
 
 

Stormwater Quantity and Quality: An Assessment of Runoff Probability Estimation Methods and 

the Effects of Bioretention Soil Mixtures on Aquatic Toxicity 

 

Submitted By 

Kelly DeGuzman 

 

 

A thesis submitted to the Graduate Faculty of 

Auburn University 

Auburn, Alabama 

in partial fulfillment of the requirements  

for the Degree of Master of Science  

May 4, 2024 

 

Keywords: Stormwater, Runoff, Bioretention cells, Aquatic toxicity,  

 

 

Master’s Committee: 

Advisor:  Thorsten Knappenberger, Associate Professor, Crop, Soil, and Environmental 

Sciences 

Members:  Eve Brantley, Professor, Crop, Soil, and Environmental Sciences  

Yaniv Olshansky, Assistant Professor, Crop, Soil, and Environmental Sciences



ii 
 

ABSTRACT  

Stormwater runoff occurs when precipitation exceeds the available storage of a watershed. 

Urbanization changes the natural hydrology of a watershed as cover types, slopes, flow paths, and 

antecedent moisture conditions (AMC) are altered. Generally, there are two concerns associated 

with increased stormwater runoff: water quality and water quantity. Stormwater quality and 

quantity may be controlled through several types of stormwater management practices (SMPs). 

The goal of low impact development (LID) is to manage stormwater in a way that preserves the 

pre-development hydrological characteristics of a watershed, including its ability to infiltrate, 

evaporate, filter, and detain stormwater (Dietz, 2007; Prince George’s County, 1999; USDA 

NRCS, 1986; USEPA, 2000). 

The runoff threshold of a catchment is often reported in the literature as a measure used to 

evaluate the effectiveness of LID techniques and is oftentimes determined using linear regression. 

However, due to the heteroscedastic nature of precipitation and runoff data, linear regression 

analyses can result in invalid conclusions, so the use of a binomial regression model was 

investigated. Precipitation and runoff data collected from five studies were assessed for 

homoscedasticity and applied to four linear regression models for the evaluation of the linear 

regression runoff threshold (LRRT) and the associated 95% bootstrapping confidence intervals. 

Log-transformation corrected the heteroscedasticity of two of the five precipitation and runoff 

datasets. While mixed-effect linear models accounted for heteroscedasticity, these models often 

resulted in extremely large confidence intervals. A binomial regression model was created to 

determine the likelihood of runoff based on precipitation depth. For each catchment, the 10%-90% 

runoff probability range (p10-p90) is reported to provide the user with a more comprehensive 

understanding of when a catchment produces runoff than the LRRT. The p10-p90 range reflects 
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the effects that environmental factors may have on runoff generation. For example, impervious 

catchments with limited interaction with the vegetation and soil produce a narrow p10-p90 range. 

Conversely, LID practices encourage the interaction of runoff with environmental factors and 

result in a wider p10-p90 range. Utilization of the binomial regression methodology presented 

herein is recommended for evaluation of the likelihood of runoff for each precipitation depth. 

Heavy metal concentrations in stormwater discharges are regulated and monitored as these 

pollutants can be toxic to aquatic communities (USEPA, 2007). The total concentration of a heavy 

metal does not represent the concentration of a metal ion available to aquatic organisms. For a 

heavy metal to be bioavailable for uptake through the gill, it must be in a dissolved form. When 

evaluating the toxicity of stormwater, the bioavailability and speciation of a heavy metal should 

be considered. The influent and effluent of four bioretention soil mixtures (BSMs) from ten storms 

were studied for the purpose of examining speciation shifts of stormwater pollutants and 

investigating potential changes to stormwater toxicity following filtration through BSMs. Further, 

this study sought to determine which, if any, of the BSMs were more adept at decreasing pollutant 

bioavailability. Visual MINTEQ 3.1 was used to predict pollutant speciation and the Windward 

Environmental, LLC Biotic Ligand Model (BLM) (v 3.41.2.45) was used to determine toxic 

concentrations of heavy metal species. No noticeable speciation shifts were noted within 

bioretention cell (BRC) effluent for cadmium, copper, lead, and zinc. However, the speciation of 

chromium effluent was dependent on the initial pollutant concentrations. A multiple-factor 

analysis (MFA) indicated that the four BSMs do not differ from one another in reducing the BLM-

identified toxic limit (relative toxicity) of stormwater effluent for the BLM-selected aquatic 

organisms. BRCs are most effective at reducing the toxicity of stormwater when the stormwater 
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contains high pollutant concentrations. At low pollutant concentrations, BRCs may increase the 

toxicity of the effluent stormwater through export of copper.  
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CHAPTER 1 – INTRODUCTION  

Stormwater runoff occurs when precipitation exceeds the available storage of a watershed. It 

is plainly seen that as a landscape is developed, the flow of stormwater is altered. Urbanization 

affects stream health, channel stability, and water quality. Generally, there are two concerns 

associated with increased stormwater runoff: water quality and water quantity. As stormwater 

moves across a surface, it accumulates pollutants such as sediment, nutrients, pathogens, oil and 

grease, heavy metals, and thermal loadings creating water quality concerns for downstream waters 

(USEPA, 2003). Additionally, as impervious cover increases, so do the volume and rate of runoff, 

both of which are water quantity concerns (Dietz, 2007). To mitigate these impacts, 

implementation of stormwater management practices (SMPs) is required and often enforced by 

government agencies through permitting programs. Further the design, operation, and maintenance 

of SMPs is also often supervised by these agencies (NYSDEC, 2015; WSDE, 2019).  

While stormwater runoff has been occurring since the dawn of time, as our local and global 

climates change stormwater has become of increased focus to regulatory agencies and 

environmental reviews. The United States Environmental Protection Agency (USEPA) recognizes 

the concern of stormwater quality and quantity and enforces programs aimed to mitigate potential 

impacts that occur from urbanization. The Clean Water Act Section 303(d) program requires 

identification of impaired waterbodies utilizing available data, development of water quality 

assessments and plans, and approaches implemented to restore and protect waterbodies. The EPA 

also administers of the National Pollutant Discharge Elimination System (NPDES) program which 

regulates stormwater discharges from construction activities, industrial activities, municipal 

sources, and more throughout the U.S. The responsibility for implementation of these programs is 

delegated to each state.  
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Stormwater quality and quantity may be controlled through distinct types of stormwater 

management practices (SMPs). Inevitably, the goal of managing the quality of stormwater runoff 

is to prevent pollutants from reaching receiving waterbodies where they can impact aquatic life. 

Whereas mitigation of water quantity impacts is aimed at attenuating flow and managing peak 

discharge rates to prevent downstream impacts associated with erosion and flooding. Many SMPs 

offer benefits to both quality and quantity concerns. For example, infiltration and 

evapotranspiration (ET) practices reduce runoff, thereby mitigating discharge volume and 

reducing pollutant loadings (Davis et al., 2006). SMPs are commonly classified into the following 

categories by their function: infiltration, ET, filtration, and detention. Further, hybrid or dual 

systems may be designed to provide more than one function. Popular SMPs within urbanized areas 

include bioretention systems, underground infiltrations systems, green roofs, sand filters, and 

permeable pavements, although new practices are continually developed (NYSDEC, 2022).  

RESEARCH OBJECTIVES  

My research is rooted in stormwater management, focusing on the two main aspects of 

stormwater - water quality and water quantity. The reason I chose to research stormwater is that 

as our global landscape continues to urbanize, it loses the ability to reduce stormwater and 

increases the amount of runoff and pollutants reaching waterbodies. While Federal and State 

governments implement programs that require incorporation of low impact development (LID) 

practices to mitigate downstream impacts including erosion, flooding, and increased pollutant 

loadings, they often fall short. My research aims to refine the techniques that are commonly used 

for evaluating the effectiveness of low impact development practices. 
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THESIS STRUCTURE  

To address the research objectives, the thesis begins with a literature review (Chapter 2), 

followed by estimating runoff probability from precipitation data: a binomial regression analysis 

(Chapter 3), and evaluations of the effect of bioretention soil mixtures on metal speciation and 

toxicity to aquatic species (Chapter 4). 
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CHAPTER 2 – LITERATURE REVIEW  

WATER QUALITY  

Point source pollution is an easily identifiable source of pollution that can be traced to a 

specific location, typically associated with industrial waste and sewage treatment discharges that 

emanate from a pipe. Conversely, non-point source pollution is commonly associated with 

stormwater, where the pollution is derived from diffuse sources, such as urban and agricultural 

land use. In fact, agricultural discharges are the principal non-point source for water quality 

impacts on lakes and rivers (USEPA, 2005). 

As landscapes urbanize, pollutant types and loadings are altered. Land use is a major 

contributing factor to the types and quantity of pollutants found in stormwater (NYSDEC, 2015; 

WSDE, 2019). Agricultural operations regularly discharge sediments, nitrogen, phosphorus, 

pathogens, metals, salts, pesticides, herbicides, and fungicides and are the leading contributor to 

water quality concerns in rivers (Munn et al., 2018; USEPA, 2005). Exposed soils from 

construction activities regularly produce sediment-laden water if not effectively managed. 

Stormwater discharges from stabilized residential lawns commonly contain nitrogen and 

phosphorus from fertilizer use and pet wastes, in addition to copper and zinc from roofing materials 

(Davis et al., 2001; Dietz, 2007; Radovanovic & Bean, 2022). Roadways accumulate oil and grease 

from automobiles, salts from winter treatments, and sediment from construction vehicles (WSDE, 

2019). Roadways are also known sources of heavy metals including copper, zinc, lead, and 

cadmium from automobile brake pads and tire wear (Camponelli et al., 2010; Davis et al., 2001). 

Stormwater generated from industrial facilities may contain a variety of pollutants that are 

relatively dependent upon the nature of operations at the facility; however, much of the 
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aforementioned pollutants can be expected. Meanwhile, under predevelopment conditions, these 

undeveloped lands do not have similar pollutant sources or loadings. Rather, these natural areas 

serve as a filter and prevent the introduction of such pollutants into runoff and downstream waters.  

The term first flush often refers to rain events during the beginning of the wet season or 

the first few minutes of a storm when runoff exhibits high pollutant concentrations and warmer 

water temperatures (Roy-Poirier et al., 2010). The USEPA quantifies the first flush as 

approximately 1.3 mm (½ inch) of rainfall (USEPA, 2000). Many SMPs are designed with the 

goal of treating first flush storms to preserve the quality of downstream waters (Morzaria-Luna et 

al., 2004). 

IMPACTS 

Sediment-laden stormwater is primarily generated when stormwater runs across surfaces 

with exposed soil. As water slows, suspended sediment is deposited. This settling process is 

observed in drainage sumps and settling tanks or, on a larger scale, where deltas and sand bars are 

created as rivers empty into the ocean. High sediment loadings can impact the longevity of 

stormwater management practices as they can become clogged, and functionality is decreased. To 

prevent the need for excessive maintenance associated with sediment deposition, contributing 

drainage areas should be fully stabilized prior to SMPs being brough online. This problem is well 

recognized as pretreatment mechanisms are often required components design standards for water 

quality treatment practices (NYSDEC, 2015; WSDE, 2019). Typical pretreatment devices that 

promote sediment settling and prevent such impacts include vegetated filter strips, sumps, 

forebays, or manufactured devices. Lastly, suspended sediment in stormwater is a good indication 
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that other pollutants will be present as soil particles often have pollutants adsorb to their surface 

(Roy-Poirier et al., 2010). 

Nutrient loadings in runoff from agricultural fields are contingent on cropping patterns, 

fertilizer application rates, and topography (Huang et al., 2017). Just as nitrogen and phosphorus 

promote crop growth, the increased nutrient loadings can lead to algae blooms within waterbodies. 

When the excessive amount of algae dies, microbe populations breakdown the dead organisms and 

deplete the oxygens levels within a waterbody (Davis et al., 2006; Huang et al., 2017). This process 

is known as eutrophication and is a concern as can result in decreases in an ecosystem's 

biodiversity (Huang et al., 2017).  

Aquatic communities are impacted by the pollutants collected in stormwater runoff and 

discharged untreated to receiving waterbodies. Species can be impacted by increased suspended 

sediment, as visibility and light penetration become reduced, and eutrophication and decreased 

dissolved oxygen supply from increased nutrient loadings. Bioavailable heavy metals can cause 

developmental impacts or mortality to aquatic species (Bui et al., 2016; Hoang et al., 2004; Hoang 

& Tong, 2015).  

 WATER QUANTITY  

Urbanization changes the natural hydrology of a watershed as cover types, slopes, flow 

paths, and antecedent moisture conditions (AMC) are altered. Meandering watercourses, 

infiltrating soils, and vegetation are replaced with continuous hard surfaces and straight, smooth 

conveyance systems (USEPA, 2003). The reduction of vegetated surfaces and expansion of 

impervious areas increases runoff volumes and rates and reduces groundwater recharge as roofs 

and pavement cannot infiltrate stormwater (Dietz, 2007). Land use affects the volume of water a 
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watershed produces as it relates to the amount of impervious cover and the level of soil disturbance. 

Commercial and industrial areas generally have more impervious cover than residential lawns 

(USDA NRCS, 1986).  

Prior to the development of an area, the natural landscape retains a prescribed volume of 

water before discharge at an established rate for a particular rainfall intensity. The storage capacity 

of a watershed is impacted by vegetation type, soil type, and AMC (Detty & McGuire, 2010; Penna 

et al., 2011; Scaife et al., 2020; S. Wang et al., 2022). Factors that impact runoff rates include flow 

lengths, patterns (i.e., sheet flow vs. channelized flow), and slope (USDA NRCS, 1986). 

Appropriately sized watercourses are formed within natural watersheds and serve to safely carry 

the generated flows. Flooding is a natural event that occurs when the capacity of a waterway is 

exceeded during extreme precipitation events.  

Not all vegetation equally intercepts and reduces stormwater. While replacing a forest with 

a parking lot will undoubtedly increase runoff volumes, it should be understood that modifying a 

forested area into a soccer field will also increase discharge volumes and rates, as forests have 

greater storage capabilities than manicured lawns (USDA NRCS, 1986). This disparity occurs as 

the leaves of trees and shrubs intercept raindrops prior to hitting the ground, slowing and absorbing 

water. Additionally, lawn areas are often disturbed and compacted during construction activities 

(Radovanovic & Bean, 2022; USDA NRCS, 1986). Further, the AMC of a soil impacts the 

generation of runoff, which likewise becomes affected by vegetative cover modifications (Detty 

& McGuire, 2010; Penna et al., 2011; Scaife et al., 2020). Forest floor litter is nature’s mulch, 

serving to retain prevent erosion, lock in soil moisture, and prevent compaction of the underlying 

soils (USEPA, 1999).  
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IMPACTS 

Urbanized areas often channel storm flows into sewer pipes, resulting in concentrated 

discharges and decreased time of concentrations, resulting in the primary concerns associated with 

impacts to water quantity: erosion and flooding (Freni et al., 2010; USEPA, 2003). Erosion is a 

natural process that is exacerbated by the impacts of urbanization, specifically increased runoff 

rates. A surface is considered stabilized if it prevents erosion from occurring as stormwater runs 

over it, such as paved, vegetated, and mulched areas. However, as stormwater moves across a non-

stabilized landscape as sheet flow, surface erosion can occur, and within watercourses where 

channelized flows scour, sediment streambank erosion can occur (USEPA, 2003). The eroded 

sediments are then transported downstream, where they can impact aquatic life and landscapes.  

As a watershed is developed, increased impervious surfaces and traditional conveyance 

systems (gutter and pipes) decrease the travel time of water to a particular design point (USDA 

NRCS, 1986).  This travel time is commonly referred to as the time of concentration and influences 

peak discharge rates. While impervious surfaces are extremely efficient at preventing soil erosion, 

they also decrease the time of concentration of a watershed (Hood et al., 2007; USDA NRCS, 

1986). Impervious surfaces also contribute to increased runoff volume due to a watershed's 

reduced groundwater recharge and storage capacity. Within urbanized areas, greater volumes of 

water reach waterbodies in less time, and downstream flooding is more likely to occur as the 

naturally formed watercourse cannot manage received flows (USEPA, 2000).  

LOW IMPACT DEVELOPMENT  

Prior to the last 25 years, stormwater was predominantly managed using gray 

infrastructure. Gray infrastructure is a general term that encompasses pipes, gutters, drains, and 
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retention basins and serves to convey and store stormwater for the purpose of flood prevention and 

pollutant removal. Gray infrastructure tends to manage flows at the “end of pipe” meaning that all 

stormwater from a watershed is funneled to a single location, like a stormwater pond, where it is 

treated and detained (Freni et al., 2010; USEPA, 2000). More recently, the focus of stormwater 

management has shifted to low impact development techniques, commonly referred to as green 

infrastructure (Prince George’s County, 1999). Low impact development practices differ from gray 

infrastructure because they aim to manage stormwater near the source. The goal of LID is to 

manage stormwater in a way that preserves the pre-development hydrological characteristics of a 

watershed, including its ability to infiltrate, evaporate, filter, and detain stormwater (Dietz, 2007; 

Prince George’s County, 1999; USDA NRCS, 1986; USEPA, 2000). 

