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Abstract

This thesis serves as a comprehensive introduction and elucidation of Henry Adams and Žiga Virk’s

seminal work [6] on new lower bounds on the Betti numbers for Vietoris–Rips complexes of hypercube

graphs across all dimensions and scales. Specifically, for a hypercube graph of dimension n with vertex

set Qn comprising 2n vertices and equipped with the shortest path metric, we examine its Vietoris–Rips

complex VR(Qn;r) at any given scale parameter r ≥ 0. Here, VR(Qn;r) includes Qn as its vertex set and

considers all subsets with a maximum diameter of r as its simplices. Given integers r < r′, the inclusion

VR(Qn;r) ↪→ VR(Qn;r′) is found to be nullhomotopic, indicating that persistent homology bars do not

extend beyond a unit length. Consequently, the study concentrates on the individual spaces VR(Qn;r). By

succinctly presenting the foundational definitions and correcting minor inaccuracies in their formulation,

we aim to make Adams and Virk’s work more accessible and understandable. And we introduce Adams

and Virk’s work on lower bounds for the ranks of a specific dimensional homology group on these com-

plexes. Utilizing cross-polytopal generators, for instance, we ascertain that the rank of H2r−1(VR(Qn;r))

is no less than 2n−(r+1)( n
r+1

)
.

ii



Acknowledgments

My deepest gratitude goes first and foremost to Dr. Ziqin Feng, my supervisor, for his constant

encouragement and guidance. He has walked me through all the stages of the writing of this thesis.

Without his consistent and illuminating instruction, this thesis could not have reached its present form.

I am also greatly indebted to the professors at the Department of Mathematics: Dr. Hannah Alpert, Dr.

Michael K Brown, Dr. Huajun Huang, and Dr. Yuming Zhang who have instructed and helped me greatly

in the past two years and led me into the world of mathematics. Last, my thanks would go to my beloved

family for their love and confidence in me all through these years. I also owe my sincere gratitude to my

friends and my fellow classmates who gave me their help and time in listening to me and helping me work

out my problems during the difficult course of the thesis.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries and geometry of hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Vietoris-Rips complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Embeddings of hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Contractions and the persistent homology of hypercubes . . . . . . . . . . . . . . . . . . . . 10

3.1 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Persistent homology of hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Homology bounds via cross-polytopes and maximal simplices . . . . . . . . . . . . . . . . . 13

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



Chapter 1

Introduction

Define Qn as the vertex set of the n-dimensional hypercube graph with the shortest path metric.

Equivalently, Qn is the set of all 2n binary strings, using the Hamming distance, or as {0,1}n ⊂ Rn with

the ℓ1 metric.

The study of Vietoris–Rips simplicial complexes, denoted as VR(X ;r), forms the core of this paper,

focusing on their topology within the context of Qn. For a metric space X and a given scale r ≥ 0,

VR(X ;r) is defined with X serving as the vertex set and a finite subset σ ⊆ X constitutes a simplex if

and only if its diameter does not exceed r. Initially developed for algebraic topology [9] and geometric

group theory [8, 11] these complexes have since become pivotal in applied and computational topology

for approximating dataset shapes [10, 14].

Significant findings reveal that Vietoris–Rips complexes facilitate the approximation of metric spaces

through persistent homology barcodes, proving their utility in discerning the topological nuances of data

[13, 12]. Further, they have been instrumental in retrieving the homotopy types of manifolds [18, 19, 24,

20] and in the efficient computation of persistent homology barcodes [7]. However, the understanding of

Vietoris–Rips complexes, especially regarding manifolds or simple graphs at expansive scale parameters,

remains limited. Notable exceptions include analyses on circular manifolds [3], cycle graphs [1, 2] and

studies confined to 1-dimensional homology [23, 17].

The Vietoris–Rips complex VR(Qn;r) of the n-dimensional hypercube’s vertex set, with scale param-

eter r, presents intriguing homotopy characteristics, some of which are delineated up to r≤ 3, with further

cases largely unexplored. For r = 0, VR(Qn;0) manifests as a disjoint union of 2n vertices, rendering

it homotopy equivalent to a (2n− 1)-fold wedge sum of zero-dimensional spheres. At r = 1, VR(Qn;1)

evolves into a connected graph, specifically, the hypercube graph. Utilizing a straightforward computation

of the Euler characteristic, it is shown to be homotopy equivalent to a ((n−2)2n−1 +1)-fold wedge sum

of circles. When r is incremented to 2, Adams and Adamaszek [4] demonstrated that VR(Qn;2) aligns

with the homotopy type of a wedge sum of 3-dimensional spheres. For r = 3 and n≥ 5, Shukla’s findings
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[22] illuminate the homology of VR(Qn;3), specifying that the q-dimensional homology is nontrivial ex-

clusively for q = 7 or q = 4. For r = 3, Feng’s pivotal work [15], predicated on earlier research by Feng

and Nukula [16], establishes that VR(Qn;3) invariably exhibits homotopy equivalence to a wedge sum of

