
Built-In Self Test for Regular Structure Embedded Cores in

System-on-Chip

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee. This

thesis does not include proprietary or classified information.

Srinivas Murthy Garimella

Certificate of Approval:

Victor P. Nelson
Professor
Electrical and Computer Engineering

Charles E. Stroud, Chair
Professor
Electrical and Computer Engineering

Adit D. Singh
Professor
Electrical and Computer Engineering

Stephen L. McFarland
Acting Dean
Graduate School

Built-In Self Test for Regular Structure Embedded Cores in

System-on-Chip

Srinivas Murthy Garimella

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

May 13, 2005

Built-In Self Test for Regular Structure Embedded Cores in

System-on-Chip

Srinivas Murthy Garimella

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

Signature of Author

Date

Copy sent to:

Name Date

iii

Vita

Srinivas Murthy Garimella, son of Satyanarayana and Subhadra Garimella, was

born on August 29 1980 in Vijayawada, India. He graduated with distinction with

a Bachelor of Technology in Electronics and Communications Engineering degree in

May 2002 from Jawaharlal Nehru Technological University, Hyderabad, India. After

completion of his undergraduate degree, he joined Tata Consultancy Services (TCS),

India as Assistant Systems Engineer in June 2002. He entered the graduate program

in Electrical and Computer Engineering at Auburn University in August 2003. While

in pursuit of his Master of Science degree at Auburn University, he worked under the

guidance of Dr. Charles E. Stroud as a graduate student assistant in the Electrical

and Computer Engineering Department.

iv

Thesis Abstract

Built-In Self Test for Regular Structure Embedded Cores in

System-on-Chip

Srinivas Murthy Garimella

Master of Science, May 13, 2005
(B.Tech., Jawaharlal Nehru Technological University, Hyderabad, India. May 2002)

109 Typed Pages

Directed by Charles Stroud

Miniaturization and integration of different cores onto a single chip are increasing

the complexity of VLSI chips. To ensure that these chips operate as desired, they

have to be tested at various phases of their development. Built-In Self-Test (BIST)

is one technique which allows testing of VLSI chips from wafer-level to system-level.

The basic idea of BIST is to build test circuitry inside the chip so that it tests

itself along with the BIST circuitry. The idea of current research is to develop BIST

configurations for testing memory cores and other regular structure cores in Field

Programmable Gate Arrays (FPGAs) and System-on-Chips (SoCs).

FPGA-independent BIST approach for testing memory cores and other regular

structure cores in FPGAs is described in this thesis. BIST configurations were devel-

oped to test memory cores in Atmel and Xilinx FPGAs using this approach. Another

approach which takes advantage of some of the architectural capabilities of Atmel

SoCs to reduce test time is also described in this thesis.

v

Acknowledgments

I would like to thank Dr. Stroud for his support and advice throughout my

research at Auburn University. I would also like to thank Dr. Nelson and Dr. Singh

for being on my graduate committee and for their contribution to my thesis. I would

like to acknowledge my research colleagues John, Jonathan, Sachin and Sudheer for

their help and inspirational discussions during my research. Finally I would like to

express my deepest gratitude to my parents whose love and encouragement is inspiring

me to achieve my goals.

vi

Style manual or journal used LATEX– A Document Preparation System, Leslie

Lamport, Addison-Wesley Publishing Company, 2nd edition (1994). Bibliography

follows IEEE Transactions.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty. The plots were generated

using Microsoft Excel®. Images drawn using Microsoft®Visio®.

vii

Table of Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 System-on-Chip (SoC) . 1
1.2 CSOC Architecture . 3
1.3 FPGAs . 3
1.4 Embedded Memories . 5
1.5 Built-In Self-Test (BIST) . 6
1.6 BIST for SoC . 8
1.7 Thesis Statement . 8

2 Background 12
2.1 System on a Chip (SoC) . 12
2.2 FPGA Architectures . 13

2.2.1 Switching Elements in FPGAs 15
2.2.2 PLB Architecture . 17

2.3 Embedded Memories . 21
2.3.1 Memory Types . 22
2.3.2 Embedded Memories in FPGAs 22
2.3.3 Embedded Memories and FPGAs in SoCs and their Interfacing 28

2.4 BIST for Memories . 32
2.4.1 Present Methods for Testing FPGAs and SoCs 35

2.5 Thesis Restatement . 38

3 Implementation Of BIST On ATMEL FPGAs And SoCs 40
3.1 RAM BIST Approaches . 40

3.1.1 BIST Approach for Free RAMs Using FPGA Logic 41
3.1.1.1 BIST Architecture for Dual-port Synchronous Mode 41
3.1.1.2 BIST Architecture for Single-port Modes 44

3.1.2 Advantages and Limitations of Using VHDL 47
3.1.3 BIST Approach for Free RAMs Using Embedded Processor Core 51

3.1.3.1 AVR-FPGA Interface Description 51
3.1.3.2 BIST Architecture 53
3.1.3.3 Implementation of BIST Approach in FPSLIC 53

3.1.4 On-Chip Diagnostics . 56

viii

3.2 Data SRAM Testing . 59
3.3 Summary . 62

4 Implementation of BIST on Xilinx FPGAs 66
4.1 Motivation . 66
4.2 PLB and Routing Architecture . 67
4.3 Embedded Block RAMs Architecture 69
4.4 Block RAM Testing . 71

4.4.1 Block RAM Testing in Single-port Mode 73
4.4.1.1 BIST Implementation 75
4.4.1.2 Diagnosis . 78

4.4.2 Block RAM Testing in Dual-port Mode 78
4.5 Summary of Block RAM Testing . 79
4.6 LUT RAM Testing . 80

4.6.1 BIST Implementation . 81
4.7 MULTIPLIER BIST . 83

5 Summary and Conclusions 85
5.1 Summary . 85
5.2 Observations . 87
5.3 Future Research . 89

Bibliography 91

Appendices 97

A ASL code for free RAM 98

B VHDL Code for March Y algorithm 103

C March LR Algorithm for Block RAMs 108
C.1 March LR Algorithm with BDS for 16-bit Wide RAMs 108
C.2 RAMBISTGEN Input File Format for Generating VHDL Code 108

ix

List of Figures

1.1 Evolutionary Stages of System-on-Chip Products 2

1.2 Typical Architecture of a CSOC . 3

1.3 Architecture of a Typical FPGA . 4

1.4 BIST Architecture . 7

2.1 Switching Elements Used in FPGAs 15

2.2 FPGA Programming Controlled by SRAM Cells 18

2.3 Atmel AT40K Series PLB . 19

2.4 PLB Array Interconnection in Atmel AT40K Series FPGAs 21

2.5 Structure of Memory Cells . 23

2.6 Arrangement of Free RAMs in Atmel AT40K Series FPGAs 24

2.7 Architecture of a Free RAM Block 25

2.8 Block Diagram of Spartan II Family FPGAs 27

2.9 Block Diagram of a Block RAM . 29

2.10 Embedded SRAM in Atmel’s FPSLIC 30

2.11 Partitioning of Embedded SRAM in Atmel’s FPSLIC 31

2.12 AVR-FPGA-RAM Interface in Atmel’s FPSLIC 32

2.13 AVR-FPGA Cache Logic in Atmel’s FPSLIC 33

2.14 BIST Architecture for Testing PLBs in FPGAs 37

3.1 Dual-port Free RAM BIST Architecture and ORA Design 42

3.2 Single-port Free RAM BIST Architecture and ORA Design 45

x

3.3 Fault Simulation Results for Free RAM 47

3.4 Snapshot of The RAMBISTGEN Tool 49

3.5 AVR-FPGA Interface . 52

3.6 Architecture of RAMBIST From AVR 53

3.7 RAMBIST Implementation from AVR 54

3.8 Three Configurations for Data SRAM testing 60

4.1 Architecture of a Slice in Virtex and Spartan FPGAs 68

4.2 Organization of Block RAMs in Various Xilinx FPGAs 70

4.3 Block Diagram of a Block RAM . 72

4.4 BIST Architecture for Block RAMs Testing 73

4.5 Block RAM Configuration for Testing both Ports in Single-port Mode 74

4.6 Design of a Single-bit ORA for Block RAM Testing 76

4.7 Programmable Logic Resources in Xilinx FPGAs 80

4.8 ORA Designs Used for LUT RAM Testing 82

4.9 Multiplier Modes . 83

xi

List of Tables

3.1 Timing Analysis Results for Three RAM BIST Configurations 46

3.2 RAMBISTGEN Input File Format for March Y and March LR 50

3.3 Function of IOSEL Lines . 54

3.4 Contents of Reg1 . 55

3.5 Contents of Reg2 . 55

3.6 BIST and Diagnosis Summary . 58

3.7 Contents of Registers Used for Testing Data SRAM 61

3.8 Summary of RAM BIST Configurations for FPSLIC 64

3.9 Memory Storage Requirements for BIST Configurations 65

4.1 PLB Array Size Bounds for Xilinx Family FPGAs 69

4.2 BIST PLB Count for Virtex I and Spartan II 76

4.3 Function of Xilinx JTAG pins . 77

4.4 TPG and ORA Counts for Testing Block RAMs in Dual-port Mode . 79

4.5 TPG and ORA Counts for Testing LUT RAMs 83

4.6 Multiplier BIST Slice Count . 84

xii

Chapter 1

Introduction

Since the arrival of the first transistor-based computer, high scale integration

became one of the main concerns in the hardware design techniques. In the early

1970’s relatively high levels of integration were achieved, but the continuing effort

to miniaturize and build more complex digital circuitry remained one of the goals

in leading computer construction and chip design [1]. As a result, semiconductor

integration has progressed from Small Scale Integration (SSI) to Very Large Scale

Integration (VLSI) and now to System Level Integration (SLI) or System-on-Chip

(SoC) [1].

1.1 System-on-Chip (SoC)

SoC technologies are the consequent continuation of the Application Specific

Integrated Circuit (ASIC) technology, whereas complex functions, that previously re-

quired heterogeneous components to be merged onto a printed circuit board, are now

integrated within one single silicon IC or chip [2]. As device integration scales grew,

the enhanced performance of memory, microprocessors and logic devices boosted the

performance of the digital systems they constituted. However, performance increases

in larger systems were hampered by speed limitations associated with the long and

numerous interconnects between devices on the printed circuit board (PCB) and as-

sociated input/output (I/O) buffers on the chips. Closely related system functions

must be combined on a single chip to eliminate this bottleneck and take full advantage

1

of improvements in transistor switching speeds and higher integration scales. This is

precisely the capability that SoC technology provides. Rapid advances in semicon-

ductor processing technologies allowed the realization of complicated designs on the

same IC. Figure 1.1 illustrates the evolutionary stages toward SoC products.

(a) Multi-board systems (c) System-on-Chip
products

(b) Single-board systems

DRAM/Flash
Memory

CPU/Cache/
Interface

3D Graphics

D
R

A
M

/F
la

sh
 M

em
or

y

CPU/
Cache

3D Graphics

Interface/
Logic

MPEG

DSP

Figure 1.1: Evolutionary Stages of System-on-Chip Products

SoCs can be broadly classified into two categories: ASIC-based and Configurable

or Programmable. While the Configurable SoCs (CSoC) can be customized to dif-

ferent applications through embedded reconfigurable logic cores, ASIC-based SoCs

cannot be customized. CSoCs combine the advantages of both ASIC-based SoCs and

multi-chip board development using standard components [1]. The major general

goal for the development of such application-tailored reconfigurable architectures is

to realize adaptivity vs. power/performance/cost trade-offs by migrating functional-

ity from ASICs to multi-granularity reconfigurable hardware [3].

2

1.2 CSOC Architecture

The typical architecture of a CSoC is as shown in Figure 1.2. A CSoC consists

of a dedicated microcontroller core and other components built around a common bus

system. Required applications can be designed using microcontroller, DSP core or

other Intellectual Property (IP) cores. The reconfigurable logic core typically consists

of a low power Field Programmable Gate Array (FPGA). Embedded memories also

form a large portion of the CSoC [4] [5].

Reconfigurable
Logic

(FPGA)
On-Chip Memory Micro Controller

DSP Core Other IP Cores

Common Bus System

Figure 1.2: Typical Architecture of a CSOC

1.3 FPGAs

FPGAs are flexible alternatives to custom ICs. FPGAs can be programmed by

the end users at their site. Moreover they can be reprogrammed any number of times.

3

Since FPGAs bring short time-to-market and flexibility for systems using digital logic

circuits, many applications have been developed in order to make best use of FPGA

reprogrammability. FPGAs can implement both combinational and sequential logic

of tens of thousands of gates.

PLB PLB PLB

PLB PLB PLB

PLB PLB PLB

IOB

Interconnect Network

Figure 1.3: Architecture of a Typical FPGA

A typical FPGA architecture usually includes three categories of user programmable

elements as shown in Figure 1.3 . Programmable Logic Blocks (PLBs), Input Out-

put Blocks (IOBs) and programmable interconnection network. PLBs are sometimes

called Configurable Logic Blocks (CLBs). An interior array of PLBs provides the

functional elements from which the user’s logic is constructed, while IOBs provide

4

an interface between the logic array and device package pins. The programmable

interconnect network provides routing paths to connect the inputs and outputs of the

PLBs and IOBs [6]. The functionality of these three types of programmable elements

is controlled by the configuration memory in the FPGA.

The FPGA provides a generic chip that can be programmed for any application

by downloading a desired configuration into the configuration memory of the FPGA.

This dictates the behavior of the underlying hardware (PLBs, IOBs and interconnect

network). The programming data takes the form of a bit-stream consisting of a string

of binary 1s and 0s and is stored in the configuration memory. These configuration

memory bits are then used on-board the FPGA to control the on-off state of vari-

ous pass transistors and multiplexers to program the PLBs, IOBs and interconnect

elements [7].

Improvements in process technology have had a significant impact on the archi-

tecture of FPGAs. Traditionally FPGAs were targeted to implement smaller logic

circuits. Recently, FPGAs are being used to implement relatively large circuits and

systems. Since the large systems often require data storage, large on-chip memories

have become an essential component of high-density FPGAs [8] [9]. These memory

arrays can also be configured as Read Only Memories (ROMs) to implement large

combinational logic functions.

1.4 Embedded Memories

SoCs are moving from logic-dominant chips to memory-dominant chips. Large

amounts of Static Random Access Memory (SRAM), ROM, Erasable Programmable

5

Read-Only Memory (EPROM) and multi-port RAMs are finding their way on board.

According to the International Technology Roadmap for Semiconductors [10] memo-

ries will cover 90 percent of the SoC die area by 2010. Because of their high density,

embedded memories are more prone to defects that already exist in silicon than any

other component on the chip [11]. Increasing the memory on a SoC complicates the

manufacturing processes and reduces yield, adding to the cost of the SoC. Therefore

from a testability point of view, it is essential to thoroughly test memories in the

SoCs [12].

1.5 Built-In Self-Test (BIST)

Traditionally chips were tested using Automatic Test Equipment (ATE). Tests

ranged from those developed manually to those generated automatically for scan-

based designs. Scan is a Design for Test (DFT) technique whereby all internal storage

elements are modified so that in test mode they form individual stages of a shift

register for scanning test data in and test responses out. The use of Automatic

Test Pattern Generation (ATPG) programs to generate manufacturing tests for VLSI

designs became popular in the early 1980s. Soon, it was also recognized that test

circuitry must be added to a design to simplify ATPG [13].

As the complexity and size of ICs grew, test equipment became more sophisti-

cated increasing the manufacturing cost to as much as 30 to 40 percent of the cost of

production [14]. Because of the limitations of the conventional testing techniques, a

new DFT technique called Built-In Self-Test (BIST) was developed.

6

BIST
Controller

Test Pattern Generator
(TPG)

Circuit under Test (CUT)

Output Response Analyzer
(ORA)

Figure 1.4: BIST Architecture

BIST is a DFT technique in which testing is accomplished through built-in hard-

ware features [15]. The basic idea is to have a VLSI chip that tests itself. The typical

BIST architecture is composed of three hardware modules in addition to the circuit

under test (CUT), as shown in Figure 1.4. The Test Pattern Generator (TPG) gener-

ates the test patterns for the CUT. The Output Response Analyzer (ORA) compares

or analyzes the test responses to determine correctness of the CUT. The BIST con-

troller is the central unit to control all the BIST operations including initialization

and length of the BIST sequence. In a BIST system hierarchy, there are BIST con-

trollers at each level of the circuit hierarchy, such as module, chip, board, and system

levels. Each BIST controller is responsible for the self-test in that particular level,

the control of BIST operations for the lower level BIST, and the reporting of the test

results to the upper level. The design of a TPG is determined by the test strategy

7

being deployed. The test strategy being selected is determined by the fault coverage,

test hardware overhead, and testing time [15].

1.6 BIST for SoC

The major advantages of the Configurable SoC (CSoC) technique are a short

time to market due to pre-designed cores, less cost due to reusability of cores, a

higher performance using optimized algorithms and less hardware area using opti-

mized designs. But the SoC technique also introduces new difficulties into the test

process caused by the increased complexity of the chip, the reduced accessibility of

the cores and the higher heterogeneity of the modules. In the SoC test process, a core

test strategy has to be determined first. Then a SoC test strategy has to be selected

where the test access for individual cores is determined and the tests are integrated

at the system level. All these tasks are simplified if the cores and the entire system

support a BIST strategy [16].

1.7 Thesis Statement

Many of today’s chips demand more embedded memory than ever before. SoCs

and FPGAs are also moving from logic-dominant to memory-dominant chips. The

addition of memory, while it creates a more powerful chip, increases die size and

results in poor yield. As the percentage of embedded memory continues to increase,

so does the chip’s complexity, density, speed and of course, the probability of failures

due to wafer defects. For SoCs to keep up their momentum and remain a viable

8

option for improving system integration and performance, the problems relating to

testing multiple high-density, multi-megabit memories must be solved [11].

Embedded memories placed on a single chip are scattered around the device and

typically have different types (SRAM, DRAM), sizes, access protocols, and timing.

Since on-chip field-configurable memory provides significant memory bandwidth com-

pared to off-chip memory, memories are embedded into more recent FPGAs as well

as into CSoCs. Typically, these FPGAs contain heterogeneous memory architecture,

that is, architecture with more than one size of memory array. Due to reprogamma-

bility of FPGAs, it has been proposed that BIST capabilities can be configured in

an FPGA to completely test the embedded memories in FPGAs and other memory

cores shared by the FPGAs [17].

In this thesis, two approaches are described for testing embedded memories in

FPGAs and SoCs. The first approach aims at reducing the BIST development time

when generating BIST configurations for testing memories in different FPGA devices.

The second approach aims at reducing the total test-time. The first approach is

partly based on the BIST for FPGAs method in [18] [19]. In this approach, some

of the PLBs of the FPGA are configured as TPGs and ORAs to test the embedded

memory. Unlike the traditional BIST for FPGAs, the basic approach here consists

of developing parameterized VHDL code for testing embedded memories of various

sizes and various types.The VHDL Code is then synthesized using Computer Aided

Design (CAD) tools to generate bit-streams. The bit-streams are then downloaded

to configure the FPGA to test embedded memories. This approach is used in stand-

alone FPGAs which do not have the capability of dynamic partial reconfiguration.

