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Advocates of certain public policies believe that alternative spatial distributions of 

a fixed-size human population have different environmental consequences.  Specifically, 

a more concentrated human population has a smaller ‘ecological footprint’ and thereby 

generates lesser environmental harm in the aggregate, as compared to a scattered 

distribution of the same size population.  Similarly, the economic freedom and corruption 

literature links these institutional and human behaviors to environmental outcomes 

through economic growth.  In general, economic freedom (corruption) increases 

(decreases) economic well-being in a country and the increased (decreased) economic 

well-being has a positive (negative) effect on environmental outcomes in that country.  

Considering species imperilment as an aggregate form of the environmental outcome, this 
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dissertation aims to explore the empirical linkages among spatial concentration of a fixed 

size human population, economic freedom, and corruption with species imperilment at 

the country level for five taxa: birds, mammals, reptiles, amphibians, and vascular plants. 

International data on threatened species, endemic species, population density, a 

Gini coefficient index of human concentration, per capita income, economic freedom, 

and corruption for 173 countries are analyzed with econometric techniques that permit 

adjustment for spatial autocorrelation across countries using four alternative spatial 

adjacency specifications: simple, 2nd order, centroid distance, and shared border length. 

Results indicate that human population concentration is associated with reduced 

imperilment among amphibians and vascular plants but increased imperilment among 

mammals, reptiles, and birds.  Spatial autocorrelation across countries is found in all five 

taxa examined, for all spatial dependency specifications, suggesting that the factors that 

influence species imperilment extend beyond arbitrary political boundaries.  Among four 

spatial adjacency specifications, a simple adjacency measure is found superior to a 

measure of the percentage of shared border, for all five taxa.  The results of introducing 

both general and specific controls for spatial autocorrelation revealed that the specific 

variable based spatial controls can substantially change not only the size and statistical 

significance of the general spatial autocorrelation term but also the size, sign, and/or 

statistical significance of the explanatory variables.  

Furthermore, the results indicate that economic freedom has significant impacts 

on the imperilment of birds, mammals, and reptiles, whereas corruption only impacts the 

imperilment of birds.  In general, more economic freedom and less corruption beyond a 

certain threshold reduce species imperilment in a country. 



 vii

ACKNOWLEDGEMENTS 

I would like to extend my especial thanks and deepest appreciation to my advisor, 

Dr. David N. Laband, for his inspiration, encouragement, and guidance throughout my 

doctoral program, including this dissertation research.  I am grateful to Dr. Larry Teeter 

and Dr. Diane Hite for their advice and support in this endeavor and for their reviews of 

the work.  I am thankful to many faculty and friends who supported me by sharing their 

wide knowledge and experience in my academic and social pursuits at Auburn.  In 

particular, I am thankful to Drs. Maksym Polyakov and Indrajit Majumdar for their help 

in improving my GIS skills, to Allison Orr for her editorial support, to Adriane Short for 

her family support, and to Satish Mishra for his help in lessening my financial hardship at 

Auburn.  I gratefully acknowledge the financial support provided by the Center for Forest 

Sustainability and the School of Forestry and Wildlife Sciences in helping me to pursue 

the doctoral program and to accomplish this work.  Support from IIE and the Fulbright 

Program – Nepal that enabled me to complete my study in the U.S. is also acknowledged.  

I would like to express my profound gratitude to my parents and grandmother, Jagat 

Maya Pandit, for their inspiration, moral and emotional support, and sacrifices.  My first 

teacher was my grandmother, and I still have fresh memories of how she took me to this 

literary world, starting with the alphabets and going beyond.  I am truly indebted to her 

and my parents.  Finally, I would like to thank my wife, Sabina, especially for her support 

and exceptional understanding throughout my study.  My children, Simone and Seamus, 

deserve special appreciation for their company, curiosity, patience, and understanding.



 viii

Style manual or journal used: The Chicago Manual of Style 

 

Computer Software used: 

Microsoft Word 2003 

Microsoft Excel 2003 

Microsoft Access 2003 

SAS Version 9.1 

R  Version 2.4.1 

ArcGIS Version 9.1 

GEODA Version 0.95i 

EndNote Version 9 
 



 ix

TABLE OF CONTENTS 

 
LIST OF TABLES............................................................................................................. xi 

LIST OF FIGURES ......................................................................................................... xiii 

CHAPTER 1  INTRODUCTION ....................................................................................... 1 

CHAPTER 2  LITERATURE REVIEW ............................................................................ 8 

2.1  Human Population Size, Concentration, Activities, and Species Imperilment... 8 

2.2  Endemic Species, Biogeography, and Species Imperilment............................. 12 

2.3  Economic Growth, Economic Freedom, Corruption, and Species             

 Imperilment....................................................................................................... 14 

2.4  Spatial Dependency, Weights Matrices, and Species Imperilment .................. 18 

CHAPTER 3  SPATIAL CONCENTRATION OF HUMANS AND SPECIES 

IMPERILMENT ....................................................................................... 23 

3.1  Introduction....................................................................................................... 23 

3.2  Models, Data, and Methods .............................................................................. 27 

3.3  Results and Discussion ..................................................................................... 32 

3.4  Concluding Remarks......................................................................................... 37 

CHAPTER 4  SPATIAL AUTOCORRELATION AND SPECIES IMPERILMENT.... 39 

4.1  Introduction....................................................................................................... 39 

4.2  Models, Data, and Methods .............................................................................. 43 

4.3  Results and Discussion ..................................................................................... 46



 x

4.3.1  Spatial Autocorrelation and Dependency Structures ............................ 46 

4.3.2  General and Specific Spatial Autocorrelation....................................... 60 

4.4  Concluding Remarks......................................................................................... 67 

CHAPTER 5  ECONOMIC FREEDOM, CORRUPTION, AND SPECIES 

IMPERILMENT ....................................................................................... 71 

5.1  Introduction....................................................................................................... 71 

5.2  Linking Economic Freedom and Corruption to Environmental Degradation .. 73 

5.3  Models, Data, and Methods .............................................................................. 76 

5.3.1  Economic Freedom Index (EFI) ........................................................... 78 

5.3.2  Corruption Perceptions Index (CPI) ..................................................... 79 

5.4  Results and Discussion ..................................................................................... 81 

5.5  Concluding Remarks......................................................................................... 93 

CHAPTER 6  CONCLUSION.......................................................................................... 95 

REFERENCES ................................................................................................................. 98 

APPENDICES ................................................................................................................ 113 

APPENDIX-I  Map of Sample Countries by Taxa................................................ 114 

APPENDIX-II  Cluster and Significance Maps for Mammals, Reptiles,  

    Amphibians, and Vascular Plants ................................................................ 116 

APPENDIX-III  Other Adjacency Measures Based Weighted Least Squares  

    Regression Results for Factors Influencing Species Imperilment ............... 120 

APPENDIX-IV  Other Adjacency Based Weighted Least Squares Regression  

    Results for General and Specific Spatial Lags on Species Imperilment...... 126 

APPENDIX-V  List of Sample Countries ............................................................. 135



 xi

LIST OF TABLES 

 
Table 3.1     Descriptive Statistics for Imperiled Species and Covariates ........................ 34 

Table 3.2     Regression Results for Percent Imperiled Species ....................................... 36 

Table 4.1     Descriptive Statistics for Imperiled Species and Covariates by Taxa .......... 50 

Table 4.2     Spatial Autocorrelation Tests........................................................................ 51 

Table 4.3     Tests for Residual Normality and Heteroscedasticity Under Ordinary 

Least Squares Assumptions ......................................................................... 53 

Table 4.4     Simple Adjacency Based Weighted Least Squares Regression Results        

for Factors Influencing Species Imperilment............................................... 55 

Table 4.5     R-Square Values for Models with Alternative Structures of the Spatial   

Error Relationship Between Countries ........................................................ 60 

Table 4.6     Simple Adjacency Based Weighted Least Squares Regression Results        

for General and Specific Spatial Lags Effect on Species Imperilment........ 63 

Table 5.1     Sample Statistics ........................................................................................... 83 

Table 5.2a   Regression Results for Economic Freedom, Corruption, and Species   

Imperilment - Birds...................................................................................... 87 

Table 5.2b   Regression Results for Economic Freedom, Corruption, and Species 

Imperilment - Mammals .............................................................................. 88 

Table 5.2c   Regression Results for Economic Freedom, Corruption, and Species 

Imperilment - Reptiles ................................................................................. 89



 xii

Table 5.2d   Regression Results for Economic Freedom, Corruption, and Species 

Imperilment - Amphibians........................................................................... 90 

Table 5.2e   Regression Results for Economic Freedom, Corruption, and Species 

Imperilment - Vascular Plants ..................................................................... 91 



 xiii

LIST OF FIGURES 

 
Figure 4.1     Moran Scatter Plots for Imperiled Species by Taxa based on Simple 

                     Adjacency .................................................................................................... 47 

Figure 4.2     Cluster Map for the Nature of Spatial Autocorrelation Among Birds ........ 48 

Figure 4.3     Significance Map for the Intensity of Spatial Autocorrelation Among      

Birds............................................................................................................. 48 

Figure 5.1     Relationship between Economic Freedom and Percent Imperiled        

Species by Taxa ........................................................................................... 85 

Figure 5.2     Relationship between Corruption and Percent Imperiled Species                

by Taxa......................................................................................................... 86 



 1

CHAPTER 1 

INTRODUCTION 

 

Biodiversity loss is one of the most serious ecological problems in today’s world.  

Species imperilment is generally considered to be an indicator of biodiversity loss and 

refers to the ecological viability of the species population.  A conservative estimate of the 

2004 IUCN Red List suggests that of the world’s 1.9 million described species, 15,589 

species are threatened with extinction (Baillie, Hilton-Taylor, and Stuart 2004).  

Worldwide, at the taxonomic level, 12% of birds, 23% of mammals, 32% of amphibians, 

42% of turtles and tortoises, 25% of conifers, and 52% of cycads are identified as 

threatened with extinction (Baillie, Hilton-Taylor, and Stuart 2004).  Succession, 

endemism, climate, and geography are some natural factors associated with species 

imperilment.   

Moreover, human-induced factors are largely blamed for species imperilment and 

extinction (Soule 1991; Forester and Machlis 1996; Baillie, Hilton-Taylor, and Stuart 

2004).  Major human-induced factors include deforestation, habitat fragmentation, over-

exploitation of populations (e.g. hunting, fishing), introduction of invasive species and 

diseases, pollution, climate change (Soule 1991; Berger and Berger 2001; Sanderson et 

al. 2002), urbanization (McKinney 2002a; Riley et al. 2003; Turner, Nakamura, and 

Dinetti 2004), and economic activities (Naidoo and Adamowicz 2001; Asafu-Adjaye 

2003; McPherson and Nieswiadomy 2005).  However, increased human population  
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size, as measured by population density, is considered the most important driver of this 

phenomenon (Wilson 1988; Kohn 1999; Cincotta and Engelman 2000; Liu et al. 2003; 

Naves et al. 2003).  

Even though the ecological impact of alternative spatial distributions of a fixed-

size human population has barely been acknowledged, much less investigated thoroughly, 

both public agencies and non-governmental organizations have formulated and advocated 

policies to control the spatial distribution of humans.  For example, advocates of the 

Smart-Growth principle of Compact Building Design argue that there are ecological 

advantages, in the aggregate, to managing human distribution patterns in a way that 

reduces the footprint of new construction (Ewing, Pendall, and Chen 2002).  However, in 

terms of resource requirements, it seems reasonable to suggest that a fixed-size human 

population requires the same amount of productive resources regardless of spatial 

distribution.  Consequently, having the population located physically in one place does 

not necessarily imply that the rest of the area is untouched.  At a minimum, empirical 

support for the claimed ecological benefits of compact building design has not been well 

established in the scientific literature.   

In the literature, the empirical relationship between economic freedom and /or 

corruption and ecological outcomes in a country has been suggested implicitly via 

economic growth or well-being.  Numerous studies have documented the direct link 

between economic freedom and economic well-being (Islam 1996; Berggren 2003; Cole 

2003; Vega-Gordillo and Alvarez-Arce 2003; Gwartney, Holcombe, and Lawson 2004; 

Doucouliagos 2005) and between corruption and economic well-being (Friedman et al. 

2000; Li, Xu, and Zou 2000; Mo 2001; Gyimah-Brempong 2002; Mauro 2004) at a 
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country level of analysis.  Similarly, a direct link between economic well-being and 

environmental outcomes also has been frequently studied (Grossman and Krueger 1995; 

Asafu-Adjaye 2003).  These latter studies suggest a potential Environmental Kuznets 

Curve (EKC) relationship between economic well-being and specific forms of 

environmental degradation, for example pollution (Selden and Song 1994) and 

deforestation (Stern, Common, and Barbier 1996).  Considering loss of species as a form 

of environmental degradation, the EKC relationship has been suggested for threatened or 

imperiled species (Naidoo and Adamowicz 2001; McPherson and Nieswiadomy 2005).  

Thus, an implicit theoretical link between economic freedom and/or corruption and 

species imperilment via economic well-being can be extended based on existing 

literature.  However, a potential direct link between them and its empirical validity 

remains an investigative issue in the literature.      

Therefore, this dissertation explores the empirical linkage between species 

imperilment and the spatial concentration of humans, economic freedom, and corruption 

at the country level for five taxa: breeding birds, mammals, reptiles, amphibians, and 

vascular plants.  More specifically, it focuses on the following two specific objectives: 

• to test the empirical validity of the assumption of reduced species imperilment by 

managing human distribution at the aggregate as well as the taxa level, 

• to explore the direct empirical links of economic freedom and corruption to 

species imperilment across countries by taxa groups. 

However, comparable data on species imperilment are available only at a country 

by country level, but the political boundaries of countries, the limiting factor for the data; 

do not necessarily delimit the factors of species imperilment among countries.  In other 
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words, spillover effects of social, ecological, and economic factors across political 

boundaries are common, due to mutual spatial dependency between countries.  This 

mutual dependency raises an analytical concern, often referred as spatial autocorrelation, 

in cross country studies including species imperilment.  Spatial dependency is inherent in 

all geographic data, as argued by Tobler’s first law of geography (1970), which states, 

“Everything is related to everything else, but near things are more related than distant 

things.”  In the context of species imperilment study, spatial autocorrelation is not only 

relevant but also important in the following three respects: (1) the nature of dependency, 

if it exists – spatial lag or error; (2) the optimal type of adjacency measure – 1st order 

adjacency, 2nd or higher order adjacency, shared border length, or centroid distance 

between countries; and (3) the role of specific independent variables on dependency 

relationship beyond conventional spatial lag (dependent variable based) or spatial error 

(error based) dependencies.  Thus, the issue of spatial autocorrelation in species 

imperilment models becomes a methodological focus in this study.  Research on spatial 

dependency based empirical analysis of species imperilment has just begun.  McPherson 

and Nieswiadomy (2005) have advanced the work in this direction.  However, since their 

work is confined to the spatial lag dependency based on shared border length measure 

only, a full understanding of alternative spatial dependency measures and independent 

variables based dependency relationships is crucially lacking in the literature.   

Species imperilment is the resultant expression of many factors that occur either 

naturally or by human actions (Wilson 1988).  Thus, it is believed that species 

imperilment is a comprehensive aggregate indicator of ecological condition in a country, 

since deforestation, climatic variations, land use patterns, and urbanization that affect 



 5

species and their ecological viability can well be represented in a single measure.  For the 

purpose of this dissertation, percent threatened or imperiled species among five taxa 

groups is considered as the representative form of ecological outcomes in a country and is 

the key variable of study.  Consistent with IUCN classification, imperiled or threatened 

species is categorized as the sum total of critically endangered, endangered, and 

vulnerable species in a country (Baillie, Hilton-Taylor, and Stuart 2004).  Previous 

studies have used the percentage of threatened species (McPherson and Nieswiadomy 

2005), number of threatened species (Naidoo and Adamowicz 2001), and the density of 

threatened species (Forester and Machlis 1996) as measures of species imperilment.  In 

this study, percent imperiled species is considered as the dependent variable in species 

imperilment models, since percentage is the proportionate representation of total species 

of specific taxa in a country and can be a comparable measure among countries of 

different size.   

Considering each country as a unit of analysis, international data produced or 

compiled by World Conservation Union, World Resources Institute, United Nations, 

International Monetary Fund, Oak Ridge National Laboratory, the Heritage Foundation, 

and Transparency International are used in this study.  The explanatory variables include 

percent endemic species, human population density, a Gini coefficient index of human 

concentration, economic well-being as measured by per capita GDP, an economic 

freedom index, a corruption index, and a dummy variable to signify the bio-physical 

nature of countries.  The impacts of ecological factors, human distribution, activities, and 

behaviors on imperilment of species across countries are analyzed to answer the 

questions imbedded in the specific objectives above.   
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Endemic species reflect a large number of ecological factors since endemism is 

the manifestation of ecological uniqueness, including temperature, precipitation, soil, and 

other biotic and abiotic factors.  A new metric of human spatial distribution, as 

represented by the Gini coefficient for population concentration, is introduced along with 

population density to analyze the empirical validity of assumptions advocated by smart-

growth adherents.  In a broader sense, economic well-being represents human activities, 

and economic freedom and corruption represent human behaviors for this study.  

Countries are divided into two groups, mainland and island, to represent the biophysical 

differences between them.  

Data on model variables for 173 countries are analyzed with an econometric 

technique that permits adjustment for spatial autocorrelation in GEODA and the robust 

regression technique that controls for the influence of outlying observations in SAS.  The 

imperiled and endemic species data across five taxa groups are combined for aggregate 

analysis. The following hypotheses corresponding to each set of objectives are tested 

during the analysis: 

• Following the claim made by “Smart-growth principle of compact building design 

adherents,” it is hypothesized that species imperilment is related to human 

concentration patterns both in the aggregate and for specific taxa across the 

countries.  Specifically, the more uniform the human distribution in a country is, 

the more threatened or imperiled the species living within that country are, and 

vice versa.  

• It is further hypothesized that economic freedom and corruption in a country have 

respectively an inverse and a direct relationship with species imperilment in that 
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country.  The more economic freedom there is in a country, the less imperiled are 

the species in that country, and vice versa.  Similarly, the more corrupt the 

country is, the more imperiled the species in that country are, and vice versa.   

This dissertation is developed in a manuscript format with a connecting link of 

research question and analytical approach between the chapters.  This is the first and 

introductory chapter.  The second chapter presents a collective review of literature that 

sets the research questions in perspective.  The third chapter discusses the idea of smart-

growth and assumed ecological benefits of concentrating humans and presents empirical 

results of species imperilment both at aggregate and taxa level analyses.  The fourth 

chapter explores the issue of spatial autocorrelation in species imperilment models and 

presents the spatial analyses for all four adjacency measures by taxa.  It further expands 

the spatial analysis, incorporating general and specific variable-based spatial lags into the 

models to gain more insights into the role of specific variables on species imperilment 

across countries.  The fifth chapter constructs a linkage between economic freedom and 

corruption with species imperilment.  The sixth chapter summarizes the main findings.   

It is worth mentioning at the onset that given the aggregate nature of the data 

available at the country level, the specific questions based on ecological variations or any 

other types within a country are not addressed in this dissertation.  A note of caution is 

warranted if we want to interpret the results within a country’s context.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Human Population Size, Concentration, Activities, and Species Imperilment 

The deliberate manipulation of habitat by human beings poses a different picture 

on the natural processes of succession and coexistence of all species (Odum 1971).  This 

raises a direct question about impacts of human population and associated activities on 

other species who share common resources such as land, water, air, and forests with 

humans.  Both in theoretical and empirical studies, human population and activities are 

often cited as prime causes of biodiversity loss (Forester and Machlis 1996; Kohn 1999; 

Cincotta and Engelman 2000; Berger and Berger 2001; Sanderson et al. 2002; Liu et al. 

2003; Naves et al. 2003).  

Threatened or imperiled species have been considered an indicator of biodiversity 

loss in earlier studies.  Specifically, species density (Asafu-Adjaye 2003), number of 

threatened species (Kerr and Currie 1995; Forester and Machlis 1996; Naidoo and 

Adamowicz 2001), and percent threatened species (Forester and Machlis 1996; 

McPherson and Nieswiadomy 2005) were used at country level studies.   

Even though ultimate causes of biodiversity loss vis. a vis. species imperilment 

are complex and vary by social context (Soule 1991), the causal factors and consequences 

of such losses have been well documented, and human population growth expressed in 

the form of density has been identified as one of the dominating factors in the literature 
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(Wilson 1988; Meffe, Ehrlich, and Ehrenfeld 1993).  Notable human activities for 

adverse ecological outcomes that impact species imperilment identified by earlier studies 

include deforestation (Rudel 1989), mining and intensive forestry (Saunders, Hobbs, and 

Margules 1991), introduction of invasive species (Czech and Krausman 1999), 

urbanization and urban sprawl (McKinney 2002a), and economic development (James 

1994).  With an ever-increasing human population, as Watson (2004) argued, there is a 

need to look at social structures, consumption pattern, commodity intensive development, 

and the social and historical causes of extreme poverty while considering underlying 

causes of ecological degradation.  In the same tone, Machlis (1992) emphasized the need 

to understand social structures and behaviors in order to understand species imperilment 

since the causes of habitat destruction are complex and ultimately linked with 

demographic patterns, national histories, land tenure rules, the distribution of wealth, 

worldwide trends toward industrialization, increased per capita energy consumption, and 

economic interdependence among countries.   

There is an emerging literature that links urbanization with species diversity.  

Generally, urbanization is found to depress biodiversity due to habitat loss, particularly 

for native species (McKinney 2002a; Turner, Nakamura, and Dinetti 2004).  However, 

other studies have shown that the number of native species decreases while the number of 

non-native species increases in suburban areas due to the invasion of non-native species, 

particularly birds and butterflies (Blair 1996).  The study on human footprint, the map of 

human influence on nature that expresses the sum total of human influence stretched 

across the land surface in a continuum, has also been considered a measure of human 

impacts on species.  This was mapped by using proxies for human influences, such as 
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population density, land transformation, accessibility, and electrical power infrastructure.  

In their human footprint mapping study, Sanderson et al. (2002) found that 83% of the 

land’s surface and 98% of the area where it is possible to grow rice, wheat, or maize are 

directly influenced by human beings.  This implies that human activities impact species 

imperilment, either positively or negatively.  The literature has established and 

documented that human population level or density significantly impacts species 

imperilment.  

However, empirical studies based on alternative measures of human presence, 

such as the Gini coefficient for human concentration or human settlement patterns and 

species imperilment, are not widely available even though public policies have been 

developed to minimize human footprints based on the assumptions that certain forms of 

human settlement patterns are more ecologically friendly.  Some examples of such 

policies include smart-growth and compact building design in the U.S.  These policies 

and practices assume that dispersion of population and built-up structures have a direct 

link to ecological outcomes (Ewing, Pendall, and Chen 2002).  The implicit suggestion is 

that concentrating humans in cities will yield ecological benefits for other species through 

fewer or a lack of disturbances of humans on other areas.  However, in reality, whether 

other species are benefited by such policies is still an empirical issue.  Recently, U.N. 