7-spheres and 4-spheres. When the scale parameter is set to r = n− 1, VR(Qn;n− 1) transforms into a

structure isomorphic to the boundary of a cross-polytope encompassing 2n vertices. For r ≥ n, VR(Qn;n)

morphs into a complete simplex, rendering it contractible. Despite these advancements, a substantial

region within the parameter space, defined by r ≥ 4 and r ≤ n− 2, remains uncharted in terms of under-

standing the homotopy types of VR(Qn;r). This “infinite triangle” of parameters represents a frontier in

the study of Vietoris–Rips complexes, inviting further exploration and discovery within the field.

In this work, we extend the analysis of the Vietoris–Rips complexes VR(Qn;r) to encompass all

values of r, presenting new lower bounds for the ranks of their homology groups. Theorem 1 establishes

that rankH2r−1(VR(Qn;r))≥ 2n−(r+1)( n
r+1

)
.

For integers r < r′, a straightforward argument demonstrates that the inclusion VR(Qn;r) ↪→VR(Qn;r′)

is nullhomotopic. Consequently, persistent homology bars exceed a length of one, implying all homo-

logical insights from the filtration VR(Qn;•) are encapsulated by VR(Qn;r) for individual inteder val-

ues of r. While our results have been articulated for Qn = {0,1}n with the ℓ1 metric, it is pertinent to

note that these findings are applicable across any ℓp metric for 1 ≤ p < ∞. Given x,y ∈ Qn, the differ-

ence in the i-th coordinates of x and y is either 0 or 1 for each 1 ≤ i ≤ n, leading to the equivalence

VR((Qn, ℓ
p);r) = VR((Qn, ℓ

1);rp). This observation facilitates the translation of our results to any ℓp

metric through a straightforward reparametrization of scale.

We initiate with preliminaries in Chapter 2. Chapter 3 is dedicated to reviewing contractions and

establishing that VR(Qn;•) exhibits no persistent homology bars exceeding a length of one. In Chapter 4,

cross-polytopal generators are employed to demonstrate rankH2r−1(VR(Qn;r))≥ 2n−(r+1)( n
r+1

)
.
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Chapter 2

Preliminaries and geometry of hypercubes

2.1 Hypercubes

A simple graph is a graph having no loops or multiple edges. Hypercubes are the simple graph

whose vertices are the n-tuples with entries in {0,1} and whose edges are the pairs of n-tuples that differ

in exactly one position.

Definition 1. Given n ∈ {1,2, · · ·}, the hypercube graph Qn is the metric space {0,1}n, equipped with the

ℓ1 distance, also known as Hamming distance or taxicab distance, is defined as

d((a1,a2, · · ·an),(b1,b2, · · · ,bn)) =
n∑

i=1

|ai−bi|.

In other words, the distance between two n-tuples is the number of coordinates in which they differ.
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Figure 2.1: The Hamming distance d(000,101) = 2

2.2 Homology

In the realm of Homology, we begin by understanding the fundamental notion of geometric indepen-

dence and the construction of simplices.
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Definition 2. Given a set {a0, · · · ,an} of points of RN , this set is said to be geometrically independent if

for any (real) scalars
n∑

i=0

ti = 0 and
n∑

i=0

tiai = 0

imply that t0 = t1 = · · ·= tn = 0. We define the n-simplex σ spanned by a0, · · · ,an to be the set of all points

x of RN such that

x =
n∑

i=0

tiai, where
n∑

i=0

ti = 1

and ti ≥ 0 for all i.

Definition 3. A simplicial complex K in Rn is a collection of simplices in Rn satisfying the following

conditions:

1. If a simplex σ is in K, then each face of σ is also in K,

2. Any two simplices in K are either disjoint or their intersection is a face of each.

Specifying a polyhedron X through a collection of simplices forming X proves impractical for de-

tailed polyhedral analysis, entangling one in analytic geometry complexities and the cumbersome task of

ensuring simplex accuracy and intersection integrity. A more efficient approach involves defining X via

an “abstract simplicial complex,” a concept we will now introduce.