As previously noted, urbanization often decreases the time of concentration within a 

watershed, allowing larger volumes of stormwater to reach receiving waterbodies sooner than it 

did prior to expansion. These changes can be offset by incorporating LID practices that slow 

stormwater through ponding and promote slope reduction (USDA NRCS, 1986). Low impact 

development techniques are often thought of as physical structures; however, site planning 

practices, such as the preservation of natural areas and the reduction of impervious areas, are 

equally influential (NYSDEC, 2015; WSDE, 2019). Natural areas that are often targeted for 

preservation include undisturbed forests, stream corridors, wetlands, and wetland buffers. During 

the site planning phase of a development project, the design of roadways, sidewalks, driveways, 

building footprints, and parking lots should identify areas where impervious areas can be reduced. 

Beyond site planning, physical LID practices may be incorporated into a project design in place of 

traditional development techniques, such as using permeable pavements in place of conventional 

impervious asphalt and concrete (Ball & Rankin, 2010). Alternatively, SMPs, such as bioretention 
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cells and underground infiltration systems, can be interspersed throughout a project site (Johnson 

& Hunt, 2020).  

Low impact development mitigates water quality and quantity impacts associated with 

evolution in urban and suburban land use. Federal and state programs often require incorporating 

LID practices to alleviate potential downstream impacts, including erosion, flooding, and 

increased pollutant loadings. LID practices are often evaluated by pollutant removal rates; 

however, when the water quality of influent stormwater is good, studies generally result in lower 

removal rates which can be misleading (Davis et al., 2006). It has been suggested that mass 

removal rates may be a more accurate indicator of practice performance and should be reported 

when possible (Roy-Poirier et al., 2010). Physical LID practices may be divided into four groups 

based on function: infiltration, evapotranspiration, filtration, and detention.  

INFILTRATION  

Infiltration practices aim to provide volume reduction through the capture and storage of 

stormwater. These systems provide storage capacity and prevent stormwater runoff from 

discharging downstream. Infiltration practices may be further divided into vegetated infiltration 

practices, which include stormwater planters, bioretention systems without underdrains, rain 

gardens, vegetated swales, or underground infiltration practices, such as porous pavement, dry 

wells, and prefabricated chambers. Both water quality and quantity benefits may be derived from 

infiltration practices.  

EVAPOTRANSPIRATION  

Evapotranspiration practices are vegetated surficial mechanisms designed with limited 

storage capabilities as they typically have an impermeable liner or barrier that prevents the 
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effective infiltration of stormwater. The porosity of the soil media and selected vegetation are the 

key components of a successful ET practice. These practices are designed with overflow devices 

that allow excess stormwater to safely discharge to downstream locations. Common ET practices 

include green roofs, stormwater planters, and rain gardens. Like infiltration practices, ET practices 

mitigate water quality and quantity impacts, although to a lesser extent due to limited storage 

capacity.  

FILTRATION  

The primary function of a filtration practice is to treat stormwater prior to downstream 

discharge, although these practices may also provide limited rate and volume attenuation potential. 

These devices use filter media to remove sediment and pollutants. Filter media may contain sand, 

an engineered soil mixture, or a manufactured product. Sand filters, bioretention systems with 

underdrains, and manufactured filter devices are well-known filtration practices often in integrated 

into development designs.  

DETENTION   

Systems that provide temporary storage prior to discharge to downstream waters are 

defined as detention practices. These practices provide for management of peak discharges but do 

not readily reduce the volume of stormwater. Further, limited treatment of the stormwater may be 

achieved as the detention system allows for sediment and adsorbed pollutants to settle out of 

suspension prior to discharge. Detention systems include dry and wet basins, blue roofs, detention 

ponds, underground chambers, and constructed wetlands. 
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MITIGATIVE IMPACTS 

Low impact development practices can be utilized to help achieve pre-development 

hydrological conditions within residential watersheds (Hood et al., 2007; Tirpak et al., 2021). Low 

impact development strategies and practices are evaluated by how well they function to mitigate 

impacts of urbanization. The functionality of a water quality practice is often evaluated based on 

its ability to reduce pollutant loadings and concentrations in effluent (Davis et al., 2006). Water 

quantity controls are assessed based on discharge volume and rate reduction. Many LID practices 

function to provide mitigation to both water quality and quantity concerns. Detention and retention 

practices mitigate impacts from increased stormwater volume and rate (Freni et al., 2010). 

Detention practices serve to temporarily store and subsequently discharge stormwater. Retention 

practices, including infiltration and ET practices, function to reduce discharges of stormwater to 

receiving waterbodies. Generally, LID practices that retain stormwater, such as porous pavements, 

bioretention systems, and underground infiltration systems, are more environmentally beneficial 

as they provide mitigation for both water quality and quantity concerns (Ball & Rankin, 2010; 

Hunt et al., 2006).  

LID practices are commonly evaluated by their ability to mitigate peak flow by either 

increasing the lag time (delay between peak precipitation and peak discharge) or through reducing 

peak flow rate. Hood et al. (2007) found that a watershed that incorporated best management 

practices (BMPs), including bioretention areas, grassed swales, and eliminated standard curb and 

gutter stormwater collection systems exhibited significantly greater lag times than traditional 

watersheds. Tirpak et al. (2021) concluded that, in general, permeable pavers were capable of 

increasing several measures of lag, including centroid lag-to-peak (the time from the centroid of 

precipitation to the peak discharge), centroid lag (the time from the centroid of precipitation to the 
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centroid of discharge), and peak lag-to-peak (the time from the peak rainfall intensity to the peak 

discharge). Peak flow mitigation from permeable pavement systems was further reported by 

Winston et al. (2018). Bioretention systems have also been shown to mitigate peak discharges 

within urban environments (Davis, 2008; Winston et al., 2016). 

Storm size, storm intensity, and storm duration impact the extent to which lag time is 

affected (Davis, 2008; Hood et al., 2007; Tirpak et al., 2021). Hood et al. (2007) noted that within 

the LID watershed with smaller, short-duration storms resulted in significantly larger lag times. 

Consistently, Tirpak et al. (2021) observed decreased benefits of permeable pavement systems 

during larger, more intense storms preceded with lower antecedent dry periods (ADP). Additional 

factors that influence the effectiveness of LID practices at mitigating peak discharges include 

loading ratio (ratio of contributing area to practice area), internal water storage (IWS), and 

exfiltration rates of the underlying soils (Tirpak et al., 2021; Winston et al., 2018). The success of 

a bioretention system is typically affected by its design parameters, including ponding storage, 

surface infiltration rate, IWS capacity, and the exfiltration rate of the underlying soil (Brown & 

Hunt, 2011; Davis, 2008; Winston et al., 2016). Environmental factors like AMC also affect 

stormwater discharges where LID practices often perform best when AMCs are low (Davis, 2008; 

Hood et al., 2007; Tirpak et al., 2021). To further increase lag times, Tirpak et al. (2021) suggested 

using an orifice to regulate discharges or creating an IWS.  

Stormwater management practices implemented at the source can be smaller and promote 

local infiltration; however, they often require increased maintenance demand (Freni et al., 2010). 

Alternatively, centralized SMPs installed at the “end-of-pipe” require a larger area for operation 

and have cheaper maintenance costs (Freni et al., 2010). Stormwater management designs that 

incorporate a mixture of at-source and centralized practices provide for a compromise between 
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SMP effectiveness and space constraints. Detention practices are effective at decreasing peak 

discharges by increasing the duration of a storm; however, detention basins do not reduce storm 

volume (Ferguson, 1995). Volume controls must be implemented to prevent flooding conditions 

at downstream obstructions, as infiltration provides a “more complete and reliable” solution 

(Ferguson & Deak, 1994).  

Infiltration practices simultaneously reduce stormwater volume, peak discharges, and 

pollutants (Ferguson, 1995). Infiltration practices reduce stormwater flows to a drainage system 

(Freni et al., 2010). Low impact development techniques have been shown to significantly reduce 

runoff volume in a watershed, attributed to decreased impervious cover and increased ability for 

infiltration, regardless of storm sizes, storm size and storm durations, and AMC (Hood et al., 

2007). Tirpak et al. (2021) found a 78-89% volume reduction during smaller storms with greater 

ADP and a 43-45% volume reduction during larger storms with less ADP. The reductions were 

attributed to infiltration into underlying soils and, to a lesser extent, evaporation. Bioretention 

systems can effectively eliminate flow from small storms, ultimately reducing pollutant loadings 

to zero (Davis et al., 2006).   

RUNOFF GENERATION 

Rainfall-runoff relationships have been long studied with the goal of developing methods 

that accurately quantify runoff given a particular rainfall event. Several factors impact when a 

surface may produce runoff, and the development of a one-size-fits-all model is highly unlikely. 

As stated above, factors often evaluated when determining runoff probability include cover type, 

slope, rainfall depth, rainfall intensity, and AMC. It is also difficult to apply prediction approaches 

across small-scale catchments and large-scale watersheds. Rainfall characteristics and AMCs are 
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well-known parameters that influence runoff generation from vegetated catchments (Kohler & 

Kinsley, 1951). Research often represents the soil water storage of a watershed with an index 

commonly referred to as the Antecedent Soil Moisture Index (ASI).  

Forested areas are very effective at reducing runoff as the tree leaves and forest litter can 

intercept and store precipitation (USDA NRCS, 1986). In fact, many studies of forested watersheds 

quantify stormflow from storm events as a combination of overland surface flow and shallow 

subsurface flow, as opposed to overland runoff alone (Detty & McGuire, 2010; Mosley, 1979; 

Penna et al., 2011; Scaife et al., 2020; S. Wang et al., 2022). Penna et al. (2011) found that only 

after exceedance of the soil moisture threshold did the forested hillslopes within a headwater 

catchment in Italy (the Alps) produce runoff. Detty & McGuire (2010) found a significant linear 

correlation between stormflow and ASI and precipitation above a particular precipitation 

threshold. Scaife et al. (2020) found that rainfall intensity did not have a significant impact in 

humid forested habitats on runoff production and attributed their findings to the highly saturated 

hydraulic conductivity of the soils, which in turn enables rapid infiltration. Rapid infiltration 

enables stormwater to discharge to a stream through subsurface means and promotes groundwater 

recharge. Mosley (1979) found that despite the hydraulic conductivity of the soil, subsurface flow 

reached the stream through macropores within the soil structure. However, Scaife et al. (2020) 

determined that ASI and groundwater levels were good indicators of the dominant runoff processes 

of a watershed (overland flow, sub-surface flow, deeper flow). Saffarpour et al. (2016) determined 

that the hydrological response of an agricultural catchment was primarily influenced by the ASI 

and rainfall characteristics. Nonetheless, little to no relationship between runoff and rainfall depth 

or rainfall intensity was observed when considered alone. Within twelve vegetated catchments, 

Wang et al. (2022) observed positive relationships between ASI and runoff, although there was no 
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indication of a threshold responses. Despite the absence of an ASI threshold, Wang et al. (2022) 

did observe that runoff increased linearly after a defined precipitation threshold and that the linear 

relationship was stronger when P + ASI were cumulatively considered.  

 Saffarpour et al. (2016) also noted that the seasonal variation of the ASI resulted in 

seasonal changes to runoff response. Consistently, Penna et al. (2011) observed that during dry 

conditions, below the soil moisture threshold, precipitation events produced very little runoff and 

under wet conditions, when the soil moisture threshold was exceeded greater runoff was produced 

(Mosley, 1979). 

Conversely, in less vegetated, urbanized catchments, stormwater runoff is more closely 

affected by the percentage of impervious cover. The goal of LID practices is to mimic pre-

development watershed hydrology similar to that observed from forested watersheds. 

Environmental factors that impact the performance of LID practices include soil moisture, soil 

types, soil depth, rock fragments, root count, bedrock outcrops, and season. The greater interaction 

between runoff and vegetation and soil, the greater benefit may be derived as it supports 

hydrological processes such as groundwater recharge and evapotranspiration. Low impact 

development techniques promote increased vegetated cover, increasing the watersheds ability to 

infiltrate, and thus reduce runoff volumes over traditional development (Hood et al., 2007).  

The effectiveness of an LID practice is often evaluated using runoff thresholds. Runoff 

occurs when the ability for a watershed to intercept, infiltrate, and store precipitation has been 

exceeded. Many researchers look to determine a runoff threshold that represents the precipitation 

depth that must occur within a catchment before surficial runoff generation that incorporates the 

aforementioned factors (Ali et al., 2013). Rainfall characteristics and AMC are well known 
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parameters that influence runoff generation from vegetated catchments, although many methods 

do not account for frozen condition or snow pack (Kohler & Kinsley, 1951).   

There are a variety of methods for determining thresholds. Many studies conduct a basic 

linear regression analysis, where the precipitation depth is plotted on a scatterplot versus the 

measured runoff from a storm. The x-intercept of the line of best fit, generated using the least 

squares method, is then interpreted as the runoff threshold. This method of linear regression has 

long been used to determine runoff thresholds (Fink and Frasier, 1977; Li and Gong, 2002; Hood 

et al., 2007; Bean et al., 2007; Ross et al., 2021; Tirpak et al., 2021). Using this methodology, 

Hood et al. (2007) compared a traditionally developed watershed and an LID watershed and 

concluded that the traditional watershed had a lower threshold than the LID watershed. The linear 

regression method was utilized by Bean et al. (2007) to estimate the storage depths, and, ultimately, 

curve numbers of permeable pavement systems. Tirpak et al. (2021) also established the runoff 

threshold of permeable interlocking concrete pavers using the linear regression and x-intercept 

methodology. Detty & McGuire (2010) and Saffarpour et al. (2016) utilized the linear regression 

technique to evaluate thresholds associated with ASI, runoff, and ASI + runoff. Saffarpour et al. 

(2016) acknowledged that rainfall depth and intensity alone did not adequately describe runoff 

generation behavior.  

Runoff thresholds are commonly more complex and are dictated by catchment-specific 

variables. Other relationships explored by the literature include piecewise linear, step or Heaviside, 

Dirac, and sigmoid functions (Ali et al., 2013; S. Wang et al., 2022). Ali et al., (2013) reviewed 

much literature which describes non-linear relationships among hydrological inputs and responses. 

Piecewise linear regression has been commonly implemented to describe the relationship between 

precipitation and runoff. Scaife et al. (2020) modeled runoff against ASI + runoff using a piecewise 
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regression analysis, also known as a hockey stick model, to determine the runoff threshold. Ross 

et al. (2021) also recognized that the relationship between precipitation and runoff could have been 

more consistently described using a piecewise linear regression to identify a break in the 

relationship between precipitation and runoff within various watersheds.  

The runoff threshold is often determined for specific stormwater management practices. 

For comparison of effectiveness, Winston et al. (2016) calculated the runoff thresholds of 

bioretention systems overlying silty clay loam and silt loam. Davis (2008) also assessed the 

division between storm events that produced runoff and those that did not for the purpose of 

estimating a threshold rainfall intensity of the bioretention system.  

AQUATIC TOXICITY FROM HEAVY METALS 

The total measured concentration of a metal does not adequately represent the 

bioavailability of a metal for uptake by an aquatic species. Rather, a measure of the dissolved 

contents is a better approximation, as only a dissolved metal can pass through the gill and produce 

toxic effects (Kinerson et al., 1996). The USEPA standards loosely define dissolved metals to be 

any metal that can pass through a 0.45-micron filter. This definition may still overestimate the 

bioavailable metal concentration as any particulate metal less than 0.45 microns is considered 

dissolved. A better means for determining the bioavailability of metals is through consideration of 

metal speciation, often achieved through the use of a chemical speciation model, discussed further 

below. This is recognized by the USEPA, which implements a BLM that incorporates water quality 

parameters to determine speciation and bioavailability of metals, to determine freshwater aquatic 

life copper criteria (USEPA, 2007).  
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Toxicity is defined as the accumulation of a metal on a receptor at or greater than a 

threshold concentration such that a pre-defined lethal or sublethal effect will occur (Santore et al., 

2001). Heavy metals can be detrimental to aquatic communities as they can have lethal and 

sublethal effects (Bui et al., 2016; Hoang et al., 2004; Hoang & Tong, 2015). The extent to which 

an organism may be affected is dependent on the characteristics of the organism, the pollutant of 

concern, exposure time and concentration, and the environment, as these factors contribute to the 

sensitivity of an aquatic species and the bioavailability of heavy metals to accumulate on a biotic 

ligand, a surface where metal may accumulate and result in toxic effects.  

