i.e., it achieves minimum variance, the Rao-Cramer

lower bound.

Property (1.4) also gives that we can calculated p-values for performing hypotheses testing to

assess the significance of regression coefficients, βj . Software packages commonly rely on

(1.4) to produce inferential results for most parametric models, and in particular, the logistic

regression. Most students in statistics and related fields know how to interpret such computer

outputs.

1.3 Background of Study

Classification and regression problems that involve a large number of candidate feature vari-

ables are prevalent in various scientific fields. With the advancements in data collection tech-

nologies, it has become the norm to observe data in a more detailed manner, resulting in a

larger number of recordable features for individual observations. In genomics, for instance, the

number of gene features for a single individual often exceeds the number of available individ-

uals for a study. These types of problems are known as high-dimensional problems and will

be the main focus of this work. Before delving into the details, let’s introduce the concept of

regularization, which will aid in understanding the subsequent discussions.

1.3.1 Regularized Estimators

As stated above, GLMs are usually estimated via the method of Maximum Likelihood (ML),

which tries to calculate the most likely values of the population parameters, β, say, given the

observed data. But, with small to modest sample sizes and complex models, ML estimation

of most statistical models can show serious estimation problems such as non-convergence,

parameter estimates outside the admissible parameter space, and/or over-fitting as more and

more feature variables are added in the model.

In this modern data era, large and complex datasets have become everyday norm for

statisticians and data analysts. Large data size affords researchers the ability to pursue non-

parametric estimation techniques for “unstable” quantities and “discontinuous” functions of
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the underlying data distribution. Complexity on the other hand refers to high dimensionality of

observations, and is the basis for the reliance on complex models to fit data. But, with com-

plex models come many challenges including over-fitting to radom effect and poor prediction.

Regularization procedure is one approach to mitigate these problems. Regularization helps

solve over-fitting by penalizing high-valued regression coefficients, thereby, reducing parame-

ters and shrinking/simplifying the model. The general idea is to adds penalties to more complex

models and then calculate over-fitting scores for potential models; The model with the lowest

over-fitting score usually yields the most predictive power.

In practice, a large number of predictors are usually introduced at the initial stage of mod-

eling to attenuate possible modeling biases. To enhance predictability and to select signifi-

cant variables, statisticians traditionally used stepwise deletion and subset selection (see A.

(1960), Hocking (1976)). Although they are practically useful, these selection procedures ig-

nore stochastic errors inherited in the stages of variable selections. Hence, their theoretical

properties are somewhat hard to understand. To solve this problem, many other variable se-

lection procedures have been studied; least squares regression methods with various kinds of

penalties aimed at tackling the complexity problem, and increasing prediction accuracy have

collected much interest, and a substantial amount of research efforts have been poured in that di-

rection by statisticians; Hoerl and Kennard (1970) introduced the ridge regression which proves

effective for handling the problem of multicollinearity and prediction performance, however,

ridge regression leaves the variable selection problem unattended. Tibshirani (1996) introduced

the Least Absolute Shrikage Selection Operator (Lasso) which uses an ℓ1-penalized likelihood

for linear regression with independent Gaussian noise. The major attraction of the lasso and

related methods is that they offer interpretable, stable models, and an efficient prediction at a

reasonable cost. Lasso provides a way to simultaneously performs variable selection and co-

efficient estimation. In short, lasso provides a simple, data-guided approach for choosing the

optimal level of model complexity, in essence, the degree of regularization of the model.

In a general context, regularization is a process of imposing constraint on model param-

eters to solve an inference problem, such as MLE, that is unstable or not solvable by regular

methods. In other words, regularization introduces some bias in exchange for a larger reduction
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in variance and hence minimizes over-fitting. The regularized solutions are more stable and the

resultant models are usually simpler. To put this in Math terms, a regularization approach is

intended to estimate the parameter, β via

β̂h = argmin
β

n∑
i=1

ℓ(βββ) + h(βββ) (1.5)

where ℓ is some loss function, a common example of which is the negative log-likelihood func-

tion, and h(βββ) =
∑p

j=1 h(βj) for some convex penalty function h(·). The particular case of

interest for us in this work is the LASSO, where h(βj) = λ|βj|, and λ ≥ 0 is the tuning param-

eter. Given the negative log-likelihood loss function, for λ = 0, β̂h is exactly the maximum

likelihood estimator, while when λ → ∞, we usually have β̂h → 0. Hence, the value of λ

controls the sparsity of the estimator β̂h. There are many existing algorithms for solving (1.5);

we will do an depth review in section 1.3.4.

The seminal works of Tibshirani (1996) for lasso and Chen et al. (1998) for basis pursuit

spark the interest of researchers in ℓ1-regularization. Fu and Knight (2000) showed that λ

should be selected adaptively to the sample size n in order to get the consistency of β̂(λ).

Zhao and Yu (2006) discussed the variable selection inconsistency of lasso and identified a

sufficient condition that guarantees the consistency of variable selection. Fan and Li (2011)

promoted penalty with the oracle properties, where zero components can be selected with high

probability and nonzero components can be estimated with the same efficiency as if they are

known in advance. Several other authors, even within the last decade have continued to study

the distribution ofM estimators in linear models under various conditions. For example, Karoui

et al. (2013); Bean et al. (2013); Donoho and Montanari (2013); Karoui and Noureddine (2018),

and a host of others have studied several topical issues on the M estimators.

Unfortunately, the results from the above literature do not carry forward directly, to the

GLMs, as they all require a loss function that is strongly convex, and this is not the case for

many GLMs. Hence, statisticians have been interested in recovering and developing their ana-

logues in the larger context of the GLMs. There is a large literature on the asymptotic behavior
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of M estimators for exponential families. For example, Portnoy (1988) studied M estima-

tors for exponential families in the regime where p2/n → 0. He and Shao (2000) considered

M-estimators of general parametric models that include the GLMs.

For various objectives, researchers have continued to study different forms of penalized

regression. The notion of effective dimension was introduced by Spokoiny (2012), and they ex-

tended classical maximum likelihood results to maximum likelihood estimates with quadratic

penalization. They achieve analogues of asymptotic normality and also the Wilk’s phenomenon

for the penalized MLE in the case of parametric models when the effective dimension is low-

dimensional. The other major interest stemming from classical statistics pertain to the consis-

tency of estimators. And to get a consistent estimator for β, some prior knowledge of β is usu-

ally needed. The most common assumption is the sparsity of β, in essence, most components

of β are zeros. Existing research shows that provided β is sufficiently sparse, the consistency

of β̂(λ) is achievable for a proper choice of λ, even when p ≫ n (see e.g., Candes and Tao

(2007), Donoho et al. (2006), Meinshausen and Bühlmann (2006), Tropp (2004), Wainwright

(2006), Zou (2006)).

1.3.2 diverging-p asymptotics

It is worth noting that most of the earlier literature focuses on the regime of large-n-fixed-p

asymptotics, where the number of predictors, p, is fixed and the sample size, n, tends to infinity.

However, in modern data scenarios, it is common to encounter situations where p is close to

n, p is greater than n, or even p is much larger than n. In these cases, the classical maximum

likelihood estimation results are known to be inadequate. Therefore, it becomes necessary to

study the asymptotics for increasing values of p, where p grows alongside n.

Because of the high dimensionality in modern data, it is not appropriate to assume fixed

p anymore. The asymptotics on regularization approaches has gradually shifted to the scenario

of diverging p. The main goal is to identify suitable conditions that allow p to grow to infinity

and at the same time maintain consistency and asymptotic normality of the estimators. The

discrepancy between the theory and practical performance was noticed a long time ago, partic-

ularly when p is large. One common solution is to explore higher-order asymptotics, where p
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is still kept fixed as n → ∞. Examples include the Edgeworth expansion of the distribution of

MLE and Bartlett’s correction for the p-value of the likelihood-ratio test.

The diverging-p asymptotics dates back to the work of Huber (1973), Portnoy (1984),

Portnoy (1985), and Mammen (1989) on M-estimation. For regularization approaches, Fan

and Peng (2004) showed that if p does not grow too fast, then there exists a penalized likeli-

hood estimator enjoying the oracle properties with a proper choice of λ. They also showed the

asymptotic normality of the estimators when p4/n → 0 and the Wilk’s theorem for the likeli-

hood ratio test when p5/n → 0 as n → ∞. Zou and Zhang (2009) weakened the assumption

to p ∼ nv for 0 ≤ v < 1.

In recent researches, p can grow as fast as log p = o(n). There is a thread of litera-

ture on oracle inequalities, which provide non-asymptotic upper bounds on the MSE of β̂(λ)

and can be used to prove its consistency. One important problem is to identify easy-to-verify

conditions that guarantee the validity of the oracle inequalities. Feuer and Nemirovski (2003)

and Cohen et al. (2009) introduced the restricted nullspace property as a sufficient and nec-

essary condition for the exact recovery of coefficients for a k-sparse system. Other sufficient

and easy-to-verify conditions include incoherence property (Donoho and Huo (2001)) and re-

stricted isometry property (Candes and Tao (2007, 2005)). Bickel et al. (2009) introduced the

weaker restricted eigenvalue condition to discuss the problem of the noisy case. van de Geer

and Bühlmann (2009) studied the connection among these different conditions and showed that

the compatibility condition (van de Geer (2007)) is the least restrictive. Refer to Bühlmann and

van de Geer (2011) for more details.

1.3.3 Large-n-large-p setting

The large-n-large-p asymptotics considers the scenario of n/p → δ, that is, p grows with n at

a fixed rate. The performance of β̂(λ) is studied for fixed λ and when the number of nonzero

components of β grows at the same rate as n. Some researchers (e.g. Bayati and Montanari

(2012), and a host of others) have derived explicit formulas to evaluate the asymptotic mean

squared error (AMSE) of β̂ for linear regression in different settings. It has also been shown

that β̂(λ) demonstrates a sharp phase transition in the space (δ, ϵ), where ϵ is the sparsity ratio
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(defined below), see Amelunxen et al. (2013) and the refernces contained therein. Heuristically,

these researches precisely characterize the impact and interaction of the following issues on the

performance of the regression estimate β̂(λ).

• Under-sampling ratio, defined as δ = n/p, measures the number of observations per

predictor

• Sparsity ratio, defined as ϵ = ∥β∥0/p, measures the proportion of nonzero components

of β, where ∥ · ∥0 is the number of nonzero components of a vector.

• Signal strength, defined as γ2 = var(βTxi)/n, measures the spread of predictors along

the true parameter β.

• Regularization, measured by λ, controls the amount of desired sparsity in an estimator

The methods for statistical inference for the large-p domain are usually justified when

log p = o(n). To get consistency and asymptotic normality of β̂(λ), they need assumptions

such as the covariance matrix of xi is not singular or diverging, nonzero components of β are

significantly different from 0 at a certain rate, the magnitude of the sparsity of β affects how

fast p can grow, λ needs to be selected at a certain rate of n, etc. Negahban et al. (2012)

provide a unified framework for establishing consistency and convergence rates for regularized

M-estimators under high-dimensional scaling. The main message of these researches is that

when log(p) · ∥β∥0 ≪ n, the consistency and asymptotic normality of 3(1) can be obtained for

a proper choice of λ under suitable regularity conditions.

The mathematical tools include the theory of Approximate Message Passing (AMP) and

random matrices. We will explore more details later.

1.3.4 Computing Algorithms

In this section we explore the current literature on GLMs and the Approximate Message Passing

(AMP) technique. Roughly speaking, the regularization approach for GLMs was primarily used

for variable selection and prediction in the past because β̂(λ) is not consistent for λ > 0. In the

last decade, research on statistical inference such as confidence interval and hypothesis testing
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based on β̂(λ) began to emerge. The theoretical justification is mainly from the perspective of

diverging-p asymptotics and assumes that λ is selected adaptively to the sample size n.

There are several algorithms that have been proposed to compute β̂(λ) by solving (1.5).

The difficulty lies in that the penalty term, J(·), which is usually non-differentiable, thus mak-

ing standard algorithms such as Newton-Raphson algorithm not applicable. The coordinate

descent algorithm cyclically optimizes one component of β while keeping the remaining fixed

(Friedman et al. (2007); Wu and Lange (2008); Friedman et al. (2010); Zhao et al. (2014)).

The solution path algorithm is intended to compute the whole solution path of β̂(λ) for all

λ ∈ [0,∞) (Efron et al. (2004); Park and Hastie (2007); Rosset and Zhu (2007); Tibshirani

and Taylor (2011)). The alternating direction method of multipliers (Boyd et al. (2004)) and

proximal algorithm (Parikh and Boyd (2014)) are two classes of powerful convex optimization

algorithms that are applicable to solve (1.5) in general. For further discussions, reader is refered

to Boyd et al. (2004), Lange et al. (2014), and Hastie et al. (2015).