9

This VHDL approach has an added advantage of portability. This reduces BIST

development time for generating BIST configuration for testing different types and

sizes of memory cores in different FPGAs. The VHDL approach was applied to

test memory modules in Atmel AT40K series FPGAs. The same VHDL code was

used with minimal changes for testing memory modules in Xilinx Virtex and Spartan

series FPGAs. Similar approaches can be used for testing other regular structure

embedded cores in FPGAs. This approach was used to test embedded multipliers in

Xilinx Virtex and Spartan series FPGAs.

For FPGA cores embedded in SoCs, which can be dynamically configured, a

different approach is adopted. The embedded microcontroller can be used to test the

embedded memories in FPGAs. The microcontroller can dynamically reconfigure the

memories to a different configuration mode and apply test patterns while PLBs are

used to perform the ORA functions. This process is repeated until all memories are

tested in all possible configurations. For testing other memory cores accessible only

by the microcontroller, the microcontroller can be used to perform both TPG and

ORA functions. The proposed BIST methodologies are verified by testing embedded

memories in Atmel’s Field Programmable System Level Integrated Circuit (FPSLIC)

and Xilinx Virtex and Spartan series FPGAs.

This thesis is organized as follows: Chapter 2 gives a more detailed description

of the architecture of FPGAs and memories as well as existing BIST methodologies

for testing FPGAs and embedded memories. Chapter 3 presents the architecture,

implementation details and experimental results of the proposed BIST approaches

applied to test RAMs in the Atmel FPSLIC. Chapter 4 gives implementation details

10

and experimental results of the proposed BIST method applied to test RAMs in Virtex

and Spartan series FPGAs. The thesis is summarized in Chapter 5 with suggestions

for future research.

11

Chapter 2

Background

This chapter presents an overview of the SoCs, architecture of the FPGAs and

the memories that served as target for this thesis research. The interface of FPGA

core, memory core and processor core in the Atmel AT94K SoC is described. Also the

architecture of RAMs in Virtex and Spartan FPGAs is discussed. Finally, previous

BIST methodologies for testing FPGAs and embedded memories are presented.

2.1 System on a Chip (SoC)

From its introduction in the 1990s, the SoC has gone through many phases.

Early SoCs consisted of a central processor, memory, and random or glue logic. Glue

logic was used by designers to connect the cores to make the SoC meet a set of design

specifications. Current SoCs comprise one or more processing blocks (microproces-

sors, DSP cores), communication cores, memory blocks (SRAM, DRAM, flash, etc.),

random logic, analog functions and often configurable logic [20].

The architecture of most of the current SoCs is processor driven. The central

processor in a SoC manages IP cores, on-chip memory, I/O and is thus responsible for

overall system supervision [5]. The microprocessor communicates with all other cores

through one or more on-chip busses. An alternative concept of the logic centric archi-

tecture is discussed in [21]; where in an embedded processor would be an additional

system component rather than a central component. The logic centric architecture

focuses on making programmable logic a central architectural feature.

12

Most configurable SoCs, also called CSoCs, support programmable logic in the

form of an embedded FPGA core. Embedded FPGAs can be used to reconfigure on-

chip functionality after chip fabrication. FPGAs can be used to correct any design

errors that could have occurred during chip development and also to upgrade products

to adapt to changing requirements. FPGAs are thus becoming essential components

of current SoCs. Different kinds of stand-alone FPGAs and their architectures are

discussed in the subsequent section [21].

2.2 FPGA Architectures

Digital logic can be implemented using either discrete logic devices (often called

Small-Scale Integrated circuits or SSI), Programmable Logic Devices (PLDs), Masked-

Programmed Gate Arrays (MPGAs), or FPGAs. SSI is used for implementing small

amounts of logic. A PLD is a general purpose device capable of implementing the logic

as two-level sum-of-products of its inputs. Power consumption and delay typically

limit its usage to implementation of eight to sixteen product terms. To implement

designs with thousands or tens of thousands of gates on a single IC, MPGAs (com-

monly called gate arrays) can be used. An MPGA consists of a base of pre-designed

transistors with customized wiring added for each design. The wiring is built dur-

ing the manufacturing process such that each design requires custom masks for the

wiring. The mask-making charges make low-volume MPGAs expensive [20].

FPGAs offer benefits of both PLDs and gate arrays. Like MPGAs, FPGAs

can implement large designs on a single IC. FPGAs, however, eliminate each design’s

custom masking, manufacturing, test pattern generation, wafer fabrication, packaging

13

and testing when compared to MPGAs [20]. Like PLDs, FPGAs are programmable

by designers at their site. FPGAs are however a step above Programmable Logic

Devices (PLDs) in complexity [7]. This is so because FPGAs can implement multilevel

logic, while most PLDs are optimized for two-level logic [22]. Thus FPGAs offer

advantages over MPGAs of low Non-Recurring Engineering (NRE) costs and rapid

turn-around time. However, the overhead of programming circuitry that manages the

programming part of the FPGAs reduces its density. Moreover, the programmable

switches in the FPGA increases signal delay. As a result, FPGAs are larger and

slower than equivalent MPGAs [20].

FPGAs are composed of an array of PLBs interconnected with a programmable

routing network. The size, structure and number of PLBs as well as the amount of

interconnect vary considerably among FPGA architectures. This difference is gov-

erned by different programming technologies and different target applications of the

devices. Switching elements used for programming determine whether the FPGA is

antifuse-programmed, EPROM-programmed or SRAM-programmed. Depending on

routing structure, FPGAs can be further classified as Symmetrical style, Island style

and Cellular style [22]. Depending on cell granularity, FPGAs can be classified as

either coarse grained or fine grained. Granularity of a PLB can be defined in many

ways: number of boolean functions that can be implemented by it, total number of

transistors it uses, total number of inputs and outputs, total normalized area, etc.

Since the switching elements are the driving force in determining the choice of logic

modules and interconnect for FPGA, they become a key to FPGA architecture [20].

14

Different switching elements used in manufacturing FPGAs are examined in the next

subsection.

2.2.1 Switching Elements in FPGAs

In anti-fused programmed FPGAs, anti-fuses are used as switching elements. An

anti-fuse as shown in Figure 2.1(a) is a two terminal device that changes irreversibly

from a high to low resistance state when a programming voltage is applied across its

terminals [23]. Anti-fuse falls into two categories: amorphous silicon and dielectric.

Major advantages of the Anti-fuse are its small size, relatively low on-resistance and

low parasitic capacitance [24]. The major disadvantages of anti-fuse are that it is not

reprogrammable and it requires extra fabrication steps [24].

select
gate

floating
gate

SRAM
cell

W1

W2

dielectric

A B

(a) Antifuse (b) EPROM (c) SRAM

pull-up
resistor

bit line

word line

Figure 2.1: Switching elements used in FPGAs [24]

15

Switching elements used by EPROM-programmed FPGAs are similar to the

ones used in EPROM memories as shown in Figure 2.1(b). Unlike a simple Metal

Oxide Semiconductor (MOS) transistor, an EPROM transistor comprises two gates,

a floating gate and a select gate. In the un-programmed state, no charge exists on

the floating gate and the transistor behaves like a normal MOS transistor. When the

transistor is programmed by causing a large current to flow between source and drain,

a charge is trapped under the floating gate which permanently turns the transistor

off. The EPROM transistor can be reprogrammed by first removing the trapped

charge from the floating gate by exposing the gate to ultraviolet light [23]. A major

advantage of this technology compared to anti-fuse is its reprogrammability. An

additional advantage is that it is nonvolatile such that no external permanent memory

is needed to program the chip on power-up. Disadvantages associated with this

technology include relatively high on resistance, requirement of additional fabrication

steps over the ordinary CMOS fabrication process [24]. EPROM transistors, however,

cannot be reprogrammed in-circuit. Electrically Erasable and Programmable ROM

(EEPROM) technology, which is similar to EPROM technology, can be reprogrammed

in-circuit. EEPROM technology, however, consumes about twice the chip area as

EPROM transistors and requires multiple voltage sources for reprogramming [25].

The Static RAM (SRAM) programming technology uses SRAM cells to control

pass gates and multiplexers as shown in Figure 2.1(c). A logic one stored in an

SRAM cell closes the pass gate and a logic zero stored in an SRAM cell opens the

pass gate. A major advantage of this approach is that SRAM cells can be programmed

in-circuit and require only standard integrated circuit process technology [24]. Thus

16

SRAM programmable FPGAs take advantage of process improvements driven by

semiconductor memories. A major disadvantage of SRAM programming technology

is its large area. It takes at least five transistors to implement an SRAM cell, plus

at least one transistor to serve as a programmable switch. SRAM is volatile and

thus must be programmed or configured at the time of power-up. This requires

external permanent memory to provide the programming bit storage. Since SRAM-

based FPGAs implement logic in static gates, they consume very low power even

for large amounts of logic and have very low standby current. All these factors

have made SRAM-programmed FPGAs quite popular, and as a result, they have

become the largest selling FPGAs in the commercial market [26]. Architectures of

FPGAs discussed in the remainder of the thesis assuming that the FPGAs are SRAM

programmed unless otherwise specified.

2.2.2 PLB Architecture

PLBs, which form an important building block of the FPGA device, are capa-

ble of implementing both combinational and sequential logic. Combinational logic is

commonly implemented by an array of SRAM cells called the lookup table or LUT.

The LUT made of 2n SRAM cells is addressed by n inputs. A LUT shown in Figure

2.2(a) consists of 3 inputs and is capable of implementing all 28 different Boolean

functions of its inputs. When the FPGA is programmed, the truth table correspond-

ing to the boolean function to be implemented is loaded into the LUT. For example,

the LUT shown in Figure 2.2(a) would implement a 3-input XOR function assuming

the topmost location corresponds to highest address in this case. The inputs to the

17

LUT are logically equivalent such that changing the pin to which a signal is connected

may require rearrangement of the bits in the LUT. Multiplexers (MUXs) are often

placed at the inputs of the LUT, so that inputs to the LUT can come from any of the

routing resources. A 2-input MUX controlled by a SRAM cell is as shown in Figure

2.2(b). The number of inputs to the MUX can be increased with more SRAM cells

to act as select controls.

a

b

c

z

1

0

0

1

0

1

1

0

a) Look Up Table

a

b
z

0

1

0/1

SRAM cell

b) Multiplexer

Figure 2.2: FPGA Programming Controlled by SRAM Cells

For implementing sequential logic, storage elements like edge-triggered flip-flops

or level-sensitive D latches are included. MUXs are included to control routing and

additional functionality inside the PLB. Thus a PLB generally consist of LUT(s),

MUX(s) and storage elements. The size and number of LUTs along with the num-

ber of storage elements defines the granularity of a PLB. More complex PLBs with

large LUTs, greater numbers of MUXs and storage elements comprise coarse grained

18

FPGAs. FPGAs with simpler PLBs are fine grained. An investigation on a range of

LUT sizes and their effect on the overall chip revealed that 3-input or 4-input LUTs

give best density for a wide range of PLBs [27].

The PLB inside Atmel’s AT40K series FPGA is shown in Figure 2.3 [28] [29].

The PLB consists of two 3-input LUTs, called X LUT and Y LUT. Functions of up to

four inputs can be implemented using the LUTs and MUXs. A Set/Reset D Flip-Flop

is provided for implementing sequential logic. Multiplexers are included for providing

a variety of functionalities like combinational logic, sequential logic, arithmetic and

DSP/multiplier modes [29].

X Y

8x1
LUT

8x1
LUT

D

Y

Clk
Reset

X

To
/F

ro
m

 G
lo

ba
l b

us
se

s

4 4

4 4

Figure 2.3: Atmel AT40K Series PLB [29]

19

PLBs inside the FPGA are typically arranged in the form of an array which

is repeated over the entire FPGA. Each cell in the array can be directly connected

to particular set of interconnect lines, called local lines. Interconnect lines to which

many PLBs in the FPGA can be connected to are called global lines. In order to speed

up signal communication through longer or heavily loaded segments of interconnects,

repowering buffers are typically provided. In Atmel AT40K series FPGAs, an array

of 4×4 PLBs are repeated over the entire FPGA as shown in Figure 2.4. Five vertical

and five horizontal global busing planes are associated with all PLBs as illustrated

in Figure 2.4. Four inputs to and one output from the PLB can access any of the

five global busing planes associated with the PLB. For every 4×4 array of PLBs,

bus repeaters (repowering buffers) are placed within the global routing resources to

prevent signal degradation in the process of sending signals to distant or heavily

loaded nets. Every 4×4 array of PLBs share an embedded memory block called a free

RAM. Details of these embedded RAMs are discussed in section 2.3.

The configuration memory in the FPGA dictates the behavior of each resource in

the FPGA. The FPGA is programmed by writing bits into the configuration memory,

as required by the application. The FPGA can be reconfigured for another applica-

tion by writing the appropriate new bits into the configuration memory. While the

FPGA is operating, the inactive regions can be reconfigured to perform different

operations without disturbing the active regions of operation. This type of reconfigu-

ration is called partial reconfiguration. Dynamic partial reconfiguration is the process

of reconfiguring the active regions of the FPGA to perform a different function.

20

Cell

H
or

iz
on

ta
l B

us
in

g
P

la
ne

Vertical Busing Plane

I/O Pad

Free Ram

Logic Cell

Repeater
Row

Repeater
Column

Figure 2.4: PLB Array Interconnection in Atmel AT40K Series FPGAs [29]

In general, only small portions of the logic circuitry are active at any given time.

By loading the logic functions into the FPGA as required, replacing or complementing

the logic already present, logic can be implemented efficiently. This concept is called

Cache Logic [30]. Thus cache logic operates similar to cache memory; active functions

are loaded into logic cache at any given time and unused functions or variations are

stored in low cost memory.

2.3 Embedded Memories

Memory is often integrated on the chip rather than off chip for significant reduc-

tion in cost and size. On-chip memory interface reduces capacitive load, power, heat

dissipation and helps in achieving higher speeds [31]. For similar reasons, memories

are embedded in both FPGAs and SoCs. SoCs typically contain different types of

memories like SRAMs, ROMs, DRAMs and flash memory blocks. FPGAs typically

21

contain heterogeneous memories, which can have different array sizes and depth. They

can also function in different modes like synchronous or asynchronous and single-port

or multi-port. Different kinds of memory technologies that exist are discussed in the

next subsection.

2.3.1 Memory Types

Memory cells can be designed in a number of ways. The structure of the memory

cells determines the type of memory chip. Figure 2.5 (a-c)shows the basic structures

of some memory cells. The memory cells shown are in the order of decreasing area and

decreasing speed. Figure 2.5 (d) shows a memory cell in a two-port memory block.

By adding more pass transistors and bit lines, a multi-port memory array can be

created. The type of memory embedded depends on the intended application of the

chip. SRAM technology is used for high speed applications. In applications requiring

large amounts of memory, DRAM technology is employed. While SRAM memories

are commonly embedded in FPGAs, a SoC can contain other kinds of memories. Most

of the FPGAs contain SRAM memories, as they are compatible with the process used

to fabricate logic on chip.

2.3.2 Embedded Memories in FPGAs

As shown in Figure 2.4, each 4×4 PLB array in the AT40K series FPGA shares

a memory block called a free RAM. These 32×4 dual-ported RAMs dispersed over

the entire array can be configured to operate in four different modes: single-port

22

Vdd

Word
Word

Bit
Bit

Read

Write
Din Dout

(a) Six-transistor SRAM cell (b) Three-transistor DRAM cell

Data

Read/write

(c) One-transistor DRAM cell

W
or

d1

W
or

d2

B
it2B
it1

W
or

d1

W
or

d2

Vdd

(d) Two-port memory cell

B
it2 B
it1

Figure 2.5: Structure of Memory Cells

synchronous, dual-port synchronous, single-port asynchronous and dual-port asyn-

chronous. All the RAMs except those in the rightmost column of the array can

operate in all four modes. RAMs in the rightmost column of the array can operate

only in single-port modes. Free RAMs are not true dual-port RAMs as they have

separate read and write ports instead of two ports that can be used for both reading

and writing [29]. A RAM in the leftmost column has its read address lines to its

right, while a RAM in the column adjacent to the right has its read address lines

to its left. This arrangement causes each RAM to share read address with one of

23

its adjacent RAMs and write address with the other as shown in Figure 2.6. This

arrangement provides easier memory to memory interconnect interfaces to increase

the width (number of bits used) and/or height (number of words) of the overall mem-

ory. When embedding memory into an FPGA, a good memory/logic interface is

critical [8] and so dedicated routing resources are provided for the data, address and

control signals of each free RAM.

Ain
Din Dout

OEN

WEN

Aout

Clk CLR

Din Dout

OEN

WEN

Ain

Clk CLR

Aout
Din Dout

OEN

WEN

Ain

Clk CLR

Aout

Figure 2.6: Arrangement of Free RAMs in Atmel AT40K Series FPGAs

The architecture of a free RAM is as shown in Figure 2.7. In single-port mode,

the write address (Ain) lines are disconnected by opening the switch S1 and closing

switch S2 such that the read address (Aout) lines provide both the read address and

write address [29]. Data output (Dout) lines are disconnected by opening switch S4

and switch S3 is closed to read the data output from data input (Din) lines such that

the data bus is bidirectional. The tri-state buffer is enabled when output enable (OE)

is active low and data can be read out of the Din lines. In dual-port mode, switches

S1 and S4 are closed while switches S2 and S3 are opened. This enables two sets of

24

address lines and two sets of data lines for reading from and writing into the RAM

independently.

32 x 4
Dual-port
free RAM

Read Address

Write Address

Write Enable

Data In Data Out

Clear

Load

Latch

Latch

Latch

Clock“1” “1”

5

5

4 4

“1” OE

RAM Clear

Ain

Aout

WEN

Din Dout

S2

S1

S3

S4

Figure 2.7: Architecture of a Free RAM Block [29]

As shown in Figure 2.7, latches are used for synchronizing the Write Address,

data and Write Enable. Reading of the RAM is always asynchronous. Both clock

multiplexers select the clock input in synchronous mode, and select logic ‘1’ in asyn-

chronous mode. The Load input is connected to each bit in the RAM. In synchronous

25

mode, the Clock input is connected to each bit in the RAM, while the Clock input

is inverted and is connected to the front-end latches. When the Load input is logic

‘1’, the latches are transparent. They latch the data when Load is logic ‘0’. Each bit

in the RAM is also a transparent latch. Thus the front-end memory latches and the

RAM form an edge-triggered flip-flop in synchronous mode and form a transparent

latch in asynchronous mode. A RAM-Clear Byte is used to clear the contents of the

RAMs during configuration [29].