Environment Program Chief Klaus Toepfer (Reuters 2005) said the following: 

Cities pull in huge amounts of resources including water, food, timber, metals and 

people.  They export large amounts of wastes including household and industrial 

wastes, wastewater and the gases linked with global warming.  Thus, their 

impacts stretch beyond their physical borders, affecting countries, regions,  
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and the planet as a whole. 

The widely available empirical link between species imperilment and human 

presence as measured by population density does not provide any basis for the assumed 

beneficial impact of the spatial configuration of humans on other species since the 

concepts of density and spatial configurations are quite different.  Our understanding of 

the nature of the relationship between species imperilment and human presence can be 

enhanced considerably by analyzing the spatial configuration of human populations, 

controlling for density.  

Other than human population density, alternative measures of human presence, 

for example human settlement pattern as measured by the spatial concentration of houses 

and Gini coefficient of population concentration, are barely identified and studied in the 

literature.  Consequently, studies that link such measures of human presence and species 

imperilment are rare.  Most of the available literature deals with human population 

density and its impacts on species (Forester and Machlis 1996; van Rensburg et al. 2004).  

The Miller and Hobbs study (2002) is a relevant example to illustrate this case.  In an 

extensive review of the human settlement and land use change based on the papers 

published in Conservation Biology between 1995 and 1999, they found that fewer than 

6% of the 217 papers considered human settlement in urban, suburban, or exurban areas 

in the study.  This scenario suggests the paucity of information linking alternative 

measures of human presence such as human settlement or a Gini coefficient for 

population concentration to other species and associated outcomes. 

Only a few recent studies have used alternative measures of human presence as 

compared to conventional population density alone.  In a study of the effects of 
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household dynamics on resource consumption and biodiversity in 76 hotspot and 65 non-

hotspot countries, Liu et al. (2003) found that there had been a rapid increase in the 

number of households and a reduction in the size of households, mostly in hotspot 

countries.  These trends lead to higher per capita resource consumption and further 

pressure on biodiversity conservation.  In a brown bear habitat study in northern Spain, 

Naves et al. (2003) considered the number of villages to represent human dispersion as 

additional variables to describe human activities, and they found that villages are 

negatively associated with bear presence.  Brown and Laband (2006) studied the effect of 

human spatial distribution on species imperilment in the U.S., using a Gini coefficient 

measure for population concentration, but they failed to find a significant effect of human 

distribution on species imperilment.  Thus, it is natural to expand this line of enquiry to 

gain more insights on the role of humans, particularly the human concentration, on 

species imperilment in different contexts, and this dissertation will take up this issue in a 

cross-country context for 5 species taxa. 

2.2  Endemic Species, Biogeography, and Species Imperilment 

Hotspots of biodiversity – areas particularly rich in species, rare species, 

threatened species, or some combination of these attributes – are being considered as 

focal areas to develop conservation priorities (Reid 1998).  There are 25 hot spots 

identified around the world based on the two criteria: high concentration of endemic 

species and exceptional loss of habitat (Myers et al. 2000).  Endemic species are the rare 

species with restricted distributional range delineated by soil, moisture, temperature, 

topography, and like abiotic and biotic factors.  Generally, these species are fewer in 

population and are threatened with extinction.  In a conflict mapping study between 
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biodiversity and human needs, Fox, Yonzon, and Podger (1996) found that endemic 

species are comparatively more vulnerable and threatened than other species. 

In a recent study on the global test of biodiversity concordance and the 

importance of endemism, Lamoreux et al. (2006) found that global patterns of richness 

and endemism are highly correlated among amphibians, reptiles, birds and mammals.  

Even though they found a low correlation between global richness and endemism, 

aggregate regions selected for high levels of endemism captured significantly more 

species than expected by chance. Although areas high in endemism have long been 

targeted for the protection of narrow-ranging species, their findings provide evidence that 

endemism is also a useful surrogate for the conservation of all terrestrial vertebrates. 

Kerr and Burkey (2002) studied endemism and diversity among 42 tropical moist-

forest countries to understand the pattern of endemism across different taxa groups.  The 

findings suggest that there is a similarity of endemism as expressed in percentage of 

species richness even after adjusting for country size and spatial effect for birds and 

mammals.  It revealed that similar biological forces act to create tropical endemism 

among both birds and mammals, but the endemism and richness pattern for invertebrates 

and plants did not reflect the same pattern as that of birds and mammals.   

Similarly, if we divide the countries into mainland and island that are 

characterized differently based on geography, microclimate, species composition, and 

human population distribution, a different pattern of species richness and endemism is 

expected.  Species imperilment in island nations differs significantly from mainland 

nations (Czech and Krausman 1999).  Islands are relatively poor in species richness but 

rich in species endemism because escape is virtually impossible.  For example, one in six 
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plant species occurs on oceanic islands, and one in three of all known threatened plants is 

island-endemic (Fisher 2004).  Frankel and Soule (1981) reported that the rate of 

extinction of island-specific species is much higher than mainland dwelling species.  

Presently, invasive species have been considered to be bigger threats than human 

activities in maintaining biodiversity in islands (Lasserre 2004).  As discussed in the 

preceding paragraphs, it is clear that islands are unique in their biogeography.  Therefore, 

a natural question is whether the uniqueness is common across all species taxa or is 

specific to some but not to all.  This dissertation deals with this empirical question. 

2.3  Economic Growth, Economic Freedom, Corruption, and Species Imperilment 

Along with the debate about  biodiversity loss, the nexus between economic 

growth or well-being and environmental degradation received wide-spread attention 

during the early 1990s following Simon Kuznets’ (1955) famous study of  economic 

growth and income inequality.  This study suggested that there is an inverted U-shaped 

relationship between certain indicators of environmental degradation and economic 

growth, which later was referred to as the EKC hypothesis (Shafik and Bandyopadhyay 

1992; Selden and Song 1994; Grossman and Krueger 1995).  This hypothesis argues that 

negative environmental effects are at low levels during initial stages of economic 

development but will increase as the economic development proceeds towards higher 

stages.  In addition, after a certain threshold of economic growth is reached, such effects 

starts diminishing, perhaps due to the introduction of environmentally-friendly industrial 

and agricultural technologies or change in preference or taste of an economic agent.  For 

some specific indicators of environmental degradation, such as air and water pollution, 

this relationship is even described as N-shaped (Grossman and Krueger 1995; Torras and 
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Boyce 1998).  Common forms of environmental degradation studied in the past that 

support this hypothesis include certain types of air pollution (Selden and Song 1994; 

Grossman and Krueger 1995; Torras and Boyce 1998; Cole, Rayner, and Bates 2001), 

certain types of water pollution (Shafik 1994; Grossman and Krueger 1995; Torras and 

Boyce 1998), deforestation (Panayotou 1993), and threatened species (McPherson and 

Nieswiadomy 2005).  However, recent contributors to EKC literature question its 

existence for specific forms of environmental degradation (Borghesi 1999; Meyer, van 

Kooten, and Wang 2003; Stern 2004) due to rapid technological and structural changes 

(de Bruyn, van den Bergh, and Opschoor 1998) and specialization and trade (Arrow et al. 

1995; Stern, Common, and Barbier 1996). 

Similarly, the nexus between corruption and economic freedom in a country with 

its economic well-being has also been widely acknowledged and documented in the 

literature.  Corruption negatively affects investment activity and economic growth 

(Mauro 1995; Li, Xu, and Zou 2000; Mauro 2004), GDP per capita, international trade, 

and price stability (Dreher and Herzfeld 2005).  Mo (2001) estimated that a one unit 

increase in corruption index reduces the economic growth rate by 0.545 percentage points 

and that the effect is passed on to the economy mostly through political instability.  Li, 

Xu, and Zou (2000) found that corruption affects income distribution in an inverted U-

shaped way and that it alone can explain a large proportion of Gini differential across 

developing and industrial countries.  In a study of the determinants of unofficial activity 

in 69 countries, Friedman et al. (2000) found that corruption is associated with more 

unofficial activity, which in turn reduces tax revenue and thereby the official and total 

GDP of a country.  In a study of African countries, Gyimah-Brempong (2002) found that 
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corruption decreases economic growth both directly and indirectly through decreased 

investment in physical capital.   

The economic freedom and economic growth literature indicate a positive effect 

of economic freedom on growth but also acknowledge a strong publication bias 

(Doucouliagos 2005).  In a survey of the benefits of economic freedom, Berggren (2003) 

presented mostly the positive effect of economic freedom on economic growth with some 

exceptions where economic freedom did not contribute in economic growth.  Gwartney, 

Holcombe, and Lawson (2004) found that countries with institutions and policies 

consistent with economic freedom both grow more rapidly and achieve higher income 

levels.  They further showed that institutional quality affects economic growth by 

affecting investment as well as productivity of resource use.  In a study of economic 

freedom, per capita income and economic growth, Islam (1996) found that there is a 

positive relationship between economic freedom and per capita income in all countries.  

Similarly, Vega-Gordillo and Alverez-Acre (2003) and Cole (2003) found that economic 

freedom favors both the level and rate of economic growth.  

Literature dealing with the direct link between corruption and economic well-

being or economic freedom and economic well-being is abundant.  Similarly, a direct link 

between economic well-being and species imperilment has also been suggested 

empirically in the context of EKC hypothesis.  However, there is a paucity of literature 

that deals with the relationship between economic freedom and corruption and species 

imperilment.  In retrospect, the indirect link between these factors and species 

imperilment can be drawn via their impact on economic well-being.  Studies have just 

been started that link corruption and economic freedom to some sort of environmental 
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degradation.  Some of the emerging literature that touches on this link includes that of 

Barret and Graddy (2000), Lopez and Mitra (2000), Lundstrom (2003), Carlsson and 

Lundstrom (2003), Smith et al. (2003), Welsch (2004), and Pelligrini and Gerlagh (2005).   

Lundstrom (2003) discussed the effect of specific economic freedom categories 

on both the economic growth and the environment and highlighted some important 

considerations for empirical work (see Lundstrom 2003 for details).  Referring to 

developing countries, Lopez and Mitra (2000) mentioned that corruption and lobbying by 

vested interests are important sources of environmental degradation.  In their study of the 

effect of economic freedom on environmental quality, Carlsson and Lundstrom (2003) 

found that economic freedom and increased freedom to trade reduce CO2 emission.  

However, they noted that if the government size is large, economic freedom increases 

CO2 emission.  Welsch (2004) studied the role of corruption on growth and environment, 

using water and air pollutions as indicators across the countries, and found that corruption 

increases pollution in two ways: directly through reduced stringency of environmental 

laws and enforcement and indirectly through reduced per capita income.  While 

presenting an empirical work on corruption, democracy and environmental policy, 

Pellegrini and Gerlagh (2005) also claimed that corruption has a negative effect on 

environmental policy stringency.   

The study by Smith et al. (2003) on governance and loss of biodiversity is the 

only one that directly links corruption with species at taxa level.  They studied the 

governance scores in corruption and combined species richness for birds and mammals 

and found an inverse relationship between them, suggesting that increased corruption in a 

country reduces the species richness for birds and mammals combined.  They further 
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studied the relationship between corruption and extent of national conservation priority 

areas represented by three indicators: endemic bird areas, biodiversity hotspots, and 25 

focal terrestrial ecoregions, based on endemism, threat, and representativeness.  The 

study found that all countries with conservation priority areas are more corrupt than 

countries without such areas. 

Expanding this emerging literature on the impact of economic freedom index and 

corruption perceptions index on environmental outcomes would be relevant research for 

both the scientific community and policy makers.  More importantly, empirical validation 

of the direct link between these indices and species imperilment at individual taxa level is 

a timely and informative work to all concerned and is believed to be the first of its kind. 

2.4  Spatial Dependency, Weights Matrices, and Species Imperilment 

The issues of spatial dependency, also called spatial autocorrelation, and spatial 

weights matrix are important considerations in studies that involve geographic data.  As 

explained by Tobler’s first law of geography (1970), “Everything is related to everything 

else, but near things are more related than distant things.”  There is an inherent 

dependency on spatial data.  Biodiversity data almost always exhibit spatial 

autocorrelation (Kerr 2001).  Spatial autocorrelation is the tendency for data points that 

are near to one another to be more similar than those that are widely separated.  When 

spatial autocorrelation is present in the data, it violates the assumption of the 

independence of data values of the response variable in ordinary least squares regression 

analysis.  The relevance of spatial autocorrelation on species imperilment is that the 

factors affecting species in one country may have spillover effects on neighboring 

countries’ species.  In such cases, spatial models represent the phenomena more 



accurately than do ordinary models.  Also, the spatial dependency might depend on the 

type of measure, generally referred to as spatial weights matrix, used to estimate the 

spatial dependency relationship.  Anselin (1988) suggested two types of spatial regression 

models in empirical work: spatial lag and spatial error model.  Spatial lag model is 

written as 

εβρ ++= XWyy  

where ρ  is the coefficient of spatially lagged dependent variable, is the spatial weights 

matrix, is a N x K matrix of independent variables, 

W

X β is a K x 1 vector of parameters, 

and ε  is the normally distributed error term with a diagonal covariance matrix.  The 

spatial error model is written as  

 εβ += Xy  

 βε X−= y  

 νελε += W  

where λ  is the autoregressive coefficient, and ν  is a homoskedastic and uncorrelated 

disturbance term. 
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The spatial weights matrix can be constructed by using multiple dependency 

measures to characterize the dependency relationship.  For this research, four types of 

dependency measures are used to construct spatial weights matrices: 1st order adjacency, 

2nd order adjacency, shared border length, and centroid distance between countries.  First 

order adjacency refers to a simple binary adjacency (Moran 1948; Geary 1954) in which 

countries that share a common border are assigned a value of 1 in the spatial weights 

matrix, while countries that do not share a common border are assigned a value of 0.  In 

the second order adjacency matrix, countries that directly share a common border and 
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countries with indirect adjacency (i.e., adjacency that is one country removed) are 

assigned a value of 1 in the spatial weights matrix.  For the shared border adjacency 

matrix, the shared border length between any two countries is assigned in the spatial 

weights matrix.  If countries do not share borders, then the value of 0 is assigned for 

those unrelated countries in the matrix.  The centroid distance adjacency matrix consists 

of the distance between centroid points between any adjacent countries as a measure of 

spatial weights.  Generally, spatial weights matrices are row standardized for 

computational purposes such that each row sums to one.  

In a recent study of the regional disparities in the spatial correlation of state 

income growth in the U.S., Garrett, Wagner, and Wheelock (2005) used binary contiguity 

(simple adjacency) and inverse distance (the centroid distance) based weights matrices to 

capture the potential correlation among states.  They performed spatial analysis, using 

spatial lag, spatial error, and both spatial lag and error in the same model based on both 

types of weight matrices.  Bhattacharjee and Jensen-Butler (2005) argued that the choice 

of appropriate spatial weights is a central component of spatial models since it imposes a 

priori a structure of spatial dependence, which may or may not correspond to reality.  

They estimated a new spatial weight matrix based on a non-parametric approach and used 

a spatial error model in the spatial diffusion study of housing demands in the U.K.  In 

their exploratory analysis of homicide rates in 78 U.S. counties, Messner et al. (1999) 

found evidence of positive spatial autocorrelation with a nonrandom distribution of 

homicides.  However, they did not explore specific dependency structures.  Moreover, 

Anselin (1988) identifies simple adjacency, higher-order adjacency, and centroid-based 

Euclidean distances as suggested adjacency measures in spatial econometric analysis.   



There are a variety of tests to check spatial autocorrelation.  Among those 

commonly used are the Moran’s I (Moran 1948) and Geary’s C (Geary 1954).  Baltagi, 

Song, and Koh (2003) derived conditional and joint Lagrange Multiplier tests for spatial 

error correlation in a panel data setting using a Monte Carlo experiment.  Anselin et al. 

(1996) developed a simple diagnostic test (adjusted Lagrange Multiplier test) for spatial 

dependence based on ordinary least squares residuals using 1st order spatial weights 

matrix.  In this dissertation, queen contiguity based Moran’s I test is used to check the 

spatial dependency on data employing all four spatial weights matrices.  Moran’s I is 

calculated as 
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The theoretical mean of Moran’s I is -1/(N-1).  A Moran’s I coefficient larger 

than its expected value indicates positive spatial autocorrelation, and a coefficient less 

than its expected value indicates negative spatial autocorrelation.  Standardized z-value is 

used to draw inferences.  For Moran’s I, the z-value is calculated as  

)(/))(( ISdIEIZ I −=  
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)(IE )(ISdwhere  is the theoretical mean and is the theoretical standard deviation.  A 

positive and significant z-value for I indicates positive spatial autocorrelation (Anselin 

2005).  

The focus on spatial effects on cross-country studies of ecological/environmental 

phenomena is apparently lacking (Kerr and Currie 1995; Forester and Machlis 1996; 

Naidoo and Adamowicz 2001; McPherson and Nieswiadomy 2005).  Even though Kerr 

and Burkey (2002) adjusted for spatial autocorrelation by adopting the conservative 

stance of assessing the number of degrees of freedom, McPherson and Nieswiadomy’s 

study (2005) addressed the issue of spatial effects on species imperilment by rigorously 

using shared border length based spatial weights matrix.  Still, issues related to adjacency 

measures other than shared border length and the spatial effects associated with 

independent variables need empirical support.  
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CHAPTER 3 

SPATIAL CONCENTRATION OF HUMANS AND SPECIES IMPERILMENT 

 

3.1  Introduction 

It seems quite clear that the sheer number of humans (or any species) has a 

variety of ecological consequences (Kerr and Currie 1995; Thompson and Jones 1999; 

2000).  A successful species directly “crowds out” other species by appropriating 

habitat.  As the population of a prey species increases, so does the population of any 

predator and/or symbiotic species, albeit with a temporal lag.  In turn, a boom in the 

numbers of a predator species leads to a reduction in the numbers of the prey species, 

and population cycles among predator/prey species are well-documented.  

However, while a link between the spatial distribution of humans (or human 

activity) and ecological outcomes has been conjectured, empirical support is lacking.  

For example, it has been suggested that intensively-managed timber, as a human 

activity, reduces the imperative to cut from “natural” forests, thus leaving greater area 

intact in undisturbed ecosystems (Sedjo and Botkin 1997; South 1999; Bowyer 2001).  

The implicit suggestion is that in the aggregate, there are ecological advantages (in 

terms of biodiversity enhancement, reduced soil disturbance, reduced ecosystem 

fragmentation, and the like) to more intensive human processing of a relatively smaller 

area of planted trees than less intensive human processing of a relatively larger area of 

naturally generated trees, for a given timber harvest level.  Analogously, proponents of 
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the Smart-Growth principle of Compact Building Design advocate policies that 

encourage higher densities of humans in cities as a means of reducing the putative 

ecological harms caused by urban sprawl.  As indicated on the Environmental Protection 

Agency (EPA) website: (http://cfpub1.epa.gov/sgpdb/glossary.cfm?type=topic), 

Compact building design refers to the act of constructing buildings vertically 

rather than horizontally, and configuring them on a block or neighborhood scale  

that makes efficient use of land and resources, and is consistent with 

neighborhood character and scale. Compact building design reduces the 

footprint of new construction, thus preserving green-space to absorb and filter  

rain water, reduce flooding and stormwater drainage needs, and lower the 

amount of pollution washing into our streams, rivers and lakes.  (emphasis 

added).  

A strong assumption forms the foundation for this Compact Building Design policy 

perspective: Not only does the sheer number of human beings matter, how the human 

population is distributed, generally speaking, matters also.  In this regard, the analogy to 

intensively-managed forestry mentioned previously is virtually perfect, as indicated in 

this passage from the SmartGrowth.org website (www.smartgrowth.org/about/issues

/issues.asp?iss=4),  

As we build, we replace our natural landscape - - forests, wetlands, grasslands 

with streets, parking lots, rooftops, and other impervious surfaces.  The effect 

of this conversion is that stormwater, runoff which prior to development is 

filtered and captured by natural landscape, is trapped above impervious surfaces 

and runs off into streams, lakes, and estuaries, picking up pollutants along the 

http://cfpub1.epa.gov/sgpdb/glossary
http://www.smartgrowth.org/about/issues
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way.  Runoff can be reduced through clustering of development, thereby leaving 

larger open spaces and buffers.  Although compact development generates 

higher runoff and pollutant loads within a development, total runoff and 

pollutant loads are offset by reductions in surrounding undeveloped areas. 

(emphasis added)  

The possibility that dispersion of the human population matters independently of 

the level of human population can be illustrated by the example of two countries, A and 

B, that are identical in every respect, including size of human population, land area, 

percent of population living in urban areas, number and characteristics of ecological 

niches, species diversity, and so on.  In country A, the urban population is confined 

completely within a single city of 100 square miles; in country B, the urban population is 

distributed equally among 100 cities, each confined within a one square mile area.  The 

critical question is whether the ecological impact of the otherwise identical human urban 

populations is the same across countries A and B.  

There are good reasons to believe that the impacts would not be identical.  

Depending critically on the precise location of both cities and ecologically imperiled 

species, it seems likely that the impervious surface of the single urban area in A would 

destroy a smaller number of species located in unique, geographically small, ecological 

niches than the equivalent area of impervious surface distributed in smaller parcels in B, 

which happen to coincide with a larger number of those unique, geographically small, 

ecological niches.  Yet, in fact, such location issues may be of empirically trivial 

importance given that both countries require identical amounts of food, water, and other 

resources to sustain their respective populations of humans.  These life-sustaining 
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resources are drawn from the entire country, not just the specific location in which the 

population is physically housed.  Thus, the use of fertilizers and pesticides to boost 

agricultural harvests will be identical in the two countries, with identical impacts on their 

respective species’ ecological imperilment.  

There can be no doubt that, at an on-the-ground level of analysis, specific location 

decisions are critical to species imperilment.  Concrete poured at specific location X may 

destroy the last remaining population of a rare flower but have a negligible ecological 

impact if poured at specific location Y.  However, questions about the site-specific 

impact of humans on species imperilment are fundamentally different from questions 

about whether, in the aggregate, the number of ecologically imperiled species is 

influenced by the size-distribution of a fixed population of humans.  Exactly where that 

existing population is physically located may indeed have ecological implications; 

however, these site-specific implications are quite separable, in theory, from the 

ecological implications of different size-distributions of the human population.  

A significant intellectual foundation for the belief that the structural configuration 

of a fixed-size population has ecological implications was provided by Liu et al. (2003) 

and Keilman (2003).  They argued that the intensity of resource use, and thus the 

aggregate environmental impact, is greater when a fixed population of human beings is 

distributed in smaller households than in larger households.  There may be spatial 

implications of alternative household dynamics, but this need not necessarily be the case.  

Two or more households can occupy the same space as a single household, e.g., a 

residential house that has been divided into separate apartments.  The result is that 

analysis of different household dynamics is not the same as analysis of different spatial 
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distributions of a fixed-size population of humans.  