Tibshirani (1996) showed that some components of a lasso estimator can be exactly zero,

which implies variable selection and parameter estimation simultaneously. This property has

been preserved by almost all regularization approaches proposed later. Refer to Desboulets

(2018) for a recent review on variable selection in regression. Early research on statistical in-

ference based on β̂(λ) includes Zhang and Zhang (2011), Javanmard and Montanari (2014a),

Javanmard and Montanari (2014b), and van de Geer et al. (2014). They approved different

algorithms to debias β̂(λ), construct confidence intervals, and perform hypothesis testing. Re-

cent developments include Ning and Liu (2017), Shi et al. (2019), Zhu et al. (2020), Xia et al.

(2020), Janková et al. (2020), Ma et al. (2021), Guo et al. (2021), and Cai et al. (2021) among

others. With these efforts, the regularization approach for GLMs has become a full-fledged tool

for statistical inference.

More recently, one technique that has become extremely popular as a result of it’s success-

ful application in various statistical estimation task is the class of iterative algorithm referred

to as Approximate Message Passing (AMP) algorithms. It has been successfully applied in

linear regression, GLMs, and low-rank matrix estimation (Donoho et al. (2009); Bayati and
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Montanari (2011); Fan and Li (2011); Rangan (2011); Schniter and Rangan (2012); Mon-

delli et al. (2021); Matsushita and Tanaka (2013); Deshpande et al. (2016)). AMP algorithms

have some features that make them specially attractive; they are easily adapted to leverage

prior information on the signal structure, such as sparsity or other constraints, and under cer-

tain assumptions on a design matrix, AMP theory precisely specifies statistical procedures in

the high-dimensional regime where the dimensionality parameter p/n converges to a constant

(Bayati and Montanari (2012); Donoho et al. (2013)). In high dimensional regime where p is

not negligible compared to n, AMP theory provides a precise expression for the asymptotic

MSE of the LASSO estimator and not just an upper bound.

The most striking and critical attribute of the AMP recursion is that in large dimension, the

empirical distribution of the coordinates of each iterate is approximately normal, with asymp-

totic variance given by a system of scalar equations called ’state evolution’.

Rangan (2011) proposed the class of generalized AMP (GAMP) algorithms as an exten-

sion of the AMP to incorporate arbitrary distribution on both the input and output variables.

Krzakala et al. (2012) demonstrated the application of a GAMP algorithm for solving general

convex optimization problem.

GAMP (Generalized Approximate Message Passing) algorithms are another class of iter-

ative algorithms used for signal recovery in compressed sensing and sparse signal processing

problems. These algorithms are based on the principles of belief propagation and approximate

message passing. The connection between GAMP and AMP algorithms lies in their underly-

ing principles and iterative procedures. Both algorithms aim to estimate sparse signals from

noisy measurements by iteratively updating the estimates based on the observed data and prior

information.

GAMP algorithms were initially proposed by Rangan (2011) as a generalization of AMP

algorithms. They provide a framework for solving a wide range of signal recovery problems,

including compressed sensing, channel estimation, and sparse signal reconstruction. The key

idea behind GAMP algorithms is to use approximate message passing techniques to iteratively

update the estimates of the sparse signal and the noise variance. These updates are based on

the observed measurements and prior information about the signal sparsity and noise statistics.
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The connection between GAMP and AMP algorithms can be understood by considering

the iterative update equations used in both algorithms. Both algorithms use similar update

equations that involve the computation of posterior mean and variance estimates. However,

GAMP algorithms incorporate additional steps to handle non-Gaussian noise and non-linear

measurement models.

Several variants and extensions of GAMP and AMP algorithms have been proposed in

the literature. These include adaptive GAMP algorithms, distributed GAMP algorithms, and

GAMP algorithms for structured signal recovery.

1.4 Motivation

1.4.1 Surprising Results of Candes

Sur et al. (2017); Sur and Candès (2019); Candès and Sur (2020) provide new insights on the

high dimensional behaviour of logistic regression. They show that for commensurately large n

and p, the MLE is biased, contradicting the expectation of classical theory expressed in (1.4),

that the MLE is asymptotically unbiased for n ≫ p. Their result also show that the variability

of the MLE is greater than commonly predicted. Hence, the commonly used procedure for

significance test of the regression coefficients needs to be adjusted for improved accuracy.The

result in Sur and Candès (2019) provides explicit expressions for the bias and variance of the

maximum likelihood estimate and describes the asymptotic distribution of the likelihood-ratio

statistic given some assumptions.

1.4.2 Problem

Sur et al. (2017); Sur and Candès (2019); Candès and Sur (2020) discuss the asymptotic prop-

erties of MLE for unregularized logistic regression in high dimension. It is our interest in this

project, to extend their results to the more general setting of ℓ1-penalized logistic regression in

high dimension. Specifically, our target is to estimate the solution to the following optimization
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problem: for λ > 0,

β̂ℓ1 = argminβ

{∑n
i=1 ℓ(x

T
i β, yi) + λ

∑p
j=1 |βj|

}
,

where ℓ(z, y) = ρ(z)− yz, ρ(t) = log (1 + et)
(1.6)

The ultimate goal is to explore the impact and interaction of under-sampling, sparsity, signal

strength, and regularization on the performance of β̂ℓ1 .

1.4.3 Our Contribution

This dissertation starts by explaining the generalized approximate message passing (GAMP)

algorithm, which is used to compute the ℓ1-penalized logistic regression estimator. It specifies

the state evolution, which is a scalar recursion that governs the behavior of both the GAMP

algorithm and the logistic lasso estimate. The state evolution provides insights into the operat-

ing characteristics of these estimators. Once formulated, the GAMP recursion is then used in

the main theorem for the derivation and explicit characterization of the asymptotic limits of the

estimator. Some of the consequences of this characterization is the derivation of the asymptotic

mean squared error of the logistic lasso estimator, and the asymptotic selection error rate to

name a few. The results from rigorous numerical experiments in finite size systems with the

tuning parameter λ chosen to minimize the MSE show that there is almost perfect agreement

between theoretical predictions and actual values from simulated samples.

Furthermore, by mean of carefully designed numerical experiments, this dissertation pro-

vides clear evidence that the logistic lasso estimator undergoes a phase transition in the two

dimensional sparsity-undersanpling phase space, 0 ≤ ϵ, δ ≤ 1. It presents graphical evidence

of a phase transition curve that partitions the phase space into two regions. The region above

the curve, is the success region where the estimator succeeds in perfectly recovering the signal

with high probability. And the region under the curve is the faillure region where the estimator

fails with high probability.

Lastly, following the results from earlier works involving the lasso penalty, this disserta-

tion conjectures that the phase transition curve for the logistic lasso estimator will be identical
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to the previously established phase transition curve in the problem of the reconstruction of un-

derdetermined linear systems in compressed sensing in the k-sparse noiseless case (see Donoho

et al. (2011)).
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Chapter 2

AMP and related techniques

2.1 Introduction to Generalized Approximate Message Passing

2.1.1 Approximate Message Passing (AMP)

In simple terms, AMP refers to a class of fast iterative algorithms that decouples matrix prob-

lems to scalar channel denoising based on belief propagation. Consider β ∈ Rp, a noise vector

ϵ ∈ Rn, a random design matrix X , and the linear model given by: y = Xβ + ϵ. Donoho et al.

(2009) introduced the following AMP algorithm for reconstructing β given X, y. Starting with

an initial guess β0 = 0 and recursively obtaining the sequences {βt}t≥0 and {θt}t≥0 by

 βt+1 = η
(
XT θt + βt

)
θt = y −XTβt + 1

δ
θt−1

〈
η′t−1

(
XT θt−1 + βt−1

)〉 (2.1)

where ηt are component-wise scalar dinoising functions, βt ∈ Rp is the iteration tth estimate

of β, and θt ∈ Rp the current residual. The notation η′(·) refers to the first partial derivative of

η(·) w.r.t. the first argument, and for any vector v ∈ Rp, ⟨v⟩ = 1/p
∑p

i=1 vi.

The AMP algorithm (2.1) is a special case of the general iterative procedure introduced

by Bai and Silverstein (2010), which takes the following form: for each t ≥ 0, let ft, gt :

R2 → R be Lipschitz continuous functions, and define the vector sequences ht, qt ∈ Rp and

zt, mt ∈ Rn, by fixing initial condition q0, and obtaining {bt}t≥0, {mt}t≥0, {ht}t≥1, and
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{qt}t≥1 through

ht+1 = ATmt − ξtq
t, mt = gt(b

t, ϵ)

bt = Aqt − λtm
t−1, qt = ft(h

t, β)
(2.2)

where ξt = ⟨g′t(bt, w)⟩, λt = 1
δ
⟨f ′

t(h
t, β)⟩; and g′t(u, ·) and f ′

t(v, ·) are ∂
∂u
gt and ∂

∂v
ft respec-

tively, and by definition m−1 = 0.

AMP scheme (2.1) is recovered from (2.2) by defining:

ht+1 = β − (XT θt + βt), qt = βt − β

bt = ϵ− θt, mt = −θt

and the function ft and gt are given by

ft(s, β) = ηt−1(β − s)− β, gt(s, ϵ) = s− ϵ. (2.3)

The main difference between (2.1) and (2.2) is with the data matrix X in place of the theo-

retical noise matrix A. The term 1
δ
θt−1

〈
η′t−1

(
XT θt−1 + βt−1

)〉
, referred to as the Onsager

term is crucial for ensuring that the AMP iterates θt have the desired asymptotic distributional

properties depending on the choice of Lipschitz functions ηk.

Effectively, the AMP paradigm introduced by Donoho et al. (2009) in the context of the

compressed sensing makes a simple modification to iterative thresholding so that the sparsity-

under-sampling tradeoff of the new algorithms is equivalent to that of the corresponding con-

vex optimization procedures. The especially impressive feature of AMP algorithms is that their

high-dimensional behavior admits an exact description. In high dimension, the empirical dis-

tribution of the coordinates of each iterate is approximately Gaussian, and the variance can be

computed via a scalar recursion called state evolution (SE), which we now formally introduce.

19



2.1.2 State Evolution

Suppose the limit

σ2
0 ≡ lim

p→∞

1

pδ

∥∥q0∥∥2
exists, is positive and finite. State evolution refers to the iterations {τ 2t }t≥0 and {σ2

t }t≥0 defined

via

τ 2t = E
[
gt(σtZ, ϵ)

2
]
, σ2

t =
1

δ
E
[
ft(τt−1Z, β)

2
]

(2.4)

where ϵ ∼ πϵ and β ∼ πβ are independent of Z ∼ N(0.1).

In the abstract form, the AMP recursion (2.4) is not planned as an algorithm for statistical

estimations. To make statement about the statistical properties, we introduce the state evolution

(SE) formalism which is a deterministic recursion that tracks the behavior of the AMP iterates.

SE tells us something about the properties and large system of the AMP. We present this now.

Given a probability distribution pβ , let τ 20 ≡ σ2 + E(β2)/δ, and for t ≥ 0,

τ 2t+1 = σ2 +
1

δ
E
{
[ηt(β + τtZ)− β]2

}
(2.5)

with β ∼ πβ and Z ∼ N(0, 1) independent from β. The recursion (2.5) is termed the state

evolution. With this, we are now ready to present the main theoretical result. But first, we define

the following term: For k ≥ 1, a function ψ : Rm 7→ R is said to be pseudo-Lipschitz of order

k if there exists a constant L > 0 such that |ψ(x)− ψ(y)| ≤ L(1 + ∥x∥k−1
2 + ∥y∥k−1

2 )∥x− y∥2

for any x, y ∈ Rm.

We make the following assumptions which are needed for the SE to be valid:

(A1) n, p→ ∞, n/p→ δ ∈ (0,∞).

(A2) The components of X are iid N(0, 1/n), and are independent of β.
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(A3) As p → ∞, the empirical distribution of the components of β converges weakly to

a probability measure πβ on R with bounded second moment. Also, 1/p
∑p

i=1 β
2
i →

Eβ(β
2).

(A4) The empirical distribution of the entries of ϵϵϵ converges weakly to a probability measure

πϵ on R with bounded second moment. Also, 1/n
∑n

i=1 ϵ
2
i → Eϵ(ϵ

2).

Next, we now present the following AMP master theorem

Theorem 2.1 (Bayati and Montanari (2011)). For any pseudo-Lipschitz function ψ : R2 7→ R,

of order k and all t ≥ 0, almost surely

lim
1

p

p∑
i=1

ψ(βt+1
i , βi) = E

[
ψ (ηt(β + τtZ), β)

]
. (2.6)

Remark 1. Theorem 2.1 says that if we have a pseudo Lipschitz function that we are interested

in, then we can determine the high dimensional properties of the iterates of the AMP algorithm

based on the state evolution values.