There exist two different implementations of on-chip memory in FPGAs: fine-

grained and coarse-grained. In the fine-grained approach, each LUT can be configured

as RAM to implement large memories. In the coarse-grained approach, large memo-

ries are embedded inside the FPGA like the free RAMs in AT40K series FPGAs. This

approach results in denser memory implementation, but requires memory and logic

partitioning during FPGA design. Because of wide-varying memory requirements by

different applications, memory/logic partitioning might result in poor utilization of

either logic or memory. In order to avoid poor memory utilization, memory arrays

should be designed to be used for logic implementation if unused [9]. This is possi-

ble by configuring the memory as a ROM (by disabling write enable), allowing it to

function as a LUT for implementing large combinational logic. The on-chip memory,

block RAMs, in Virtex and Spartan series FPGAs, adopts this strategy.

Another important factor to be considered when embedding memory into an

FPGA is flexibility. Some applications might require a single large block of mem-

ory directly connected to logic, while some others might require smaller memories

26

connected to a common bus or smaller memories distributed over entire logic. There-

fore, embedded memories must be flexible enough to operate with different sizes and

widths. However, the more flexible the FPGA architecture is, the more programmable

switches and programming bits are required. Programmable switches might also add

delay to critical paths within a circuit implementation. In [32] it is shown that a

memory array containing between 512 and 2048 bits and which can be configured for

a word size of 1, 2, 4 or 8 can result in optimum flexibility, optimum logic and storage

implementation for many applications.

The block diagram of Virtex and Spartan II family FPGAs is as shown if Figure

2.8. PLBs are arranged in a 4×6 tile and repeated over the entire array. The array is

surrounded by IOBs. Large embedded block RAMs are present on either side of the

FPGA.

…….

…….

…
…

.

…
…

.

B
L
O
C
K
R
A
M

B
L
O
C
K
R
A
M

B
L
O
C
K
R
A
M

B
L
O
C
K
R
A
M

IOBs

PLBs PLBs

PLBs PLBs

Figure 2.8: Block Diagram of Spartan II Family FPGAs

27

Each PLB consists of two identical slices. A slice consists of two 4-input LUTs,

two storage elements, and carry logic. Each LUT can be configured as a 16×1-bit syn-

chronous RAM. Two LUTs in a slice can function as 16×2 or 32×1 synchronous RAMs

or a 16×1 dual-port synchronous RAM. Thus Virtex and Spartan II series FPGAs

adopt both fine grained and coarse grained approach for on-chip memory. Large

block RAMs complement small memory structures implemented in PLBs. These

block RAMs are 4 PLBs high and are present on either side of the chip.

Figure 2.9 shows the functional block diagram a block RAM where n = 12 and m

= 16 in Virtex and Spartan II FPGAs [33]. The block RAM is a true dual read/write

port fully synchronous RAM with 4K memory cells. Each port of the block RAM can

be independently configured as a read/write port, a read port or a write port, and

can be configured to a specific data width. Each port can independently access the

same 4096 locations and can be independently configured to have data widths of 1,

2, 4, 8 or 16 bits. The four control signals (CLK, WE, EN, RST) for each port have

independent inversion control as a configuration option [33].

2.3.3 Embedded Memories and FPGAs in SoCs and their Interfacing

Almost all SoCs contain some form of embedded memory and they typically

occupy about 70 % of total chip area [34]. Embedded SRAMs are widely used be-

cause, by merging with logic, data bandwidth can be increased and hardware cost

can be reduced. However, with pad limited, multi-million gate designs, other types

of embedded RAMs are also being used [35]. The following example illustrates uses

of other types of embedded RAMs.

28

Addr A

Din A

Addr B

Din B

Dout A

Dout B

n

m

n

m

m

m

WEA
ENA
RSTA
CLKA

WEB
ENB
RSTB
CLKB

Port A

Port B

Figure 2.9: Block Diagram of a Block RAM [33]

Figure 2.10 shows connections of the data SRAM embedded in Atmel’s AT94K

series SoC called the FPSLIC. Figure 2.11 shows the partitioning of the complete

embedded SRAM in Atmel’s FPLIC. This dual-ported SRAM is 36K bytes in size and

is shared by both FPGA and AVR (Advanced Virtual Reduced Instruction Set Com-

puter) microcontroller core. The embedded SRAM is partitioned into data SRAM

and program SRAM. While program SRAM is accessible only from the AVR core, the

data SRAM is accessible from both AVR core and FPGA core. The memory block

consists of 20 Kbytes of fixed program SRAM and 4 Kbytes of fixed data SRAM.

The remaining 12 Kbytes of memory are partitioned into three 4Kx8-bit blocks and

these blocks can be configured to be used as program SRAM or as data SRAM.

The “SOFT BOOT BLOCK” at the top of program memory is used by the chip on

power-up. The lower portion of the data SRAM (96 bytes) is not shared between the

AVR and FPGA; the AVR uses it for CPU general working registers and for memory

29

Embedded
FPGA
CORE

DATA SRAM
4K x 8

To
16K x 8

Embedded
AVR CORE

FPGA Address
lines

AVR Data
Address Bus

16 16

FPGA Write
Enable

AVR Write
Enable

AVR Read
Enable

FPGA
CLK

AVR CLK

8

8

Data Read

Data Write Data Read/
Write

8

B Side A Side

Figure 2.10: Embedded SRAM in Atmel’s FPSLIC [29]

mapped I/O. Therefore, on the FPGA side those bytes are available for data that is

only needed by the FPGA [29].

All cores in an SoC are connected with one or more bus structures. Bus-based

designs are easy to manage primarily because on-chip busses provide a common in-

terface by which cores can be connected [31]. Because of the diversity of embedded

cores, a segmented bus architecture is generally used [36]. FPSLIC uses a bus-based

interconnection structure.

The interfacing between FPGA core, memory core and microprocessor core in

Atmel’s FPSLIC is shown in Figure 2.12. The dual-port data SRAM core resides

between the FPGA and AVR cores enabling data exchange between AVR and FPGA

cores. Access by either core is via a 16-bit address bus and 8-bit bidirectional data

bus associated with each port. The FPGA core can also be directly accessed by the

30

4K x 8

4K x 8

4K x 8

AVR Reg
Space

AVR Memory
Mapped I/OFPGA

Access Only

FIXED
4K x 8

O
P
T
I
O
N
A
L

2K x 16

2K x 16

2K x 16

FIXED
10K x 16

O
P
T
I
O
N
A
L

SOFT “BOOT BLOCK”

Program SRAM
Memory

Data SRAM
Memory

Figure 2.11: Partitioning of Embedded SRAM in Atmel’s FPSLIC

AVR core. An 8-bit bus interconnects the FPGA core and the AVR allowing inter-

active communication. Up to 16 decoded address lines available from AVR into the

FPGA interface directly into the FPGA global busing resources. Up to 16 interrupts

are available from the FPGA to the AVR. The AVR core can also write into the

configuration memory of the FPGA core such that the FPGA can be dynamically

reconfigured by the AVR during system operation, without re-downloading config-

uration data externally. This access is illustrated in Figure 2.13, where FPGAX,

FPGAY, and FPGAZ specify the 24-bit address of the target configuration memory

byte of the FPGA to be reconfigured while FPGAD specifies the byte of configuration

data to be written into the configuration memory. The X and Y address values corre-

spond to the horizontal and vertical location of the PLB, RAM or routing resource to

be reconfigured. The Z address value corresponds to specific logic, RAM or routing

resources being configured.

31

D a ta S R A M

16
-B

it
A

dd
re

ss
 B

us

16
-B

it
A

dd
re

ss
 B

us

A
V

R
 C

LK

8-
B

it
D

at
a

B
us

R
ea

d/
W

rit
e

En
ab

le

A V R C o r e

1 6 - B i t I n t e r r u p t B u s

1 6 - B i t I /O M e m o r y A d d r e s s B u s

8 - B i t D a t a B u s

R e a d /W r i t e E n a b l e

FP
G

A
 C

LK

8-
B

it
D

at
a

B
us

R
ea

d/
W

rit
e

En
ab

le

F P G A C o r e

S o C

A s id e B s id e

Figure 2.12: AVR-FPGA-RAM Interface in Atmel’s FPSLIC

2.4 BIST for Memories

BIST was initially developed for random logic. Later, it was used to test ROMs,

RAMs and other structured logic. The regularity of these structures leads to more

efficient test generation and fault detection algorithms than for random logic [37].

Fault models used for memories are different from those used for digital logic. In ad-

dition to stuck-at, bridging and stuck-on/off faults, fault models like coupling faults,

pattern sensitive faults and address decoder faults are defined for memories. Because

of the modular nature of memory, BIST is suitable for testing both stand-alone mem-

ories and embedded memories [38]. BIST has been proven to be one of the most

32

32
-B

it
C

on
fig

ur
at

io
n

W
or

d

F P G A D [7 : 0]
F P G A Z [7 : 0]
F P G A Y [7 : 0]
F P G A X [7 : 0]

A V R C o r e

2 4 - B i t A d d r e s s
+

 8 - B i t D a t a
F P G A C o r e

X
Y

Z

W r i t e

Figure 2.13: AVR-FPGA Cache Logic in Atmel’s FPSLIC

cost-effective and widely used solutions for memory testing for many reasons includ-

ing at-speed testing, on-chip pattern generation for higher controllability, on-line or

off-line testing, adaptability to engineering changes, etc, [11] [31] [39].

A large number of test algorithms have been reported in literature to test mem-

ories [39]. These algorithms are called march tests, which test the memories func-

tionally by writing patterns into the memories and reading those patterns. Many

variations of these march tests have developed taking into account various faults

models that emerged for different kinds of memories and thus have different fault de-

tection capabilities. These march tests are modified accordingly for testing multi-port

memories and word-oriented memories.

March tests use functional fault models for the RAM and therefore do not require

knowledge of the memory chip at the circuit level, which would otherwise complicate

the model and increase the test-time [40]. The faults detected by march tests include

33

faults present in the address decoder, data line and refresh logic along with faults in

memory array cells. Typical faults covered by most of these tests include: Stuck-at

Faults (SAFs), Transition Faults (TFs), Coupling Faults (CFs) and Neighborhood

Pattern Sensitive Faults (NPSFs) [39]. The notation used for march tests is shown

below for the example of the March Y algorithm.

March Y test :m (w0);⇑ (r0, w1, r1);⇓ (r1, w0, r0);⇑ (r0);

The symbol ⇑ indicates RAM addressing in ascending order, the symbol ⇓ indi-

cates RAM addressing in descending order and the symbol m indicates RAM address-

ing in ascending or descending order. The notation w0 (w1) indicates writing all 0s

(writing all 1s). The notation r0 (r1) indicates reading all 0s (reading all 1s). March

tests are composed of march elements and these elements are separated by a semi-

colon. The length of a march Y test sequence is 8N, where N indicates the number

of words in the RAM, since the test sequence traverses the entire memory 8 times.

The march Y algorithm detects SAFs, TFs and address decoder faults but doesn’t

detect all CFs. Moreover, the use of all 0s and all 1s input patterns is not sufficient

to completely detect CFs and NPSFs. To ensure that pattern sensitive faults and

CFs (both inter-word and intra-word) are detected, modifications are made to the

march algorithms. The modifications consist of running the algorithm with Back-

ground Data Sequences (BDS) as described in [41]. For example, the BDS for a 4-bit

memory are: 0000(1111), 0101(1010) and 0011(1100). The number of BDS added is

equal to log2(K)+1, where the number of bits in a memory word is equal to 2K .

34

2.4.1 Present Methods for Testing FPGAs and SoCs

Different approaches exist in the literature for testing FPGAs [18] [19] [42] [43],

[44] [45]. In [44] an approach for testing PLBs of an FPGA is presented. An external

memory is used for storing test configurations and also test patterns. This approach

is dependent on the number of inputs and outputs of a PLB and also on the nature of

the PLB (combinational or sequential). Test configurations are developed after parti-

tioning PLBs into modules: a combinational module and a sequential module. PLBs

are connected to form one dimensional arrays and are tested in parallel. This ap-

proach was applied for testing PLBs in the Xilinx 4000 series FPGAs. This approach

needed 21 test phases and around 102 test vectors for completely testing the PLBs

including their RAM modes of operation [44]. Each time the FPGA is reconfigured

to test any resource, it is referred to as a test phase.

A BIST approach for testing PLBs in SRAM based FPGA was proposed in

[18]. In this approach, the BIST logic is created using the FPGA logic resources

during off-line testing, which takes advantage of the in-system reprogrammability

of the SRAM-based FPGAs and thus eliminating area overhead for BIST circuitry.

This BIST approach is applicable at all levels of testing (wafer, package, board and

system) and also provides at-speed testing [18]. Unlike the previous approach, the

Test Pattern Generator (TPG) is built inside the FPGA. This approach, however,

requires storage space for BIST configuration files. This approach involves using the

PLBs as TPGs, Blocks Under Test (BUTs) and Output Response Analyzers (ORAs)

as shown in the Figure 2.14. The functionality of the BUTs is changed during each

configuration until all the logic resources in the PLBs are tested. Each configuration

35

is downloaded into the FPGA and resulting ORA responses are obtained. Due to

penalties involved in storing expected responses, the ORA compares test responses

from two adjacent BUTs. For reliability reasons, each PLB is monitored by two

different ORAs and compared with two different BUTs. This approach yields correct

results as long as all the PLBs being compared do not contain functionally equivalent

faults. For completely testing PLBs and completely testing LUTs in RAM mode,

using the above mentioned approach, a total of 9 BIST configurations were required

for ORCA2C series FPGAs and 14 BIST configurations were required for ORCA2CA

series FPGAs [45]. A similar approach was adopted to test all logic resources in Xilinx

4000 and Spartan series FPGAs in [19]. LUTs that can be configured as RAMs in

Xilinx series FPGAs are tested in [19] using the approach described in [18]. For testing

all the logic resources including LUTs in RAM mode, a total of 12 configurations were

required for Xilinx 4000 and Spartan series FPGAs. A similar approach can be applied

for testing other resources, like embedded memories and interconnect, in the FPGAs

without any area overhead.

An approach to test the memory modules (LUTs in RAM mode) in SRAM-

based FPGAs is presented in [46]. The approach aims at reducing the number of test

configurations by taking into account the fact that the number of cells in memory

modules in a PLB is very small. A memory module with n inputs and 2 memory

modes (ROM and RAM) can be tested with 3n configurations and 8n ×2n test

patterns using this approach.

The concept of configuration-dependent testing was introduced in [47]. Configuration-

dependent testing involves determining that a particular configuration is fault free to

36

 TTPPGG TTPPGG

BBUUTT

BBUUTT

OORRAA

BBUUTT

BBUUTT

OORRAA

BBUUTT

BBUUTT

OORRAA

BBUUTT

BBUUTT

OORRAA

Figure 2.14: BIST Architecture for Testing PLBs in FPGAs [18]

reduce test time. In [47], the logic function of the original application is modified

to test the configured interconnect structure. Since only logic functions are changed,

time consuming placement and routing is avoided between test configurations. A

similar approach for testing interconnect structure presented in [48] reduces the num-

ber of test configurations to 20 for testing the largest mapped design in the largest

commercially available FPGA.

One limitation of BIST for FPGAs is that though the BIST architecture is

generic, specific test configurations are not [49]. The BIST configurations have to

be redeveloped for every new PLB and/or interconnect architecture. Therefore, even

though any of the above mentioned approaches can be applied to test all resources

in FPGAs, different test configurations have to be developed for different FPGA ar-

chitectures. Most of the approaches mentioned above are similar in the sense that

they make use of the reconfigurability feature of FPGAs to test the FPGA. However,

37

each of these approaches aims at reducing the total number of test configurations so

that number of downloads can be reduced and with it the total test-time, since the

downloading process is the major component in FPGA test-time and cost.

2.5 Thesis Restatement

Existing methods for testing stand-alone FPGAs can also be applied for test-

ing FPGAs embedded in SoCs. However, utilization of some of the SOC features

(like accessibility of all cores by the embedded microcontroller) can help in devel-

oping a different test strategy that would reduce total test-time. Techniques used

to test embedded cores in FPGAs are described in [50] [51] [52] [53] [54]. Usage of

wrappers around memory and other cores for testing is described in [55]. In [54]

possible use of an embedded microcontroller core for testing all the accessible cores

in a SoC is discussed. This approach of using the microcontroller core for testing

other embedded cores forms the basis for one of the test techniques presented in this

thesis. Most of the current SoCs contain FPGA cores and memory cores. More-

over, the FPGA cores can be reconfigured at run-time by the microcontroller core,

which is generally the central core in a SoC. The microcontroller can be used to test

FPGA cores and dynamic reconfiguration feature can be used to reduce number of

downloads and hence the overall test-time. The implementation details and results

of this approach as applied for testing memory modules in Atmel’s AT94K SoC are

discussed in Chapter 3. Test development time can be reduced significantly if BIST

configurations developed are portable. VHDL can be used to develop portable code

for testing embedded memories in any FPGA. The other technique presented in this

38

thesis is development of portable code using VHDL for testing both embedded RAMs

and distributed RAMs in FPGAs. This approach uses the FPGA logic to test the

memory components. The details of this approach as applied to test memory cores

in Atmel’s AT40K FPGAs is presented in Chapter 3. Chapter 4 explains how this

approach is used to test embedded memories and other regular structure cores like

multipliers in Xilinx Spartan and Virtex FPGAs with minimal changes.

39

Chapter 3

Implementation Of BIST On ATMEL FPGAs And SoCs

The BIST approaches developed for testing RAMs in Atmel’s AT40K series

FPGAs and AT94K series SoCs are discussed in this chapter. The BIST architectures

and their implementation details are presented along with results from actual testing

of two different SoCs in the AT94K series. Finally, improvements to the performance

of BIST for RAMs in SoCs are also discussed.

3.1 RAM BIST Approaches

Two different approaches are followed for testing free RAMs in Atmel’s AT40K

series FPGAs and AT94K series FPSLIC. While the first approach is applicable for

both the devices, the second approach is only applicable for the FPSLIC. In the first

approach, all the BIST circuitry (TPG and ORAs) is built using FPGA logic re-

sources. This approach is suitable for testing RAMs in stand-alone FPGAs (which do

not have an embedded processor with partial reconfiguration capability) like AT40K

series FPGAs. In the second approach, TPG signals are generated by the embedded

microcontroller core (AVR) and the ORA is built using the FPGA logic. This ap-

proach is more suitable for testing embedded RAMs in SoCs and embedded FPGA(s)

where the FPGA can be accessed and can be partially reconfigured from an embed-

ded microcontroller core. This approach is, therefore, applicable only for the SoCs.

A mixture of these two approaches is used for testing data SRAM shared by both the

FPGA and the AVR in FPSLIC.

