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Abstract

In this thesis, a traditional GPS L1 vector tracking receiver is augmented with cellular

4G Long-Term Evolution (LTE) channels. The hybrid receiver is capable of acquiring and

tracking GPS L1 and LTE signals simultaneously in an Extended Kalman Filter (EKF)

based vector tracking loop. The receiver tracks the Secondary Synchronization Signal (SSS)

or the Cell-specific Reference Signal (CRS) to track the LTE signals.

First, the open-loop pseudorange and pseudorange rate errors variances are provided as

a function of the carrier-to-noise ratio. A method to calculate the carrier-to-noise ratio of

the LTE signal using correlator outputs is provided. The code phase and carrier frequency

tracking accuracy of the receiver is derived analytically using the Discrete Algebraic Riccati

Equation (DARE) and validated by Monte Carlo simulations. Next, the effects of errors,

such as eNodeB localization error and multipath are evaluated in Monte Carlo simulation.

Then, the robustness of the combined vector tracking loop to GPS outages is evaluated in

Monte Carlo simulations. Finally, the positioning accuracy of the hybrid receiver is shown

experimentally in two environments.

It is shown by DARE that the signal tracking performance of the combined receiver

can improve significantly over GPS-only vector tracking receivers. The CRS can provide a

larger performance increase than the SSS, but it is more susceptible to additional errors.

It is shown that when other errors (e.g., multipath) dominate the LTE signals the overall

position solution and, the signal tracking can be degraded significantly as well. The Monte

Carlo simulations also show that the inclusion of LTE signals can improve the probability of

tracking GPS signals during an outage period by up to 60%. However, if multipath is severe

enough, tracking the SSS can decrease the probability of tracking the GPS signals.
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In experiments, a simple way of mitigating errors due to eNodeB localization and mul-

tipath is implemented. Positioning results improve by up to 34% in static tests and up to

29% in dynamic tests over standalone GPS vector tracking. It is found that tracking the

LTE signal with the CRS always improved the positioning solution, whereas tracking the

SSS improved the solution in only 2 out of 3 tests when compared with GPS vector tracking.
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Chapter 1

Introduction

1.1 Background and Motivation

Almost all modern Position, Navigation, and Timing (PNT) systems have relied on

Global Navigation Satellite Systems (GNSS) for the past several decades. GNSS provide an

absolute position fix. As opposed to a dead reckoned position, GNSS positions do not degrade

over time. To produce a position fix, absolute timing must be known at the transmitter and

estimated at the receiver. As such, GNSS are a heavily relied upon timing source for many

critical applications.

These inherently weak signals are heavily attenuated indoors and in urban canyons.

They are also susceptible to interference. As a result, they will not be able to meet the needs

of emergent technologies such as autonomous vehicles, location-based services, and intelligent

transportation systems [1]. Due to this inadequacy, many researchers fused GNSS receivers

with inertial navigation systems (INS), lidars, cameras, or map matching algorithms [2], [3],

and [4]. While others have used feedback from the navigation processor directly in a vector

tracking loop [5], [6], and [7]. Although these methods have offered marked improvement over

GNSS scalar tracking alone, they all assume that (1) numerous GNSS signals are present,

and (2) one or more GNSS signal channels are of high quality.

The motivation for this thesis is to address the above limitations by enhancing a GNSS

receiver’s performance in degraded and limited signal environments. By improving receivers,

PNT becomes more widely available, especially in urban canyons.
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1.2 Prior Art

GNSS receivers are unable to produce measurements in difficult signal conditions be-

cause the receiver is unable to process the satellite transmissions and extract quality naviga-

tion observables. Since the late 1970s, significant research has been centered on improving

the performance of GNSS receivers.

In the 1990s a new paradigm for contending with poor signal conditions arose in vector

tracking. With this approach, high-quality channels can aid in the tracking of lower-quality

channels. This approach still requires at least four satellites and at least one high-quality

channel. Over the past decade, research has been focused on addressing the limitations

of GNSS by exploiting ambient signals of opportunity (SOPs). The following section will

discuss the above two areas of research in detail.

1.2.1 Vector Tracking

The method of extracting navigation observables from a received signal is called signal

tracking. In signal tracking, feedback from the tracked signal is used to update local oscilla-

tors to match the parameters of the incoming signal. Commonly, GNSS signals are tracked

using scalar tracking. In scalar tracking, feedback from each tracked channel is filtered and

applied independently. Then, the observables are provided to the navigation processor, and

a position, velocity, and timing (PVT) solution is obtained. Scalar tracking receivers are

computationally efficient and can produce accurate PVT solutions given good signal con-

ditions. However, in challenging signal environments, scalar feedback can become unusable

and a poor representation of actual tracking errors. As a result, a measurement cannot be

produced, and when signal conditions improve it is harder to reacquire the signal.

To combat these issues, research began on a tracking loop that would use feedback

directly from the navigation processor. In 1996 James Spilker from Stanford University

proposed the vector tracking loop which utilized a vector delay lock loop (VDLL) [8]. In

this approach, a Kalman filter optimal estimator is used to predict the receiver’s state and
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provide feedback to the tracking loop. As vector tracking is computationally burdensome,

there was no rigorous performance analysis of vector tracking loops at that point.

In the early 2000s, with improvements in computing occurring rapidly, performance

analysis began with Don Benson from the MITRE Corporation [9]. Soon thereafter, signif-

icant research was conducted by Lashley and Bevly [5], [10], [11], and [12]. Their research

centered on comparisons between scalar and vector tracking loops. Their research deter-

mined that vector processing had a 2-6 dB improvement in tracking over traditional scalar

tracking depending on the receiver’s dynamics.

Despite all the advantages discussed above, vector tracking does have some disadvan-

tages. For one, vector tracking is more complicated and computationally intensive than

scalar tracking. As a result, vector tracking is not commonly used in commercial receivers.

Vector tracking loops also suffer from noise sharing. That is, weaker channels will degrade

the tracking of stronger channels. Similarly, if all GNSS channels are degraded, neither

vector tracking or scalar tracking will be able to track the signals.

1.2.2 Signals of Opportunity

SOPs are ambient radio frequency (RF) signals that are not designed for navigation.

They are freely available, and they are available in GNSS-challenged environments. Despite

being designed without navigation in mind, they can be exploited for navigation purposes.

Many SOPs are terrestrial or much closer to Earth than GNSS signals resulting in higher

received power. Cellular, digital television, AM/FM, Wi-Fi, and low-earth orbit (LEO)

satellite signals are examples of these SOPs [13, 14, 15, 16, 17, 18].

The literature discusses the observability and estimability of navigation with SOPs given

a priori knowledge [19], receiver design, and localization techniques with various SOPs [20],

[21], and [22]. Among the discussed SOPs, cellular signals are of note due to their numerous

desirable characteristics. Cellular signals will be discussed in the following.
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1.2.3 Cellular Signals

Cellular signals are RF signals broadcast by terrestrial beacons for high-speed commu-

nications. As such, they possess several desirable characteristics for navigation. In [23] Zak

Kassas discusses these characteristics in detail. In [23], he discusses their abundance, geomet-

ric diversity, high received power, large bandwidth, accessibility, and resistance to jamming

and spoofing as advantages over other SOPs and GNSS. Over the past decade, cellular com-

munications standards have evolved to transmit large amounts of data quickly. In tandem,

multiple receivers to track the various iterations of these signals have been developed in the

literature.

First, the potential of cellular code division multiple access (CDMA), which is the

transmission standard of the third generation (3G) of cellular signals, was evaluated com-

prehensively, and software-defined receivers were developed for these signals by Khalife and

Kassas [21], [24]. In addition, they showed that these signals can achieve sub-meter accuracy

when applied to an unmanned aerial vehicle (UAV) at constant altitude [16].

Next, the Fourth Generation (4G) of cellular signals, which transmit using the long-

term evolution (LTE) standard, began to be evaluated. Hybrid GNSS and LTE localization

methods were proposed and evaluated [25], [26], and [27]. Then, the first Software-Defined

Receiver (SDR) was developed by del Peral-Rosado and Zanier towards hybrid positioning

[28]. They used the classical Van de Beek estimator [29] for acquisition and tracked the

signal using a traditional delay-lock loop (DLL) and phase-lock loop (PLL). As the idea of

using SOPs as standalone positioning systems became more attractive, researchers began

developing standalone LTE receivers. Marco Driusso from u-blox developed a standalone

acquisition and tracking algorithm by combining the ESPRIT [30] algorithm with an Ex-

tended Kalman Filter (EKF) [31], [32]. This method, called EKAT, was able to achieve a

Root-Mean-Square Error (RMSE) of 31 m on a dynamic vehicle in urban Switzerland using

up to nine eNodeBs.
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Despite the accuracy of the EKAT receiver, a simple but accurate receiver design was

still desired. As such, Shamaei began developing receivers that are computationally similar

to GPS receivers [22]. The first receiver tracked the Secondary Synchronization Signal (SSS),

a repeated code that is broadcast reliably in each radio frame. This receiver obtained a 2-D

RMSE of 50 m with code phase measurements. The next receiver tracked the Cell-Specific

Reference Signal (CRS). This code is scattered in time and frequency and offered the best

performance with a 2-D RMSE of 9 m using only code phase measurements.

In this thesis, only code phase and Doppler frequency measurements will be considered.

Some successful receivers have been developed using carrier phase measurements in [22], but

that is outside the scope of this thesis.

1.3 Research Contributions

This research seeks to improve existing GPS-only vector tracking loops by including

ambient LTE signals. With this aim, several academic contributions have been made. These

can be summarized as follows.

• A description of the combined vector tracking loop and its architecture is provided.

• A method of computing the open-loop pseudorange and pseudorange rate covariances

of the LTE signal in terms of C/N0 is developed. To the author’s knowledge, these

calculations have only been provided in terms of signal-to-noise ratio in the existing

literature. In addition, they have only been provided in terms of symbol timing and

carrier phase error instead of pseudorange and pseudorange rate error.

• A means of determining the C/N0 of the LTE signal using correlator outputs is supple-

mented. Existing methods typically determine the signal-to-noise ratio of the OFDM

signal and do not use correlator outputs.

• Thorough simulations are performed, assessing the best and worse case performance

of the combined vector tracking loop.
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• Experimental GPS and LTE signal data are collected. A first look at the performance

of a prototype hybrid VDFLL using the collected data is given.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces the signal structures

of the GPS L1 C/A and Cellular LTE signals. Chapter 3 presents the traditional software

receivers used for processing these signals and RF positioning methods. Chapter 4 provides

the VDFLL algorithm and some adaptations for incorporating LTE signals. Chapter 5

gives simulation methods and results that quantify the performance gains in the combined

receiver. It also presents the real-world experiments used in this thesis and their results.

Finally, chapter 6 discusses the conclusions of the work and future work.
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Chapter 2

GPS and LTE Signal Stucture

GPS is one of many global satellite constellations that provide users with navigation

and timing services. The GPS constellation broadcasts several signals on different center

frequencies. In particular, the GPS L1 C/A signal (or legacy signal) is most commonly used

by commercial receivers. It is also the only signal broadcast by all operational satellites.

For a receiver to make use of the legacy signal for navigation, the signal structure must be

known.

Cellular LTE signals are ubiquitous and are most commonly used for high-speed commu-

nications. LTE signals are broadcast from eNodeBs at several different center frequencies.

To exploit these signals for navigation the low-level signal model must be known at the

receiver or User Equipment (UE). As LTE signals are SOPs, the UE will be unable to com-

municate with the eNodeB and will exploit broadcast reference signals to extract navigation

observables. The reference signals must be known to the UE before broadcast without a

subscription to the network. If known, a received signal model can be developed and a nav-

igation receiver can be designed. The signal structure of the LTE signal is provided by the

3GPP. It is replicated here for clarity.

This chapter discusses the GPS L1 C/A signal and the cellular LTE signals in detail.

Section 2.1 describes the GPS L1 C/A signal. Section 2.2 presents the low-level model of

LTE signals and their frame structure.

2.1 The GPS L1 C/A Signal

GPS is a constellation of orbiting satellites that broadcast ranging signals to the Earth’s

surface. Receivers process these signals to determine their position, velocity, and timing.
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GPS was launched by the Department of Defense in 1973 and was made fully operational

by 1995. GPS satellites transmit both civilian and military signals. Military signals are

encrypted and only made available to the Department of Defense. Civilian signals are free

to use and will be the focus of this work. Currently, the GPS constellation broadcasts four

civilian signals: L1 C/A, L2C, L5, and L1C. L1 C/A is referred to as the legacy signal and

is broadcast by all operational satellites. L2C, L5, and L1C are only broadcast by newer

satellites. Most receivers use the L1 C/A signal for navigation and timing. The software

receivers in this work employ the L1 C/A signal which is discussed further in this section.

The GPS L1 C/A signal consists of a carrier signal modulated with a Pseudorandom

Noise (PRN) code and a navigation data message. The L1 C/A carrier is broadcast at

a center frequency of 1575.42 MHz, the PRN code is broadcast at 1.023 MHz, and the

navigation message is broadcast at 50 Hz. The signal is modulated by first combining the

data message and the PRN code using the exclusive-OR (XOR) operation. Then, the result

is multiplied by the carrier wave. This method of modulation is referred to as Binary Phase-

Shift Keying (BPSK) . Figure 2.1 shows a visual representation of this form of modulation.

The received signal model is expressed as

s(t) =
√
2CD(t)G(t)cos(ωt+ θ), (2.1)

where C is signal power, D(t) is the data message, G(t) is the spreading code, ω is the carrier

frequency in radians per second, and θ is the carrier phase in radians. The carrier frequency

of GPS L1 C/A is 1575.42 MHz, placing this signal in the L band of RF. In general, GPS

receivers use the PRN code to estimate their position, the carrier frequency to estimate their

velocity, and the navigation data message to determine information about the transmitting

satellite’s position, velocity, and timing.
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Figure 2.1: An example of BPSK modulation.
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2.1.1 Spreading Code

In the case of GPS L1 C/A, the spreading code, G(t) is a Gold code [33] and is unique

to each broadcasting satellite. Gold codes possess good correlation properties. Figure 2.2

shows the autocorrelation function of a Gold code. This autocorrelation function resembles

that of Gaussian noise. That is, it correlates with itself at only one point in time and does

not correlate with other sequences of the same type. For this reason, G(t) is also referred to

as a Pseudorandom Noise (PRN) code. This feature also makes the Code-Division Multiple

Access (CDMA) properties of the GPS system possible.

The PRN code is generated at a chipping rate of 1.023 Megachips per Second (Mcps).

The PRN code is also referred to as the spreading code. This is because of the effect of
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Figure 2.3: Effect of the Spreading Code on Carrier in GPS L1

applying this sort of modulation to a carrier sinusoid. The resultant signal is effectively

“spread” in the frequency domain. Figure 2.3 shows the effect in the frequency domain

compared with a sinusoidal carrier. The spreading code drops the carrier power by around 35

dB at the center frequency. This significant decrease in power, coupled with long transmission

length (∼ 20,000 km) causes the received signal to be well below the thermal noise floor.

2.1.2 Data Message

In addition to the spreading code, a data message is modulated onto the carrier in the

same way. Unlike the spreading code, the bit rate of the data message is very low. The data

message is sent at 50 Hz or one bit every 20 ms. That is, 20 full PRN sequences are sent

during one data bit.

The data message contains information about the transmitting satellite. This infor-

mation pertains to the satellite’s orbit, health, GPS system time, and almanac data for the

other satellites in the constellation. This message is arranged into thirty-bit words. 10 words
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Figure 2.4: Arrangement of the GPS Navigation Message [34]

constitute a subframe and 5 subframes make a frame. Figure 2.4 shows how the navigation

message is arranged. In each frame, the first 3 subframes contain clock and ephemeris infor-

mation for the transmitting satellite. Subframes 4 and 5 alternately provide almanac data

and ionospheric correction data. The satellite ephemeris data is information about the satel-

lite’s orbit. The ephemeris can be used to calculate the approximate position and velocity

of the transmitting satellite. The almanac data is less precise ephemeris for other satellites

in the constellation.
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2.2 The LTE Signal

LTE is a standard for wireless broadband communications for mobile devices and data

terminals. The standard was developed by the 3rd Generation Partnership Project (3GPP)

and is specified in its Release 8 document series, with minor enhancements described in

Release 9. The original idea for LTE was first proposed in 1998 to replace CDMA cellular

signals. Studies officially commenced in 2005. The LTE standard was finalized in 2008, and

the first publicly available LTE service was launched by TeliaSonera in Oslo and Stockholm.

Afterward, it quickly became a mainstay in the rest of the world as well. Not long after,

navigation with LTE signals became a popular research focus [25].

In order to exploit cellular LTE signals for navigation, the received signal model must be

known by the User Equipment. In this thesis, navigation will be performed opportunistically.

That is, the UE cannot communicate with the broadcasting eNodeB and must exploit the

reliably transmitted reference signals. Knowing the structure of the transmitted LTE refer-

ence signals, the received signal can be modeled and a proper receiver structure to navigate

with these signals can be designed.

2.2.1 Frame Structure

LTE systems transmit using orthogonal frequency division multiple access (OFDMA). In

OFDMA, the transmitted symbols are mapped to orthogonal carriers called subcarriers. LTE

uses a subcarrier spacing of ∆f = 15 kHz. Each LTE base station or eNodeB broadcasts

on Nr subcarriers. Each subcarrier contains a data symbol. Therefore, each serial data

symbol must be mapped to Nr subcarriers. The mapping process depends on the LTE frame

structure, where different data types are transmitted at different times and on different

subcarriers. To reduce interference between neighboring frequency bands a guard band is

allocated to LTE OFDMA signals, where no data is transmitted on the subcarriers on either

side of theNr data subcarriers. The guard bands must occupy, at most, 10% of the bandwidth

of the transmitting signal. Hence, the total allocated bandwidth is not defined by Nr. Table
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2.1 summarizes all available bandwidths in LTE and the number of data subcarriers. It

should be noted that the Direct Current (DC) subcarrier is left intentionally empty.