Remark 2. Another interesting way to think about the convergence in theorem 2.1 is through

statements about empirical distribution of the elements. What theorem 2.1 shows is that if πβt

denotes the empirical distribution of the elements of βt then πβt → N (0, τ 2t ). The variances τ 2t

are determined via the SE recursion (2.5), which depends on the choice of Lipschitz functions

{ηt : t ∈ N0} which in this particular case is the soft threshold function.

The AMP has some features that make them attractive, namely

1. they can be easily tailored to exploit prior knowledge on the signal, e.g. sparsity

2. they achieve faster convergence relative to comparable techniques

3. they have precise asymptotic performance guarantees, in the regime where n, p → ∞

such that n/p→ δ > 0.
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2.2 Generalized AMP - (GAMP)

Our study in this work considers a different type of generalization of the AMP that was moti-

vated by recent developments. Likelihood-based inference for the parameter β in (2.9) is jus-

tified in large-n-fixed-p-asymptotic regime when n grows much faster than p, Portnoy (1984,

1985). However, in modern large-n-large-p asymptotic regimes where p diverges with n in

a non-vanishing rate, different tools are needed to construct and analyse estimators of β, and

it is in this context that we present the generalized Approximate Message Passing (GAMP)

paradigm.

Rangan (2011) proposed the class of generalized approximate message passing (GAMP)

algorithms, as an extension of the AMP that is applicable for GLM. GAMP admits application

to nonlinear estimation problems wherein β ∈ Rp is to be estimated given observations y =

(y1, ..., yn). Examples of this include the logistic, binomial, and Poisson regression, to which

the original AMP is not ordinarily applicable. But, before presenting the GAMP algorithm, let

us first introduce the proximal operator which is used in the discussion.

2.3 Proximal Gradient Method

2.3.1 Proximal Operator

The proximal operator of a convex function h : R → R, is given by

proxh(u, α) = argmin
β

{
h(β) +

1

2α
∥β − u∥22

}
, α > 0. (2.7)

Basically, the operator tries to minimize the value of h(·), but we are penalized if we move to

far away from u.

The proximal gradient method is an optimization algorithm and it solves optimization

problems that have the following form

min
{
L(β)differentiable + h(β)simple

}
. (2.8)
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where L(·) is a differentiable function, and h(·) is a simple function, in the sense that it’s

proximal operator has a closed form formula. Proximal gradient methods provide a general

framework for solving regularization problems from statistical learning theory where the regu-

larization penalty may be non-differentiable.

There are many methods to estimate the MLE of the logistic regression, but the proximal

gradient method is the most natural choice since the proximal operator is always non-decreasing

and 1-Lipschitz, which is a desirable property for AMP/GAMP algorithms.

We briefly introduce GAMP following the notations used in Feng et al. (2021). Assume

that {(yi, xi), yi ∈ R, xi ∈ Rp, i = 1, 2, ..., n} is an iid sample from the following model,

yi = h(βTxi, εi), i = 1, 2, ..., n (2.9)

where h : R2 → R is a known function, εi is a random error independent of xi with E(εi) = 0

and var(εi) = σ2
ε , and β ≡ (β1, ..., βp) is the goal of inference. For ease of notation, let

(y1, ..., yn)
T ∈ Rn be the response vector and X = (x1, ..., xn)

T ∈ Rn×p be the design matrix.

2.3.2 GAMP Algorithm

To start, consider problem (1.5) above. For the time being, let bk > 0 and ck < 0, k = 0, 1, ....

For k ≥ 0, define the following proximal operators fk+1 : R → R and g∗k : R2 → R:

g∗k(w, v) = argminz∈R

{
ℓ(z, w) + 1

2bk
(z − v)2

}
= proxℓ(·,w)(v, bk)

fk+1(u) = argminz∈R

{
J(z) + ck

2
(z + u

ck
)2
}
= proxJ (−u/ck, 1/ck)

(2.10)

and define g : R2 → R by

gk(w, θ) :=
g∗k(w, θ)− u

bk
. (2.11)

Note that under the assumption that ℓ and J are convex in their first arguments, g∗k(w, v), and

fk+1(u), are well defined as minimizers of strongly convex functions. Also, by being defined

in terms of the proximal operators, g∗k, gk and fk+1 are all Lipschtz with Lipschitz constants
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1, 1/bk and 1/|ck| respectively, and thus, weakly differentiable w.r.t. their first arguments, and

we have:

g∗
′

k (w, v) ≤ 1, g′k(w, v) ≤ 0, f ′
k+1(u) ≥ 0, (2.12)

where the derivatives are with respect to their first arguments.

With this, we will now define the GAMP recursion. The GAMP recursion proposed by

Rangan (2011), iteratively produces estimates θk, β̂k of θ = Xβ ∈ Rn and β ∈ Rp, respectively

in (2.9), via the following update steps: initialize r̂−1 = 0, b0 ∈ R and β̂0 ∈ Rp, update

θk ∈ Rn, β̂k ∈ Rp and scalars ck and bk recursively for k = 0, 1, 2, ... as follows.

θk = Xβ̂k − bkr̂
k−1, r̂k = gk(θ

k, y), ck =
1
n

∑n
i=1 g

′
k(θ

k
i , yi),

βk+1 = XT r̂k − ckβ̂
k, β̂k+1 = fk+1

(
βk+1

)
, bk+1 =

1
n

∑p
j=1 f

′
k+1

(
βk+1
j

)
,

(2.13)

As in the AMP case, the Onsager correction terms −bkr̂k−1 and −ckβ̂k are designed to ensure

that in a high-dimensional limiting regime where p is not vanishingly small compared to n, the

emperical distribution of the iterates in 2.13 converges to well-defined Wasserstein limits. It

turns out that for each k ∈ N0, the iterates β̂k+1 ∈ Rp have approximately the same empiri-

cal distribution as fk+1(µkβ + σkξ) when p is large; β ∈ Rp and ξ ∼ N(0, Ip) here are the

unknown signal and the independent noise vector, respectively, and fk+1 can be seen as the

denoiser. Considered with the corresponding state evolution which we will describe later, this

establishes the basis of a systematic approach to deriving precise performance guarantees for

both penalized and unpenalized M-estimators including the Lasso for GLMs in high dimen-

sions.

We will now move to set the ground to introduce the state evolution and state the master

theorem for the GAMP. Consider a sequence of recursions (2.13) with n, p ∈ N, such that

n/p→ δ > 0 and assume that:

(A1) The components of X are iid N(0, 1/n), and is independent of β̂0 ∈ Rp, β ∈ Rp, and

ε ∈ Rn.
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(A2) As p → ∞, the empirical distribution of the components of β and the random error ε,

respectively converge to the distributions Πβ̄ and ,Pε̄ with finite second moments, for

some random varible β̄ ∼ Πβ̄ , and ε̄ ∼ Pε̄.

(A3) There is a non-negative definite Σ0 ∈ R2×2 such that

1

n

(
β β̂0

)T (
β β̂0

)
=

1

n

 βTβ βT β̂0

(β̂0)Tβ (β̂0)T β̂0

→ Σ0. (2.14)

(A4) For each k ∈ N0, fk+1 is not a constant function on R, and g̃k : (z, w, v) 7→ gk(w, h(z, v))

is Lipschitz on R3 with the set Kz,w := {v : (z, w) 7→ g̃k(z, w, v) is non-constant}

having nonzero measure.

(A5) For each k ∈ N0, if Ωk ∈ R2 denotes the set of discontinuities of g′k, then P ((Zk, Y ) ∈

Ωk) = 0, and f ′
k+1 is almost everywhere continuous.

2.3.3 General State Evolution Recursion for GAMP

The limiting empirical distributions of the entries of the GAMP iterates can be decomposed

into independent ‘signal’ and ‘noise’ components, and the effective signal strength and noise

level are determined by a state evolution recursion. With Σ0 as in (A4), the state evolution

recursion can be computed as follows. for k ∈ N0,

Σk =
1

δ

 E(β̄2) E{β̄fk(µkβ̄ + σkGk)}

E{β̄fk(µkβ̄ + σkGk)} E{fk(µkβ̄ + σkGk)
2}


σ2
k+1 = E [g̃k(Z,Zk, ε̄)

2] = E[gk(Zk, Y )2]; µk+1 = E[∂zg̃k(Z,Zk, ε̄)].

(2.15)

where (Z,Zk) ∼ N(0,Σk) independent of ε̄, Y = h(Z, ε̄), Gk+1 ∼ N(0, 1) independent of

β̄. An alternative expression for µk+1 which will be useful in the sequel is the following: with
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Gk+1, Z and ε̄ distributed as above, we have Zk+1
d
= µZ,k+1Z + σZ,kGk+1, with

µZ,k+1 = Σ12/Σ11 =
E{β̄fk+1(µk+1β̄ + σk+1Gk+1)}

E(β̄2)

σ2
Z,k+1 = Σ22 − Σ2

12/Σ11

=
1

δ

[
E{fk+1(µk+1β̄ + σk+1Gk+1} −

[E{β̄fk+1(µk+1β̄ + σk+1Gk+1}]2

E(β̄2)

]

we have

σ2
k+1 = E

[
g̃k(Z, µZ,kZ + σZ,kGk, ε̄)

2
]

(2.16)

and

µk+1 = E[∂zg̃k(Z,Zk, ε)] =
δ

E(β̄2)
E[Zgk(Zk, Y )]− µZ,kc̄k] (2.17)

We have used the following in the above expression of µk+1.

ck = ⟨g′k(θk, y)⟩ → E[g′k(Zk, Y )] = c̄k

We are now ready to state the master theorem for the GAMP.

Theorem 2.2 (Theorem 4.2 in Feng et al. (2021)). Suppose assumptions (A1)-(A5) hold for a

sequence of GAMP recursion (2.13) indexed by n and p, with n/p → δ ∈ (0,∞) and σ1 > 0.

Then for each k ∈ N0, it follows that for any pseudo-Lipschitz function ψ,

1

p

p∑
j=1

ψ(βk+1
j , βj) → E[ψ(µk+1β̄ + σk+1Gk+1, β̄)] (2.18)

1

n

n∑
i=1

ψ(θki , θi, εi) → E[ψ(µZ,kZ + σZ,kG̃k, Z, ε̄)] (2.19)

as n, p → ∞ with n/p → δ where in the above expression βk+1 = XTgk(θ
k, y) − ckβ̂

k, and

θi ≡ θi(n) = xTi β for n ∈ N and 1 ≤ i ≤ n.
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The master theorem can be interpreted as that the components of βk when p is large has

the same empirical distribution approximately as those of µkβ + σkϵ, where ϵ ∈ N(0; Ip) is

independent of β ∈ Rp. By comparison with the limiting univariate problem of estimating β̄ ∼

πβ̄ via a corrupted observation µk+1β̄ + σk+1Gk+1, βk can be seen as an effective observation

and ρk := (µk/σk) as an effective signal-to-noise ratio. In the setting of Theorem 2.2, condition

(A6) ensures that

bk+1 =
1

δ
⟨f ′

k+1(β
k+1)⟩ → 1

δ
E

[
f ′
k+1(µk+1β̄ + σk+1Gk+1)

]
= b̄k+1. (2.20)

As a corollary of the master theorem, it follows that since the functions fk in (2.13) are

assumed to be Lipschitz, then for any pseudo-Lipschitz loss function ψ, the asymptotic esti-

mation error of β̂k is given by

1

p

p∑
j=1

ψ(β̂k+1
j , βj) → E[ψ(fk(µk+1β̄ + σk+1Gk+1), β̄)] (2.21)

for each k ∈ N, as n, p→ ∞ with n/p→ δ.

2.3.4 Special Cases of GAMP

Linear Models

GAMP has been applied to linear models in various fields. It is particularly useful in scenarios

where the number of variables is large and the data is sparse. One of the main advantages of

using GAMP in linear models is its ability to handle large-scale problems. Traditional methods,

such as least squares or maximum likelihood estimation, can become computationally expen-

sive when dealing with high-dimensional data. GAMP, on the other hand, is designed to handle

such scenarios efficiently, making it particularly suitable for applications where computational

resources are limited.

Another advantage of GAMP is its ability to handle sparse data. GAMP exploits this spar-

sity by incorporating a sparsity-promoting prior into the estimation process. This allows GAMP
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to accurately estimate the non-zero coefficients while effectively shrinking the irrelevant ones

towards zero.

Furthermore, GAMP is known for its robustness to noise and model misspecification. It

can handle noisy measurements and still provide accurate estimates of the underlying param-

eters. Additionally, GAMP is flexible and can be easily adapted to different linear models,

making it a versatile tool in various applications.