The chemical species of a metal effects bioavailability (USEPA, 2007). Free ions of zinc 

and copper are considered the most influential on the toxicity (Hoang & Tong, 2015; Magnuson 

et al., 1979). Nonetheless, they are not the only toxic metal species; in fact,  Bui et al. (2016) found 

that copper hydroxide and carbonate may also contribute to toxicity, and Hoang & Tong (2015) 

reported aqueous zinc carbonate and zinc bicarbonate are likely bioavailable as well. Metal 

speciation is affected by water quality characteristics, including temperature, pH, hardness, and 

dissolved organic carbon (DOC), which in turn affect bioavailability and the overall toxicity of 

water (Di Toro et al., 2001; Pagenkopf, 1983; Santore et al., 2001). The effects of DOC, hardness, 

and pH on chemical speciation and aquatic toxicity are well-known to produce a protective effect 

on aquatic species from heavy metals (Birceanu et al., 2008; Bui et al., 2016; Gillis et al., 2008; 

Hoang et al., 2004; Hoang & Tong, 2015).  

SPECIATION AND TOXICITY MODELS  

Using laboratory data, computer models have been developed with the goal of predicting 

toxicity effects on aquatic species. Several chemical speciation models have been developed and 
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are commonly implemented in research. Visual MINTEQ 3.1 (Gustafsson, 2020) is a chemical 

equilibrium model that, among other functions, may be used to predict the chemical speciation of 

inorganic ions and complexes within water samples. Visual MINTEQ also accounts for the effects 

of dissolved or precipitating solid phases based on water quality parameters. The 

WHAM (Windermere Humic Aqueous Model) utilizes the assumption that binding at an 

organism’s biotic ligand can be estimated by how metals bind to humic substances. More recently, 

the WHAM-FTOX and WHAM-FTOXβ models were developed to evaluate the toxic effect of 

multiple metals on aquatic species (Tipping et al., 2021, 2023). These models assume protons and 

metal cations are additively related to their occupancies at a biotic ligand. Another program used 

to determine the bioavailability of metals is bio-met. This tool estimates the bioavailability of 

metals based on water quality parameters and determines the results from compiled BLMs. A 

common BLM is provided by Windward Environmental, LLC (v 3.41.2.45). This model utilizes 

water quality parameters to estimate the speciation of heavy metals and may further provide the 

concentration at which a metal species is expected to cause a predefined toxic effect (i.e., EC20, 

LC50, etc.) to a given aquatic species’ life stage. Sierra et al. (2017) compared the speciation 

predictions of Visual MINTEQ, WHAM 7, and bio-met with field-measured conditions and found 

that the model-based chemical speciation values were slightly higher. Field-measured results for 

Zn and Cu speciation were most closely related to that predicted by bio-met, yet WHAM7 was 

effective at determining the speciation of Cu when DOM was incorporated. For Zn, Ni, Cd, and 

Hg, Sierra et al. (2017) found that WHAM7 and Visual MINTEQ were comparable. 

WATER QUALITY IMPACTS 

Generally, hardness affects toxicity as calcium ions (Ca2+) and magnesium ions (Mg2+) 

compete with the heavy metal ions (Cd2+, Cu2+, Pb2+, Zn2+) for binding sites at the biotic ligand 
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resulting in a reduction to toxicity. Hoang & Tong (2015) documented this mitigative property of 

hardness on zinc toxicity to Pomacea paludosa, a freshwater snail. However, Rogevich et al. 

(2008) described no effect from hardness on copper toxicity to Pomacea paludosa. Freshwater 

mussels also benefitted from moderately hard water, as a decrease in copper sensitivity was 

observed as hardness increased (Gillis et al., 2008). Positive correlation among hardness and the 

LC50 of three Vietnamese aquatic species was also reported by Bui et al., (2016). Protective effects 

of hardness is also documented for nickel on fathead minnows (Hoang et al., 2004) and cadmium 

in fish species (Kumar & Singh, 2010).  

Complexation with DOC also decreases the bioavailability of free metal ions as bound 

metals are not available for uptake. Hoang & Tong (2015) found the affinity for zinc ions to bind 

with DOC increased as pH increased, thus decreasing zinc toxicity to Pomacea paludosa. 

Rogevich et al. (2008) has similar findings in that copper toxicity to Pomacea paludosa decreased 

as DOC increased. Freshwater mussels exposed to copper at low concentrations of DOC 

demonstrated a two-fold increase in EC50 levels and up to a ten-fold increase at higher DOC 

concentrations (Gillis et al., 2008). Nickel toxicity to fathead minnows exhibited the protective 

effect of DOC in waters with high alkalinity, hardness, and pH (Hoang et al., 2004).  

Generally, studies have found that pH and metal toxicity are inversely related, whereas 

when pH increases, the toxicity from heavy metals decreases. Hoang & Tong (2015) reported that 

the concentration of Zn2+, the most bioavailable zinc species, decreased as the pH increase. The 

findings of X. F. Li et al. (2019) were in agreement, yet found no impacts to Zn toxicity when pH 

ranged from 8-11. Further, using Visual MINTEQ software, Rogevich et al. (2008) determined 

that when pH exceeded 7, concentrations of Cu2+ in solution decreased. Consistently, Bui et al., 

(2016) observed increased copper toxicity to aquatic species resulting from low pH. Hoang et al. 
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(2004) reported the influence of pH on nickel toxicity was dependent on the hardness and alkalinity 

of the water; where at low hardness and alkalinity, pH displayed no effect on toxicity, yet at higher 

hardness and alkalinity level the lethal concentration for 50% of the population (LC50) increased 

with pH.  

In addition to water quality parameters, the age of an organism also affects toxicity, where 

adult species are less susceptible to heavy metals than juveniles. This has been observed in fathead 

minnows exposed to nickel (Hoang et al., 2004) and in freshwater snails subjected to copper 

(Rogevich et al., 2008).  

Although recent models have been developed (Tipping et al., 2023), less studied is the 

interaction and competition among multiple metals at the biotic ligand. Birceanu et al. (2008) 

found that Pb and Cd in combination resulted in a less than additive binding at the biotic ligand in 

rainbow trout and attributed their findings to the ability of Cd to out compete Pb for binding at the 

biotic ligand. Nonetheless, they found the overall effects from the metal mixture resulted in ionic 

disturbances that produced a more than additive toxic effect on the fish. It has been suggested that 

the BLM should be reevaluated to include assumptions for metal mixtures.  

BIORETENTION SYSTEMS 

Bioretention systems are a vegetated LID practice that function to retain, filter, and detain 

stormwater, well-suited for commercial and residential areas within urban environments (USEPA, 

1999). Bioretention systems provide at- or near-source treatment and are well adapted for urban 

areas as they have continually demonstrated efficient removal of common stormwater pollutants 

and mitigation of peak discharges (Brown & Hunt, 2011; Davis et al., 2003, 2006; Glass & 

Bissouma, 2005; Johnson & Hunt, 2020, 2020b; H. Li & Davis, 2008; Roy-Poirier et al., 2010; 
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Sun & Davis, 2007; Winston et al., 2016). Bioretention is a term that is often used to collectively 

describe rain gardens, vegetated swales, infiltration basins, and more. Stormwater runoff is 

directed to a bioretention system either via overland sheet flow or discharged through an outfall 

with the employment of dissipation devices. Bioretention systems are comprised of a ponding 

zone, mulch layer, vegetation, bioretention soil mixture (BSM), drainage layer, in some cases, an 

underdrain when underlying soils are sufficiently permeable (USEPA, 2000). Each layer serves a 

particular function in the treatment of stormwater. Stormwater may exit the system through several 

outlets: infiltration, evapotranspiration, underdrain, or overflow bypass (Davis et al., 2006; 

Johnson & Hunt, 2020). Bioretention systems may be designed using volume-based 

methodologies, where the system is designed to manage frequent small storm events as a function 

of Darcy’s Law, area-based, where the SMP is sized based on the contributing impervious area, or 

other methods based on the peak runoff mitigation, anticipated loadings, or computer modeling 

(Roy-Poirier et al., 2010).  

BIORETENTION SYSTEM COMPONENTS  

PONDING ZONE  

Bioretention cells are designed with a concave surface that provides for the ponding of 

stormwater prior to percolation through the BSM. Following the exceedance of the ponding zone, 

stormwater may bypass the natural filter and enter a downstream conveyance system. The ponding 

zone allows for a calculated volume of stormwater to be stored and treated by the practice prior to 

bypass and typically ranges from 15-30 cm (NYSDEC, 2022; USEPA, 1999; WSDE, 2019). The 

ponding zone also functions to mitigate peak discharges from urban areas (Davis, 2008; Johnson 

& Hunt, 2020; Winston et al., 2016). When water levels exceed the design depth for ponding, 
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water is diverted away from the practice via an overflow pipe, manhole, or other mechanism for 

relief, and diverted flows will discharge directly to receiving waterbodies. Therefore, this zone is 

important because it slows water and allows sediment to fall out of suspension prior to bypass. 

Ponded water is typically designed to drain within a prescribed period to prevent issues associated 

with long-standing water, such as mosquito production. 

MULCH LAYER  

The mulch layer is one of the most important components in a bioretention system as it 

provides a multitude of functions. First, mulch protects the underlying soil as it serves to prevent 

erosion, lock in soil moisture, and prevent BSM compaction. Maintaining soil moisture prevents 

drying of underlying soils and promotes vegetation health. Preventing compaction of the BSM 

surface preserves the soil’s permeability, a key element to the bioretention system’s success. Next, 

the mulch layer is the first component with filtration capabilities. Following analysis of soil core 

samples, Davis et al. (2003) attributed the high heavy metal removal efficiencies observed to the 

mulch layer. The mulch layer has also been credited with significant removal of total Kjeldahl 

nitrogen (TKN) (Davis et al., 2006). Additionally, petroleum-based products are regularly trapped 

and broken down by microorganisms found within the mulch layer (USEPA, 1999). When 

installing the mulch, it should be applied uniformly and should consist of shredded hardwood that 

has aged for at least six months and, to promote soil and air interaction, should not exceed 8 cm in 

depth (NYSDEC, 2022; USEPA, 1999; WSDE, 2019). Maintenance or replacement of the mulch 

layer is required to remove accumulated metals and continued performance (Glass & Bissouma, 

2005).  
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BIORETENTION SOIL MIXTURE 

Bioretention soil mixtures are comprised of a combination of sand and organic material 

and may include a small silt or clay component and serve as the main filtering mechanism. As 

stormwater percolates through the BSM, stormwater pollutants may be removed as particulate 

matter (organics and suspended solids) is physically trapped within soil pores or as pollutants are 

adsorbed to soil particles (USEPA, 1999). Li & Davis (2008) reported the upper 15 cm of the 

mulch and soil profile is where most of the removal occurred. The selection of the BSM should 

consider particle size as it influences retention time and pollutant removal rates (Brown & Hunt, 

2011). Further, the BSM should be designed to provide for adequate contact time between 

stormwater and soil particles as it promotes the removal of heavy metals, phosphorus, and 

hydrocarbons via adsorption (USEPA, 1999). As runoff infiltrates the BSM, adsorption to the finer 

soil particles, such as silt and clay, is the primary mechanism for phosphorus removal (Davis et 

al., 2006). Soil texture also impacts heavy metal removal rates, with a BSM consisting of sand, 

topsoil, and compost exhibiting a lower removal rate when compared to BSMs with higher 

percentages of fines (silt and clay) (Davis et al., 2003). Although finer soil particles promote 

pollutant adsorption, they also contribute to poor infiltration capabilities and increased bypass of 

untreated stormwater (Johnson & Hunt, 2020). Lastly, integrated organic material can affect pH 

and electrical conductivity of the BSM and can export DOC, nutrients, and copper (Mullane et al., 

2015).  

UNDERDRAIN  

Bioretention cells are commonly equipped with a perforated underdrain pipe, typically 

located within a stone drainage layer. When storage of the drainage layer is exceeded, stormwater 
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may exit the system through the underdrain. A traditional underdrain prevents long-term water 

storage and the occurrence of anaerobic conditions within the bioretention system limiting their 

ability to remove nitrogen as nitrogen gas. Alternatively, some systems are designed with a 

perched underdrain or an upturned elbow or lack an underdrain completely to allow for IWS 

(Brown & Hunt, 2011; Davis, 2008; Winston et al., 2016). Incorporating IWS into the bioretention 

system allows for a reservoir to accumulate filtered stormwater, producing a saturated anaerobic 

zone that can encourage denitrification (USEPA, 1999). However, the upper limits of the IWS 

should be sited far enough below the surface to sustain an aerobic zone of 0.3-0.45 m to ensure 

pollutant trapping (Brown & Hunt, 2011) and prevent freezing in northern climates (Brown & 

Hunt, 2011). In addition to water quality benefits, the IWS area also promotes volume reduction 

and pollutant mass removal through infiltration into underlying soils, especially when in situ soils 

have low permeability (Brown & Hunt, 2011; Davis et al., 2006).  

VEGETATION  

Vegetation is a key component to the long-term success of a bioretention system as it 

affects soil structure and porosity and may uptake pollutants from the soil (Davis et al., 2006). 

Trees and shrubs more effectively uptake and trap pollutants than herbaceous species as they do 

not die every season (USEPA, 1999). Vegetation also functions to remove water from the system 

through evapotranspiration, although Dietz & Clausen (2005) found this process to account for 

only 0.4% of volume reduction and Brown & Hunt (2011) up to 5%. A properly designed planting 

plan can produce a low maintenance, aesthetically pleasing landscaped feature. Additional benefits 

of vegetation beyond stormwater treatment, attenuation, and aesthetics, include the provision of 

soil stabilization to prevent erosions, shade, and noise and wind barriers (Roy-Poirier et al., 2010; 

USEPA, 1999).   
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WATER QUALITY IMPACTS 

Bioretention systems improve water quality through physical, chemical, and biological 

processes. Physical processes include flow rate reduction, sedimentation, and filtering. Chemical 

processes include adsorption and volatilization. Common biological processes are microbial 

activity, decomposition, and plant uptake (Davis et al., 2003; USEPA, 1999). Mass removal of 

pollutants is commonly attributed to the reduction of outflow from bioretention systems as outflow 

concentrations are often observed higher than inflow (Davis et al., 2006; Hunt et al., 2006). While 

retained stormwater eliminates flow and pollutant loadings, filtered flows are capable of alleviating 

peak discharge rates and reducing pollutant loadings.  

NUTRIENT REMOVAL 

Bioretention systems are typically less efficient at removing nutrients than heavy metals 

(Davis et al., 2003, 2006). Nonetheless, effluent concentrations have been found to be removed to 

standards that are representative of fair benthic health where tolerant benthic species, such as 

crayfish and crustaceans, may be present (Brown & Hunt, 2011). Generally, nutrient removal 

through bioretention systems depends upon initial input concentrations, where higher input 

concentrations result in higher output concentrations (Brown & Hunt, 2011; Davis et al., 2006; 

Glass & Bissouma, 2005). After observing these phenomena, Davis et al. (2006) suggested that a 

lower limit input threshold concentration may exist for certain removal efficiencies to be observed 

and, further, that very low effluent concentration may be unattainable.  

Soil texture affects nutrient removal in bioretention cells (Davis et al., 2006). Brown & 

Hunt (2011) reported higher nutrient removal rates for sandy clay loam than sandier soils and 

attributed this difference to the greater hydraulic retention time, which permitted increased 
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interaction time between pollutants and negatively charged clay soil particles. For example, Davis 

et al. (2006) noted total phosphorus removal increased with depths up to 77-87% within 

bioretention box studies with limited impacts from storm duration or intensity.  

The literature provides mixed results regarding the removal of nitrogen compounds 

(Knappenberger et al., 2022). Dietz & Clausen (2005) investigated roof runoff treatment through 

a rain garden and found no significant reductions to nitrate-nitrogen, TKN, or organic nitrogen 

although the gardens did significantly reduce ammonia-N (NH3-N). However, nitrates do not 

adsorb to soil particles, so nitrate removal through a BSM is unlikely (Davis et al., 2006). Despite 

this, Hunt et al. (2006) found that bioretention systems reduced nitrate-nitrogen by 13-75%. Davis 

et al. (2006) reported TKN removal rates ranging from 74-83% in laboratory box studies and 52-

67% in field studies. A significant portion of these removals occurred within the first few inches 

of the bioretention system and was attributed to the mulch layer. Knappenberger et al. (2022) 

suggested the compost and bioretention age were contributors to nitrogen and phosphorus export, 

where less N-N and TP removal occurred as the percent of compost increased and greater removal 

occurred as the systems aged. Davis also concluded that the TKN removal rates were impacted by 

stormwater flow rates, where higher rates resulted in lower removal efficiencies. Lastly, systems 

designed with a conventional underdrain demonstrated mass removal rates of TKN varying from 

-5 to 45% (Hunt et al., 2006).  

Although nitrification and increased nitrate concentrations have been reported from 

bioretention cells, a significant reduction of total nitrogen (TN) has also been reported in the 

literature (Davis et al., 2006; Dietz & Clausen, 2005). Systems designed with conventional 

underdrain systems exhibited mass removal rates of 40% TN (Hunt et al., 2006), while other field 

studies resulted in the removal of 49-59% TN (Davis et al., 2006). Systems designed to facilitate 
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an anaerobic zone can promote denitrification (USEPA, 1999). However, in a field study in NC 

conducted by Hunt et al. (2006) to investigate the effect of IWS on the removal rate of nitrogen, 

no significant difference from the provision of an anaerobic zone was observed.  