Employing a cross-sectional analysis of the 49 continental states in the U.S., 

Brown and Laband (2006) investigated whether the structural organization of humans has 

an empirically significant aggregate impact, defined in terms of the ecological 

imperilment of plant and animal species. They constructed Gini coefficient measures of 

inequality in the concentration of human population in each state, using 4 indicators: (1) 

population, (2) the number of households, (3) night-time light distribution, and (4) 

distribution of roads.  They failed to find evidence of a relationship between the 

distribution of human activity and the distribution of the number of ecologically 

imperiled species using NatureServe listings of species in each state that are at risk of 

extinction.  In this chapter, the Brown and Laband line of empirical inquiry is extended 

by analyzing the relationship between the concentration of human populations and 

species imperilment for 5 taxa groups: breeding birds, mammals, reptiles, amphibians, 

and vascular plants, at aggregate and taxa level across 173 countries.  Aggregate analysis 

is based on the combined information of all taxa. 

3.2  Models, Data, and Methods  

The number of ecologically imperiled species in a given country is modeled as 

depending on existing species richness (the number of different species), the level of 

endemism (the number of species found only within that area and nowhere else), and the 

level and spatial distribution of human activity.  A general functional form is  

# Imperiled Species  =  f (Total # Species, # Endemic Species, Level of Human  

                                         Activity, Concentration of Human Activity)                         (3.1)   

To avoid a dominant (explanatory) variable problem with total # species, # 
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imperiled species and # endemic species are converted to percentage form by dividing 

each by the total # species, yielding  

Percent Imperiled Species  =  f (Percent Endemics, Level of Human Activity,  

                                                   Concentration of Human Activity)                  (3.2)   

The percentage of imperiled species in a country is expected to increase as the 

percentage of endemic species increases (McPherson and Nieswiadomy 2005; Brown and 

Laband 2006).  For a given rate of naturally-occurring extinctions at a specific point in 

time, the number of ecologically imperiled species in a given geographic area will be 

greater in areas characterized by relatively large numbers of species than in areas that do 

not support much biodiversity.  Further, by virtue of having wider ranges of moisture, 

temperature, and geophysical attributes, some countries have greater numbers of unique 

ecological niches than others, which support plant and animal species found nowhere 

else.  By definition, these endemic species are more likely than species with wider ranges 

of habitat to be characterized by low populations.  

The percentage of imperiled species is also expected to increase as the level of 

human presence/activity increases (McKinney 2002b).  Humans kill, harvest, or consume 

other species directly to meet consumptive needs.  Sheer population pressures held 

constant, the type and extent of human activities clearly affect plant and animal 

populations indirectly through alteration of habitat (Kerr and Currie 1995).  The nature or 

extent of these activities reflect man’s economic well-being, and the exact relationship 

between man’s economic well-being and the impact on species imperilment is an 

empirical matter.   
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The theoretical link between the economic well-being of humans and 

environmental degradation runs as follows: Desperately poor people are willing to accept 

increased environmental degradation as a necessary by-product of generating an 

improved material standard of living.  As individuals’ standards of living improve, they 

are able increasingly to turn their attention away from exploiting the natural environment 

for food, shelter, and other necessities of life and toward appreciation of the wonders of 

nature.  That is, other species become valuable to humans not only because they can be 

used to improve man’s well-being (in terms of providing food, shelter, medicines, etc.), 

but because their existence becomes important.  In terms of empirical application, this 

implies an inverted U-shaped relationship between measures of economic well-being, 

such as per capita income, and measures of environmental degradation, the so-called 

Environmental Kuznets Curve (EKC).    

Employing cross-sectional analysis and typically focusing on specific pollutants, a 

number of researchers have found empirical evidence that is consistent with the EKC 

(Cropper and Griffiths 1994; Selden and Song 1994; Grossman and Krueger 1995; Hilton 

and Levinson 1998; Rothman 1998; List and Gallet 1999; Hettige, Mani, and Wheeler 

2000).  However, these findings and the interpretations drawn from them have been 

criticized on the grounds that perhaps the reason that richer countries experience 

diminishing levels of environmental degradation is that they “export” their environmental 

harm to other, poorer countries (Arrow et al. 1995; Stern, Common, and Barbier 1996; de 

Bruyn, van den Bergh, and Opschoor 1998; Suri and Chapman 1998).  A recent study 

looking at imperilment of birds and mammals across 115 countries in 2000 found 

evidence of an inverted U-shaped EKC (McPherson and Nieswiadomy 2005). 
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As the cited quotations in the introductory section make clear, advocates of the 

Smart-Growth principle of Compact Building Design argue that in the aggregate, the 

environment is harmed less by a concentrated human population than a dispersed human 

population.  Thus, the predicted relationship between the percent of imperiled species and 

the concentration of human activity is negative, i.e., the percentage of threatened species 

decreases with increasing concentration of human presence or activity, and vice versa.   

The regression model also includes a dummy variable for island nations as an 

additional explanatory variable.  It is well-known that, in terms of species imperilment, 

island nations differ significantly from mainland nations (Czech, Krausman, and Devers 

2000).  Endemism is higher on islands, and because escape is virtually impossible, island-

specific flora and fauna are particularly sensitive to the introduction of invasive species, 

such as the introduction of Australian Brown Tree Snake in Guam that preys on native 

lizards and birds. 

Country-specific data on species by taxa (total species, endangered species, and 

endemic species) for each country in 2004 were taken from the World Resources Institute 

EarthTrends Environmental Portal (http://earthtrends.wri.org/searchable_db) (WRI 2004) 

that are published by the World Conservation Union (IUCN).  The IUCN publishes a Red 

List that identifies species facing a relatively high risk of global extinction (i.e., those 

listed as Critically Endangered, Endangered or Vulnerable).  Human population data was 

obtained from the United Nations Population Division (http://www.un.org/esa 

/population) (UNPD 2004).  Data on per capita gross domestic product (GDP) at 

purchasing power parity were taken from the International Monetary Fund’s World 

Economic Outlook database (http://www.imf.org/ external/pubs/ft/weo /2004/01/data 

http://www.un.org/esa
http://www.imf.org/%20external/pubs/ft/weo%20/2004/01/data%20/index.htm


/index.htm) (IMF 2004).  A Gini Coefficient measure of concentration in the human 

population in each country is derived and used (Klein 2002), with index values ranging 

from 0 (a uniformly dispersed population) to 1 (all population located in a cell).  Using 

ArcGIS, the world political map was superimposed on a LandScan 2002 gridded 

population map (http://www.ornl.gov/gist/landscan/index.html) to create a population 

distribution map for each country (ESRI 2002).  The LandScan 2002 gridded population 

distribution map is based on census count distributions to cells determined by proximity 

to roads, land cover, slope, and night time lights and consisted of cells with 

corresponding population values for each country (ORNL 2004).  The Gini coefficient 

index of population concentration (GCPOP) for a country was then computed from 

unordered data as the relative mean difference, using the following formula as suggested 

by Dixon et. al (1987) and Damgaared and Weiner (2000):  
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where  i = population counts (the number of cells that contain same number of people) 

j = population values (the number of people per cell) 

xi = specific size population counts in a country 

xj = corresponding population values in a country 

ni = total number of population counts in a country 

nj = total number of population values in a country 

μ = mean population size of a country 

n = total number of countries 
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Equation 3.3 represents the reduced form model, which is estimated using the 

SAS Robust Regression weighted least squares technique.  Two forms of the model were 

estimated, one for aggregate data and another for taxa-level data on mammals, birds, 

reptiles, amphibians, and vascular plants: 
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where for each country (i = 1 to 173 depending on j, i.e. aggregate or specific taxa), PIS = 

% imperiled species, PES = % endemic species, POPD = population density (thousand 

person per sq. kilometer), GCPOP = Gini Coefficient Index for population concentration, 

PCGDP = per capita gross domestic product (GDP) at purchasing power parity (constant 

US $), ISLAND = a dummy variable (1 = island, 0 = mainland), and εij = the error term.   

The aggregate analysis is the combined analysis of all taxa and is based on the 

assumption that all species are affected by human activities and spatial distributions 

almost in the same manner.  For example, if a natural area is cleared and inhabited by 

humans, it will threaten all plants, birds, mammals, reptiles, and amphibians living in that 

area. 

3.3  Results and Discussion 

The descriptive statistics for both aggregate and taxa level analyses are reported in 

Table 3.1.  Both aggregate and taxa based statistics suggest that there are more endemic 

species in a country on average than imperiled species.  Not all endemic species are 

imperiled species, except for mammals.  At aggregate level, each country has 12.48% 

endemic species as compared to 1.9% threatened species.  On average, about 3.5% of 

birds, 10.1% of mammals, 5.0% of reptiles, 12.2% of amphibians, and 1.3% of vascular 
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plants are under threat of extinction in each country.  On the other hand, the same country 

harbors 3.85% of endemic birds, 4.5% of endemic mammals, 11.3% of endemic reptiles, 

16.6% of endemic amphibians, and 13.3% of endemic vascular plants.  Among the 5 taxa 

groups examined, amphibians are the most imperiled and endemic species. 

Population density in the sample countries vary from 1.68 person/sq. Km. in 

Mongolia to 6,959 person/sq. Km. in Singapore, with an average of 177 persons/sq. Km./ 

country.  Similarly, per capita GDP at purchasing power parity ranges from $591.9 in 

Sierra Leone to $39,535.2 in Norway.  Actual GCPOP values range from 0.5898 to 

0.9986.  Singapore (0.5898), Togo (0.6515), and Rwanda (0.6529) have the most 

dispersed human populations; with large tracts of largely uninhabited land, Mongolia 

(0.9986), Australia (0.9981), and Canada (0.9975) have the most concentrated human 

populations.  Out of 173 countries, 40 are islands with high population densities and high 

species richness.  On average, each island country has 3.3% imperiled species, 25.7% 

endemic species, and 529 people per sq. km. while each mainland country has 1.48% 

imperiled species, 8.59% endemic species, and a population density of 74 persons per sq. 

km. 



Table 3.1  Descriptive Statistics for Imperiled Species and Covariates  

 

Variable       Aggregate       Birds        Mammals     Reptiles   Amphibians  Vascular Plants 

 
PIS    Mean         1.893    3.498           10.094      4.970           12.227           1.265  

    SD         2.157    2.873            6.899      5.856           18.690           2.525  

    Min.         0.423    0.000            0.000      0.000            0.000           0.000  

    Max.        12.433   21.083           50.000     36.364          97.872          18.000  
           
PES    Mean        12.478    3.793            4.523     11.303          16.566          13.270  

    SD        17.351    7.834            9.274     16.958          24.271          18.379  

    Min.         0.028    0.000            0.000      0.000            0.000           0.000  

    Max.        87.070   45.476           61.818     90.741          91.667          89.999  
           
POPD    Mean       177.664   159.91           159.91     159.91          156.09          174.95  

    SD       671.667   552.50           552.50     552.50          564.01           651.71  

    Min.         1.679    1.68             1.68      1.68               1.68           1.68  

    Max.      6959.68  6959.68         6959.68    6959.68         6959.68          6959.68  
           
GCPOP    Mean        0.869    0.872             0.872      0.872            0.874            0.868  

    SD        0.096    0.102             0.102      0.102            0.095            0.095  

    Min.        0.590    0.367             0.367      0.367            0.590            0.590  

    Max.        0.999    0.999             0.999      0.999            0.999            0.999 
             
PCGDP    Mean       9666.1  9712.6           9712.6    9712.6           9665.5           9531.1  

    SD       9968.6  10343.0         10343.0    10343.0         10296.6          9974.9 

    Min.        591.9   591.9            591.9     591.9             591.9          591.9 

    Max.      39535.2  61596.8         61596.8    61596.8         61596.8         39535.2  
           
ISLAND  Mean       0.227    0.231             0.231      0.231             0.196           0.274  

    SD        0.421    0.423             0.423      0.423             0.398           0.448  

    Min.        0.000    0.000             0.000      0.000             0.000           0.000  

    Max.        1.000    1.000             1.000      1.000             1.000           1.000  

N         110     173             173       173               163           117 
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With the exception of reptiles, the regression results (Table 3.2) indicate 

consistently that the percent of endemic species (PES) in a country is a strong, positive 

predictor of species’ ecological imperilment, both at aggregate and at the taxa level of 

analysis.  Endemic species are defined by unique ecological niches that they exploit.  For 

the most part, these species are characterized by relatively small populations.  Since 

ecological imperilment for a species is defined, in part, by a low population, a relatively 

large percentage of endemic species almost certainly will mean a relatively large 

percentage of ecologically threatened species.  Likewise, the absolute level of human 

presence or activity in a country, defined in terms of population density, consistently is a 

significant, positive predictor of species’ ecological imperilment even in the aggregate 

level, excepting reptiles and amphibians.  Evidence of an Environmental Kuznets Curve 

relationship between a country’s economic well-being, defined in terms of per capita 

GDP, and species imperilment has been depicted for birds and vascular plants but not for 

mammals, reptiles, and amphibians. 

Of critical importance to the analysis is a statistically significant relationship 

between species’ ecological imperilment and the Gini coefficient measure of human 

spatial concentration among birds, mammals, reptiles, and amphibians.  However, the 

observed relationship (positive) and the predicted relationship (negative) are completely 

at odds in 3 of 4 cases.  The implicit foundation for the Smart-Growth principle of 

Compact Building Design is that as a larger proportion of a fixed-size human population 

is concentrated in fewer locations, there is less ecological harm caused by the human 

population on the environment in the aggregate. 

 



Table 3.2  Regression Results for Percent Imperiled Species  

 

Variables Aggregate      Birds       Mammals       Reptiles      Amphibians     Vascular Plants 

 
Constant     1.314**       -1.258    1.189          -3.035        16.325***       0.314 

     (0.607)         (0.965)    (3.39)          (2.449)        (5.467)       (0.396) 

PES     0.0234***    0.522***    0.312***    0.012        0.472***       0.01*** 

     (0.004)         (0.025)     (0.039)       (0.018)        (0.03)       (0.002) 

POPD    0.161*         1.897***     8.145***    0.217        -1.42       0.325*** 

    (0.096)          (0.637)     (2.753)        (0.484)         (1.032)       (0.058) 

GCPOP   -0.447           3.124***    6.926*         7.146**      -16.267**       0.113 

    (0.731)          (1.132)     (3.998)         (2.901)        (6.433)       (0.476) 

PCGDP   -0.007           0.113***    0.025           0.008          0.157       -0.033** 

    (0.022)          (0.038)       (0.126)         (0.064)         (0.14)       (0.014) 

PCGDP2  0.0001          -0.003***  -0.002          -0.001          -0.005        0.001* 

   (0.0006)        (0.001)      (0.004)        (0.002)         (0.003)       (0.0004) 

ISLAND  0.269          -1.425***     1.312   2.25***       0.339        0.019 

    (0.172)           (0.334)        (0.973)         (0.788)         (1.749)        (0.09) 

N      110            173       173              173            163         117 

R2    0.4295           0.5974       0.3551    0.236           0.5149         0.2583
 

***, **, * denotes significance at 1%, 5%, and 10% levels respectively. 

Figures in the parentheses are the standard errors. 
 

This presumed relationship does indeed appear to characterize amphibians, but 

the observed relationship between species’ ecological imperilment and concentration of 

human presence/activity is positive, not negative, among birds, mammals, and reptiles.  

This means that concentrating the human population in cities is associated with more, not 

fewer, ecologically imperiled species across these three taxa, a finding completely at odds 
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with the expressed claims on various Smart-Growth websites.  The result reveals that 

there is no statistically significant relationship between geographic concentration of the 

human populations and ecological imperilment among vascular plants and aggregated 

data. 

Finally, results are mixed with respect to the ecological imperilment of species 

found on islands.  As expected, it is found that the island-based reptile species are more 

imperiled than continent-based reptiles.  However, island-based bird species are less 

imperiled than continent-based bird species, and also there is no evidence of a statistically 

significant impact of this latter finding, which contradicts the record on extinctions—

higher for island-based birds than continent-based birds.  Of course, this differential 

record of extinction may imply that the island-based bird species are still living (thus 

included in our sample) and likely are not imperiled. 

3.4  Concluding Remarks 

While it is possible that deliberate clustering of humans in high-density urban 

areas is preferable, from an ecological standpoint, to a more dispersed human population, 

the only available anecdotal evidence suggests just the opposite: The last century of 

dramatically increased urbanization almost everywhere in the world is associated with 

significant global environmental degradation.  However, this also has occurred during a 

period of rapid population growth, so separating association from causation is 

problematic.  People who live in cities need to be fed, which implies a significant 

agricultural effort that likely distresses natural systems.  The materials that are used to 

build and maintain the cities require significant extractive industries and power 

generation.  These activities also are associated with environmental degradation.  Thus, it 
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is not at all clear whether accidental or deliberate configuration of the human population 

into densely populated urban areas actually will provide significant environmental 

benefits.  

This empirical finding casts doubt on the presumption that environmental impacts 

are minimized when human presence or activity is spatially concentrated.  While it may 

be that localized observations on specific pollutant loadings seem consistent with this 

presumption, at a more encompassing scale and measure, reflected in species 

imperilment, mixed evidence is found.  Although concentration in the human population 

may, on a broad scale, reduce ecological stresses on amphibians, they appear to have no 

effect on vascular plants and may actually increase ecological stresses on birds, 

mammals, and reptiles.  

In the preceding analysis, the concern raised by Tobler’s first law of geography 

(Tobler 1970) about the spatial dependency in the data has not been addressed, which 

might be a potential reason for our mixed results.  The next chapter explores the 

relevance of Tobler's law and associated spatial dependency issues in the context of 

species imperilment for five taxa groups.  
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CHAPTER 4 

SPATIAL AUTOCORRELATION AND SPECIES IMPERILMENT 

 

4.1  Introduction 

Modeling the determinants of species imperilment using country-specific data 

may be complicated by the fact that factors influencing species imperilment extend or 

operate beyond arbitrary political boundaries.  In other words, factors that influence 

species imperilment in one country also may influence species imperilment in 

neighboring countries.  This means that empirical analyses of natural phenomena that 

must be conducted using country-level data frequently are characterized by spatial 

autocorrelation.  Put differently, the possibility of spatial autocorrelation reflects a 

concern that if species face relatively high risks in one country, the same species in 

neighboring countries may be affected similarly by spillover threats. 

Although arguably a large number of both naturally-occurring and anthropogenic 

phenomena are characterized by spatial autocorrelation, there has been relatively little 

empirical analysis of the structure of spatial adjacency configurations.  There are a 

number of ways to specify the structure of the spatial dependency of one country on other 

countries.  Legendre (1993) suggests using several possible metrics to analyze ecological 

data: (1) a linear combination of the geographic coordinates of sampling stations, (2) a 

first-order Euclidean distance matrix, (3) inverse Euclidean distance, and (4) inverse of 

the square of Euclidean distance.  In their pathbreaking work, McPherson and
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Nieswiadomy (2005) analyzed factors that influenced the percent of threatened birds and 

mammals across 115 countries in 2000.  Using a length (percent) of common border 

formulation of the spatial relationship between countries, their tests revealed the presence 

of positive spatial dependency.  McPherson and Nieswiadomy then report estimation 

results for models that included spatial lag terms, which were found to be highly 

significant for mammals and marginally significant for birds.   

In addition to the percent of shared border structure of the dependency 

relationship between countries, several other structures have been proposed (Anselin 

1988): (1) a binary contiguity matrix (Moran 1948; Geary 1954) in which countries that 

share a common border are assigned a value of 1 while countries that do not share a 

common border are assigned a value of 0; (2) a second or higher-order adjacency matrix, 

in which countries that directly share a common border and countries with indirect 

adjacency (i.e., adjacency that is one or more countries removed) are assigned a value of 

1; and (3) the distance between centroid points located in two adjacent countries.1  With 

this guidance, the spatial relationship between two countries is constructed in terms of 

(a) simple adjacency, 

(b) higher-order (simple plus one-country removed) adjacency, 

(c) distance between adjoining countries’ centroid locations, and 

(d) percentage of shared border.  

Both spatial lag models and spatial error models have been employed to capture 

geographic spillover effects (see especially Anselin, 1988).  Estimation of spatial error 

 
1 Distance between centroid points also is used in gravity models that seek to explain the movement of    

  goods between two locations (Bergkvist 2000; Polyakov and Teeter 2005).   
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and spatial lag models permit one to test for, and control for, the presence of spatial 

autocorrelation.  In the absence of such a control, a model may be plagued by a 

significant omitted variable problem, leading to biased coefficient estimates. Therefore, 

spatial error and spatial lag models serve a useful function in terms of improving 

statistical efficiency.  However, these general corrections for spatial autocorrelation do 

not shed any light on the non-spatial nature of the dependency.   

To illustrate this, the work of McPherson and Nieswiadomy (2005) should be 

considered.  Explanatory variables in their models include the percentage of species 

endemic to a country, human population density, and per capita GDP.  Among birds and 

mammals, they found statistically significant evidence of spatial autocorrelation and the 

evidence of an Environmental Kuznets Curve relationship: Species imperilment rises 

with per capita income, at a diminishing rate (McPherson and Nieswiadomy 2005).2  The 

spatial autocorrelation term indicates only that species imperilment in country A is 

influenced significantly by adjacent countries; it reveals nothing about specific aspects of 

 
2 Employing cross-sectional analysis and typically focusing on specific pollutants, a number of researchers 

have found empirical evidence that is consistent with the EKC (Cropper and Griffiths 1994; Selden and 

Song 1994; Shafik 1994; Grossman and Krueger 1995; Hilton and Levinson 1998; List and Gallet 1999; 

Hettige, Mani, and Wheeler 2000).  However, these findings and the interpretations drawn from them 

have been criticized on the grounds that perhaps the reason that richer countries experience diminishing 

levels of environmental degradation is that they ‘export’ their environmental harm to other, poorer 

countries (Arrow et al. 1995; Stern, Common, and Barbier 1996; de Bruyn, van den Bergh, and Opschoor 

1998; Rothman 1998; Suri and Chapman 1998).  That is, instead of manufacturing environmentally 

unfriendly items in their own countries and subjecting themselves to environmental degradation, people 

living in rich countries merely purchase those goods from manufacturers living in other countries, who 

then are the ones subject to the environmental problems associated with production.  International trade 

permits global NIMBY (not in my backyard), in which the poorest countries voluntarily become the 

environmental dumping grounds for the richest countries.   
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those adjacent countries that affect species imperilment in country A.  More to the point, 

it is possible that per capita GDP in adjacent countries affects species imperilment in 

country A but that the specification of the spatial autocorrelation control in purely spatial 

terms aggregates all possible contributory effects, thereby inhibiting the researchers from 

ascertaining whether per capita GDP in adjacent countries affects species imperilment in 

country A.  Likewise, human population density exerts a positive and statistically 

significant impact on species imperilment of mammals.  It seems reasonable to speculate 

that population density in surrounding countries also might influence species imperilment 

among mammals in country A.  Indeed, it is possible that the spatial dependency between 

two countries is driven largely, perhaps completely, by per capita GDP or human 

population density, but this possibility is not subject to examination when using the 

general form of the spatial dependency correction. 