40

Free RAMs in AT94K and AT40K series FPGAs can be configured to operate as

single-port RAMs or dual-port RAMs in both synchronous and asynchronous modes

and have to be tested in all modes of operation. Only three modes are sufficient

to test free RAMs completely. The three modes are single-port synchronous mode,

single-port asynchronous mode and dual-port synchronous mode. Free RAMs are

not truly dual-ported and also the read-port is asynchronous. As a result, free RAMs

need not be tested in dual-port asynchronous mode. Also BDS are employed only in

single-port synchronous mode of testing. Coupling faults and neighborhood pattern

sensitive faults detected using BDS are memory specific and need not be detected

again.

3.1.1 BIST Approach for Free RAMs Using FPGA Logic

In this approach, the TPG which generates march sequences is built using FPGA

logic resources. The ORA, responsible for comparing output responses and storing

BIST results, is also built using FPGA logic resources. March algorithms used for

testing free RAMs and BIST architectures used in this approach are explained in the

following subsections.

3.1.1.1 BIST Architecture for Dual-port Synchronous Mode

The BIST architecture used for testing free RAMs in dual-port synchronous mode

is shown in Figure 3.1(a). All RAMs are tested in parallel using a single TPG and

the ORA is designed to compare outputs of two adjacent RAMs. All RAMs except

those on the rightmost and leftmost columns are compared by two ORAs. Two TPGs

41

are generally used for this kind of BIST architecture to make sure that TPG is not

faulty. But the Finite State Machine (FSM) based TPG is too large to replicate and

fit inside the device. Therefore, it is assumed that the logic and routing resources

are known to be fault-free as a result of previously executed BIST for programmable

logic and routing resources [56].

ORA

RAM

TPG

(a)

PLB PLB

Data from RAM1

Data from RAM2

Shift Data
Shift Control Clk Reset

Shift Data
to Next
ORA

(b)

Figure 3.1: a) Dual-Port Free RAM BIST Architecture b) ORA Design

The design of a single-bit ORA which uses two PLBs is shown in Figure 3.1(b).

The ORA latches a logic ‘1’ if any mismatch occurs at the RAM outputs during the

march sequence. All the ORAs are connected in the form of a scan chain to shift

42

the BIST results out. At the end of the BIST sequence, when the shift control pin is

high, the ORA acts as a shift register. Four single-bit ORAs are associated with each

RAM. In a N×N device, where N is the number of PLBs along one dimension of the

FPGA, there are (N /4)×((N /4)-1) dual-port RAMs, as the RAMs in the rightmost

column cannot act as dual-port RAMs. Since each bit in the left and right columns

of the dual-port RAMs is being compared by only one ORA, the number of PLBs

used for the ORA is equal to N×(N /4-2)/2.

The TPG generates a march sequence to supply RAM with data, address and

control signals. The DPR march algorithm used to test dual-port RAMs in [19] is

slightly modified and used to test dual-port free RAMs. The modified DPR march

sequence used is as follows:

DPRTest : m (w0 : n);⇓ (n : r0);⇑ (w1 :⇓ r1);⇓ (w0 :⇑ r0);

The notation used is as described in Chapter 2. Here, ‘n’ indicates no operation

on that particular port and the colon separates operations performed on the write

and read ports. The TPG is implemented as a FSM in VHDL and it synthesized to

66 PLBs. Four I/O pins are used: CLK input for running BIST and scanning results

out, RESET input for resetting the TPG and the ORA, SHIFT input for shifting

results out and SCANOUT data output for reading the results. The SHIFT pin also

goes to Shift Data input (as shown in Figure 3.1(b)) of the last ORA in the chain

and thus produces all 1s at the end of scan chain when shifting out the BIST results.

This provides a sanity check on the ORA data and assists in detecting certain faults

in the ORA scan chain [68]. The total number of clock cycles required for running the

43

BIST and retrieving the results is equal to 2112 + N×((N /4)-2), where N indicates

number of PLBs along one dimension of the array.

3.1.1.2 BIST Architecture for Single-port Modes

The BIST architecture for testing free RAMs in single-port synchronous and

asynchronous modes is similar and is as shown in Figure 3.2(a). All RAMs are

tested in parallel using a single TPG and the ORA compares data from RAMs with

expected read data results generated by the TPG. The design of the single-bit ORA is

shown in Figure 3.2(b). A tri-state buffer is required in this design as the write-data

lines are used for both reading and writing data in single-port mode. The active high

tri-state buffer in the ORA passes TPG data through when writing into the RAM and

is tri-stated when reading from the RAM which allows the read data to be compared

with expected data from the TPG. The tri-state buffer is controlled using the OEN

signal which also goes to the active low Output Enable signal of the RAM.

The ORA design for single-port mode, though not as simple as dual-port design,

makes diagnosis of RAMs much simpler. Such a design is not used in dual-port mode

because the generation of expected results by the TPG is more complicated as data

can be read and written at the same time and also routing resources are not sufficient

to implement such a design. For a N×N device, a total of N×N /2 PLBs are used

for the ORAs.

In synchronous single-port mode of operation, the March LR [57] algorithm is

used to test the free RAMs. The algorithm is modified by including BDS to test for

intra-word CFs and neighborhood pattern sensitive faults [41]. The length of the test

44

(a)

ORA

RAM

TPG

PLB
Shift Data

Shift Control Clk Reset

Shift Data
to Next
ORA

(b)

PLB

TPG Data

OEN

Data to/from RAM

Figure 3.2: a) Single-port Free RAM BIST Architecture b) ORA Design

sequence is 30×N, where N =32 for a free RAMs. The TPG is implemented in VHDL

and is synthesized to 123 PLBs. The sequence is as follows:

March LR test :m (w0000);⇓ (r0000;w1111);⇑ (r1111;w0000; r0000; r0000;

w1111);⇑ (r1111;w0000);⇑ (r0000;w1111; r1111; r1111;w0000);⇑ (r0000;w0101;

w1010; r1010);⇓ (r1010;w0101; r0101);⇑ (r0101;w0011;w1100; r1100);⇓ (r1100;

w0011; r0011);⇑ (r0011);

The same four I/O pins used in dual-port mode are used in single-port mode.

The total number of clock cycles required for running the BIST and retrieving the

45

results is equal to 960 + N×N /4, where N indicates number of PLBs along one

dimension of the array.

In asynchronous mode of operation, the March Y [39] algorithm with no BDS is

used. BDS are primarily used for testing intra-word CFs and neighborhood pattern

sensitive faults and since they have already been tested in single-port synchronous

mode, BDS are not used in asynchronous mode of testing. The TPG is implemented

in VHDL and is synthesized to 18 PLBs. The sequence is as follows:

March Y test :m (w0);⇑ (r0, w1, r1);⇓ (r1, w0, r0);⇑ (r0);

The length of the test sequence is 8N, where N =32 for a free RAM. Total number

of clock cycles required for running the BIST and retrieving the results is equal to

256 + N×N /4, where N indicates number of PLBs along one dimension of the array.

Table 3.1 shows results of timing analysis performed for the three BIST configurations

on AT94K40 device which contains an array of 48×48 PLBs.

Table 3.1: Timing Analysis Results for Three RAM BIST Configurations
Mode Maximum Clock Frequency

Dual-port synchronous 17.7 MHz
Single-port synchronous 12.3 MHz
Single-port asynchronous 21.4 MHz

Fault simulation was carried out on a gate-level model of free RAM developed for

stuck-at fault coverage using AUSIM [58]. The model is described in ASL and is as

listed in Appendix A. Individual fault coverage for dual-port, single-port synchronous

and single-port asynchronous modes was found to be 75.74%, 81.79% and 75.56%

respectively as shown in Figure 3.3. A cumulative fault-coverage of 99.81% was

46

obtained for all three test configurations. A total of 1870 single stuck-at faults exist

in the model and 6 faults were found to be undetected.

0

20

40

60

80

100

1 2 3

RAM Configuration

Fa
ul

t C
ov

er
ag

e
(%

)
Individual FC Cumulative FC

D
P
S
Y
N
C

S
P
S
Y
N
C

S
P
A
S
Y
N
C

Figure 3.3: Fault Simulation Results for Free RAM

3.1.2 Advantages and Limitations of Using VHDL

Parameterized VHDL code is used to implement the BIST logic. This makes the

design portable and thus can be migrated onto other chips with minimal changes.

But for diagnosis of faults based on BIST results, some support is needed from the

synthesis tool. Unless the placement of RAMs with respect to the ORAs can be

controlled during synthesis, faulty RAMs cannot be identified from BIST results.

Placement cannot be controlled from Atmel’s synthesis tool (called Figaro) if VDHL

modeling is used. The solution is to either manually place the RAMs or maintain

47

mapping information for identifying physical locations of the faulty RAMs from BIST

results. As a design gets larger, manual placement becomes tedious. Also, the map-

ping information may change every time the design is synthesized. As a result, the

VHDL-only approach didn’t prove to be beneficial for Atmel’s FPGAs. A propri-

etary HDL is provided by Atmel for AT40K and AT94K devices. This language,

called Macro Generation Language (MGL) [59], has features similar to VHDL and

also has features that allow placement of logic blocks and define routing of intercon-

nect resources. As a result, a mixed approach is used by making use of both VHDL

and MGL. While MGL is used to define placement of RAMs and ORAs and their

interconnection, VHDL is used for the TPG. Since MGL does not support behavioral

description, designing the TPG with MGL implies transformation of the netlist into

MGL which would not be an easy task due to the complexity of the TPG. In order

to reduce development time, TPG is modeled using VHDL.

The fact that RAMs embedded in FPGAs can operate in different modes affects

the portability of VHDL. Furthermore, memories may have to be tested with dif-

ferent march sequences if memory technology changes. With the change in memory

technology, fault models adopted for testing may change and this results in redevel-

opment of VHDL code. To avoid this problem to some extent, a tool was created

which generates VHDL code automatically for a particular march sequence. This

tool, called RAMBISTGEN, generates VHDL code for any size of the memory and

for any active edge of the clock and any active levels for control signals. However, this

tool is currently capable of generating code for only single-port march sequences. A

snapshot of the tool is shown in Figure 3.4. This tool takes the input file containing

48

Figure 3.4: Snapshot of The RAMBISTGEN Tool

the march sequence and produces an output file containing the resulting VHDL code.

The format for the input file is as follows:

< u/d >< r/w >< data > [, < r/w >< data >].....

The above line represents the format for a march element of the sequence. Each

line starts with ‘u’ or ‘d ’ indicating the addressing order in up or down direction,

respectively. This is followed by ‘r ’ or ‘w ’ indicating read or write operation, re-

spectively. This is followed by the data to be read or written. Different read and

write operations are separated by a comma. Each line represents a different march

element. Address bus width is specified by the user in the GUI and data bus width is

interpreted from the read/write data in the input file. The format of the input files

for March Y and March LR algorithms is shown in Table 3.2.

49

Table 3.2: RAMBISTGEN Input File Format for March Y and March LR
Algorithm Input File Format

m (w0);
⇑ (r0, w1, r1);
⇓ (r1, w0, r0);
⇑ (r0);

d w 0
u r 0 , w 1, r 1
d r 1, w 0 , r 0
u r 0

m (w0000);
⇓ (r0000;w1111);
⇑ (r1111;w0000; r0000; r0000;w1111);
⇑ (r1111;w0000);
⇑ (r0000;w1111; r1111; r1111;w0000);
⇑ (r0000;w0101;w1010; r1010);
⇓ (r1010;w0101; r0101);
⇑ (r0101;w0011;w1100; r1100);
⇓ (r1100;w0011; r0011);
⇑ (r0011);

u w 0000
d r 0000 , w 1111
u r 1111, w 0000, r 0000, r 0000, w 1111
u r 1111, w 0000
u r 0000, w 1111, r 1111, r 1111, w 0000
u r 0000, w 0101, w 1010, r 1010
d r 1010, w 0101, r 0101
u r 0101, w 0011, w 1100 , r 1100
d r 1100, w 0011, r 0011
u r 0011

The input is not case sensitive. The tool generates approximately 140 and 300

lines of VHDL code for March Y and March LR algorithms, respectively. The tool

interprets the input file as follows:

1. Each line of the file is categorized as a phase.

2. All the words separated by a comma are treated as different elements of that phase.

For example, in u r 1111, w 0000 there are two elements: r 1111 and w 0000.

3. During FSM implementation, each phase is treated as a separate state and each

element of that phase forms a sub-state of that phase.

The resulting VHDL code for the above march sequences is given in Appendix

B. The tool was developed using Tool Control Language/Tool Kit (Tcl/Tk) and is

compatible with Windows and Linux environments. The line count for the source

code is 400.

50

3.1.3 BIST Approach for Free RAMs Using Embedded Processor Core

The idea of this approach is to generate TPG signals from the embedded proces-

sor core. As a result, this approach is applicable only to the FPSLIC. The processor

is also responsible for running the BIST, retrieving the BIST results, diagnosing the

results and reporting back the diagnostic results to a higher controlling device (PC for

example). The embedded processor in the FPSLIC can write into the configuration

memory of the FPGA. This capability of the processor is used in combining the three

RAM BIST configurations into one configuration. The free RAMs are initially config-

ured in dual-port synchronous mode for running BIST. Then RAMs and FPGA logic

are reconfigured to test RAMs in single-port synchronous and asynchronous modes.

Thus, by avoiding two of the three downloads, testing time can be reduced signifi-

cantly (approximately 3 times). Since only one bit-stream has to be stored instead of

three, memory requirements are also reduced by a factor of three. The TPG is very

irregular in structure. The rest of the circuit containing ORA and RAMs and can

be made regular. Thus, by making the BIST circuitry inside the FPGA regular, the

entire BIST logic to be built inside the FPGA (RAMs, ORAs and interconnections)

can be algorithmically configured by the processor. This further reduces testing time

because no bit-stream needs to be downloaded into the FPGA and requires just a

download into program memory of the AVR.

3.1.3.1 AVR-FPGA Interface Description

Before describing the actual implementation, the AVR-FPGA interface has to

be reviewed. The interface is illustrated in Figure 3.5. Data can be written into

51

the FPGA from the AVR through the AVR Data bus using any of the 16 IOSEL

lines. Whenever data is written into the AVR Data bus using one of the IOSELn

lines, the FPGAWE line and corresponding IOSELn line are asserted high for one

AVR clock cycle after stable data is produced on the AVR Data bus. Data can be

read from the FPGA through the AVR Data bus using any of the 16 IOSEL lines.

When reading data from the FPGA into the AVR Data bus, the FPGARE line and

corresponding IOSELn line is asserted high for one AVR clock cycle before stable

data is produced on the AVR Data bus. According to the FPLSIC datasheet [29], in

order to use IOSELn lines as a clock inside the FPGA, they have to be qualified with

the FPGAWE or the FPGARE line.

FPGA Side AVR Side

FPGA WE

FPGA RE

IOSEL0

IOSEL15

IOSEL1

8AVR Data

Figure 3.5: AVR-FPGA Interface

52

3.1.3.2 BIST Architecture

The architecture used is similar to the one used in the previous approach ex-

cept that the TPG signals are generated by the processor. In dual-port mode, as

in the previous approach, each ORA compares two adjacent RAMs as shown in Fig-

ure 3.6(a). In single-port mode, each ORA compares data from RAM with expected

data generated by the processor as shown in Figure 3.6(b).

ORA

RAM

Processor

TPG signals

ORA

RAM

Processor

(a) (b)TPG signals

Figure 3.6: Architecture of RAMBIST From AVR (a)Dual-port Mode (b) Single-port
Mode

3.1.3.3 Implementation of BIST Approach in FPSLIC

Initially free RAMs are configured to be tested in dual-port mode. The FPGAWE

and FPGARE lines are used as clocks for running BIST and for retrieving BIST

results, respectively. The AVR Data bus is used for providing address, data and

output enable signals to the free RAMs. Since the 8-bit wide data bus is not sufficient

to provide all required signals, all signals are registered as shown in Figure 3.7. The

53

IOSEL lines are used as enable signals for the registers. The function of each IOSELn

is shown in Table 3.3. IOSEL0 is used as global reset signal for clearing the ORAs.

The two registers are selected by IOSEL1 and IOSEL2 lines respectively. IOSEL3

line is used as clock enable for running BIST.

AVR

FPGA

R
e
g
1

R
e
g
2

ORA and RUTsTPG Data

Figure 3.7: RAMBIST Implementation from AVR

Table 3.3: Function of IOSEL Lines
IOSEL Line Function

IOSEL0 Reset
IOSEL1 Reg1 Enable
IOSEL2 Reg2 Enable
IOSEL3 BIST CLK Enable

As shown in Figure 3.7, two registers are used inside the FPGA for storing TPG

signals: an 8-bit wide register(Reg1) and a 5-bit wide register(Reg2). The contents

54

of Reg1 and Reg2 are shown in Table 3.4 and Table 3.5, respectively. In single-port

mode, bits 0-3 of Reg1 provide BDS for the RAM. Since no BDS are used in dual-port

mode, bit 0 is used to define whether all 0s or all 1s are written into RAM. Bit 7 of

Reg1 is used to control the data and OEN that to goes to each RAM in all modes

of testing. Bits 1-5 of Reg1 provide read address and bits 0-4 of Reg2 provide write

address in dual-port mode. In single-port mode, bits 0-4 of Reg2 provide address for

RAMs. Bit 6 of Reg1 is used as shift signal to read the contents of the ORA after

testing is completed.

Table 3.4: Contents of Reg1
B7 B6 B5 B4 B3 B2 B1 B0

Dual/Single
Port

Shift RAddr4 RAddr3 RAddr2/
Data3

RAddr1/
Data2

RAddr0/
Data1

Data0

Table 3.5: Contents of Reg2
B5 B4 B3 B2 B1 B0

OEN WAddr4 WAddr3 WAddr2 WAddr1 WAddr0

MGL is used to define the placement of RAMs and ORAs and interconnection

between them. VHDL is used define the registers and also to activate the AVR-

FPGA interface. The AVR can write into FPGA configuration memory but, cannot

read back data from configuration memory. Moreover, the AVR can only write each

byte in the configuration memory. Some bytes in the configuration memory are shared

by both logic and routing resources. Therefore, it is important to know underlying

routing architecture when reconfiguring the FPGA from the AVR for testing RAMs

55

in a different mode. Therefore, MGL was used not only for placing RAMs and ORAs

but also for controlling the routing.

The program in the AVR memory for running the BIST is implemented in C lan-

guage. Once the program is downloaded, the AVR waits for a valid instruction from

a higher controlling device (PC in our case). AVR can be instructed to either run

BIST or to run diagnostics. If instructed to run BIST, AVR would return pass/fail

status to the PC after running BIST for a particular mode. If instructed to run diag-

nostics, AVR would return diagnostic results to the PC after executing the diagnostic

algorithm on the test results. A four-wire serial communication protocol is used for

communication between the PC and AVR.