Definition 4. An abstract simplicial complex is a collection S of finite nonempty sets, such that if A is an

element of S, so it every nonempty subset of A.

Definition 5. Let |K| be the subset of RN that is the union of the simplices of K. Giving each simplex its

natural topology as a subspace of RN , we then topologize |K| by declaring a subset A of |K| to be closed

in |K| if and only if A∩σ is closed in σ , for each σ ∈ K.

Now we introduce the notion of a “simplicial map” of one complex into another. Let K and L be

simplicial complexes.

Definition 6. A simplicial map f : K→ L is an assignment K(0)→ L(0) of vertices to vertices which sends

simplicies to simplices, where K(0) is all vertices of K. So for each simplex σ = [v0, · · · ,vn] of K, the image

f (σ) = [ f (v0), · · · , f (vn)] must be a simplex of L. And if simplicial map f is bijection, then it is called

simplicial isomorphism.

4



A p-chain on K is a function c from the set of oriented p-simplices of K to the integers such that:

• c(σ) =−c(σ ′), if σ ′ σ and σ ′ are opposite orientations of the same simplex;

• c(σ) = 0, for all for all but finitely many oriented p-simplices σ .

We add p-chains by adding their values; the resulting group is denoted Cp(K) and is called the group of

(oriented) p-chains of K. If p < 0 or p > dimK, let Cp(K) be the trivial group.

Definition 7. We now define a homomorphism

∂ p : Cp(K)−→Cp−1(K)

σ 7−→
p∑

i=0

(−1)i [v0, · · · , v̂i, · · · ,vp]

, where v̂i means that the vertex vi is to be deleted from the array. The map ∂p is called the boundary

operator.

Additionally, we say that two p-chains c and c′ are homologous if c− c′ = ∂p+1d for some p+ 1

chain d. In particular,¢ if c = ∂p+1d, we say that c is homologous to zero.

Before we define the homology group, we need the following lemma:

Lemma 1. ∂p−1 ◦∂p = 0

Proof. Let [v0, · · · ,vp] be a p-simplex. we compute ∂p−1 ◦∂p = 0 by definition,

∂p−1∂p [v0, . . . ,vp] =

p∑
i=0

(−1)i
∂p−1 [v0, . . . , v̂i, . . . ,vp]

=
∑
j<i

(−1)i(−1) j [. . . , v̂ j, . . . , v̂i, . . .
]
+
∑
j>i

(−1)i(−1) j−1 [. . . , v̂i, . . . , v̂ j, . . .
]
.

The terms of two summations cancel in pairs.

Example 1. Compute ∂1(∂2(∆)), where ∆ defined as the following figure,
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∂1(∂2(∆)) = ∂1(e1 + e2 + e3)

= ∂1(v1,v0)+∂1(v2,v1)+∂1(v0,v2)

= (v0− v1)+(v1− v2)+(v2− v0)

= 0

v0

v1

v2

e2

e3

e1

Figure 2.2: Let ∆ be a 2-simplex, where ∆ = [v0,v1,v2].

The kernel of ∂p is called the group of p-cycles and denoted as Zp(K), and the image of ∂p+1 is called

the group of p-boundaries, denoted as Bp(K). And we can observe that each boundary of a p+1 chain is

automatically a p-cycle, i.e. Bp(K)⊂ Zp(K).

Definition 8. Since Bp(K) is a subgroup of Zp(K), we can form the quotient group Hp(K) = Zp(K)/Bp(K)

and call it the pth homology group of K. The rank of homology group Hp(K) is pth Betti number βp, is

the number of distinct p dimensional holes.

2.3 Cohomology

If A and G are abelian groups, then the set Hom(A,G) of all homomorphisms of A into G becomes

an abelian group if we add two homomorphisms by adding their values in G. That is, for a ∈ A we define

(φ +ψ)(a) = φ(a)+ψ(a). The map φ +ψ is a homomorphiam, because (φ +ψ)(0) = 0 and

(φ +ψ)(a+b) = φ(a+b)+ψ(a+b)

= φ(a)+ψ(a)+φ(b)+ψ(b)

= (φ +ψ)(a)+(φ +ψ)(b).
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The identity element of Hom(A,G) is the function mapping A to the identity element of G. The inverse of

the homomorphism φ is the homomorphism that maps a to −φ(a), for each a ∈ A.