All models of species imperilment that include controls for spatial autocorrelation 

have defined the between-country dependency purely in spatial terms (what is referred to 

as general dependency).  However, there is nothing that prevents from defining the 

spatial relationship between two countries in terms of specific variables, such as per 

capita income, population density, etc.  As noted previously, the general form of the 

simple adjacency weights matrix assigns a value of 1 to countries that share a border with 

country A and a 0 to countries that do not share a border with country A.  However, one 

could assign a value equal to the per capita GDP or population density of countries that 

border on country A to create a specific form of the simple adjacency weights matrix.   

This chapter extends this general line of inquiry on spatial issues by (1) 

confirming the advisability of controlling for spatial autocorrelation in models focusing 
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on imperilment of birds, mammals, reptiles, amphibians, and vascular plants; (2) 

comparing the performance of different definitions of the spatial dependency between 

countries; and (3) exploring the consequences of including both general and specific 

controls for spatial autocorrelation in country-level models of species imperilment.    

4.2  Models, Data, and Methods 

A number of factors, both natural and anthropogenic that influence species 

ecological imperilment have been confirmed empirically by previous researchers (Naidoo 

and Adamowicz 2001; McPherson and Nieswiadomy 2005; Pandit and Laband 2005): 

(1) species endemism:  By virtue of having wider ranges of moisture, temperature, and 

geophysical attributes, some countries have greater numbers of unique ecological niches 

than others, which support plant and animal species found nowhere else.  By definition, 

these endemic species are more likely than species with wider ranges of habitat to be 

characterized by low populations.  Therefore, countries that are characterized by greater 

numbers (percentages) of endemic species should also be characterized by greater 

numbers (percentages) of ecologically imperiled species. 

(2) human population density:  Humans kill/harvest, or consume other species directly to 

meet their needs and indirectly by appropriating space and habitat.  Consequently, greater 

human population density should be reflected in higher levels of species imperilment. 

(3) human activity:  Sheer population pressures held constant, the type and extent of 

human activities clearly affect plant and animal populations indirectly through alteration 

of habitat.  The nature or extent of these activities reflect man’s economic well-being, and 

the exact relationship between man’s economic well-being and the impact on species 

imperilment is an empirical matter.  Per capita GDP at purchasing power parity is  
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included in the analysis to be an indicator of economic well-being. 

 (4) spatial concentration in the human population: One of the principles of the “Smart- 

Growth” movement in the U.S. is “Compact Building Design,” which encourages high-

density human living arrangements in the belief that, in the aggregate, there are beneficial 

ecological consequences.  That is, for a fixed-size human population, life on earth is 

stressed less by spatially configuring that human population in a small number of 

densely-packed cities than by a more dispersed pattern.  In previous empirical analysis 

that did not control for spatial autocorrelation (Pandit and Laband 2005), they used a 

Gini-coefficient measure of  concentration to test whether spatial concentration in human 

populations is associated with ecological benefits in the aggregate form of reduced 

incidence of species’ ecological imperilment.  While the evidence suggests that the 

spatial concentration of humans is statistically related to species imperilment for certain 

taxa, in a majority of cases, the impact observed was positive, not negative as presumed 

by advocates of compact building design.  That is, the spatial concentration of the human 

population typically was associated with higher rates of species ecological imperilment, 

not lower rates.   

(5) island nations: Endemism is higher on islands, and because escape (for all taxa except 

birds) is virtually impossible, island-specific flora and fauna are particularly sensitive to 

the introduction of invasive species, e.g., Homo sapiens and the species that they bring 

with them, such as cats, snakes, etc.. 

Based on these documented influences on species imperilment, the following 

reduced form model for taxa-level data on mammals, birds, reptiles, amphibians, and 

vascular plants is estimated 
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Augmenting the Eq. (4.1) by nature of spatial dependency (k) and the adjacency measures 

(l), the spatial specification of the model is 
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where for each country, PIS = the percentage of species that were on the World 

Conservation Union’s (IUCN) Red List of threatened species in 2004, PES = the percent 

of endemic species, POPD = population density (thousand persons per square kilometer), 

GCPOP = a Gini Coefficient Index for concentration in the human population, PCGDP = 

per capita gross domestic product (GDP) at purchasing power parity (in constant US $ - - 

pegged to year 2000), ISLAND = a dummy variable (1 = island, 0 = mainland), i = 

sample countries: 1 to N depending on taxa j (5 taxa groups), k = is the lag or the error 

nature of spatial dependency, l = is the one of the four adjacency measures : simple 

adjacency or 2nd / higher-order adjacency or centroid distance or percentage of shared 

border length,  SAijkl =  the spatial autocorrelation term for country i, taxa j, spatial model 

k, and adjacency measure l, and εijkl = the error term.  The expected signs are in 

parentheses above each variable in Eq. (4.1).   

  Using the same data described in the previous chapter, Eq. (4.2) is estimated both 

with and without controls for spatial autocorrelation, using the SAS Robust Regression 

weighted least squares technique.  First, tests for spatial autocorrelation for all spatial 

dependency measures are presented.  Second, the regression results based on all 4 spatial 
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dependency measures to identify the best spatial model are presented.  Finally, the 

general and specific lag based results are presented for all taxa groups, focusing on 

parsimonious spatial adjacency measure identified during the analysis.  

4.3  Results and Discussion 

4.3.1  Spatial Autocorrelation and Dependency Structures 

Moran scatter plots to depict the spatial autocorrelation for percent imperiled 

species by taxa are presented in Figure 4.1, where the x-axis represents the percent 

imperiled species and the y-axis represents the spatial lag for percent imperiled species 

based on simple adjacency measure.  In the scatter plots, the quadrants correspond to 

different types of spatial autocorrelation: high-high and low-low for positive spatial 

autocorrelation, and low-high and high-low for negative spatial autocorrelation.  Figure 

4.2 presents the nature of these different spatial autocorrelations for imperiled birds in the 

form of a cluster map.  Figure 4.3 indicates the severity of spatial autocorrelation for 

imperiled birds that is evidenced by a significance map.  The map of sample countries 

(see the list of sample countries in appendix V) and the cluster and significance maps for 

remaining taxa are given in Appendices I and II. 

Sample statistics are reported in Table 4.1.  Ordinary and robust Lagrange 

Multiplier (LM) test statistics based on Moran’s I test for all taxa groups and 3 of the 4 

dependency structures are presented in Table 4.2.  Additionally, the Likelihood Ratio 

(LR) test statistics are presented in Table 4.2 to evaluate the structure of spatial 

dependency for particular taxa.   

 



Figure 4.1  Moran Scatter Plots for Imperiled Species by Taxa based on Simple      

                  Adjacency  

 

                         
        Moran’s I for Birds = 0.1696    Moran’s I for Mammals = 0.1273 
 
 

                      
      Moran’s I for Reptiles = 0.1504              Moran’s I for Amphibians = 0.4373 
 
 

          
      Moran’s I for Vascular Plants = 0.1969 
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Figure 4.2  Cluster Map for the Nature of Spatial Autocorrelation Among Birds 

 
 

 
 
 
 
 
Figure 4.3  Significance Map for the Intensity of Spatial Autocorrelation Among Birds 
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The Moran’s I test only reveals the presence or absence of spatial autocorrelation 

generally; it does not identify the source of the spatial dependency.  Spatial error and 

spatial lag models must be estimated separately to determine the impact of spatial 

correlation.  The test results confirm the McPherson and Nieswiadomy (2005) finding of 

statistically significant spatial dependency in models of bird and mammal imperilment.  

Going further, the results suggest additional evidence of significant spatial dependency in 

models of species imperilment among reptiles and amphibians but less evidence of 

significant spatial dependency in models of species imperilment among vascular plants.  

The only circumstance that suggests a statistically significant spatial dependency in 

models involving vascular plants is observed when the dependency is structured as 

simple adjacency.  Vascular plants aside, both measures of adjacency-based dependency 

are consistently significant across the other 4 taxa groups.  Centroid distance-based 

dependency is significant among the birds and reptiles.  

Once spatial autocorrelation has been confirmed, there is no specific test to 

determine which adjustment (spatial lag versus spatial error) is appropriate.  Although 

McPherson and Nieswiadomy (2005) favor a spatial lag model over a spatial error model, 

Anselin (2005) suggests basing such preference on a sequential judging of ordinary and 

robust Lagrange Multiplier statistics.  If ordinary LM test statistics are significant for 

both spatial lag and error dependency, the spatial model selection should be based on the 

significance of robust LM test statistics.  When both ordinary LM test statistics are 

significant but none of the robust LM test statistics are, the structure of the spatial 

dependency should be decided based on the most significant ordinary LM test statistic.  

In almost all cases that are investigated, the LM test statistics yielded higher values  
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for spatial error-based dependency than for spatial lag-based dependency. 

Table 4.1  Descriptive Statistics for Imperiled Species and Covariates by Taxa  

 

Variable   Birds        Mammals    Reptiles     Amphibians   Vascular Plants  

 

 
N              173           173        173                 163                117 

 

      Max.           1.000          1.000      1.000   1.000       1.000 

      Min.            0.000          0.000      0.000   0.000       0.000  

      SD            0.423          0.423      0.423   0.398       0.448  

ISLAND   Mean          0.231          0.231      0.231   0.196       0.274  

      Max.        61596.8        61596.8         61596.8 61596.8             39535.2  

      Min.           591.9          591.9      591.9   591.9               591.9  

      SD         10343.0            10343.0         10343.0          10296.6              9974.9   

PCGDP      Mean         9712.6          9712.6     9712.6  9665.5              9531.1  

      Max.          0.999          0.999      0.999   0.999       0.999  

      Min.           0.367          0.367      0.367   0.590       0.590  

      SD            0.102          0.102      0.102   0.095               0.095  

GCPOP      Mean          0.872          0.872      0.872   0.874       0.868  

      Max.         6959.68        6959.68          6959.68         6959.68             6959.68  

      Min.             1.68           1.68      1.68        1.68                1.68  

      SD           552.50         552.50    552.50 564.01  651.71  

POPD      Mean         159.91         159.91    159.91 156.09  174.95  

      Max.           45.476         61.818    90.741 91.667  89.999  

      Min.             0.000          0.000      0.000  0.000   0.000  

      SD             7.834          9.274    16.958 24.271  18.379  

PES      Mean           3.793          4.523    11.303 16.566  13.270  

      Max.           21.083        50.000    36.364 97.872  18.000  

      Min.              0.000          0.000     0.000    0.000  0.000  

      SD  2.873          6.899     5.856  18.690  2.525  

PIS      Mean 3.498         10.094     4.970  12.227  1.265  
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Table 4.2  Spatial Autocorrelation Tests3

 
Moran's I Spatial Autocorrelation Tests (percent imperiled species by taxa, normal approximation)    
 

Taxa          Spatial Weight                 Moran's  Mean          Std. P-value         LM Test (Z-value)           LR Test (Z-value)       

                          Measure                                     I                                   Dev.                                Lag                 Error              Lag    Error 

 
Birds           Simple Adjacency       0.1696     -0.0048           0.0535    0.002         13.743***     22.543***a     17.661***    46.143*** 

          Higher Adjacency       0.1485     -0.0046           0.0325    0.002         14.568***     25.648***a     13.993***   32.466***    

          Distance center-to-center   0.2988     -0.0054           0.0217    0.001         10.428***     28.471***a       7.517***    12.209*** 

 

Mammals        Simple Adjacency       0.1273     -0.0053           0.0527    0.014          4.849**          6.139**           9.424*** 21.442*** 

          Higher Adjacency       0.1080     -0.0049           0.0335     0.005          6.210**          10.132***b       8.92***       18.850*** 

          Distance center-to-center   0.0965     -0.0048           0.0213    0.002          0.919              1.461               0.44                0.56 

 

Reptiles          Simple Adjacency       0.1504      -0.0042           0.0563     0.006          2.764*a        10.422***a       9.209***      32.548*** 

          Higher Adjacency       0.1270     -0.0071           0.0328     0.004          1.862            12.384***a      4.757**     27.865*** 

          Distance center-to-center   0.1264     -0.0058           0.0214      0.002          7.818***c      4.245**          5.416**          3.875** 



Table 4.2 Spatial Autocorrelation Tests3 (Cont'd) 
 
Moran's I Spatial Autocorrelation Tests (percent imperiled species by taxa, normal approximation)    
 

Taxa          Spatial Weight                 Moran's  Mean          Std. P-value         LM Test (Z-value)           LR Test (Z-value)       

                          Measure                                     I                                   Dev.                                Lag                 Error              Lag    Error 

 
Amphibians     Simple Adjacency        0.4374     -0.0069           0.0556    0.001          50.954***a   46.679***c     61.932***     71.184*** 

                        Higher Adjacency        0.3683     -0.0066           0.0348    0.001          67.041***a   59.779***c     45.113***     59.609*** 

           Distance center-to-center   0.2364     -0.005             0.0245         0.001           6.449**b       2.151               5.757**         1.810 

 

Plants           Simple Adjacency        0.1969     -0.0094           0.049      0.006           2.910*           3.540*             0.137             2.003  
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           Higher Adjacency        0.1258     -0.0061           0.0379    0.007           0.015             0.070               0.028             0.134 

           Distance center-to-center   0.0555     -0.0075           0.0285    0.025           0.245             0.456               0.341   0.729 

Asterisks represents the significance of Lagrange Multiplier (LM) and Likelihood Ratio (LR) lag and error tests at different significance levels (*' for 10%, '**' 
for 5% and '***' for 1% significance). 

 
All the model tests are performed in GEODA.  Tests based on neighboring boarder length is not supported by GEODA, so the spatial lag and error matrices are 

computed manually and used in the robust regressions as separate variables.  
 
a, b, and c  represent the significance of Robust LM test respectively at 1%, 5%, and 10% significance levels when both LM lag and error tests are  significant 

for particular spatial  measure.  In such cases, the significance of the Robust LM test determines the dependency structure of the model (Anselin, 2005).

                                                 
3 The current version of GEODA, the software used to conduct the spatial analysis, was not able to handle shared border length in computing the spatial weights 

matrix that is required for the spatial autocorrelation tests.  For the shared-border dependency term that was included in the regression models, the spatial error 
and spatial lag matrices are manually formulated. 



The Jarque-Bera test for normality and Breush-Pagan test for heteroscedasticity in 

OLS models revealed the residuals’ non-normality and non-constant variance for all taxa 

groups.  Furthermore, the Koenker-Bassett test, which is based on normalized residuals, 

reaffirmed the non-constant error variance (Table 4.3).  In such cases Pindyck and 

Rubinfield (1990) recommend using weighted least squares to correct the heteroscedastic 

nature of the data.  Thus, Eq. (4.2) is estimated using the Robust Regression weighted 

least squares technique in SAS due to its ability to detect outliers in both the dependent 

variable (influential data points) and independent variables (leverage data points) in the 

analysis.  Robust Regression is a new SAS analytical tool that provides an alternative to 

an Ordinary Least Squares (OLS) Regression model when the fundamental assumptions 

of OLS about the data (homoscedasticity, independent observations, and residuals’ 

normality) are violated.  It provides resistant (stable) results in the presence of outliers 

 by assigning different weights to the outlying observations (Chen 2002).   

Table 4.3  Tests for Residual Normality (♣) and Heteroscedasticity (♦) Under Ordinary   

                 Least Squares Assumptions 

 

Taxa      Jarque-Bera Test♣     Breusch-Pagan Test®♦  Koenker-Bassett Test®♦  
 
Birds   291.49***  314.977***      75.362*** 

Mammals  977.302***  131.421***          20.457*** 

Reptiles  168.00***  104.98***      34.787*** 

Amphibians  413.917***  75.952***      16.825*** 

Plants   1008.278***  151.889***      20.299*** 
 

*** represents statistical significance at the 1percent level 

® The Breusch-Pagan test is based on ordinary residuals whereas the Koenker-Bassett test is based on 

studentized (normalized) residuals. 

 53



Table 4.4 shows results of three alternative estimations for each taxa group: (a) a 

model that contains no adjustment for spatial autocorrelation, (b) a spatial lag model, and 

(c) a spatial error model.  In these estimations, the spatial dependency between countries 

is structured as simple adjacency for reasons that are discussed presently.4   

Table 4.4 shows the importance of the presence of spatial dependency, which 

reports the percentage increase in explanatory power (R2 value) from the models 

containing no spatial adjustment to the spatial lag and spatial error models.  Among the 

birds, mammals, amphibians and vascular plants, the percentage increase in model 

explanatory power is greater for models containing a spatial error structure (Lag ERROR) 

of dependency than a spatial lag structure (Lag PIS).  Among the reptiles, the percentage 

increase in model explanatory power was greater for models containing the spatial lag 

structure.  

As expected, the percentage of imperiled species in a country is positively, and 

strongly, influenced by the percentage of endemic species.  Excepting for reptiles, this 

finding is consistent across all taxa groups in all model specifications.  However, aside 

from the spatial lag or error term (in model 2 and 3), the percentage of endemic species is 

the only variable that consistently exerts a significant influence on the percentage of 

imperiled species, with the exception of reptiles, and that coefficient is positive with a 

-value greater than 1.   2χ
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4 Each spatial error and spatial lag model are also estimated, using alternative structures of the spatial 

relationship between countries with the reported findings being fully representative (see Appendix –III).  



Table 4.4  Simple Adjacency Based Weighted Least Squares Regression Results for   

                 Factors Influencing Species Imperilment 

Model 1:  Ordinary Models with No Spatial Lag/Error 
                                                                                                                                                                        

Variables    Birds           Mammals         Reptiles        Amphibians    Vascular Plants 
 
Constant -1.2583  1.1892  -2.8747   16.3253***  0.3143  

   (0.9645)  (3.3901)  (2.456)   (5.467)   (0.3961) 

PES   0.5221*** 0.3115***  0.0114     0.4719***  0.0103*** 

   (0.0251)  (0.0388)  (0.0184) (0.0297)  (0.0024) 

POPD   1.8970*** 8.1445***  0.1754    -1.4203            0.3245*** 

   (0.6371)  (2.7534)  (0.4865)  (1.0321)  (0.0579) 

GCPOP               3.1242*** 6.9264*    6.7099**           -16.2673**  0.1125  

   (1.1324)  (3.9984)  (2.9383)  (6.433)   (0.4764) 

PCGDP               0.1130*** 0.0250   0.0750    0.1573   -0.0328** 

   (0.038)   (0.126)   (0.0957)  (0.1401)  (0.0138) 

PCGDP2 -0.0030*** -0.0024  -0.0035   -0.0051    0.0007* 

   (0.0011)  (0.0038)  (0.0028)  (0.0033)  (0.0004 

ISLAND -1.4254*** 1.3122     2.2621***   0.3394   0.0193 

   (0.3342)  (0.9734)  (0.7888)  (1.7488)  (0.0902) 

N    173    173     173       163            117  

R2   0.5974  0.3551   0.2447    0.5149   0.2565 
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Model 2:  Spatial Lag Models 
                                                                                                                                                                        

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 

 
Constant  1.4433*  8.5747***  2.6200  21.5132***  0.3965 

   (0.7691)  (2.7513)  (2.0680)  (5.6796)  ((0.3900) 

PES   0.2948***  0.2666***  0.0085    0.4228***  0.0100*** 

   (0.0145)  (0.0314)  (0.0148)  (0.0306)  (0.0023) 

POPD  -0.0492   3.3128*   -0.2478  -1.7865    0.3192*** 

   (0.1490)  (1.9578)  (0.3929)  (1.0984)  (0.0568) 

GCPOP   1.1404    -1.1125   1.7155   -20.2142***  0.0368  

   (0.8931)  (3.2367)  (2.4110)  (6.6796)  (0.4681) 

PCGDP   0.0439**  0.1769*  0.0480    0.2777*   -0.0315** 

   (0.0196)  (0.1006)  (0.0524)  (0.1482)  (0.0135) 

PCGDP2 -0.0010** -0.0058* -0.0014   -0.0069**    0.0007* 

   (0.0005)  (0.0030)  (0.0012)  (0.0035)  (0.0004) 

ISLAND  -0.6356***  1.0995     0.9469   -1.8874    -0.0129 

   (0.2454)  (0.8487)  (0.6529)  (1.8142)  (0.0896) 

Lag PIS   1.6078***  4.5759***  4.6394***  7.2509***  0.1692**  

   (0.1653)  (0.6190)  (0.5557)  (1.2010)  (0.0784) 

N     173     173     173     163      117 

R2    0.7601   0.5607    0.5203    0.5514           0.3164 

% ∆ in R2           +27.2   +57.9       +112.6   +7.1   +23.4 

From Model 1 
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Model 3:  Spatial Error Models 
                                                                                                                                                                       

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 
 
Constant  0.7395   5.1574**  0.0769     15.6050***  0.2988 

   (0.6161)  (2.5390)  (2.1422)  (4.9522)  (0.3897) 

PES   0.4242***  0.3136***  0.0040   0.5075***  0.0104*** 

   (0.0213)  (0.0343)  (0.0158)  (0.0273)  (0.0023) 

POPD   0.0684  -0.8809* -0.1917  -1.3169    0.3321*** 

   (0.1280)  (0.4956)  (0.4197)  (0.9351)  (0.0571) 

GCPOP   1.1123     3.1009    3.5045    -13.8980**   0.1674  

   (0.7351)  (2.9988)  (2.5364)  (5.8160)  (0.4693) 

PCGDP   0.1025***  0.0171   0.0086    0.0798  -0.0368*** 

   (0.0259)  (0.0653)  (0.0551)  (0.1277)  (0.0137) 

PCGDP2 -0.0029*** -0.0019  -0.0010   -0.0031     0.0008** 

   (0.0008)  (0.0016)  (0.0013)  (0.0030)  (0.0004) 

ISLAND -1.1805***  3.3624***  3.3062*** -0.5271     0.0167  

   (0.2212)  (0.7748)  (0.6913)  (1.5924)  (0.0887) 

Lag ERROR  1.5173***  5.1216***  3.1786***  7.8569***  0.1347**  

   (0.1157)  (0.5479)  (0.4459)  (1.0104)  (0.0674) 

N     173     173     173      163      117 

R2    0.8050   0.6246    0.4553    0.5834               0.3554 

% Δ in R2          +34.8   +75.9    +86.1     +13.3      +38.6 

From Model 1  
 

***, **, and * represent statistical significance at the 1%, 5%, and 10% levels. 

Figures in the parentheses are standard errors. 
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The only taxa group for which the evidence in support of an Environmental 

Kuznets Curve relationship exists is for birds.  For vascular plants the EKC relationship 

is at odds with prior expectations.  The turning point (where per capita GDP has the 

maximum impact in terms of species imperilment) comes at a GDP of $17,672 per capita.  

Likewise, only two taxa groups show any sensitivity to population density: mammals and 

vascular plants.  As expected, species imperilment among the vascular plants increases 

with increasing human population density.  Unexpectedly, however, weakly significant 

evidence for increasing human population density association with reduced species 

imperilment is found among mammals (model 3).  There appears to be no significant 

impact of human population density on imperilment of birds, reptiles, or amphibians.  In 

the absence of the spatial correction term (model 1), a strongly positive impact of 

population density on species imperilment is observed for both birds and mammals, in 

addition to vascular plants.  This suggests that some aspects of population density are 

being captured by this spatial dependency measure.   