Table 2.1: Available LTE Bandwidths and Number of Subcarriers

Total Bandwidth (MHz) Data Subcarriers (Nr)

1.4 72
3 180
5 300
10 600
15 900
20 1200

Once Nr is determined, the serial data symbols are mapped to each subcarrier in accor-

dance with the LTE frame structure. Then, the DC subcarrier and guardbands are assigned

zeros. An Inverse Discrete Fourier Transform (IDFT) is performed, resulting in a time-

domain OFMDA symbol of duration 1/∆f . The last LCP elements of the OFDMA symbol

are repeated at the beginning of the symbol to suppress Inter-Symbol Interference (ISI) due

to multipath. LCP is constant among all eNodeBs. These repeated elements are referred

to as the Cyclic Prefix (CP) . Figure 2.5 shows the OFDMA modulation scheme for digital

transmission, where X0, ..., XNr−1 are the Nr modulated symbols in the frequency domain

and x0, ..., xNr−1 are the Nr time-domain symbols. The UE can then obtain the transmitted

symbols by performing the steps below in reverse.
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Figure 2.5: Block Diagram of OFDMA Modulation
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Figure 2.6: LTE FDD Frame Structure [35]

The resulting OFDMA symbols are grouped into frames of duration T = 10 ms. In

LTE, the structure of the frame depends on the transmission scheme. There are two types

of transmission schemes that are used in the LTE standard: Time-Division Duplex (TDD) ,

and Frequency-Division Duplex (FDD) . FDD is more commonly used [22] and will be the

focus of this thesis.

Each frame consists of 10 subframes and 20 slots, with a duration of 1 ms and .5 ms,

respectively. Each slot is made up of multiple Resource Grids (RGs). Each RG is composed

of multiple Resource Blocks (RBs). The RB can be broken down to the smallest element in

the radio frame, the Resource Element (RE). An RE can be defined two-dimensionally in

frequency and time. The frequency and time indices of an RE are referred to as subcarrier

and symbol, respectively. Figure 2.6 shows the structure of the LTE frame and Figure 2.7

shows an example of an LTE frame with Nr = 72. Figure 2.7 provides a top-down (time

versus frequency) view of the LTE signal over time. Figure 2.8 provides a front-on view of

the LTE frame in the frequency domain.

Since each RE is mapped to a specific subcarrier and symbol, the UE must first convert

the received signal to the frequency domain. In particular, the specific symbol of interest

must first be isolated. To do so, some knowledge of the frame timing must be known to the

UE. Similar to GNSS, approximate frame timing can be determined by coarse acquisition.

Figure 2.7 shows a number of reference signals, which will be discussed in the following

subsection. The Secondary Synchronization Signal (SSS) and the Primary Synchronization
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Figure 2.7: An Example of an LTE Frame with Nr = 72 [22]

Figure 2.8: An Example of an LTE Frame with Nr = 72 in the Frequency Domain
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Signal (PSS) are shown in blue and green, respectively. These signals can be correlated with

locally generated replicas to determine frame timing. This same principle will be abused to

perform signal tracking in the later sections of this thesis. Once frame timing is determined,

the CP is removed and the UE can convert the symbol to the frequency domain. Then, the

data on each of the Nr subcarriers can be demodulated and decoded.

2.2.2 Ranging Signals

Several sequences have been identified in the received LTE signals that can be used for

positioning. In particular, two sequences have shown the most potential for navigation: the

SSS and the Cell-Specific Reference Signal (CRS) [22]. Figure 2.7 shows the mapping of the

SSS and a possible mapping of the CRS. Notably, both sequences are repeated reliably in

every radio frame and the UE does not need to be a subscriber of the network to exploit

them. Both sequences will be discussed in detail.

1. SSS: The SSS is an orthogonal length-62 sequence. It is transmitted in either slot 0 or

10 on the middle 62 subcarriers of the symbol preceding the PSS. The SSS is obtained

by concatenating two maximal-length sequences scrambled by a third orthogonal se-

quence generated based on the PSS. As such, the PSS and the SSS are used together

to determine frame timing and the cell ID of the eNodeB.

2. CRS: The CRS is transmitted for channel estimation purposes. As such, it is scat-

tered in time and frequency. The sequence itself is determined by the cell ID, allocated

symbol, slot, and transmission antenna port number. This ensures that different eN-

odeBs’ CRS sequences are orthogonal to one another. In this thesis the transmitted

CRS will be denoted as in [22] as Si(k) where k = m∆CRS + κ, m = 0, · · · ,M − 1,

M = [Nr/∆CRS], ∆CRS = 6, and κ is a constant shift depending on the cell ID and

the symbol number i.
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In [22] and [36] receivers were developed for both the SSS and the CRS. In [31] and

[32] receivers are developed for the CRS. Among the mentioned works, the CRS has been a

much stronger candidate for navigation for a number of reasons. For one, the CRS occupies

a much wider bandwidth than the SSS. As shown in Figure 2.7, the SSS only occupies

the middle 62 subcarriers. The CRS will occupy as much bandwidth as is available. For

example, an eNodeB that broadcasts on a 20 MHz bandwidth will broadcast a 20 MHz

CRS. This makes the CRS much more robust to multipath compared with the 930 kHz

bandwidth SSS. In addition, the CRS is broadcast more frequently than the SSS. The SSS

is broadcast every 5 ms, whereas a CRS sequence is broadcast, approximately, every 0.25

milliseconds. This increased transmit period allows for higher resolution measurements and

greater correlation power over longer integration periods. However, there are trade-offs.

Namely, the computational complexity of tracking the CRS is much higher. The CRS is not

found on contiguous subcarriers. As a result, no time-domain representation of the CRS is

tractable. Therefore, the UE must be able to take many Discrete Fourier Transforms (DFTs)

in real-time. Additionally, some information about the broadcasting eNodeB must be made

available to the UE to make full advantage of the CRS. This information could be known to

the UE if the environment has been studied previously, but this cannot be assumed. Hence,

the UE must be able to decode data from the transmitting eNodeB to verify information,

such as the transmitting antenna port number. Conversely, the SSS requires no DFTs and

can be used completely opportunistically. Due to the trade-offs discussed here, the SDRs in

this thesis will use either the SSS or the CRS to make measurements and the results will be

compared.
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2.2.3 Received Signal Model

In this section, the received signal models of the SSS and the CRS are presented.

SSS Received Signal Model

The SSS is transmitted twice per frame in slots zero and ten. However, the sequence

is different depending on the slot. For both slots, we can denote the SSS in the frequency

domain as SSSS(f). Since the SSS is fully contiguous in frequency, a one-to-one mapping

from the frequency domain to the time domain is obtainable. Hence, the time domain

representation s(t) can be found as

ssss(t) =


IDFT{Ssss(f)}, for t ∈ (0, Tsymb),

0, for t ∈ (Tsymb, T ),

(2.2)

It should be noted that the duration of each SSS replica is the duration of one LTE

symbol, Tsymb = 1/∆f . Then, assuming the transmitted signal is propagated in an Additive

White Gaussian Noise (AWGN) channel, the received signal in the time domain can be

written as [22]

r(t) =
√
Cej(2πfDt+Φ)[ssss(t− tTOAk

− kTf ) + d(t− tTOAk
− kTf )] + n(t),

for kTf ≤ t ≤ (k + 1)Tf , k = 0, 1, 2, ..., (2.3)

where k is the frame number, C is the received signal power including antenna gains and

implementation loss, tTOA is the time of arrival (TOA) of the SSS signal, Φ is the carrier

phase, fD is the total carrier frequency offset due to the Doppler shift, clock drift, and

oscillators’ mismatch, n(t) is AWGN with a constant power spectral density N0/2 Watts/Hz,

and d(t) is some data transmitted by the eNodeB other than the SSS on the same symbol
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where

d(t) = 0 for t /∈ (tTOAk
, tTOAk

+ Tsymb). (2.4)

CRS Received Signal Model

The transmitted symbols that contain the CRS are defined by their subcarrier and

OFDMA symbol index. A CRS symbol transmitted on the k-th subcarrier and on the i-th

OFDMA symbol can be expressed as [22]

Yi(k) =


Si(k), if k ∈ NCRS,

Di(k), otherwise,

(2.5)

where NCRS denotes the set of subcarriers containing the CRS and Di(k) represents data

symbols on other subcarriers.

It is important to note that each OFDMA symbol is assumed to travel through a multi-

path fading channel. This channel is assumed constant over the duration of a symbol. This

channel can be described by its Channel Impulse Response (CIR) [37]. The CIR is expressed

as

hi(τ) =
L−1∑
l=0

αi,lδ(τ − τi,l), (2.6)

where i is the symbol number, L is the number of multipath components, αi,l is the complex

attenuation of the l-th path, τi,l is the delay of the l-th path with respect to the first path,

in Line of Sight (LOS) conditions αi,0 = 1 and τi,0 = 0, and δ is the Dirac delta function.

Finally, the received symbol after removing the CP and converting to the frequency domain,

given perfect synchronization, is given by

Ri(k) =
√
CYi(k)Hi(k) +Wi(k), for k = 0, · · · , Nc − 1, (2.7)

where Ri(k) is the received i-th symbol at the k-th subcarrier, C is the received signal power,

Wi(k) ∼ CN (0, σ2), where CN (µ, β) is the complex Gaussian distribution with mean µ and
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variance β, and

Hi(k) =
L−1∑
l=0

αi,le
−j2πτi,lk/Tsymb (2.8)

is the Channel Frequency Response (CFR).

It is unlikely that the received symbol timing will be perfectly synchronized with the

transmitter. This can be due to clock drift, Doppler frequency, and/or carrier frequency

offset. Then, assuming the time mismatch is less than the duration of the CP, the received

signal at the i-th symbol can be rewritten as [38, 39]

Ri(k) = ejπef ej2π(iNt+LCP )ef/Ncej2πeτk/Nc
√
CYi(k)Hi(k) +Wi(k), for k = 0, · · · , Nc − 1,

(2.9)

where Nt = Nc + LCP, ef = fD
∆f

, and eτ =
ˆtTOA−tTOA

Ts
is the symbol timing error normalized

by the sampling interval Ts = Tsymb/Nc. The first two exponentials in equation (2.9) model

the effects of the carrier frequency offset and the third exponential models the effect of the

symbol timing error. It is worth mentioning that the Doppler frequency for each subcarrier is

slightly different due to their different frequencies. In this thesis, this difference is neglected

and the Doppler frequency is defined with respect to the center frequency fc as was done in

[22].
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Chapter 3

GPS and LTE Software-Defined Receivers

In order to use the signals presented in Chapter 2 for navigation, receivers must be

designed to extract the necessary observables. For GPS, this field is mature and the basis

of the SDR used in this thesis was originally published in [40]. For the reader’s benefit, this

SDR will be summarized in Section 3.1.

With respect to LTE signals, the field is nascent. LTE signals were not designed for

navigation. To exploit these signals for navigation purposes, specialized receivers have been

designed. The basis of the receivers used in this thesis was designed in [22]. These receivers

will be discussed in detail in Section 3.2.

Finally, this chapter will conclude with a brief synopsis of RF positioning. Section 3.3

will cover the methods used to determine an initial position, velocity, and timing solution

using the observables extracted by the receivers discussed in Sections 3.1 and 3.2.

3.1 GPS Software-Defined Receiver

In most real-world applications, hardware receivers are used to process GPS signals.

This is because they operate in real-time and produce valuable PNT information on-the-

fly. However, these receivers are often ‘black box’ devices, as the internal processes are not

often known to the user. As a result, they are not easily modified. This makes hardware

receivers parochial in the research context. To subvert this, some researchers have developed

SDRs [40, 41]. SDRs can provide the same performance as hardware receivers, but they are

easily customizable. SDRs are often designed for the Central Processing Unit (CPU) of a

personal computer, allowing for widespread dissemination and development. Unfortunately,

the processing of GPS signals involves several high-frequency tasks. CPUs are generally poor
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Figure 3.1: SDR Block Diagram

at computing high-frequency tasks, and as a result, most SDRs cannot operate in real-time.

This has typically made SDRs not commercially viable since the information they provide will

be out of date. Some researchers sought to overcome this by using reprogrammable hardware,

such as Digital Signal Processors (DSPs), Field-Programmable Gate Arrays (FPGAs), or

Graphics Processing Units (GPUs) [42, 43, 44]. These SDRs can operate in real time and offer

relatively rapid reprogrammability. However, they are written in lower-level programming

languages. Their results are often less accessible, and they are still more cumbersome to

reprogram than CPU-based SDRs. For those reasons, this thesis will focus on CPU-based

SDRs.

In general, an SDR has four primary components: the antenna, the RF front end, the

processor, and the user interface. After the antenna, the analog signal is downconverted

to an Intermediate Frequency (IF) and sampled by an Analog-to-Digital Converter (ADC).

This entire process is handled by the RF front end. Then, the samples are sent to the

processor that handles the receiver algorithms. In the case of a real-time SDR, this is done

immediately. For most CPU-based SDRs the samples are first saved to storage, such as a

hard disk or solid-state drive. Then, the samples are accessed at the CPU processing rate.

The GPS SDRs used in this thesis operate in this fashion. The processor then uses software

algorithms to acquire and track the GPS signals, while producing PNT solutions. Finally,

the user interface displays the PNT information determined by the processor. Figure 3.1

shows a block diagram of an SDR. The SDR algorithms will be discussed in this section,

beginning with signal acquisition.
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3.1.1 Signal Acquisition

The first task of the SDR is to determine which satellites are transmitting and are in

view. This task is often referred to as acquisition. In acquisition, three important parameters

are discovered: the transmitting satellite ID, the code phase, and the Doppler frequency

of the transmitting satellite. To do this, first consider the GPS received signal model in

equation (2.1). This equation can be updated to be representative of the received signal, after

downconversion, including satellite and receiver dynamics and clock offsets. It is rewritten

as

s(t) =
√
2CD(t− τ)G(t− τ)cos(2π(fD)t+ θ), (3.1)

where C is the received signal power, τ , is the time delay or transit time between the satellite

and the receiver due to distance and clock offsets, and fD is the Doppler frequency caused

by the relative motion and the clock offsets between the satellite and the receiver in Hertz.

In Chapter 2, it is mentioned that each satellite broadcasts a different, uncorrelated Gold

code, G(t). Using this knowledge, the first step is to correctly identify G(t). Since each Gold

code is known by the receiver, the receiver can generate a replica of each Gold code and

test its correlation with the received signal. Yet, Gold codes only correlate at one point in

time. Hence, this correlation must be computed for each τ . This step effectively determines

both the initial code phase and the broadcasting satellite. However, this correlation will

only be high if fD < 1
2TPDI

, where TPDI is the predetection integration time. This is not

often the case as satellite dynamics can impart up to ±5 kHz of Doppler shift on static

receivers on Earth, and TPDI is usually one millisecond or higher. Therefore, τ and fD must

be found simultaneously. There are two main acquisition algorithms used for this. The

serial search acquisition algorithm will check each possible code phase τ and each Doppler

bin sequentially. This process is quite slow for CPU-based SDRs. The SDRs used in this

thesis will make use of the parallel code search acquisition algorithm. In this algorithm, the

Fast Fourier Transform (FFT) is used to search each τ simultaneously. Each Doppler bin is
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Figure 3.2: Block Diagram of the Parallel Code Search Acquisition Algorithm

still searched serially. The phrase Doppler bin is used here because searching each possible

Doppler frequency is impossible. Besides, the residual Doppler frequency only must be lower

than 1
2TPDI

. Therefore, 1
2TPDI

is usually selected as the Doppler bin width. Figure 3.2 shows

a block diagram of the parallel code search algorithm. Regardless of the algorithm used, the

result is an ambiguity function. Figure 3.3 shows the resultant ambiguity function of a signal

with a GPS signal present and one without a GPS signal present. The initial code phase

and Doppler frequency are the x and y coordinates of the peak of the ambiguity function,

respectively. These values are used to initialize the tracking loops that will be discussed in

Subsection 3.1.2. More information on GPS acquisition algorithms can be found in [40] and

[45].
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Figure 3.3: Ambiguity Functions with and without a GPS Signal

3.1.2 Tracking Loops

Once the initial conditions of the received signals are found, they must be updated

according to the receiver and satellite spatiotemporal dynamics. Effectively, the SDR creates

accurate local replicas of the received signal. In doing so, it can extract code and carrier

phase and Doppler frequency measurements. These measurements can be used to calculate

a PNT solution and will be discussed in detail in Section 3.3. These measurements could

be extracted by repeating the acquisition steps discussed in Subsection 3.1.1, but to achieve

the accuracy required for quality PNT solutions it would be computationally prohibitive.

In other words, a more efficient way of generating these replicas is necessary. Tracking also

is necessary to demodulate the data message D(t) used to decode the ephemeris, which is

necessary for navigation.

The typical method of signal tracking draws from control theory. That is, relatively

simple controllers can be used to track small changes in code and carrier frequency. The

receiver minimizes phase and frequency errors by adjusting the carrier frequency of the local

replica. In general, the two controllers used for these functions are called Phase Lock Loops

(PLLs) and Delay Lock Loops (DLLs), which track carrier and code phase, respectively.

Both controllers use the same structure. Figure 3.4 shows a block diagram of the controller.

The discriminator is a function that calculates the error of the local replica and the loop filter
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Figure 3.4: Generalized Block Diagram of the PLL/DLL

is a low-pass filter. For the PLL and the DLL, the error signal is the error in the carrier and

code phase, respectively. The loop filter outputs a frequency correction, which is integrated

using a Numerically-Controlled Oscillator (NCO) and used to generate a new local replica.

The local replica is then correlated with the received signal and the process is repeated.

Figure 3.4, shows one of 6 total multiplications used in the tracking loop. The results

of these correlations, or integrate and dumps, are often referred to as correlators. Figure

3.5 summarizes the six correlators commonly used in GPS receivers. The correlators are

divided into in-phase and quadrature components by 90-degree carrier phase shift. Further,

the correlators are separated into early, late, and prompt parts by delaying or advancing the

code replica. The prompt code replica is the receiver’s best estimate of the received code.

The PLL uses the prompt correlators, and the DLL uses the early and late correlators.

The discriminator is different for both PLL and DLL. There are many viable functions

for both carrier and code phase discriminators [45]. In general, choosing a discriminator

function is often a trade between computational efficiency and accuracy. The most accurate

ones are usually the most computationally inefficient. An example of carrier and code phase

discriminators are shown in equations (3.2) and (3.3), respectively.