HEAVY METAL REMOVAL  

It is well-documented that bioretention systems are known to be extremely effective at 

removing heavy metals from stormwater and unlike nutrient removal, many studies have found 

relative consistency among removal rates during laboratory and field evaluations. (Davis et al., 

2003; Hunt et al., 2006; H. Li & Davis, 2008; Sun & Davis, 2007). Davis et al. (2003) studied 

bioretention systems in both the laboratory and field and found bioretention boxes filled with 2.5 

cm of mulch over sandy loam substrate exhibited mass removal rates between 98-99% for copper, 

lead, and zinc. However, the study’s field sites produce more variable results with Cu mass 

removal rates ranging from 43-97%, Pb removal from 70-95%, and Zn from 64-95% (Davis et al., 

2003). The variability among the field-documented removal rates was attributed to the composition 

of the BSM, where higher rates were reported from the BSM consisting of a higher percentage of 

soil and fines (silt and clay). In a field study in North Carolina, USA, conducted by Hunt et al. 

(2006) using organic sandy soil, metal mass removal rates were also close to the laboratory tests 

conducted by Davis et al. (2003) with 99% Cu removal, 81% Pb removal and 98% zinc removal. 

Glass & Bissouma (2005) found moderate removal rates from a BSM comprised of 50% sand, 

20% organic material, 10% clay, and 20% mulch with reductions of 81% of Cu, 75% of Pb, and 

79% of Zn, in addition to 66% Cd removal, 53% Cr removal, 53% Fe removal, 17% Al removal, 

and 11% As removal. This system could reduce influent concentrations of Pb and Cd, exceeding 

the EPA drinking water standard to levels below the maximum allowable level. 
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Several factors, beyond BSM components, may further affect pollutant removal. Similar 

to nutrient loadings, greater removal efficiencies of zinc, copper, lead, and cadmium have been 

observed with higher metal loadings within bioretention influent (Sun & Davis, 2007). Further 

storm intensity and duration also impact removal rates as less intense and longer duration storms 

slightly improve system performance, yet no significant effects were detected from longer duration 

storms (Davis et al., 2003). However, as BRCs are designed to bypass flows when a certain level 

of head is produced, the mass removal rates of the heavy metals is effectively decreased during 

high-intensity storm flows (Davis et al., 2003). Metals in the dissolved form are more bioavailable 

for plant and animal uptake than those affixed to particulate matter. Sun & Davis (2007) reported 

that 0.5 - 3.3% of the heavy metals removed from the system were due to accumulations in grasses, 

with more bioaccumulation occurring within the roots than the shoots. Davis et al. (2003) 

recognized that a significant percentage of removal was encountered during the upper portion of 

the systems profile (i.e., mulch layer and soil media), possibly owing to the filtering of particulate 

matter within these upper layers. Knappenberger et al. (2022) found no effect on metal removal 

due to BSM composition or system age.  

POLLUTANT LEACHING 

Although bioretention systems have the ability to effectively filter stormwater, leaching of 

DOC, base cations (Ca, Mg, and Na), heavy metals, and nutrients has also been reported (Chahal 

et al., 2016; Knappenberger et al., 2022; H. Li & Davis, 2008; Mullane et al., 2015). Backfilled 

soil can be a source of pollutants, and successive storms can mobilize previously deposited 

pollutants (Hunt et al., 2006). While leachate concentrations have been found to decrease over the 

duration of an individual storm and following subsequent storms, persistent leaching of DOC, 

nitrogen, phosphorus, and copper has been observed, although concentrations plateau following 
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the first few storms (Mullane et al., 2015). Increased total suspended solid (TSS) concentrations 

are often faulted for the increases in the mass of TP in bioretention effluent (Dietz & Clausen, 

2005; Hunt et al., 2006). Discharged organic matter in bioretention outflow can result in the 

depletion of oxygen in downstream waters due to bacteria-led decay processes (Roy-Poirier et al., 

2010). Copper leaching is a common consequence of integrating compost, and like other 

stormwater pollutants, copper concentrations have the tendency to decrease both throughout the 

duration of a particular storm and following subsequent storms (H. Li & Davis, 2008; Mullane et 

al., 2015). More specifically, Mullane et al. (2015) found that the majority of leached copper was 

dissolved and discharged during the first 5 to 6 storms. Of concern, both Mullane et al. (2015) and 

Chahal et al. (2016) detected leachate concentrations of copper greater than the State of 

Washington’s effluent benchmark concentrations, highlighting the importance of investigating the 

source of selected backfill materials and understanding the bioavailability of leached pollutants.  

WATER QUANTITY IMPACTS 

Bioretention systems perform best during small, more frequent events (Johnson & Hunt, 

2020; USEPA, 2000) and commonly target effluent volume and peak discharge reduction rates of 

33% (Brown & Hunt, 2011; Davis, 2008). Unfortunately, the bioretention systems studied by 

Davis (2008) exhibited only a 30 to 42% chance of meeting this target. Runoff reduction may be 

achieved via exfiltration into the in-situ soil or through evapotranspiration. Both processes provide 

stormwater quality and quantity benefits to downstream water through the mitigation of peak 

discharges and reduction of first flush storms. Properly designed bioretention cells are capable of 

providing major reductions in stormwater volumes and discharge rates for 33-50% of storms, even 

with a liner (Davis, 2008). Larger storms that occur over a long period of time are more likely to 
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be mitigated as precipitation intensity approaches the infiltration capability of the system (Johnson 

& Hunt, 2020). 

The effectiveness of a bioretention system at reducing the volume and rate of stormwater 

is most notably impacted by the ponding storage and surface infiltration rate, IWS capacity, and 

the exfiltration rate of the underlying soil; however, AMCs also affect stormwater discharges 

(Brown & Hunt, 2011; Davis, 2008; Winston et al., 2016). When the ponding depth and infiltration 

capacity of the surface layer are exceeded, bypass of untreated stormwater occurs. Johnson & Hunt 

(2020) found that 75-85% of stormwater inflow did not bypass the bioretention systems, and Davis 

(2008) determined that overflow occurred during approximately 15% of the studied storms. 

Internal water storage areas allow stormwater to exfiltrate from the bioretention system in between 

storm events and is primarily important when systems are sited over low-permeability soils 

(Winston et al., 2016). Therefore, it may be expected that bioretention systems designed with IWS 

are capable of reducing peak flows to a greater extent than conventional underdrain systems 

(Davis, 2008) and that larger IWSs produce greater volume reductions (Brown & Hunt, 2011). 

Exfiltration is a primary outlet for bioretention systems. The degree to which exfiltration provides 

hydrological benefits is dependent upon the permeability of the underlying soil. BRCs overlying 

silty clay loam and silt loam have been found to exhibit average exfiltration rates ranging of 1.7 

mm/h and 4.3 mm/h, respectively (Winston et al., 2016). Conversely, exfiltration from a 

bioretention system above sand demonstrated rates ranging from 60–90 mm/h (Brown & Hunt, 

2011).  

Reducing stormwater runoff is one of the primary goals of LID practices as volume 

reduction improves downstream water quality and peak discharge rates (Davis, 2008; Hunt et al., 

2006). Bioretention systems are often designed to manage 1.3 mm (½ inch) of runoff from the area 
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tributary to the practice, resulting in full attenuation of small precipitation events (Davis, 2008; 

Winston et al., 2016). While all storms are not able to be fully reduced, Winston et al. (2016) 

reported volume reduction rates ranging from 36-59% and Johnson & Hunt (2020) achieved 64-

90% reduction. Johnson & Hunt (2020) also concluded that the age of the systems did not prevent 

achievement of the 33% volume reduction goal.  

The characteristics of the underlying soils impact the volume retention capabilities of a 

bioretention system. Nonetheless, bioretention cells of varying permeability were all found to 

significantly reduced the runoff volume, with a majority of the stormwater exiting via exfiltration 

and ET (Johnson & Hunt, 2020). While sandy clay loam is more effective at treating stormwater, 

sandy soil provides for greater volume reduction benefits, approaching 100% (Brown & Hunt, 

2011). Sandy clay loam exhibited volume retention rates between 75-87% (Brown & Hunt, 2011). 

Systems over silty clay loam and silt loam can still achieve 36-59% volume reduction (Winston et 

al., 2016). Accordingly, high volume-to-discharge ratios (volume out/volume in) are observed 

from systems sited over clayey soils (Johnson & Hunt, 2020). Yet, even overlying clayey soil 

volume reductions up to 50% are possible, highlighting the value of ET and exfiltration in the 

success of these systems (Hunt et al., 2006). Further, flow reduction may vary based on season, 

increasing in the summer and decreasing in the winter (Hunt et al., 2006).  

Bioretention systems provide peak flow reduction and increased lag time between rainfall and 

runoff peaks, equally important water quantity goals of LID practices (Dietz & Clausen, 2005). 

However, peak flow mitigation decreases as rainfall intensity increases, especially if ponding is 

exceeded and bypass occurs (Winston et al., 2016). Contributing factors to outflow duration 

include ponding storage, IWS, and exfiltration rate (Winston et al., 2016). Davis (2008) found that 

bioretention cells could delay discharge up to two hours, resulting in reduced and delayed peak 
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flows. Further, low flows were observed from the underdrains from several hours up to several 

days following the end of a storm, indicating temporary internal storage of stormwater. Prolonged 

discharges make determining the impact of the bioretention systems on volume reduction difficult, 

principally when continued discharge overlaps the commencement of the subsequent precipitation 

event (Brown & Hunt, 2011; Davis, 2008). Even in the absence of exfiltration, internal water 

storage systems can delay and reduce discharges such that only 1/4 to 1/6 of the inflow is 

discharged within the first 24 hours, indicating successful management of stormwater flows from 

bioretention systems (Davis, 2008).  

OPERATION AND MAINTENANCE 

Many site contractors and homeowners lack the knowledge needed to properly install and 

maintain these SMPs (Woodward et al., 2008). Education to developers, contractors, and 

homeowners can be the first line of defense in ensuring that the success of these systems occurs 

(Morzaria-Luna et al., 2004). Aesthetically pleasing BRCs can be expected to be well-received 

and maintained by homeowners. Legal instruments, such as deed restrictions, may also be 

implemented to legally enforce maintenance, although as ownership of a property changes, it is 

common for these restrictions to be overlooked and SMPs to be unkept or removed. Deed 

restrictions are only effective if they are enforced, and the enforcement of such at local levels is 

not always clear or well-perceived by the public (Morzaria-Luna et al., 2004). Working in tandem, 

education and enforcement can be effective measures to ensure the success of these systems.  

As with all LID practices, maintenance is key to the long-term success of a bioretention 

system. The longevity of a bioretention system depends upon proper installation and provision of 

the necessary level of maintenance. Routine inspections should be conducted to evaluate 
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vegetation health, erosion, and ponding duration and to assess maintenance requirements (USEPA, 

1999). Common maintenance items include proper vegetation establishment, soil drainage 

capabilities, mulching, neglect, sedimentation, and berm failure (Woodward et al., 2008). Johnson 

& Hunt (2020) studied three bioretention systems in North Carolina ranging from 8 to 17 years 

old and concluded that they continued to provide long-term solutions to mitigate stormwater 

volume and peak discharges. The age of the systems did not affect peak flow mitigation. In fact, 

older cells facilitated infiltration better than new cells.  

Long-term pollutant accumulation in bioretention systems is often estimated, but actual field 

testing is not well-documented as these practices, which gained popularity in the early 2000s, are 

only now reaching their design life. Over the years, phosphorus will accumulate within the BSM 

profile with limited outlets, such as plant uptake (Davis et al., 2006). Further, heavy metal 

accumulation is also a concern as most metals are deposited within the upper layers of the system, 

limiting the ability for vegetation with deep root systems to uptake metals (Davis et al., 2003). 

While the accumulation of metals does not pose a short-term concern to the functionality of a 

system, excavation and replacement of should be incorporated into a long term maintenance plan 

for the facility as offsite transport and disposal of potentially contaminated media metals can be 

costly. Davis et al. (2003) estimated that the continual accumulation of heavy metals will exceed 

EPA regulatory limits for biosolid applications for lead and zinc after 16 years, cadmium 20 years, 

and copper 77 years. Even so, USEPA (2000) notes soil replacement should occur between 5 and 

10 years following establishment of these systems and total mulch replacement is encouraged 

every 2-3 years (USEPA, 1999).  
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CHAPTER 3 – ESTIMATING RUNOFF PROBABILITY FROM PRECIPITATION 

DATA: A BINOMIAL REGRESSION ANALYSIS 

INTRODUCTION 

Surface runoff discharges occur across various land uses and under a wide array of 

circumstances. Within a forested hillslope catchment, little or no runoff may occur during a 

particular storm (Penna et al., 2011; Saffarpour et al., 2016; S. Wang et al., 2022). Yet, within 

urban areas, where there is a high percentage of impervious surfaces, surface runoff discharges 

may occur during small storms. Low impact development is a method utilized in urban and 

suburban catchments with the goal of preserving the pre-development hydrology. It incorporates 

a combination of techniques into site design to reduce the development impacts on stormwater 

water quality and quantity (Dietz, 2007).  

Low impact development effectiveness is often evaluated in literature by the difference in 

runoff thresholds when LID practices are and are not applied (Hood et al., 2007; Tirpak et al., 

2021). The runoff threshold represents the precipitation depth that must occur within a catchment 

before surficial runoff generation. The runoff threshold may further describe the storage depth of 

a watershed, system, or surface (Bean et al., 2007). Understanding the thresholds for which a 

catchment produces runoff discharge is important in determining the effectiveness of an LID 

technique or soil and vegetation management practices that affect surface runoff generation. 

Linear regression analyses have long been used to determine runoff thresholds (Fink and 

Frasier, 1977; Li and Gong, 2002; Hood et al., 2007; Bean et al., 2007; Ross et al., 2021; Tirpak 

et al., 2021). Yet, literature has also recognized that runoff thresholds are likely more complex, 

dictated by catchment-specific variables, and may follow non-linear relationships (Ali et al., 2013). 
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Typical linear regression is performed by plotting the precipitation depth versus the runoff 

observed for each storm. A line of best fit is generated using the least squares method, and the x-

intercept of the generated line is interpreted as the runoff threshold. Hood et al. (2007) utilized this 

technique to compare the runoff threshold of traditional and LID development sites. They 

concluded that runoff occurs from the traditional watershed when precipitation exceeds 3.0 mm 

and from the LID watersheds following 6.0 mm of precipitation. Bean et al. (2007) determined 

estimated storage depths and curve numbers from linear regression models when evaluating the 

effectiveness of permeable pavement systems on runoff reduction and water quality. Ross et al. 

(2021) recognized that the relationship between precipitation and runoff could have been more 

consistently linear and utilized piecewise linear regression analysis to identify a break in the 

relationship between precipitation and runoff within various watersheds. Tirpak et al. (2021) 

established the runoff threshold of permeable interlocking concrete pavers using the linear 

regression and x-intercept methodology. Overall, linear modeling provides the user with a finite 

value that, when exceeded, runoff is expected to occur.  

Homoscedasticity (constancy of variance) is an important assumption of statistical analysis 

and is a useful way to check the adequacy of a linear regression model (Crawley, 2015; Zuur et 

al., 2008). When the assumption of homoscedasticity is not met, the resulting linear model may 

lead to invalid inferences (Box & Cox, 1964; Breusch & Pagan, 1979). Homoscedasticity can be 

determined visually by plotting the residuals (the difference between the predicted value of the 

linear model and the observed value) against the fitted values. Figure 1a and b provide examples 

of scatterplots and linear regression analyses of a homoscedastic and a heteroscedastic dataset, 

representative of real-world observations, respectfully. The linear regression analysis yields a 

fitted line that is used to describe the data by minimizing the residuals or the distance between the 
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data and the predictor line. The homoscedastic dataset displays constant variance along the fitted 

line, while the heteroscedastic dataset displays non-constant variance along the fitted line (variance 

increases as precipitation increases). Figure 1c and 1d illustrate the residuals against the fitted 

values of the linear regression for visual interpretation of the residual structure. If the residual plot 

is without structure, or as Crawley (2015) describes, "like the sky at night" (Figure 1c), then 

homoscedasticity is observed, and the assumption is satisfied. Alternatively, if the residual plot is 

structured, such as the fan-shaped pattern seen in Figure 1d, it indicates heteroscedasticity (non-

constant variance) and a failure of the linear regression assumption (Crawley, 2015; Seber & Lee, 

2003; Triola, 2008).  