3.1.4 On-Chip Diagnostics

AVR is not only capable of executing the BIST sequence and retrieving the

BIST results but also capable of performing diagnostic procedures based on the BIST

results for the identification of faulty RAMs in the FPGA core. The AVR, after

running diagnostic procedures, identifies the location of the faulty RAM in terms

of it’s X (column) and Y (row) coordinates. The AVR also identifies which bit(s)

of the RAM is faulty. Since two different BIST architectures are used for testing

free RAMs, two different diagnostic procedures were developed. In single-port test

configuration, the ORA compares the expected results generated by the AVR with

the data read from the RAMs Under Test (RUTs). Since the ORA incorporates

a shift register, the BIST results latched in the ORA are retrieved by the AVR.

Each bit retrieved corresponds to a single-bit of the 4-bit words of the RAM. The

56

position of the ORA in the FPGA array, and the corresponding RAM with which it is

associated, is determined by the ORA’s position in the shift register. As a result of the

ORA comparison of the RUTs output with the expected read results produced by the

TPG, the diagnostic procedure for the single-port RAM modes of operation is straight

forward. The diagnostic procedure looks for ORA failure indications (logic 1s) and

translates the positions based on the shift register order to identify not only which

RAMs are faulty but also which bits in a given RAM are faulty. A faulty ORA can

mimic a fault in its corresponding RAM. This can be identified when PLBs are tested.

In dual-port test configuration, since each ORA compares two adjacent RAMs

a different diagnostic approach is used. The Multiple Faulty Cell Locator (MULTI-

CELLO) algorithm originally developed for diagnosing faulty PLBs in FPGAs [45] is

used for diagnosis of dual-port RAMs. This procedure is more complicated because it

is possible that equivalent faults in two RAMs being compared by the same ORA will

go undetected. Since all the RAMs except those at the leftmost and the rightmost

edges of the FPGA are being observed by two sets of ORAs and being compared to

a different RAM in each set of ORAs, it is highly improbable for the faulty RAMs

to go undetected. This approach however loses diagnostic resolution for the RAMs

at the leftmost and rightmost edges of the FPGA. MULTICELLO algorithm marks

the faulty status of the RAMs to be unknown if the results indicate that there is any

possibility of faults. These ambiguities in the diagnosis can be overcome by rotating

the RAM BIST architecture by 90◦ such that rows of ORAs are comparing rows of

RAMs with the diagnostic procedure applied to the new BIST results. This procedure

of rotating and running the BIST has to be applied at the cost of increased testing

57

time. The MULTICELLO algorithm as applied to the dual-port RAMs is described

in [60].

The diagnostic procedures were implemented and verified in compiled C programs

that were downloaded into and executed by the AVR. These diagnostic procedures

require around 1.3K bytes of program memory irrespective of the device size. How-

ever, amount of data memory required changes linearly with the size of the device

because of the change in the amount of ORA data. Table 3.6 summarizes the pro-

gram and data memory requirements for AT94K40 device which contains a 12×12

array of RAMs (the largest in the AT94K series). Memory requirements for carrying

out BIST and diagnosis are listed individually. BIST and diagnosis are run at 20MHz

and the number of clock cycles required is also listed in Table 3.6. Implementation of

diagnostics would increase the testing time by 21%. However, the AVR would perform

diagnostics only when it receives such an instruction from a higher controlling device

and this reduces testing time. AVR is instructed to execute diagnostics procedures

only when BIST results indicate some failure and the failure analysis is of interest.

Table 3.6: BIST and Diagnosis Summary
Function Execution Cycles Program Memory (bytes) Data Memory(bytes)

BIST 398,100 1,860 72
Diagnostics 110,000 1,330 132

Total 508,100 3,190 204

58

3.2 Data SRAM Testing

Apart from free RAMs embedded in the FPGA, there exists a 36K bytes data

SRAM and program SRAM. The size of the data SRAM can vary from 4K bytes to

16K bytes and rest of the memory portion acts as program memory for the AVR. The

data SRAM is a dual-port RAM accessed by both FPGA and AVR from different

ports except for the lower 4K bytes portion which is accessible only by the FPGA.

The program SRAM, however, can be accessed only by the AVR. But the program

SRAM cannot be directly written or read from the AVR. Therefore the program

SRAM cannot be tested from the AVR. The dual-port data SRAM has to be tested

for both cell-related faults and port related faults. Therefore, the data SRAM has to

be tested in three different modes as shown in Figure 3.8. In the first testing mode,

the data SRAM is treated as a single-port RAM accessible by the FPGA and is tested

from the FPGA. In the second testing mode, the data SRAM is treated as single-port

RAM accessible by the AVR and is tested from the AVR. In the third testing mode,

the data SRAM is tested for port related faults with assistance from both FPGA and

AVR. While testing from FPGA, the data SRAM is configured to be 16K bytes in

size.

Since the data SRAM cannot be configured directly to be a single-port RAM i.e.,

accessible only from one side at all times, care has to be taken so that the contents of

RAM are not modified from one port when testing from the other port. The AVR uses

some portion of the data SRAM as a data segment for storing stack data and other

temporary variables. Therefore, when testing with BIST circuitry inside the FPGA,

there is a possibility that some previously stored data in the program memory of the

59

AVR results in AVR stacking data in the data SRAM. To avoid failure results in such

a case, AVR has to be restricted from writing into the data SRAM. In first mode

of testing, this was achieved by having AVR execute an instruction which always

branches to the same location.

F
P
G
A

data
SRAM

A
V
R

data
SRAM

A
V
R

data
SRAM

F
P
G
A

(a) (b) (c)

Figure 3.8: Three Configurations for Data SRAM testing (a) for Single-port Faults
from FPGA (b) for Single-port Faults from AVR (c) for Dual-port Faults from both
AVR and FPGA

The March LR with BDS is used to test data SRAM in the first mode of testing.

VHDL was used to implement March LR as a FSM and, when synthesized, 230 PLBs

are used for implementing the TPG in the FPGA and 16 PLBs are used for the ORA.

The ORA is configured as a scan chain for reading the BIST results. Diagnosis is

simple and is limited to indication of the faulty bit(s) of the RAM.

March LR with BDS is used for testing the 12K bytes portion of data SRAM

accessible from AVR. Since some portion of data SRAM is used by the AVR for

stacking data, two BIST configurations are required to completely test the data SRAM

60

from AVR. The data segment is relocated in the second configuration to test the

portion of RAM not tested in first configuration.

March d2pf and March s2pf algorithms [61] are used for testing the data SRAM

from both ports. The notation for these algorithms is as shown below.

March s2pf : m (w0 : n);⇑ (r0 : r0, r0 : −, w1 : r0);⇑ (r1 : r1, r1 : −, w0 : r1);⇓

(r0 : r0, r0 : −, w1 : r0);⇓ (r1 : r1, r1 : −, w0 : r1);⇓ (r0);

March d2pf : m (w0 : n);⇑C−1
c=0 (⇑R−1

r=0 (w1r,c : r0r+1,c, r1r,c : w1r−1,c, w0r,c : r1r−1,c, r0r,c :

w0r+1,c));⇑C−1
c=0 (⇑R−1

r=0 (w1r,c : r0r,c−1, r1r,c : w1r,c−1, w0r,c : r1r,c+1, r0r,c : w0r,c+1));

‘C ’ represents the column width and assumed to be ‘1’ while implementing the

March d2pf algorithm. The algorithms are implemented in compiled C code down-

loaded into the program memory of AVR. Three registers are built in the FPGA to

store address, data and control signals for testing the data SRAM from the FPGA

side. The AVR stores these registers before clocking the data SRAM from the FPGA

side. The contents of the three registers are as shown in Table 3.7.

Table 3.7: Contents of Registers Used for Testing Data SRAM
Reg1(B7-B0) Reg2(B7-B0) Reg3(B3-B0)

SRAM Address 7-0 SRAM Address 15-8 Reset ORA Enable Data WEN

Reg1 and Reg2 are used for storing the SRAM address and Reg3 is used for

storing control signals for the RAM and the ORA. All three registers are controlled

by the system clock that comes from the AVR. The three registers are enabled by

IOSEL0, IOSEL1 and IOSEL2 lines, respectively. The ORA Enable signal is used to

disable the ORAs while writing the data into the data SRAM. The Reset signal is

used for resetting the ORAs before running BIST. WEN is the write enable signal

61

for the data SRAM. The Data bit of Reg3 indicates if data to be written into or

read from the data SRAM is either all 1’s or all 0’s. This data is compared by the

ORA with the data from the data SRAM during read operation. The ORA and the

data SRAM are clocked by the FPGAWE signal and IOSEL3 is used as clock enable

signal.

Because the AVR uses some portion of the data SRAM for stacking data, two

configurations are required to test the data SRAM in dual-port mode due to stack

relocation. A total of five configurations are required for completely testing the data

SRAM: three single-port tests and two dual-port tests. These five configurations are

reduced to three by combining two single-port tests with two dual-port tests. This

helps in reducing the testing time and also memory storage requirements.

3.3 Summary

Two approaches for testing the embedded memory cores were presented in this

chapter. The first approach aims at developing an FPGA independent BIST for em-

bedded memories. This is done by developing a parameterized VHDL code which

is portable and can used to test embedded memories in any FPGA with minimal

changes. However, for diagnosis, some support for placement control is needed from

the tools which synthesize the VHDL code. This approach was applied to test embed-

ded RAMs in Atmel’s FPGAs and SoCs. The portability of this approach is tested

by applying this approach to test embedded cores in Xilinx Virtex and Spartan series

FPGAs. The details of applying this approach to Xilinx devices and results of this

approach are discussed in Chapter 4.

62

The second approach aims at reducing the testing time. This approach, appli-

cable to SoCs, requires assistance from an embedded microcontroller. The partial

reconfiguration capability of the microcontroller can be used in combining different

BIST configurations. This avoids multiple downloads into the FPGA and reduces the

testing time significantly. Though this approach can be applied to other SoCs, some

development is required because of the changes in interfacing between microcontroller

and FPGA.

A summary of RAM BIST configurations and memory requirements for storing

BIST configurations are shown in Table 3.8 and Table 3.9 respectively. The single-

download method explained in this thesis improves both testing time and memory

requirements for storing BIST configurations by a factor of approximately 2.5 as

determined by running the tests on actual devices. As can be seen from Table 3.8,

by combining all configurations into one download, the download time decreases from

1500 ms to 600 ms. However, the time taken for running BIST and retrieving BIST

results increases from 311 us to 8.8 ms because concurrent execution inside the FPGA

is now replaced with sequential execution of AVR program code. This increase in

BIST running time (8.5ms) is very small compared to the decrease in download time

(900ms) and this results in significant improvement in total test-time.

All the above mentioned BIST configurations have been downloaded into Atmel

AT94K40 and AT94K10 SoCs and have been verified by injecting faults in various

resources of the FPGA.

Estimations of total test-time and memory storage requirements if the BIST

circuitry is algorithmically generated from the AVR without downloading into the

63

Table 3.8: Summary of RAM BIST Configurations for FPSLIC

Testing
resource

Config

BIST
exec.
time
(sec)

Dwld
time
(ms)

Total
test
time
(ms)

TPG
PLBs

ORA
PLBs

Max
Clk
speed
(Hz)

Speed-

up

Free RAM Dual-port 147u 500 500.147 66 960 17.7M

testing
Single-port
sync

124u 500 500.124 123 1152 12.3M 1

from FPGA
Single-port
async

40u 500 500.04 18 1152 21.4M

Free RAM
testing
from AVR

All modes 8.8m 600 608.8 14 1152 20M 2.46

Free RAM
testing
without
down-
loading
into
FPGA

All modes 20m 180 200 14 1152 20M 7.5

Single-port
from FPGA

32.7m 375 407.7 210 16 18.5M

Data SRAM
Single-port+
dual-port

657m 375 1032 30 8 20M 1

Single-port+
dual-port
with stack
relocation

95m 375 470 30 8 20M

FPGA are shown in bold in Table 3.8 and Table 3.9, respectively. Worst-case as-

sumptions for program size and partial reconfiguration time from the AVR result in

improvement of test-time by a factor of approximately 7.5 and improvement in mem-

ory requirements for storing BIST configurations by a factor of approximately 8 for

a 48×48(PLBs) device if a single compiled AVR code is downloaded. Generation of

BIST logic from AVR requires downloading compiled C code into program memory

64

Table 3.9: Memory Storage Requirements for BIST Configurations
Testing
Resource

Config Bit-stream
Size(K Bytes)

Memory Reduc-
tion Factor

Free RAM Dual-port 590
testing Single-port sync 585 1
from FPGA Single-port async 561
Free RAM
testing Allmodes 731 2.37
from AVR
Free RAM
testing
without All modes 200 8.68
downloading
into FPGA

Data SRAM
Single-port from FPGA 458

1Single-port + dual-port 453
Single-port + dual-port
with stack relocation

453

of AVR eliminating any download into the FPGA. This results in significant improve-

ment in overall testing time. However, as the device size shrinks the improvements

may not be as significant because the bitstream-size decreases with the size of the

device and download time approaches that of BIST execution time.

65

Chapter 4

Implementation of BIST on Xilinx FPGAs

BIST approaches for testing embedded block RAMs and distributed LUT RAMs

in Virtex and Spartan series FPGAs from Xilinx are discussed in this chapter. The

VHDL code originally developed for testing memory components in FPSLIC is used

for testing RAMs in Xilinx FPGAs with minimal changes. The impact of architectural

changes in Xilinx FPGAs on the BIST architecture and the changes needed in the

BIST implementation are also discussed.

4.1 Motivation

The basic BIST architecture used for PLBs in FPGAs is shown in Figure 2.14.

A similar BIST architecture is used for testing routing resources and memory com-

ponents in various families of FPGAs [19] [45] [60]. Though the BIST architecture is

independent of the FPGA, BIST configurations are architecture dependent and have

to be developed from scratch for different families of FPGAs. If BIST development for

one family of FPGAs can be reused, development time can be reduced significantly.

All FPGAs support logic implementation using a Hardware Description Language

(HDL) such as VHDL or Verilog. Since most HDLs are portable, BIST development

implemented for a given FPGA should be reusable in most of the other FPGAs. In

order to assess the flexibility and versatility of this approach, the VHDL-based BIST

developed for testing embedded RAMs in Atmel FPGAs is used for testing memory

components in Xilinx FPGAs. The architecture of Xilinx FPGAs is discussed in the

66

next section so as to compare with that of Atmel and discuss its impact on various

attributes of testing like total testing time, number of test configurations and the

BIST architecture.

4.2 PLB and Routing Architecture

Xilinx FPGAs adopt a coarse-grained architecture as opposed to the fine-grained

architecture adopted by the Atmel FPSLIC [62] [63] [64] [65] [66]. More logic can be

accommodated in a Xilinx PLB when compared to the Atmel PLB. PLBs in Spartan

and Virtex series FPGAs are made up of slices. Each slice typically contains two LUTs

and two storage elements along with other components. The basic architecture of a

slice is shown in Figure 4.1. Each slice in all the Xilinx FPGAs under consideration

for testing consists of two 4-input LUTs, two storage elements, fast carry look-ahead

chain and dedicated arithmetic logic gates. Multiplexers are used to handle larger

input logic functions by implementing Shannon’s expansion theorem. The LUTs can

also be configured to operate as a shift-register or a RAM, which form the distributed

memory in the FPGA. Each slice is capable of implementing a logic function of up

to 9 inputs [64].

Each PLB consists of two slices in Virtex I, Spartan II devices and four slices in

Spartan III, Virtex II and Virtex II Pro devices. Compared to Atmel PLBs, PLBs

in Xilinx devices are more complicated and capable of accommodating more logic.

Table 4.1 summarizes the minimum and maximum PLB array sizes of Xilinx family

FPGAs under consideration for testing.

67

LUT1

Shift
Reg

RAM

LUT2

Shift
Reg

RAM

Storage
Element

Storage
Element

Carry
logic

Carry
logic

M
u
x
1

M
u
x
2

Arithmetic Logic

Figure 4.1: Architecture of a Slice in Virtex and Spartan FPGAs [65]

The routing architecture of Xilinx devices is hierarchical and consists of long lines,

hex lines, double lines and local direct lines. Long lines span across the entire height

and width of the device [65] [64]. Hex lines connect to every third and sixth PLB away

in all four directions. Double lines connect to every first and second PLB away in all

four directions. PLBs access the above mentioned global routing resources through

a switch matrix. Local routing resources enable PLBs to connect to adjacent PLBs.

Local direct lines in Virtex and Spartan II FPGAs allow connections to horizontally

adjacent PLBs and in Virtex II and Virtex II Pro devices, direct lines can connect to

all surrounding 8 PLBs. Apart from these lines, there are internal lines to connect

LUTs in different slices of a given PLB [65] [64].

68

Table 4.1: PLB Array Size Bounds for Xilinx Family FPGAs
Family Min Size Max Size
Virtex I 16x24 64x96

Spartan II 8x12 28x42
Spartan III 16x12 104x80
Virtex II 8x8 112x104

Virtex II Pro 16x22 120x94

4.3 Embedded Block RAMs Architecture

In addition to the distributed memory of the LUT RAMs in PLBs, the Xilinx

FPGAs incorporate multiple large, dedicated RAMs called block RAMs [65] [64]. The

size of block RAMs varies with the device family. Block RAMs in Virtex I and Spartan

II are functionally identically identical and are 4K bits in size. They are arranged in

two columns at the rightmost and leftmost edges of the array and are 4 PLBs in height

as shown in Figure 4.2(a). Each block RAM contains two identical ports which can

be operated independently. They can be configured to operate in single-port mode

or in dual-port mode. Block RAMs are true dual-port RAMs, unlike free RAMs in

Atmel FPGAs. As a result, a different test algorithm has to be used. Block RAMs

are huge compared to free RAMs and this affects the testing time. Block RAMs in

Virtex I and Spartan II can operate in five different sizes (words x bits): 4096×1,

2048×2, 1024×4, 512×8, 256×16. This affects the number of configurations required

to completely test block RAMs, as will be discussed. Block RAMs can only operate

in synchronous modes.

Block RAMs in Virtex II, Spartan III and Virtex II Pro devices are functionally

identical and are 18K bits in size. However, the number of block RAMs and their

69

…
…

…
.

…
…

…
.

…
…

…
.

…
…

.

Block RAMs and multiplier blocks

…
…

.

PLBs

…
.

…
.

…
…

.

(a) (b) (c)

Figure 4.2: Organization of Block RAMs in (a) Virtex I and Spartan II FPGAs (b)
Virtex II, Virtex II Pro and Spartan III FPGAs (c) Spartan III FPGAs

arrangement vary with the device in a particular family as shown in Figure 4.2(b) and

Figure 4.2(c). As a result, device characteristics have to be considered when placing

RAMs, as will be discussed. The 18K bits block RAMs operate in six different sizes

(words x size): 512×36, 1K×18, 2K×9, 4K×4, 8K×2 and 16K×1. For widths that are

not integral multiples of bytes, an additional parity bit is optionally provided for each

byte. All of these different modes of operation affect the number of configurations

required to completely test block RAMs, as will be discussed.