δϕ = atan(QP/IP) (3.2)

δτ =
(IE2 +QE2)− (IL2 +QL2)

2
(3.3)

δϕ is carrier phase error in radians, and δτ is code phase error in chips. Given that the

correlator outputs themselves are inherently noisy, equations (3.2) and (3.3) will never report

27



Figure 3.5: Common GPS Receiver Correlator Structure
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the true error, but rather a noisy version of it. Equation (3.4) gives the models of the

correlator outputs [46]

IP = AR(δτ)sinc(πferrTPDI)cos(πferrTPDI + δϕ) + ηIP,

QP = AR(δτ)sinc(πferrTPDI)sin(πferrTPDI + δϕ) + ηQP,

IE = AR(δτ +∆)sinc(πferrTPDI)cos(πferrTPDI + δϕ) + ηIE,

QE = AR(δτ +∆)sinc(πferrTPDI)sin(πferrTPDI + δϕ) + ηQE,

IL = AR(δτ −∆)sinc(πferrTPDI)cos(πferrTPDI + δϕ) + ηIL, (3.4)

QL = AR(δτ −∆)sinc(πferrTPDI)sin(πferrTPDI + δϕ) + ηQL,

A =
√

2TPDIC,

η ∼ N(0, 1),

where ferr is the frequency error (Hz) between the received and locally generated carrier

signals. The term C/N0 is the carrier-power to noise-power spectral density ratio. The term

∆ is the spacing between the correlators in chips. R(δτ) is the autocorrelation function of

the received signal and local replica. In the case of GPS, the autocorrelation function is that

of a Gold code. It is given as [45]

R(δτ) =


1− |δτ |, for |δτ | < 1,

0, for |δτ | ≥ 1.

(3.5)

Finally, Figures 3.4 and 3.5 are put together to form the full tracking loop. Figure 3.6

shows a block diagram of the tracking loop as computed by the CPU. After the stored signal

is processed, the results of tracking can be used to calculate a PNT solution. This will be

discussed in Section 3.3.
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Figure 3.6: Diagram of a Typical GPS Tracking Loop
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3.2 LTE Software Defined Receivers

Since navigation with SOPs is a recent development, very few hardware navigation

receivers exist for LTE. In fact, most LTE navigation receivers are SDRs. The state-of-the-

art code-phase LTE SDRs were developed in [22]. This section will discuss these SDRs in

detail.

3.2.1 Signal Acquisition

The LTE SDR (UE) will begin with signal acquisition, like a GPS SDR. Each eNodeB

is assigned a cell ID, N cell
ID , which can be used to identify the transmitting eNodeB. The PSS

and the SSS determine the cell ID. Since the PSS and SSS are contiguous in frequency, a

time-domain representation of both can be generated. Three possible PSSs are available, and

168 possible SSSs are available. Since the SSS is dependent on the PSS, the PSS is acquired

first. Once the time-domain representations of the PSS are generated, they are correlated

with the received LTE signal. All PSSs with statistically significant peaks are determined to

be present, representing N
(2)
ID . Once the transmitted PSSs are determined, the UE generates

all possible SSS replicas for each acquired PSS. Then, the same correlation is performed using

the SSS replicas. The SSSs with the highest correlation peaks are selected, representing N
(1)
ID .

Finally, the cell ID can be calculated as

N cell
ID = 3N

(1)
ID +N

(2)
ID , (3.6)

where N
(2)
ID ∈ {0, 1, 2} and N

(1)
ID ∈ {0, . . . , 167}, depending on the PSS (N

(2)
ID ) and SSS (N

(1)
ID ).

PSS Generation

The PSS is a length-62 Zadoff-Chu sequence [47, 48]. It is distributed across the center

72 subcarriers (the DC subcarrier is empty) of the final symbol of slots 0 and 10. The five

outermost subcarriers on either side are also left at 0. A Zadoff-Chu sequence is a complex
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sequence that is generated using the following

xu(n) =


exp(−j πun(n+1)

N
), for n = 0, 1, . . . , 30

exp(−j πu(n+1)(n+2)
N

), for n = 31, 32, . . . , 62,

(3.7)

where N is the length of the sequence, which is specified as an odd positive integer (63

for LTE), and u is the root of the Zadoff-Chu sequence, specified as a positive integer. In

the case of LTE, u ∈ {25, 29, 34}. This set is one-to-one with the set N
(2)
ID ∈ {0, 1, 2}. For

example, if the received LTE signal correlates with the Zadoff-Chu sequence generated with

u = 25, then N
(2)
ID = 0, and so on. The generated Zadoff-Chu sequence xu(n) is mapped to

the middle 72 subcarriers and the result is Spss(f). Finally, the PSS sequence is converted

to the time-domain as

spss(t) =


IDFT{Spss(f)}, for t ∈ (0, Tsymb),

0, for t ∈ (Tsymb, T ).

(3.8)

Then, spss(t) has the correlation properties shown in Figure 3.7. Or, equivalently,

Rpss(δτ) ≈ sinc(δτ), (3.9)

where δτ is the code offset in chips.

SSS Generation

Once N
(2)
ID is found, the SSS can be generated. The SSS is obtained by using two binary

sequences [35]. The sequences s
(m0)
0 and s

(m1)
1 are different cyclical shifts of an m-sequence,

s̃. The indices m0 and m1 are determined by N
(1)
ID according to

m0 = m
′
mod 31, (3.10)
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Figure 3.7: Autocorrelation (left) and Cross-Correlation (right) of the Time-Domain PSS

m1 = (m0 + ⌊m′
/31⌋+ 1)mod 31, (3.11)

where

m
′
= N

(1)
ID + q(q + 1)/2, (3.12)

and

q =

⌊
N

(1)
ID + q

′
(q

′
+ 1)/2

30

⌋
, q

′
= ⌊N (1)

ID /30⌋. (3.13)

Then, the sequences s
(m0)
0 and s

(m1)
1 are generated according to

s
(m0)
0 = s̃((n+m0)mod 31), (3.14)

s
(m1)
1 = s̃((n+m1)mod 31), (3.15)

where s̃(i) = 2− x(i), 0 ≤ i ≤ 30, is defined by

x(̄i+ 5) = (x(̄i+ 2) + x(̄i))mod 2, 0 ≤ ī ≤ 25 (3.16)

with initial conditions x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1.

Then, these two sequences are scrambled by two sequences c0(n) and c1(n). These

sequences depend on N
(2)
ID and are defined by two different cyclic shifts of the m-sequence,
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c̃(n) according to

c0(n) = c̃((n+N
(2)
ID )mod 31), (3.17)

c1(n) = c̃((n+N
(2)
ID + 3)mod 31), (3.18)

where c̃(n) is generated in the same way as s̃(n), except

x(̄i+ 5) = (x(̄i+ 3) + x(̄i)) mod 2. (3.19)

In addition to these sequences, the SSS symbols on odd subcarriers are scrambled by se-

quences z
(m0)
1 (n) and z

(m1)
1 (n). These sequences are defined by a cyclic shift of them-sequence

z̃(n) according to

z
(m0)
1 = z̃((n+ (m0mod 8)) mod 31), (3.20)

z
(m1)
1 = z̃((n+ (m1mod 8)) mod 31), (3.21)

where z̃(n) is obtained in the same way as s̃(n) and c̃(n), except

x(̄i+ 5) = (x(̄i+ 4) + x(̄i+ 2) + x(̄i+ 1)x(̄i)) mod 2. (3.22)

Finally, the sequence is generated according to the following

d(2n) =


s
(m0)
0 (n)c0(n), if subframe 0,

s
(m1)
1 (n)c1(n), if subframe 5,

(3.23)

and

d(2n+ 1) =


s
(m0)
1 (n)c1(n)z

(m0)
1 (n), if subframe 0,

s
(m1)
0 (n)c1(n)z

(m1)
1 (n), if subframe 5.

(3.24)
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Figure 3.8: Autocorrelation (left) and Cross-Correlation (right) of the Time-Domain SSS

Then, d(n) is mapped to the center 72 subcarriers and the result is Ssss(f). The SSS

sequence in the time domain is shown in equation (2.2). Figure 3.8 shows the correlation

properties of ssss(t). Notably, the time-domain SSS and PSS have the same correlation

properties. Equations (3.23) and (3.24) show that the SSS differs depending on the subframe.

Therefore, the acquired SSS can be used to determine approximate frame timing.

Acquisition Scheme

In addition to the cell ID, acquisition is used to determine frame timing. Since the PSS

is repeated twice in each frame it does not provide timing information. The SSS is repeated,

but it differs depending on the subframe. Hence, it provides enough information to determine

frame timing. Figure 3.9 shows a block diagram of the LTE acquisition scheme. First, the

PSS is acquired and N
(2)
ID is identified. Using N

(2)
ID , the SSS can be acquired. Finally, the

approximate frame timing is extracted from the SSS acquisition and NCELL
ID is calculated.

Figure 3.10 shows the results of the PSS and SSS acquisition blocks over a ten-millisecond

radio frame on real LTE signal data. It is clear that the PSS is repeated and the SSS is not.

Therefore, frame timing can be determined.
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Figure 3.11: MIB Coding Steps [22]

3.2.2 System Information Decoding

After approximate frame timing is determined, the UE requires several parameters to

exploit the LTE signal fully. It is worth noting that the SSS can be tracked at this stage since

all relevant information is known. However, to use the high-fidelity CRS, some information

about the transmitting eNodeBs must be extracted. In particular, the Master Information

Block (MIB) must be decoded. It is transmitted on the Physical Broadcast Channel (PBCH).

MIB Decoding

To exploit the high-bandwidth CRS for navigation, the UE must know the transmission

bandwidth and the number of transmitting antennas. In general, a mapping step could be

performed first to ascertain the signal information prior to the navigation. In fact, it would

be rather easy to determine the transmission bandwidth using a spectrogram, for example.

For the experiments done in this thesis, the MIB information is determined a priori. Yet,

it is assumed that most UEs will be in an unknown environment and must acquire this

information on-the-fly. As such, the UE must be capable of decoding the MIB. The MIB is

transmitted on the PBCH and consists of twenty-four bits of data. Three bits provide the

downlink bandwidth, three bits provide the frame number, and eighteen bits provide other

information. These bits are coded and sent on four consecutive symbols of the second slot

of the frame. Figure 3.11 shows a block diagram of the MIB coding scheme [35, 50].

First, a Cyclic Redundancy Check (CRC) of length L = 16 is generated using the cyclic

generator polynomial gCRC(D) = D16+D12+D5+1. The number of transmitting antennas

37



D D D D D D

Figure 3.12: Tail Biting Convolution Encoder used in MIB Encoding

is not broadcast in the MIB. This information is provided in the CRC mask, a sequence

used to scramble the CRC bits appended to the MIB. The CRC mask is either all zeros,

all ones, or an alternating sequence of ones and zeros, corresponding to one, two, or four

transmitting antennas, respectively. To determine the number of transmitting antennas, the

UE performs a blind search over all possible CRC masks. That is, the UE must generate all

possible CRCs given every CRC mask. Once the correct CRC is generated, the right number

of transmitting antennas can be found.

In the second step, the MIB bits with CRC appended are coded with a convolutional

encoder with a constraint length of seven and a coding rate of 1/3. Figure 3.12 shows the

configuration of the convolutional encoder. The initial value of the encoder is set to the

value of the last six information bits in the input stream.

The convolutionally encoded bits are then rate-matched. That is, the three output

streams are interleaved. Then, the elements of the interleaved stream are repeated to obtain

a 1920-bit array [50]. Finally, the output of the rate-matching step is scrambled with a

pseudo-random sequence, which is initialized with the cell ID. The bits are then modulated

using QPSK, resulting in 960 symbols. These symbols are mapped onto the predetermined

subcarriers for MIB transmission [50].

To decode the received MIB, a traditional method of decoding a tail-biting convolutional

code, like the one in [51] can be used. Figure 3.13 shows a block diagram of their method.

The decoder is shown to be relatively simple and easily implementable on existing receiver

designs.
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3.2.3 Acquisition Refinement

After the MIB is decoded, the subcarrier, symbol indices and symbols of the CRS can

be determined. Since the CRS is known to the UE, the UE can exploit its wide bandwidth

to provide a better estimate of the initial TOA and frequency offset.

CRS Generation

The reference signal rl,ns(m) is defined by [35]

rl,ns(m) =
1√
2
(1− 2c(2m)) + j

1√
2
(1− 2c(2m+ 1)), m = 0, 1, . . . , 2Nmax,DL

RB − 1 (3.25)

where l is the OFDMA symbol within slot ns. The pseudorandom sequence c(i), discussed

later, is initialized with cinit = 210(7(ns+1)+ l+1)+2N cell
ID +NCP for each OFDMA symbol

where

NCP =


1, for normal CP,

0, for extended CP,

(3.26)

and in this thesis, the normal CP will be assumed. The sequence rl,ns(m) is then mapped to

complex-valued symbols a
(p)
k,l used as reference symbols for antenna port p in slot ns according

to

a
(p)
k,l = rl,ns(m

′), (3.27)
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where [35]

k = 6m+ (v + vshift)mod 6,

l =


0, NDL

symb − 3, if p ∈ {0, 1},

1, if p ∈ {2, 3},

m = 0, 1, . . . , 2NDL
RB − 1,

m′ = m+Nmax,DL
RB −NDL

RB ,

where Nmax,DL
RB = 110 is the maximum number of downlink resource blocks, and, commonly,

NDL
symb = 6. NDL

RB is the number of downlink resource blocks in the received signal. Then, the

variables v and vshift define the position in the frequency domain for the different reference

signals where v is given by [35]

v =



0, if p = 0 and l = 0,

3, if p = 0 and l ̸= 0,

3, if p = 1 and l = 0,

0, if p = 1 and l ̸= 0,

3(ns mod 2), if p = 2,

3 + 3(ns mod 2), if p = 3,

(3.28)

and the cell-specific frequency shift is given by vshift = N cell
ID mod 6. An example of how this

allocation works is shown in Figure 3.14.

TOA Refinement

To further refine the TOA, the CRS can be used. First, consider the CIR discussed in

Chapter 2. The CIR consists of complex attenuations and path delays. In LOS conditions,
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the first path delay, τi,0 = 0 and the attenuation, αi,0 = 1. However, if the acquired TOA

is incorrect, τi,0 ̸= 0, but the complex attenuation should remain the same. Therefore, by

using the CIR the residual TOA error can be estimated and removed. Yet, the CIR is not

directly observable to the UE. However, the CFR is observable with approximate frame

timing and knowledge of the CRS. Equation (2.7) shows that the received CRS symbols are

a linear combination of the CFR and the true CRS. Hence, the CFR can be estimated, in

the least-squares sense, as

Ĥi(k) = Ri(k)/Yi(k) +W
′

i (k), for k ∈ NCRS (3.29)

where Ri(k) is the received symbol at subcarrier k and symbol i Yi(k), is the known trans-

mitted symbol at subcarrier k and symbol i, and W
′
i (k) = Wi(k)/Yi(k), where Wi(k) is

complex Gaussian noise. Then, the CIR can be determined using the relationship

ĥi(τ) = IDFT{Ĥi(k)}, (3.30)

where hi(τ) is the CIR. Since αi,0 = 1 the error in the time of arrival can be estimated as

êTOA = argmax
τ

ĥi(τ) (3.31)

where êTOA is the error in the time of arrival in seconds. There are two main issues with this

approach. For one, the resolution is limited to the frequency spacing of the CRS symbols.

If the UE uses one OFDMA symbol, the spacing is ∆fCRS = 90 kHz. This results in the set

of τ ∈ {−5.56µs, · · · , 5.56µs}. Which is further divided into the number of CRS symbols

used in the CIR estimation. For example, for an LTE signal with a bandwidth of 10 MHz,

there are 100 CRS symbols in each OFDMA symbol. As a result, there is a resolution of

approximately 0.112 microseconds or 33.67 m. In addition, the assertion that αi,0 = 1 is not
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Figure 3.15: Estimated CIR of the Same Data at Different Points in Time

always true. Figure 3.15 shows two CIR estimates from the same data taken at different

points in time. This figure shows that the highest peak is not always the LOS peak.

To overcome this drawback, Knutti [52] used a threshold to detect the earliest peak and

declare that as the LOS peak. Yet, this does not overcome the issue of resolution. Driusso

[31] used a Super Resolution Algorithm (SRA) to estimate the TOA with a high degree of

accuracy. The SDR used in this thesis uses this method to refine the initial TOA estimate.

In what follows, the SRA-based method will be discussed in detail.

There are multiple SRAs that can be used to solve this problem. The most popular

of which are MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters

via Rotational Invariance Techniques (ESPRIT). The ESPRIT method has lower complexity

when compared with MUSIC, but it can be less accurate with large Doppler spreads [53].

ESPRIT uses the rotational invariance properties of the subarrays of the subcarriers with

respect to each other to estimate eTOA [30, 54]. To do this, the channel length (i.e. the

number of delays) L must be estimated. In [55] the Minimum Descriptive Length (MDL)

criterion is used to estimate L. The concept of combining ESPRIT and the MDL criterion

for TOA estimation for navigation with LTE signals has been used in [22] and [31].
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First, the data matrix X must be constructed with snapshots of the estimated CFR as

X =



Ĥ ′(0) Ĥ ′(1) · · · Ĥ ′(K − 1)

Ĥ ′(1) Ĥ ′(2) · · · Ĥ ′(K)

...
... · · · ...