Visual observation of published runoff datasets (Hood et al., 2007; Bean et al., 2007; Tirpak 

et al., 2021; Radovanovic and Bean, 2022; Wang et al., 2022) indicated that the data might not be 

homoscedastic and suggested that the commonly used linear regression to determine the runoff 

threshold may not be the minimal adequate model. The scatterplot of the published studies 

displayed increased residual size as storm size increased (non-constant variance), like that 

observed in Figure 1b. The observed fan-shaped pattern implies that the precipitation-discharge 

datasets may be heteroscedastic, and the linear regression may not accurately express the 

relationship between precipitation and discharge (Crawley, 2015; Seber & Lee, 2003; Triola, 

2008). Beyond visual observation, heteroscedasticity can be tested using the Breusch-Pagan (BP) 

Test (Breusch & Pagan, 1979), the White Test (White, 1980), or others. Studies determining runoff 

threshold with linear regression did not indicate if such tests were completed (Fink and Frasier, 

1977; Li and Gong, 2002; Hood et al., 2007; Bean et al., 2007; Ross et al., 2021; Tirpak et al., 

2021). We acknowledged that many variables may affect processes that lead to runoff generation, 

such as AMC, rainfall intensity, slope, groundwater table depth, soil type, soil depth, and percent 
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vegetative cover, to name a few (Detty & McGuire, 2010; Kohler & Kinsley, 1951; Saffarpour et 

al., 2016; S. Wang et al., 2022). Nonetheless, when only rainfall is selected as the independent 

variable to determine threshold behavior, as commonly performed, the data appears to be 

heteroscedastic.  

Further indication that the linear regression may not be adequate is that discharge was observed 

in those studies (Hood et al., 2007; Bean et al., 2007; Tirpak et al., 2021; Radovanovic and Bean, 

2022; Wang et al., 2022) before the runoff threshold was exceeded. Additionally, four of the five 

studies encountered storms when the runoff threshold was exceeded, yet no discharge occurred 

(Hood et al., 2007; Bean et al., 2007; Radovanovic and Bean, 2022; Wang et al., 2022). Bean et 

al. (2007), too, acknowledged this weakness in the determination of the runoff threshold. Given 

the above, it is questionable if linear regression is a minimally adequate way to assess the 

likelihood of discharge. We investigate if the concept of runoff threshold can be improved through 

the determination of the probability for discharge to occur rather than utilizing a finite value above 

which discharge is expected to occur.  

Binomial regression could offer a better way to analyze the chance of discharge occurring 

following a particular precipitation depth. Generally, binomial regression describes the probability 

of success given a particular value of the independent variable, or in our case, the probability for 

runoff to occur based on the precipitation (Triola, 2008). Binomial regression does not attempt to 

definitively determine when discharge will occur, rather, it provides a probability for discharge to 

occur based on precipitation depth.  
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Figure 1: Homoscedastic and heteroscedastic runoff data. (a) Scatterplot and linear regression analysis 
of homoscedastic runoff data displaying constant variance. (b) Scatterplot and linear regression analysis 
of heteroscedastic runoff data displaying non-constant variance. (c) Scatterplot of fitted values vs. 
residuals plots of homoscedastic runoff data displaying constant variance. (d) Scatterplot of fitted values 
vs. residuals plots of heteroscedastic runoff data displaying non-constant variance.  

It is understood that the runoff threshold is approximate and may be impacted by several 

variables, including, but not limited to, storm intensity, soil moisture conditions, and antecedent 

dry periods. The goal of this study is to provide a more objective approach to the evaluation of 

catchments and small watershed hydrology. Our objectives are to evaluate binomial regression 
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analysis as an alternative method to linear regression-based runoff thresholds and to determine the 

likelihood of a watershed producing discharge following a given precipitation amount.  

MATERIALS AND METHODS 

STUDY SITES 

Data for this study were collected from five published articles and were obtained either directly 

from the authors or extracted from the available tables and figures. These five studies were selected 

for reporting rainfall and runoff data and to reflect different runoff scenarios. The gathered data 

include nineteen catchments ranging from 0.03 to 5.5 hectares and varying treatments. Bean et al. 

(2007) studied permeable pavement systems consisting of concrete grid pavers (CGP), porous 

concrete (PC), and permeable interlocking concrete pavers (PICP) at four sites in North Carolina 

(USA) to evaluate their effectiveness in reducing runoff and improving water quality. The 

permeable pavement systems consisted of 200 mm to 275 mm thick aggregate reservoirs overlying 

loamy sand to sandy soils. Rainfall and runoff data from the PC and CGP sites were collected over 

17 and 26-month periods, respectively. Hood et al. (2007) focused on the comparison of the lag 

time of traditional and LID sites in Connecticut (USA). The traditional residential watershed was 

constructed with standard stormwater management systems which utilized curbs and gutters for 

stormwater collection and conveyance. The LID watershed was a newer construction and 

incorporated LID practices consisting of bioretention areas, rain gardens, concrete pavers, and 

grassed swales. Rainfall and runoff data for the watersheds was collected over a 31-month study 

period. Tirpak et al. (2021) examined the effectiveness of permeable pavements overlying poorly 

drained, sit loam soils to mitigate peak runoff conditions in Ohio (USA). The retrofit parking lot 

was equipped with CGPs and an approximately 575 mm aggregate reservoir. Rainfall and runoff 
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data was collected over a 16-month period. Radovanovic and Bean (2022) investigated whether 

the integration of compost into residential landscapes in Florida (USA) decreased runoff volumes 

and nutrient loadings. Soils underlying the residential lawns consisted of very sandy soils. 

Stormwater runoff was measured and collected at catch basins within each defined watershed over 

a 27-month period.  Wang et al. (2022) reviewed rainfall-runoff characteristics of a karst hillslope 

in southwest China over a two-year period. The karst hillslopes were overlain with approximately 

0 to 2 m of calcareous clay to clay-loam and divided into 5 m by 20 m vegetated plots. We refer 

to the original publications for further details on experimental design, data acquisition, and 

processing. 

DATA PREPARATION 

The datasets were analyzed using R (R Core Team, 2024), with the following packages: 

ggplot2 (Wickham, 2016), nlme (Pinheiro and Bates, 2000, and Pinheiro et al., 2022), lmtest 

(Zeileis and Hothorn, 2002), multcomp (Hothorn et al., 2008), ResourceSelection (Lele et al., 

2023), survey (Lumley, 2010), and reshape2 (Wickham, 2007). Precipitation and runoff data were 

collected on a per-storm basis. Runoff data of values less than 0.1 mm were considered to be 

artifacts of the visual data extraction (i.e., from Hood et al., 2007) and hence set to zero. 

Observations where runoff exceeded precipitation were removed. The precipitation and runoff 

values were also log-transformed, and to compensate for zero runoff values, a constant of 0.01 mm 

was added prior to the transformation (Kilmartin and Peterson, 1972). Binomial runoff datasets 

were generated for each, where runoff values were converted to a binomial response with zero 

equals no runoff and one equals runoff. A “no runoff” data point was added to each binomial 

dataset, consisting of zero runoff and zero precipitation, to prevent convergence issues with the 

binomial modeling. 
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STATISTICAL ANALYSIS 

Runoff data were modeled as continuous and binomial response variables. Runoff as a 

continuous variable was evaluated with four linear models for each dataset: 1.) analysis of 

covariance (ANCOVA); 2.) ANCOVA with random effects for variance structure; 3.) log-

transformed ANCOVA; and 4.) log-transformed ANCOVA with random effects for variance 

structure. In the following, we use the term linear models when referring to these four models. 

Best-fit models were based on the Akaike information criterion (AIC), where the model with the 

lowest AIC was accepted as the best-fit model (Zuur et al., 2008). For each model, the linear 

regression runoff threshold (LRRT) and the threshold confidence interval were computed, the 

Breusch-Pagan test was performed to check if the model residual structure improved (i.e., less fan-

shaped), and individual treatments were contrasted to see which were significantly different at the 

α=0.05 level. Treatments were contrasted to determine statistically significant differences. If not 

significantly different, treatments were combined, and a new model was evaluated based on the 

AIC. If the AIC did not decrease upon the combination of treatments, the new model was rejected. 

ANALYSIS OF COVARIANCE  

ANCOVA was used to model the relationship between precipitation and runoff. The 

parameters derived from an ANCOVA model include slope, intercept, and standard errors. The 

LRRT was calculated as the x-intercept of the bet-fit regression line. It is understood that treating 

data as homoscedastic, although it is heteroscedastic, can result in incorrect derived parameters 

(i.e., the runoff threshold) and flawed conclusions (Breusch & Pagan, 1979). For bootstrapping the 

95% confidence interval, the fitted model values from the original data and randomly selected 

residuals (with replacement) were combined to generate a new dataset from which a new LRRT 

was computed. This step was repeated 1,000 times. Stormwater data are often log-normally 
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distributed (Kilmartin & Peterson, 1972; Van Buren et al., 1997), and log-transformation of data 

may rectify the heteroscedasticity of a dataset (Box & Cox, 1964; Zuur et al., 2008). Accordingly, 

the ANCOVA was performed on the log-transformed data, and the LRRT and the 95% 

bootstrapping confidence interval were subsequently computed.  

ANALYSIS OF COVARIANCE WITH RANDOM EFFECTS (MIXED-EFFECT MODEL) 

ANCOVA with random effects was evaluated as a method to address the heterogeneity of the 

datasets (Zuur et al., 2008). The applied variance structures outlined in Zuur et al. (2008) were 

employed to both the original and log-transformed datasets. The resultant mixed-effect models 

with the lowest AIC were determined to be the best fit for each dataset. The LRRT and 95% 

bootstrapping confidence intervals were determined using the best mixed-effect model for each 

dataset.  

BINOMIAL REGRESSION MODELING 

A binomial model was created to determine the likelihood for runoff, the binomial response 

variable, to occur from a particular watershed as a function of precipitation depth by the 

methodology outlined in Crawley (2015). The treatments were contrasted as they were for linear 

modeling. Using the binomial model, the probability for runoff to occur based on precipitation 

depth can be determined. Next, the binomial runoff probability curves (s-curves) generated by the 

binomial model for each watershed are used to determine the storm size required for a watershed 

to have a 10% and 90% chance of producing runoff. We use the 10% and 90% runoff probabilities 

to determine precipitation depths, which result in a low chance of runoff (p<0.1) and a high chance 

of runoff (p>0.9). The goodness of fit of the binomial regression model was evaluated with the 

Hosmer-Lemeshow test and the likelihood ratio test (Hosmer et al., 2013). The Wald test (Rao & 
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Scott, 1984) was performed to test for the linear relationship between the independent variable 

(log-precipitation) and the log-odds of the binomial regression models. 

RESULTS AND DISCUSSION 

For all reviewed studies, Table 1 presents the LRRT, 95% confidence interval of the LRRT, 

and BP test statistic for homoscedasticity for the linear models. Further reported in Table 1 is the 

number of recorded storm events that 1.) have generated runoff before precipitation exceeding the 

LRRT and 2.) did not generate runoff following exceedance of the LRRT. Table 1 also provides 

the 10% and 90% runoff probabilities from the binomial regression.  

LINEAR MODELS 

The BP test (Table 1) revealed that the original datasets from the five reviewed studies were 

heteroscedastic and, therefore, violated the assumption of linear regression. When using a linear 

model to evaluate data, the BP test results indicate that heteroscedasticity may be corrected through 

log-transformation. Log-transformation remedied the heteroscedasticity of the dataset from two of 

the five studies (Bean et al., 2007; Radovanovic & Bean, 2022) but failed to do so in the remaining 

(Hood et al., 2007; Tirpak et al., 2021; Wang et al., 2022) (Error! Reference source not found.). 

The BP test was consistently greater than 0.05 for the mixed-effect modeling, indicating constant 

variances for all normal and log-transformed datasets, which was to be expected. Observations of 

runoff for precipitation depths lower than the LRRT and observations of no runoff following 

exceedance of the LRRT indicate that the linear model does not adequately represent the observed 

data. Regardless of the log-transformation, runoff occurring before the LRRT and not occurring 

following exceedance continue to be observed for all studies.  
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ANCOVA of the heteroscedastic datasets resulted in large, and at times negative, confidence 

intervals, specifically for the Hood et al. (2007) and Radovanovic and Bean (2022) datasets 

(Error! Reference source not found.). Negative runoff thresholds, which imply that runoff 

occurs without precipitation, are illogical and indicative that the model does not adequately 

describe the data. Although no negative log-transformed confidence intervals were observed, the 

confidence intervals remain large. Additionally, the confidence intervals of the mixed-effect 

models are large and more frequently become negative (Bean et al., 2007; Hood et al., 2007; 

Radovanovic & Bean, 2022; S. Wang et al., 2022).  

Our study implies that the heteroscedasticity of the precipitation and runoff datasets is best 

remedied by implementing a mixed-effect model when determining an LRRT. However, negative 

values of the bootstrapped 95% confidence intervals and runoff occurring before the mixed-effect 

modeling LRRTs and not occurring following exceedance continued are indications that, although 

the mixed-effect modeling accounts for the heteroscedasticity, it does not adequately describe the 

data. Many other factors influence the runoff threshold and perhaps are not best represented in a 

finite value. 
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Table 1: Linear regression runoff thresholds and 95% bootstrapping (n=1,000) confidence intervals for linear regression modeling methods and the 
10% and 90% binomial model runoff probabilities. 

  ANCOVA ANCOVA with Random Effects Log-Transformed ANCOVA Log-Transformed ANCOVA with Random Effects Binomial Model 
Article Treatment RT [CI] # Below # Above RT [CI] # Below # Above RT [CI] # Below # Above RT [CI] # Below # Above p10 p90 
  [mm]   [mm]   [mm]   [mm]   [mm] 
Hood et al. Control 0.8 0 2 1.0 0 2 6.9 33 0 6.3 29 0 0.4 2.3 
(2007)  [-0.8; 2.2]    [-0.9; 2.0]    [4.3; 10.2]    [3.6; 9.7]       LID 5.8 0 26 1.6 0 56 34.5 32 2 60.0 39 0 5.9 30.1 
  [3.8; 7.4]    [-181.6; 195.3]    [25.0; 55.6]     [35.5; 157.4]       Traditional 3 7 4 2.2 2 6 8.3 34 0 7.3 31 0 0.9 4.5 
  [2.3; 3.7]    [1.0; 2.7]    [ 6.5; 10.8]    [5.3; 9.7]      
 BP test 0.00 0.93 0.00 0.73   
Bean et al. CGP 23.4 1 10 13.6 0 33 57.6 6 1 88.9 8 0 23.3 80.1 
(2007)   [23.1; 23.7]     [7.9; 15.3]    [45.3; 81.9]    [59.0; 176.5]       PC 11.4 4 0 2.5 0 3 20.0 7 0 20.0 7 0 3.3 11.4 
  [10.8; 12.3]    [-76.2; 16.2]    [13.4; 32.9]    [12.9; 31.2]       BP-test 0.00 0.83 0.29 0.87   

Tirpak et al. Modeled - 
Asphalt 0.9 0 0 0.9 0 0 1.5 0 0 1.3 0 0 0.2 0.7 

(2021)  [0.6; 1.2]    [0.5; 1.1]    [0.1; 3.5]    [0.1; 4.2]       Retrofit - PICP 5.5 11 0 3.9 5 5 9.1 18 0 5.8 12 0 1.9 6.5 
  [5.2; 5.9]    [3.2; 4.3]    [7.2; 11.5]    [4.8; 9.9]       BP test 0.00 0.90 0.00 0.32   
Radovanovic Compost, no till, 4.5 1 0 1.3 1 2 10.1 5 0 9.7 5 0 0.9 5.8 
and Bean no TD [3.2; 5.8]    [-1.5; 3.4]    [4.7; 20.8]    [4.0; 21.3]      
(2022) Compost, till, 7.0 4 0 0.5 0 0 4.3 2 0 4.2 2 0 0.1 0.6 
 no TD  [6.3; 7.8]    [-1.3; 2.3]    [0.3; 11.0]    [0.2; 11.7]       Compost, no till, -24.4 0 4 1.4 0 3 11.2 3 0 10.9 3 0 2.1 13.4 
 no TD  [-32.2; -18.2]    [-0.8; 3.1]    [6.4; 21.6]    [5.5; 22.0]       Compost, till, 2.3 0 1 2.1 0 1 14.3 2 0 14.4 2 0 2.1 13.4 
 TD [ -1.3; 5.0]    [-6.5; 6.3]    [8.9; 26.3]     [9.2; 23.5]       Compost, no till, 10.3 2 0 2.2 0 2 14.4 4 0 14.4 4 0 2.1 13.4 
 TD [9.5; 11.0]    [-1.1; 4.9]    [9.5; 23.6]    [9.2; 23.5]      
 No compost, no 

till, 8.2 4 0 1.3 0 2 8.1 4 0 6.2 2 0 0.9 5.8 
 TD [7.6; 8.7]    [-0.2; 2.5]    [4.5; 13.3]    [2.4; 11.2]      
 No compost, no 

till, -6.9 0 3 1.7 0 3 13.1 2 0 13.6 2 0 2.1 13.4 
 TD [-16.0; -0.9]    [-3.3; 4.3]    [7.7; 25.1]    [8.7; 23.6]      
 No compost, no 

till, 8.0 2 2 2.3 0 4 16.4 5 1 15.9 5 1 2.1 13.4 
 no TD [7.0;9.0]    [-1.2; 4.8]    [10.8; 32.1]    [10.0; 30.5]       BP test 0.04 0.52 0.25 0.99   
Wang et al. Walnut 16.3 16 26 2.5 0 52 121.6 57 0 178.9 57 0 3.5 78.3 
(2022)  [12.9; 19.3]    [-51.7; 13.6]    [73.2; 356.5]    [86.4; 1350.2]       Corn 17.5 8 37 5.4 0 68 196.3 41 0 593.1 41 0 3.5 78.3 
  