Overall, the application of GAMP to linear models has shown promising results in terms

of computational efficiency, handling sparsity, robustness to noise, and adaptability to different

models. It has the potential to significantly improve the estimation accuracy and computational

efficiency in various fields, such as signal processing, communications, and machine learning.

We now derive the GAMP recursion for the standard linear model

y = Xβ + ε (2.22)

obtained by setting h(z, v) = z + v in (2.9). Here {εi}ni=1 ∼ Pε̄ have finite second moment

σ2 > 0. Taking r̂−1 = 0 ∈ Rn, b0 ∈ R, and initializing by some β̂0 ∈ Rp, the initial AMP

algorithm of used in Donoho et al. (2009) and Bayati and Montanari (2011) can be achieved as

a special case of the GAMP algorithm (2.13) by choosing gk(u, v) := v−u, thus ck = −1, and

so the gamp becomes

θk = Xβ̂k − bkr̂
k−1, r̂k = y − θk,

βk+1 = XT r̂k + β̂k, β̂k+1 = fk+1

(
βk+1

)
, bk+1 =

1
n

∑p
j=1 f

′
k+1

(
βk+1
j

)
,

(2.23)

for k ∈ N0. Here, βk is the effective observation at kth iteration, and r̂k is a corrected residual

and has been shown to substantially improves the sparsity–under-sampling tradeoff..

The state evolution recursions (2.15) reduces to

σ2
k+1 = σ2 +

E{
(
β̄ − fk(β̄ − σkGk)

)2}
δ

, σ2
1 = σ2 + E

[
(Z − Z0)

2
]
, and µk = 1. (2.24)
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Under the same setting as the GAMP master Theorem 2.2, the asymptotic performance of {β̂k},

which is the main result in Bayati and Montanari (2011) is recovered as

1

p

p∑
j=1

ψ(β̂k+1
j , βj) → E[ψ(fk(β̄ + σk+1Gk+1), β̄)] (2.25)

as n, p→ ∞ such that n/p→ δ.

GAMP algorithms have been applied by many authors to estimate asymptotic errors of

constrained and unconstrained optimization problems under various conditions on the data ma-

trix (see e.g., Donoho and Montanari (2013), Schniter and Rangan (2012), Rangan (2011), Sur

and Candès (2019), and the references contained in them).

Logistic Regression (Sur and Candès (2019))

Another advantage of GAMP is its ability to handle non-linear models. While logit models are

typically linear in the parameters, GAMP can be extended to handle non-linear models by using

appropriate approximations. This allows for more flexibility in modeling complex relationships

between the predictors and the response variable.

In addition, GAMP provides a framework for incorporating prior knowledge or constraints

into the model. This can be particularly useful in situations where there is limited data available

as is common in Medicine where logistic regression is very popular, or when certain assump-

tions about the model parameters need to be enforced. By incorporating prior knowledge,

GAMP can improve the accuracy and interpretability of the model.

A major objectives in this work is to derive a GAMP algorithm for characterizing and

estimating the asymptotic MSE of the ℓ!-penalized logistic regression. As precursor to that, we

first present the result of Sur and Candès (2019) for the unpenalized logistic regression.

Sur and Candès (2019) make the case about the failure of classical MLE results in the high

dimensional setting of the logistic regression. In the large n-large-p-asymptotics regime, their

theory explicitly characterizes

1. the bias of the MLE
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2. the variability of the MLE, and

3. the distribution of the LRT.

Whenever the MLE asymptotically exists with probability one. The case for the existence of

MLE here is made in Albert and Anderson (1984), and in the random design setting, Candès

and Sur (2020) established a phase transition curve for the existence of MLE. In the setting

where the MLE exists, Sur and Candès (2019) gave a GAMP scheme for estimating it.

Sur and Candès (2019) considered the vanilla logistic regression which equivalent to solv-

ing a convex optimization problem of the form (1.6) with J ≡ 0. The functions f proposed the

following scheme: initializing with some β̂0 ∈ Rp, and setting U0 = Xβ0, recursively define

β̂k+1 = βk + 1
κ
X ′ψk(y, θ

k)

θk+1 = Xβk+1 − ψk(y, θ
k)

(2.26)

with

ψk(y, θ) = λkrk, rk = y − ρ′(proxλkρ
(λky + θ)). (2.27)

The state evolution recursion is given by the following system of nonlinear iterations: starting

with initial guesses α0, σ0, recursively define the sequence {αs, σs, λs}s≥0 by


1− κ = E

[
2ρ′(Zs

1)

1+λρ′′(proxλρ(Z
s
2))

]
αs+1 = α + 1

κγ2E[2ρ
′(Qs

1)Q
s
1λsρ

′(proxλsρ
(Zs

2))]

σ2
s+1 = 1

κ2E
[
2ρ′(Qs

1)
(
λsρ

′(proxλsρ
(Zs

2))
)2] (2.28)

for s ≥ 1.

They are argue that whenever the MLE exists, the system (2.28) above converges to a

unique fixed point {α∗, σ∗, λ∗}. Substituting the corresponding iterations by their fixed point

in recursion (2.26), the prove that the following theorem.

Theorem 2.3 (Sur and Candès (2019), Theorem 2). Assume the logistic model described above

where the empirical distribution of βj converges weakly to a distribution Π with finite second
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moment. Suppose further that the second moment converges in the sense that as n → ∞,

Avej(β2
j ),→ Eβ2, β ∼ Π. Then for any pseudo-Lipschitz function ψ of order 2, the marginal

distributions of the MLE coordinates obey

1

p

p∑
j=1

ψ(β̂j − α⋆βj)
a.s.−→ E[ψ(σ⋆Z, β)], Z ∼ N (0, 1) (2.29)

where β ∼ Π, independent of Z.

Concerning the distribution of the Likelihood-ratio statistics for testing βj = 0, they prove

the following theorem.

Theorem 2.4. Consider the LLR Λj = minbbb:bj=0 ℓ(bbb) − minbbb ℓ(bbb) for testing βj = 0. In the

setting of Theorem 2.29, twice the LLR is asymptotically distributed as a multiple of a χ2 under

the null,

2λj
d−→ κσ2

⋆

λ⋆
χ2
1. (2.30)

Also, the LLR for testing βi1 = βi2 = ... = βik = 0 for any finite k converges to the rescaled

χ2 (κσ2
⋆/λ⋆)χ

2
k under the null.

2.4 Inside the GAMP

Here, we look inside the GAMP and explain the functions of its various components. The

algorithm begins by initializing β̂0 = 0, and then, at every iteration t, proceeds as follows:

1. Calculates the residual, r̂k = gk(θ
k, y) = gk(Xβ̂

k − bkr̂
k−1, y). For example, in the case

of the linear model given above, the function gk(·, ·) is taken as gk(a, b) = b− a.

2. Next is the pseudo data, βk+1 = XT r̂k − ckβ̂
k which has been proved to be equal in

distribution to the true β, plus additive white Gaussian noise.

3. And finally, the denoising step, β̂k+1 = fk+1

(
βk+1

)
, i.e, the estimate β̂k+1 is a denoising

function of the pseudo data.

31



(a) βk (b) fk
(
βk
)

Figure 2.1: The Denoising Step

The idea of the denoising algorithm is the following: See the blurry image, βk in Fig (2.1a),

what we are observing is the true image, β with additive Gaussian noise, and when the denois-

ing is applied, it utilizes structure that is available within the image to reduce the impact of the

noise resulting in the clearer version of the image, β̂k in Fig (2.1b). This process continues

over several iterations until convergence. Notice that the denoiser function is not fixed. At ev-

ery iteration it uses a slightly modified denoiser. Typically, what happens is that the amount of

noise in βk goes down over the first several iterations and evetually converges to a noise floor

and the GAMP is somewhat stable. The Onsager correction terms, −bkr̂k−1 and ckβ̂k on the

other hand results in two things: (1) the error (β̂t − β) in estimating the true signal β will be

uncorrelated to the signal, and this helps the denoiser work well; (2) the error will be Gaussian.

What these mean is that, without the Onsager terms, after few iterations, the error will quickly

be correlated with β, and the denoiser will not work well. Thus, the Onsager term increases the

speed on convergence by an appreciable margin.

2.5 More Tools from the G-AMP Algorithm

In this section, result established in Javanmard and Montanari (2013) are presented and they

will be principal to the analysis. For simplicity in calculation, the same notation in Javanmard

and Montanari (2013) are adopted here.

A G-AMP algorithm takes the form: {xt}t≥0, where xt ∈ Vq×N ≡ (Rq)N , for some fixed

q ∈ N , and N is a function of the sample size n. Define A = G + G′, where G ∈ RN×N has

i.i.d. entries from N(0, 1/2N).
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Let G = {f t : t ∈ [N ]}, such that f t : Rq ×N → Rq, is locally Lipschitz in the first argument

for all t ∈ [N ]. Then, with some initial condition x0 ∈ Vq,N , a GAMP algorithm updates as

follows:

xk+1
•i =

N∑
j=1

Aijf
j(xk•j; k)−

1

N

(
N∑
j=1

∂f j

∂x
(xk•j; k)

)
f i(xk−1

•i ; k − 1), (2.31)

and terms with negative k-indices are taken to be 0. The notation ∂fj

∂x
, refers to the Jacobian of

f j(·; k) : Rq → Rq.

Lemma 2.5 (Javanmard and Montanari (2013), Theorem 1). For all t > 1, each a ∈ [q′], and

any pseudo-Lipschitz function ψ : Rq × Rq → R of order k, almost surely,

lim
N→∞

1

CN
a

∑
j∈CN

a

ψ(xt•j, y•j) = E{ψ(Zt
a, Ya)}, (2.32)

where Zt
a ∼ N(0,Σ(k)) is independent of Ya ∼ Pa.
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Chapter 3

ℓ1-Penalized Logistic Regression

The GAMP recursion idea comes as a natural choice in considering the ℓ1-penalized logistic

regression, given that the proximal gradient method is specifically designed to handle non-

differentiable regularization terms like the ℓ1 penality. Moreover the proximal operator for the

ℓ1 penalty admits a simple closed form formula which can be leveraged to achieve explicit

asymptotic characterizations. The goal of the main result, is to characterise the Asymptotic

Mean Squared Error (AMSE) of the ℓ1-penalized logistics regression.

Following the details in Ali and Tibshirani (2018), it can be shown that (1.6) admits a

unique solution provided (1.3) has a unique solution. We pursue the estimation of this solution

via the application of a GAMP recursion. By showing that the GAMP estimates converge to the

corresponding penalized estimators in the large system limit, we derive the asymptotic MSE of

the penalized estimator by using state evolution of the corresponding GAMP estimators.

3.1 Main Results

It is now time for the presentation of the main results. However, before diving into them,

it is essential to introduce the necessary components that will facilitate the clear and concise

presentation of these outcomes.
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Starting with some key definitions, the proximal mappings for the ℓ1 penalty term (J(·) :=

| · |) and the logistic loss function ℓ(z, y) are defined via

proxJ(u; b) = S(u;λb) :=


u− λb, u > λb

0, |u| ≤ λb

u+ λb, u < −λb

= argmin
β

{
|β|+ 1

2λb
(β − u)2

}

proxℓ(θ; y, b) := argminz

{
ℓ(z, y) + 1

2b
(z − θ)2

}
= proxρ(θ + by; b).

The above definitions are utilized in the fixed point equations that follow. This particular system

of equations, which involves four variables {c∗, σ2
∗, µ∗, b∗}, will soon become evident as the

governing factor for the asymptotic behavior of the GAMP estimate.



c∗ =
1

b∗
E

[
1

1 + b∗ρ′′(proxρ(Z∗ + b∗Y ; b∗))
− 1

]
σ2
∗ = E

[
(Y − ρ′(proxρ(Z∗ + b∗Y ; b∗)))

2
]

µ∗ =
δ

E(β̄2)
E[Z{Y − ρ′(proxρ(Z∗ + b∗Y ; b∗))}]− µZ,∗c∗.

b∗ = − 1
δc∗
P (|µ∗β̄ + σ∗G∗| ≥ λ).

(3.1)

where (Z,Z∗) is bivariate Gaussian with mean 000, and covariance given by

1

δ

 E(β̄2) E[β̄S(µ∗β̄ + σ∗G∗)]

E[β̄S(µ∗β̄ + σ∗G∗)] E[S(µ∗β̄ + σ∗G∗)
2]


with G∗ ∼ N(0, 1).

The primary outcome of this study describes the asymptotic average behavior of the ℓ1-

penalized logistic regression estimator, and is present next.