Ĥ ′(P − 1) Ĥ ′(P ) · · · Ĥ ′(M − 1)


(3.32)

where P is the design parameter, K =M−P+1,M is the number of subcarriers that contain

the CRS, and Ĥ
′
is a subset of Ĥ consisting of only channel estimates for the subcarriers

that have the CRS. Next, the channel length L is estimated using the MDL criterion. To

do so, the singular value decomposition (SVD) of X = UΣVH must be calculated, where

H represents the Hermitian operator, U and V are unitary matrices, and Σ is a diagonal

matrix with singular values σ1 ≥ · · · ≥ σP on the diagonal. Then, the MDL criterion is

calculated as

MDL(γ) = −K(P − γ)log

(∏P−1
l=γ λ

1/(P−γ)
l

1
P−γ

∑P−1
l=γ λl

)
+

1

2
γ(2P − γ)logK, (3.33)

for γ = 0, · · · , P − 1,

L̂ = argmin
γ

MDL(γ). (3.34)

Once L̂ is found, it is possible to organize the eigenvectors corresponding to the L̂ largest

eigenvalues as Us = U[IL̂0L̂×(P−L̂)]
T, where Il is an identity matrix of size l, 0l×p is an l-by-p

matrix of zeros. Then, U1 and U2 are constructed as

U1 = [I(P−1)0P−1×1]Us,

U2 = [0(P−1)×1IP−1]Us. (3.35)
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Finally, the ESPRIT rotational matrix is constructed as

Ψ = (UH
1 U1)

−1UH
1 U2, (3.36)

with eigenvalues ψl, for l = 0, · · · , L̂− 1. The values τi,l are then obtained as

τi,l = − 1

2πTs∆f∆CRS

arg{ψl}. (3.37)

Since a LOS scenario is assumed, τi,0 = 0, and the normalized estimated TOA error can be

found as

êTOA = −min
l
τi,l. (3.38)

It should be noted that in non-LOS environments the minimum of the estimated delays

will not correspond to the LOS signal. Differentiating between LOS and non-LOS signals is

outside of the scope of this thesis.

Frequency Acquisition

To estimate the initial Doppler frequency of the received LTE signal, the difference in

phase over time can be measured. To do so, the CRS known at the receiver Si(k) and the

received signal Ri(k) at symbol i are used. Then, define z(m) as [22]

z(m) = Ri+7(k)R
∗
i (k)S

∗
i+7(k)Si(k) (3.39)

= Cej2π7Ntef/Nc |Hi(k)|2 +Wi+7(k)Wi(k)

for k ∈ NCRS, m = 0, · · · ,M − 1.

Then, the initial Doppler shift is found as

f̂D =
1

2πTslot
∆ϕ, (3.40)
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where Tslot = 0.5 ms and

∆ϕ = arg

{
M−1∑
m=0

z(m)

}
. (3.41)

Finally, the Doppler shift is removed from the received signal as

r
′
(n) = e−j2πf̂DnTsr(n), (3.42)

where r(n) is the received signal samples in the time domain.

After removing the Doppler frequency from the received signal samples, the TOA is

corrected by the integer part of êTOA. This new TOA is used to start signal tracking. In the

case of SSS tracking, signal tracking is normal from here. In the case of CRS tracking, the

received samples are converted to the frequency domain as R
′
(k) = DFT{r′(n)}. Then, the

fractional part of êTOA is removed as a phase shift in the frequency domain as

R
′′
(k) = e−j2πkFrac{êTOA}/NcR′(k), (3.43)

where R
′
(k) = DFT{r′(n)}.

3.2.4 LTE Signal Tracking

The SDRs used in this thesis track the SSS and the CRS. This subsection discusses the

tracking loops used to track these signals.

SSS Tracking

Once the SSS is acquired, signal tracking can begin. In general, the tracking loops

used to track the SSS are similar to those used to track GPS, discussed in Section 3.1. The

main difference is in code generation. Section 3.2.1 describes the method used in this thesis

to generate code replicas. The SSS tracking loop is a modification of the tracking loop
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shown in Figure 3.6. The most notable changes are the addition of a Frequency Lock Loop

(FLL)-assisted PLL and a carrier-aided DLL.

The frequency reuse factor in LTE systems is 1. This results in high interference from

neighboring cells. Under high interference, FLLs perform better than PLLs. Yet, PLLs

have better measurement accuracy than FLLs. FLL-assisted PLLs combine performance

and measurement quality [49]. The main components of an FLL-assisted PLL are a phase

discriminator, a phase loop filter, a frequency discriminator, a frequency loop filter, and

an NCO. Since the SSS is not modulated with any data, a four-quadrant atan2 phase

discriminator can be used. A number of loop filters can be used in the PLL, but due to high

interference, a third-order loop filter is used. The PLL loop filter transfer function is given

by [22, 45]

FPLL(s) = 2.4ωPLL +
1.1ω2

PLL

s
+
ω3
PLL

s2
, (3.44)

where ωPLL is the undamped natural frequency. This can be related to the PLL noise-

equivalent bandwidth BPLL by BPLL = 0.7845ωPLL [45]. The transfer function in equation

(3.44) is then discretized. The output of the phase loop filter is the rate of change of the

carrier phase in rads/s. The FLL structure is similar to the PLL and DLL discussed in Section

3.1, except the discriminator, does not measure phase error. Instead, the discriminator

reports error in frequency. A typical FLL discriminator is shown in equation (3.45)

δfk =
atan2(QPkIPk−1 − IPkQPk−1, IPkIPk−1 +QPkQPk−1)

TPDI

, (3.45)

where IPk and QPk are the in-phase and quadrature prompt correlators at integration period

k, respectively. The loop filter used is typically an order lower than the PLL. The transfer

function of the second-order loop filter is given by

FFLL(s) = 1.414ωFLL +
ω2
FLL

s
, (3.46)
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where ωFLL is the undamped natural frequency. The undamped natural frequency is related

to the FLL noise-equivalent bandwidth BFLL by BFLL = .53ωFLL [45]. The transfer function

in equation (3.46) is then discretized. The output of the frequency loop filter is the rate of

change of the carrier frequency, expressed in rads/s2. Therefore, the output is first integrated

and then added to the output of the phase loop filter. Finally, the combined output is

integrated by an NCO and used to update the carrier phase of the local replica. Figure 3.16

shows a block diagram of the FLL-assisted PLL.

The SSS tracking loop also uses a carrier-aided DLL. The carrier-aided DLL uses the

discriminator shown in equation (3.3). The carrier-aided DLL feeds the output of the FLL-

assisted PLL forward to remove dynamic stress error. This is achieved by applying a scale

factor to the FLL-assisted PLL output. This works because the Doppler frequency shift

on the code is caused by the same dynamics that cause the Doppler frequency shift on the

carrier. The scale factor is calculated as

SF =
Rc

fc
, (3.47)

where Rc is the chipping rate and fc is the carrier center frequency. In the case of the SSS,

Rc = 945 kHz, and fc depends on the transmitting eNodeB. In GPS L1 C/A, Rc = 1.023

MHz and fc = 1575.42 MHz. Finally, the TOA is updated according to

τ̂k = τ̂k−1 −
TPDI

SPC
(νDLLk−1

+ SFνPLLk−1
), (3.48)
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where νDLLk
is the DLL output at integration period k, νPLLk

at integration period k, and

SPC is the number of samples per chip. The newly estimated TOA is used to update the

frame timing for the next loop iteration.

CRS Tracking

Unlike the SSS tracking loop, the CRS tracking loop differs from GPS tracking in

many ways. For one, the CRS is not contiguous in the frequency domain. Therefore, a time-

domain representation does not exist. As a result, the CRS must be tracked in the frequency

domain. Figure 3.17 shows the designed CRS tracking loop, based on [22]. First, the Doppler

frequency is removed from the incoming signal. Then, the received signal is converted to

the frequency domain using a DFT. Since only certain subcarriers contain the CRS, a CRS

generator uses system information to produce both the CRS subcarrier indices and the local

replica of the CRS. Using the CRS indices, the received CRS is extracted from the received

signal in the frequency domain. Since the CRS is found in the frequency domain, the typical

carrier and code phase discriminators do not apply here. Instead, alternate frequency-domain

versions of these discriminators are used. The carrier phase discriminator is given by [22]

δϕ = arg

[
M−1∑
m=0

R
′′
(m∆CRS + κ)S∗(m)

]
,

for m = 0, ...,M − 1. (3.49)

After the carrier phase error is extracted, a second-order PLL is used to track the carrier

phase. The loop filter has a transfer function given by equation (3.46). The output of

the loop filter is integrated by an NCO and used to remove the carrier frequency for the

next integration period. The output is also scaled and used in the carrier-aided DLL. The

carrier-aided DLL uses a second-order DLL, with a loop filter transfer function given by

equation (3.46). The code phase error is extracted by using a frequency-domain code phase

discriminator. In conventional DLLs, the code phase error is extracted by using early and
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late replicas of the code sequence. To obtain the early and late replicas the code sequence

is either advanced or delayed in time, respectively. In the frequency domain, an advance or

delay in time is represented by a negative or positive phase rotation, respectively. Therefore,

the early and late replicas of the CRS are obtained as

Se(m) = e−j2πm/M∆S(m),

Sl(m) = ej2πm/M∆S(m),

for m = 0, · · · ,M − 1, (3.50)

where 0 < ∆ < 1/2 is the normalized time shift. It is similar to the early-late chip spacing

used in conventional tracking loops. The correlators and the frequency domain discriminator
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function are computed as

Re =
M−1∑
m=0

R
′′
(m∆CRS + κ)S∗

e (m),

Rl =
M−1∑
m=0

R
′′
(m∆CRS + κ)S∗

l (m),

eDLL = |Re|2 − |Rl|2. (3.51)

The output of the discriminator in equation (3.51) is then normalized by the slope of

the S-curve. The slope is defined as [22]

kDLL =
4πCcos( π

2M
)

M(sin( π
2M

))3
. (3.52)

The normalized output is then filtered using a loop filter. The loop filter transfer

function is the same as in equation (3.46). The output of the loop filter is the rate of change

of the symbol start time in samples per second. The output is integrated and used to update

the frame start time. The integer part of the updated frame start time is used to control

the DFT window, and the fractional part is used to rotate the received CRS replica in the

frequency domain.

3.3 RF Positioning

The overall goal of the SDRs discussed in the previous sections is to provide PNT

information. To do so, the SDRs track the received signals to extract measurements that are

used in a navigation filter. The navigation filter processes the measurements and produces a

PNT solution. In this section, PNT solution generation will be discussed, from measurement

generation to navigation filter design.
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3.3.1 Measurement Generation

To navigate, SDRs make use of observables generated during signal tracking. The

primary observables, and the focus of this thesis, are the pseudorange and Doppler shift

measurements. This subsection will discuss how each of these measurements are generated,

beginning with the pseudorange.

Pseudorange

The pseudorange is the perceived transit time at the receiver. The pseudorange is

calculated as

ρ = c ttransit, (3.53)

where c is the speed of light. ttransit = tr − tt, where tr and tt are received time and transmit

time, respectively. Therefore, to determine pseudorange, both transmit and receive time

must be known. While transmit time can be determined from the GPS data message, the

received time is ambiguous. Instead, a so-called delta received time can be extracted from the

repeating C/A code. Since the transmit time is regularly scheduled, and the GPS satellite

broadcasts clock corrections, the change in transmit time can be considered constant. Hence,

we can reasonably approximate the change in transit time as

∆ttransitk,j = ttransitk,j − ttransitk−1,j
,

∆ttransitk,j = ∆trk,j (3.54)

where ∆trk,j is the change in received time at update period k of the C/A code from satellite

j. Since the change in transit time is known, an initial transit time is all that is necessary to

determine pseudorange. If a reasonably good approximation of the user’s position is known

at the start of navigation, it can be used to initialize transit time. Otherwise, a reasonable

guess must be made. Since the average distance of a GPS satellite to the surface of the earth
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is rj ≈ 20,000 kilometers, a reasonable guess of transit time can be calculated as

ttransit0 =
rj
c
≈ 67ms. (3.55)

However, this guess is inherently wrong. Initializing each satellite’s transit time with this

guess will result in each satellite’s pseudorange measurements having a different clock bias,

resulting in an unobservable system. To resolve this, only the closest satellite is initialized

with equation (3.55). To determine the closest satellite, the decoded data message can

be used. Since each satellite reliably transmits at the same time, the satellite with the

earliest decoded subframe is initialized with equation (3.55). Then, the transit time of each

subsequent satellite is updated using the difference in times of the decoded subframes. This

method results in each satellite’s pseudoranges having the same initial clock bias, leading to

an observable system. Finally, the pseudorange measurement model is written as

ρj = rj + c(δtr − δtsj) + T + I + ϵ+ η, (3.56)

where rj is the true range from the j-th satellite to the receiver, δtr is the receiver clock

bias, δtsj is the j-th satellite clock bias, T is the delay induced by the troposphere, I is the

delay induced by the ionosphere, ϵ are other errors due to unmodeled effects, η is AWGN.

To obtain a more precise solution, an ionospheric model or a dual-frequency approach could

be used to remove the error due to the ionosphere [56, 57]. The tropospheric error is usually

small but can also be modeled [58]. These methods are outside the scope of this thesis. For

simplicity, equation (3.56) can be rewritten as

ρj = rj + cδtr + η, (3.57)

since the unmodeled effects are relatively small, and the satellite clock bias is provided by

the ephemeris.
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In the case of LTE, equation (3.57) will still apply. The LTE data message does not

provide a clock term like GPS, but the eNodeB clock bias can be estimated offline. The

other difference lies in the fact that an initial transit time will not be used for LTE, in this

thesis. Instead, an initial user position will be assumed and used to determine the initial

pseudorange. Then, the delta pseudorange can be constructed in the same way.

Doppler Shift

The Doppler shift is the perceived change in frequency due to receiver and transmitter

dynamics. It is commonly used to estimate the velocity of the receiver. In addition, it can

be integrated to generate the accurate carrier phase measurement. The initial Doppler shift

measurement is generated during acquisition for both GPS and LTE. Then, it is updated

by the output of the PLL or FLL-assisted PLL for both GPS and LTE, respectively. The

Doppler shift equation is given by

fDj
= −ρ̇j/λc, (3.58)

where λc is the wavelength of the carrier, and ρ̇ is the pseudorange rate of the j-th emitter

relative to the receiver. The pseudorange rate is defined as

ρ̇j = ṙj + c(δṫr − δ ˙tsj) + ν, (3.59)

where ṙj is the range rate of the j-th emitter relative to the receiver, δṫr is the clock drift

of the receiver, δ ˙tsj is the clock drift of the j-th emitter, and ν is AWGN. In the case of

GPS, the transmitter clock drift is considered to be negligible. Again, the clock drift of the

transmitting eNodeB is estimated offline. Hence, equation (3.59) can be rewritten as

ρ̇j = ṙj + c δṫr + ν. (3.60)

54



3.3.2 Navigation Filter Design

Finally, a navigation filter can be designed considering the measurement models de-

scribed in equations (3.57) and (3.59). First, the estimated states must be defined. The

primary states of interest to the user are the position and velocity states. However, just es-

timating the position and velocity would lead to large errors due to unmodeled clock terms.

As a result, most designs elect to estimate position, clock bias, velocity, and clock drift. The

final state vector is formed as

x =

[
r cδtr ṙ cδṫr

]T
, (3.61)

where r represents the vector of x, y, and z positions and ṙ represents the vector of x, y,

and z velocities. Then, the state vector can be related to equations (3.57) and (3.60) by

h(x)ρj =
√

(xj − xr)2 + (yj − yr)2 + (zj − zr)2 + cδtr + 0× ṙ+ 0× cδṫr, (3.62)

h(x)ρ̇j = (ẋj − ẋr)ax,j + (ẏj − ẏr)ay,j + (żj − żr)az,j + cδṫr + 0× r+ 0× cδtr,

, where x, y, and z are components of position and the subscripts j and r, represent emitter

and receiver, respectively, the ˙ represents the time-derivative, and ax,j, ay,j, and az,j repre-

sent the x, y, and z unit vectors from the receiver to the j-th emitter, respectively. These

observation equations are nonlinear, precluding them from being used in a traditional least

squares (LS) estimator. Instead, a Non-linear LS (NLS) estimator is used. The NLS esti-

mator uses the linearized form of equation (3.62) for each of the m emitters. The resultant

linearizations are combined to form a 2m× 8 observation matrix. The observation matrix is
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constructed as

H =



ax,1 ay,1 az,1 1 0 0 0 0

...
...

...
...

...
...

...
...

ax,m ay,m az,m 1 0 0 0 0

0 0 0 0 ax,1 ay,1 az,1 1

...
...

...
...

...
...

...
...

0 0 0 0 ax,m ay,m az,m 1


. (3.63)

Instead of using the pseudorange and Doppler shift measurements directly, NLS uses the

so-called residuals of those measurements. That is the difference between a locally predicted

and a receiver-generated measurement. With this in mind, a measurement residual vector

can be constructed as

z =

[
ρ̂1 − ρ̃1 · · · ρ̂m − ρ̃m ˆ̇ρ1 − ˜̇ρ1 · · · ˆ̇ρm − ˜̇ρm

]T
, (3.64)

whereˆand˜represent the receiver estimate and the measurement, respectively. Finally, the

states are updated according to

x+ = x− + (HTH)−1HTz. (3.65)

It should be noted that, to update the states as such, some a priori estimates of the states

must be known. If the location of the receiver is completely unknown, an initial estimate of

an 8 × 1 vector of zeros is sufficient. Since this estimate is relatively poor, equation (3.65)

must be iterated until (HTH)−1HTz is sufficiently small. If the initial estimate is reasonable,

iteration is not necessary. With regard to LTE-only navigation, the initialization must be

better to assure convergence.
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Chapter 4

Vector Tracking Loops

The tracking loops discussed in the previous chapter are integral to the function of

navigation receivers. They extract the measurements necessary to perform positioning and

timing. Yet, they use a naive approach to track the receiver and satellite dynamics. The

noise equivalent bandwidth is adjusted prior to use to capture these dynamics. Without

some a priori knowledge of the receiver and satellite dynamics, the selected bandwidth will

not be optimal. Some dynamics will be neglected, or unnecessary noise will be allowed into

the system.

A way to resolve this could be to use an adaptive Kalman filter to select optimal band-

widths such as in [59]. However, this method still makes no assumptions about the receiver

or emitter motion. Instead, the bandwidths are adaptively estimated using measurement

residuals from the discriminators. While this is an improvement over fixed-bandwidth meth-

ods, each channel is still tracked individually. As a result, very low-powered channels may

still be lost since their discriminators report mostly noise.