[11.2; 21.9]    [-167.8; 24.9]    [103.6; 781.3]    
[176.1; 

45,488.9]       Shrubs 15.6 7 20 5.8 0 51 101.3 49 0 151.6 52 0 3.5 78.3 
  [ 3.7; 22.6]    [-279.8; 144.1]    [65.8; 203.7]    [81.1; 515.2]       Grass 17.7 19 28 3.2 0 54 121.4 57 0 185.1 57 0 6.1 134.3 
  [14.5; 20.1]    [ -40.8; 13.1]    [ 73.4; 381.8]    [90.9; 1,575.1]    

  

 BP test 0.00 0.69 0.00 0.38   

Note: For each model, the number of runoff events that occurred before the respective runoff threshold is reported as "# Below" and the number of discharge events that did not 
occur following exceedance of the runoff threshold is reported as "# Above". Bold = BP test results in p <0.05 (heteroscedastic) 
Abbreviations: ANCOVA, Analysis of covariance; BP, Breusch-Pagan; CGP, Concrete Grid Pavers; CI, 95% Confidence Interval; LID, low impact development; p10, 10% runoff 
probability; p90, 90% runoff probability; PC, Porous Concrete; PICP, Permeable Interlocking Concrete Pavers; RT, Runoff threshold; TD, Topdressing.  
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BINOMIAL REGRESSION MODELING 

Goodness of fit tests were performed for all binomial regression models. The Wald tests, and 

the likelihood ratio tests were significant (p<0.01) for all binomial regression models. The Hosmer-

Lemeshow tests to evaluate differences between objected and fitted data was not significant for 

any binomial regression model (p>0.05). The binomial runoff probability curves (s-curves) for 

Hood et al. (2007), Bean et al. (2007), and Tirpak et al. (2021) and the LRRTs are presented in 

Figure 2. The binomial regression resulted in a larger 10%-90% runoff probability range (p10-

p90) for catchments that incorporated LID practices than those that did not. For example, the 

modeled data from Tirpak et al. (2021) resulted in a p10-p90 of 0.2–0.7 mm, while the parking lot 

retrofit with PICP has a p10-p90 of 1.9–6.5 mm (Table 1). Steep slopes of the s-curve, as seen for 

the control, traditional, and modeled watersheds in Figure 2, indicate a smaller p10-p90, whereas 

gradual slopes observed for catchments with less impervious surface or LID practices indicate a 

larger p10-p90. This disparity is best explained by the impact of environmental factors within a 

catchment or watershed.  

The LRRTs from the four linear models for each reviewed study were compared to the 

binomial runoff probability curve. Figure 3 presents a box plot summarizing the probabilities for 

runoff to occur at the LRRT for each linear method. The ANCOVA LRRTs, established with 

heteroscedastic datasets, correspond with a wide 25 to 75 percentile range of runoff probabilities, 

from approximately 30-80%, with a median of approximately 65% (i.e., when precipitation 

reaches the LRRT, there is a 65% chance the catchment will produce runoff) (Figure 3). The wide 

30-80% range indicates that the traditionally used ANCOVA LRRT does not consistently 

correspond with a particular chance of runoff production and is not a reliable measure. 
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Figure 2: Binomial Models estimating the probability of runoff based on precipitation depths with linear regression 
model runoff thresholds. (a) Hood et al. (2007) (b) Tirpak et al. (2021) (c) Bean et al. (2007). Abbreviations: ANCOVA, 
Analysis of Covariance; LID, low impact development; RE, random effects.
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Figure 3: Box and whisker plot summarizing the probabilities for runoff to occur at the linear regression 
runoff threshold (LRRT) for each linear method. The boxes encompass the 25-75 percentile range, and 
the whiskers extend to the minimum and maximum values of the LRRT runoff probabilities. 
Abbreviations: ANCOVA, Analysis of Covariance; RE, random effects.  

 The ANCOVA with random effects model (mixed-effect model), while addressing 

heteroscedasticity of runoff datasets, results in a median LRRT corresponding to a 25% runoff 

probability, much lower than the ANCOVA method. The mixed-effect model results in a smaller 

25 to 75 percentile range of LRRT corresponding runoff probability of approximately 15-40% 

(Figure 3), indicating a more consistent model performance across the datasets. Figure 3 illustrates 

the convergence of the log-transformed ANCOVA and mixed-effect models to a higher runoff 

probability with median LRRTs around 90%. The log-transformed models both resulted in 

narrower ranges of corresponding runoff probabilities than the models that utilized the non-log-

transformed data (Figure 3). 
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The effects of LID practices on runoff generation are variable. There are a number of factors 

that impact the performance of LID practices and runoff generation, including storm size, 

precipitation intensity, antecedent dry periods, underlying soil types, soil depth, rock fragments, 

root count, bedrock outcrops, growing season, sediment loadings, and traffic load. Hood et al. 

(2007) noted that LID watersheds exhibited a higher runoff threshold than traditional development. 

However, the effects of the LID practices were most notably observed during small, short-duration 

storms with low antecedent moisture conditions. Tirpak et al. (2021) also observed that benefits 

from LID diminished as storm size or intensity increased and antecedent dry periods decreased. 

Considering the variability of the environmental factors that influence runoff generation, we 

believe the p10-p90 provides the user with a more comprehensive understanding of when runoff 

may be generated than the LRRT. 

Stormwater that interacts with a vegetated surface or underlying substrate allows 

environmental factors to influence runoff generation. Bean et al. (2007) concluded that the 

permeable pavement systems with a storage layer increased runoff reduction. Tirpak et al. (2021) 

attributed the effects of the PICP, inclusive of a sub-base, to the stormwater’s ability to infiltrate 

into underlying soils. The observed variability of runoff generation from LID practices is better 

reflected in the p10-p90 range than it is with the LRRT. Conversely, runoff thresholds for highly 

impervious watersheds, where influence from environmental factors is considerably less, have 

small p10-p90 ranges and may be sufficiently represented by an LRRT. 

Presentation of runoff threshold as a range, as opposed to a finite LRRT, provides a better 

understanding of how environmental factors influence a catchment. Large p10-p90 ranges indicate 

high variability and more environmental interaction, whereas small ranges represent less 

variability and less interaction. Provision of this range provides the user with the ability to 
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understand the precipitation depths that have a low chance of producing runoff (p<0.1), a high 

chance of producing runoff (p>0.9), or any value between. The range also allows for a review of 

both best- and worst-case runoff scenarios. It is recommended that the selected runoff probability 

be based on the potential downstream impacts. For example, should downstream impacts have the 

potential to result in flooding homes or significant streambank erosion, a user may choose to 

implement the 10% runoff probability value into the project design. 

COMPARISON OF FINDINGS 

Binomial regression concurs with the general conclusions of the reviewed studies. Our findings 

indicate that the use of the LRRT may be sufficient to predict the amount of precipitation required 

to produce runoff for highly impervious catchments but is deficient in doing so for less impervious 

catchments or those that implement LID practices. Contrasting the watersheds concurred with the 

observed significant differences reported by the authors. We agree with the studies that within 

catchments that implement LID practices, there is an observed level of variability attributable to 

environmental factors.  

Hood et al. (2007) concluded that runoff depth from the LID watershed was significantly less 

and more variable than control and traditional watersheds. This variability is not reflected in the 

use of an LRRT. The mixed-effect model corrected for heteroscedasticity yet resulted in a lower 

LRRT for the LID watershed than the traditional watershed, indicating that the mixed-effect model 

does not amply describe the data. Figure 2a shows the influence of the LID practices on the runoff 

generation with a more gradual s-curve and wider p10-p90 range than the more impervious control 

and traditional catchments.  

Bean et al. (2007) found CGPs reduced runoff more than PC. Binomial regression concurred 

as the CGP paver site has a higher 10% runoff probability (23.3 mm) than PC (3.3 mm). The 
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difference in the performance of the two porous pavement systems is clearly illustrated by the 

shape of the s-curve (Figure 2c) and it can be assumed that CGPs allow for more interaction with 

the underlying soil than the PC.  

Tirpak et al. (2021) observed statistically significant runoff reductions and increased runoff 

thresholds with permeable interlocking concrete pavers (PICP) compared to asphalt. The steep 

slope of the modeled parking lot s-curve (Figure 2b) and narrow p10-p90 range are indicative of 

the impervious nature of the catchment. Whereas the retrofit PICP watershed increases the 

interaction between the runoff and soil and, therefore, results in a gradual slope of the binomial 

curve and a wider p10-p90 range.  

CONCLUSIONS 

Runoff thresholds computed from linear regression can be flawed as the precipitation-runoff 

datasets might be heteroscedastic. For two of the five studies reviewed, heteroscedasticity was 

remedied via log-transformation of the data. However, it is better to correct for heteroscedasticity 

by implementing a mixed-effect model with applied variance structures. Confidence intervals for 

the linear models were relatively large, and at times negative. Runoff occurring before the LRRTs 

and not occurring following exceedance is a further indication that these models may not 

adequately describe the data. 

The best method to analyze precipitation and runoff data in the five evaluated studies was to 

model the likelihood of runoff with a binomial regression model that allows calculating the 

likelihood of runoff for each precipitation depth. The 10%-90% runoff probability range 

acknowledges the variability of LID practices and associated environmental factors while also 

accurately representing the limited variability of traditional development techniques. The more 
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gradual slope of the binomial curve is attributed to pervious surfaces, LID practices, and 

environmental interaction and results in a larger runoff p10-p90 range. We offer the p10-p90 range 

as a more accurate representation of runoff thresholds as it accounts for the potential variability of 

a catchment. Further, the binomial regression presented herein concurs with the general 

conclusions of the original studies.  
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CHAPTER 4 – EFFECTS OF BIORETENTION SOIL MIXTURES ON METAL 

SPECIATION AND TOXICITY TO AQUATIC COMMUNITIES 

 INTRODUCTION 

Unmitigated urbanization will increase the quantity and decrease the quality of stormwater 

runoff (USEPA, 2000). Many heavy metals are introduced into urbanized stormwater as a 

byproduct of accumulated tire wear and brake dust. It is well known that high pollutant loadings 

cause poor water quality conditions within receiving waterbodies and are problematic for aquatic 

plant and wildlife species. Water quality impacts caused by new development can be mitigated 

through the implementation of properly designed LID practices, such as BRCs. Bioretention cells 

are a common LID practice consisting of a shallow landscaped depression, commonly used to 

reduce and filter stormwater runoff from impervious areas and typically contain (from top to 

bottom) a ponding zone, mulch layer, vegetation, BSM, and an aggregate layer with an underdrain 

where native soils have low permeability (USEPA, 2000). BSM generally comprises a 

combination of compost to provide organic matter and nutrients to promote phyto and microbial 

remediation and a mineral aggregate to ensure stormwater infiltration through the BSM (Roy-

Poirier et al., 2010).  

The ability of BRCs and various BSMs to effectively filter stormwater pollutants, including 

heavy metals, has been well-investigated (Davis et al., 2003; Dietz & Clausen, 2005; Glass & 

Bissouma, 2005; Knappenberger et al., 2022; H. Li & Davis, 2008; Sun & Davis, 2007). 

Bioretention cells can remove heavy metals by filtering particulates and through the adsorption of 

pollutants to soil particles. Reported removal rates of nutrients from bioretention cells are variable 

and are likely due to the variable compositions and depths of BSMs (Chahal et al., 2016; Davis et 
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al., 2006; Hunt et al., 2006; Mullane et al., 2015). Less variability of removal rates was observed 

for heavy metals, with most studies concluding that BRCs are highly effective at removing lead, 

copper, and zinc (Davis et al., 2003; Hunt et al., 2006; H. Li & Davis, 2008; Sun & Davis, 2007; 

USEPA, 2000). Davis et al. (2003) observed that a significant percentage of heavy metal removal 

occurred within the upper portion of the BSM profile and, upon evaluation of BRC core samples, 

attributed this high efficiency to the mulch layer. Knappenberger et al. (2022) examined metal 

removals by BSMs of varying composition and found that all reduced total and dissolved copper, 

lead, and zinc. 

In contrast, several studies have found that BRCs increased pollutant loadings with peak 

concentrations of constituents leached from BRCs occurring at the beginning of a storm and 

generally decreasing as the storm progresses and following successive storms (Chahal et al., 2016; 

Mullane et al., 2015). Bioretention cells with an organic component in the BSM can leach nitrate, 

TKN, phosphorus, and total and dissolved copper into stormwater effluent where most copper is 

leach during the first 3-6 storms following establishment, and the majority of nitrate and TKN are 

leached during the first three storms (Chahal et al., 2016; Hunt et al., 2006; Mullane et al., 2015). 

Heavy metal concentrations in stormwater discharges are regulated and monitored as these 

pollutants can be toxic to aquatic communities (USEPA, 2007). The total concentration of a heavy 

metal does not represent the concentration of a metal ion available to aquatic organisms. A heavy 

metal must be in a dissolved form to be bioavailable for uptake through the gill. The USEPA 

recognizes that dissolved metal concentrations are better estimates for toxicity to aquatic 

organisms than total metal concentrations (Kinerson et al., 1996). Toxicity is the metal 

accumulation on a receptor at or greater than a threshold concentration, so a predefined lethal or 

sublethal effect will occur (Santore et al., 2001). Dissolved metals better estimate toxicity because 
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as water passes through a species’ gill, dissolved metals may be adsorbed to a biotic ligand, a gill 

surface where metal may accumulate, resulting in toxic effects. It is further recognized that 

dissolved metal concentrations are only an approximation as USEPA standards loosely define 

dissolved metals to be any metal that can pass through a 0.45-micron filter. This definition allows 

all particulate-bound metals less than 0.45 microns to be assumed dissolved and ultimately 

considered bioavailable. 

 In addition to distinguishing between total and dissolved metal concentrations, the speciation 

of a metal should be considered when evaluating toxicity. Free ions of zinc and copper are the 

most bioavailable species for each metal and, therefore, are considered the most influential on 

toxicity (Hoang & Tong, 2015; Magnuson et al., 1979). However, water quality characteristics, 

including temperature, pH, hardness, and DOC, affect metal speciation, bioavailability, and overall 

toxicity of stormwater (Di Toro et al., 2001; Pagenkopf, 1983; Santore et al., 2001). Specifically, 

hardness affects toxicity as calcium ions (Ca2+) and magnesium ions (Mg2+) compete with the free 

heavy metal ions (Cd2+, Cu2+, Pb2+, Zn2+) for binding sites at the biotic ligand and, as such, as 

hardness increases, toxicity generally decreases (Bui et al., 2016; Hoang & Tong, 2015; Kumar & 

Singh, 2010). Complexation with DOC also decreases the bioavailability and toxicity of free metal 

ions. These relationships are called the “protective effect” of the water quality parameters on metal 

toxicity.  

The effects of water quality parameters (i.e., pH, hardness, alkalinity) on the toxicity of heavy 

metals to aquatic organisms have been well studied (Bui et al., 2016; Hoang & Tong, 2015; 

Rogevich et al., 2008). Further, the efficiency of bioretention systems at reducing heavy metals 

and nutrients has been investigated since the inception of these systems (Davis et al., 2003, 2006; 

Hunt et al., 2006; H. Li & Davis, 2008). However, the reviewed literature lacks the assessment of 
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how bioretention systems alter water quality and how that alteration may affect the toxicity of 

heavy metals to an aquatic community. The objectives of this study are to evaluate: 

1. speciation shifts of stormwater pollutants following filtration through BSMs. 

2. changes in toxicity of stormwater following filtration through BSMs using a BLM. 

3. determine which BSMs, if any, were more adept at decreasing pollutant bioavailability and 

toxicity.  

MATERIALS AND METHODS 

EXPERIMENTAL DESIGN 

STORMWATER COLLECTION AND DISTRIBUTION 

The study site was on the Washington State University Puyallup Research and Extension 

Center campus in Puyallup, Washington, USA (Knappenberger et al., 2022). Stormwater runoff 

from a 1,675 square meter impervious catchment on the campus, consisting primarily of roofs and 

pavement, was collected and diverted to a single catch basin. Stormwater runoff was directed from 

the catch basin to an 11.370 m3 cistern for temporary storage and pollutant dosing as initial testing 

of the study area revealed that the stormwater had relatively low concentrations of metals, 

nutrients, and total suspended solids (TSS). Utilizing weirs, the dosed stormwater from the cistern 

reservoir was equally routed into 16 mesocosms during storms between 2013 and 2015. 