As indicated in previous works (Pandit and Laband 2005; Brown and Laband 

2006), a little empirical evidence is found in support of the notion that ecological 

benefits, at least in the form of reduced species imperilment, result from concentrations in 

the human population.  The measure of concentration in the human population is based 

on the Gini coefficient, which is assigned a value of 0 for a uniformly-distributed 

population and approaches a value of 1 as the population becomes increasingly 

concentrated.  Coefficient estimates of the GCPOP variable are statistically flat for 4 of 

the 5 taxa groups examined (model 3).  However, a very sizable and statistically 

significant inverse relationship is found between concentration in the human population 
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and the percentage of endangered amphibians.  In a large-scale setting, this finding is 

consistent with claims made by advocates of the Smart-Growth principle of compact 

building design.  Finally, it is observed that imperilment of both mammals and reptiles is 

significantly greater on islands than in mainland countries.  However, neither amphibians 

nor vascular plants appear to be characterized by the same vulnerability in this regard.  

This is rather surprising, since amphibians surely are no more able than reptiles to escape 

the ravages of exotic invasive species brought to islands by man.  By virtue of their 

immobility, vascular plants are even less able to avoid the impact of anthropogenic 

change.  However, birds are not necessarily island (or country)-bound, so it stands to 

reason that the island dummy in the bird model would not necessarily, or even likely, be 

positive.   

Beyond simple adjacency, the spatial dependency metrics become increasingly 

difficult to construct.  Thus, even though a priori expectation might be that a relatively 

complex measure, such as the percentage of shared border, conveys more realistic 

information about the spatial relationship between two countries with respect to species 

imperilment, it is not clear whether the benefit from constructing the more complex 

metrics is worth the cost.  Table 4.5 presents the R2 values for otherwise identical spatial 

error models estimated by using alternative structures of the spatial dependency between 

countries.  Across all of the taxa except mammals, the simple adjacency structure out-

performs all of the other metrics, in terms of maximizing model explanatory power.  

Thus, in this case, there appears not be a trade-off between simplicity and explanatory 

power.   



Table 4.5  R-Square Values for Models with Alternative Structures of the Spatial Error  

                 Relationship Between Countries 
 

Structures              Birds Mammals     Reptiles  Amphibians   Vascular Plants 
 
Simple adjacency            0.8050     0.6246 0.4553        0.5834     0.3554 

2nd order adjacency            0.7471     0.5951 0.3773        0.5733     0.3347  

Distance between centroids   0.7171     0.5420 0.3052        0.5170     0.2960 

Percent of shared border        0.7958     0.6535 0.4208        0.5683     0.3311 
 

 

4.3.2  General and Specific Spatial Autocorrelation 

In table 4.4 Eq. (4.2) was estimated both with and without controls for spatial 

autocorrelation, using the SAS Robust Regression weighted least squares technique.  Test 

statistics generated from both spatial error and spatial lag models indicated the presence 

of significant spatial autocorrelation for every taxa group, across most of the structural 

specifications: binary contiguity (simple adjacency), higher-order binary contiguity, 

centroid-to-centroid distance, and percentage of shared border.5  The question that needs 

to be addressed now is, what happens to the estimated coefficient on the general spatial 

autocorrelation term and other explanatory variables when spatial autocorrelation 

variables that control for specific cross-border effects are introduced in the models?  This 

focus requires further confinement of the analysis based on the lag form of the spatial 

dependency, which is the formulation employed by McPherson and Nieswiadomy (2005).   

                                                 
5 However, the only circumstance that observe statistically significant spatial dependency in models 

involving vascular plants occurs when the dependency is structured as simple adjacency.   
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 To create the aspect-specific cross-border effects, a set of specific (non-binary) 

contiguity matrices based on data for the four continuous explanatory variables in the 

model are generated: percent endemic species, human population density, concentration 

in the human population, and per capita GDP.  For example, in the simple adjacency 

formulation, each country bordering country A was assigned a value equal to that 

country’s population density in the spatial weight matrix.   In the percentage of shared 

border formulation, each country bordering country A was assigned a value equal to that 

country’s population density, adjusted by the percentage of country A’s border that it 

shares in the spatial weight matrix.  In the centroid-to-centroid distance formulation, each 

country bordering country A was assigned a value equal to that country’s population 

density, adjusted by the Euclidian distance from the center of country A to the center of 

the bordering country, scaled against the Euclidian distance from the center of country A 

to the center of the adjacent country with the farthest center point.   

SAS Robust Regression weighted least squares procedure (Chen 2002) is then 

used to estimate models for each taxa group, with alternative configurations of the 

general and specific spatial lag terms.  Similar to previous findings, models with spatial 

autocorrelation terms based on a simple adjacency dependency structure consistently 

outperform models based on the other dependency structures, so the estimation results 

reported in Table 4.6 are for models with this dependency structure (for detailed analysis, 

see Appendix – IV). 

Model 1 in Table 4.4 contains no spatial lag term; model 1 in Table 4.6 contains a 

general (binary contiguity) spatial lag term only.  When comparing model 1 (Table 4.6) 

against model 1 (Table 4.4), it is quite clear that not only is spatial autocorrelation 
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consistently a statistically significant aspect of species imperilment measured at the 

country-level, the generic (unspecified) cross-border effects add considerably to the 

explanatory power of the taxa-specific models.  Model 2 (Table 4.6) results are based on 

the augmented form of model 1 by new variables that capture specific (non-binary) cross-

border effects.  Several aspects of this model 2 command attention.   

First, the general spatial lag term remains statistically significant across all taxa 

groups even though certain types of specific cross-border effects are statistically 

significant in each of the taxa models.  Second, consistent evidence is found across taxa 

groups that the percentage of endemic species in surrounding countries is negatively 

related to the percent of imperiled species in the referent country, even though the own-

country effect of endemic species is positive, as expected.  Third, the size of the 

estimated coefficients on the own-country explanatory variables is affected by inclusion 

of the specific cross-border dependency variables.  For example, there is a sizable 

increase from model 1 to model 2 with respect to the estimated own-country effect of 

percent endemic species on percent imperiled species among the birds, mammals and, to 

a lesser extent, amphibians.  More dramatically, the estimated own-country impact of 

population density on imperilment of mammals changed from positive and statistically 

significant in model 1 to negative and statistically significant in model 2.   



Table 4.6  Simple Adjacency Based Weighted Least Squares Regression Results for        

                 General and Specific Spatial Lags Effect on Species Imperilment 

Model 1:  Models with General Spatial Lag 
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  1.4433*  8.5747***   2.6200        21.5132***          0.3965 

  (0.7691)  (2.7513)   (2.068)     (5.6796)          (0.3900) 

PES   0.2948***  0.2666***   0.0085         0.4228***          0.0100*** 

   (0.0145)  (0.0314)   (0.0148)      (0.0306)          (0.0023) 

POPD  -0.0492     3.3128*    -0.2478     -1.7865            0.3192*** 

   (0.149)   (1.9578)   (0.3929)     (1.0984)          (0.0568) 

GCPOP   1.1404    -1.1125    1.7155     -20.2142***          0.0368  

   (0.8931)  (3.2367)   (2.4110)     (6.6796)          (0.4681) 

PCGDP   0.0439**  0.1769*   0.0480         0.2777*           -0.0315** 

  (0.0196)  (0.1006)   (0.0524)       (0.1482)          (0.0135) 

PCGDP2 -0.0010** -0.0058*  -0.0014       -0.0069**           0.0007* 

   (0.0005)  (0.0030)   (0.0012)      (0.0035)          (0.0004) 

ISLAND -0.6356***  1.0995      0.9469       -1.8874            -0.0129 

   (0.2454)  (0.8487)   (0.6529)      (1.8142)          (0.0896) 

SL – General  1.6078***  4.5759***   4.6394***      7.2509***          0.1692**  

   (0.1653)  (0.6190)   (0.5557)      (1.201)          (0.0784) 

N   173    173     173        163           117 

R2    0.7601    0.5607     0.5203       0.5514          0.3164 
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Model 2:  Models with General and Specific Spatial Lags 
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  0.0480   3.5791  -0.3800      19.2202***          0.8572* 

   (0.7102)  (3.4827)  (2.7827)      (7.1702)          (0.4886) 

PES   0.5487***  0.3603***  0.0114       0.4943***          0.0096*** 

   (0.0157)  (0.0368)  (0.0157)      (0.0297)          (0.0023) 

POPD     0.0407   -4.2472** -0.2197       -1.4701            0.2804*** 

   (0.1177)  (1.8505)  (0.4210)      (1.0094)          (0.0599) 

GCPOP               1.5285*    6.9955*   4.4557       -19.0815**          -0.6033  

   (0.8269)  (4.0091)  (3.2703)      (8.2546)          (0.5965) 

PCGDP   0.0492*    0.1127   0.0939        0.1410            -0.0279*   

   (0.0255)  (0.1158)  (0.0637)      (0.1643)          (0.0147) 

PCGDP2             -0.0018**  -0.0052  -0.0015       -0.0036             0.0007*  

   (0.0007)  (0.0035)  (0.0013)      (0.0031)          (0.0004) 

ISLAND  -0.8031***  0.0968     1.0551        -0.3031          0.0593  

   (0.2244)  (0.9151)  (0.7217)      (1.7465)          (0.1084) 

SL – General  2.5997***  5.9074***  4.3181***      11.1623***          0.1337*   

   (0.2033)  (0.7375)  (0.6175)      (1.3640)          (0.0797) 

SL – PES -3.8992*** -1.9157*** -0.7925*     -5.2580***         -0.0664 

   (0.3867)  (0.6470)  (0.4589)      (1.1620)          (0.0833) 

SL – POPD  0.7375   6.8741**  0.4557      -8.8494*         -0.2687 

   (0.6600)  (2.8874)  (2.2566)      (5.3131)          (0.4817) 

SL – GCPOP -0.1779  -1.1515* -0.1554       0.4318          0.1582* 

   (0.1402)  (0.5951)  (0.4892)      (1.0789)          (0.0888) 

SL – PCGDP  0.0012   0.3598  -0.8978**      0.6658         -0.0734 

   (0.1364)  (0.5863)  (0.4374)      (1.1233)          (0.0756) 

N   173   173   173        163           117 

R2    0.8256   0.6630   0.5451        0.6072          0.3907 
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Model 3:  Models with Specific Spatial Lags only 
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  1.0936    0.4244  -1.7310      12.9975*           0.7958  

   (1.2232)  (3.9505)  (3.1686)      (7.8720)         (0.4701) 

PES     0.3875***  0.3164***  0.0057        0.4797***         0.0090*** 

   (0.0254)  (0.0397)  (0.180)       (0.0326)         (0.0022) 

POPD     0.6906    -0.1616    -0.0566        -1.2712           0.2783*** 

   (0.6487)  (0.6708)  (0.4781)      (1.1108)         (0.0575) 

GCPOP              1.4608     11.1205**   5.9005                  -13.0836          -0.5494  

   (1.3897)  (4.6300)  (3.7353)      (9.0582)         (0.5730) 

PCGDP              0.0918**  -0.0900   0.1594        0.1897         -0.0283** 

   (0.0384)  (0.0992)  (0.0977)      (0.1794)         (0.0141) 

PCGDP2 -0.0026**  -0.0002  -0.0055*      -0.0054          0.0008** 

   (0.0011)  (0.0020)  (0.0028)      (0.0034)         (0.0004) 

ISLAND  -1.5281***  0.0256     1.6896**        0.3005         0.0851 

   (0.3351)  (1.0697)  (0.8202)       (1.9187)         (0.1030) 

SL – General     -      -       -             -             -   

  

SL – PES  0.4206  -0.3035  -0.7492       -0.6853        -0.0995 

   (0.3818)  (0.7514)  (0.5273)      (1.0322)         (0.0810) 

SL – POPD  2.9545***  10.0688***  7.4900***      -0.9067        -0.1300 

   (0.9744)  (3.3363)  (2.3349)       (5.7497)         (0.4658) 

SL – GCPOP  0.4304**  -0.1262   0.6453        -0.4367         0.1661** 

   (0.1987)  (0.6998)  (0.5324)       (1.1921)         (0.0847) 

SL – PCGDP -0.0691   0.3904  -0.9549*       -0.4383        -0.1098 

   (0.2010)  (0.6971)  (0.5045)       (1.2358)         (0.0698) 

N   173   173   173         163                117 

R2    0.6645   0.4427   0.3743         0.5346         0.3564 
 

***, **, and * represent statistical significance at the 1%, 5%, and 10% levels. 

Figures in the parentheses are standard errors. 
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Similarly, for mammals, the estimated coefficient on the variable reflecting 

concentration in the human population changed from negative and statistically 

insignificant in model 1 to positive and statistically significant in model 2.  Therefore, 

while the general control for spatial autocorrelation may be advisable in terms of 

producing unbiased coefficient estimates of the explanatory variables in the model, 

inclusion of specific cross-border dependency terms may substantially change the 

estimated impact of those  explanatory variables and thus the interpretations made and 

policy conclusions drawn.  In the present case, this cautionary flag is perhaps most telling 

with respect to the estimated impact of per capita GDP on species imperilment.  Three of 

the 5 taxa groups in model 1 (birds, mammals, and amphibians) are shown to exhibit a 

statistically significant Environmental Kuznets Curve: species imperilment rises with 

PCGDP but with a diminishing effect.  However, once the specific spatial dependency 

terms are added (model 2), the estimated coefficients on PCGDP and PCGDP2 lose their 

statistical significance in the mammals and amphibians models.   

Finally, while it might be tempting to conjecture a priori that controlling for 

specific cross-border effects will reduce the size of the estimated coefficient on the 

generic spatial dependency term, the findings suggest that this is not so.  In 3 of the 5 

cases that are presented, the size of the generic spatial lag term increases in the presence 

of the specific cross-border effect terms.   

In retrospect, this finding makes perfect sense.  The generic, binary contiguity 

spatial lag term aggregates a lot of unspecified cross-border effects, some with a positive 

impact on species imperilment in the referent country, and others that have a negative 

impact.  In model 2, inclusion of the specific cross-border effects allow to separate out at 
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least one significant negative effect on species imperilment in a country: the percentage 

of endemic species in immediately adjacent countries.  Compositionally, this must 

increase the size of the estimated coefficient for the generic spatial lag term, relative to a 

model (1) with no specific spatial dependency terms included.   

The estimation results reported in model 3 include specific cross-border 

dependency terms but not the general term.  It is immediately apparent that the regression 

R-squared values drop substantially, in most cases, from model 2 to model 3.  This not 

only is consistent with the observation in model 2 that the general spatial lag term was 

statistically significant in the presence of the specific spatial lag terms across all taxa, it 

also underscores the relative importance of the general spatial lag in this type of model.  

In other words, even though it is hard to pin down what they are, cross-border effects 

loom large with respect to country-level analysis of factors that influence species 

imperilment.   It is also notable that one or more of the specific cross-border effects that 

remain “hidden” in the general spatial lag term (model 2) apparently confound the 

specific effects that can be controlled for.  Thus, it is well observable that the sizable 

positive and statistically significant coefficient estimates on POPD in model 3, for birds 

and reptiles, disappear when the general spatial lag variable is included in the model 

(model 2).   

4.4  Concluding Remarks 

This chapter confirms the advisability, suggested by McPherson and 

Nieswiadomy (2005), of controlling for spatial autocorrelation in country-level empirical 

estimation of factors that influence species ecological fragility.  Across alternative 

definitions of the spatial dependency between adjoining countries, the results consistently 
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suggest that structuring the econometric specification as spatial error models results in 

greater explanatory power than spatial lag models for mammals, birds, amphibians, and 

vascular plants.  However, for reptiles the spatial lag structure consistently yields models 

with greater explanatory power than do the spatial error models.  The use of model 

explanatory power as the criterion for selecting among four alternative definitions of the 

spatial dependency between countries determined that a simple binary adjacency dummy 

out-performs higher-order adjacency, Euclidean distance between centroid points of 

adjoining countries, and percentage of shared border.  This suggests that the old maxim 

“Keep It Simple, Stupid” (KISS) should suffice for empirical researchers interested 

controlling for spatial autocorrelation when estimating the determinants of species 

imperilment at a country-level of analysis. 

It has been acknowledged that the results are a bit unsatisfying in at least one 

respect: interpretation.  Since inclusion of the simple adjacency-based spatial error term 

resulted in population density losing its statistical significance as an explanatory variable 

in model with no control for spatial dependency, some aspect of the spatial dependency 

must be related to similarities in population density across neighboring countries.  

Controlling for spatial autocorrelation at least helps reduce the impact of a dependency-

related omitted variable problem.  But it is not a panacea since it does not reveal the 

nature of the dependency in terms of variables that the researchers might actually be 

interested in.   

In a variety of contexts, empirical analyses that focus on counties, states, or 

countries probably are subject to cross-border effects, for which the conventional 

adjustment is the inclusion of a single spatial autocorrelation term that aggregates a 
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potentially large set of contributory factors.  By extending the earlier effort, discussed in 

this chapter, to capture spatial effects on empirical analyses, it has been demonstrated that 

it is possible, indeed it may be quite desirable, to include control variables that capture 

specific cross-border effects in addition to the generic control for spatial autocorrelation.  

In at least some cases, models that contain more meticulous controls for spatial 

dependency exhibit substantially enhanced explanatory power as compared to otherwise 

equivalent models that contain a single spatial lag variable based on a simple binary 

contiguity weights matrix.   In part, this enhanced explanatory power reflects quite 

different coefficient estimates for critical explanatory variables between the former 

models and the latter ones.  Thus, researchers interested in the effects of specific 

explanatory variables on the dependent variable under consideration may find that 

estimates of the explanatory variable(s) in question may be rather sensitive to whether 

specific spatial dependency effects have been controlled for.  At a minimum, this should 

give researchers who use data characterized by spatial autocorrelation reason to be 

cautious about the conclusions they draw from their empirical estimates.   

There is no doubt that not all spatial dependency is created equal.  That is, cross-

border externalities likely loom larger in some contexts than in others.  Therefore, 

exercise of a little common sense is in order when considering the desirability of going 

the extra mile to control for specific spatial dependencies.  From an analytical standpoint, 

if inclusion of a general spatial lag variable substantially increases the model R-square 

value, then further exploration of the impact of specific spatial dependencies on 

coefficient estimates seems worthwhile.  On the other hand, even if a general spatial lag 

term is statistically significant, if it adds only slightly to the overall explanatory power of 
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a model, it seems doubtful that inclusion of specific spatial dependency terms will lead to 

significantly different coefficient estimates.   

There are a growing interest and continuing debate among policy makers and 

scientific community about a potential direct link of economic freedom and corruption to 

environmental degradation.  Using the best spatial model and dependency structure 

identified in this chapter, the empirical link of economic freedom and corruption to 

species imperilment is explored in the next chapter to shed some lights on this growing 

concern. 
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CHAPTER 5 

ECONOMIC FREEDOM, CORRUPTION, AND SPECIES IMPERILMENT 

 

5.1  Introduction 

Economic freedom and corruption perceptions indices have been widely used in the 

economic growth literature, as researchers investigate possible linkages between these 

indices and the distribution of economic performance across countries.  The empirical 

literature is divided on the effect of economic freedom and corruption on economic 

growth.  One strand of this literature suggests a positive and significant relationship 

between a country’s economic freedom and its economic growth (de Vanssay and 

Spindler 1994; Easton and Walker 1997; Wu and Davis 1999; Hanson 2000; Ali and 

Crain 2002; Carlsson and Lundstrom 2002; Pitlik 2002).  Others suggest that this 

relationship is insignificant (Gwartney, Lawson, and Holcombe 1999; de Haan and Sturm 

2000; Heckelman and Stroup 2000; Adkins, Moomaw, and Savvides 2002) for all 

measures of economic freedom (de Haan and Siermann 1998).  Similarly, most of  the 

empirical research that focuses on possible linkages between corruption and economic 

growth identifies a negative relationship, arguing that higher levels of corruption 

significantly hinder economic growth (Mauro 1995; Brunetti 1997; Li, Xu, and Zou 

2000; Mo 2001; Gyimah-Brempong 2002; Méon and Sekkat 2005).  However, there is 

evidence to suggest that the negative effect of corruption on growth is not a rule 

(Pellegrini and Gerlagh 2004) and that in some cases, the effect is even significantly 
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positive (Barreto 2001; Rock and Bonnett 2004). 

Another strand of literature, commonly known as the Environmental Kuznets 

Curve (EKC) literature, has been developed by researchers attempting to understand 

possible linkages between environmental degradation in a country and measures of 

economic performance.  In theory, desperately poor people are willing to despoil their 

local environment in order to improve their economic circumstances.  However, beyond 

some threshold level of economic well-being, environmental quality becomes a normal 

good, i.e., demand for it increases with increasing income.  This suggests an inverted U-

shaped relationship between economic growth in terms of per capita income and various 

(specific) indicators of environmental degradation (Grossman and Krueger 1995; Torras 

and Boyce 1998; Barrett and Graddy 2000), although the relationship also has been 

described as N-shaped (Grossman and Krueger 1995; Torras and Boyce 1998). 

Using different measures of environmental degradation such as air pollution 

(Selden and Song 1994; Grossman and Krueger 1995; Torras and Boyce 1998; Cole, 

Rayner, and Bates 2001), water pollution (Shafik 1994; Grossman and Krueger 1995; 

Torras and Boyce 1998), deforestation (Panayotou 1993), and ecologically imperiled 

species (McPherson and Nieswiadomy 2005), researchers have presented empirical 

evidence in support of EKC relationships.  However, recent reviews of the EKC literature 

have raised questions about the existence of an EKC for specific forms of environmental 

degradation (Borghesi 1999; Meyer, van Kooten, and Wang 2003; Stern 2004).  Skeptics 

of EKC relationships argue that the EKC is an artifact of (1) technological/structural 

change in production and associated impacts on indicators of environmental degradation 

(de Bruyn, van den Bergh, and Opschoor 1998) and (2) specialization in production and 
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trade of goods and services across the nations that permits richer nations to “export” 

environmental degradation to poorer countries (Arrow et al. 1995; Stern, Common, and 

Barbier 1996).  In addition, the lack of econometric rigor, particularly the tests for some 

statistical properties such as variable distribution, serial correlation (in time series data), 

model adequacy and specification tests, has raised concerns about earlier EKC studies 

(Stern 2004).   

This chapter weaves these two strands of the scientific literature together based on 

the proposition that economic freedom and corruption are linked to economic prosperity 

and that economic prosperity is related to environmental degradation.  The empirical 

question explored in the chapter is whether economic freedom and corruption are linked, 

albeit perhaps indirectly through economic prosperity, to environmental degradation.  

Using data from 152 countries, taxa specific models of factors that influence species 

imperilment are estimated by controlling for cross-border effects.  The results suggest 

that across several taxa groups there is a statistically significant relationship between 

economic freedom and species imperilment.  However, consistent evidence of a similar 

relationship between corruption and species imperilment is observed for only one taxa 

group.  The chapter is organized as follows: Section 2 reviews the literature that focuses 

on possible linkages between economic freedom/corruption and environmental 

degradation.  The estimating model, variables, and data are discussed in section 3.  Model 

results and discussion are reported in section 4.  Section 5 contains the concluding 

remarks. 