To improve upon this further, an estimate of the receiver and satellite dynamics could be

used at each integration period to compute an adaptive bandwidth. To do so, a navigation

solution must be computed at each integration period, assuming at least four emitters are

present. With regard to GPS, this is almost always the case. The advantage of this approach

is that it combines the adaptive bandwidth elements of [59] with the filtering effect provided

by navigation. That is, as long as there are four channels of fairly good quality, even very

low-powered channels can be tracked.
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This chapter discusses the vector tracking algorithms used in this thesis. In particular,

Section 4.1 describes the Vector Delay/Frequency Lock Loop (VDFLL) algorithm. Section

4.2 discusses the architecture of the combined GPS and LTE VDFLL algorithm.

4.1 Vector Delay/Frequency Lock Loop

The classical vector tracking algorithm was first proposed by [8]. This algorithm was

referred to as the vector delay lock loop (VDLL). In the VDLL, the code frequency is tracked

using an Extended Kalman Filter (EKF). The EKF estimates the navigation solution and

updates the tracking loops, improving tracking performance. In [60], Pany explored tracking

the code and carrier frequency together. This algorithm was later referred to as the vector

delay/frequency lock loop (VDFLL). This algorithm showed marked improvement over scalar

tracking methods when tracking weak GPS signals under high dynamic stress [5, 10, 61].

More recently, it has been shown to increase resilience to multipath fading as well [62, 63].

In the following sections, the algorithm will be described. For a more thorough treatment of

vector tracking algorithms, the reader is encouraged to refer to [6] or [12]. A block diagram

of the VDFLL algorithm is provided in Figure 4.1, showing how the signal processing is

unified in the navigation processor.

4.1.1 Extended Kalman Filter

To begin tracking with a VDFLL, the receiver is assumed to have an a priori estimate

of the receiver’s states described by

x̂−
k =

[
x ẋ y ẏ z ż cδtr cδṫr

]T
, (4.1)

with covariance P̂−
k , where x, y, and z are the receiver’s position states in meters, ẋ, ẏ, and ż

are the receiver’s velocity states in meters per second, δtr is the receiver clock bias in seconds,

δṫr is the receiver clock drift in seconds per second, and c is the speed of light in meters per
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Figure 4.1: The classical VDFLL block diagram.

second. It should be noted that the state vector in equation (4.1) is different than the one in

(3.61). This is to illustrate that the order of the state vector itself does not matter. Instead,

the order of the state vector will change the formulation of the state transition matrix and

observation matrix. The state vector in (4.1) is selected for the VDFLL because it simplifies

the state transition matrix in the EKF. Then, the dynamic model of the receiver is described

by

xk+1 = Fxk +wk, (4.2)

where F is the state transition matrix given by

F =



A O O O

O A O O

O O A O

O O O A


, A =

1 T

0 1

 , O =

0 0

0 0

 , (4.3)
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andwk is the process noise vector drawn from a zero mean multivariate Gaussian distribution

with covariance Q. Q is written as

Q =



Qx O O O

O Qy O O

O O Qz O

O O O Qclk


, (4.4)

where

Qn =

σ2
n
T 3

3
σ2
n
T 2

2

σ2
n
T 2

2
σ2
nT

 , Qclk =

σ2
bT + σ2

brT
2 + σ2

r
T 3

3
σ2
brT + σ2

r
T 2

2

σ2
brT + σ2

r
T 2

2

σ2
b

T
+ σ2

br +
4
3
σ2
rT

 , (4.5)

where σ2
n describes the variance of the noise processes that drive the x, y, or z velocity errors

in m2/s3, σ2
b is the variance of the noise process that drives the clock phase error in m2/s,

σ2
r is the variance of the noise process that drives the clock frequency error in m2/s3, and

σ2
br is the covariance of the noise processes that drives the clock phase and frequency error

in m2/s2. T is the integration period and it is used to scale the variances to the time step

in the EKF. The σ2
n terms are often considered tuning parameters and are similar to noise

bandwidths in scalar tracking loops, but they are usually selected based on some assumption

of the expected receiver dynamics. A guideline for the selection of σ2
n may be [64]

σn =
vn√
T

(4.6)

where vn is the largest instantaneous velocity the receiver is expected to experience in the

n direction. The clock terms σ2
b and σ2

br are selected according to the quality of the receiver

clock. Some nominal values may be found in [65]. Finally, the Kalman filter time update
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may be written as

x̂−
k+1 = Fx̂−

k (4.7)

ˆP−
k+1 = FP̂−

k F
T +Q (4.8)

Then, the measurement model is described by

yk = h(xk) + vk, (4.9)

where yk is the observation vector, h is a nonlinear function that maps the states to the

measurements, given in equation (3.62), and vk is the measurement noise vector that is drawn

from a zero mean multivariate Gaussian distribution with covariance R. It is important to

note that for an EKF, equation (4.9) must be linearized. The linearized form uses the

Jacobian of h, H, and measurement residuals z, where

H =



ax,1 0 ay,1 0 az,1 0 1 0

...
...

...
...

...
...

...
...

ax,m 0 ay,m 0 az,m 0 1 0

0 ax,1 0 ay,1 0 az,1 0 1

...
...

...
...

...
...

...
...

0 ax,m 0 ay,m 0 az,m 0 1


, (4.10)

z =

[
δρ1 · · · δρm δρ̇1 · · · δ ˙ρm

]
, (4.11)

and anj
is the unit vector to the j-th emitter in the x, y, or z direction, δρ is the pseudorange

residual in m, δρ̇ is the pseudorange rate residual in m/s. The residuals are obtained from

conventional code and frequency discriminators within the tracking loop and are discussed

in the following section. Once the Jacobian and measurement residual vector are obtained,
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the Kalman filter measurement update is computed as

K = P̂
−
HT (HP̂

−
HT +R), (4.12)

x̂+
k+1 = x̂−

k+1 +K(z−Hx̂−
k+1),

ˆP+
k+1 = (I−KH) ˆP−

k+1(I−KH)T +KRKT ,

where R is the measurement covariance matrix; it will be discussed in the following section.

To illustrate the advantages of vector tracking, Figure (4.2) compares vector and scalar

tracking algorithms when subjected to a partial outage situation. In the simulations all but

two GPS signals are degraded. The vector receiver adaptively estimates the C/N0 and the

tracking can continue using the two high-quality signals. The outage ends at approximately

75s and the VDFLL continues to produce high-quality replicas of the degraded signals. In

the scalar case, the degraded signals must be reacquired.

Figure 4.2: Vector and scalar tracking algorithms, subjected to a 60-second partial outage,
beginning at t = 15s.
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4.2 GPS and LTE VDFLL

This section discusses the architecture of the combined VDFLL and the incurred dif-

ferences when compared with the traditional GPS VDFLL. Since LTE was not designed

with navigation in mind, certain changes to the original architecture must be made. These

changes include differences in eNodeB timing state extraction, measurement residuals and

covariance calculation, and Carrier-to-Noise ratio (C/N0) estimation.

4.2.1 Combined Architecture

The combined GPS/LTE VDFLL architecture is similar to the one presented in Figure

4.1 with one key hierarchical change. Figure 4.3 shows the modified VDFLL architecture

block diagram. For both GPS and LTE a scalar tracking segment is performed first. In the

case of GPS, this scalar tracking estimate is used to determine an initial PVT solution and as-

sociated covariance to begin the vector tracking. Additionally, it supplies the vector tracking

loop with the ephemeris of the transmitting GPS satellites. The scalar tracking of the LTE

signals does not produce a position solution. Instead, the PVT solution from the GPS scalar

tracking is used as an input such that the LTE scalar tracking loop produces measurements

of the transmitter clock bias and drift only. The LTE scalar tracking is performed according

to the CRS receiver discussed in 3. For more detail, an in-depth performance analysis of the

scalar receiver is provided in [22]. It is worth noting that the ’PreProcessing’ block shown

in Figure 4.3 is not necessarily required to be a preprocessing step. Indeed, in most GPS

VDFLL configurations scalar tracking is performed first to initialize vector tracking. This

could be done sequentially with little latency. With regard to LTE, extracting the timing

states of the transmitters must be done offline. However, this does not preclude this system

from functioning in real time. A separate, fixed-location base station with an onboard GPS

receiver could be used to estimate the eNodeB clock states and send them to the receiver

using the combined VDFLL. In this thesis, this step will be performed as an initialization,

instead.
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Figure 4.3: The full GPS and LTE VDFLL architecture block diagram.
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4.2.2 Measurement Residual Calculation

Traditionally, the scalar tracking receiver will generate measurements of the pseudo-

range, ρ̃j. The receiver will then estimate its pseudorange to the j-th emitter, ρ̂j. The

difference, δρj = ρ̂j − ρ̃j, is referred to as the measurement residual. This is then used in

a non-linear estimator to determine the PVT states. In the VDFLL, direct measurements

of the pseudoranges and pseudorange rates are not available. Instead, the residuals them-

selves are observable. Consider the output of equations (3.3) and (3.45), δτ and δf . These

discriminators output errors in the code phase and the Doppler frequency of the tracked

signal. These errors can then be scaled to represent the pseudorange and pseudorange rate

residuals. These are computed as

δρ = λchipδτ,

δρ̇ = −λcarrierδf, (4.13)

where λ represents the code and carrier wavelengths in meters. For the GPS L1 C/A signal,

the wavelengths are λchip = 293.05 m and λcarrier = .1905 m, respectively. For the LTE

signal, the wavelength of the SSS is λchip = 317.46 m. The wavelength of the CRS and the

carrier both depend on the transmitting eNodeB.

Measurement Covariance Determination

The measurement covariance matrix, R, is typically determined by C/N0. In [66], Crane

describes a function to compute range and range rate residual covariance as a function of

C/N0 for GPS. In most vector tracking implementations, the C/N0 is estimated online and

the measurement covariance matrix R is updated. This, in part, is what makes the vector

tracking algorithm robust. For GPS, the measurement covariance for the pseudorange and
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pseudorange rate residual are described by [66]

σ2
δρ,GPS =

λ2chip
2T 2

PDI(C/N0)2
+

λ2chip
4TPDI(C/N0)

,

σ2
δρ̇,GPS = K

(
λ2carrier
π2T 2

PDI

)(
2

T 2
PDI(C/N0)2

+
2

TPDI(C/N0)

)
,

where C/N0 is the estimated carrier-to-noise power density ratio, and K is a scaling constant

that can be used to increase the pseudorange rate residual variance in high C/N0 conditions.

For LTE signals, a different method of computing the residual variances must be used. With

regard to the SSS, this is because the autocorrelation function resembles a sinc function

instead of a triangle. As for the CRS, the pseudorange residual is computed directly in the

frequency domain, warranting a new variance calculation. The calculations are derived in

[22] and are reproduced in equation (4.14) for clarity.

σ2
δρ,SSS =

λ2chip
k2d

(
2

T 2
PDI(C/N0)2

+
4 sinc(∆/2)

TPDI(C/N0)

)
σ2
δρ,CRS =

λ2sample

Nk2d

π2

64MTsymbol(C/N0)
(4.14)

kd refers to the slope of the code phase discriminator S-curve, which is different for the

SSS and the CRS. λsample refers to the width of a sample in meters (Table 4.1). M corresponds

to the number of subcarriers containing the CRS. N is the number of OFDMA symbols

integrated. Tsymbol is the OFDMA symbol period. TPDI is the predetection integration

period. Equation (4.14) holds if M >> 1 and Tsymbol × C/N0 = SNR >> 1.

Table 4.1: Available bandwidths, sampling rates, and corresponding sample widths [69].

Total Bandwidth (MHz) Sampling Rate (MHz) Sample Width (m)

1.4 1.92 156.14
3 3.84 78.07
5 7.68 39.04
10 15.36 19.51
15 23.04 13.01
20 30.72 9.76
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The pseudorange rate residual variances are computed similarly, but λcarrier is changed

to match the center frequency of the broadcasting eNodeB. The pseudorange rate residual

variances are determined as

σ2
δρ̇,SSS = K

(
λ2carrier
π2T 2

PDI

)(
2

T 2
PDI(C/N0)2

+
2

TPDI(C/N0)

)
,

σ2
δρ̇,CRS =

(
λ2carrier

(N/2)π2T 2
PDI

)(
1

MTsymbol(C/N0)
+

1

2M2T 2
symbol(C/N0)2

)
. (4.15)

Finally, R is constructed as

R =



σ2
δρ,0

. . .

σ2
δρ,m

σ2
δρ̇,0

. . .

σ2
δρ̇,m


, (4.16)

where the off-diagonal terms are 0 and m corresponds to the number of emitters. These

variances are only valid if C/N0 is known by the receiver. In most cases, C/N0 must be

estimated online. To do so, a Kalman filter-based estimator can be used [67]. In this thesis,

a moving-average type estimator is used. For GPS, the C/N0 can be estimated using the

amplitude of the autocorrelation function A. Its square is determined by

A2 + 4σ2
η = (IE + IL)2 + (QE +QL)2 (4.17)

where IE, IL, QE, and QL are the in-phase and quadrature early and late correlator

outputs, respectively. Then, using the estimated amplitude the C/N0 is given by

C/N0,GPS = 10log10

(
Â2 − 4σ̂2

η

2TPDIσ2
η

)
, (4.18)
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where σ̂2
η is the estimate of the correlator noise variance, and Â2 = (IE+IL)2+(QE+QL)2.

It is typically obtained by correlating the received GPS signal against a code replica of a

different PRN. Since the cross-correlation of different PRNs is 0 everywhere, the output is

just noise. Hence, early, late, and prompt in-phase and quadrature correlator outputs are

produced using code replicas with unused PRNs, creating the so-called ’noise correlators’.

Then, the variance of the resulting correlators is used as σ̂2
η.

With regard to LTE, (4.18) must be modified according to the autocorrelation functions

of the SSS and the CRS. For the SSS, equation the amplitude equation can be rewritten as

4 sinc2(∆/2)A2 + 4σ2
η = (IE + IL)2 + (QE +QL)2, (4.19)

assuming no code phase error. Therefore, the measurement of amplitude is scaled by

4 sinc2(∆/2). To correct this, this estimate can be scaled down by the same factor. This

results in the following changes to (4.18)

C/N0,SSS = 10log10

Â2 − σ̂2
η

sinc2(∆/2)

2TPDIσ2
η

 , (4.20)

assuming Â2 = (IE+IL)2+(QE+QL)2

4sinc2(∆/2)
. Similar to GPS, an unused SSS sequence can be used to

determine the noise correlators used to calculate the noise variance estimate σ̂2
η.

Signal-to-Noise Ratio (SNR) estimation of an OFMDA signal using pilot sequences,

such as the CRS, has been discussed thoroughly in the literature. Popular approaches use

the CFR to estimate the signal and noise subspaces [68]. The signal power A is estimated

from the signal subspace and the noise power σ̂2
η from the noise subspace. While accurate,

these methods are computationally intensive. As a result, they do not lend themselves well

as online estimators. Instead, a biased estimator like in equations (4.17) and (4.19) is used.

Again, the noise power estimate σ̂2
η can be determined using an unused CRS sequence. The
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biased estimator is developed as

2M2

(
sin(π∆)

M sin(π∆/M)

)2 (
A2 + 4σ2

η

)
= |Re|2 + |Rl|2. (4.21)

It follows that

A2 + 4σ2
η =

|Re|2 + |Rl|2

2M2
(

sin(π∆)
M sin(π∆/M)

)2 , (4.22)

and

C/N0 = 10log10

(
Â2 − 4σ̂2

η

2σ2
ηTsymbol

)
, (4.23)

where Â2 = |Re|2+|Rl|2

2M2( sin(π∆)
M sin(π∆/M))

2 . Finally, the receiver’s states are updated using the traditional

Kalman filter measurement update shown in (4.13). The resulting states are representative

of the receiver’s states at the end of the integration period.

To prepare the code and carrier replicas for the next integration period a temporary

time update is performed. Then, the states are passed through the non-linear measurement

model to produce the next estimates of the pseudoranges and pseudorange rates. These

estimates are used to generate the code and carrier frequencies used to update the local

replicas. These updates are determined by

fcodek+1
= fcodek −

ρ̂k+1 − ρ̂k
λchipTPDI

,

fcarrierk+1
=

ˆ̇ρk+1

−λcarrier
. (4.24)

In the GPS- and SSS-based tracking loops, these updates are outputted in units of chips

per second and Hz, respectively. These values are integrated by code and carrier NCOs as

normal. In the CRS-based tracking loop, the fcode output is in units of samples per second.

It cannot be integrated by a code NCO in the same way. Instead, the output is accumulated

and saved as

Σk+1 = Σk + fcodek+1
TPDI. (4.25)
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The integer part of the accumulation is used to update the frame start time as

τk+1 = τk + int{Σk+1}, (4.26)

and the fractional part is used to rotate the received CRS symbols as

R′′′(k) = e−j2πkFrac{Σk+1}/NcR′′(k). (4.27)

Note that R′′(k) is found after acquisition, and therefore, we may set Σ0 = Frac{êTOA}. Once

the integer part of the accumulation is used to update the frame start time, it is removed

from the total accumulation. For convenience, both methods are referred to as an NCO in

Figure 4.3.
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Chapter 5

Simulation and Experimental Results

In this chapter, the performance of the combined GPS/LTE VDFLL is evaluated. The

performance is evaluated in static and dynamic scenarios in both simulation and experimen-

tation. The simulations will be discussed first.

Real GPS ephemeris data are used to propagate realistic GPS satellite trajectories for

the simulations. The location of 1 real eNodeB is used for the simulation, and 3 additional

eNodeBs are also simulated to show the performance in environments where more than 1

eNodeB are available. In the simulations, the receiver is evaluated based on its probability

of tracking the GPS and LTE signals and its Root Mean Squared Error (RMSE) in code

phase and carrier frequency tracking over a range of C/N0. Also, the probability of tracking

the signals is analyzed. In the simulations, the receiver is subjected to AWGN channels

first. Then, the LTE signals will be subjected to multipath channels. The results of the

combined receiver are compared to GPS-only receivers (scalar and vector), and LTE-only

receivers (scalar). Again, the GPS-only receivers are only subjected to AWGN channels,

while the LTE-only receivers will be subjected to AWGN and multipath channels. Finally,

the combined VDFLL will be subjected to periodic GPS outages. The LTE signals will be

kept at high C/N0 but will be subjected to multipath.