Three different write modes are provided in dual-port operation to maximize

throughput and efficiency of block RAMs [67]. The three modes are: WRITE FIRST,

READ FIRST and NO CHANGE. In WRITE FIRST mode, the input data is written

into the addressed RAM location and also simultaneously stored in the output data

latches and, if the other port tries to read the same location, the output data on

70

that port is unknown which means that the data can be either previously stored

data or data that is being currently written. In READ FIRST mode, data previously

present in the addressed RAM location is reflected on the output data lines while the

input data is being written into the addressed location and data previously stored is

reflected on the other port if it is trying to read the same location. In NO CHANGE

mode, the data on output data lines remain unchanged and, if the other port is trying

to read the same location, the output data on the port is unknown. The basic block

diagram of a block RAM is shown in Figure 4.3. Clock enable, set/reset, clock and

enable lines of each port can be independently configured to operate with any active

level(or edge in case of clock) as shown in Figure 4.3. Set/Reset signal, when asserted,

would initialize the data output latches synchronously to all 1s or all 0s. All these

features affect the number of BIST configurations and also the BIST architecture as

will be discussed.

4.4 Block RAM Testing

Block RAMs have to be tested in both single-port and dual-port modes. Initially,

the block RAM is configured in single-port mode to test for all cell-related faults.

Next, the block RAM is configured in dual-port mode to test for port related faults.

Since the block RAM can be configured to operate in different sizes, the block RAM

has to be tested in all possible sizes. For instance, since Virtex I and Spartan II devices

can operate in 5 different sizes, block RAMs are tested in single-port mode in all 5

sizes. BDS are used only with highest possible data width to detect the maximum

possible bridging faults among the data lines as well as CFs and NPSFs. BDS can

71

Enable

WENA

Set/ResetA

CLKA

EnableB

WENB

Set/ResetB

CLKB

Port A

Port B

AddessA [n-1 : 0]

AddessB [n-1 : 0]

DIA [m-1 : 0]

DIB [m-1 : 0]

DOA [m-1 : 0]

DOB [m-1 : 0]

Figure 4.3: Block Diagram of a Block RAM

be used in all configurations, but this would increase the total testing time apart

from increasing the complexity of the TPG. When testing in dual-port mode, block

RAMs are configured to operate with highest possible data width. One configuration

is sufficient since all the cell-related faults and configuration bits that set the data

width of the device have already been tested in single-port mode. The details of

the BIST architectures used and results of implementation are presented in the next

subsection.

72

4.4.1 Block RAM Testing in Single-port Mode

The BIST architecture used for testing block RAMs is as shown in Figure 4.4. A

single TPG is used for providing test patterns and control signals and the comparison

based-approach is used for the ORAs. The architecture is slightly modified from that

used for testing free RAMs which had less diagnostic resolution for the RAMs at the

edges. An extra column of ORAs are added to compare RAMs at the both edges.

This circular comparison was not possible for free RAMs due to limited logic and

routing resources.

TPG

ORA

RAM

Figure 4.4: BIST Architecture for Block RAMs Testing

Each port can be independently controlled to have different active levels for

write enable, set/reset, RAM enable and active clock edge signals as shown in Figure

4.3. Since five different configurations are required for completely testing single-

port modes, different active levels for control signals can be selected in different

configurations. Also WRITE FIRST, READ FIRST and NO CHANGE write-mode

73

options can also be selected during these five configurations. The reason for not

implementing expected data comparison as was done for Atmel free RAMs is to test

all write mode features in different configurations. Expected data generation requires

a separate TPG implementation for each of these write modes.

The Xilinx synthesis tool always selects port A when RAMs are configured in

single-port mode. In order to test both ports independently, block RAM is configured

as shown in Figure 4.5.

Port A

Port B

TPG

ENA

ENB

To ORA_A

To ORA_B

Set/Reset A

Set/Reset B

Figure 4.5: Block RAM Configuration for Testing both Ports in Single-port Mode

The block RAM is actually configured in dual-port mode and TPG provides

common test pattern signals for both ports except for RAM enable and set/reset

signals. Both the ports are enabled for only one clock cycle after BIST is started to

test the set/reset functionality of output latches. The TPG, which is implemented as

a state machine, enables only Port A during the first iteration of the march sequence

and enables Port B during the second iteration of the march sequence. Therefore,

74

except for one clock before the start of the first iteration, both ports are never enabled

at the same time and thus set/reset is never asserted high as shown in Figure 4.5.

The outputs from both the ports are compared with the data from identical ports of

two different RAMs by two different ORAs.

4.4.1.1 BIST Implementation

The entire BIST circuitry is designed using VHDL. The TPG is designed to

implement the March LR algorithm. BDS is used only when testing the RAM con-

figured to operate with largest possible data width. The TPG implemented in VHDL

is generated using RAMBISGEN tool. The algorithm used and its input file format

for generating VHDL code is listed in Appendix C.

The design of a single-bit ORA implemented in VHDL is as shown in Figure 4.6.

The design is identical to the one used for free RAMs in dual-port mode. One slice is

required to implement the single-bit ORA. A different ORA design can be used where

data from port A and data from port B can be compared as shown in Figure 4.8(a).

This reduces the number total number of ORAs required by a factor of 2 and can

be used in case of limited logic resources. However, the diagnostic resolution changes

from a single-port of a block RAM to a single block RAM.

The slice counts for implementing the TPG and the ORA for Virtex I and Spartan

II devices are shown in Table 4.2. PLB counts can be obtained by dividing the values

given in Table 4.2 by number of slices in the device. The total number of slices

required for implementing the BIST is greater than the sum of TPG slices and ORA

75

Data from RAM1

Data from RAM2

Slice

Shift Data
Shift Control Clk Reset

Shift Data to
Next ORA

D Q

Figure 4.6: Design of a Single-bit ORA for Block RAM Testing

slices. This is because extra slices are required to buffer heavily loaded signals and

the number of extra slices required depends on the number of RAMs being tested.

Table 4.2: BIST PLB Count for Virtex I and Spartan II
FRAM BIST Algorithm TPG Slices ORA Slices

March LR w/o BDS 62
March LR with BDS(16-bit) 110 N xDx2
March LR with BDS(36-bit) 174

N = # of block RAMs, D = # of data bits

The Xilinx synthesis tool (ISE) allows placement of logic and RAMs to be con-

trolled via a constraint file and, hence, the VHDL-only approach was used for imple-

menting the BIST. The format for specifying the placement of RAMs is as follows:

LOC =RAMBn X# Y#.

X and Y represent the row and column coordinates of the RAM and the value

of n indicates the size of the memory and is device specific. For example, the INST

“RAM0” LOC = “RAMB16 X0 Y0” construct used in Virtex II and Virtex II Pro

76

FPGAs specifies that the placement tool places instance RAM0 of a 16K bits block

RAM at the bottommost left hand corner of the FPGA. The RAMB4 R# C# con-

struct is used in Virtex I and Spartan II FPGAs as the size of block RAMs is 4K bits

in these devices. Block RAM row and column designations are used instead of X and

Y coordinates in these devices.

The number of block RAMs and their arrangement varies with the device as

shown in Figure 4.2. In order to facilitate generation of the placement file for different

devices, a program to generate the constraint file is implemented in C language.

The same four BIST function I/O pins used for testing free RAMs are used for

testing block RAMs as shown in Table 4.3. In devices which have a JTAG interface

with access to the FPGA core, the boundary-scan interface can be used for download-

ing into FPGA configuration memory and also for running the BIST. The function of

Xilinx boundary-scan pins used as BIST I/O pins is shown in Table 4.3. The JTAG

interface allows defining the I/O interface for running BIST independent of the device

and package.

Table 4.3: Function of Xilinx JTAG pins
JTAG Pin Function
DRCK1 Clk
SEL2 Reset
TDI Shift

TDO1 Scanout

77

4.4.1.2 Diagnosis

A modified version of the MULTICELLO algorithm, as explained in [68], is used

for performing diagnostics. This modified algorithm takes the circular comparison

of RAMs into account. Worst case scenarios wherein the modified MULTICELLO

algorithm is not able to find unique diagnosis is described in [69]. In order to obtain a

unique diagnosis in such cases, the pair-wise comparison of RAMs by the ORAs needs

to be changed by changing the location of the RAM in the constraint file. The code

has to be synthesized again to download and execute the new BIST configuration.

Then the diagnosis has to be reapplied taking the results of the previous diagnosis

into account.

4.4.2 Block RAM Testing in Dual-port Mode

The BIST architecture used is identical to the one used for single-port mode test-

ing of free RAMs shown in Figure 3.6. The TPG generates expected data assuming

that RAMs operate in write-first mode, which is the default mode. Since the different

write modes are tested in single-port mode, expected data comparison is feasible and

also diagnosis becomes simpler. The block RAMs are configured to operate with the

maximum data width and no BDS is used in this mode of testing. March s2pf and

March d2pf algorithms [61] used for testing data SRAM in FPSLIC are used for test-

ing block RAMs in dual-port mode. The two algorithms could be combined to form

a single configuration but this TPG becomes too large to fit in some smaller devices.

VHDL is used to implement the BIST and placement of RAMs is controlled

through a constraint file. The TPG and ORA slice counts are shown in Table 4.4.

78

March algorithms are implemented on 16-bit wide RAMs in Virtex I and Spartan II

devices and on 36-bit wide RAMs in Spartan III, Virtex II and Virtex II Pro devices.

Table 4.4: TPG and ORA Counts for Testing Block RAMs in Dual-port Mode
Algorithm Data Width TPG Slices ORA Slices
March s2pf D=16 49 N × 2×D
March d2pf D=16 76 N × 2×D
March s2pf D=36 64 N × 2×D
March d2pf D=36 113 N × 2×D

4.5 Summary of Block RAM Testing

As can be seen from Table 4.4 and Table 4.2, the March LR with BDS imple-

mentation requires more slices than any other march sequence. A comparison of the

maximum number of PLBs required for implementing the BIST in different devices is

determined through synthesis. The number of PLBs required for BIST is compared

with the maximum number of PLBs available in different devices and is shown in

Figure 4.7. There are 4 devices that cannot accommodate the BIST circuit com-

pletely and as a result these devices require testing block RAMs in two phases, with

half the block RAMs tested in each phase. Another approach is to use the ORA as

shown in Figure 4.8(b) at the cost of decreased diagnostic resolution. As can be seen

from the Figure 4.7, the number of RAMs and hence the number of PLBs required

for implementing the BIST increase tremendously in some of Virtex II and Virtex II

Pro FPGAs. This increases download-time considerably and hence the testing time.

Improvements that can be done to decrease the testing time in these devices are

discussed in Chapter 5.

79

All BIST configurations have been downloaded into Spartan II 2S50, Spartan II

2S200 and Virtex II Pro 2VP30 devices as shown in Figure 4.7 and were verified

using fault injection.

0

5

10

15

20

25

30

35

40

45

50

2S
15

2S
30

2S
50

2S
10

0
2S

15
0

2S
20

0
V

50
V

10
0

V
15

0
V

20
0

V
30

0
V

40
0

V
60

0
V

80
0

V
10

00
3S

50
3S

20
0

3S
40

0
3S

10
00

3S
15

00
3S

20
00

3S
40

00
3S

50
00

2V
40

2V
80

2V
25

0
2V

50
0

2V
10

00
2V

15
00

2V
20

00
2V

30
00

2V
40

00
2V

60
00

2V
80

00
2V

P
2

2V
P

4
2V

P
7

2V
P2

0
2V

P
X

20
2V

P3
0

2V
P4

0
2V

P5
0

2V
P7

0
2V

P
X

70
2V

P
10

0

available in FPGA
needed for BIST

S
lic

es
 (T

ho
us

an
ds

)

Devices with insufficient
slices for BIST
implementation

Devices used in this thesis

Figure 4.7: Programmable Logic Resources in Xilinx FPGAs

4.6 LUT RAM Testing

LUTs form distributed memory in Xilinx FPGAs. Each slice consists of two 4-

input LUTs (F-LUT and G-LUT), each of which can also function as a 16× 1 single-

port synchronous RAM. Both the LUTs in a slice can be combined to function as a

16× 2 single-port synchronous RAM, a 32× 1 single-port synchronous RAM or 16×

80

1 dual-port synchronous RAM. Theoretically, the maximum amount of distributed

memory is equal to 2× nslice × nplb × 16 bits, where nslice indicates number of slices

per PLB and nplb indicates number of PLBs in the device and a factor of 2 is due to

the fact that each slice consists of two LUTs.

Three configuration modes are required to completely test the LUT RAMs: 16×2

single-port mode, 32×1 single-port mode and 16×1 dual-port mode. All LUT RAMs

cannot be tested in parallel, as some LUTs are required for BIST logic (TPGs and

ORAs). Therefore, each of the three testing configurations requires two phases, where

the roles of the RUTs and the TPGs/ORAs are reversed in each phase.

4.6.1 BIST Implementation

The BIST architecture used in all three modes is identical to the one used for

PLBs as shown in Figure 2.14, with BUTs replaced by RUTs and two TPGs replaced

with a single TPG. The March Y algorithm used for testing asynchronous free RAMs

is used for testing in single-port modes and the DPR algorithm used for testing

free RAMs in dual-port mode is used for testing LUTs, as dual-port mode in the

LUT RAMs is not a true dual-port RAM. In fact the DPR algorithm was originally

developed for the LUT dual-port RAM mode in Xilinx FPGAs [19]. No BDS are

used in any of the modes. Comparison-based ORAs, as shown in Figure 4.8 (a), are

used for all three BIST configurations. Diagnostic resolution in all the configurations

is limited to a slice instead of a LUT RAM. The ORA design shown in Figure 4.8(b)

can also be used in any of the configurations since F and G LUTs are tested in parallel

81

RAM2 LUTG Data
RAM1 LUT G Data

RAM2 LUTF Data
RAM1 LUTF Data

Slice

Shift Data
Shift Control Clk Reset

Shift Data
to Next
ORA

D Q

Slice

Shift Data
Shift Control Clk Reset

Shift Data
to Next
ORA

D Q

RAM2 LUTG Data
RAM1 LUT G Data

RAM2 LUTF Data
RAM1 LUTF Data

(a)

(b)

Figure 4.8: ORA Designs Used for LUT RAM Testing

and the data that is read from these two LUTs is always identical. VHDL is used for

implementing the BIST and details of implementation are shown in Table 4.5.

All 3 LUT RAM BIST configurations have been downloaded into 2S50, 2S200

and V2P30 devices and verified using fault injection.

82

Table 4.5: TPG and ORA Counts for Testing LUT RAMs
Algorithm Test Mode TPG Slices ORA Slices
March Y 16× 2 9 N
March Y 32× 1 10 N/2

March DPR 16× 1 40 N

18 x 18
 Multiplier

A[17:0]
B[17:0]

P[35:0]CLK
CE
RST

18 x 18
 Multiplier

A[17:0]

B[17:0]

P[35:0]

(a) (b)

Figure 4.9: Multiplier Modes (a) Asynchronous Mode (b) Registered Mode [65]

4.7 MULTIPLIER BIST

Spartan III, Virtex II and Virtex II Pro FPGAs contain 18×18 multiplier blocks.

Their organization is similar to block RAMs, as each multiplier block is associated

with a block RAM. These multipliers perform 2’s complement multiplication of two

18-bit wide inputs to produce a 36-bit wide result. The modified BOOTH algorithm,

as explained in [70], is used by these multipliers. The multiplier blocks can be con-

figured to operate in combinatorial mode or registered mode. Clock, clock enable

and synchronous reset inputs are added in the registered version, which can be pro-

grammed in terms of active level or edge in the case of clock as shown in Figure

4.9 [65].

83

The approach described in [71] is used for testing the multipliers. A total of

three configurations are required to completely test the multipliers. VHDL is used

for implementing the BIST and details of synthesized implementation are described

in Table 4.6.

Table 4.6: Multiplier BIST Slice Count
Algorithm Mode TPG Slices ORA Slices
Count [10] combinational 8 N × 36

Modified count registered 10 N × 36
N=Number of Multiplier Cores

The multiplier BIST approach demonstrates that the VHDL-based BIST ap-

proach can be applied for any regular structured core other than RAMs in any FPGA.

84

Chapter 5

Summary and Conclusions

BIST configurations for testing memory components in commercially available

FPGAs and SoCs are presented in this thesis. Two different approaches were followed

for developing BIST configurations to separately deal with two important features:

portability of BIST development and testing time. BIST configurations developed

were used to test memory components in AT40K series FPGAs and AT94K series

SoCs from Atmel and Spartan II, Spartan III, Virtex I, Virtex II series FPGAs and

Virtex II pro SoCs from Xilinx. A summary of the thesis, observations made during

BIST development, and suggestions for future research are discussed in this chapter.

5.1 Summary

The goal was to develop BIST configurations for testing free RAMs in AT40K

series FPGAs and AT94K series SOCs since they have embedded AT40K FPGA cores.

Initially VHDL was used to design the BIST circuitry. This approach was useful only

for pass/fail indication and not for diagnosis to indicate faulty RAMs due to lack of

support from the synthesis tool for control of placement of RAMs relative to their

associated ORAs. As a result, a combined VHDL-MGL approach was used to design

the BIST circuitry. Three BIST configurations were developed to completely test free

RAMs.

The embedded microcontroller (AVR) in AT94K series SoCs can access the em-

bedded FPGA core and can write into its configuration memory. This feature gave

85

rise to an alternate BIST approach for SoCs. The AVR was used to control the BIST

i.e., to start the BIST, retrieve the results after the BIST was completed and present

the results to a higher controlling device (PC) which performed diagnosis based on

BIST results. The same three BIST configurations were developed to test the free

RAMs from the AVR.

BIST circuitry implemented inside the FPGA can be made regular by moving

the irregular TPG function into the AVR, leaving only the ORAs and RAMs in the

FPGA. This gave rise to the possibility of combining the three BIST configurations

into one. This was possible because regular BIST structure inside the FPGA is similar

for all three configurations and can now easily be reconfigured by the AVR for the

next mode of testing. Diagnosis was also moved from PC to AVR and thus a single

configuration was developed which tests free RAMs completely and also performs

diagnosis.

A similar approach was used to test the embedded data SRAM shared by both

AVR and FPGA. Due to limitations imposed by the AVR architecture, three config-

urations were required to completely test the data SRAM.

The VHDL-only approach did not yield any benefits for Atmel FPGAs. However,

due to better synthesis tool support, the VHDL approach seemed worth experimenting

on Xilinx FPGAs. This approach yielded good results on Xilinx FPGAs by controlling

the placement of RAMs with respect to their associated ORAs. A portable VHDL

code was thus created to test embedded block RAMs and LUT RAMs in all families of

FPGAs from Xilinx. A total of 9 BIST configurations were developed for completely

testing block RAMs in all families of FPGAs from Xilinx. Another 3 configurations

86

were developed for testing LUT RAMs in all families of FPGAs from Xilinx. A

similar approach was used for testing embedded multipliers in some Xilinx FPGAs

and a total of 3 configurations were developed for testing them completely.