Definition 9. A homomorphism f : A→ B gives rise to a dual homomorphism

Hom(A,G)
f̃←− Hom(B,G)

going in the reverse direction. The map f̃ assigns to the homomorphism φ : B→ G, the composite

A
f−→ B

φ−→ G.

That is, f̃ (φ) = φ ◦ f .

The map f̃ is a homomorphism, since f̄ (0) = 0 and

[ f̃ (φ +ψ)](a) = (φ +ψ)( f (a)) = φ( f (a))+ψ( f (a))

= [ f̃ (φ)](a)+ [ f̃ (ψ)](a).
(2.1)

Building on dual homomorphisms, we next introduce their application in the context of simplicial

complexes, demonstrating the bridge between algebra and topology.

Definition 10. Let K be a simplicial complex; let G be an abelian group. The group of p-dimensional

cochains of K, with coefficients in G, is the group Cp(K;G) = Hom(Cp(K),G). The coboundary operator

δ is defined to be the dual of the boundary operator ∂ : Cp+1(K)→Cp(K). Thus Cp+1(K;G)
δ←−Cp(K;G),

so that δ raises dimension by one.

0−→C0 δ 0
−→C1 δ 1

−→C2 δ 2
−→ ·· · δ k−1

−−→Ck δ k
−→Ck+1 δ k+1

−−→ ·· ·

We define cocycles Zp(K;G) to be the kernel of this homomorphism, coboundaries Bp+1(K;G) to

be its image, and noting that δ 2 = 0, since ∂ 2 = 0 by Lemma 1, so we can define the cohomology group:

Definition 11. For each dimensional p≥ 0, the p-th cohomology group is the quotient space

H p(K;G) = Zp(K;G)/Bp(K;G).
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Before we define cap product, let denote σ≤i = [v0, · · · ,vi] as the i-front face and σ≥i = [vi, · · · ,vn]

as the i-back face, where σ = [v0, · · · ,vn]

Definition 12. Let X be a topological space and coefficient ring R. Consider p-cochain ξ as element of

the cohomology group H p(X ;R) and (p+ q)-chain γ =
∑

σ
γσ ·σ in Hp+q(X ;R), where σ ranges over

oriented (p+ q)-simplices and each γσ is an element of the coefficient ring R. Define the cap product

⌢: H p(X ;R)×Hp+q(X ;R)→ Hq(X ;R) by setting

ξ ⌢ γ =
∑

σ

γσ ·ξ (σ≤ i) ·σ≥i.

Then we have a new q-chain ξ ⌢ γ in Hq(X ;R).

2.4 Vietoris-Rips complexes

Definition 13. Given a metric space X and a finite subset A⊆ X, the diameter of A is

diam(A) = max
a,b∈A

d(a,b)

The local diameter of A at a point a ∈ A equals

localDiam(A,a) = max
b∈A

d(a,b).

Definition 14. Given r ≥ 0 and a metric space X the Vietoris-Rips complex VR(X ;r) is the simplicial

complex with vertex set X, and with a finite subset σ ⊆ X being a simplex whenever diam(σ)≤ r.

2.5 Embeddings of hypercubes

An isometric embedding of a graph G into a metric space (X ,dX) is an injective map f : V (G)→ X

such that dG(x,y) = dX( f (x), f (y)), where V (G) is the vertex set of graph G.

For k a positive integer, let [k] = {1,2, · · ·k}. Given p ∈ [n− 1] there are many isometric copies of

Qp in Qn. For any subset S ⊆ [n] of cardinality p we can isometrically embed Qp in Qn, using set S as

its variable coordinates, and leaving the rest of the entries fixed. In more detail, we define an isometric

8



embedding ιb
S : Qp ↪→ Qn associated to a subset S = {s1,s2, · · · ,sp} ⊆ [n] of coordinates and an offset

(bi)i∈[n]\S ∈ {0,1}n−|S|, maps (ai)i∈[p] to (a′i)i∈[n] with

• a′si
= ai for i ∈ [p], and

• a′i = bi otherwise.

Figure 2.3: Example: For n = 3, p = 2, and S = {1,2}, the element of offset b3 can be either 0 or 1. When

b3 = 0, the square is embedded onto the front of the cube in blue; when b3 = 1, it is embedded onto the

back face of the cube, also in blue.

Given a fixed set S, there are 2n−p such embeddings ιS, each associated to a different offset b. Let πS :

Qn → Qp be the map projecting onto the coordinates in S. Then πs ◦ ιS = idQp for any map ιS (i.e., for

any choice of an offset b). Given an offset (bi)i∈[n]\S, let Qb
p denote the image of ιb

S corresponding to the

offset b, and let πb
S : Qn→ Qb

p be defined as ιb
S ◦πS. Given B⊆Qn its Cubic Hull cHull(B) is the smallest

isometric copy of a cube (i.e., the image of Q′p via some map ι) containing B.