Finally, the combined GPS/LTE VDFLL will be tested experimentally. Real signal data

are recorded near the Thomas Walter MRI research building in Auburn, Alabama, and in

downtown Atlanta, Georgia. Static and dynamic data are collected. A Honeywell eTalin

is used as a reference. The eTalin provides a high-grade GPS/INS solution that is used

as ground truth for the experiments. The positioning results of the combined VDFLL are
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compared with a GPS-only VDFLL. Subsection 5.1.2 describes the simulation methodology

that was presented in [70]. Some of the results in Subsection 5.2 were shown in [71].

5.1 Simulations

To evaluate the performance of the combined VDFLL, simulations are performed across

a wide variety of conditions. First, the GPS and LTE signals are subjected to AWGN

channels. The code phase and carrier frequency tracking RMSE are analyzed. These are

compared with vector and scalar standalone GPS receivers and scalar standalone LTE re-

ceivers, respectively. To perform this comparison, the information-theoretic lower bound on

performance is derived for the combined vector receiver using the Discrete Algebraic Riccati

Equation (DARE). It is compared to the lower bound on the performance of the standalone

GPS VDFLL, derived in the same way. The lower bound on the performance of the scalar

receivers is determined using loop theory [45]. Then, the theoretical bounds are verified by

Monte Carlo simulation. In addition, the Monte Carlo simulations show the effect of errors

that cannot be captured by the theoretical calculations, such as errors due to emitter local-

ization. Next, Monte Carlo simulations are performed to evaluate the performance of the

combined VDFLL when the LTE signals are subjected to multipath channels. Monte Carlo

simulations are used because the effects of multipath cannot be modeled by DARE. Finally,

Monte Carlo simulations are performed to determine the survival rate of GPS signals when

using the combined VDFLL under GPS outage conditions, while LTE signals are affected

by multipath and eNodeB localization errors.

5.1.1 Simulation Setup

All simulations conducted in this thesis take place in the environment shown in Figure

5.1. The simulated receiver is initially placed on the roof of the Thomas Walter MRI building

at Auburn University. Real GPS ephemeris data are used to propagate realistic GPS satellite

trajectories for the simulations. Two sets of ephemeris data are used. Both sets were collected
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Figure 5.1: Simulation Environment

at the MRI building. One set consists of 4 GPS satellites and the other consists of 5 GPS

satellites. The initial skyplots for each set are shown in Figure 5.2. Each set is termed

’static’ or ’dynamic’ to denote the simulation scenario in which they are used. The specific

scenarios will be discussed further, later. In addition to the GPS satellites, eNodeBs are

simulated. Their positions are held constant throughout the simulations and are shown in

Figure 5.1. The eNodeBs are given center frequencies according to Table 5.1. These center

frequencies are selected based on real center frequencies found on eNodeBs in the Auburn

area. The eNodeBs are also selected to each have a bandwidth of 10 MHz, corresponding to

M = 100 and λchip = 19.51 m. This bandwidth is selected because it corresponds with the

experimental data that is discussed later. In general, there are two main types of simulations

performed. In the first, the receiver position is held constant and is termed ’static’. In the

second, the receiver position and velocity vary according to a nearly constant velocity model,

where acceleration is modeled by White noise with variance σx,y,z = 2 m2/s3 in all axes. The

second type of simulation is termed ’dynamic’ in the sequel. The static simulations will use
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Figure 5.2: Static (left) and Dynamic (right) Skyplots.

the GPS satellites shown in the skyplot on the left in Figure 5.2; the dynamic simulations

will use the GPS satellites shown in the skyplot on the right in Figure 5.2 because those

satellites were observed during the dynamic experimental runs shown in Section 5.2. Each

simulation will either be GPS-only, GPS and 1 eNodeB, GPS and 4 eNodeBs, or LTE-only.

In the GPS and 1 eNodeB scenario, ’eNodeB 1’ from Figure 5.1 is used. The Position

Dilution of Precisions (PDOPs) for each scenario are shown in Table 5.2. It is shown that

by combining GPS and LTE emitters, the positioning geometry improves dramatically. In

Table 5.1: Assigned center frequencies of each eNodeB.

eNodeB Center Frequency (MHz)

1 885
2 751
3 885
4 2120

Table 5.2: The PDOPs of the possible configurations for each scenario.

Scenario GPS GPS and 1 eNodeB GPS and 4 eNodeB

Static 22.41 5.13 1.57
Dynamic 4.97 4.20 1.24

the static and dynamic simulations, each GPS channel is subjected to an AWGN channel.
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The LTE channels are subjected to either an AWGN or multipath fading channel, depending

on the simulation. In addition, the receiver’s knowledge of the eNodeBs’ positions is varied

as well. To summarize, Table 5.3 shows the disturbances applied to the LTE signals. Note

that the order does not matter and that any eNodeB position error can be coupled with any

multipath delay profile, allowing for 16 different combinations. The multipath models shown

in Table 5.3 are further described in Table 5.4. The multipath models increase in severity

as Table 5.4 descends. 3GPP prescribes them to emulate realistic multipath conditions in

pedestrian (EPA), vehicular (EVA), and urban (ETU) scenarios [69].

Table 5.3: eNodeB position estimation errors and multipath delay profiles [69] used for the
simulations.

1-σ eNodeB Position RMSE (m) Multipath Delay Profile

0 None
0.01 EPA
0.1 EVA
1 ETU

Table 5.4: Multipath channel models [69] used in the presented simulations.

Channel Model Channel Length Path Delays (m) Path Averaged Powers (dB)

None 1 0 0.0
EPA 7 0, 9, 21, 27, 33, 57, 123 0.0, -1.0, -2.0, -3.0, -8.0, -17.2, -20.8
EVA 9 0, 9, 45, 93, 111, 213, 327, 519, 0.0, -1.5, -1.4, -3.6, -0.6, -9.1, -7.0,

753 -12.0, -16.9
ETU 9 0, 15, 36, 60, 69, 150, 480, 690, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, -3.0,

1500 -5.0, -7.0

Finally, simulations termed ’outage’ will be performed. These simulations are the same

as the dynamic simulations, but the C/N0 of all emitters will be held constant. For these

simulations, the C/N0 is held at 34 dB-Hz. This value is selected based on experimental

data. Over the course of the simulations, the GPS signals will experience outages. During

these outages, the GPS signals will all be instantaneously degraded to a C/N0 of 10 dB-Hz

for 2 seconds. This is to model a blockage caused by an overpass or tall building within a

city. Since these things occur regularly as a vehicle traverses an urban environment, these

outages will occur at intervals of 30 seconds. 100 Monte Carlo runs will be performed that
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each last 120 seconds. Scalar tracking, GPS-only VDFLL, and GPS and LTE VDFLLs will

be compared. The main metric used is the survival rate of the GPS signals over the duration

of the 120-second run.

5.1.2 Simulation Methodology

DARE

In the linear Kalman Filter (KF), the lower bound on performance P for a given state

transition F, process noise covarianceQ, observation matrixH, and measurement covariance

R is determined by using the standard KF equations given by

P− = FPFT +QT, (5.1)

K = P−HT(HP−HT +R)−1,

P = (I−KH)P−(I−KH)T +KRKT.

In the EKF, these equations must be iterated until P converges to PSS. The diagonal of

PSS then describes the lower bound of the estimator’s performance. At times, one may wish

to know how well the measurements themselves are being tracked by the estimator. This is

of particular interest with regard to signal tracking because it gives some insight into how

well the estimator is tracking the symbol timing (pseudoranges) and the carrier frequency

(pseudorange rates). To extract this information, the steady state covariance matrix PSS

may be transformed into the measurement domain. This is done by using the observation

matrix as

E[ϵϵT] = HPSSH
T, (5.2)

where ϵ is the tracked error of interest.

In this thesis, this process is applied to the VDFLL described in Chapter 4. The steady

state covariance matrix PSS describes the distribution of the receiver’s position, velocity,
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and clock states. Equation (5.2) is then used to determine the errors in pseudorange and

pseudorange rate tracking. This method provides a lower bound on the VDFLL signal

tracking performance error due to thermal noise. However, it does not account for other

sources of error, such as multipath or emitter localization errors. Since these errors are more

difficult to include, Monte Carlo simulations will be used.

Monte Carlo Simulation

To capture the effects of errors due to sources other than AWGN Monte Carlo simula-

tions are performed. Additionally, the probability of tracking the GPS and LTE signals can

be observed. For each simulation in this thesis, 100 Monte Carlo runs will be performed.

Figure 5.3 shows a block diagram summary of the Monte Carlo simulations. First, the true

emitter and receiver states are used to generate the true pseudoranges and pseudorange

rates. Then, the most recent estimate of the receiver’s position according to the VDFLL is

used to produce estimates of the pseudoranges and pseudorange rates. They are differenced

with the true pseudoranges and pseudorange rates to determine the true error. These errors

are scaled by the code or carrier wavelength. This results in errors in code phase in chips,

and errors in carrier frequency in Hz. These values can be substituted into the correlator

model presented in equation (3.4). Note that the autocorrelation function R(δτ) depends on

the broadcasting signal. The autocorrelation functions for GPS and the SSS are given by

RGPS(δτ) =


1− |δτ |, if |δτ | < 1,

0, if |δτ | ≥ 1,

(5.3)

RSSS(δτ) = sinc(δτ),

where δτ is the code phase error in chips.
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Figure 5.3: Monte Carlo simulation block diagram.

With regard to the CRS, a different correlator model must be used. Its prompt corre-

lators are given by [39]

IP = A
sin(π(δτ))

sin(π(δτ)/M)
cos(−π(δτ)(M − 1/M)− (2πferrTsymbol + θerr)) + ηI , (5.4)

QP = A
sin(π(δτ))

sin(π(δτ)/M)
sin(−π(δτ)(M − 1/M)− (2πferrTsymbol + θerr)) + ηQ.

The early and late correlators can be extrapolated easily, so they will be omitted here. The

discriminators used in the simulations, and then later in the experiments, are the same that

were presented in Chapter 3. In Figure 5.3 the VDFLL block possesses a local estimate

of the emitters’ states. This estimate always stays perfect for GPS but will change for

LTE, depending on the simulation (Table 5.3). That is, the VDFLL will be constructing

the observation matrix H using its own knowledge of the emitter states not necessarily the

true emitter states. Finally, to apply multipath to the LTE signals, two main methods will

be used. For the SSS, the multipath is applied to the correlators themselves. Once the

path delays and powers are generated for the desired delay profile, a separate correlator is
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generated for each path delay and power. Then, the resultant correlators are summed. For

example, an in-phase prompt correlator affected by multipath would be written as

IP = A

L−1∑
l=0

IPl, (5.5)

where IPl = Re(αl)R(δτ−τl)sinc(πferrTPDI)cos(πferrTPDI+δϕ+ϕl), αl is the complex power

of the l-th tap, τl is the l-th tap delay, ϕl is the l-th tap phase advance, and L is the number

of multipath taps.

For the CRS, the multipath effect is added to the discriminator outputs themselves.

The code phase discriminator can be rewritten as [39]

δτ = |Re|2 − |Rl|2

= |h0|2M2A2S(ϵ,∆) + χ1 + χ2,

where h0 is the gain and delay of the LOS path, M is the number of subcarriers containing

the CRS, S(ϵ,∆) is the discriminator S-curve, and ϵ is the true symbol timing error. Then

[39],

χ1 = A2

∣∣∣∣∣
M−1∑
m=0

L−1∑
l=1

hle
−j2π(m/M)((τl/T )+ϵ+∆)

∣∣∣∣∣
2

− A2

∣∣∣∣∣
M−1∑
m=0

L−1∑
l=1

hle
−j2π(m/M)((τl/T )+ϵ−∆)

∣∣∣∣∣
2

χ2 = 2A2Re

[(
M−1∑
m=0

h0e
−j(2π/M)m(ϵ+∆)

)
×

(
M−1∑
m′=0

L−1∑
l=1

h∗l e
j2π(m′/M)((τl/T )+ϵ+∆)

)]

− 2A2Re

[(
M−1∑
m=0

h0e
−j(2π/M)m(ϵ−∆)

)
×

(
M−1∑
m′=0

L−1∑
l=1

h∗l e
j2π(m′/M)((τl/T )+ϵ−∆)

)]
.

Of course, multipath does not only affect the code phase. The carrier phase discriminator

would be affected as well, and as a result, the frequency discriminator would be affected,
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too. The carrier phase discriminator can be rewritten as [22]

δϕ = arg [Rp + χPLL] ,

where Rp = IP + 1jQP and [22]

χPLL =
M−1∑
m=0

L−1∑
l=1

√
Cej∆ϕαle

−j2π(m/M)(τl/T ). (5.6)

5.1.3 Simulation Results

In this section, simulation results using the above setup are presented. The signal-

tracking performance of the combined VDFLL is shown. It is compared with the traditional

GPS-only VDFLL and with scalar tracking. The GPS-only VDFLL is tuned in the same way

as the combined GPS/LTE VDFLL. That is, σ2
x,y,z = 0 m2/s3 in the static case and σ2

x,y,z = 2

m2/s3 in the dynamic case. The scalar tracking bandwidths remain the same for both cases

and are purely estimates derived from loop theory due to thermal noise. These estimates

assume tracking with an FLL and DLL. The bandwidths for GPS are set to BFLL = 2 Hz

and BDLL = 1 Hz. The bandwidths for LTE are set to BFLL = 0.2 Hz and BDLL = 0.01 Hz.

In addition to the estimates produced by loop theory, 100-run Monte Carlo simulations are

performed for scalar tracking of the LTE signals to analyze the probability of tracking and

the effect of multipath. The Monte Carlo simulations are also performed with an FLL and

DLL at the same bandwidths for comparison.

AWGN Simulations

GPS and 1 eNodeB Simulations: In the first set of simulations, the signals will only be

affected by AWGN. The receiver will have varying knowledge about the location of the LTE

emitters, however. Figure 5.4 shows the results of the static simulation with 4 GPS satellites

and 1 eNodeB. The LTE signals are tracked using the SSS with varying knowledge of the
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emitter position. Figure 5.4 shows that by including the 1 eNodeB tracking the SSS, the

GPS tracking performance improves only marginally when compared with GPS-only vector

tracking. It is also shown that the code phase tracking of the SSS is negatively affected by

the lack of knowledge of the eNodeB position. It should be noted that this error does not

negatively affect the code tracking of the GPS signals. The carrier tracking of both signals

is not affected by this error either. Additionally, it is shown that the theoretical results are

optimistic at low C/N0. This is expected because the DARE does not account for the loss of

lock. The DARE approach assumes that we can track at any C/N0. However, it is still useful

because it can be used to predict when a loss of lock may occur. Often this occurs when a

certain 1-σ threshold is crossed. Some examples of these thresholds are shown in Figure 5.4.

These thresholds indicate when the discriminator function leaves the linear region, where it

is trackable. For more information on these thresholds see [45]. The same 1-σ thresholds are

used for LTE as are GPS (i.e., 1/6 of a chip).

Figure 5.5 shows the probability of tracking both signals during the static simulations.

The probability of tracking is computed as the number of signals that are tracked for the

entirety of the simulation averaged over the total number of Monte Carlo simulations. It

should be noted that the LTE signals’ probability of tracking is compared with scalar track-

ing; whereas, the GPS signals’ probability of tracking is compared with GPS-only vector

tracking. It is shown that despite the minimal increase in tracking performance granted by

including the SSS, the probability of tracking the GPS signals begins to lose lock later than

the GPS-only VDFLL. The combined VDFLL maintains lock of the SSS much longer than

scalar tracking as well.
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Figure 5.4: 4 GPS and 1 eNodeB static simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the SSS. The GPS tracking results are
shown on the right.

Next, the 5 GPS and 1 eNodeB dynamic simulations are performed. Figure 5.6 shows

the results when tracking the SSS. Again, the error in eNodeB localization only affects the

code phase tracking of the LTE signal when it exceeds 1 m. This time, due to the dynamics,

the GPS code phase tracking is degraded as well at high C/N0. The GPS code tracking

is still only marginally improved when compared with the GPS-only VDFLL. Both GPS

and LTE code tracking are improved significantly when compared with scalar tracking. The

carrier tracking, while worse than the static case, remains superior to scalar tracking. For

the most part, it is unaffected by eNodeB localization errors as well. Figure 5.7 shows the

probability of tracking the GPS and LTE signal in the aforementioned dynamic case, while

tracking the SSS. It is shown that there is still significant tracking improvement of the LTE
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Figure 5.5: Probability of tracking LTE (left) and GPS (right) for the 4 GPS and 1 eNodeB
static simulations. The LTE signals are tracked using the SSS.

signal when compared with scalar tracking. Additionally, the probability of tracking the

GPS signal improves considerably when compared with GPS-only vector tracking.

The 4 GPS and 1 eNodeB static simulations are also performed with CRS tracking

instead of the SSS. Figure 5.8 shows the results of these simulations. It is shown that the code

phase tracking of the CRS is only marginally improved by the combined GPS/LTE VDFLL

when compared with scalar tracking. This is caused by the tight scalar DLL bandwidth and

the very low open-loop code phase variance incurred by the CRS discriminator. Nonetheless,

there is some improvement. The 1-σ threshold should be noted as well. The CRS is much

more likely to lose lock because of code phase error instead of frequency error. This is because

the CRS must be tracked to sample-level precision. The width of the sample when tracking

the CRS when M = 100 is just 19.51 m. Using the rule-of-thumb threshold provided in [45]

and the S-curve shown in [39], the threshold is merely 2.17 m. The code phase error induced

by the eNodeB localization error does not affect the CRS much in this case. Conversely,

it affects GPS signal tracking significantly. This is due to the amount of trust that is

placed on the CRS as a result of its low open-loop code phase variance. When the eNodeB

localization error is less than 1 m, the code phase tracking of the GPS signal is improved

more than with the SSS, but it is still a marginal improvement. The LTE carrier tracking

is improved significantly when compared with scalar tracking. It is also not heavily affected
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Figure 5.6: 5 GPS and 1 eNodeB dynamic simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the SSS. The GPS tracking results are
shown on the right.

by eNodeB localization errors. The GPS carrier frequency tracking improves considerably

when compared with scalar tracking. In addition, the carrier frequency tracking is improved

much more than with the GPS-only VDFLL or when the SSS was used, instead. Figure

5.9 shows the probability of tracking the GPS and LTE signals in this scenario. Notably,

the CRS loses lock more easily in vector tracking when compared with scalar tracking. The

tracking begins to break down before the 1-σ threshold would indicate, but about where

the threshold indicates for scalar tracking. The combined VDFLL still improves GPS signal

tracking probability when compared with the GPS-only VDFLL, but because the LTE signal

is lost earlier, it is not as large of an improvement as seen with the SSS.
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Figure 5.7: Probability of tracking LTE (left) and GPS (right) for the 5 GPS and 1 eNodeB
dynamic simulations. The LTE signals are tracked using the SSS.