5.2 Observations

It was observed that the architecture of an FPGA has a significant impact on

BIST development. FPGAs using two different architectures were considered in this

thesis. Atmel FPGAs use fine-grained architecture as opposed to Xilinx FPGAs

which use coarse-grained architecture. In fine-grained FPGAs, it may not always

be possible to fit the entire BIST circuitry if synthesis tools are used for placement

and routing of entire design since heuristic algorithms used by FPGA synthesis tools

may not always come up with optimized placement and routing for the regular BIST

structure. This was noticed while developing BIST configurations for testing free

RAMs in single-port mode. Atmel’s design tool, called Figaro, could not fit the

entire design. This resulted in two configurations for completely testing free RAMs

in single-port synchronous mode, with half the RAMs tested in each configuration.

To avoid extra download, the placement and routing of the design was controlled

using MGL. Such a problem can occur with coarse-grained FPGAs as well when logic

or routing resources are used almost completely. Placement and routing problems

did not occur with Xilinx FPGAs when testing block RAMs. However, LUT RAM

testing caused placement and routing issues, as almost 100% of logic resources were

used. Routing issues were solved once placement of RUTs and ORAs were defined

with a constraint file.

87

TPG signals become heavily loaded, particularly when testing all the memory

components in a large FPGA with a single BIST configuration. The default fan-out

limit with the Xilinx synthesis tool is 15 and the tool will buffer the signals using

additional logic resources once the limit is exceeded. This prevented fitting the BIST

circuitry in some of the smaller FPGAs from Xilinx. This problem was solved by

increasing the user controlled fan-out limit to trade off speed of testing with number

of test configurations and thus the total testing time. Such a problem did not occur

with Atmel devices because the TPG signals are buffered as they pass through the

repeaters.

All Xilinx FPGAs support boundary-scan with facilities for access to the FPGA

core logic and this enabled usage of boundary-scan signals for downloading, running

and controlling the BIST. This provides a common interface for BIST independent of

the package being tested. Due to lack of access to the FPGA core by the boundary-

scan in Atmel devices, different I/O pins had to be used in different packages for

running BIST.

Atmel SoCs support writing into FPGA configuration memory but do not sup-

port reading of configuration memory or reading the contents of storage elements

in the device. As a result, ORAs were required to be configured as a scan chain to

shift out the results after running BIST. Read-back capability would save some testing

time and would also avoid the need for a scan chain. While the configuration memory

in Atmel devices is segmented into bytes, configuration memory in Xilinx FPGAs is

segmented into frames. The length of the frames varies with the device and typically

contains a few hundreds bits. Although Xilinx FPGAs have read-back capability, the

88

frame-level segmentation makes read-back complicated, as post processing of results

read back is required to extract the exact ORA data and, therefore, doesn’t reduce

testing significantly.

5.3 Future Research

To conclude the thesis, a few suggestions for improvements in the current BIST

approach and also some areas that can be explored are discussed.

Two kinds of approaches were used for output response analysis in this thesis:

comparison based approach and expected data comparison approach. It is better

to use the expected data comparison approach as the approach is more reliable and

makes diagnosis simpler as well. Comparison with adjacent elements detects all pos-

sible faults in the RAMs except for the case where all elements have equivalent faults

but fails to uniquely diagnose the results in cases where three or more adjacent el-

ements being compared have equivalent faults. Comparison with adjacent elements

was preferred over expected data comparison in some cases in this thesis as the latter

approach consumed more logic and routing resources and did not fit in some devices.

Virtex II Pro SoCs have embedded Power PC microprocessors similar to the

AVR in FPSLIC. The approach wherein the TPG was moved into the AVR and the

BIST was controlled by the AVR can be explored with Power PC in Virtex II Pro

SoCs. There is a possibility of this approach yielding more speed-up and memory

storage improvements in this device. Download time for the Virtex II Pro SoC is

much larger than that of FPSLIC because of larger configuration memory and also

the number of configurations for testing block RAMs is 9 as opposed to 3 for the free

89

RAMs in FPSLIC and these factors can result in better speed-up provided all block

RAM test configurations are combined into a single configuration executed by the

Power PC. The problem however is that the block RAMs form the program memory

for the Power PC.

With proper support from FPGA synthesis tools, the portable VHDL BIST

approach can also be experimented with logic blocks and routing in Xilinx FPGAs.

If a slice can be modeled using VHDL in such a way that the tool recognizes the model

as a slice, BIST development can be reduced significantly by following the approach

used for LUT RAM testing and logic BIST can be designed using VHDL alone and

by controlling the physical placement of logic blocks and ORAs.

90

Bibliography

[1] Arnaldo,B., “Systems on Chip: Evolutionary and Revolutionary Trends”, 3rd
International Conference on Computer Architecture (ICCA’02), pp: 121-128,
2002.

[2] J. Becker, “Configurable Systems-on-Chip (CSoC)”, Proc. IEEE Integrated Cir-
cuits and Systems Design Symposium, pp: 379-384, 2002.

[3] M. Rabaey, “Experiences and Challenges in System Design”, Proc. IEEE Com-
puter Society Workshop, pp: 2-4, 1998.

[4] J. Becker and M. Vorbach, “Architecture, Memory and Interface Technology
Integration of an Industrial/Academic Configurable System-on-Chip (CSoC)”,
Proc. IEEE. Computer Society Annual Symposium, pp: 107-112, 2003.

[5] S. Knapp and D. Tavana, “Field Configurable System-On-Chip Device Architec-
ture”, Proc. IEEE Custom Integrated Circuits Conference, pp: 155-158, 2000.

[6] K. Kawana, H. Keida, M. Sakamoto, K. Shibata and I.Moriyama, “An Efficient
Logic Block Interconnect Architecture for User-Reprogrammable Gate Array”,
Proc. IEEE Custom Integrated Circuits Conference, pp: 31.3/1-31.3/4, 1990.

[7] H. Verma, “Field Programmable Gate Arrays”, IEEE Potentials, Vol. 18, No.
4, pp: 34-36, Oct - Nov, 1999.

[8] S.J.E Wilton, “Embedded Memory in FPGAs: Recent Research Results”, Proc.
IEEE Pacific Rim Conference, pp: 292-296, 1999.

[9] S.J.E. Wilton, “Implementing Logic in FPGA Memory Arrays: Heterogeneous
Memory Architectures”, Proc. IEEE Field-Programmable Technology, pp: 142-
147, 2002.

[10] ,“International Technology Roadmap For Semiconductors (ITRS) 2000
Update. Technical Report”, ITRS, 2000.

[11] V. Ratford, “Self-Repair Boosts Memory SoC Yields”, Integrated System De-
sign, Sept 2001.

[12] A. Benso, S. Carlo, G. Natale, P. Prinetto, and M. Bodoni, “Programmable
Built-in Self-Testing of Embedded RAM Clusters in System-on-Chip Architec-
tures”, IEEE Communications Magazine, Vol. 41, No. 9, pp: 90-97, Sept 2003.

91

[13] B.G. Oomman, “A New Technology for System-on-Chip”, Electronics Engineer,
April 2000.

[14] R. Chandramouli and S. Pateras, “Testing Systems on a Chip”, IEEE Spectrum,
Vol. 33, No. 11, pp: 42-47, Nov 1996.

[15] V.D. Agrawal, R. Charles and K. Saluja, “A Tutorial on Built-in Self Test, Part
1: Principles”, IEEE Design & Test of Computers, Vol. 10, No. 1, pp: 73-82,
March 1993.

[16] H.J. Wunderlich, “Non-intrusive BIST for Systems-On-a-Chip”, Proc. IEEE
International Test Conference, pp: 644-651, 2000.

[17] M. Abramovici , C.E. Stroud and M. Emmert, “Using Embedded FPGAs for
SoC Yield Improvement”, Proc. Design Automation Conference, pp: 713-724,
2002.

[18] C.E. Stroud, S. Konala, C. Ping and M. Abramovici, “Built-in Self-Test of
Logic Blocks in FPGAs (Finally, a Free Lunch: BIST Without Overhead!)”,
Proc. VLSI Test Symposium, pp: 387- 392, 1996.

[19] C.E. Stroud, K.N. Leach, and T.A. Slaughter, “BIST for Xilinx 4000 and Spar-
tan Series FPGAs: a Case Study”, Proc. IEEE International Test Conference,
2003.

[20] S.M. Trimberger, “Field-Programmable Gate Array Technology”, Kluwer Pub-
lishers, Norwell MA, 1994.

[21] G. Brebner, “Eccentric SoC Architectures as the Future Norm”, Proc. Digital
System Design, Euromicro Symposium, pp: 2-9,2003.

[22] S. Hauck, “The Roles of FPGA’s in Reprogrammable Systems” Proc. IEEE,
Vol. 86, No. 4, pp: 615-638, April 1998.

[23] Y. Khalilollahi, “Switching Elements, the Key to FPGA Architecture”,
WESCON Conference Record, pp: 682 - 687,1994.

[24] J. Rose, A. El Gamal and A. Sangiovanni-Vincentelli, “Architecture of Field-
Programmable Gate Arrays”, Proc. IEEE, Vol. 81, No. 7, pp: 1013-1029, July
1993.

[25] D.S. Brown, J.R. Francis, J. Rose and G.Z. Vranesic,
“Field-Programmable Gate Arrays”, Kluwer Publishers, Norwell, MA,
1992.

92

[26] J.V. Oldfield and R.C. Dorf, “Field-Programmable Gate Arrays:
Reconfigurable Logic for Rapid Prototyping and Implementation of Digital
Systems”, John Wiley & Sons, New York, 1995.

[27] J. Rose, R.J. Francis, D. Lewis, and P. Chow, “Architecture of Field Pro-
grammable Gate Arrays: The Effect of Logic Block Functionality on Area Ef-
ficiency”, IEEE Journal of Solid-State Circuits, Vol. 25, No. 5, pp: 1217-1225,
Oct 1990.

[28] , ”AT40K Series Field Programmable Gate Array”, Data Sheet, Atmel
Corporation, 2003.

[29] , ”AT94K Series Field Programmable System Level Integrated Circuit”,
Data Sheet, Atmel Corporation, 2003.

[30] R. Camarota and J. Rosenberg, “Cache Logic FPGAs for Building Adaptive
Hardware”, FPGAs Technology and Applications, IEE Colloquium, pp: 1-3,
1993.

[31] R. Rajsuman, “System-on-a-Chip: Design and Test”, Artech House, London,
2000.

[32] S.J.E. Wilton, “Implementing Logic in FPGA Embedded Memory Arrays: Ar-
chitectural Implications”, Proc. IEEE Custom Integrated Circuits Conference,
pp: 269-272, 1998.

[33] Xilinx Corp., www.xilinx.com/products.

[34] S. Singh, S. Azmi, N. Agrawal, P. Phani, and A. Rout, “Architecture and De-
sign of a High Performance SRAM for SOC Design”, Proc. Design Automation
Conference, pp: 447-451, 2002.

[35] C.T. Huang, J.R Huang, C.F. Wu, C.W. Wu, and T.Y. Chang, “A Pro-
grammable BIST Core for Embedded DRAM”, IEEE Design & Test of Com-
puters, Vol. 16, No. 1, pp: 59-70, Jan - March 1999.

[36] T. Seceleanu, J. Plosila, and P. Lijeberg, “On-Chip Segmented Bus: a Self-
Timed Approach”, Proc. IEEE, ASIC/SOC Conference, pp: 216-220, 2002.

[37] D. Bhatia, “Field Programmable Gate Arrays”, IEEE Potentials, Vol. 13, No.
1, pp: 16-19, Feb 1994.

[38] E. Hall and G. Costakis, “Developing a Design Methodology for Embedded
Memories”, Integrated System Design, January 2000.

93

[39] A.J. Van de Goor, “Testing Semiconductor Memories: Theory and Practice”,
John Wiley & Sons, New York, 1991.

[40] A.J. Van de Goor, “An Overview of Deterministic Functional RAM Chip Test-
ing”, ACM Computing Surveys, Vol. 22, No. 1, pp: 5-33, March 1990.

[41] A.J. Van de Goor, I. Tlili and S. Hamdioui, “Converting March Tests for Bit-
Oriented Memories into Tests for Word-Oriented Memories,” Proc. IEEE In-
ternational Workshop on Memory Technology Design and Testing, pp: 46-52,
1998.

[42] M. Renovell and Y. Zorian, “Different Experiments in Test Generation for Xilinx
FPGAs”, Proc. International Test Conference, pp: 854-862, 2000.

[43] S.K. Lu, J.S. Shih and C.W. Wu, “Built-In Self-Test and Fault Diagnosis for
Lookup Table FPGAs”, Proc. IEEE Circuits and Systems, pp: 80-83, 2000.

[44] W.K. Huang, and F. Lombardi, “An Approach for Testing Programm-
ble/Configurable Field Programmable Gate Arrays”, Proc. VLSI Test Sym-
posium, pp: 450-455, 1996.

[45] C.E. Stroud, E. Lee, and M. Abramovici, ”BIST-Based Diagnostics of FPGA
Logic Blocks”, Proc. IEEE International Test Conference, pp: 539-547, 1997.

[46] W.K. Huang, F.J. Meyer, N. Park, and F. Lombardi, “Testing Memory Mod-
ules in SRAM-Based Configurable FPGAs”, Proc. International Workshop on
Memory Technology, Design and Testing, pp: 79-86, 1997.

[47] D. Das and N.A. Touba, “A Low Cost Approach for Detecting, Locating, and
Avoiding Interconnect Faults in FPGA-Based Reconfigurable Systems”, Proc.
International Conference on VLSI Design, pp: 266-269, 1999.

[48] M.B. Tahoori, “Application-Dependent Testing of FPGA Interconnects”, Proc.
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
pp: 409-416, 2003.

[49] C.E. Stroud, J. Nall, A. Taylor, M. Ford and L. Charnley, “A System for Auto-
mated Generation of Built-In Self-Test for FPGAs”, Proc. International Con-
ference on System Engineering, pp: 437-443, 2002.

[50] Y. Zorian , “System-Chip Test Strategies”, Proc. Design Automation Confer-
ence, pp: 752-757, 1998.

[51] M.H. Tehranipour, S.M. Fakhraie, Z. Navabi and M.R. Movahedin, “A Low-
Cost At-Speed BIST Architecture for Embedded Processor and SRAM Cores,”
Journal of Electronic Testing: Theory and Applications, Vol. 20, No. 2, pp:
155-168, April 2004.

94

[52] C. H. Tsai and C. Wu, “Processor-Programmable Memory BIST for Bus-
Connected Embedded Memories”, Proc. Design Automation Conference, pp:
325-330, 2001.

[53] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto and M. Lobetti Bodoni, “A
Programmable BIST Architecture for Clusters of Multiple-Port SRAMs”, Proc.
IEEE International Test Conference, pp: 557-566, 2000.

[54] R. Rajsuman, “Testing a System-on-a-Chip with Embedded Microprocessor”,
Proc. IEEE International Test Conference, pp: 499-508, 1999.

[55] F. Gharsalli, S. Meftali, F. Rousseau, and A.A. Jerraya, “Automatic Gener-
ation of Embedded Memory Wrapper for Multiprocessor SoC”, Proc. Design
Automation Conference, pp: 596-601, 2002.

[56] J.M. Harris, “Built-In Self Test Configurations for Field Programmable Gate
Arrays Cores in Systems-on-Chip”, Masters Thesis, Auburn University, 2004.

[57] A. Van de Goor, G. Gaydadjiev, V.N. Jarmolik and V.G. Mikitjuk, “March
LR: A Test for Realistic Linked Faults”, Proc. IEEE VLSI Test Symposium,
pp: 272-280, 1996.

[58] C.E. Stroud, “AUSIM: Auburn University Simulator - Version L2.2”, Dept. of
Electrical & Computer Engineering, Auburn University, 2004.

[59] , ”Integrated Development System AT40K Macro Library Version 6.0”,
Atmel Corporation, Oct. 1998.

[60] C.E. Stroud, S. Garimella and J. Sunwoo, “On-Chip BIST-Based Diagnosis
of Embedded Programmable Logic Cores in System-on-Chip Devices”, Proc.
International Conference on Computers and Their Applications,(pp: pending),
2005.

[61] S. Hamdioui and A. Van de Goor, “Efficient Tests for Realistic Faults in Dual-
Port SRAMs”, IEEE Transactions on Computers, Vol. 51, No. 5, pp: 460-473,
May 2002.

[62] , “Virtex FPGAs”, Datasheet DS003, Xilinx Inc., 2004.

[63] , “Virtex II Platform FPGAs”, Datasheet DS031, Xilinx Inc., 2004.

[64] , “Spartan II Family FPGAs”, Datasheet DS001, Xilinx Inc., 2003.

[65] , “Virtex II Pro and Virtex II Pro X Platform FPGAs”, Datasheet DS083,
Xilinx Inc., 2004.

95

[66] , “Spartan-3 FPGA Family”, Datasheet DS099, Xilinx Inc., 2004.

[67] , “Using Block RAM in Spartan-3 FPGAs”, Application note XAPP463,
Xilinx Inc., 2003.

[68] M. Abramovici and C. Stroud, “BIST-Based Test and Diagnosis of FPGA Logic
Blocks”, IEEE Trans. on VLSI Systems, Vol. 9, No. 1, pp: 159-172, Jan 2001.

[69] C. Stroud and S. Garimella, “Built-In Self-Test and Diagnosis of Multiple Em-
bedded Cores in Generic SoCs”, to be published Proc. International Conference
on Embedded Systems and Applications, 2005.

[70] O.L. Mac Sorley, “High speed arithmetic in binary computers”, Proc. IRE, Vol.
49, No. 1, pp: 67-91, Jan 1961.

[71] D. Gizopoulos, A. Paschalis and Y. Zorian, “Effective Built-In Self-Test for
Booth Multipliers”, IEEE Design & Test of Computers, Vol. 15, No. 3, pp:
105-111, Sept 1998.