For our purposes we will only consider isometric embeddings Qp ↪→ Qn that retain the order of co-

ordinates. With this convention of retaining the coordinate order, there are
(n

p

)
2n−p isometric embeddings

ι : Qp ↪→ Qn and
(n

p

)
projections π : Qn→ Qp.

9



Chapter 3

Contractions and the persistent homology of hypercubes

In this chapter, we aim to establish the following results. Initially, we set the scale r > 0 and choose

p such that p≤ n and consider an isometric embedding Qp ↪→Qn; this induces an inclusion VR(Qp;r) ↪→

VR(Qn;r) that preserves injectivity on homology across all dimensions. Moreover, for a fixed dimension

n and integer scale parameters satisfying r < r′, we assert that the inclusion VR(Qn;r) ↪→ VR(Qn;r′) is

nullhomotopic. Consequently, the filtration VR(Qn;•) has no persistent homology bars of length longer

than one.

3.1 Contractions

A map f : X → A from a metric space (X ,d) onto a closed subspace A ⊆ X is a contraction if

f |A = idA and if d( f (x), f (y))≤ d(x,y) for all x,y ∈ X .

The foundation of our interest in contractions is based on a noteworthy property: if a contraction

X→ A exists, it guarantees that the homology of the Vietoris-Rips complex of A is mapped into injuctively

by the homology of the corresponding Vietoris-Rips complex of X .

Proposition 1. ([25]) If f : X → A is a contraction, then the embedding A ↪→ X induces injections on

homology Hq(VR(A;r))→ Hq(VR(X ;r)) for all integers q≥ 0 and scales r ≥ 0.

We proof that projections mapping from a higher-dimensional cube onto lower-dimensional cube in

Section 2.5 are contractions:

Lemma 2. Given fixed p ∈ [n−1], set S⊆ [n] of cardinality p, and offset b as in Section 2.5, the following

hold:

(1) Maps πS and πb
S are contractions,

(2) For each x ∈ Qb
p and y ∈ Qn, we have d(x,y) = d(x,πb

S (y))+d(πb
S (y),y).

10



(3) For each offset b′:

(a) For each x,y ∈ Qb′
p , we have d(x,y) = d(πb′

p (x),π
b′
p (y)).

(b) For each x ∈ Qb′
p and y /∈ Qb′

p , we have d(x,y)−1≥ d(πb
p(x),π

b
p(y))≥ d(x,y)− (n− p).

Proof. (1) Given two points p1, p2 ∈ Qn, their Hamming distance d(p1, p2) counts the differing compo-

nents. The distance d(πS(p1),πS(p2)) represents the count of differing components restricted to the

subset S, thus d(πS(p1),πS(p2)) ≤ d(p1, p2). This inequality also holds for πb
S , indicating that both

πS and πb
S function as contractions.

(2) The second item is evident from noting that:

• The distance d(x,πb
S (y)) counts the differing components within S between x and y, and

• d(πb
S (y),y) tallies the differences of components in [n]\S.

So d(x,y) = d(x,πb
S (y))+d(πb

S (y),y).

(3) (a) Since x,y ∈ Qb′
p , then d(x,y) = d(πb

p(x),π
b
p(y)), as their coordinates outside S agree.

(b) For x ∈ Qb′
p and y /∈ Qb′

p , we have d(x,y)− d(πb
p(x),π

b
p(y)) ≥ 1. This is because there is at least

one coordinate outside the subset S where x and y differ, given that they do not belong to the same

subspace Qb′
p .

The maximum of d(x,y)−d(πb
p(x),π

b
p(y)) can reach to n− p, considering all coordinates in S are

different, then d(x,y))−d(πb
p(x),π

b
p(y)≥ n− p.

Hence, d(x,y)−1≥ d(πb
p(x),π

b
p(y))≥ d(x,y)− (n− p).

Given that each projection π : Qn→ Qp is a contraction by Lemma 2, it follows from Proposition 1

that the corresponding embeddings Qp ↪→ Qn induces an injective map on homology Hq(VR(Qp;r))→

Hq(VR(Qn;r)) across all dimensions q.