Figure 5.10 shows the results of the dynamic simulation with 5 GPS satellites and 1

eNodeB, where the LTE signals are tracked using the CRS. The results indicate that the

code tracking does not change much between scalar and vector for the LTE signal. The

code phase tracking is somewhat better at lower C/N0 in the vector case and somewhat

better at high C/N0 in the scalar case. The effect of eNodeB localization error is minimal.

However, the code phase tracking error for GPS is large when the eNodeB localization error is

greater than 1 m. Otherwise, it outperforms both the scalar and GPS-only VDFLL tracking

solutions. The carrier frequency tracking is mostly the same. The LTE signal is tracked

better at lower C/N0 and worse at higher C/N0 in the combined VDFLL when compared

with scalar tracking. The GPS carrier frequency tracking improves modestly when compared

with scalar tracking and the GPS-only VDFLL. However, if the eNodeB localization error is

1 m the GPS carrier frequency tracking degrades as well. These results overall indicate that

large errors in eNodeB localization tend to degrade the overall navigation solution when the

CRS is tracked. Figure 5.11 shows the probability of tracking the LTE and GPS signals in

this scenario. It is shown that scalar tracking still outperforms the combined VDFLL at

tracking the LTE signal with the CRS. However, the probability of tracking the GPS signal

is still improved when compared with the GPS-only VDFLL. [hbt]
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Figure 5.8: 4 GPS and 1 eNodeB static simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the CRS. The GPS tracking results
are shown on the right.
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Figure 5.9: Probability of tracking LTE (left) and GPS (right) for the 4 GPS and 1 eNodeB
static simulations. The LTE signals are tracked using the CRS.
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Figure 5.10: 5 GPS and 1 eNodeB dynamic simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the CRS. The GPS tracking results
are shown on the right.
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Figure 5.11: Probability of tracking LTE (left) and GPS (right) for the 5 GPS and 1 eNodeB
dynamic simulations. The LTE signals are tracked using the CRS.
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GPS and 4 eNodeB Simulations: In the second set of simulations the advantages and

consequences of including 4 eNodeBs in the combined VDFLL are analyzed. Figure 5.12

shows the RMSE results of the static 4 GPS and 4 eNodeB simulations. It is shown that

by including multiple eNodeBs all with similar localization errors the overall code phase

tracking error is approximately the same when compared with the results in Figure 5.4,

which is the same scenario with 1 eNodeB. However, if the receiver has perfect knowledge

of the eNodeB positions there is mild improvement over what is shown in Figure 5.4. The

largest improvement comes in the code phase tracking of the GPS signal, outperforming the

GPS-only VDFLL modestly. The carrier frequency tracking of the LTE signal outperforms

that of Figure 5.4 regardless of eNodeB localization error. Finally, the GPS carrier frequency

tracking improves over the GPS-only VDFLL primarily at lower C/N0. All tracking is

improved significantly when compared with scalar tracking. Figure 5.13 shows the probability

of tracking the LTE and GPS signals throughout the simulations. It is shown that regardless

of eNodeB localization errors, the probability of tracking is improved significantly when

compared with scalar tracking and the GPS-only VDFLL for the LTE and GPS signals,

respectively.

Figure 5.14 shows the results of the 5 GPS and 4 eNodeB dynamic simulations where

the LTE signal is tracked using the SSS. The code phase tracking of the LTE signal does

not improve much when compared with Figure 5.6. The error incurred by the eNodeB

localization error is the same for both LTE and GPS code phase tracking. However, GPS

code phase tracking improves when compared with the GPS-only VDFLL. It also improves

more when compared with what is shown in Figure 5.6, Indicating that overall positioning

performance should improve. However, the degradation that may occur as a result of the

knowledge of the eNodeB location is unlikely to harm the solution more than the 1 eNodeB

case. The carrier frequency tracking of the LTE signal is comparable with that shown

in Figure 5.6. The GPS carrier frequency tracking improves modestly over the GPS-only

VDFLL and when compared with Figure 5.6. All results improve significantly over traditional
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Figure 5.12: 4 GPS and 4 eNodeB static simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the SSS. The GPS tracking results are
shown on the right.
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Figure 5.13: Probability of tracking LTE (left) and GPS (right) for the 4 GPS and 4 eNodeB
static simulations. The LTE signals are tracked using the SSS.
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Figure 5.14: 5 GPS and 4 eNodeB dynamic simulation results. The LTE tracking results
are shown on the left. The LTE signals are tracked using the SSS. The GPS tracking results
are shown on the right.

scalar tracking at low C/N0. The carrier frequency tracking of the combined VDFLL is

comparable to scalar tracking at high C/N0. Figure 5.15 shows the probability of tracking

the LTE and GPS signals in this scenario. It shows little to no improvement over the 1

eNodeB case shown in Figure 5.7.

Figure 5.16 shows the results of the 4 GPS and 4 eNodeB static simulations, where

the LTE signal is tracked using the CRS. It is shown that the code phase tracking of the

LTE signal is not improved much when compared with Figure 5.8. Conversely, the eNodeB

localization error becomes a dominant source of error in the LTE code phase tracking. One

could see that, with enough localization errors, the LTE signal could lose track at any C/N0.

In fact, it would not take much more than 1 m of error to cause this. In addition, this
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Figure 5.15: Probability of tracking LTE (left) and GPS (right) for the 5 GPS and 4 eNodeB
dynamic simulations. The LTE signals are tracked using the SSS.

error now begins to cause significant errors in the GPS code and carrier tracking as well. At

even 0.1m of error, it is expected that the position and velocity solution would be degraded.

On the other hand, if the eNodeB location is known with high accuracy, the GPS code

phase tracking is improved significantly when compared with the GPS-only VDFLL and

with the results presented in Figure 5.8. The LTE carrier tracking is not improved much

when compared with Figure 5.8. However, the GPS carrier frequency tracking improves

greatly when compared with the GPS-only VDFLL, and the results are shown in Figure

5.8. Yet, it is also degraded by the eNodeB localization error. All results offer significant

improvement over scalar tracking. Figure 5.17 shows the probability of tracking the LTE

and GPS signal throughout these simulations. These results improve slightly when compared

with Figure 5.9. Both the LTE and GPS signals are tracked 100% of the time at 10 dB-Hz.

However, the LTE signal still underperforms when compared with scalar tracking.

Figure 5.18 shows the results of the 5 GPS and 4 eNodeB dynamic simulations, where

the LTE signal is tracked using the CRS. The results indicate that the LTE code phase

tracking is affected much in the same way as the static results shown in Figure 5.16. The

main difference is that the code phase tracking error is much more comparable to the scalar

tracking code phase error. At high C/N0 the scalar tracking code phase error is shown to be

less than the combined VDFLL. Next, the eNodeB localization error affects the GPS code
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Figure 5.16: 4 GPS and 4 eNodeB static simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the CRS. The GPS tracking results
are shown on the right.
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Figure 5.17: Probability of tracking LTE (left) and GPS (right) for the 4 GPS and 4 eNodeB
static simulations. The LTE signals are tracked using the CRS.

92



phase tracking error in the same way as in Figure 5.16, and consistently worse than in Figure

5.10. Yet, in the best case, the code phase tracking error improves when compared with the

GPS-only VDFLL and the results in Figure 5.10. The LTE carrier frequency tracking is

more affected by the eNodeB localization error than in Figure 5.10, which leads to a more

consistent error in the GPS carrier frequency tracking as well. However, the GPS carrier

frequency tracking still improves considerably in the best case. In the best case, except at

high C/N0, the combined VDFLL outperforms the scalar tracking for LTE. In the best case,

the combined VDFLL outperforms GPS scalar tracking at all C/N0. Figure 5.19 shows the

probability of tracking the LTE and GPS signals throughout the simulations. The combined

VDFLL still loses lock of the LTE signal earlier than scalar tracking. The GPS signal

tracking probability is still improved when compared with the GPS-only VDFLL. However,

by including multiple eNodeBs the the probability of tracking both LTE and GPS increases

mildly when compared with the results in Figure 5.11, where only 1 eNodeB is tracked.

In addition to the results presented above, the same simulations were performed when

no GPS satellites were present. They are given in Appendix A and the figures therein. The

largest change was in the probability of tracking the LTE signals, which improves slightly

when GPS signals are also present.

Value of DARE

For characterizing the effects of eNodeB localization error and multipath, Monte Carlo

simulation is necessary, but it is cumbersome to perform. For evaluating the performance of

tracking under normal conditions the DARE solution matches the Monte Carlo simulation

almost perfectly. The DARE solution takes a fraction of the time to compute. In this case,

the DARE solution is sufficient with the caveat that at low C/N0 it will be optimistic. At

low C/N0 the 1-σ threshold should be considered to determine loss of lock and when theory

will not match experimentation.
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Figure 5.18: 5 GPS and 4 eNodeB dynamic simulation results. The LTE tracking results are
shown on the left. The LTE signals are tracked using the CRS. The GPS tracking results
are shown on the right.
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Figure 5.19: Probability of tracking LTE (left) and GPS (right) for the 5 GPS and 4 eNodeB
dynamic simulations. The LTE signals are tracked using the CRS.
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Multipath Simulations

Next, the same simulations are performed, but the LTE signals are subjected to the

multipath delay profiles presented in Table 5.4. The code phase tracking of the LTE signals

when the SSS and the CRS is analyzed. The probability of tracking the LTE signals is also

evaluated. The multipath results are compared with the appropriate AWGN results. The

combined VDFLL is then compared with scalar tracking subjected to the same multipath

delay profiles.

GPS and 1 eNodeB Simulations: Figure 5.20 shows the code phase tracking results

of the static and dynamic simulations, where the LTE signal is tracked using the SSS. It is

shown that the presence of multipath causes a large amount of error when tracking the SSS.

In the static case, the combined VDFLL tends to decrease the error when compared with

scalar tracking. In the dynamic case, the results are somewhat improved at low C/N0 but

are compromised at high C/N0 when the LTE signals are subjected to harsh multipath. The

consequences of which are shown in Figure 5.21. The LTE signals are completely lost at high

C/N0 when subjected to the ETU multipath delay profile. When looking at Figure 5.20, it

is likely that at high C/N0 the same loss of lock would occur with the EVA multipath delay

profile as well.

Figure 5.22 shows the results of the same simulations, where the LTE signals are tracked

using the CRS. It should be noted that the overall signal tracking error is much less significant

than with the SSS in Figure 5.20. Yet, vector tracking does not provide any improvement

when compared with scalar tracking. There is not much difference between the static and

dynamic simulations. Figure 5.23 shows the probability of tracking the LTE signal through-

out the simulations. It is shown that the multipath channels, except ETU, do not affect the

tracking probability when compared with AWGN. In the ETU channel, the LTE signal is

lost much earlier than the rest. This is likely a result of the navigation filter overvaluing the

CRS measurements. This will cause a large navigation solution error which will cause loss of
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Figure 5.20: The code phase tracking performance of the 4 GPS and 1 eNodeB static sim-
ulations (left) and 5 GPS and 1 eNodeB dynamic simulations (right) in the presence of
multipath. The LTE signals are tracked using the SSS

5 10 15 20 25 30
C/N

0
 [dB-Hz]

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 T

ra
ck

in
g

Scalar AWGN
Scalar EPA
Scalar EVA
Scalar ETU
Vector AWGN
Vector EPA
Vector EVA
Vector ETU

10 20 30 40 50
C/N

0
 [dB-Hz]

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 T

ra
ck

in
g

Scalar AWGN
Scalar EPA
Scalar EVA
Scalar ETU
Vector AWGN
Vector EPA
Vector EVA
Vector ETU

Figure 5.21: The probability of tracking the LTE signal during the 4 GPS and 1 eNodeB
static simulations (left) and 5 GPS and 1 eNodeB dynamic simulations (right) in the presence
of multipath. The LTE signals are tracked using the SSS.
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Figure 5.22: The code phase tracking performance of the 4 GPS and 1 eNodeB static sim-
ulations (left) and 5 GPS and 1 eNodeB dynamic simulations (right) in the presence of
multipath. The LTE signals are tracked using the CRS

lock in numerous GPS channels as well. The same problem is not present in scalar tracking.

GPS and 4 eNodeB Simulations: Figure 5.24 shows the code phase tracking RMSE

of the 4 eNodeB simulations, where the LTE signal is tracked using the SSS. It is shown

that, during the static simulations, the tracking RMSE is still improved over scalar tracking.

However, in the dynamic simulations, the tracking begins to fail in the EVA and ETU

channels. This can further be seen in Figure 5.25, where the probability of tracking the LTE

signals throughout the simulations is shown. The probability of tracking during the static

simulations is somewhat better than the 1 eNodeB case shown in Figure 5.21. However,

in the dynamic case, the signals are tracked better in low C/N0, but the tracking tends to

break down at higher C/N0 for the EVA and ETU channels.

Figure 5.26 shows the results of the simulations where the LTE signal is tracked using

the CRS. The results indicate that the CRS is tracked at least as well as scalar tracking in the

static and dynamic simulations. There is still a constant error incurred, but it is much less

than the error caused by tracking the SSS even in the EPA channel. Figure 5.27 shows the

probability of tracking the LTE signal during the simulations. It is shown that the tracking is
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Figure 5.23: The probability of tracking the LTE signal during the 4 GPS and 1 eNodeB
static simulations (left) and 5 GPS and 1 eNodeB dynamic simulations (right) in the presence
of multipath. The LTE signals are tracked using the CRS.
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Figure 5.24: The code phase tracking performance of the 4 GPS and 4 eNodeB static sim-
ulations (left) and 5 GPS and 4 eNodeB dynamic simulations (right) in the presence of
multipath. The LTE signals are tracked using the SSS
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Figure 5.25: The probability of tracking the LTE signal during the 4 GPS and 4 eNodeB
static simulations (left) and 5 GPS and 4 eNodeB dynamic simulations (right) in the presence
of multipath. The LTE signals are tracked using the SSS.

comparable to the 1 eNodeB case presented in Figure 5.23. The LTE signal is still lost early

in the ETU channel. Finally, the 4 eNodeB simulations are performed for both scenarios.

The results of these simulations are shown in Appendix B. The largest observation is that

the GPS signals aid in tracking the LTE signals in the multipath channels. The SSS signals

in the EVA and ETU channels are lost earlier. The CRS signals in the EVA channel begin

to waiver as well when the C/N0 becomes higher.
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Figure 5.26: The code phase tracking performance of the 4 GPS and 4 eNodeB static sim-
ulations (left) and 5 GPS and 4 eNodeB dynamic simulations (right) in the presence of
multipath. The LTE signals are tracked using the CRS
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Figure 5.27: The probability of tracking the LTE signal during the 4 GPS and 4 eNodeB
static simulations (left) and 5 GPS and 4 eNodeB dynamic simulations (right) in the presence
of multipath. The LTE signals are tracked using the CRS.
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Outage Simulations

Finally, the results of the outage simulations are shown in Figure 5.28. Each simulation

scenario is subjected to both multipath and eNodeB localization error. When at least 3 LTE

signals are tracked using the SSS through the EPA multipath channel or better the proba-

bility of tracking the GPS signals is nearly 100%. With 1 eNodeB present, the probability

of tracking is higher than the GPS-only VDFLL and scalar tracking for all scenarios. Once

2 eNodeBs are present, the probability of tracking is better for all scenarios except when

the LTE signals are subjected to the ETU channel. Once there are three or more present,

the ETU channel actually reduces the probability of tracking of the GPS signals. However,

regardless of channel and eNodeB localization error, the GPS signal is tracked with higher

probability than the GPS-only VDFLL and scalar tracking. When tracking the CRS, the

probability of tracking the GPS signals is always higher than the GPS-only VDFLL and

scalar tracking. Once 3 eNodeBs are present, the probability of tracking the GPS signals is

nearly 100% for all scenarios. With less than 3 eNodeBs the probability of tracking the GPS

signals never drops below 50%.
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5.2 Experiments

5.2.1 Experimental Setup

To validate the feasibility of the combined VDFLL, real signal data are collected. To do

so, a data collection setup is contrived. Figure 5.29 shows the experimental setup. The data

are collected in a Lincoln MKZ. The MKZ is outfitted with a NovAtel Pinwheel antenna and

a Molex multi-hub 5-in-1 GPS, LTE, and Wi-Fi antenna. The Pinwheel antenna is fed to a

Honeywell eTalin. The eTalin provides a military-grade GPS/INS solution. The solution is

used as ground truth for the experiments. The Molex antenna is fed to an Ettus Research

USRP X310. The GPS feed is split. The GPS data are sampled at 25 MSPS and fed to

an onboard GPSDO to discipline the USRP clock. One or both of the LTE feeds are used,

depending on the experiment. The LTE data are sampled at 25 MSPS as well. The raw

signal data are recorded by a host computer to an external solid-state drive. The raw signal

data are then processed using the combined VDFLL described in Chapter 4.

There are 3 experiments performed in this thesis. There are 2 data collections performed

near the Thomas Walter MRI building in Auburn, Al; one is static and the other is dynamic.

Figure 5.30 shows the static and dynamic ground truths for these experiments. GPS and

LTE data are collected in both experiments. The LTE data comes from eNodeB 1 in Figure

5.30 at a center frequency of 885 MHz. The GPS satellites are the same as in Figure 5.2 for

the static and dynamic data collections, respectively. Both experiments last approximately

120 seconds.

The final experiment is performed in Atlanta, GA. Figure 5.31 shows the ground truth

trajectory and the eNodeBs present during the experiment. During this experiment, signal

data from 4 GPS satellites are recorded. Data from 2 eNodeBs (eNodeB 1 and eNodeB 2

in Figure 5.31) at center frequencies of 751 and 1980 MHz, respectively are also recorded.