35



Theorem 3.1. Suppose δ and Π are such that (1.6) admits a unique solution and let (c∗, µ∗, σ∗, b∗)

come from the system (3.1). Then under assumptions (A1) - (A5) above, for any pseudo-

Lipschitz function ψ of order 2, it follows that

lim
p→∞

1

p

p∑
j=1

ψ
(
β̂j, βj

)
a.s.
= E

[
ψ

(
− 1

c∗
S(µ∗β + σ∗G, λ), β̄

)]
, (3.2)

with G ∼ N(0, 1), and β̄ ∼ Πβ̄ , independent of G.

Informally, an interpretation of Theorem 3.1 is that as p diverges, the components of β̂k

follow approximately the same empirical distribution as those of − 1
c∗

S(µ∗β̄ + σ∗G, λ) with

G ∼ N(0, 1p) is independent of β̄.

Theorem 3.1 leads to several important corollaries that are worth noting. For example,

Corollary 3.2, below states that it is possible to calculate the exact Asymptotic Mean Squared

Error (AM SE) of the GAMP estimate for the ℓ1-penalized logistic regression. This corollary

provides valuable information about the accuracy of the estimation method and allows for the

quantification of error in predictions. By understanding the AMSE, one can assess the reli-

ability and performance of the GAMP estimate, enabling informed decision-making based on

the level of uncertainty in the results.

Corollary 3.2. Under the assumptions of Theorem 3.1, it follows by setting ψ (u, v) = |u−v|2,

that

AMSE = lim
p→∞

1

p
∥β̂ − β∥22 = E

(∥∥∥∥S(µ∗β̄ + σ∗G, λ)

−c∗
− β̄

∥∥∥∥2
2

)
.

Next is Corollary 3.3 which offers a method to accurately compute the Asymptotic Selec-

tion Error Rate (ASER) of the estimator. This means that it is possible to determine the rate at

which the estimator makes selection errors as the sample size gets larger and larger.
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Figure 3.1: Comparison between theoretical estimation and simulation study

Corollary 3.3. Under the assumptions of Theorem 3.1, setting ψ (u, v) = III

(
III(u = 0) ̸=

III(v = 0)

)
, it follows that

ASER = lim
p→∞

1

p

p∑
j=1

III

(
III(βj = 0) ̸= III(βj = 0)

)
=

[
P
(
β̄ = 0

)
· FPR

]
+

[
P
(
β̄ ̸= 0

)
· (1− TPR)

]
.

where FPR = P (σ∗|G| > λ) and TPR = P (|µ∗β̄ + σ∗G| > λ | β̄ ̸= 0).

Finally, it is note worthy to realize that by setting λ = 0, the objective function reduces

to the maximum likelihood estimator for logistic regression, in which case, when ever solution

exisits, the results of Sur and Candès (2019) are recovered as a special case, i.e.,

lim
p→∞

1

p

p∑
j=1

ψ
(
β̂j − µ∗βj, βj

)
a.s.
= E

[
ψ
(
σ∗G, β̄

)]
, with G ∼ N(0, 1). (3.3)

3.2 Simulation Results

In this section, a Monte Carlo simulation is conducted to compare the theoretical predictions

with simulated results in finite samples. The reliability of the analytical result, as stated in

Theorem 3.1, is confirmed by comparing the MSE calculated using a numerical algorithm with

the estimated MSE from theory.
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For each setting, the scalars (c∗, µ∗, σ∗, b∗), are estimated from (3.1). Then, the theoret-

ical MSE is obtained using the right hand side of equation (3.2) in Theorem 3.1. The under-

sampling and sparsity parameters are fixed as δ = 0.5, and ϵ = 0.1. The true signal β is taken

to follow a 3-point distribution πβ̄ ∼ (1− ϵ)δ0 +
ϵ
2
δ−µ +

ϵ
2
δµ, with µ = 10. The components of

X ∼ N(0, 1/n), and y ∼ Bernoulli(πi) with πi; = 1/(1 + e−βT xi). The change of MSE versus

tuning parameter is plotted. The simulated data has dimension p = 1000, and simulation is re-

peated 200 times for each parameter setting. The R package glmnet is used to fit the ℓ1-logistic

regression estimator. The left plot in Figure 3.1 shows the average MSE with 95% confidence

intervals based on 200 replicates. The curve is the asymptotic MSE calculated based on the

main result. The right plot shows the average SER with 95% confidence intervals based on 200

replicates. The curve is the asymptotic SER calculated based on the main result. Both plots

indicate that the theoretical quantities match the empirical values closely.

3.3 Formulation of Algorithm

This section provides a comprehensive overview of the algorithm’s development process and

gathers essential tools and significant findings that will be necessary in the subsequent sections.

It serves as a foundation for understanding the subsequent discussions and analyses.

The following properties, respectively of ρ′(u) and proxρ(u; b) can be verified by their

definitions and will be utilized in the later stages of our recursion development.

ρ′(−u) = 1− ρ′(u), proxρ(u+ b; b) = −proxρ(−u; b).

The above two identities hold only for ρ(u) = log(1 + eu), while the following one holds for

any ρ.

proxρ(u; b) = u− bρ′(proxρ(u; b)). (3.4)
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Now, using the proximal mappings that were defined earlier, we start building a GAMP

recursion in the form of equation (2.13). The functions fk+1 and gk are given as follow.

gk(u, v) =
proxℓ(u; v, bk)− u

bk
=

proxρ(u+ bkv; bk)− u

bk
= v − ρ′(proxρ(u+ bkv; bk))

fk+1(w) = proxJ

(
−w

ck
;− 1

ck

)
= S

(
−w

ck
;− λ

ck

)
= −S(w;λ)

ck

(3.5)

The derivatives are thus given as:

g′k(u, v) =
prox′

ℓ(u; v, bk)− 1

bk
=

prox′
ρ(u+ bkv, bk)− 1

bk
=

−ρ′′(z∗)
1 + bkρ′′(z∗)

f ′
k+1(w) = − 1

ck
I(|w| ≥ λ) =

 −1/ck, |w| ≥ λ

0, |w| < λ

(3.6)

where z∗ = proxρ(u+ by; b) and the following relationship is used.

z∗ = u+ b(y − ρ′(z∗)),
∂z∗
∂u

=
1

1 + bρ′′(z∗)

Continuing with the progression, the final GAMP recursion (3.8) will now be unveiled,

and the explanation of its derivation will be postponed for later. Define the following function:

Ψ(u, y) = −b∂1ℓ(proxρ(u+ by; b), y). (3.7)

where ∂1 represents the derivative with respect to the first argument of the function. From 3.5,

we have

gk(θk, y) = y − ρ′(proxρ(θk + bky; bk)) = −∂1ℓ(proxρ(θk + bky; bk), y)

⇒ bkgk(θk, y) = Ψ(θk, y).

Let {bk, ck} be the two sequences of negative and non-negative parameters respectively given

in (3.9). Starting with the initial condition β̂0 = 0 ∈ Rp, b0 = 1 and Ψ(θ−1, b−1) = 0 ∈ Rn,
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then, the final GAMP recursion is the following:


θk = Xβ̂k − bk

bk−1

Ψ(θk−1, y)

β̂k+1 = S
(
β̂k − 1

ckbk
XTΨ(θk, y),−

λ

ck

)
.

(3.8)

where,

ck =

〈
−ρ′′(proxρ(θ

k + bky; bk))

1 + bkρ′′(proxρ(θ
k + bky; bk))

〉
, bk+1 = − 1

δck

〈
I
(∣∣∣β̂k+1

∣∣∣ ≥ λ
)〉

(3.9)

The GAMP recursion (3.8) mentioned above is a condensed version of the recursion (3.10)

described below. This derivation follows the methodology and terminology outlined in Feng

et al. (2021). Here are the specific details: initialize r̂−1 = 0, β̂0 = 0, and b0 = 1, define

{β̂k+1, βk+1, θk, r̂k, bk+1, ck} via



θk = Xβ̂k − bkr̂
k−1

r̂k =
proxρ(θ

k + bky; bk)− θk

bk
= y − ρ′(proxρ(θ

k + bky; bk))

ck =

〈
−ρ′′(proxρ(θ

k + bky; bk))

1 + bkρ′′(proxρ(θ
k + bky; bk))

〉
βk+1 = XT r̂k − ckβ̂

k

β̂k+1 = − 1
ck

S
(
βk+1;λ

)
bk+1 = − 1

δck
⟨I(|βk+1| ≥ λ)⟩

(3.10)

the sequence of functions fk+1 and gk given in (3.5) have been applied in the general GAMP

recursion (2.13) to arrive at the above recursion.

3.3.1 State Evolution Recursion

As mentioned earlier, the system (3.1) of scalar equations that describe the asymptotic behavior

of the GAMP estimate is obtained from the SE recursion associated with (3.8). The derivation

of the SE recursion will now be detailed out.

First, define the following notations.
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• h(z, ε) = I(ε ≤ ρ′(z)), where I(·) is the indicator function.

• g̃k(z, u, v) = gk(u, h(z, v)) = h(z, v)− ρ′(proxρ(u+ bkh(z, v); bk))

• (Z,Zk) ∼ N2(0,Σk) and Zk has the same distribution as µZ,kZ + σZ,kG̃k for an inde-

pendent G̃k ∼ N(0, 1).

• Y = h(Z, ε).

With Σ0 given as in assumption (A4), the associated state evolution recursion for GAMP

algorithm can be computed following (2.15) where the sequences σk+1 and µk+1 are derived as

follow.

µZ,k+1 =
Σ12

Σ11

=
E{β̄S(µk+1β̄ + σk+1Gk+1;λ)}

−ckE(β̄2)

σ2
Z,k+1 = Σ22 −

Σ2
12

Σ11

=
1

δc2k

[
E{S(µk+1β̄ + σk+1Gk+1;λ)

2} − [E{β̄S(µk+1β̄ + σk+1Gk+1;λ)}]2

E(β̄2)

]

and

σ2
k+1 = E

[
(Y − ρ′(proxρ(Zk + bkY ; bk)))

2
]

µk+1 = E[∂zg̃k(Z,Zk, ε)] =
δ

E(β̄2)
E[Zgk(Zk, Y )]− µZ,kE[g

′
k(Zk, Y )]

=
δ

E(β̄2)
E[Z{Y − ρ′(proxρ(Zk + bkY ; bk))}]− µZ,kck.

The following expression has been used for ck in the above expression of µk+1.

ck = ⟨g′k(θk, y)⟩ → E[g′k(Zk, Y )] = E

[ −ρ′′(proxρ(Zk + bkY ; bk))

1 + bkρ′′(proxρ(Zk + bkY ; bk))

]

Similarly, the following expression has been applied bk+1.

bk+1 = 1
δ
⟨f ′

k+1(β
k+1)⟩ → 1

δ
E[f ′

k+1(µk+1β̄ + σk+1Gk+1)] = − 1
δck
P (|µk+1β̄ + σk+1Gk+1| ≥ λ).
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Finally, the SE recursion corresponding to equation (3.8) can be summarized as follows.

Initializing Z0 = 0 and µZ,0 = 0. With b0 = 1,



ck = E

[ −ρ′′(proxρ(Zk + bkY ; bk))

1 + bkρ′′(proxρ(Zk + bkY ; bk))

]
=

1

bk
E

[
1

1 + bkρ′′(proxρ(Zk + bkY ; bk))
− 1

]
σ2
k+1 = E

[
(Y − ρ′(proxρ(Zk + bkY ; bk)))

2
]

µk+1 = δ
E(β̄2)

E[Z{Y − ρ′(proxρ(Zk + bkY ; bk))}]− µZ,kck.

bk+1 = − 1
δck
P (|µk+1β̄ + σk+1Gk+1| ≥ λ).

(3.11)

The sequences, {ck} and {bk} are essentially the limits of the corresponding ck and bk in the

above algorithm.

3.3.2 Computation

To demonstrate how to evaluate the expectations used in the SE equations (3.11) above, suppose

you need to evaluate an expectation of the form E[m(Zk, Y )] where m : R2 → R. Notice that

Y = I(ε < ρ′(Z)), Zk = µZ,kZ + σZ,kG̃, and ε, Z, and G̃ are mutually independent.