3.2 Persistent homology of hypercubes

A primary focus within contemporary topology is the study of persistent homology, which arise

from the application of the Vietoris-Rips filtration. However, when considering Vietoris-Rips complexes
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associated with hypercubes, the persistent homology yields no additional insight beyond the homology

groups at fixed scale parameters. Indeed, the subsequent proposition asserts that for any integers r < r′,

the inclusion VR(Qn;r) ↪→ VR(Qn;r′+1) induces a map that is trivial on homology.

Proposition 2. ([21]) Let K be a simplicial complex and X an arbitrary space. If two maps f ,g : X → |K|

are contiguous then f ≃K g, we call f and g are homotopic; and when g is a constant map, it is said that

f is nullhomotopic.

Proposition 3. For any positive integers n and r, the natural inclusion ι : VR(Qn;r) ↪→ VR(Qn;r+ 1) is

nullhomotopic.

Proof. We first claim that the inclusion ι : VR(Qn;r) ↪→ V R(Qn;r + 1) is homotopic to the projection

π[n−1] : VR(Qn;r)→VR(Qn−1;r) in VR(Qn;r+1). In order to prove the claim we will show that the two

maps are contiguous in VR(Qn;r+ 1). ( i.e., for each simplex σ ∈ V R(Qn;r) the union σ ∪π[n−1](σ) is

contained in a simplex of VR(Qn;r+1)), which implies that the two maps are homotopic.

Let σ ∈VR(Qn;r), there exists a simplex in VR(Qn;r+1) such that ι(σ) and π[n−1](σ) is contained

in it. By the definition of Vietoris-Rips complexes, we have diam(σ) ≤ r. As π[n−1](σ) is obtained by

dropping the final coordinate we also have diam(π[n−1](σ)) ≤ r. Taking x ∈ σ and y ∈ π[n−1](σ), i.e.

y = π[n−1](y′) for some y′ ∈ σ , we see that

d(x,y)≤ d(x,y′)+d(y′,y)≤ r+1

as d(y,y′)≤ 1. This σ ∪π[n−1](σ) ∈ VR(Qn;r+1), and the claim is proved.

We proceed inductively, proving that each projection π[k] : VR(Qn;r)→ VR(Qk;r) is homotopic to

the projection π[k−1] : VR(Qn;r)→ VR(Qk−1;r) in VR(Qn;r + 1), by the same argument as above. As

a result, the embedding VR(Qn;r)→ VR(Qn;r + 1) is homotopic to the projection π[1] : VR(Qn;r)→

VR(Q1;r). Since VR(Q1;r) is clearly contractible, this completes the proof. Therefore, embedding ι is

contractible.
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Chapter 4

Homology bounds via cross-polytopes and maximal simplices

Let us fix a scale parameter r ≥ 2 and consider an isometric embedding ι : Qr+1 ↪→ Qn for n≥ r+1.

The objective of this chapter is to demonstrate that the induced map VR(Qr+1;r) ↪→ VR(Qn;r) is not

only injective on (2r−1)-dimensional homology, but also that distinct ordered embeddings ι give rise to

independent generators of homology. We shall elucidate this in further detail.

Definition 15. Regular polytope is a shape with sides and vertices that are symmetrical; and if any line

segment joining two points in the polytope is also contained in the polytope then we call it convex polytope.

A cross-polytope is a regular, convex polytope that exists in n-dimensional Eucliden space.

Initial observations reveal that the Vietoris-Rips complex VR(Qr+1;r) is topologically equivalent to

a (2r− 1)-dimensional sphere, denoted as S2r−1, i.e., VR(Qr+1;r) ∼= S2r−1. This homeomophism arises

due to the connectivity properties within Qr+1, where each vertex x is linked by an edge in VR(Qr+1;r) to

every other vertex except for x, the antipodal vertex. Therefore, after taking the clique complex of this set

of edges, we see that VR(Qr+1;r) is isomorphic (as simplicial complexes) to the boundary of the cross-

polytope with 2r+1 vertices. This cross-polytope is a 2r-dimensional ball in 2r-dimensional Euclidean

space, and therefore its boundary is a sphere of dimension 2r−1. In particular, rankH2r−1(VR(Qr+1;r)) =

1.

Since VR(Qr+1;r) is the boundary of a cross-polytope, there is a convenient (2r− 1)-dimensional

cycle γ generating H2r−1(VR(Qr+1;r)). Define the set of maximal antipode-free simplices as

Ar = {Y ⊆ Qr+1|x ∈ Y ⇐⇒ x /∈ Y}.