Figure 5.32 shows the skyplot of the present GPS satellites. Notably, the GPS geometry is

fairly poor. Table 5.5 shows the PDOPs of the GPS-only and GPS and LTE recordings. It
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Figure 5.29: The equipment setup in the data collection vehicle. The GPS/LTE antenna is
connected to two channels on the USRP X310. The GPS output is split and is fed to an
onboard GPSDO in the USRP X310. The Pinwheel antenna is connected to the eTALIN for
truth.

is shown that by adding the 2 eNodeBs the geometry is improved significantly. It should

be noted that this experiment is much shorter than the previous one. This is because of

limitations imposed by the recording setup. By recording three complex, 8-bit, channels at

sampling rates of 15 to 25 MSPS at once, recordings were limited to less than 1 minute.

Some methods to resolve this are considered, later.

Table 5.5: The PDOPs of the scenarios recorded in Atlanta, GA.

GPS GPS + LTE

97.66 2.59

GPS/LTE VDFLL Modifications for Experimental Data

As noted previously, the VDFLL is essentially an EKF at its core. The EKF makes

some key assumptions about the measurements it uses. Primarily, that the measurement
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Figure 5.30: The ground truth static and dynamic trajectories for the experimental data
recorded in Auburn, AL.

Figure 5.31: The ground truth trajectory for the experimental data recorded in Atlanta, GA.
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Figure 5.32: The skyplot of the GPS satellites that are tracked in the experimental data
recorded in Atlanta, GA.

residuals are drawn from a zero mean multivariate normal distribution with covariance R.

Since this covariance is provided by the receiver as a function of C/N0, the performance of

the EKF depends on the accuracy of this provision. If the provided R is too small the filter

will have too much confidence in inaccurate measurements, causing a degraded solution.

With R too large, the filter will trust the dynamic model too much. This will cause the

solution to wander aimlessly, depending on the quality of the dynamic model. Indeed, R is

an important parameter and it should be selected with care.

In the simulation results presented before, the factors of eNodeB localization error and

multipath are explored. It is found that these parameters caused biases in the measurements

that violate the zero mean assumption. As a result, the solutions degraded accordingly. If

a constant bias were present, an additional term could be added to the measurement model

to account for it. Unfortunately, this would likely cause the measurement to add little to no

information to the system because it would be used primarily to estimate its own bias. If
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all the measurements shared the same bias, this method could work. Unfortunately, unlike

the simulations, it is unlikely that all measurements would be subjected to the same level of

eNodeB localization error and/or multipath. To resolve this issue, much more sophisticated

methods must be used. For example, a simultaneous localization and mapping method, such

as what is used in [72] could be used. To mitigate the effects of multipath, a multipath

estimating delay lock loop, such as the one developed in [73] could be fed forward to the

VDFLL. These methods are outside the scope of this thesis. Instead, the VDFLL EKF

will simply trust the measurements less. That is, the measurement covariance of the LTE

measurements will be heuristically scaled until the best performance is achieved. For the

data collected in this thesis, the covariances shown in equations (4.14) and (4.15) are scaled

by 50 and 100 for the SSS and CRS, respectively. This way, some performance gain can be

shown without compromising the solution.
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5.2.2 Experimental Results

Auburn Experiments

In the first experiment, the data collection vehicle remains static while the GPS and

LTE signal data are recorded. First, the GPS data are processed using a scalar receiver. The

GPS ephemeris data is decoded and recorded for later use. It is also the same ephemeris data

used in the static simulations earlier. The LTE data are recorded from eNodeB 1 in Figure

5.30. Some system information must first be decoded from the LTE signal before it is used

for navigation. From inspection, it is determined to have a bandwidth of 10 MHz. Therefore,

the LTE signal data are decimated from 25 MSPS to 15.36 MSPS, according to Table 4.1.

Next, the LTE signal data are processed in the scalar receiver described in Chapter 3. The

LTE signal from eNodeB 1 is determined to have a cell ID of 330. With this information, it is

possible to produce a valid replica of the SSS and CRS. First, the issue of the eNodeB clock

states must be considered. The eNodeB clocks are assumed to be relatively stable over the

short term, so an estimate of the eNodeB’s clock drift is determined using scalar tracking.

This clock drift is determined to be 0.0126 m/s and assumed to be constant for the duration

of the experiment. This clock drift and its integral are used within the VDFLL, later.

The GPS/LTE VDFLL begins processing at the first decoded GPS subframe. The LTE

signals are reacquired at the latest decoded GPS subframe. Then, the GPS/LTE VDFLL

begins to operate as normal. The GPS signal data are processed using 20 ms predetection

integration periods and the LTE data are processed in 20 ms intervals as well. However,

the SSS only appears twice within a 20 ms period, so the actual integration period is much

smaller. Over 20 ms the CRS occurs with N = 80 times. The symbol timing and frequency

error is assumed constant over 20 ms. Hence, 80 separate discriminators are calculated and

averaged. The determined clock drift and its integral are used in the pseudorange rate and

pseudorange estimation, respectively within the GPS/LTE VDFLL.
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Figure 5.33 shows the positioning performance of the combined GPS/LTE VDFLLs with

the SSS and CRS compared with the GPS-only VDFLL. It is shown from inspection that the

GPS + CRS VDFLL has the best performance and the GPS + SSS VDFLL has the second

best. The GPS-only VDFLL exhibits the worst performance, which is unsurprising because

of the GPS-only PDOP shown in Table 5.2. The 3D statistics for the static experiment are

shown in Table 5.6. It is shown that the addition of LTE improves the 3D RMSE by 28%

to 34% with the SSS and CRS, respectively. The standard deviation is improved by 30% to

35% with the SSS and CRS, respectively. The max 3D error is decreased by 30% to 35%

with the SSS and CRS, respectively. Figure 5.34 shows the errors in the east, north, and up

axes. It is shown that the GPS-only error primarily diverges from the others on the north

axis.
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Figure 5.33: Positioning performance of the GPS-only VDFLL and combined VDFLLs using
the static data recorded in Auburn, AL.

Next, the data from the dynamic route in Figure 5.30 are processed. The data are

processed similarly to the static run, but this time, the eNodeB clock drift is determined to
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Table 5.6: Static Experiment Statistics

Metric GPS GPS + SSS GPS + CRS

RMSE (m) 3.00 2.17 1.99
Standard Deviation (m) 1.36 0.95 0.88
Maximum Error (m) 5.71 4.01 3.73
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Figure 5.34: The position errors in the east, north, and up axes for the static data collected
in Auburn, AL.

be 0.06 m/s. Figure 5.35 shows the results of this run. It is shown that all of the VDFLLs

perform similarly. However, the VDFLLs that include the LTE signals begin to outclass

the GPS-only VDFLL. Figure 5.36 shows the east, north, and up errors of the run. In this

particular run, it is clear that the addition of the LTE signals provides a benefit, particularly

in the east axis. The GPS + SSS and GPS + CRS VDFLL perform similarly, but the GPS

+ SSS VDFLL performs the best overall. Table 5.7 shows the statistics of the dynamic run.

The 3D RMSE improves by 21% and 15% with the GPS + SSS and GPS + CRS VDFLLs,

respectively. The 3D standard deviation improves by 21% and 17%. The maximum error

improves by 9% with the GPS + SSS VDFLL. However, the maximum error of the GPS +

CRS VDFLL degrades by around 2%. The GPS + SSS VDFLL outperforming the GPS +
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CRS VDFLL is surprising but not impossible. Given the simulation results, it is possible

that, given poor eNodeB localization and low multipath, tracking the LTE signal with the

SSS may outperform the CRS. Not to mention, the effect would be more pronounced during

the dynamic run than the static run. Additionally, the environment in Auburn, AL is not

particularly urban and would not provide a very harsh multipath channel.
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Figure 5.35: Positioning performance of the GPS-only VDFLL and the combined VDFLLs
using the dynamic data recorded in Auburn, AL.

Table 5.7: Dynamic Experiment Statistics

Metric GPS GPS + SSS GPS + CRS

RMSE (m) 4.06 3.20 3.44
Standard Deviation (m) 1.76 1.39 1.59
Maximum Error (m) 7.32 6.69 7.46
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Figure 5.36: The position errors in the east, north, and up axes for the dynamic data collected
in Auburn, AL.

Atlanta Experiment

Finally, the data recorded in Atlanta, GA are processed. This data features 2 eNodeBs.

The data are processed in the same way as above. Both eNodeBs are determined by in-

spection to have a bandwidth of 10 MHz. The LTE signals are acquired and are noted to

have cell IDs of 411 and 217 for eNodeB 1 and eNodeB 2, respectively. The clock drifts are

determined to be 0.2 m/s and 0.22 m/s for eNodeB 1 and eNodeB 2, respectively. Finally,

the data are processed in the same way. Once with just the GPS signal data and twice with

the GPS and LTE signal data. The LTE signal data are tracked using the SSS and the CRS

in two separate runs. Figure 5.37 shows the results of processing the dynamic data recorded

in Atlanta, GA. It is shown that the GPS-only and GPS + SSS VDFLLs perform nearly

equivalently. The GPS + CRS VDFLL initially performs the worst but eventually overtakes

the other VDFLLs. Figure 5.38 shows the errors in the east, north, and up axes. It is clear
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Figure 5.37: Positioning performance of the GPS-only VDFLL and the combined VDFLLs
using the dynamic data recorded in Atlanta, GA.

that the GPS + CRS VDFLL easily overtakes the other VDFLL implementations. In partic-

ular, the error in the up-axis is improved considerably. Table 5.8 summarizes the statistics of

the run. In this run, tracking the LTE signals with the SSS degraded the performance of the

VDFLL. The 3D RMSE, standard deviation, and maximum error are all degraded by 45%,

49%, and 46%, respectively. In contrast, tracking the LTE signals with the CRS provided

a large performance increase. The 3D RMSE, standard deviation, and maximum error are

all improved by 29%, 8%, and 13%, respectively. Given that the data recorded in Atlanta

is more likely to be severely affected by multipath, this result is not surprising. While the

eNodeB localization is also not exact, the combination causes the SSS to only be destructive

to the solution.
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Figure 5.38: The position errors in the east, north, and up axes for the dynamic data collected
in Atlanta, AL.

Table 5.8: Atlanta Statistics

Metric GPS GPS + SSS GPS + CRS

RMSE (m) 8.97 12.97 6.36
Standard Deviation (m) 4.24 6.34 3.92
Maximum Error (m) 15.30 22.33 13.26
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a GPS L1 C/A and Cellular 4G LTE vector tracking receiver is developed.

The signal models of the GPS L1 C/A and 4G LTE signals are described. Then, the tra-

ditional, scalar tracking loops are discussed, outlining the common discriminators and loop

filters used to track the GPS and LTE signals. Positioning with measurements derived from

RF signal tracking is briefly treated as well. Next, these concepts are extended and combined

in a discussion about vector tracking loops and the VDFLL. The combined VDFLL is then

developed and the pseudorange and pseudorange rate residual covariances are given in terms

of C/N0. To use these effectively, a method of calculating the C/N0 using the LTE tracking

correlator outputs is developed as well.

The performance of the combined VDFLL is evaluated using DARE and Monte Carlo

simulation. The Monte Carlo simulations match reasonably well with the DARE results,

proving that the covariance calculations and C/N0 calculations developed in this thesis are

accurate. The DARE and Monte Carlo results also show that the code and carrier tracking

performance can be improved significantly by tracking LTE signals in a combined VDFLL.

The more LTE signals tracked, the better the solution would become. In addition, it is

found that tracking the LTE signals with the CRS provides better performance than using

the SSS. It is also shown that the CRS is particularly vulnerable to disturbances such as

eNodeB localization error and multipath due to its sample-level tracking requirements and

low covariance. It is found that the SSS is relatively robust against eNodeB localization

error, but it is very vulnerable to multipath. If either the SSS or CRS were subjected to

these errors and no steps were taken to mitigate their errors, the overall position solution
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would be degraded. In addition, it is shown that including LTE signals aided in tracking the

GPS signals through outage periods in a dynamic simulation regardless of additional error

when tracking the CRS. If the multipath was not severe, the SSS also provided some benefit

over the GPS-only VDFLL.

Finally, real signal data were collected and processed using the combined VDFLL. Data

were collected in Auburn, AL, and Atlanta GA. Static and dynamic data were collected. To

mitigate the possible degradation caused by multipath and eNodeB localization error, the

covariances of the LTE measurements are inflated. Heuristically, it is found that the SSS

covariances should be scaled by 50 and the CRS covariances should be scaled by 100. In all

experiments, the combined VDFLL performs better than the traditional GPS-only VDFLL.

In Auburn, the 3D positioning RMSE was improved by 28% and 34% with the SSS and

CRS, respectively for the static experiment. In the dynamic experiment, the 3D positioning

RMSE was improved by 21% and 15% with the SSS and CRS, respectively. In Atlanta, the

3D positioning RMSE was improved by 29% when tracking the LTE signals with the CRS.

However, by tracking the SSS the position solution was degraded.

Overall, the combined VDFLL shows promise in both simulation and experimentation.

The CRS shows the most promise in terms of positioning accuracy, but it is the most vul-

nerable to degradation. The SSS is more robust, but it is more susceptible to multipath. If

other disturbances are large, both the SSS and CRS will degrade the solution. To resolve

this, some steps should be taken. Some possibilities will be discussed next.

6.2 Future Work

As discovered in simulation, eNodeB localization and multipath are large sources of

error. They can cause significant positioning errors and, if they are severe enough, loss of

lock. The first steps taken should be to mitigate these effects. One such method could be

to precisely localize the broadcasting eNodeBs. To do so, one may place multiple receivers

with known positions around the eNodeB of interest. A similar method of extracting the
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eNodeB clock states as used in this thesis could be employed here as well. Then, the inverse

problem could be solved for the eNodeB position. Unfortunately, this method would also

be meter level at best. To resolve this, a long period of data should be collected. The

resultant solutions could be averaged until a desired level of precision is determined. Yet,

this is just one way to solve this problem. Other approaches using simultaneous localization

and mapping could be used instead to varying degrees of accuracy.

Resolving the issue of multipath is a more difficult problem. Multipath still remains a

troublesome issue even in GNSS signal tracking, where it is less predominant than in LTE

signal tracking. Numerous methods of mitigating multipath exist in the literature. For

example, one may add the multipath bias into the pseudorange measurement model. This

is only effective if each signal is subjected to the same multipath channel. This is unlikely.

Other methods use additional correlators within a traditional DLL to mitigate this error. It

is possible that this could be fed forward to the VDFLL code frequency estimate.

Another possible avenue of research could be to couple the combined VDFLL with

another sensor. The most obvious of which being an INS. Yet, a heading reference alone

would probably provide some performance gain. Other sensors that could provide redundant

information such as a camera, lidar, or radar would also improve the solution. Moreover,

combining the receiver with additional GNSS or other SOPs would be worthwhile as well.

Finally, it is worth mentioning the recording setup. It was noted that when recording

more than two channels, only around 40 seconds of continuous data could be recorded. A

method of improving this recording setup could be investigated. This would allow for more

LTE signals to be used in the VDFLL, potentially improving the solution. To do so, the

most obvious solution would be to write to faster memory. While the solid state drive used

in this work purports fast write speeds, the overhead of writing multiple complex channels

at rates of at least 15 MSPS each is too much. A possible solution, given the host computer

has enough Random Access Memory (RAM), would be to write to a so-called ’RAM disk’.

This method would write directly to the much faster, but volatile system memory. However,
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this method has its pitfalls as well. For one, the host PC would need to have 10s of gigabytes

of unused RAM, which is uncommon, especially in a portable PC.

Ultimately, given that the combined VDFLL shows promise using the basic methods pro-

vided in this thesis, large performance gains are likely possible. The simulations performed

in this work show that these gains are possible in AWGN conditions. By implementing any

one or all of these methods the performance gains shown by the simulations performed in

this work could possibly be achieved or, at least, approached.
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Appendix A

4 eNodeB AWGN Simulation Results
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Figure A.1: 4 eNodeB static simulation results. The LTE signals are tracked using the SSS.
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Figure A.2: Probability of tracking LTE in the 4 eNodeB static simulations. The LTE signals
are tracked using the SSS.
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Figure A.3: 4 eNodeB dynamic simulation results. The LTE signals are tracked using the
SSS.
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Figure A.4: Probability of tracking LTE in the 4 eNodeB static simulations. The LTE signals
are tracked using the SSS.
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Figure A.5: 4 eNodeB static simulation results. The LTE signals are tracked using the CRS.
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Figure A.6: Probability of tracking LTE in the 4 eNodeB static simulations. The LTE signals
are tracked using the CRS.
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Figure A.7: 4 eNodeB dynamic simulation results. The LTE signals are tracked using the
CRS.
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Figure A.8: Probability of tracking LTE in the 4 eNodeB static simulations. The LTE signals
are tracked using the CRS.
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Appendix B

4 eNodeB Multipath Simulation Results
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Figure B.1: The code phase tracking performance of the 4 eNodeB static simulations (left)
and 4 eNodeB dynamic simulations (right) in the presence of multipath. The LTE signals
are tracked using the SSS
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Figure B.2: The probability of tracking the LTE signal during the 4 eNodeB static simu-
lations (left) and 4 eNodeB dynamic simulations (right) in the presence of multipath. The
LTE signals are tracked using the SSS.
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Figure B.3: The code phase tracking performance of the 4 eNodeB static simulations (left)
and 4 eNodeB dynamic simulations (right) in the presence of multipath. The LTE signals
are tracked using the CRS.

5 10 15 20 25 30
C/N

0
 [dB-Hz]

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 T

ra
ck

in
g

Scalar AWGN
Scalar EPA
Scalar EVA
Scalar ETU
Vector AWGN
Vector EPA
Vector EVA
Vector ETU

10 20 30
C/N

0
 [dB-Hz]

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 T

ra
ck

in
g

Scalar AWGN
Scalar EPA
Scalar EVA
Scalar ETU
Vector AWGN
Vector EPA
Vector EVA
Vector ETU

Figure B.4: The probability of tracking the LTE signal during the 4 eNodeB static simu-
lations (left) and 4 eNodeB dynamic simulations (right) in the presence of multipath. The
LTE signals are tracked using the CRS.
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