E[m(Zk, Y )] = E[m(Zk, 1)ρ
′(Z) +m(Zk, 0)(1− ρ′(Z))]

= E[m(µZ,kZ + σZ,kG̃, 1)ρ
′(Z) +m(µZ,kZ + σZ,kG̃, 0)(1− ρ′(Z))]

Therefore,

E[m(proxρ(Zk + bkY ; bk))]

= E[m(proxρ(Zk + bk; bk))ρ
′(Z)] + E[m(proxρ(Zk; bk))(1− ρ′(Z))]

= E[m(−proxρ(−Zk; bk))ρ
′(Z)] + E[m(proxρ(Zk; bk))ρ

′(−Z)]

= E[m(−proxρ(Zk; bk))ρ
′(−Z)] + E[m(proxρ(Zk; bk))ρ

′(−Z)]

If m(·) is an even function, then

E[m(proxρ(Zk + bkY ; bk))] = 2E[m(proxρ(Zk; bk))ρ
′(−Z)]
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3.4 The Vanilla Logistic Regression (Simplification when λ = 0)

It is important to recall that when λ = 0, the problem simplifies to the vanilla logistic regression

discussed in Sur and Candès (2019). In this scenario, the recovery of an equivalent GAMP

algorithm similar to the one utilized in Sur and Candès (2019) is expected. This demonstrated

next.

When λ = 0, recursion (3.10) reduces to the following. Initial value r̂−1 = 0, β̂0 = 0, and

b0 ∈ R.

θk = Xβ̂k − bkr̂
k−1, ck = E

[
−ρ′′(proxρ(θ

k + bky; bk))

1 + bkρ′′(proxρ(θ
k + bky; bk))

]
,

βk+1 = XT r̂k − ckβ̂
k, r̂k == y − ρ′(proxρ(θ

k + bky; bk))

β̂k+1 = − 1

ck
βk+1, bk+1 = − 1

δck

which simplifies to yield

 θk = Xβ̂k − bk{y − ρ′(proxρ(θ
k−1 + bk−1y; bk−1))}

β̂k+1 = β̂k + δbk+1X
T{y − ρ′(proxρ(θ

k + bky; bk))}
(3.12)

Compared with (117) in Feng et al. (2021), there exists a slight difference. In (117) of Feng

et al. (2021), β̂k has a factor bk+1/bk. Further, the corresponding SE recursion is given as

follow. Set Z0 = 0 and µZ,0 = 0, then,



σ2
k+1 = E

[
(Y − ρ′(proxρ(Zk + bkY ; bk)))

2
]

µk+1 =
δ

E(β̄2)
E[Z{Y − ρ′(proxρ(Zk + bkY ; bk))}] +

µkbk
bk+1

,

bk+1 = − 1

δck
=
bk
δ

{
1− E

[
1

1 + bkρ′′(proxρ(Zk + bkY ; bk))

]}−1

,

(3.13)

with µZ,k+1 = δµk+1bk+1, σ2
Z,k+1 = δb2k+1σ

2
k+1, and Zk+1 follows the same distribution as

µZ,k+1Z + σZ,k+1G̃. Z ∼ N(0, δ−1E(β̄2)).
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3.4.1 Comparison with Sur and Candès (2019)

The following table lists the correspondence of notations.

Sur and Candès (2019) Manuscript Description

κ 1/δ p/n

γ2 E(β̄2)/δ signal strength

Q1, Q2 Z, Zk random variables in SE

λk bk

αk δbkµk

σk δbkσk

The expectations are evaluated as follows.

E

[
1

1 + bkρ′′(proxρ(Zk + bkY ; bk))

]
= E

[
2ρ′(−Z)

1 + bkρ′′(proxρ(Zk; bk))

]
E
[
Z{Y − ρ′(proxρ(Zk + bkY ; bk))}

]
= E

[
2(−Z)ρ′(−Z)ρ′(proxρ(Zk; bk))

]
E
[
(Y − ρ′(proxρ(Zk + bkY ; bk)))

2
]

= E
[
2ρ′(−Z)(ρ′(proxρ(Zk; bk)))

2
]

Using the above computation, the state evaluation recursion can be rewritten in the style

of Sur and Candès (2019) as follows:



σ2
k+1 = E

[
2ρ′(−Z)(ρ′(proxρ(Zk; bk)))

2
]

δbk+1µk+1 =
δ2bk+1

E(β̄2)
E
[
2(−Z)ρ′(−Z)ρ′(proxρ(Zk; bk))

]
+ δµkbk

bk+1 =
bk
δ

{
1− E

[
2ρ′(−Z)

1 + bkρ′′(proxρ(Zk; bk))

]}−1

(3.14)

where (Z,Zk) follows normal with mean 000 and variance

1

δ

 E(β̄2) δbkµkE(β̄
2)

δbkµkE(β̄
2) δ2b2kµ

2
kE(β̄

2) + δ2b2kσ
2
k


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The above expressions look similar to those in Sur and Candès (2019). However, it mixed bk

and bk+1, which hopefully has no effect asymptotically. Essentially, Sur and Candès (2019)

assumes bk = bk+1 and solves bk from an equation.

3.5 Technical Proofs

3.5.1 Idea of Proof

In general, the GAMP estimation procedure for M-estimation involves three major steps. In the

context of the problem under consideration, they correspond to:

Step 1. Find fixed points {θ, β̂, c∗, σ2
∗, µ∗, b∗} of the GAMP recursion (3.8) together with the

corresponding state evolution equations (3.11) satisfying


θ = Xβ̂ −Ψ(θ, y)

β̂ = S
(
β̂ − 1

c∗b∗
XTΨ(θ, y);− λ

c∗

)
.

(3.15)

and (3.1) respectively.

Step 2. If Step 1 succeeds, then consider the following stationary version of (3.8).


θk = Xβ̂k −Ψ(θk−1, y)

β̂k+1 = S
(
β̂k − 1

c∗b∗
XTΨ(θk, y);− λ

c∗

)
.

(3.16)

It is important to note here that recursion (3.16) above is used only as a theoretical device

to facilitate proof rather than as a practical algorithm. Thus, for λ > 0, it is affordable to

initialise (3.16) with θ0 = Xβ̂0 and β̂0 = −1/c∗S(µ∗β + σ∗ξ;λ), the oracle initialiser,

with ξ = (ξ1, ..., ξp) such that ξi ∼ N(0, 1), 1 ≤ i ≤ p taken to be independent of the

true signal β ∈ Rp.

Step 3. The final step is to show that the iterates (3.16) converge to a fixed point β̂ ≡ β̂ℓ1 satisfy-

ing (3.15).
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3.5.2 State Evolution Analysis

In this section, the asymptotic average behavior of the GAMP iterates (β̂, θ) is characterized.

The connection of the GAMP recursions (3.8) and (3.16) to the ℓ1-penalized logistic regression

estimator (1.6) is formalized by the following proposition.

Proposition 3.4. Let (β̂, θ) be a fixed point of the algorithm (3.16) above, then β̂ is a minimum

of the objective function (1.6).

Proof. The fixed point condition for recursion (3.16) yields (3.15). The second equation in

(3.15) yields that there exists β′ ∈ ∂∥β∥1 such that

β − λ

c∗
β′ = β − 1

c∗b∗
XTΨ(θ, y)

which then gives

λβ′ =
1

b∗
XTΨ(θ, y) = −XT∂1ℓ(proxρ(θ + b∗y; b∗), y). (3.17)

Using the first equation in (3.15), it follows that

θ = Xβ − b∗g∗(θ, y) = Xβ − proxρ (θ + b∗y; b∗) + θ

⇒ Xβ = proxρ (θ + b∗y; b∗) .

Plugging this into 3.17 then yields

λβ′ = −XT∂1ℓ(Xβ, y),

which corresponds to the stationary condition of the regularized estimator (1.6).

As a consequence of this proposition, there is a guarantee that whenever the estimates

{β̂k}k≥1 based on the recursions (3.8 and (3.16) converge, the limit is the solution of the ℓ1-

penalized logistic regression objective function for a fixed choice of λ.
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3.5.3 Proof of Main Result

In this section, the main theorem of this project is stated and proved. In simple terms, the

theorem says that for each k > 0, the empirical distribution of the estimator β̂k from GAMP

(3.8) converges to the distribution of ST (µkβ̄ + σkGk, λ∗), with Gk ∼ N(0, 1) independent of

β̄.

Theorem 3.5. Suppose the initial conditions for the GAMP iterative scheme 3.16, and the vari-

ance map updates 3.11 satisfy

µ0 =
δ

E(β̄2)
lim
n→∞

〈
− β̂0

c∗
, β̄
〉

n
, σ0 = lim

n,p→∞

1

p

∥∥∥∥∥− β̂0

c∗
− µ0β̄

∥∥∥∥∥
2

, (3.18)

then, for any pseudo-Lipschitz function ψ of order 2,

lim
n→∞

1

p

p∑
j=1

ψ
(
β̂k
j , βj

)
a.s.
= E

[
ψ
(
S(µkβ̄ + σkGk), β̄

)]
, (3.19)

lim
n→∞

1

n

n∑
i=1

ψ


 X ′

iβ

θki

 ,
 εi

0


 a.s.

= E

ψ

 Z

Zk

 ,
 ε

0



 (3.20)

Proof. Let

β̃k+1 = −β
k+1

c∗
= β̂k − 1

b∗c∗
XTΨ(θk, y)

= S(β̃k, λ∗)−
1

b∗c∗
XTΨ(θk, y).

Consider the new sequence {vk,W k}, defined by, v0 = β̃0 − µ0β, W 0 = θ0, and


vk+1 = S

[
qk(v

k + µkβ), λ∗
]
− ak+1β − 1

b∗c∗
XTΨ(W k, y)

W k = XST
(
vk + µkβ, λ∗

)
−Ψ(W k−1, y).

(3.21)
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where

qk = − δ

n

n∑
i=1

Ψ′(W k
i , yi)

a0 = µ0, ak+1 =
δ

n

n∑
i=1

∂

∂a
Ψ′(W k

i , h(a, εi))

∣∣∣∣∣
a=X′

iβ

, k ≥ 1. (3.22)

Here, Ψ′ is the derivative with respect to the first coordinate of Ψ. This recursion differs from

3.16 only by the introduction of the new variables {qk, ak}, plus the regression coefficients β.

It turns out that the recursive equations {vk,W k} fall under the class of G-AMP algorithms.

Hence, asymptotic average behavior of {vk,W k} can be established by appropriately applying

Theorem 2.5. This leads to the following lemma.

Lemma 3.6. Under the assumptions of Theorem 3.5 above, the recursion {vk,W k}, given in

(3.21) satisfy: for any k ≥ 1

lim
n→∞

1

p

p∑
j=1

ψ
(
vkj , βj

) a.s.
= E

[
ψ
(
σkGk, β̄

)]

lim
n→∞

1

n

n∑
i=1

ψ


 X ′

iβ

W k
i

 ,
 εi

0


 a.s.

= E

ψ

 Z

Zk

 ,
 ε

0





claim: The recursion (3.21) above reduce to the G-AMP form (2.31).

To see, this, fix q = 2K0 + 1 for some arbitrary large k0 ∈ N, and let N = n + p. Restricting

t ∈ {0, . . . , q}, define xt ∈ Vq,N such that x0 = 0 and for 1 ≤ t ≤ q it follows that: for even

iterates t = 2m, m ≥ 0, for each i = n+ 1, · · · , n+ p, define

xt•i :=
[
0, v1i−n, 0, v

2
i−n, 0, v

3
i−n, ..., v

t
2
i−n, 0, 0, ...

]′
. (3.23)

For odd iterates t = 2m+ 1, m ≥ 0, for each i = 1, · · · , n, define

xt•i :=
[
Zi, 0,W

0
i , 0,W

1
i , ..., 0,W

t−1
2

i , 0, 0, ...
]′
, (3.24)

48



and all other entries of xt are 0. Let U ∈ Vq,N be defined via

 U1•

U2•

 =

 ε1, ε2, ..., εn, β1, β2, ..., βp

0, 0, ..., 0, v01, v02, ..., v0p

 (3.25)

and the other entries are all 0. Further, for even iterates t = 2m, m ≥ 0, let f i(x; 2m) = 0 for

i = 1, ..., n. Let r =
√
N/n. For i = n+ 1, ..., n+ p, define

f i(x; 2m) = r [ST (U1i, λ∗), 0, ST (U2i + µ0U1i, λ∗), 0, ST (x2 + µ1U1i, λ∗), 0,

ST (x4 + µ2U1i, λ∗), 0, ..., ST (xt + µt/2U1i, λ∗), 0, 0, ...
]′
.

(3.26)

For the odd iterates t = 2m+1, m ≥ 0, let f i(x; 2m+1) = 0 for i = n+1, ..., n+ p, and for

i = 1, ..., n, define

f i(x; 2m+ 1) = δr [0,Ψ0(x3, h(x1, U1i)), 0,Ψ1(x5, h(x1, U1i)), ...,

Ψ t−1
2
(xt+2, h(x1, U1i)), 0, 0, ...

]′
.

(3.27)

Let AAA ∈ RN×N be a symmetric matrix such that Aii = 0, Ai,j = 1
r
Xi,j−n for 1 ≤ i ≤ n and

n+1 ≤ j ≤ n+p and the other entries, Aij, i < j are i.i.dN(0, 1/N). Using these definitions,

the following result is established.