The cycle γ is defined as the sum of appropriately oriented elements of Ar. The space Qr+1 consists

of 2r+1 points, which can be partitioned into 2r pairs of mutually antipodal points. If a subset of Qr+1

contains exactly one point from each such pair, it is of cadinality 2r. ThusAr consists of sets of cardinality

13



2r. Given x ∈Qr+1, the only element Qr+1 which disagrees with x on all r+1 coordinates is x. As a result

each element of Ar is a of diameter at most r and thus a simplex of VR(Qr+1;r). Observe also that any

element of Ar is a maximal simplex of VR(Qr+1;r): adding any point to such a simplex would mean the

presence of an antipodal pair, and so the diameter would thus grow to r+1.

Recall that 2n−(r+1)( n
r+1

)
is the number of different (ordered) embeddings ι : Qr+1 ↪→ Qn. In the end

of this chapter, we will use maximal simplices and pairing between homology and cohomology in order to

prove that these 2n−(r+1)( n
r+1

)
different embeddings provide independent cross-polytopal generators for

homology.

Proposition 4. Suppose K is a simplicial complex and σ is a maximal simplex of dimension p in K. If

there is a p-cycle α in K in which σ appears with a non-trivial coefficient λ , then any representative

p-cycle of [α] also contains σ with the same coefficient λ .

Proof. Let α =
∑

i γi+nσ and α ′=
∑

j γ ′j+n′σ be homologous p-cycle, where γi and γ ′j are p-dimensional

simplices, and n and n′ are the coefficients of the maximal simplex σ , indicating that both α and α ′ belong

to the same homology class [α]. The condition that α and α ′ are homologous implies that their difference

α−α ′ can be expressed as the boundary of some (p+1)-chain d, specifically, α−α ′ = ∂p+1d.

Given σ is a maximal simplex, it cannot appear in ∂p+1d since p-dimensional maximal simplex

cannot appear in a (p+1)-dimensional simplex. Consequently, when we express α−α ′=
∑

i γi−
∑

j γ ′j+

(n− n′)σ = ∂p+1d, the term involving σ must equate to zero to satisfy the condition that is part of a

boundary. This leads to the conclusion that n = n′, thereby showing the coefficients of σ in both α and α ′

are identical.

Our attention now shifts to delineating the construction of maximal simplices within the Vietories-

Rips complex VR(Qr+1;r), which are simultaneously maximal in VR(Qn;r). The following is a simple

criterion identifying such a simplex as a maximal simplex in VR(Qn;r); see Figure 4.
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Figure 4.1: Left: Subcube Q3 with a maximal simplex σ ∈VR(Q3;2) drawn in red, illustrating Proposition

5 and also Lemma 3 when r is even. An inclusion of σ in Q4 also gives a maximal simplex ιb
S (σ) ∈

VR(Q4;2). Right: Subcube Q4 with a maximal simplex σ ×{0,1} ∈V R(Q4;3) drawn in red, illustrating

Lemma 3 when r is odd.

Proposition 5. Let n ≥ r+ 1, let S ⊆ [n], and let b be an associated offset. Let σ ⊆ Qb
r+1, and suppose

σ ∈ Ar as a subset of Qr+1. If localDiam(σ ,w) = r for all w ∈ σ , then σ is a maximal simplex in

VR(Qn;r).

Proof. Assume, for contradiction, that σ is not a maximal simplex in VR(Qn;r). This implies there exists

a point x ∈ Qn \σ that can be added to σ to form a simplex. Consider the following cases:

• If πb
S (x) ̸∈ σ , then the antipode πb

S (x) must be in σ . The distance between x and πb
S (x) is given by

d(x,πb
S (x)) = d(x,πb

S (x))+d(πb
S (x),π

b
S (x))≥ 0+(r+1) = r+1.

• If πb
S (x) ∈ σ , then d(x,πb

S (x))≥ 1. Since the localDiam(σ ,w) = r for all w ∈ σ , there exists y ∈ σ

such that d(πb
S (x),y) = r. Consequently,

d(x,y) = d(x,πb
S (x))+d(πb

S (x),y)≥ 1+ r.

Both cases lead to the conclusion that the diameter of σ exceeds r, contradicting the assumption that

σ /∈ Ar.

Now by Proposition 5 we have that the maximal simplices σ in VR(Qr+1;r) is still maximal in

VR(Qn;r). We recall that cHull(σ) represents the smallest isometric copy of a cube containing σ .
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Lemma 3. If r ≥ 2, then there exists a maximal simplex σ ⊆ Qr+1 from Ar with localDiam(σ ,y) = r for

all y ∈ σ , and with cHull(σ) = Qr+1.