Of the eleven storms (S1 to S11) investigated by Knappenberger et al. (2022), ten were selected 

for this study based on the completeness of water quality data collection and mesocosm 

construction, excluding storm S1 from our analysis. Phase 1 of the study (October 1, 2012 – May 

31, 2013) encompassed S2, S3, and S4, Phase 2 (October 1, 2013 – May 31, 2014) S5, S6, S7, and 
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S8 and Phase 3 (October 1, 2014 – May 31, 2015) S9, S10, and S11. Due to naturally low pollutant 

concentrations observed in storms before Phase 1, a mixture of common stormwater constituents 

was added to the collected runoff. Target concentrations were chosen to reflect the typical potency 

of stormwater found in western Washington State and are summarized in Error! Reference 

source not found.. For use as a baseline for evaluating pollutant removal or leaching from the 

BRCs when influent stormwater contained low concentrations of constituents, Storm S2 was not 

dosed. The copper concentration of S2 represents only the 4th percentile of the NPDES Phase I 

permittee copper samples collected within western Washington State between 2007 and 2013 

(Knappenberger et al., 2022). In each phase, the amount of added stormwater pollutants increased. 

Supplemented pollutants included phosphorus (KH2PO4), nitrate (KNO3), ammonium (NH4OH), 

cadmium (CdCl2), chromium (K2CrO4), copper (CuSO4), lead (PbNO3), and zinc (ZnCl2). The 

stormwater was agitated within the cistern during storm events to prevent particulate-bound 

pollutants from settling. 

Table 2 - Target pollutant concentrations from the dosing regimen by phase. 

Pollutant 
 Target Concentrations 

unit Phase 1 Phase 2 Phase 3 
TSS [mg/L] 75.0 100.0 200.0 

Hardness - No target No target No target 
Total Cd [μg/L] 0.3 0.3 0.3 
Total Cr [μg/L] 6.0 10.0 10.0 
Total Cu [μg/L] 20.0 25.0 22.4 
Total Pb [μg/L] 2.0 2.0 5.0 
Total Zn [μg/L] 150.0 150.0 610.0 

TN [mg/L] 1.0 2.0 2.0 
NO3+NO2 [mg/L] 0.3 0.8 1.0 
Ammonia [mg/L] 0.4 0.5 1.0 

TP [mg/L] 0.25 0.3 0.364 
Cd: Cadmium; Cr: chromium; Cu: Copper; NO3: nitrate; NO2: Nitrite; Pb: lead, PO4: Phosphate; TN: Total 

nitrogen; TP: Total phosphorus; TSS: Total suspended solids; Zn: Zinc 
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BIORETENTION MESOCOSM CONSTRUCTION 

The 16 mesocosms were constructed of 152 cm diameter, 132 cm tall high-density 

polyethylene (HDPE) cylinders. Each mesocosm comprised 31 cm of an aggregate sand layer with 

a 5 cm diameter perforated underdrain pipe. Over the coarse sand layer, 61 cm of bioretention 

media was packed. Four bioretention media mixtures containing varying percentages of sand, 

compost, water treatment residuals (WTR), and shredded bark, were utilized, summarized in 

Error! Reference source not found.. We maintained a consistent nomenclature for BSM type 

with a previous study by Knappenberger et al. (2022); the amount of compost in the mix identifies 

the mix. Therefore, the Washington State Department of Ecology (WSDE) recommended BSM 

containing a 40% compost to 60% sand by volume mix (WSDE, 2019) was named Mix40. Each 

mesocosm was planted with the same vegetative species, including Deschampsia cespitosa, 

Deschampsia cespitosa ‘Northern Lights’, and Cornus sericea ‘kelseyi’ and replicated four times. 

 

Table 3: Composition of bioretention soil mixtures. 

Treatment Sand Compost WTR  Shredded 
Bark  

  [%] [%] [%] [%] 
Control      
Mix15 60 15 15 10 
Mix20 80 20 - - 
Mix30 60 30 10 - 
Mix40 60 40 - - 
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SAMPLE COLLECTION AND ANALYSIS 

Influent and effluent flow-weighted composite water quality samples were collected from ten 

storms. Influent stormwater samples were collected from a weir bypassing the mesocosms during 

each storm. Mesocosm effluent stormwater samples were collected from the perforated underdrain 

pipe using ISCO portable samplers (ISCO 6712, Teledyne Isco, Lincoln, NE USA) and set on ice 

to cool the stormwater immediately. Up to 40 flow-weighted composite water quality sample 

aliquots were collected throughout each storm for a total 400 mL sample to ensure a representative 

event mean concentration of each stormwater pollutant.  The flow was monitored using tipping-

bucket flowmeters (Model TB1L, Hydrological Services, Sydney, Australia).  

Influent and effluent samples were analyzed for a suite of stormwater constituents, including 

chemical oxygen demand, DOC, ammonia, nitrite + nitrate, TKN, total phosphorus, ortho 

phosphorous, total and dissolved cadmium, copper, zinc, lead, and chromium, and common water 

quality parameter including calcium, magnesium, and pH. These analyses were performed 

according to the following methods: EPA 410.4, EPA 9060, EPA 350.1M, EPA 353.2, EPA 351.2, 

EPA 365.2, EPA 365.2, EPA 200.8, EPA 6010C and EPA 6010B by a commercial lab.  

CHEMICAL SPECIATION MODELING 

Visual MINTEQ 3.1 (Gustafsson, 2020) was used to predict the chemical speciation of the 

metals within sampled stormwater based on field-measured water quality parameters. Measured 

input parameters included pH, calcium, magnesium, ammonia, nitrate, phosphate, DOC, and total 

cadmium, copper, zinc, lead, and chromium. Atmospheric CO2 was incorporated into the model 

to account for the interaction between the stormwater and the atmosphere. The chloride 

concentration (Cl-), a common stormwater constituent, was estimated to maintain the charge 

balance between anions and cations. The Gaussian Model was used to model the complexation of 
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the influent and effluent stormwater constituents with dissolved organic matter (DOM) (Grimm et 

al., 1991).  

TOXICITY MODELING 

The interaction between metals and the biotic ligand, a surface where metal may accumulate 

and result in toxic effects on aquatic organisms, is a function of the water quality parameters and 

speciation of metals (Di Toro et al., 2001; Pagenkopf, 1983; Santore et al., 2001). A BLM 

(Windward Environmental, LLC, 2019, v 3.41.2.45) was used to estimate the speciation of metals 

within the BRC influent and effluent based on field-measured dissolved metals and water quality 

parameters. The BLM estimated the full site chemistry based on measured temperature, pH, DOC, 

and hardness levels. Washington State’s median ion ratio was used to estimate the concentrations 

of the major cations (Ca2+, Mg2+, Na+, and K+) and anions (SO4
2- and Cl-), allowing the model to 

run with only temperature, pH, DOC, and hardness data. To improve the model, the BLM-

estimated values for Ca and Mg cations were replaced with measured values as these data were 

readily available. The BLM further provided the concentration at which a given stormwater 

pollutant is expected to cause a predefined toxic effect (i.e., EC20, LC50, etc.) to a given aquatic 

organism's life stage based upon the general chemistry of the stormwater (Table S1, supporting 

information).  

The BLM output was analyzed in R (Kassambara & Mundt, 2020; Knappenberger, 2017; Lê 

et al., 2008; R Core Team, 2024; Thorley & Schwarz, 2018; Wickham, 2007, 2016; Wickham et 

al., 2019; Wickham & Bryan, 2023) to evaluate the relative toxicity of the various bioretention 

effluents. For this study, the relative toxicity of a water sample is defined as the proportion of the 

measured concentration to the BLM-identified toxic limit for a given species and endpoint using 

the equation below: 



 

63 
 

Relative Toxicity = 

Predicted 
Concentration Eq. 1 BLM Toxic 
Concentration 

 

A multiple-factor analysis (MFA) was used to reduce the dimensionality of the large 

quantitative dataset. The MFA provides a simplified visual representation of our data by creating 

new dimensions compromised of linear combinations of the initial variables. The number of 

dimensions required to describe the data adequately was determined where the eigenvalues were 

greater than one with a minimum of two dimensions. A cluster analysis was further performed to 

identify similarity groupings within the dataset (Kassambara, 2017). 

A species sensitivity distribution (SSD) is a statistical distribution that describes the sensitivity 

of various species to a particular pollutant of concern and is commonly used to perform ecological 

risk assessments and develop regulatory water quality standards. Using the toxic endpoints for an 

aquatic community, a fitted cumulative distribution function (CFD) curve may be constructed, 

representing the statistical best-fit distributions for the data. The CDF curves are then utilized to 

estimate the hazardous concentration for a particular population percentage to be affected or 

predict the percentage of an aquatic community that may be affected at a given concentration. 

Species sensitivity distributions were constructed using the BLM-identified toxic concentrations 

for free copper (Cu2+) for the aquatic organisms for which the BLM model predicted acute 

toxicities. Because the toxic concentrations of free copper depend on the water quality parameters, 

an SSD was generated for each BRC during each storm, and the predicted hazardous concentration 

for 5% (HC5) of the aquatic community was determined. Based on measured free copper 

concentrations, the percentage of affected species in the aquatic community was further estimated 

to gauge the effectiveness of each BSM at reducing toxicity.  
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STATISTICAL ANALYSIS 

The Tukey test was used to establish whether the mean percentages of affected species were 

statistically different among the four BSMs. Statistical analyses were performed using R (Hothorn 

et al., 2008; Mendiburu, 2023), where differences were significant at α <= 0.05. 

RESULTS AND DISCUSSION 

SPECIATION SHIFTS 

The MINTEQ-predicted chemical speciation for calcium, magnesium, DOM, cadmium, 

chromium, copper, lead, and zinc were reviewed for general trends among stormwater influent and 

effluent, the four varieties of BSMs, and the various dosing levels (Figures S1 through S9). 

Knappenberger et al. (2022) previously concluded that all of the bioretention mesocosms subject 

of this study reduced total and dissolved copper, lead, and zinc for all dosed storms. Yet, while the 

concentration of the heavy metals decreased following filtration through all BSMs and across all 

storms, no noticeable speciation shifts were noted.  

Cadmium speciation in stormwater influent and effluent primarily consisted of Cd2+ and Cd-

DOM complex, where free cadmium comprised 72%-93% of cadmium species and Cd-DOM 

complex 6%-27%. Bioretention influent was predicted to contain lead speciated as primarily Pb-

DOM (77%-91%) and Pb2+ (7%-16%). Influent samples during storms S7 and S8 also contained 

observable proportions of PbCO3 (aq), PbOH+, and PbHCO3
+. Effluent lead species were 

consistent with those predicted in the influent. Using MINTEQ to investigate the cumulative effect 

of Cd and Pb on rainbow trout, Birceanu et al. (2008) also found that free Cd and Pb ions were 

prevalent predicted species, although DOM was not input to the model.  
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The influent stormwater contained copper predominately speciated as Cu-DOM (59%-83%), 

Cu2+ (13%-27%), CuCO3(aq) (0%-18%), and CuOH+ (0%-6%). CuCO3 (aq) was not predicted in 

effluent samples at any significant level during several storms. Copper speciation among effluent 

samples is relatively comparable to influent, although slightly higher percentages of Cu-DOM was 

observed (70%-93%). Similar to the results of this study, Bui et al. (2016) found that the majority 

of dissolved copper was bound with DOM in water samples from the Dongnai and Mekong Rivers 

in Vietnam.  

Consistent with the findings of Hoang & Tong (2015), we found Zn2+ was the dominant species 

of zinc in the stormwater samples, accounting for up to 90% of zinc species influent and effluent 

samples, followed by Zn-DOM  which ranged from up to 20% of zinc species in influent and 38% 

in effluent samples. Erten-Unal et al., (1998) predicted the speciation of heavy metals in solution 

derived from metal salts and at varying pH levels. At pH levels similar to that observed, our study 

agreed that Zn and Cd were predominantly speciated as the free divalent cations. However, our 

results differed in the predicted lead speciation, which forms a stable complex with DOM. This 

difference is attributed to the lack of DOC integration in the modeling of the previous study.  

Although heavy metal concentrations for all dosed storms decreased following filtration, the 

un-dosed storm (S2) resulted in the export of copper and chromium from the BRC. Specifically, 

increased concentrations of Cu-DOM, Cu2+, and CuOH+ were observed. The export of copper from 

BRCs when the influent stormwater was relatively clean was also documented by Chahal et al. 

(2016) and Mullane et al. (2015) and is often attributed to the integration of compost. Chromium 

was predicted in the forms of Cr(OH)3 (aq), CrOH2+, and Cr(OH)2
+ with a very minor proportion 

as Cr-DOM.  
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Figure 4: (A) Multiple factor analysis (MFA) of the relative toxicity of the control (influent) and 
bioretention effluent for each storm plotted along dimensions 1 and 2 grouped by the control and 
bioretention soil mixtures (BSM). (B) Cluster plot of the relative toxicity of the control (influent) and 
bioretention effluent for each storm from each mesocosm plotted along dimensions 1 and 2. 

 

VARIATION AMONG SOIL MIXTURES  

The MFA was conducted using the relative toxicities of the BLM-identified cadmium, copper, 

lead, and zinc species. The MFA cumulatively described 94.9% of the variance of the data, 

summarized along dimensions 1 and 2 (Figure 4A and Figure 4B). In ascending order, the 

variables that predominately contribute to dimension 1 are the relative toxicities of zinc, cadmium, 

and lead. The variables that predominately contributed to dimension 2 are the relative toxicities of 

cadmium species for various aquatic organisms.  

Stormwater effluent from the four BSMs and control (influent) are represented in Figure 4A. 

The MFA revealed that the BSMs are distinctly different from the control with respect to 

dimensions 1 and 2. Overlap of the BSM polygons shown in Figure 4A indicates that the relative 
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toxicity of the stormwater effluent does not substantially differ among mixtures. This contradicts 

the reviewed literature, which found variation among heavy metal and nutrient removal 

efficiencies of differing soil texture (Brown & Hunt, 2011; Davis et al., 2003; Johnson & Hunt, 

2020b). The lack of variation is consistent with the previous study by Knappenberger et al. (2022), 

which found no effect on heavy metal removal due to the BSM's composition or system age.  

The observed distinction between the control (influent) and BSM effluent implies that the 

toxicity of the stormwater changes as it passes through a BRC. A cluster analysis of the water 

samples resulted in three distinct groupings (Figure 4B). The clusters are best described as cluster 

1: un-dosed storm (S2) influent and all BRC effluent; cluster 2: low to medium-dosed storms (S3, 

S4, S5, S6, S7, and S8) influent; and cluster 3: highly dosed storms (S9, S10, and S11) influent. 

This clustering implies that the BRCs can reduce the toxicity of stormwater to levels associated 

with low pollutant concentrations. The un-dosed storm (S2) control (C-05), although included in 

cluster 1, slightly differentiates itself from the BRC effluent cluster negatively along dimension 2 

(y-axis), which is predominately controlled by the relative cadmium toxicities. The mean values 

for the measured water quality parameters of the three clusters revealed increased Ca2+, Mg2+, and 

DOM concentrations in clusters 2 and 3, the BRC effluents, consistent with the chemical speciation 

findings. 

To evaluate the effectiveness of the BSMs at reducing toxicity to the aquatic community, SSDs 

for each mesocosm and each storm were constructed utilizing BLM-estimated acute toxicity 

concentrations of free copper. Using the SSDs, the HC5 and percentage of species affected for each 

BSM (replicated four times) were extracted and are summarized in Figure 5 and Figure 6, 

respectively.  Although WTRs have been found to remove Cd2+, Cu2+, Pb2+, and Zn2+ (Duan & 

Fedler, 2022) and reduce the bioaccessibility of Cu, Pb, and Zn (C. Wang et al., 2012), the presence 



 

68 
 

of 15% and 10% of WTRs in Mix15 and Mix30, respectively, did not significantly differentiate 

these mixes from the others through speciation shifts or toxicity reduction. In fact, Mix15 was the 

least effective mix at reducing toxicity during most storms.  

Of the four studied BSMs, Mix40 (Washington State’s recommended bioretention media) 

yielded the most significant reduction of affected species during most storms, implying that most 

benefit is derived from increased quantities of organic material within the BSM. However, caution 

should be taken as copper has also been found to leach from compost in relatively young BRCs, 

and a balance between the protective effect of DOM and increased copper concentrations should 

be considered (Chahal et al., 2016; H. Li & Davis, 2008; Mullane et al., 2015). 