Lemma 3.7. For odd terms of the sequence with column indices i = 1, ..., n, and even terms of

the sequence with column indices i = n+ 1, ..., n+ p, xt• defined in (3.23)-(3.24) satisfies the

recursion (2.31), with the collection of functions f i(·; t) given by (3.26)-(3.27), where AAA is as

described above.

Proof. This follows by matrix multiplication and is, therefore, left out.

Consider the following new sequence x̂t ∈ Vq,N , with x̂0 = 0. For 1 ≤ t ≤ q, set

x̂t•i = xt•i, for corresponding non-zero columns of xt. For the zero columns of xt, set the

corresponding column of x̂t as follows: x̂1•i =
∑N

j=1Aijf
j(x0•j; 0), and

xk+1
•i =

N∑
j=1

Aijf
j(xk•j; k)−

1

N

(
N∑
j=1

∂f j

∂x
(xk•j; k)

)
f i(xk−1

•i ; k − 1), for k ≥ 1,
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with any negative index equal zero. By using 3.7, the following conclusion can easily be reach

.

Lemma 3.8. The sequence {x̂t}1≤t≤q above satisfies the recursion 2.31 with the functions f i

as specified in 3.26 and 3.27.

Next, we show that

lim
n→∞

1

p

∥∥∥β̃k − µkβ − vk
∥∥∥2 a.s.

= 0, and lim
n→∞

1

n

∥∥θk −W k
∥∥ a.s.

= 0. (3.28)

To see this, let uk = β̃k − µkβ. Then. from 3.16 and 3.21, it follows that

∥W k − θk∥ =
∥∥∥XST (vk + µkβ, λ∗

)
−Ψ(W k−1, y)−Xβ̂k +Ψ(θk−1, y)

∥∥∥
≤ ∥X∥

∥∥ST (vk + µkβ, λ∗
)
− ST

(
uk + µkβ, λ∗

)∥∥+ ∥∥Ψ(θk−1, y)−Ψ(W k−1, y)
∥∥ .

Using the fact that the function ST (·, λ∗) is Lipschitz and

∂Ψ(s, t)

∂s
= bkg

′
k(s, t) =

−bkρ′′(z∗)
1 + bkρ′′(z∗)

, (3.29)

where z∗ = proxρ(s+ bt; b), so that, Ψ(·, t) is Lipschitz with Lipschitz constant at most 1, it is

the case that

∥W k − θk∥ ≤ ∥X∥∥vk − uk∥+ ∥W k−1 − θk−1∥. (3.30)
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Again, from 3.16 and 3.21, it follows that

∥∥vk+1 − uk+1
∥∥ =

∥∥ST (qk(vk + µkβ), λ∗
)
− ak+1β − ST (uk + µkβ, λ∗) + µk+1β+

1

b∗c∗
XT

(
Ψ(θk, y)−Ψ(W k, y)

)∥∥∥∥
≤

∥∥ST (qk(vk + µkβ), λ∗
)
− ST (uk + µkβ, λ∗)

∥∥+ ∥(µk+1 − ak+1)β∥+
1

∥b∗c∗∥
∥XT∥

∥∥(Ψ(θk, y)−Ψ(W k, y)
)∥∥

≤
∥∥qk(vk + µkβ)− (uk + µkβ)

∥∥+ ∥(µk+1 − ak+1)β∥+
1

∥b∗c∗∥
∥XT∥

∥∥(Ψ(θk, y)−Ψ(W k, y)
)∥∥

≤
∥∥(qk − 1)

(
vk + µkβ

)
+
(
vk + µkβ

)
− (uk + µkβ)

∥∥+ ∥(µk+1 − ak+1)β∥+
1

∥b∗c∗∥
∥XT∥

∥∥(Ψ(θk, y)−Ψ(W k, y)
)∥∥

≤ ∥vk − uk∥+ |qk − 1|
∥∥vk + µkβ

∥∥+ |µk+1 − ak+1| ∥β∥+ (3.31)

1

|b∗c∗|
∥XT∥

∥∥θk −W k
∥∥ .

Since v0 = u0, combining 3.30, 3.31, it can be established that there exists a constant M ,

depending on c∗b∗, such that

∥∥vk+1 − uk+1
∥∥ ≤ (M∥X∥)2(k+1)

(
k∑

l=0

|ql − 1|
∣∣vl + µlβ

∣∣+ k∑
l=0

|µk+1 − ak+1| ∥β∥

)
(3.32)

Following similar line of argument as in the proof of Lemma 4 in the supporting document of

Sur and Candès (2019), it follows that

lim
n→∞

1
√
p

∥∥vk − uk
∥∥ = 0. (3.33)

Further, using 3.30 and the fact that limn→∞ ∥X∥ is finite almost surely, the same conclusion

is reached which states that

lim
n→∞

1

n

∥∥θk −W k
∥∥2 a.s.

= 0
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thus, establishing 3.28.

Using the fact that ψ is a pseudo-Lipschitz function of order 2, it is found that

∣∣∣∣∣1p
p∑

j=1

ψ
(
β̃k
j − µkβj, βj

)
− 1

p

p∑
j=1

ψ
(
vkj , βj

) ∣∣∣∣∣ ≤ 1

p

p∑
j=1

∣∣∣ψ (β̃k
j − µkβj, βj

)
− ψ

(
vkj , βj

)∣∣∣
≤ M

p

p∑
j=1

(
1 + ∥(β̃k

j − µkβj, βj)∥+ ∥(vkj , βj)∥
) ∣∣∣β̃k

j − µkβj − vkj

∣∣∣
≤ M

p

√√√√ p∑
j=1

(
1 + ∥(β̃k

j − µkβj, βj)∥+ ∥(vkj , βj)∥
)2 ∥∥∥β̃k − µkβ − vk

∥∥∥ .
It follows by definition that ∥β∥/√p is bounded. Combining 3.28 and Lemma 3.6 yields that

∥β̃k∥/√p is bounded for all k. Thus, using the above inequality and Lemma 3.28, it is evident

that

lim
n→∞

1

p

p∑
j=1

ψ
(
β̃k
j − µkβj, βj

)
= lim

n→∞

1

p

p∑
j=1

ψ
(
vkj , βj

)
(3.34)

i.e., lim
n→∞

1

p

p∑
j=1

ψ
(
β̃k
j − µkβj, βj

)
= E

[
ψ
(
σkGk, β̄

)]
which then yields, lim

n→∞

1

p

p∑
j=1

ψ
(
β̃k
j , βj

)
= E

[
ψ
(
µkβ + σkGk, β̄

)]
.

By the Lipschitz-ness of the function ST (·, λ∗), it is then found that

lim
n→∞

1

p

p∑
j=1

ψ
(
β̂k
j , βj

)
= limn→∞

1
p

∑p
j=1 ψ

(
ST (β̃k

j , λ∗), βj

)
= E

[
ψ
(
ST (µkβ̄ + σkGk, λ∗), β̄

)]
(3.35)

establishing the first relation in 3.20. A similar argument up to 3.34 holds for the other relation.
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Chapter 4

Phase Transition

4.1 Introduction and Background

This chapter starts off with a brief historical background and the theoretical framework for the

concept known as phase transition. Then, it goes on to give the main result which at this time is

a simulation study that provides evidence for the existence of phase transition for ℓ1-penalized

logistic regression estimator based on the asymptotic results of the previous chapter. Specifi-

cally, a Monte Carlo simulation is performed and used to shows that the ℓ1-penalized logistic

regression estimator demonstrates some sparsity–under-sampling tradeoff. A parameter space

with axes quantifying under-sampling δ, and sparsity ϵ is considered. In the limit of large di-

mensions, i.e., n, p → ∞ with n/p = δ > 0, and ∥β∥0/p = ϵ (∥β∥0 refers to the number of

nonzero elements β), the parameter space partitions into two regions: one where the GAMP

approach successfully achieves an accurate reconstruction of β and one where it fails.

Phase transitions in Generalized Linear Models (GLMs) are an interesting topic. The term

first emanated in statistical physics, where it refers to abrupt changes in the properties of a

physical system as a result of small changes in external conditions, such as temperature or

pressure. These transitions are characterized by the emergence of new collective behaviors and

the breakdown of symmetries.

Mathematically, phase transitions in GLMs have commonly been analyzed using tools

from statistical physics, such as replica theory, mean-field theory, and the study of critical phe-

nomena. These frameworks allow us to investigate the behavior and characteristic properties of
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GLMs near the phase transition point and understand the emergence of complex patterns and

phenomena.

In the context of GLMs, phase transitions refers to a situation when there is an abrupt

change in the behavior of the model as a parameter crosses a critical threshold. Such parameter

could be related to the sparsity of the data matrix, the strength of the input signals, or other

factors. Phase transitions can manifest as sudden changes in performance metrics of a model,

such as the model’s predictive power, or the accuracy of parameter estimation. The compre-

hension and characterization of these phase transitions can enable researchers to identify the

critical regions in the parameter space where the model’s behavior qualitatively alters.

It is important to note that the study of phase transitions in GLMs is an active area of

research, and there is still a multitude of unanswered questions and challenges that need to

be tackled. However, by exploring the theoretical background and mathematical frameworks

underlying phase transitions in GLMs, we can gain valuable insights into the behavior of these

models and their applications in various fields.

4.2 Types of Phase Transition Studies

In GLMs, there are several ways that phase transitions studies can be conducted depending on

different parameter estimation methods or model regimes (sparse verses dense signal regimes).

And talking about parameter estimation methods, there are various methods that can be used

for GLMs estimation, such as maximum likelihood estimation (MLE), Bayesian estimation,

or regularized estimation procedures like the Lasso or Ridge regression. Making a decision

regarding the estimation technique, can have important consequences on the model’s behavior

and performance. The types of phase transitions seen here usually occur when the model

assumptions or the data characteristics change.

There are numerous studies of phase transition for different parameter estimation methods.

For instance, in the case of maximum likelihood estimation, it is a well-known phenomenon

which has sparked several interesting investigations that the existence of the MLE is not guar-

anteed in all situations, even when the dimension p of the convariates is much smaller than the
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sample size n. An early study in this direction is the work of Silvapulle (1981), where the au-

thor put forward the necessary and sufficient conditions for the existence of the MLE, utilizing

a geometric characterization that involves convex cones. This was then quickly followed by the

work of Albert and Anderson (1984) on the existence of MLE for multinomial logistic regres-

sion models. The authors proved the existence theorems by considering the possible conditions

of data geometry, which fell into three mutually exclusive and exhaustive categories: complete

separation, quasicomplete separation and overlap (reader is refered to Albert and Anderson

(1984) for details). They proved that the MLE exists if and only if the data points overlap.

The work of Albert and Anderson (1984), was a major breakthrough that spurred several other

studies including linear programming approach for the detection of separation (see e.e., Silva-

pulle and Burridge (1986), Lesaffre and Albert (1989), Kolassa (1997), Konis (2007)). Finally,

Christmann and Rousseeuw (2001) applied the notion of regression depth as a data-analytic

tool to measure the amount of overlap in datasets.

The above named results based on geometric characterizations, though beautiful, do not

provide a practical guide for a data analyst to be able to tell when to expect the MLE to exist or

not a priori given some random sample of data from some distribution. Fortunately, the early

work of Cover (1964, 1965) provides an exception to this case. Cover’s main result, provides

that for the logistic regression, in the asymptotic regime where n, p → ∞ with p/n → k,

and the covariates Xi are drawn from some distribution D, obeying certain conditions, and

independent of the class labels {yi}i, having equal marginal probabilities, for k < 1/2, the data

points tend to asymptotically overlap with near certainty, and for k > 1/2 the data points are

separated also with the same degree of certainty. In the case where the MSE exists, Candes

and Sur (2018) complemeted Cover’s work and calculated the limiting distribution of MLE for

Gaussian covariates.

Very recently, Candes and Sur (2018) have further investigated the existence of MLE

in high-dimensional logistic regression models with Gaussian covariates. The authors estab-

lished a phase boundary curve, hMLE , which determines whether the MLE exists or not. They

showed that if the problem is sufficiently high dimensional, meaning that the dimensionality

ratio p/n = k is greater than hMLE , then the MLE does not exist with probability one. On the
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Figure 4.1: (a) Boundary curve γ 7→ g−1
MLE(0, γ) separating the regions where the MLE

asymptotically exists and where it does not (in this case β0 = 0). (b) Boundary curves
γ 7→ g−1

MLE(ργ,
√

1− ρ2γ) for various values of ρ.

other hand, if the dimensionality ratio is smaller than hMLE , the MLE asymptotically exists

with probability one. Specifically, they proved the following theorem:

Theorem 4.1 (Theorem 1 in Candes and Sur (2018)). Let Z be a standard normal variable with

density ϕ(t) and V be an independent continuous random variable with density 2ρ′(γt)ϕ(t).