5.2  Linking Economic Freedom and Corruption to Environmental Degradation  

Explaining the indirect linkage between economic freedom and the environment,  
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Jerry Taylor of the Cato Institute argues the following: 

Economic liberalization leads to economic growth, which in turn generates new 

economic opportunities and sources of livelihood, thereby alleviating poverty and 

reducing pressures on the environment (Taylor 2002).  

Typically, the corruption-environment linkage is expressed as an indirect 

relationship.  The usual linkage is that corruption leads to poverty (Crystalclearforum 

2006) and that the poverty trap will cause more harm to the environment.  However, a 

more direct linkage is possible, with similar adverse environmental consequences, as 

argued by Peter Eigen, the then Chair of Transparency International (TI): 

Corrupt political elites in the developing world, working hand-in-hand with 

greedy business people and unscrupulous investors, are putting private gain 

before the welfare of citizens and the economic development of their countries. 

From illegal logging to blood diamonds, we are seeing the plundering of the earth 

and its people in an unsustainable way (TI 2002).   

Scientific discussion of linkages between economic freedom and/or corruption 

perceptions indices and environmental degradation is just gaining traction.  Early on, 

Lopez and Mitra (2000) argued that corruption and lobbying by vested interests are 

important sources of environmental degradation in developing countries.  More recently, 

Lundstrom (2003) discussed the effect of specific economic freedom categories on both 

economic growth and the environment and highlights some important considerations for 

empirical work.  Carlsson and Lundstrom (2003) conducted a cross-country analysis of 

the impact of economic and political freedom on CO2 emissions at the cross-country 

level.  They found that certain constituent categories of freedom that are used in the 
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calculation of the overall Transparency International ratings are significantly related to 

CO2 emissions while others are not.  In their empirical study of corruption, democracy, 

and environmental policy, Pellegrini and Gerlagh (2005) found that corruption is an 

important determinant of environmental policy stringency.  The less corrupt the country 

is, the more stringent the environmental policies are, and vice versa.   

With the lone exception of McPherson and Nieswiadomy (2005), all other cross-

country analyses considered local (within-country) effects only while ignoring the 

possibility of spillover effects.  However, spillover effects are extremely important in 

terms of correctly measuring the extent of environmental degradation (e.g., air pollution, 

water pollution, and species imperilment), which is trans-boundary in nature and has both 

local and global effects.  For example, a Gobi desert storm that originates in central 

China and Mongolia travels through Europe and sometimes lands in the eastern U.S., 

carrying air pollutants all along the way (Barta 2006).  Thus, such a storm affects 

northern Atlantic plant species.  Likewise, air pollution in Mexico is not confined within 

Mexico’s political boundaries, and deforestation in the Brazilian Amazon affects not only 

the species dynamics within Brazil but those of its neighbors as well.  As a corollary, the 

environmental policies a particular country implements might well have an impact on its 

neighbors.  For example, if a particular country implements programs to reduce river 

pollution, the program impact is shared to some extent with down-stream countries as 

well. 

Consequently, if cross-border effects are not integrated into the analysis, 

empirical investigation of possible linkages between economic growth and environmental 

degradation may significantly mis-measure the size and significance of relationships.  So, 
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the absence of controls for spatial dependency in earlier cross-country studies may 

suggest an omitted variable bias.  In the previous chapters dealing with cross-country 

analyses of species imperilment, it is consistently determined that spatial dependency 

across countries is highly significant and needs to be controlled for.  Depending on the 

nature of environmental degradation and its mode of spread and extent, different 

mechanisms (adjacency structures) to specify the spatial dependency effect can be 

argued; however, for species imperilment, a simple adjacency dummy variable that 

reflects general but unspecified spatial dependency was found to be superior to 

alternatives (Pandit and Laband 2007a).  In an extensive investigation of spatial 

dependency in models of species imperilment presented in chapter 4, it is found that a 

single, simple adjacency structure of spatial dependency across countries may out-

perform other specific measures of adjacency specifications.6

5.3  Models, Data, and Methods 

In a cross-country context, a number of factors, both natural and anthropogenic, 

that influence species’ ecological imperilment have been confirmed empirically by 

previous researchers (Naidoo and Adamowicz 2001; McPherson and Nieswiadomy 2005; 

Pandit and Laband 2007a).  These include species endemism, human population density, 

the spatial distribution of the human population, economic conditions (per capita 

income), and special geographic considerations.  The model of species imperilment 
 

6 In earlier chapters, it is found that for all taxa, spatial dependency was present for all form of dependency: 

simple, higher order, centroid distance, and shared border.  Among these, it is noted that a simple binary 

adjacency structure (countries that share a common border are assigned a value of 1 in the adjacency 

matrix and otherwise 0) is superior to other forms and that the spatial error models out-perform 

dependent, variable-based lag models for almost all taxa.   

 



proposed in the chapter 4 is augmented by incorporating economic freedom and 

corruption perceptions indices as explanatory variables: 
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ij = the percentage of species in taxa j from country i that 

were on the World Conservation Union’s (IUCN) Red List of threatened species in 2004, 

PES = the percent of endemic species, POPD = population density (thousand persons per 

square kilometer), GCPOP = a Gini Coefficient Index for population distribution, EFI = 

Index of Economic Freedom and CPI = Corruption Perceptions Index, ISLAND = a 

dummy variable (1 = island, 0 = mainland), εij = the ordinary regression error terms for 

each taxa for both economic freedom and corruption models, LAG εij = spatial error lag 

terms, and vij and ijξ  are the weighted least square error terms for economic freedom and 

corruption models for each taxa, respectively.  Deviating from models of earlier chapters 

and focusing on the specific effect of economic freedom and corruption on species 

imperilment, per capita income variable is excluded in these regression models due to its 

high collinearity with economic freedom7  and corruption8 indices. 

                                                 
7 The correlation between EFI and per capita income is -0.73602 (for birds, mammals, and reptiles), 

   -0.74216 (amphibians), and -0.77296 (vascular plants). 
8 The correlation coefficient between CPI and per capita income is 0.86988 (for birds, mammals, and 

reptiles), 0.86916 (amphibians), and 0.89718 (vascular plants).  The negative (positive) correlation of 
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5.3.1  Economic Freedom Index (EFI) 

The economic freedom index is a composite index that characterizes the degree to 

which an economy is a market economy (Berggren 2003), in which the central 

components are voluntary exchange, free competition, and protection of persons and 

property (Gwartney and Lawson 2004).  Economic theory suggests that such freedom 

affects incentives, productive efforts, the effectiveness of resource use (de Haan and 

Sturm 2000), and, consequently, economic growth of a country.  It is the most reliable 

and consistent determinant of economic growth, which in turn alleviates poverty 

(Pasicolan and Fitzgerald 2002).  Empirical researchers have used one of the economic 

freedom indices produced by the Frasier Institute (Gwartney and Lawson 2004), Scully-

Slottje (de Vanssay and Spindler 1994; de Haan and Siermann 1998) or the Heritage 

Foundation/Wall Street Journal to describe the relationship between economic freedom 

and economic growth.  In this analysis, the index developed by the Heritage Foundation 

/Wall Street Journal is used to explore the link between EFI and species imperilment.  

The Heritage Foundation computes the EFI as a simple average score of 10 major policy 

factors9 characterized by 50 key economic indicators of a country.  Scores range from 1 

(economically free) to 5 (economically suppressed).  Lower EFI scores mean greater 

economic freedom in a country, and vice versa.   

 

 
percent imperiled species with EFI (CPI) is mainly due to scaling measure used by Heritage Foundation 

(Transparency International) in reporting their data. 
9 These factors include trade policy, fiscal burden of government, government intervention in the economy, 

monetary policy, capital flows and foreign investment, banking and finance, wages and prices, property 

rights, level of regulation, and black market activity. 
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5.3.2  Corruption Perceptions Index (CPI) 

The CPI defines corruption as the abuse of public office for private gain and 

measures the degree to which corruption is perceived to exist among a country’s public 

officials and politicians.  It is a composite index based on 16 opinion surveys10 of 

business people and country analysts gathered by 10 independent institutions11.  All 

sources employ a homogeneous definition of “extent of corruption” in a country.  Since 

1995, Transparency International (TI) has published the index annually.  The CPI scores 

range from 10 (highly clean) to 0 (highly corrupt).  TI uses a score of 5.0 as a threshold 

level that distinguishes serious corruption in a country.  

Data on threatened and endemic species were taken from the EarthTrends 

Environmental Portal of the World Resources Institute (WRI 2004).  Human population 

data were obtained from the United Nations Population Division (UNPD 2004).  

Following Damagaared and Weiner (2000) and Dixon et al. (1987), a Gini Coefficient 

index is derived to measure the spatial concentration of the human population in each 

country.  The index values range from 0, which reflects a uniform distribution of the 

population, to 1, which means that a country’s population is concentrated in a single 

location.  It was derived from a LandScan 2002 gridded population distribution map 

developed by Oak Ridge National Laboratory.  An island dummy variable identified  

 
10 At least 3 surveys are required for a country to be included in CPI ranking. The detailed survey 

methodology is found in Lambsdorff (2005). 
11 10 institutions include Columbia University, the Economists Intelligence Unit,  Freedom House, 

Information International from Beirut (Lebanon), the International Institute for Management 

Development (in Lausanne), the Merchant International Group Limited (London), the Political and 

Economic Risk Consultancy (in Hong Kong), the United Nations Economic Commission for Africa, the 

World Economic Forum, and the World Markets Research Centre (in London). 
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the nations that are geographically isolated (CIA 2004). 

A two-step modeling approach is used to document the effect of economic 

freedom and corruption on species imperilment for taxa-level data on mammals, birds, 

reptiles, amphibians, and vascular plants.  First, errors (εij) for each model are estimated 

(with no spatial dependency term included).  Then, using the insights from the findings of 

chapter 4, a simple adjacency spatial error lag term, LAGεij for each country is 

constructed by taking the average of the errors of adjacent countries.  This spatial error 

lag term was included in the spatial error lag models as an explanatory variable to capture 

unspecified cross-border effects on species imperilment models.  Secondly, following the 

same approach as in error lag construction, a dependent variable-based general spatial lag 

term is constructed for each model to capture the aggregate effect of all explanatory 

variables in the model.  This general spatial lag term was then included in the general 

spatial lag models, replacing error lag term of error models.  A spatial dependency 

weights matrix for each of the explanatory variables is also created, averaging the values 

for all bordering countries.  This captures cross-border effects in terms of economic 

freedom or population density of neighboring countries on species imperilment in the 

referent country, for example, rather than forcing all effects into a single variable that is 

difficult to interpret.  Then both general and specific spatial lag terms are included as 

additional explanatory variables in the third set of models.  Finally, the level and squared 

terms for both EFI and CPI are introduced in the models to observe the structure of the 

relationship between species imperilment and EFI/CPI.  Both EFI and CPI are treated as 

continuous variables (EFI and CPI are measured to two and one decimals, respectively).  

The exploratory analysis of the data indicated non-constant error variance 
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(heteroskedasticity), so the model is estimated using the SAS Robust Regression 

weighted least squares technique.  

It is expected that the percentage of imperiled species in a country is directly 

related to the percentage of endemic species, population density, and corruption in that 

country and inversely to the Gini Coefficient for population distribution and economic 

freedom.  In addition, islands are expected to have more ecologically fragile species than 

mainland countries by virtue of their geographic isolation and sensitivity of flora and 

fauna to introduction of invasive species (Czech, Krausman, and Devers 2000).  

5.4  Results and Discussion 

Table 5.1 shows the sample statistics.  Among the taxa groups in the sample, 

amphibians are the most imperiled (about 16%) and have the highest rate of endemism 

(about 17%), whereas vascular plants and birds are the least imperiled (about 1%) and 

have the lowest rate of endemism (about 3%).  Depending on the number of countries 

covered in each taxa model, mean population density ranges from 158 to188 persons 

/km2, with Mongolia (2 persons/km2) and Singapore (6,959 persons/km2) being the most 

sparsely and densely populated countries, respectively.  Similarly, the mean value of the 

Gini coefficient index for population dispersion (0.88) suggests that most countries have 

relatively highly concentrated human populations.  Singapore (0.59) has the most evenly-

distributed population, whereas Mongolia (0.999) has its population concentrated in only 

a few locations. 

The EFI mean score of 3.0 suggests that, on average, the countries included in the 

analysis are at the lower margin of the “mostly unfree” (3.00 to 3.95) category, specified 

as such by the Heritage Foundation/Wall Street Journal.  The 2005 EFI data reveal that 
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Luxemburg (score 1.63) is the most economically free country, whereas North Korea 

(score 5.00) is the most economically suppressed country.  Among countries in the 

sample, the average CPI score ranges from 4.1 to 4.3 for all 5 taxa, indicating that in 

general, most countries are ruled by corrupt regimes.  TI’s classification suggests that a 

score of 5.0 is the borderline to distinguish countries that fall on the relatively corrupt or 

clean regime (< 5.0 corrupt and > 5.0 clean).  The CPI score indicates that Iceland (9.7) is 

the world’s least corrupt country, whereas Bangladesh (1.7) and Chad (1.7) are perceived 

as the most corrupt.  

A graphical depiction of the relationship of economic freedom and corruption 

with species imperilment is given in Figures 5.1 and 5.2, respectively.  It seems difficult 

to ascertain the specific nature of the species imperilment relationship with economic 

freedom and corruption for each taxon from these figures.  However, it is apparent that 

there are some outlying EFI and CPI observations for each of the imperiled species 

group. 

Weighted Least Squares regression results for the taxa-specific model estimations, 

including spatial error and spatial lag dependency structures, are presented in Tables 

5.2a-e for both EFI and CPI.  As expected, the percentage of imperiled species in a 

country is positively and strongly influenced by the percentage of endemic species in that 

country.  Excepting the reptiles, this finding is consistent across all taxa groups for both 

EFI and CPI based models.
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Table 5.1  Sample Statistics12

 

Variable                           Birds        Mammals                 Reptiles              Amphibians          Vascular Plants 

                                                
PIS            Mean              3.343 (3.420)      9.501 (9.628)   4.245 (4.306)  11.425 (11.849)    1.159 (1.372)                            

          Std. dev.         2.729 (2.724)             5.289 (5.383)               5.033 (5.025)               17.587 (17.911)                2.096 (2.723)                                          

          Min.          0.000                          0.000                            0.000                            0.000                                0.000                                               

          Max.          21.083                       33.333                           36.364                          97.872                              11.600 (18.000) 

 
PES            Mean             3.212 (3.391)             4.352 (4.581)                11.048 (10.929)            15.723 (16.484)               13.602 (14.685)                  

     Std. dev.        7.619 (7.738)             9.310 (9.481)                17.442 (17.118)            23.559 (24.514)               18.373 (19.517)                              

     Min.          0.000                         0.000                             0.000                             0.000                               0.000 (0.033)                                      

     Max.          45.476                       61.818                           90.741                           89.381 (91.667)              89.999 

 
POPD         Mean             158.121 (161.324)     158.121 (161.324)        158.121 (161.324)        160.218 (163.224)          182.134 (188.180)                 

     Std. dev.        583.446 (587.176)     583.446 (587.176)        583.446 (587.176)        591.118 (592.265)          697.118 (710.771)                          

     Min.              1.679                          1.679                             1.679                             1.679                              1.679                                         

     Max.             6959.677                    6959.677                        6959.677                      6959.677                        6959.677 

 
GCPOP      Mean           0.880 (0.881)             0.880 (0.881)                 0.880 (0.881)               0.878 (0.879)                  0.871 (0.877)   
  Std. dev.        0.095 (0.094)           0.095 (0.094)             0.095 (0.094)               0.095 (0.093)                   0.099 (0.095)                                  

    Min.          0.590                       0.590                         0.590                            0.590                               0.590                                     

         Max.              0.999                        0.999                         0.999                            0.999                               0.999 



Table 5.1  Sample Statistics12 (Cont’d) 
 

Variable                           Birds        Mammals                 Reptiles              Amphibians          Vascular Plants 

 

EFI           Mean              3.010                         3.010                             3.010                            3.018                               2.996            

         Std. dev.         0.685                         0.685                             0.685                            0.687                               0.680                          

         Min.               1.600                         1.600                             1.600                             1.600                               1.600                              

         Max.               4.600                         4.600                             4.600                            4.600                               4.600  

  
CPI           Mean              4.132                         4.132                             4.132                            4.078                                4.266            

         Std. dev.         2.183                         2.183                             2.183                            2.151                                2.318                          

         Min.               1.700                         1.700                             1.700                             1.700                               1.800                              

         Max.               9.700                         9.700                             9.700                             9.600                               9.700  

 

ISLAND       Mean              0.164 (0.167)            0.164 (0.167)                0.164 (0.167)                0.155 (0.163)                   0.206 (0.204)    

                Std. dev.         0.372 (0.374)            0.372 (0.374)                0.372 (0.374)                0.364 (0.371)                   0.406 (0.405)                  

          Min.           0.000                   0.000                 0.000                            0.000                              0.000 

          Max.           1.000                         1.000                 1.000                            1.000                              1.000 

 
N                      152 (150)                  152 (150)                      152 (150)                       148 (147)                         102 (98) 
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12 Statistics for both economic freedom and corruption based models for all 5 taxa are presented.  Parentheses denote the statistics for corruption wherever it is 
different from economic freedom. 



Figure 5.1  Relationship between Economic Freedom and Percent Imperiled Species by    

                  Taxa 
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Figure 5.2  Relationship between Corruption and Percent Imperiled Species by Taxa 
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Table 5.2a  Regression Results for Economic Freedom, Corruption, and Species Imperilment - Birds 
 

                      Economic Freedom Index (EFI)                                  Corruption Perception Index (CPI)                        

 Spatial                          General                 General and Specific           Spatial                      General                 General and Specific                            
Variables          Error Model              Spatial Lag Model       Spatial Lag Model          Error Model           Spatial Lag Model       Spatial Lag Model                            

 
Constant -2.0597 (1.5484)       -1.2836 (1.6861)        -3.4976** (1.6386)        -1.4710* (0.8030)       0.0058 (0.9178)       -0.4591 (0.9217)       

PEB  0.3616*** (0.0237)    0.2765*** (0.0157)   0.5198*** (0.0191)       0.3332*** (0.0183)    0.2765*** (0.0154)  0.5499*** (0.019) 

POPD  0.1625 (0.1438)          0.0646 (0.1554)        -0.0519 (0.1300)             0.1485 (0.1409)         0.0866 (0.1540)         0.1826 (0.1326) 

GCPOP  2.2176*** (0.8561)    1.3114 (0.9853)          2.3420** (1.0108)        2.3362*** (0.8588)   1.2715 (0.9864)         2.5088** (1.0244) 

INDEX  1.6861** (0.8531)      1.8379** (0.9246)      2.1383*** (0.8059)      0.7824*** (0.1892)   0.7430*** (0.2071)   0.0250 (0.1719) 

INDEX2 -0.2908** (0.1407)    -0.2942** (0.1526)    -0.3388*** (0.1264)     -0.0709*** (0.0175)  -0.0705*** (0.0191)  -0.0113 (0.0154) 

ISLAND 706** (0.2741)    -0.4006 (0.2890)       796*** (0.2871)      -0.5585** (0.265 5046* (0.2918)      -0.9271*** (0.297) 

Lag ERROR 768*** (0.1343)           1.5678*** (0.1259)  

Spatial Lag             1.7204*** (0.1721)   2.4324*** (0.2053)     1.6197*** (0.1672)   2.3509*** (0.197) 

Lag – PEB          -3.7652*** (0.3845)              -4.0141*** (0.392) 

Lag - POPD           1.6552** (0.6683)               1.0741 (0.7142) 

Lag - GCPOP           -0.1056 (0.1339)              -0.1370 (0.1438) 

Lag –INDEX            0.1054 (0.1310)                 0.1380 (0.1501) 

N  152           152        152         150    150           150 

R2   0.7776           0.7447        0.8211        0.7692   0.7465           0.8233 

-0.6   0.7 3)   -0.