96

Appendices

97

Appendix A

ASL code for free RAM

mux2 ;

subckt: mux2 in: a b s out: z ;

not: sn in: s out: sn ;

and: a1 in: a sn out: a1 ;

and: a2 in: b s out: a2 ;

or: z in: a1 a2 out: z ;

RAM word ;

subckt: word in: en d[3:0] out: q[3:0] ;

lat: q3 in: en d3 out: q3 ;

lat: q2 in: en d2 out: q2 ;

lat: q1 in: en d1 out: q1 ;

lat: q0 in: en d0 out: q0 ;

write address decoder ;

subckt: dec in: a[4:0] en[1:0] out: ld[31:0] ;

not: a4n in: a4 out: a4n ;

not: a3n in: a3 out: a3n ;

not: a2n in: a2 out: a2n ;

not: a1n in: a1 out: a1n ;

not: a0n in: a0 out: a0n ;

and: ld31 in: a4 a3 a2 a1 a0 en[1:0] out: ld31 ;

and: ld30 in: a4 a3 a2 a1 a0n en[1:0] out: ld30 ;

and: ld29 in: a4 a3 a2 a1n a0 en[1:0] out: ld29 ;

and: ld28 in: a4 a3 a2 a1n a0n en[1:0] out: ld28 ;

and: ld27 in: a4 a3 a2n a1 a0 en[1:0] out: ld27 ;

and: ld26 in: a4 a3 a2n a1 a0n en[1:0] out: ld26 ;

and: ld25 in: a4 a3 a2n a1n a0 en[1:0] out: ld25 ;

and: ld24 in: a4 a3 a2n a1n a0n en[1:0] out: ld24 ;

and: ld23 in: a4 a3n a2 a1 a0 en[1:0] out: ld23 ;

and: ld22 in: a4 a3n a2 a1 a0n en[1:0] out: ld22 ;

and: ld21 in: a4 a3n a2 a1n a0 en[1:0] out: ld21 ;

and: ld20 in: a4 a3n a2 a1n a0n en[1:0] out: ld20 ;

98

and: ld19 in: a4 a3n a2n a1 a0 en[1:0] out: ld19 ;

and: ld18 in: a4 a3n a2n a1 a0n en[1:0] out: ld18 ;

and: ld17 in: a4 a3n a2n a1n a0 en[1:0] out: ld17 ;

and: ld16 in: a4 a3n a2n a1n a0n en[1:0] out: ld16 ;

and: ld15 in: a4n a3 a2 a1 a0 en[1:0] out: ld15 ;

and: ld14 in: a4n a3 a2 a1 a0n en[1:0] out: ld14 ;

and: ld13 in: a4n a3 a2 a1n a0 en[1:0] out: ld13 ;

and: ld12 in: a4n a3 a2 a1n a0n en[1:0] out: ld12 ;

and: ld11 in: a4n a3 a2n a1 a0 en[1:0] out: ld11 ;

and: ld10 in: a4n a3 a2n a1 a0n en[1:0] out: ld10 ;

and: ld9 in: a4n a3 a2n a1n a0 en[1:0] out: ld9 ;

and: ld8 in: a4n a3 a2n a1n a0n en[1:0] out: ld8 ;

and: ld7 in: a4n a3n a2 a1 a0 en[1:0] out: ld7 ;

and: ld6 in: a4n a3n a2 a1 a0n en[1:0] out: ld6 ;

and: ld5 in: a4n a3n a2 a1n a0 en[1:0] out: ld5 ;

and: ld4 in: a4n a3n a2 a1n a0n en[1:0] out: ld4 ;

and: ld3 in: a4n a3n a2n a1 a0 en[1:0] out: ld3 ;

and: ld2 in: a4n a3n a2n a1 a0n en[1:0] out: ld2 ;

and: ld1 in: a4n a3n a2n a1n a0 en[1:0] out: ld1 ;

and: ld0 in: a4n a3n a2n a1n a0n en[1:0] out: ld0 ;

read mux ;

subckt: rmux in: a[4:0] d[31:0] out: z ;

not: a4n in: a4 out: a4n ;

not: a3n in: a3 out: a3n ;

not: a2n in: a2 out: a2n ;

not: a1n in: a1 out: a1n ;

not: a0n in: a0 out: a0n ;

and: ld31 in: a4 a3 a2 a1 a0 d31 out: ld31 ;

and: ld30 in: a4 a3 a2 a1 a0n d30 out: ld30 ;

and: ld29 in: a4 a3 a2 a1n a0 d29 out: ld29 ;

and: ld28 in: a4 a3 a2 a1n a0n d28 out: ld28 ;

and: ld27 in: a4 a3 a2n a1 a0 d27 out: ld27 ;

and: ld26 in: a4 a3 a2n a1 a0n d26 out: ld26 ;

and: ld25 in: a4 a3 a2n a1n a0 d25 out: ld25 ;

and: ld24 in: a4 a3 a2n a1n a0n d24 out: ld24 ;

99

and: ld23 in: a4 a3n a2 a1 a0 d23 out: ld23 ;

and: ld22 in: a4 a3n a2 a1 a0n d22 out: ld22 ;

and: ld21 in: a4 a3n a2 a1n a0 d21 out: ld21 ;

and: ld20 in: a4 a3n a2 a1n a0n d20 out: ld20 ;

and: ld19 in: a4 a3n a2n a1 a0 d19 out: ld19 ;

and: ld18 in: a4 a3n a2n a1 a0n d18 out: ld18 ;

and: ld17 in: a4 a3n a2n a1n a0 d17 out: ld17 ;

and: ld16 in: a4 a3n a2n a1n a0n d16 out: ld16 ;

and: ld15 in: a4n a3 a2 a1 a0 d15 out: ld15 ;

and: ld14 in: a4n a3 a2 a1 a0n d14 out: ld14 ;

and: ld13 in: a4n a3 a2 a1n a0 d13 out: ld13 ;

and: ld12 in: a4n a3 a2 a1n a0n d12 out: ld12 ;

and: ld11 in: a4n a3 a2n a1 a0 d11 out: ld11 ;

and: ld10 in: a4n a3 a2n a1 a0n d10 out: ld10 ;

and: ld9 in: a4n a3 a2n a1n a0 d9 out: ld9 ;

and: ld8 in: a4n a3 a2n a1n a0n d8 out: ld8 ;

and: ld7 in: a4n a3n a2 a1 a0 d7 out: ld7 ;

and: ld6 in: a4n a3n a2 a1 a0n d6 out: ld6 ;

and: ld5 in: a4n a3n a2 a1n a0 d5 out: ld5 ;

and: ld4 in: a4n a3n a2 a1n a0n d4 out: ld4 ;

and: ld3 in: a4n a3n a2n a1 a0 d3 out: ld3 ;

and: ld2 in: a4n a3n a2n a1 a0n d2 out: ld2 ;

and: ld1 in: a4n a3n a2n a1n a0 d1 out: ld1 ;

and: ld0 in: a4n a3n a2n a1n a0n d0 out: ld0 ;

or: z in: ld[31:0] out: z ;

complete RAM ;

ckt: fRAM

in: clk radd[4:0] wadd[4:0] wen di[3:0] oen

con: async dpr

out: dout[3:0] ;

config bits (async=1 => asynchronous) (dpr=1 => dualport) ;

RAM core ;

word: w0 in: ld0 din[3:0] out: w0d[3:0] ;

word: w1 in: ld1 din[3:0] out: w1d[3:0] ;

word: w2 in: ld2 din[3:0] out: w2d[3:0] ;

100

word: w3 in: ld3 din[3:0] out: w3d[3:0] ;

word: w4 in: ld4 din[3:0] out: w4d[3:0] ;

word: w5 in: ld5 din[3:0] out: w5d[3:0] ;

word: w6 in: ld6 din[3:0] out: w6d[3:0] ;

word: w7 in: ld7 din[3:0] out: w7d[3:0] ;

word: w8 in: ld8 din[3:0] out: w8d[3:0] ;

word: w9 in: ld9 din[3:0] out: w9d[3:0] ;

word: w10 in: ld10 din[3:0] out: w10d[3:0] ;

word: w11 in: ld11 din[3:0] out: w11d[3:0] ;

word: w12 in: ld12 din[3:0] out: w12d[3:0] ;

word: w13 in: ld13 din[3:0] out: w13d[3:0] ;

word: w14 in: ld14 din[3:0] out: w14d[3:0] ;

word: w15 in: ld15 din[3:0] out: w15d[3:0] ;

word: w16 in: ld16 din[3:0] out: w16d[3:0] ;

word: w17 in: ld17 din[3:0] out: w17d[3:0] ;

word: w18 in: ld18 din[3:0] out: w18d[3:0] ;

word: w19 in: ld19 din[3:0] out: w19d[3:0] ;

word: w20 in: ld20 din[3:0] out: w20d[3:0] ;

word: w21 in: ld21 din[3:0] out: w21d[3:0] ;

word: w22 in: ld22 din[3:0] out: w22d[3:0] ;

word: w23 in: ld23 din[3:0] out: w23d[3:0] ;

word: w24 in: ld24 din[3:0] out: w24d[3:0] ;

word: w25 in: ld25 din[3:0] out: w25d[3:0] ;

word: w26 in: ld26 din[3:0] out: w26d[3:0] ;

word: w27 in: ld27 din[3:0] out: w27d[3:0] ;

word: w28 in: ld28 din[3:0] out: w28d[3:0] ;

word: w29 in: ld29 din[3:0] out: w29d[3:0] ;

word: w30 in: ld30 din[3:0] out: w30d[3:0] ;

word: w31 in: ld31 din[3:0] out: w31d[3:0] ;

input latches ;

not: we in: wen out: we ;

lat: wr in: men we out: wr ;

lat: wa0 in: men wadd0 out: wa0 ;

lat: wa1 in: men wadd1 out: wa1 ;

lat: wa2 in: men wadd2 out: wa2 ;

101

lat: wa3 in: men wadd3 out: wa3 ;

lat: wa4 in: men wadd4 out: wa4 ;

lat: din0 in: men di0 out: din0 ;

lat: din1 in: men di1 out: din1 ;

lat: din2 in: men di2 out: din2 ;

lat: din3 in: men di3 out: din3 ;

not: ckn in: clk out: ckn ;

or: men in: async ckn out: men ;

or: sen in: async clk out: sen ;

dec: wdec in: wa[4:0] sen wr out: ld[31:0] ;

mux2: ra0 in: wadd0 radd0 dpr out: ra0 ;

mux2: ra1 in: wadd1 radd1 dpr out: ra1 ;

mux2: ra2 in: wadd2 radd2 dpr out: ra2 ;

mux2: ra3 in: wadd3 radd3 dpr out: ra3 ;

mux2: ra4 in: wadd4 radd4 dpr out: ra4 ;

rmux: do0 in: ra[4:0] w[31:0]d0 out: do0 ;

rmux: do1 in: ra[4:0] w[31:0]d1 out: do1 ;

rmux: do2 in: ra[4:0] w[31:0]d2 out: do2 ;

rmux: do3 in: ra[4:0] w[31:0]d3 out: do3 ;

or: dout0 in: oen do0 out: dout0 ;

or: dout1 in: oen do1 out: dout1 ;

or: dout2 in: oen do2 out: dout2 ;

or: dout3 in: oen do3 out: dout3 ;

102

Appendix B

VHDL Code for March Y algorithm

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity fsm is Generic(

CLKEDGE : std_logic := ’1’;

DONE_LEVEL : std_logic := ’1’;

WEN_ACTIVE : std_logic := ’1’;

OEN_ACTIVE : std_logic := ’0’;

ADDRESSWIDTH : Integer := 5;

DATAWIDTH : Integer:= 1);

port (

Reset : in std_logic;

Clk : in std_logic;

WEN : out std_logic;

OEN : out std_logic;

Data : out std_logic_vector(DATAWIDTH-1 downto 0);

RWAddress : out std_logic_vector(ADDRESSWIDTH-1 downto 0);

DONE: out std_logic);

end fsm;

architecture fsm of fsm is

type phases is (Init,Phase1,phase2,phase3,phase4);

type elements is (ele1,ele2,ele3);

signal phase : phases := Init;

signal Element : elements := ele1;

signal Address : std_logic_vector (ADDRESSWIDTH-1 downto 0);

constant MAXADDRESS : std_logic_vector (ADDRESSWIDTH-1 downto 0)

:= (others => ’1’);

constant MINADDRESS : std_logic_vector (ADDRESSWIDTH-1 downto 0)

:= (others => ’0’);

103

begin

p0: Process(Reset, Clk)

begin

if (Reset = ’1’) then

Address <= MAXADDRESS;

WEN <= WEN_ACTIVE;

OEN <= not(OEN_ACTIVE);

Data <= (others => ’0’);

Element <= ele1;

Phase <= Init;

DONE <= not(DONE_LEVEL);

elsif (Clk = CLKEDGE and Clk’Event) then

case Phase is

when Init =>

Address <= MAXADDRESS;

WEN <= WEN_ACTIVE;

OEN <= not(OEN_ACTIVE);

Data <= (others => ’0’);

Element <= ele1;

Phase <= Phase1;

when phase1 => -- D w 0

if (Address /= MINADDRESS) then

Address <= Address - ’1’;

WEN <= WEN_ACTIVE;

OEN <= not(OEN_ACTIVE);

Element <= ele1;

Data <= (others => ’0’);

else -- U r 0

Address <= MINADDRESS;

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Data <= (others => ’0’);

Phase <= Phase2;

Element <= ele2;

end if;

104

when phase2 => -- U r 0 w 1 r 1

case Element is

when ele2 =>

WEN <= WEN_ACTIVE;

OEN <= not(OEN_ACTIVE);

Data <= (others => ’1’);

Element <= ele3;

when ele3 =>

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Data <= (others => ’1’);

Element <= ele1;

when ele1 =>

if (Address /= MAXADDRESS) then

Address <= Address + ’1’;

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Element <= ele2;

Data <= (others => ’0’);

else -- D r 1

Address <= MAXADDRESS;

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Data <= (others => ’1’);

Phase <= Phase3;

Element <= ele2;

end if;

when others =>

end case;

when phase3 => -- D r 1 w 0 r 0

case Element is

when ele2 =>

WEN <= WEN_ACTIVE;

OEN <= not(OEN_ACTIVE);

Data <= (others => ’0’);

105

Element <= ele3;

when ele3 =>

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Data <= (others => ’0’);

Element <= ele1;

when ele1 =>

if (Address /= MINADDRESS) then

Address <= Address - ’1’;

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Element <= ele2;

Data <= (others => ’1’);

else -- U r 0

Address <= MINADDRESS;

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Data <= (others => ’0’);

Phase <= Phase4;

Element <= ele1;

end if;

when others =>

end case;

when phase4 => -- U r 0

if (Address /= MAXADDRESS) then

Address <= Address + ’1’;

WEN <= not(WEN_ACTIVE);

OEN <= OEN_ACTIVE;

Element <= ele1;

Data <= (others => ’0’);

else -- D w 0

Address <= MAXADDRESS;

WEN <= WEN_ACTIVE;

OEN <= not(OEN_ACTIVE);

Data <= (others => ’0’);

106

Phase <= Phase1;

Done <= DONE_LEVEL;

Element <= ele1;

end if;

end case;

end if;

end process;

RWAddress <= Address;

end fsm ;

107

Appendix C

March LR Algorithm and its input file format for testing 16-bit wide

Block RAMs

C.1 March LR Algorithm with BDS for 16-bit Wide RAMs

m w0000000000000000

⇓ r0000000000000000, w1111111111111111

⇑ r1111111111111111, w0000000000000000, r0000000000000000,

r0000000000000000, w1111111111111111

⇑ r1111111111111111, w0000000000000000

⇑ r0000000000000000, w1111111111111111, r1111111111111111,

r1111111111111111, w0000000000000000

⇓ r0000000000000000, w0101010101010101, w1010101010101010,

r1010101010101010

⇑ r1010101010101010, w0101010101010101, r0101010101010101

⇓ r0101010101010101, w1100110011001100, w0011001100110011,

r0011001100110011

⇑ r0011001100110011, w1100110011001100, r1100110011001100

⇓ r1100110011001100, w0000111100001111, w1111000011110000,

r1111000011110000

⇑ r1111000011110000, w0000111100001111, r0000111100001111

⇓ r0000111100001111, w0000000011111111, w1111111100000000,

r1111111100000000

⇑ r1111111100000000, w0000000011111111, r0000000011111111

⇓ r0000000011111111

C.2 RAMBISTGEN Input File Format for Generating VHDL Code

u w 0000000000000000

d r 0000000000000000, w 1111111111111111

u r 1111111111111111, w 0000000000000000,r 0000000000000000,

r 0000000000000000 ,w 1111111111111111

u r 1111111111111111, w 0000000000000000

u r 0000000000000000, w 1111111111111111,r 1111111111111111,

108

r 1111111111111111, w 0000000000000000

d r 0000000000000000, w 0101010101010101,w 1010101010101010,

r 1010101010101010

u r 1010101010101010, w 0101010101010101,r 0101010101010101

d r 0101010101010101, w 1100110011001100,w 0011001100110011,

r 0011001100110011

u r 0011001100110011, w 1100110011001100,r 1100110011001100

d r 1100110011001100, w 0000111100001111,w 1111000011110000,

r 1111000011110000

u r 1111000011110000, w 0000111100001111,r 0000111100001111

d r 0000111100001111, w 0000000011111111,w 1111111100000000,

r 1111111100000000

u r 1111111100000000, w 0000000011111111,r 0000000011111111

d r 0000000011111111

109

	List of Figures
	List of Tables
	1 Introduction
	1.1 System-on-Chip (SoC)
	1.2 CSOC Architecture
	1.3 FPGAs
	1.4 Embedded Memories
	1.5 Built-In Self-Test (BIST)
	1.6 BIST for SoC
	1.7 Thesis Statement

	2 Background
	2.1 System on a Chip (SoC)
	2.2 FPGA Architectures
	2.2.1 Switching Elements in FPGAs
	2.2.2 PLB Architecture

	2.3 Embedded Memories
	2.3.1 Memory Types
	2.3.2 Embedded Memories in FPGAs
	2.3.3 Embedded Memories and FPGAs in SoCs and their Interfacing

	2.4 BIST for Memories
	2.4.1 Present Methods for Testing FPGAs and SoCs

	2.5 Thesis Restatement

	3 Implementation Of BIST On ATMEL FPGAs And SoCs
	3.1 RAM BIST Approaches
	3.1.1 BIST Approach for Free RAMs Using FPGA Logic
	3.1.1.1 BIST Architecture for Dual-port Synchronous Mode
	3.1.1.2 BIST Architecture for Single-port Modes

	3.1.2 Advantages and Limitations of Using VHDL
	3.1.3 BIST Approach for Free RAMs Using Embedded Processor Core
	3.1.3.1 AVR-FPGA Interface Description
	3.1.3.2 BIST Architecture
	3.1.3.3 Implementation of BIST Approach in FPSLIC

	3.1.4 On-Chip Diagnostics

	3.2 Data SRAM Testing
	3.3 Summary

	4 Implementation of BIST on Xilinx FPGAs
	4.1 Motivation
	4.2 PLB and Routing Architecture
	4.3 Embedded Block RAMs Architecture
	4.4 Block RAM Testing
	4.4.1 Block RAM Testing in Single-port Mode
	4.4.1.1 BIST Implementation
	4.4.1.2 Diagnosis

	4.4.2 Block RAM Testing in Dual-port Mode

	4.5 Summary of Block RAM Testing
	4.6 LUT RAM Testing
	4.6.1 BIST Implementation

	4.7 MULTIPLIER BIST

	5 Summary and Conclusions
	5.1 Summary
	5.2 Observations
	5.3 Future Research

	Bibliography
	Appendices
	A ASL code for free RAM
	B VHDL Code for March Y algorithm
	C March LR Algorithm for Block RAMs
	C.1 March LR Algorithm with BDS for 16-bit Wide RAMs
	C.2 RAMBISTGEN Input File Format for Generating VHDL Code