With x+ = max{x, 0}, set

g−1
MLE(γ) = min

t∈R

{
E(Z − tV )2+

}
(4.1)

which is a decreasing function of γ. Then in the setting described above,

γ > gMLE(κ) −→ lim
n,p

→ ∞P{MLEexists} = 0, (4.2)

γ < gMLE(κ) −→ lim
n,p

→ ∞P{MLEexists} = 1, (4.3)

The phase curve from Theorem 4.1 above is ploted in Fig 4.1.

56



It is essential to note that all the results from the above survey are applicable only in the

regime where the dimension p of the data is smaller than the sample size n. For high dimen-

sional problems in general, as was discussed in Chapter 2, the method of ℓ1 minimization is a

well established approached for handling it. But in this setting, the paradigm for phase tran-

sition immediately shifts from merely existence and uniqueness. An estimate is admitted as

solution only if it lies within a certain threshold of the performance metric, the most popu-

lar of which is the mean squared error. Here, phase transition is considered in relation to the

model regime. In the sparse signal regime, the model has a small number of non-zero pa-

rameters, meaning that only a few of the attributes of the predictor variables are important for

characterizing the general behaviour of the response variable. On the other hand, in the dense

signal regime, a larger number of predictors attributes is needed to effectively characterize the

response variable. This phase transition in this setting is usually observed when the sparsity

parameter, under-sampling parameter, or the regularization strength is/are varied. Typically,

interest is usually in finding the best combination of sparsity verses under-sampling. By focus-

ing on sparse solutions, which have a smaller number of non-zero coefficients, researchers can

reduce the computational complexity and improve the interpretability of the results. Addition-

ally, sparsity under-sampling helps to identify the critical threshold at which the phase transition

occurs, providing insights into the behavior of the estimator in high-dimensional settings.

The work of Donoho et al. (2009) on compressed sensing introduced a modified itera-

tive thresholding algorithms (this was refered to as AMP algorithms in earlier chapters) which

while being far less expensive in application, achieves an equivalent sparsity–under-sampling

tradeoff as the convex optimization method which was the best known technique at the time.

In their study, they examined a parameter space that measures sparsity and under-sampling. In

the limit of large dimensions p and n, they demonstrated a phase transition where the parame-

ter space is divided into two partitions. In one phase, the AMP approach is able to accurately

reconstruct the signal, while in the other phase, it is unsuccessful. Previous studies have iden-

tified regions of success and failure for LP-based recovery. Surprisingly, They have found

that these two partitions of the sparsity-under-sampling parameter space are actually identical.

Both reconstruction approaches succeed or fail in the same regions. Inpired by the findings in
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Donoho et al. (2009) were base on numerical simulations and heuristic arguments, Bayati and

Montanari (2011) went on and provided a rigorous theoretical support.

Several variations and extensions of AMP algorithms including the GAMP have been pro-

posed in the literature by different authors for various types of M-estimation problem in high

dimensions, and phase transition analysis is a constant step each time as it helps in under-

standing the performance and limitations of the algorithm and can provide valuable insights for

signal recovery and estimation problems.

Some examples are the following. Bayati and Montanari (2012) considered a sequences

of matrices with increasing dimensions and independent Gaussian entries. They proved that

the normalized risk of the LASSO converges to a limit, and provided an explicit expression for

this limit. Their result was the first rigorous derivation of an explicit formula for the asymptotic

mean square error of the LASSO for random instances. The proof technique used in their study

is also based on the analysis of AMP. Huang (2022) extended the work of Bayati and Montanari

(2012) and studied the LASSO phase transition under arbitrary covariance dependence. The

authors considerd a matrix X consisting of i.i.d. Gaussian rows with a general covariance

matrix Σ. They presented explicit formulas that precisely characterize the trade-off between

sparsity and under-sampling for arbitrary Σ.

Huang (2020) discussed the derivation of the asymptotic mean square error (MSE) of ℓ1-

penalized robust estimators in the context of high-dimensional regression models. The paper

focused on the ℓ1-penalized least absolute deviation and ℓ1-penalized Huber’s regressions. The

authors analyzed the appearance of a sharp phase transition in the two-dimensional sparsity-

under-sampling phase space and derive the explicit formula of the phase boundary. They find

that the phase boundary is identical to the phase transition curve of LASSO and the Donoho-

Tanner phase transition for sparse recovery. The derivation is based on the asymptotic analysis

of the GAMP algorithm. They establish the asymptotic MSE of the ℓ1-penalized robust esti-

mator by connecting it to the asymptotic MSE of the corresponding GAMP estimator. Their

results provide theoretical insights into high-dimensional regression methods, and computa-

tional experiments validate the correctness of the analytic results.
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4.3 Phase Transition for ℓ1 Penalized Logistic Regression

In this section, a simulation study of the phase transition properties of the ℓ1-penalized logistic

regression estimator based on the asymptotic results of the previous chapter is presented. This

is done by following the same approach used in the paper Huang (2020) on asymptotic analysis.

Under the same setting as in Section 3.2, consider the sparsity/under-sampling phase space

(ϵ, δ) ∈ [0, 1]2 i.e., different combination of sparsity ϵ, and under-sampling δ. As can be easily

deduced from the literature survey from the previous sections, the problem of reconstruction

of sparse signal for under-determined systems is subject to sparsity ϵ and under-sampling δ

trade-offs. There is a function δ(ϵ), commonly referred to as phase curve that splits the space

(ϵ, δ) ∈ [0, 1]2 into two regions, a ”success” region where exact reconstruction is attained, and

a ”failure” region where it is not, and our goal is to derive the formula of the curve, or at the

very least provide numerical proof of its existence and location in the phase space.

At the point of this writing, the analytical formulation for the theoretical phase curve re-

mains to be completed, but a robust empirical evidence is presented. First, a grid of 31 ϵ values

is fixed in [0.05, 0.95]. For each ϵ, the following sequence of 20 δ values {0.05, 0.1, ..., 1} is

then considered. For each ϵ− δ combination, 20 instances of (XXX, β) with dimension p = 1000,

is generated, and y = (y1, ..., yn) with yi ∈ {0, 1}, is such that P (yi = 1|Xi) = ρ′(XT
i β). For

the ith iteration, an estimate βi is obtain by using the glmnet function in R, on the ith simulated

data. A success indicator variable is then defined as

Si = 1 if
∥β̂i − β∥2

∥β∥2
≤ 8.5× 10−1

, and Si = 0 otherwise. Finally, at each (ϵ, δ) combination, a variable S is defined by S =∑20
i=1 Si.

Next, a matrix with dimensions 20 by 31 is created. The rows of the matrix correspond

to the values of the delta sequence, and the columns correspond to the values of the epsilon

sequence. The matrix is then filled with the corresponding success rate (S/20) of signal re-

covery for each combination of delta and epsilon. Fig. 4.2 is the heat map of the success rate
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Figure 4.2: Heat Map of the success rate matrix of ℓ1-penalized logistic regression. The solid
line is the plot of the curve given in Conjecture 1.

matrix, and shows clear evidence and the location of a phase transition for ℓ1-penalized logistic

regression.

Conjecture 1. Consider the sparse class

Sϵ := {πβ : πβ is a probability measure with πβ ≥ 1− ϵ}. (4.4)

Then, the phase space 0 ≤ δ, ϵ ≤ 1 can be partitioned into two regions separated by a curve δ∗ =

δ(ϵ). Above this curve, the ℓ1-penalized logistic regression estimator perfectly recovers the

sparse signal β with high probability, after carefully choosing the tuning parameter λ. Below

this curve, the estimator fail in the recovery task with high probability. We conjecture that the

phase transition curve is determined by

δ∗ =
2[ϕ(α)− αΦ(−α)]

α + 2[ϕ(α)− αΦ(−α)]
(4.5)
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where α is determined by

ϵ =
2ϕ(α)

α + 2[ϕ(α)− αΦ(−α)]
, (4.6)

with α ∈ [0,∞).

Figure 4.2 shows that overall, the conjectured curve aligns fairly well with empirical data.

Given this agreement, it is reasonable to consider pursuing a proof in the direction of the conjec-

ture. The close correspondence between the predicted outcomes of the curve and the observed

results strongly suggests that there may be a deeper underlying relationship at play. By rigor-

ously establishing the validity of the conjecture or some variant of it through a formal proof,

we can gain a deeper understanding of the phenomenon and potentially unlock new insights

and applications.
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Chapter 5

Conclusion and Future Work

The logistic regression is one of, if not the most popular statistical model used for binary

classification problems. One of the key advantages of logistic regression is its interpretability.

The model provides estimates of the coefficients for each independent variable, which can

be interpreted as the effect of that variable on the probability of the binary outcome. This

makes logistic regression a valuable tool for understanding the factors that influence a particular

outcome.

Given that interpretablitly is one of the major attractions of the logistic regression, several

estimation techniques have been proposed in the literature for the logistic regression, including

maximum likelihood estimation (MLE), Bayesian estimation, and penalized estimation meth-

ods such as ridge regression and lasso. Introduce a penalty term to the likelihood function to

encourage sparsity in the estimated coefficients. These techniques have been widely used in

logistic regression to improve model performance and handle high-dimensional data.

Sur and Candès (2019), outlined the limitations of classical maximum likelihood theory

in the context of logistic regression when the number of features and sample size are large

and comparable. The authors highlighted that classical results, such as the unbiasedness of the

maximum likelihood estimate (MLE) and the Chi-Squared distribution of the log-likelihood

ratio (LLR) statistic, are inaccurate in this setting.

Inspired by the work of Sur and Candès, and noting the ubiquity of high dimensional

problems with p > n in modern applications where the ML theory fails, our interest was

naturally drawn to investigate alternate procedures that would remain applicable under these
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settings. Specifically, we explored the problem of ℓ1-penalized logistic regression given by

(1.6), and our results extend even to the large-n-large-p regime.

The main result of this work contains an explicit characterization of the high dimensional

limit of the ℓ1 penalized logistic regression estimator. Using this characterization, the formula

of asymptotic mean square error and the asymptotic selection error rate, to name a few were

derived, and in both cases, were backed up by results from extensive numerical experiments.

Further numerical experimentation revealed the existence and location of a phase transition

in the two-dimensional sparsity-undersampling phase space. The formalism underpinning the

approach used here is based on the asymptotic analysis of the GAMP algorithm. The results

provide theoretical insights into high-dimensional regression methods. For instance, it can be

used to tune the regularization parameter since it gives an exact formula for the asymptotic

MSE. The phase transition result is also new and will now serve as a guide for when logistic

regression estimates based on the ℓ1 regularization technique are reliable.

5.1 Future Work

An immediate future work here is the completion the theoretical derivation of an explicit for-

mula of the phase transition curve for which there has been provided a numerical evidence

here.

It would also be interesting to try to recover the results established here for the logit

model in the case of the probit model and complementary log-log model. This is because

the logit model, probit model, and complementary log-log model are all commonly used sta-

tistical models for binary classification, but they have different underlying assumptions and

estimation methods. By comparing the results between the two models, we can gain a better

understanding of the similarities and differences in their performance and applicability.

Furthermore, in addition to the lasso, there have been several other types of regularization

methods that have been studied for GLMs. A close relative of the lasso is the ridge regression,

which adds an ℓ2 penalty term to the likelihood function to control the complexity of the model.

Also, there is the Elastic net regularization which uses a combination of ridge and lasso regres-

sion, and allows for both variable selection and shrinkage. Another method is the group lasso,
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which encourages sparsity at the group level rather than the individual variable level. There

are also methods such as adaptive lasso, which adaptively weights the penalty term based on

the estimated coefficients. Overall, these regularization methods have been studied and applied

in various GLM settings to improve model performance and interpretability. We will like to

explore all these different types of regularization methods with the logistic regression and other

related GLMs.

Considering multiple types of regularization techniques on a GLM can have several ben-

efits. it allows for a more flexible and robust modeling approach. Different regularization

techniques have different strengths and weaknesses, so by considering multiple techniques, we

can potentially capture a wider range of patterns and relationships in the data. This can lead to

improved model performance and better predictive accuracy.

To summarize, there are various new paths that are open for further exploration from here.

These new directions can succinctly be represented by the following optimization problem:

β̂h = argmin
β

{
n∑

i=1

ℓ(βββ) + h(βββ)

}
(5.1)

for different combinations of loss functions ℓ(·) and convex penalty functions h(·). In the case

of ℓ2 regularization, the penalty is taken to be h(β) = ∥β∥2, and for the probit model, ℓ(·)

would be standard normal cdf.
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