1.5

 
***, **, * - - statistical significant at the 0.01, 0.05, and 0.10 levels, respectively. 

Figures in the parentheses are standard errors. 
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Table 5.2b  Regression Results for Economic Freedom, Corruption, and Species Imperilment - Mammals 
 

                      Economic Freedom Index (EFI)                                   erception Index (CPI)     Corruption P                  

 Spatial                          General                General and Specific           Spatial               General                 General and Specific                            
Variables          Error Model              Spatial Lag Model       Spatial Lag Model          Error Model      patial Lag Model       Spatial Lag Model                             

 

       
     S

Constant -9.2535* (4.8399)      -1.5453 (5.2567)      -11.9049** (5.6142)       5.7454** (2.715 4.6191 (2.9117)         0.1382 (3.6927) 

PEM  0.2752*** (0.0322)     0.2762*** (0.0355)   0.2928*** (0.0306)     0.3251*** (0.0344)   0.2345*** (0.0329)   0.3467*** (0.0364) 

POPD  -0.5559 (0.4537)         3.1358 (1.9267)        -0.4222 (0.4452)          -0.5783 (0.4878)         8.1270*** (2.9208)  -0.2213 (0.5487) 

GCPOP  4.7517* (2.6385)        0.6517 (2.9812)          4.2061 (3.4127)           2.5202 (2.9249)         2.1234 (3.1803)         9.2278** (4.0899) 

INDEX  8.1415*** (2.6793)    5.9052** (2.8990)    10.8459*** (2.8080)     0.0252 (0.6532)         0.6491 (0.7036)         0.1407 (0.6797) 

INDEX2 -1.2361*** (0.4417)   -0.9549** (0.4790)   -1.6538*** (0.4420)    -0.0217 (0.0603)        -0.0731 (0.0643)       -0.0191 (0.0636) 

ISLAND 4.2023*** (0.8247)     2.7342*** (0.9663)   2.7526*** (0.8421)     1.9577** (0.9039)      1.8608* (1.0446)     -0.4711 (0.9732) 

Lag ERROR 4.8669*** (0.5114)         4.9857*** (0.5455) 

Spatial Lag             3.6092*** (0.5161)    4.3891*** (0.4936)    3.5578*** (0.4923)  4.6257*** (0.563) 

Lag – PEM           -3.5969*** (0.5948)            -2.0528*** (0.6133) 

Lag - POPD            6.3208*** (2.3251)             2.9260 (2.8076) 

Lag - GCPOP            0.2603 (0.4433)            -1.1778** (0.5588) 

Lag –INDEX           -0.1088 (0.4611)              -0.0474 (0.6012) 

N  152           152        152       150   150         150 

R2   0.6640           0.5510        0.6885      0.6534  0.5673          0.6696 

0)     

 
***, **, * - - statistical significant at the 0.01, 0.05, and 0.10 levels, respectively. 

Figures in the parentheses are standard errors. 
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es Table 5.2c  Regression Results for Economic Freedom, Corruption, and Species Imperilment - Reptil
 

                      Economic Freedom Index (EFI)                                    Corruption Perception Index (CPI)                     

 Spatial                          General                 General and Specific           Spatial                      General                 General and Specific                            
 Variables          Error Model              Spatial Lag Model       Spatial Lag Model          Error Model           Spatial Lag Model       Spatial Lag Model                            

 
Constant -4.7462 (4.3351)        -4.2728 (4.0192)       -7.3698 (5.1059)            0.9209 (2.2054)       -0.3085 (2.1563)        -3.3766 (2.8980) 

PER  0.0066 (0.0147)          0.0027 (0.0137)         0.0111 (0.0152)            0.0091 (0.0141)        0.0091 (0.0140)          0.0137 (0.0153) 

POPD  -0.1130 (0.3923)         0.2011 (0.3653)         0.2971 (0.4101)           0.2096 (0.3754)         0.2641 (0.3724)         0.4357 (0.4219) 

GCPOP  3.4052 (2.3144)          2.5045 (2.1623)         6.2603** (3.1495)       2.4180 (2.3002)         2.9845 (2.2717)         6.4908** (3.2092) 

INDEX  3.9986* (2.3011)        3.8225* (2.1410)       3.6726 (2.5161)           0.7419 (0.5052)         0.8250 (0.5028)         0.8475 (0.5238) 

INDEX2 -0.6349* (0.3772)     -0.6023* (0.3511)      -0.5849 (0.3975)          -0.0869* (0.0464)      -0.0937** (0.0461)    -0.0985 (0.0484) 

ISLAND 0.4736 (0.7486)          0.0580 (0.7107)         0.3214 (0.7886)           0.0230 (0.8639)          0.3630 (0.6748)         0.3205 (0.7568) 

Lag ERROR 4.6658*** (0.5561)        4.3937*** (0.5252) 

Spatial Lag             4.0295*** (0.4376)   3.6518*** (0.5027)    3.7796*** (0.4458)  3.2997*** (0.5072) 

Lag – PER          -0.5393 (0.4481)            -0.7406* (0.4392) 

Lag - POPD            1.3093 (2.2266)             1.5975 (2.3147) 

Lag - GCPOP          -0.3888 (0.4186)            -0.1935 (0.4486) 

Lag –INDEX           0.3114 (0.4015)               0.2420 (0.4594) 

N  152          152       152      150   150         150 

R2   0.5292          0.5474       0.5736      0.5512  0.5490         0.5558 
 

***, **, * - - statistical significant at the 0.01, 0.05, and 0.10 levels, respectively. 

Figures in the parentheses are standard errors.
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s Table 5.2d  Regression Results for Economic Freedom, Corruption, and Species Imperilment - Amphibian
 

                      Economic Freedom Index (EFI)                                    Corruption Perception Index (CPI)                     

 Spatial                          General                 General and Specific           Spatial                      General                 General and Specific                            
Variables          Error Model              Spatial Lag Model       Spatial Lag Model          Error Model           Spatial Lag Model       Spatial Lag Model                             

 
Constant 3.3119 (9.7678)        10.4936* (5.7436)       5.6447 (12.5598)          7.8376 (5.7889)       10.7706 (10.5357)     10.8401 (7.0068) 

PEA  0.4919** (0.0284)     0.4749*** (0.0287)    0.5189*** (0.0310)      0.4821*** (0.0276)   0.4601 (0.0154)         0.5164*** (0.0284) 

POPD  -0.5838 (0.9024)      -0.8600 (0.9943)         -0.2410 (1.0231)           -0.0534 (0.9977)       -0.8439 (0.9568)        -0.3464 (1.0503) 

GCPOP  -9.9815* (5.3646)   -14.6106** (6.0221)   -14.3796* (7.8571)        -8.0431 (6.0670)      -11.6699** (5.6820)   -14.2055* (7.6711) 

INDEX  5.8789 (5.4595)         2.7483** (1.3999)      6.4556 (6.4045)            1.6333 (1.4501)         3.3946 (5.8329)          1.9855 (1.3384) 

INDEX2 -0.9330 (0.8988)      -0.2268* (0.1303)       -1.0379 (1.0094)           -0.1699 (0.1342)       -0.7408 (0.9561)         -0.1872 (0.1280) 

ISLAND -1.9056 (1.7948)      -3.3875* (1.9187)       -3.1316 (1.9350)           -3.6044* (1.9331)     -2.8348 (1.8832)         -2.6324 (1.8857) 

Lag ERROR 7.0490** (0.9938)         7.4870*** (1.0442) 

Spatial Lag           6.5159*** (1.0196)     9.2941*** (1.2740)     5.0564*** (0.9941)   10.4569*** (1.228)          

 

Lag – PEA          -5.1486*** (1.0847)            -5.4188*** (1.0839) 

Lag - POPD          -8.6366* (5.0848)            -9.8394* (5.1404)

Lag - GCPOP           1.0277 (0.9872)             0.4693 (1.0526) 

Lag –INDEX          -1.5381 (1.0039)               0.9872 (1.1455) 

N  148          148        148      147   147         147 

R2   0.6273          0.6015       0.6454      0.6312  0.6015         0.6640 
 

***, **, * - - statistical significant at the 0.01, 0.05, and 0.10 levels, respectively. 

Figures in the parentheses are standard errors.



 Spatial                          General                 General and Specific           Spatial                      General                 General and Specific                            
Variables          Error Model              Spatial Lag Model       Spatial Lag Model          Error Model           Spatial Lag Model       Spatial Lag Model                             

                      Economic Freedom Index (EFI)                                    Corruption Perception Index (CPI)                     

Table 5.2e  Regression Results for Economic Freedom, Corruption, and Species Imperilment - Vascular Plants 
 

 
Constant 0.2259 (0.8395)         0.5949 (0.8264)          1.5850 (0.9762)            0.5456 (0.5470)         0.5555 (0.5043)         1.9114*** (0.6226) 

8) 

17) 

 

 

           

) 

PEVP  0.0126*** (0.0026)   0.0121*** (0.0025)    0.0113*** (0.0025)     0.0117*** (0.0028)    0.0120*** (0.0026)   0.0181*** (0.002

POPD  0.3330*** (0.0631)   0.3207*** (0.0613)    0.2699*** (0.0665)     0.3549*** (0.0685)    0.3417*** (0.0629)   0.2370*** (0.07

GCPOP  -0.2304 (0.4868)      -0.3197 (0.4728)         -1.0622 (0.6476)           0.0731 (0.5790)         -0.1511 (0.5347)        -1.7508** (0.7159)

INDEX  0.0961 (0.4484)       -0.0508 (0.4396)         -0.2766 (0.4629)          -0.1336 (0.1141)         -0.0619 (0.1043)        -0.0957 (0.1100)

INDEX2 0.0092 (0.0743)         0.0091 (0.0725)          0.0340 (0.0744)           0.0089 (0.0101)           0.0043 (0.0093)         0.0106 (0.0097) 

ISLAND -0.2103* (0.1212)    -0.2517** (0.1185)     -0.1631 (0.1407)          -0.2244 (0.1432)         -0.2831** (0.1329)    -0.2354 (0.1634) 

Lag ERROR 0.0934 (0.0709)          0.1270 (0.0810) 

Spatial Lag           0.1680** (0.0657)      0.1361** (0.0669)     0.2109** (0.0895)     0.2401** (0.0935) 

Lag – PEVP          0.1282* (0.0754)              0.0733 (0.0913) 

Lag - POPD         -0.7625 (0.5173)             -0.5382 (0.5759) 

Lag - GCPOP           0.0578 (0.0896)              0.1835* (0.1051

Lag –INDEX           0.0455 (0.0724)               -0.1162 (0.0880) 

N  102          102       102       98    98          98 

R2   0.3425          0.3451       0.3828       0.3744   0.3752          0.4090 
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***, **, * - - statistical significant at the 0.01, 0.05, and 0.10 levels, respectively. 

Figures in the parentheses are standard errors. 
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domy (2005) included measures of legal institutions, civil liberties, and political 

unrest in their cross-country analysis of species fragility, but their focus was on the 

Environmental Kuznets Curve relationship, so they also included measures of ec

performance as explanatory variables.  However, the focus here is on economic freedom

rather than civil/political liberty.  Because economic freedom and corruption in

highly correlated with measures of economic performance, one cannot generate reliab

estimates of the impact of either on species imperilment if both are included in the model

Moreover, since an analysis that aggregates species across taxa will be dominated by the 

vascular plants, an aggregate analysis may not reveal important taxa-level impacts.  

Therefore, the empirical analysis focuses on 5 taxa: birds, mammals, reptiles, 

ians, and vascular plants.  Based on data from 152 countries, the empirical 

analysis suggests that there are statistically significant relationships between imperilment

of birds, mammals, and reptiles and economic freedom.  However, the evidence of a 

statistically significant relationship between corruption and species imperilment is fou

only among birds.  
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CHAPTER 6 

CONCLUSION 

This dissertation research focuses on two aspects of species imperilment, using 

country-level data for five taxa.  First is an empirical issue dealing with the impacts of 

spatial concentration of humans, economic freedom, and corruptions on species 

imperilment.  Second is a methodological issue related to spatial autocorrelation, its 

species imperilment.   

Public policies that encourage high-density human living arrangements have been 

predicated explicitly on the assumption that certain spatial distributions of a fixed-size 

human population are more environmentally friendly than others.  Empirical analysis of 

statistically to the percentage of imperiled species reveals that spatial concentration of the 

human population is associated with reduced imperilment among amphibians and 

vascular plants but increased imperilment among mammals, reptiles, and birds.  The 

findings for some taxa, but not for all, are consistent with the assumed positive impacts of 

r species conservation through smart-growth principles of 

compact building design.  Similarly, empirical analysis of conjectured link between 

economic freedom and corruption and species imperilment has shown that there are 

 

measures, and the general and specific aspects of its controls on empirical models of 

the assumption that the spatial concentration of human presence in each country is related 

concentrating humans for othe
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heck 

pendency-

nit of 

r 

ncy measures.  The simple adjacency measure was based on a simple 

ummy nature of adjacency as compared to more sophisticated adjacency matrices for 

other measures.  The result suggests that a simple specification of adjacency is sufficient 

for empirical research that seeks to control for spatial autocorrelation, at least in the 

context of estimating the determinants of species imperilment at a country-level of 

analysis.  Among alternative specifications of the spatial model, spatial error models 

explain more variation than spatial lag models for all taxa except for reptiles.  However, 

the spatial error models are less intuitive than lag models on interpretation of the lagged 

error term.  

statistically significant relationships between imperilment of birds, mammals, and reptiles

and economic freedom.  However, the relationship between corruption and species 

imperilment is found to be significant only among birds.  The results suggest that beyond

certain thresholds, more economic freedom is associated with reduced species 

imperilment in a country. 

Regarding the methodological issue, the species imperilment data for all species 

taxa are plagued by spatial autocorrelation in all modes of spatial adjacency measures.  

The presence of spatial autocorrelation suggests that the factors that influence species 

imperilment extend beyond arbitrary political boundaries.  It further suggests that a c

and control for spatial autocorrelation is necessary to correct the impact of a de

related omitted variable problem in spatial data when individual countries are the u

analysis.   

A simple adjacency measure of the spatial dependency out-performed the othe

three measures of spatial dependency: 2nd order, centroid distance, and percent shared 

border length adjace

d
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The general correction for spatial autocorrelation in the form of spatial lag or 

error lag only corrects the omitted variable problem in the models but adds little to 

nothing to our understanding of the spatial linkage between other model variables.  The 

use of both general and specific controls for spatial autocorrelation in the model helps to 

describe the spatial relationships of independent variables as well.  The results indicate 

that the addition of spatial controls based on specific cross-border effects can 

substantially change the size and statistical significance of the general spatial dependency 

term as well as the size, sign, and/or statistical significance of the explanatory variables.  

The use of both general and specific spatial controls helps to elucidate spatial relationship 

in a finer scale.  Using specific variable lags one can infer the cross-border impacts of the 

variable of interest as opposed to either one of the general spatial controls, a summative 

spatial lag or unintuitive error lag. 

The results highlighted above will be useful for empirical research involving 

geographic data which have inherent limitations posed by arbitrary political boundaries.  

More importantly, the findings of this research open an avenue for a policy dialogue and 

finer scale research in order to shape species conservation policies across and within 

countries, when conjecturing the widely held beliefs and empirical evidence about the 

imperilment.  

impacts of spatial distribution of humans, economic freedom, and corruption on species 
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           actors Influencing Species Imperilment 

able III.1:  Spatial Lag Models: 2nd Order Adjacency 
                                                                                                                                                                        

APPENDIX-III  Other Adjacency Measures Based Weighted Least Squares Regression  

                Results for F

T

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 

 
Constant 1.9137** 8.4019*** 3.639  20.3056*** 0.4232 

  (0.8477) (2.7575) (2.2489) (5.6596) (0.3958) 

PES  0.3415***  0.3206*** 0.0086  0.4827*** 0.0100*** 

  (0.0173) (0.0337) (0.0155) (0.0313) (0.0023) 

POPD  0.4547  5.7587*** -0.2652  -1.7299* 0.3187*** 

  (0.4923) (2.1716) (0.4115) (1.0342) (0.0573) 

GCPOP  0.7019  -0.9274  0.8653   -19.8343*** 0.0079 

 (0.9526) (3.1937) (2.5744) (6.5454) (0.4739) 

PCGDDP 0.0257  0.2509*  -0.0325** 

 (0.0191) (0.0976) (0.0539) (0.1398) (0.0136) 

CGDP2 -0.0010**  -0.0051* -0.0009   -0.0056* 0.0008* 

  (0.0005) (0.0029) (0.0013) (0.0033) (0.0004) 

ISLAND -1.3091*** 0.8247  0.77  -1.7503  -0.0036 

  (0.2482) (0.8293) (0.6896) (1.7582) (0.0899) 

LAG PIS 1.8663***  4.8485*** 5.0099*** 5.8307*** 0.1511* 

  (0.2111) (0.7391) (0.7346) (1.5609) (0.0836) 

N  173  173  173  163  117 

R2  0.7277  0.5713  0.45  0.5308  0.3162 

% ∆ in R2          +21.8  +60.9      +83.9     +3.1   +23.3 
From Model 1 (Table 4.4) 

 

 0.0422**  0.1496  

 

P
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Table III.2:  Spatial Error Models: 2nd Order Adjacency 

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 
 
Constant 1.5835** 6.1941** 0.9299  18.1384*** 0.3507 

  (0.7601) (2.6237) (2.3312) (5.2727) (0.3919) 

PES  0.5126*** 0.3291*** 0.0029  0.5007*** 0.0102*** 

  (0.0203) (0.0349) (0.0168) (0.0289) (0.0023) 

POPD  -0.0577  -0.8532* -0.2298  -1.3258  0.3261*** 

  (0.1558) (0.5073) (0.4472) (0.9891) (0.0572) 

GCPOP  0.1239  2.2038  2.6942  -17.1118*** 0.0883 

  (0.902)  (3.0906) (2.7489) (6.177)  (0.4708) 

PCGDDP 0.0902*** -0.0252  0.0059  0.1120  -0.0351** 

 (0.0307) (0.0669) (0.0582) (0.1349) (0.0136) 

 (0.0009) (0.0016) (0.0014) (0.0031) (0.0004) 

LAND -1.1601*** 3.4582*** 3.1105***  -1.1049  0.0256 

  (0.2545) (0.786)  (0.7322) (1.6835) (0.0891) 

LAG ERROR 1.6363*** 4.9906*** 3.6221*** 9.2704*** 0.1298* 

  (0.1732) (0.6646) (0.631)  (1.6451) (0.0732) 

N  173  173  173  163  117 

R2  0.7471  0.5951  0.3773  0.5733  0.3347 

% Δ in R2         +25.1  +67.6   +54.2   +11.3      +30.5 
From Model 1 (Table 4.4) 

 

PCGDP2 -0.0023** -0.0010  -0.0008  -0.0037    0.0008** 

 

IS
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Table III.3:  Spatial Lag Models: Centroid Distance Adjacency 

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 

 
Constant 0.3027  7.6572***    -0.2460  19.8946*** 0.2847 

  (0.8226) (2.9295) (2.5072) (5.9282) (0.3976) 

PES  0.4179***    0.3062*** 0.0108    0.4431*** 0.0096*** 

  (0.0237) (0.0384) (0.0175) (0.0333) (0.0025) 

POPD  0.9902*  -1.2755** -0.0527    -1.5571    0.3121*** 

  (0.5357) (0.5675) (0.4661) (1.0517) (0.0594) 

GCPOP  1.8489*  0.7031  3.6272  -19.1575*** 0.1285 

  (0.9549) (3.4784) (2.9812) (6.8005) (0.477) 

PCGDDP 0.1351*** 0.1351  0.0884  0.175  -0.0289** 

  (0.0319) (0.111)  (0.0913) (0.1425) (0.0144) 

PCGDP2 -0.0036*** -0.0049    -0.0032    -0.0055* 0.0007* 

  (0.0009) (0.0033) (0.0027) (0.0033) (0.0004) 

ISLAND -1.2671*** 1.5359*  1.4566*    -0.6801    0.0125 

  (0.2868) (0.8453) (0.7876) (1.819)  (0.0905) 

LAG PIS 1.8342*** 5.1200*** 1.4663** 4.7824** 0.1514 

  (0.2152) (0.781)  (0.6413) 2.2381)  (0.1605) 

N  173  173  173  163  117 

R2  0.6619  0.4629  0.2906  0.5209  0.2982 

% ∆ in R2          +10.8  +30.4      +18.8     +1.2   +16.3 
From Model 1 (Table 4.4) 
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jacency Table III.4:  Spatial Error Models: Centroid Distance Ad
                                                                                                                                                                        

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 
 
Constant 0.5499  1.3956  -0.1318    17.3670*** 0.4526 

  (0.7341) (2.6538) (2.6205) (5.754)  (0.4021) 

PES  0.4026*** 0.3220*** 0.0108  0.4604***   0.0103***   

  (0.0216) (0.0378) (0.0178) (0.0317) (0.0023) 

POPD  0.4825  -1.1221** -0.1062    -1.3324   0.3314*** 

  (0.4853) (0.5628) (0.4824) (1.0572) (0.0576) 

GCPOP  1.4114  8.3713*** 3.5701  -16.8607** -0.0192    

  (0.8585) (3.1318) (3.1279) (6.6985) (0.4793) 

PCGDDP 0.124*** -0.0632    0.0677  0.1463   -0.0338** 

  (0.0287) (0.073)  (0.0929) (0.1437) (0.0136) 

PCGDP2 -0.0034*** -0.0000   -0.0030   -0.0052    0.0007*    

  (0.0008) (0.0017) (0.0027) (0.0034) (0.0004) 

ISLAND -0.8178***    2.3362*** 1.8183** 0.0834    -0.0329    

  (0.2584) (0.8183) (0.7724) (1.7916) (0.0951) 

LAG ERROR 2.1992***    5.1971*** 1.9781** 4.6056    -0.2599    

  (0.1857) (0.7221) (0.8643) (3.175)  (0.1624) 

N  173  173  173  163  117 

R2  0.7171  0.542  0.3052  0.517  0.296 

% Δ in R2         +20.0  +52.6   +24.7   +0.4      +15.4 
From Model 1 (Table 4.4) 
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cy Table III.5:  Spatial Lag Models: Shared Border Length Adjacen
                                                                                                                                                                        

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 

 
Constant -0.2216  1.865  -2.6323  16.0075*** 0.4724 

  (0.6791) 2.6002)  (2.1547) (5.8025) (0.3753) 

PES  0.3486***  0.3247*** 0.0152  0.4217***  0.0085*** 

  (0.0174) (0.0349) (0.0162) (0.0306) (0.0022) 

POPD  0.0626  -1.0157**  -0.0305  -1.7213  -0.2026 

  (0.141)  (0.5054) (0.427)  (1.1273) (0.25) 

GCPOP  0.7521  -1.8118  3.6642  -19.2987*** -0.4395 

  (0.8455) (3.1173) (2.6018) (6.855)  (0.4386) 

PCGDDP 0.0951***  0.0714  0.0225  0.2457*  0.0085 

  (0.0281) (0.0667) (0.0568) (0.152)  (0.0134) 

PCGDP2 -0.0027*** -0.0022  -0.0010  -0.0062* -0.0004  

  (0.0008) (0.0016) (0.0013) (0.0035) (0.0004) 

ISLAND 0.2990   9.6495** 4.5883*** 2.6658  0.2587** ** 

  (0.3027) (1.1688) (0.7732) (1.9787) (0.0968) 

LAG PIS 0.4928***  0.7894***  0.7282*** 0.3870*** 0.2865***  

  (0.0532) (0.0921) (0.1061) (0.0637) (0.0423) 

R2  0.7603  0.562  0.4376  0.5429  0.3524 

N  173  173  173  163  117 

% ∆ in R2          +27.3  +58.3      +78.8     +5.4   +37.4 
From Model 1 (Table 4.4) 
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cy Table III.6:  Spatial Error Models: Shared Border Length Adjacen
                                                                                                                                                                        

Variables   Birds             Mammals        Reptiles       Amphibians     Vascular Plants 
 
Constant 0.6445  0.2863  1.1588  17.7281*** 0.2983 

  (0.6383) (2.4207) (2.0221) (5.0737) (0.3908) 

PES  0.4370***  0.3529*** 0.003  0.4895***  0.0105*** 

  (0.0236) (0.0355) (0.0151) (0.0293) (0.0023) 

POPD  0.0078  -0.7196  -0.139  -1.2699  0.3322*** 

  (0.1322) (0.5176) (0.3929) (0.9758) (0.0573) 

GCPOP  1.1206  5.8652**  1.9792  -16.0795*** 0.1643 

  (0.7639) (2.9203) (2.4219) (5.9853) (0.4706) 

PCGDP  0.1077***  -0.0369 0.1328*  0.0768  -0.0362***  

 

 

  

  

  (0.0268) (0.0679) (0.0808) (0.1332) (0.0137) 

PCGDP2 -0.0028*** -0.0008  -0.006*  -0.0032  -0.0008* 

  (0.0008) (0.0016) (0.0025) (0.0031) (0.0004) 

ISLAND -1.0891*** 2.6265*** 2.0347*** -1.0554  0.0118 

  (0.2335) (0.7833) (0.6489) (1.6711) (0.089) 

LAG ERROR 0.8361***  0.893***  0.7106*** 0.4482*** 0.059* 

  (0.0723) (0.0971) (0.097)  (0.0681) (0.0316) 

N  173  173  173  163  117 

R2  0.7958  0.6535  0.4208  0.5683  0.3311 

% Δ in R2         +33.2  +84.0   +72.0   +10.4    +29.1 
From Model 1 (Table 4.4) 

 
***, **, and * represent statistical significance at the 1%, 5%, and 10% levels. 

Figures in the parentheses are standard errors. 
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gression Results for  

                           General and Specific Spatial Lags on Species Imperilment 

odel IV.1:  Models with General Spatial Lag: 2nd Order Adjacency 

APPENDIX-IV  Other Adjacency Based Weighted Least Squares Re

M
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  1.9137**  8.4019***   6.3690       20.3056*          0.4232  ** 