  



 

69 
 

 

Figure 5: Bar plot of the hazardous concentrations for 5% of the aquatic community to be affected for each of the ten studied storms for the 
control and the mean of the four replicates for each bioretention soil mixture. Means followed by the same letter for a variable are not significantly 
different at α = 0.05. 
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Figure 6: Bar plot of the percentage of the aquatic community anticipated to be affected by the control and the mean effluents of the four 
replicates for each bioretention soil mixture for each of the ten studied storms. Means followed by the same letter for a variable are not 
significantly different at α = 0.05.
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EFFECTS OF WATER QUALITY ON TOXICITY 

Filtration through the four BSMs increased the concentration of Ca2+, Mg2+, and DOC in all 

four BSMs during all storms. Bui et al. (2016) found a positive correlation between hardness (Ca2+ 

and Mg2+) and the lethal concentration (LC50) of copper for three aquatic organisms. Hoang & 

Tong (2015) describe the same protective effect from hardness on the toxicity of zinc in freshwater 

snails and Kumar & Singh (2010) for cadmium in fish. This protective effect occurs as Ca2+ and 

Mg2+ compete with heavy metal ions for binding sites at the biotic ligand, consequently preventing 

accumulation at this sensitive receptor. Complexation with DOM decreases the bioavailability of 

free metal ions as bound metals are not available for uptake. Heavy metal complexation with DOM 

has been documented to reduce aquatic toxicity (Bui et al., 2016; Gillis et al., 2008; Hoang et al., 

2004; Hoang & Tong, 2015; Rogevich et al., 2008). Due to the mitigating effects described by the 

literature, we expected to observe a benefit to aquatic species from filtration through the BSMs.  

In agreement with the literature, our findings support the concept of the protective effect. We 

observed that as Ca2+, Mg2+, and DOC concentrations increased following filtration through the 

BSM, the Cu2+ HC5 concentrations simultaneously increased.  Additionally, following filtration 

through BRCs, the percentage of species affected by the concentration of Cu2+ in stormwater 

samples decreased for all storms except S2 (Figure 6), where free copper ions were exported. These 

observations are indicative of improvements in the toxicity of stormwater from BRCs. Storm S2 

is further discussed below regarding the effect of dosing on toxicity.  

Consistent with the findings of Bui et al. (2016), the dominant copper species is predicted to 

be complexed with DOM in all mixes and during all storms and not present as a free ion. Lead 

speciation also noted that lead was predominantly bound to DOM. Nonetheless, the chemical 

speciation model predicts that DOM is abundantly present in stormwater influent and effluent, a 
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significant percentage of which is not complexed with heavy metals. While Ca2+ and Mg2+ may 

compete with the heavy metals to bind to DOM, the majority speciation of copper and lead with 

DOM suggests that the increased concentration of Ca2+ and Mg2+ in effluent does not compete 

with either heavy metal to the extent that would decrease the availability of DOM for binding.  

 

Figure 7: Species sensitivity distribution of the percentage of aquatic species affected by the 
concentration of free Cu2+ ions in the bioretention cells influent and effluent for each bioretention soil 
mixture and estimated free Cu2+ ion concentration.   

 

EFFECTS OF DOSING ON TOXICITY 

Generally, the BRCs are most effective at reducing the concentration of the toxic heavy metals 

in the stormwater during highly dosed storms S9 through S11. This is consistent with Sun & Davis 
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(2007), who reported that BRCs were most efficient at removing zinc, copper, lead, and cadmium 

when higher influent concentrations were encountered.  

The BRC influent and effluent were compared through their relationships between the 

concentration of Cu2+ and the subsequent effects on the BLM aquatic community. Figure 7 depicts 

the SSD of the control (influent) stormwater and the four BSMs for S2. All storms exhibited a 

rightward shift of the CDF curve, indicating that as stormwater is filtered through the BRC, a 

higher concentration of free copper is required to impact the aquatic community. This shift is 

attributable to the water quality changes discussed above and may be used to quantify the 

protective effect of those changes. The CDF curve shift demonstrates how the increased water 

quality parameters in filtered stormwater result in the free Cu2+ HC5 increases observed for all 

BSMs in Figure 5.   

Recall that the undosed storm (S2) effluent yielded the export of free Cu2+ from the BRCs. 

Measured free Cu2+ concentrations for each BSM are depicted on the CDF curves in Figure 7. 

Although the CDF curves demonstrate improved free Cu2+ HC5 concentrations following filtration 

of S2, the exported concentrations of copper indicate a greater percentage of species affected by 

the stormwater effluent, corroborating the observed increase in Figure 6. The percentage of species 

affected increased from 3.5% before entering the BRCs to 8.5 - 9.4% affected by the effluent, a 

greater than two-fold increase attributed to the export of copper from the BRCs. Our study shows 

that the increased copper concentration affects the toxicity of the stormwater more than the 

protective effects of water quality can offset. 

Nonetheless, there appears to be a benefit to toxicity from filtration through a BRC due to 

increased water quality parameters, even if Cu concentrations are not reduced. If a pollutant 

concentration were to increase following filtration, the BRC may still be able to reduce toxicity 
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through the effects of hardness and DOC. Assessing pollutant concentrations alone does not reveal 

all the benefits of filtration through a BRC.  

CONCLUSIONS 

Our study propagated several generalized conclusions regarding the toxicity of stormwater as 

it moves through a bioretention soil media, including:  

1. Overall cadmium, copper, lead, and zinc concentrations decreased following filtration 

through all BSMs and across all dosed storms, yet no noticeable speciation shifts were 

noted within the effluent.  

2. The MFA indicates that the four BSMs are similar in terms of relative toxicity reduction to 

the aquatic community.    

3. Bioretention cells reduce the relative toxicity of stormwater to levels associated with low 

pollutant concentrations. 

4. Mix40 produced the greatest decrease in the percentage of species affected during most 

storms, implying that most benefit is derived from increased quantities of organic material 

within the BSM.   

5. There may be a benefit to toxicity when running water through a BRC as calcium, 

magnesium, and dissolved organic carbon increases, even if the pollutant concentration is 

not reduced. Assessing pollutant concentrations alone does not reveal all the benefits of 

filtration through a BRC. 

While generalized conclusions may be drawn from our research, there is still much to be 

examined in how bioretention changes the toxicity of stormwater. This study was unable to assess 
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pollutant loadings due to the available data. Consequently, a mass balance could not be evaluated 

and conclusions regarding pollutant export over the life of the bioretention systems could not be 

drawn. We suggest that additional research be conducted to investigate the source of the leached 

copper and chromium.   

It should be noted that the standard laboratory test methodology defines dissolved metals as 

everything that passes a 0.45-micron filter. While this methodology conservatively protects aquatic 

environments by estimating a higher concentration of dissolved metals than what may actually be 

present, the laboratory procedure also weakens our study because a metal must be truly dissolved 

to be bioavailable. Hamid et al. (2023) recently investigated the separation of particulate and 

dissolved phosphorus and found that 41.8% of particulate matter was smaller than 0.45 micron 

resulting in incorrectly defining bound phosphorus as dissolved and bioavailable. This definition 

also results in the inability to determine whether decreases in metal concentrations result from the 

physical filtering of metal-bound-particulate matter through the BSM or from the adsorption to the 

BSM, a subject that should be examined in future studies. As our study investigates the tendencies 

for the toxicity of stormwater to change as it is filtered through a BRC and does not aim to quantify 

toxicity, our results are valid. 
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CHAPTER 5 – CONCLUSION 

 

Low impact development techniques are utilized in urban and suburban catchments for the 

purpose of preserving the pre-development hydrology. LID practices are assessed for effectiveness 

by various methods dependent on their desired function (i.e., infiltration, filtration, etc.) Through 

the duration of our studies, we examined runoff thresholds, a measurement commonly used to 

assess the effectiveness of LID practices, and a methodology for determining the effectiveness of 

BSM at reducing the toxicity of stormwater to an aquatic community.  

Runoff thresholds computed from four linear regression models were determined to not 

adequately describe the precipitation and runoff data. Using the BP test it was revealed that the 

original datasets from all five studies were heteroscedastic and, therefore, violated an assumption 

of linear regression. Such heteroscedasticity may be corrected via log-transformation of the data. 

However, when using a linear model to assess the runoff threshold of a catchment, it is better to 

correct for heteroscedasticity by implementing a mixed-effect model with applied variance 

structures. Other indicators that the linear regression models did not adequately describe the 

datasets included large confidence intervals, indicating poor representation of the data by the 

model, and negative confidence intervals, implying that runoff occurred prior to precipitation, 

which is not possible. Further, there were consistent observations where runoff occurred before 

precipitation exceeded the runoff threshold and occurrences of no runoff following exceedance of 

the runoff threshold.  

Catchments that incorporated LID practices resulted in higher and wider 10-90% runoff 

probability ranges. Higher ranges indicate that more water is stored within the watershed before 

discharge occurs and wider ranges indicate greater variability. These differences between 
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traditional and LID were attributed to the fact that LID practices promote interaction between the 

stormwater and vegetation and the underlying soil. These conclusions are consistent with the 

literature in that LID practices increase runoff thresholds and that there is variability in the 

effectiveness of LID practices. This variability is not well captured by the finite value that linear 

regression analyses provide. Alternatively, presentation of runoff threshold as a range instead of a 

finite value, provides the user with a better understanding of how environmental factors may 

influence a catchment, where large p10-p90 ranges indicate high variability and more 

environmental interaction. The 10%-90% runoff probability range has a more accurate 

representation of runoff thresholds because it acknowledges the variability of runoff from LID 

practices, while also accurately representing the limited variability of traditional developments 

with smaller and more narrow ranges.  

Next, the chemical speciation of heavy metals in bioretention filtered stormwater and the 

subsequent effects on toxicity to an aquatic community were reviewed. Heavy metal 

concentrations for all dosed storms from our study decreased following filtration; however, the 

chemical speciation data revealed no changes among the stormwater influent and effluent, the four 

BSMs, or the various dosing levels. Nonetheless, the MFA revealed that the bioretention cell 

effluents are distinctly different from the control, implying that the toxicity of the stormwater 

changes as it passes through a BRC, although the relative toxicity of the stormwater effluent does 

not substantially differ among the four tested BSMs. The cluster analysis indicated that the BRCs 

can reduce the toxicity to levels associated with low pollutant concentrations, like that observed in 

the undosed stormwater. While the BSMs were not significantly different from one another, 

Mix40, which is Washington State’s recommended bioretention media, yielded the greatest 

reduction of affected species during most storms. This mix contained the highest percentage of 
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compost at 40%, implying that benefit may be derived from larger quantities of organic material 

in mixes. However, caution should be taken as copper has also been found to leach from compost.  

Additionally, all mixes and all storms had exported Ca2+, Mg2+, and DOC. Due to the protective 

effects of the water quality parameters noted in the literature, an improvement to toxicity following 

filtration was expected and, in fact, following filtration the HC5 concentrations simultaneously 

increased. Filtration through a BRC revealed reduced percentages of species affected by free Cu2+ 

in all storms, except S2, where free copper was exported. Comparison of influent and effluent 

SSDs indicates that as stormwater is filtered through a BRC, a higher concentration of free Cu2+ is 

required to impact the aquatic community, attributed to the protective effect of the increased Ca2+, 

Mg2+, and DOC. However, due to the export of free Cu2+ during S2, the undosed storm, results in 

a greater percentage of species affected by the stormwater effluent. We concluded that the 

increased copper concentration affects the toxicity of the stormwater more than the protective 

effects of the exported water quality parameters can offset. Nonetheless, the increased HC5 

concentrations indicate there is still a benefit to toxicity from filtration through a BRC due to 

increased water quality parameters. 

A model that does not adequately describe the data will be deficient in estimation and can lead 

to flawed conclusions. Further, measurements that do not sufficiently account for the proportions 

of a constituent which are both present and available will result in overestimation in toxicity. Using 

accurate methods and measurements is essential to assessing the true effectiveness of a LID 

practice. 
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APPENDIX A – SUPPLEMENTAL DATA 

 

 

 

 

 

 



Metal Organism Test Type Lifestage Endpoint Quantifier References Misc

Cd Ceriodaphnia dubia
Organism name interpretted from the file name 
("Cd_Ceriodaphnia_dubia_04-03-26.dat")

Cd Oncorhynchus mykiss
Organism name interpretted from the file name 
("Cd_Rainbow_Trout_04-03-26.dat")

Cd Pimephales promelas
Organism name interpretted from the file name 
("Cd_Fathead_Minnow_04-03-26.dat")

Cu Acipenser transmontanus Acute

Columbia River, 26 dph, 0.08 g, 2.5 cm; 
Kootenai River, 38 dph, 0.07g, 2.4 cm; 
Juvenile, 40 dph LC50 Little et al. 2012; Vardy et al. 2013 SMEA calcuated by geomean

Cu Acipenser transmontanus Chronic Larva, 1 dph, 12.7 mm, 8.57 mg dry weight growth-dry weight EC20 Wang et al. 2014 SMEA calcuated by geomean

Cu Ceriodaphnia dubia Acute Neonate (<24 hr) EC50;LC50
Gensemer et al. 2002; Hyne et al. 2005; Naddy et al. 2002; 
Naddy et al. 2003; Van Genderen et al. 2007 SMEA calculated by median

Cu Ceriodaphnia dubia Acute Neonate (<24 hr) Survival EC50 Larry walker Associates, 2013
Cu Ceriodaphnia dubia Chronic Neonate (<24 hr) Reproduction - # of youngEC20 Wang et al. 2011a SMEA calcuated by geomean
Cu Chirinomus tentans Acute Larva, 1st instar death and immobility EC50 Gauss et al. 1985 SMEA calcuated by geomean

Cu Daphnia magna Acute From the "Cu_Daphnia_Magna_06-10-07.DAT parameter file

Cu Daphnia magna Acute Neonate (<24 hr) death and immobility LC50;EC50
Al-Reasi et al. 2012; Fulton and Meyer 2014; Ryan et al. 2009; 
Villavicencio et al. 2011 SMEA calcuated by geomean

Cu Daphnia magna Chronic Neonate (<24 hr) Reproduction MATC De Schamphelaere and Janssen 2004 SMEA calculated by median

Cu Daphnia pulex Acute From the "Cu_Daphnia_Pulex_06-10-07.DAT parameter file
Cu Daphnia pulex Acute Neonate (<24 hr) LC50 Van Genderan et al. 2007 SMEA calcuated by geomean
Cu Daphnia pulex Chronic Neonate (<24 hr) Survival EC20 Winner 1985 SMEA calcuated by geomean
Cu Daphnia pulicaria Acute LC50 Lind et al. Manuscript 1978 SMEA calcuated by geomean
Cu Lampsilis fasciola Acute Glochidia EC50 Gillis et al. 2008 SMEA calculated by median

Cu Lampsilis siliquoidea Acute Glochidia LC50 Wang et al. 2007a; 2007c; Wang et al. 2007c SMEA calcuated by geomean
Cu Lampsilis siliquoidea Acute Juvenile LC50 Wang et al. 2009 SMEA calculated by median
Cu Lepomis macrochirus Acute 4.2 cm, 0.59g LC50 Inglis and Davis 1972 SMEA calcuated by geomean
Cu Oncorhynchus tshawytscha Acute swim-up, 0.36-0.45 g LC50 Welsh et al. 2000 SMEA calcuated by geomean

Cu Oncorhynchus mykiss Acute From the "Cu_Rainbow_Trout_06-10-07.DAT parameter file
Cu Oncorhynchus mykiss Acute swim-up, 0.25 g LC50 Cacela et al. 1996 SMEA calcuated by geomean

Cu Pimephales promelas Acute From the "Cu_Fathead_Minnow_06-10-07.DAT parameter file

Cu Pimephales promelas Acute Larva, 1.7d; <24hr, 0.68 mg LC50
Lind et al. Manuscript 1978; Van Genderen et al. 2007; Welsh 
et al. 1993 SMEA calculated by median

Cu Pimephales promelas Chronic Larva, <24 hr Biomass EC50 Besser et al. 2001; 2005 SMEA calcuated by geomean
Cu Utterbackia imbecillis Acute Juvenile LC50 Keller unpublished 2000 memo SMEA calcuated by geomean
Cu Villosa iris Chronic 3 mo. old, 2.0 mm Growth-weight EC20 Wang et al. 2011a SMEA calcuated by geomean

Pb Ceriodaphnia dubia
Organism name interpretted from the file name 
("Pb_Ceriodaphnia_dubia_2015-02-18.dat")

Pb Daphnia magna
Organism name interpretted from the file name 
("Pb_Daphnia_Magna_2015-02-18.dat")

Pb Oncorhynchus mykiss
Organism name interpretted from the file name 
("Pb_Rainbow_Trout_2015-02-18.dat")

Pb Pimephales promelas
Organism name interpretted from the file name 
("Pb_Fathead_Minnow_2015-02-18.dat")

Zn Ceriodaphnia dubia
Organism name interpretted from the file name 
("Pb_Ceriodaphnia_dubia_2015-10-27.dat")

Cd; cadmium, Cu; copper, dph; days post hatch, EC20; 20% maximal effective concentration, EC50; half maximal effective concentration, LC50; lethal concentration MATC; maximum allowable concentration, Pb; lead, SMEA; species mean effect 
accumulation, Zn; zinc

Table S1: Summary of Biotic Ligand Model Toxicity Parameters
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