   (0.0173)  (0.0337)   (0.0155)      (0.0313)          (0.0023) 

GCPOP   0.7019    -0.9274    0.8653     -19.8343***          0.0079  

     25** 

 

   (0.2482)  (0.8293)   (0.6896)      (1.7582)          (0.0899) 

  173     173        163           117 

R2    0.7277    0.5713     0.4500       0.5308          0.3162 

  (0.8477)  (2.7575)   (2.2489)     (5.6596)          (0.3958) 

PES   0.3415***  0.3206***   0.0086         0.4823***          0.0100*** 

POPD   0.4547     5.7578***    -0.2652     -1.7299*            0.3185*** 

   (0.4923)  (2.1716)   (0.4115)     (1.0342)          (0.0573) 

   (0.9526)  (3.1937)   (2.5744)     (6.5454)          (0.4739) 

PCGDP  0.0422**  0.1496    0.0257       0.2509*         -0.03

  (0.0191)  (0.0976)   (0.0539)       (0.1398)          (0.0136) 

PCGDP2 -0.0010** -0.0051*  -0.0009       -0.0056**           0.0008* 

   (0.0005)  (0.0029)   (0.0013)      (0.0033)          (0.0004) 

ISLAND -1.3091***  0.8247      0.7700       -1.7503           -0.0036 

SL – General  1.8663***  4.8485***   5.0099***      5.8307***          0.1511*  

   (0.2111)  (0.7391)   (0.7346)      (1.5609)          (0.0836) 

N   173  
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er Adjacency Model IV.2:  Models with General and Specific Spatial Lags: 2nd Ord
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  0.9281   7.1962   3.5300       16.2713***          0.8 947* 

PES   0.5345***  0.2869***  0.0074       0.5168***          0.0094*** 

 

GCPOP               0.3555    3.5440    0.5143       -18.1970***          -0.6608  

PCGDP              -0.0017**  -0.0007  -0.0013       -0.0013             0.0006  

  1) 33) 

SL – General  2.4131***  5.3795***  4.9507***      18.9995***          0.0775   

 

SL – POPD  1.8826   4.2714   0.2594      -20.1433***         -0.1783 

) 5580) 

) 

SL – PCGDP  -0.2120  1.0740* -0.6893       0.6874         -0.1026 

7 

         0.3686 

   (0.8118)  (3.4959)  (2.6554)      (5.8123)          (0.4665) 

   (0.0188)  (0.0335)  (0.0160)      (0.0261)          (0.0024)

POPD     0.0007   -0.6127  -0.3515       -1.3428            0.2783*** 

   (0.1431)  (0.5558)  (0.4279)      (0.8866)          (0.0603) 

   (0.9557)  (4.1088)  (3.1344)      (6.6859)          (0.5612) 

PCGDP   0.0651**    -0.0832  0.0679        0.0808            -0.0255*   

   (0.0305)  (0.0801)  (0.0623)      (0.1371)          (0.0148) 
2

   (0.0008)  (0.0017)  (0.0013)      (0.0028)          (0.0004) 

ISLAND  -0.6869**  1.4507     0.8857         1.5366          0.0732  

   (0.3142)  (1.0692)  (0.8365)      (1.778          (0.12

   (0.3139)  (0.9466)  (0.9999)      (1.1504)          (0.0933 

SL – PES -4.3031*** -1.1711  -0.1969      -11.4818***         -0.1209 

   (0.4795)  (0.8902)  (0.6369)      (1.5916)          (0.1310) 

   (1.1831)  (4.2298)  (3.6485)      (6.85556          (0.

SL – GCPOP  0.0701  -0.6061   0.1075       1.1883          0.2587** 

   (0.2135)  (0.7476)  (0.6020)      (1.1282)          (0.1134

   (0.1650)  (0.6156)  (0.4953)      (1.0490)          (0.0868) 

N   173   173   173        163           11

R2    0.7613   0.6221   0.4946        0.6218 
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Model IV.3:  Models with Specific Spatial Lags only: 2nd Order Adjacency 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  1.3153    3.5782   1.6826      16.5001**           0.8137*  

 

POPD     0.7528    -2.4664    -0.2026       -1.4161           0.2761*** 

  

P                   

PCGDP              0.0825**  -0.0689   0.1783*       0.1264         -0.0244* 

 

CGDP  

 

ISLAND  -1.7671*** -0.0202     1.1527        -0.1407         0.1048 

 

eral 

SL – PES  0.2451  -0.6185  -0.3373       0.9869        -0.2004 

 

L – PO D  *  

SL – GCPOP  0.5692**   0.2625   1.1265*      -0.6466         0.2772*** 

     

   (1.1379)  (4.0851)  (2.8863)      (7.0754)         (0.4465) 

PES     0.3883***  0.3161***  0.0020        0.4632***         0.0088*** 

   (0.0249)  (0.0398)  (0.0177)      (0.0316)         (0.0023)

   (0.6207)  (2.4237)  (0.4685)      (1.0726)         (0.0576) 

GCPO     1.5138     8.2058*   2.6512          -15.3120*          -0.6004  

   (1.2965)  (4.7112)  (3.4271)      (8.1796)         (0.5368) 

   (0.0379)  (0.1351)  (0.0970)      (0.1644)         (0.0140) 

P 2 -0.0023** -0.0013  -0.0061**      -0.0048          0.0006* 

   (0.0010)  (0.0038)  (0.0028)      (0.0033)         (0.0004) 

   (0.3737)  (1.2753)  (0.9147)      (2.0726)         (0.1136) 

SL – Gen     -      -       -             -             -   

  

  (0.4611)  (1.0431)  (0.6971)      (1.4529)         (0.1255) 

S P  4.7848***  13.4178**  11.6686**      3.9715        -0.0708 

   (1.3476)  (4.694)   (3.1501)      (8.0039)         (0.5280) 

   (0.2300)  (0.8300)  (0.6063)      (1.3886)         (0.1043) 

SL – PCGDP -0.0969   0.7959  -1.0471*      0.3679        -0.1399 

   (0.2064)  (0.7316)  (0.5352)      (1.2552)        (0.0772) 

N   173   173   173        163           117 

R2    0.6945   0.4668   0.4305        0.5239         0.3590 
 



Model IV.4:  Models with General Spatial Lag: Centroid Distance Adjacency 
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  0.3027   7.6572***   -0.2460      19.8946***          0.2847    

ES   *  

  

OPD    

* 

 

)  

CGDP  

    

L – Ge eral    

    

 

  

  (0.8226)  (2.9295)   (2.5072)     (5.9282)          (0.3976) 

P   0.4179***  0.3062***   0.0108         0.4431**          0.0096***

   (0.0237)  (0.0384)   (0.0175)      (0.0333)          (0.0025) 

P   0.9902*    -1.2755**   -0.0527     -1.5571            0.3121***

   (0.5357)  (0.5675)   (0.4661)     (1.0517)          (0.0594) 

GCPOP   1.8489*     0.7031    3.6272     -19.1575**          0.1285  

   (0.9549)  (3.4784)   (2.9812)     (6.8005)          (0.4770) 

PCGDP   0.1351***  0.1351    0.0884         0.1750           -0.0289** 

  (0.0319)  (0.1110)   (0.0913)       (0.1425          (0.0144)

P 2 -0.0036*** -0.0049   -0.0032       -0.0055*           0.0007* 

   (0.0009)  (0.0033)   (0.0027)      (0.0033)          (0.0004) 

ISLAND -1.2671***  1.5359*     1.4566*     -0.6801             0.0125 

   (0.2868)  (0.8453)   (0.7876)      (1.8190)          (0.0905) 

S n  1.8342***  5.1200***   1.4663**      4.7824**          0.1514  

   (0.2152)  (0.7810)   (0.6413)      (2.2381)          (0.1605) 

N   173    173     173        163           117 

R   0.6619    0.4629     0.2906       0.5209          0.2982 2
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nce  

                    Adjacency 

Model IV.5:  Models with General and Specific Spatial Lags: Centroid Dista

  

 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
C t  1.0163   6.4177**  0.2130      25.0425**          0.7008* onstan * 

 

ES     

OPD   * 

 

          *  

 

   

  

CGDP    *   

) 

LAND          

   8) 43) 

34***  6.1320***  1.3725*      -34.7465***         -0.2178   

    ) 

L – PE    * * 

) ) 

L – PO D   * 

 

L – GC OP  

   ) 

L – PC DP   * 

   (0.2139)  (0.7681)  (0.9338)      (6.1557)          (0.1015) 

N   173   173   173        163           117 

R2    0.7356   0.6149   0.3690        0.5554          0.4254 

   (0.8348)  (2.9577)  (2.8233)      (6.1562)          (0.4223) 

P   0.3091***  0.3816***  0.0052       0.4187***          0.0056**

   (0.0160)  (0.0394)  (0.0200)      (0.0326)          (0.0025) 

P    0.3517   -0.9766* -0.2683       -2.2641*           0.2514**

   (0.5212)  (0.5314)  (0.5056)      (1.1605)          (0.0591)

GCPOP     1.0801    3.0980    2.6713       -19.4215**         -0.3558  

   (0.9638)  (3.4654)  (3.3307)      (7.0327)          (0.4984) 

PCGDP   0.1227***  -0.0876  0.1694*        0.1259            -0.0089   

   (0.0297)  (0.1037)  (0.1026)      (0.1470)          (0.0140)

P 2          -0.0031** -0.0011  -0.0067**      -0.0036             0.0003  

   (0.0009)  (0.0031)  (0.0031)      (0.0034)          (0.0004

IS -0.6023**  2.3495***  3.3172***      -3.0886         -0.0626  

   (0.2683)  (0.7913)  (0.8754)      (2.034          (0.09

SL – General  5.08

   (0.4225)  (1.0142)  (0.8376)      (9.2482)          (0.2088

S S -3.5383*** -3.4760*** -1.3886*     50.8479**          0.3691**

   (0.3837)  (0.9185)  (0.7799)      (11.9813          (0.1097

S P  -1.7295***  2.3242    2.1435*     -45.0926***          0.7232**

   (0.4102)  (1.4243)  (1.1721)      (9.2874)          (0.1441) 

S P -0.5477** -0.3612   0.9739        6.5247          -0.0591 

   (0.2560)  (0.9145)  (0.9907)      (7.1772)          (0.1134

S G  -0.6305***  0.3966*** -1.1356        15.7145*         -0.1001 
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ency Model IV.6:  Models with Specific Spatial Lags only: Centroid Distance Adjac
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant  -0.1590  5.2253*  -4.4018     25.0670***           0.6703  

PES     0.2996***  0.3462***  -0.0334*      0.4661***         0.0053** 

OPD   *    

GCPOP              2.4415**     1.6924    6.8799**               -22.5830***         -0.3306  

             

PCGDP  -0.0024**  -0.0042  -0.0071**      -0.0061*          0.0002 

 

LAND  *   * 

 

SL – General     -      -       -             -             -   

* 

SL – POPD  1.2024***  10.4849***  1.8266*      -6.4645         0.7083*** 

L – GC OP   

   3) 8) 

 PC DP  ** 

   (0.2549)  (1.1629)  (0.8634)      (5.8374)        (0.0888) 

N   173   173   173        163                117 

R2    0.6628   0.5543   0.3682        0.5521         0.4105 

   (0.9609)  (3.0177)  (2.7276)      (6.1111)         (0.4215) 

   (0.0178)  (0.0360)  (0.0186)      (0.0330)         (0.0024) 

P    1.0111*   -0.4084     12.4238**     -0.8875           0.2462***

   (0.5949)  (0.5327)  (1.8724)      (1.1119)         (0.0589) 

   (1.1223)  (3.5703)  (3.1898)      (6.9569)         (0.4981) 

PCGDP   0.1006***  0.1231   0.1941**       0.3109**         -0.0075 

   (0.0349)  (0.1130)  (0.0969)      (0.1445)         (0.0139) 
2

   (0.0010)  (0.0034)  (0.0029)      (0.0034)         (0.0004) 

IS -1.4370**  0.9514     3.9253***      -5.6295**         -0.0451 

   (0.3095)  (0.8531)  (0.8207)      (1.9989)         (0.0928) 

  

SL – PES  0.3199* -6.2212*** -0.4861       20.9798**         0.3076*** 

   (0.1870)  (1.4545)  (0.7188)      (4.4969)         (0.0926) 

   (0.3990)  (1.4815)  (1.0832)      (4.7794)         (0.1435) 

S P  0.8334***  0.7074   1.4710*      -8.9916         -0.0294 

   (0.2744)  (0.9731)  (0.8868)      (6.914         (0.109

SL – G -0.3739   -0.8474 -2.1458**      23.3639*        -0.0486 

 



Model IV.7:  Models with General Spatial Lag: Shared Border Length Adjacency 
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant -0.2216   1.8650   -2.6323        16.0075***          0.4724 

 

  

 

 

* 

 

  

 

LAND      *  

  

2  

  (0.6791)  (2.6002)   (2.1547)     (5.8025)          (0.3753) 

PES   0.3486***  0.3247***   0.0152       0.4217***          0.0085*** 

   (0.0174)  (0.0349)   (0.0162)      (0.0306)          (0.0022) 

POPD  -0.0626     -1.0157**   -0.0305     -1.7213           -0.2026 

   (0.1410)  (0.5054)   (0.4270)     (1.1273)          (0.2500) 

GCPOP   0.7521    -1.1881    3.6642     -19.2987**         -0.4395  

   (0.8455)  (3.1173)   (2.6018)     (6.8550)          (0.4386) 

PCGDP   0.0951***  0.0714    0.0225         0.2457*          -0.0085 

  (0.0281)  (0.0667)   (0.0568)       (0.1520)          (0.0134) 

PCGDP2 -0.0027*** -0.0022   -0.0010       -0.0062*          -0.0004 

   (0.0008)  (0.0016)   (0.0013)      (0.0035)          (0.0004) 

IS  0.2990***  9.6495***   4.5883**      2.6658             0.2587***

   (0.3027)  (1.1688)   (0.7783)      (1.9787)          (0.0968) 

SL – General  0.4928***  0.7894***   0.7282***      0.3870***          0.2865***  

   (0.0532)  (0.0921)   (0.1061)      (0.0637)          (0.0423) 

N   173    173     173        163           117 

R     0.7603    0.5620     0.4376       0.5429          0.3524 
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     Adjacency 

Model IV.8:   Models with General and Specific Spatial Lags: Shared Border Length

 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
C t   -0.2951  -0.5921 -1.6719      17.4599**          0.3393 onstan  

ES    * 

OPD  

 

               

 ) 

  

 ) 

CGDP      

 

LAND  

   79) 15) 

69***  0.7932***  0.7464***       0.5116***          0.2892***   

 

L – PE    

L – PO D  

  

L – GC OP 

 ) 

L – PC DP 

   (0.0149)  (0.0546)  (0.0455)      (1.1154)          (0.0070) 

N   173   173   173        163           117 

R2    0.8186   0.6962   0.4795        0.6133          0.3911 

   (1.0925)  (4.0553)  (3.3777)      (7.8713)          (0.4804) 

P   0.4446***  0.3514***  -0.0014      0.4955***          0.0081**

   (0.0227)  (0.0351)  (0.0165)      (0.0303)          (0.0024) 

P    0.0598   -0.9035* -0.2976       -1.2936          -0.1595 

   (0.1266)  (0.5119)  (0.4274)      (1.0321)          (0.2788)

GCPOP     1.2067    4.1737    6.9034**    -19.3755**         -0.4377  

   (0.9083)  (4.1918)  (3.4012)      (8.6402)          (0.5696

PCGDP   0.0713**  0.1285   0.1186*        0.1368            -0.0003   

   (0.0284)  (0.1119)  (0.0641)      (0.1698)          (0.0153

P 2          -0.0017** -0.0062* -0.0014       -0.0040             0.0002  

   (0.0008)  (0.0033)  (0.0013)      (0.0033)          (0.0004)

IS -0.1912   7.5209     1.4386         1.2780          0.4406  

   (1.3509)  (5.3787)  (4.5774)      (11.33          (0.27

SL – General  0.87

   (0.0776)  (0.1113)  (0.1080)      (0.0710)          (0.0514) 

S S -0.4392*** -0.2233*** -0.0384      -0.1396***         -0.0005 

   (0.0478)  (0.0653)  (0.0253)      (0.0435)          (0.0044) 

S P  1.1681   11.3951**  -1.3675     -22.5544**         -0.3960 

   (1.3413)  (5.4235)  (4.4156)      (9.8489)          (0.7632)

S P -0.8399  -3.3125  -3.4939       0.0334          0.2502 

   (1.5624)  (6.1465)  (5.1637)      (12.3161)          (0.3089

S G  -0.0245*  0.0235  -0.1146**      0.1259         -0.0008 
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ency Model IV.9:  Models with Specific Spatial Lags only: Shared Border Length Adjac
 

Variable    Birds           Mammals         Reptiles         Amphibians     Vascular Plants  
 
Constant -3.8316** -8.2071* -8.2662**     20.8191**           0.4160 *  

PES     0.3698***  0.2941***  0.0074        0.4942***         0.0099*** 

OPD   

GCPOP              1.2080     9.1409**   5.8843                  -14.2908          -0.5699  

              

PCGDP  -0.0031***  -0.0001  -0.0057*      -0.0056          0.0007* 

 

LAND     

 

SL – General     -      -       -             -             -   

SL – POPD  5.8887***  30.8456***  12.4403***     -10.5334        -0.9144 

L – GC OP  

   69) 8) 

 PC DP 

   (0.0208)  (0.0660)  (0.0508)      (0.1260)        (0.0065) 

N   173   173   173        163                117 

R2    0.6592   0.5189   0.3090        0.5504         0.3291 

   (1.4345)  (4.9275)  (3.8191)      (8.8241)         (0.4570) 

   (0.0223)  (0.0377)  (0.0187)      (0.0320)         (0.0023) 

P    0.3976    -0.5120     0.0584       -1.0981           0.2879***

   (0.6404)  (0.6332)  (0.4908)      (1.1307)         (0.0603) 

   (1.3779)  (4.4771)  (3.8963)      (9.4553)         (0.5512) 

PCGDP   0.1191*** -0.1061   0.1210        0.1387         -0.0297**

   (0.0390)  (0.0937)  (0.1019)      (0.1856)         (0.0149) 
2

   (0.0011)  (0.0020)  (0.0029)      (0.0036)         (0.0004) 

IS  3.3082*  11.4669*  8.5409*       -6.0863         0.4920* 

   (1.8745)  (6.2083)  (5.1682)      (12.5245)         (0.2601) 

  

SL – PES  0.0759  -0.1363* -0.0522*      0.0088         0.0049 

   (0.0471)  (0.0784)  (0.0296)      (0.0395)         (0.0040) 

   (1.7846)  (5.7371)  (4.7172)      (10.6046)         (0.7201) 

S P  4.7400**  8.2463   6.6923       -7.0749         0.5741* 

   (2.0420)  (6.9535)  (5.7647)      (13.63         (0.294

SL – G -0.0238   0.0081  -0.0327       0.0928        -0.0012 

 
***, **, and * represent statistical significance at the 1%, 5%, and 10% levels. 

Figures in the parentheses are standard errors.
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Comoros2,4 Jordan2,3 Philippines1,2,3,4 Uruguay1,2,3,4

Congo1,2,3,4 Kazakhstan2,3 Poland1,2,3,4 Uzbekistan1,2,3,4

APPENDIX-V  List of Sample Countries 

A
Algeria1,2,3,4 Dominican Rep.1,2,3,4  Lesotho1,2,3,4 Saudi Arabia2,3

A 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

Antigua an uda1,2,3,4 ypt1,2,3,4 Lithu eychelles1,2,3,4

A a1,2,3,4  Salvador1,2,3 Luxem 2,3 ierra Leone1,2,3,4

Arme atorial Guin2,3 ,3,4 3 1,2,3,4  Macedonia ngapore
Austra a1, itrea2,3 Mada 1,2,3,4 lovakia1,2,3,4

A tonia2,3 Malaw lovenia1,2,3,4

Azerbaijan hiopia1,2,3,4 Mala ,4 olomon Island
B 1, ji1,2,3,4 Maldiv outh Africa2,3

Bahrain nland Mali2,3 1,2,3 1,2,3,4outh Korea
Bangladesh2,3 nce1,2,3,4 Malta1,2,3 1,2,3,4

B 1,2,3,4 abon2,3 Mauri   ri Lanka1,2,3,4

Belarus2,3 ambia2,3 Maurit ,3,4 t. Lucia1,2,3,4

B 1,2 eorgia1,2,3,4 Mexico udan1,2,3,4

Belize1,2,3,4 ermany1,2,3,4 Moldova uriname2,3

B hana Mong2,3 1,2,3,4 1,2,3,4waziland
B 1,2,3,4 Morocco ,4 den1,2,3,4

Bolivia1,2,3,4 renada1,2,3,4 Mozam e1,2,3,4 witzerland1,2,3,4

B govina2,3 uatemala1,2,3 Myan 3,4 yria2,3

Botswana1,2,3,4 uinea1,2,3,4 Namibia 4 Taiwan2,3

B uinea-Bissau Nepal ajikistan2,3

Brunei Daruss ana Neth tilles nia
Bulgaria

1,2,3,4 2,3 2,3 1,2,3,4

1,2,3, 1,2,3,4 Neth 2,3 ailand2,3

B onduras1,2,3,4 New Zealand1,2,3,4 ogo1,2,3,4

Burundi2,3 ungary1,2,3,4 Nicar ,3,4 onga2,4

C a eland2,4 Niger2,3 rinidad & Tobag
Cameroon1,2,3,4 dia1,2,3,4 Nige unisia2,3

C onesia1,2,3,4 1,2,3,4 1,2,3,4Norway
Cap n2,3 Oman enistan2,3

Central African epublic1,2,3,4  land2,3 Pakista ganda2,3

C rael2,3 Panam kraine2,3

Ch ea ited Arab
Ch aica1,2,3,4 nited Kingdom
Colo ia1,2,3,4 pan1,2,3,4 Peru nited States1,2,3
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ôte d'Ivoire1,2,3,4 Kiribati2,4 Qatar2 Venezuela1,2,3,4

ublic2,3 Laos2,3 a1,2,3,4 Zam 1,2,3,4

,3,4 La 2,3

jibouti   

ote: 
grega s 

tries  ana
tries u  anal phib

Costa Rica1,2,3,4 Kenya1,2,3,4 Portugal1,2,3,4 Vanuatu2,4

C
Croatia2,3 Kuwait2 Romania1,2,3,4 Viet Nam1,2,3,4

Cyprus2,3 Kyrgyzstan2,3 Russia2,3 Yemen1,2,3,4

Czech Rep Rwand bia
Denmark1,2 tvia2,3 Samoa Zimbabwe1,2,3,4

D 1,2,3,4  
 
N

1 = Sample countries used in ag te analysi
2 = Sample coun used in the lysis of birds, mammals, and reptiles 
3 = Sample coun sed in the ysis of am ians 
4 = Sample countries used in the analysis of vascular plants 
 


	   