Proof. First, consider the case r≥ 2 to be even, making r+1 is odd. Define σ as the collection of vertices

in Qr+1 with an even number of 1s in their coordinates.

Given r+1 is odd, each vertex x in σ has its antipode x featuring an even number of 0s and an odd

number of 1s, which implies that x /∈ σ . This confirms σ ∈ Ar.

To assess the local diameter, consider any vertex y in σ and create y′ by flipping one of y’s coordinates.

The new vertex y′ remains in σ , given the preserved even count of 1’s, and differs from y in exactly one

coordinate, setting d(y,y′) = r. Therefore, localDiam(σ ,y) = r for all y ∈ σ , establishing σ as maximal

according to Proposition 5.

To demonstrate that cHull(σ) =Qr+1, we first acknowledge that cHull(σ)⊂Qr+1 as cHull(σ) repre-

sents the minimum cube containing σ . To argue by contradiction, assume that cHull(σ)⊊ Qr+1, implying

all the vertices of σ share at least one fixed coordinate. However, given r ≥ 2, any single coordinate can

vary independently, and then fill in the rest of the coordinates to obtain a vertex of σ :

• If the chosen coordinate was 1, fill another coordinate as 1 and the rest as 0;

• If the chosen coordinate was 0, fill it and another coordinate as 1 and the rest as 0.

This point satisfies the coordinates contain an even number of value 1, which contradicts with σ as the

collection of all vertices in Qr+1 whose coordinates contain an even number of value 1.

For the scenario where r≥ 3 is odd, we extend the argument as follows: Let τ be the maximal simplex

in Qr obtained in the proof of the even case. Define

σ = τ×{0,1} ⊆ Qr+1.

Formally speaking, σ = ι
(0)
[r] (Qr)∪ ι

(1)
[r] (Qr), with the associated index set being S = [r].

We first verify that σ ∈ Ar. Consider a point x ∈ σ is of the form x = y×{i} with y∈ τ , i∈ {0,1}. As

antipode x = y×{1− i} and y ∈ Ar−1, so y /∈ τ , and x /∈ τ×{0,1}. Hence we have σ ∈Ar and Therefore

localDiam(σ ,x) = r.
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We proceed by determining the local diameter. Given x= y×{i}with y∈ τ and knowing localDiam(τ,y)=

r−1, there exists y′ ∈ τ such that d(y,y′) = r−1. Consequently, y′×{1− i} ∈ τ and d(y×{i},y′×{1−

i}) = r.

It remains to prove that cHull(σ) = Qr+1. Similarly as in the proof of the even case, if cHull(σ) ⊊

Qr+1, there would be a single coordinate shared by all the points of σ .

• If the chosen coordinate was the last one, i.e. σ = τ×{0} or σ = τ×{1}, then let the last coordinate

as 1 or 0;

• Any of the first r coordinates was chosen, we can construct it by the even case.

We have now reached a juncture where we are adequately equipped to prove the final theorem of this

chapter.

Theorem 1. For r ≥ 2,

rankH2r−1(V R(Qn;r))≥ 2n−(r+1)
(

n
r+1

)
.

Proof. For notational convenience, let k = 2n−(r+1)( n
r+1

)
. There are k isometric copies of Qr+1 in Qn

obtained via embeddings ι , which we enumerate as C1,C2, . . . ,Ck. For each i:

(1) Consider σi as the maximal simplex in Ci established by Proposition 5 and Lemma 3.

(2) Let us denote by [αi] the cross-polytopal generator consideration in the homology group H2r−1(VR(Ci;r)).The

generator [αi] is characterized more explicitly as a linear combination of the elements within the

set Ar, each oriented appropriately. In formal terms, the generator αi can be expressed as αi =∑
j∈J n jγ j + nσi, where each γ j denotes a simplex of dimensional (2r − 1) and J is an index set.

And we have same coefficients, i.e. n j = n for all j ∈ J, because αi ∈ H2r−1(VR(Ci;r)), so ∂αi = 0,

therefore we have n j = n. Hence αi = n(
∑

j∈J γ j + σi). And recall we have a standard (2r − 1)-

dimensional cycle γ generating H22−1(VR(Qr+1;r)), which is defined as the sum of appropriately

oriented elements of Ar, so the coefficient of σ is 1 in γ . Therefore the coefficient of σi in all αi is 1.
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(3) Let ωi be the (2r−1)-cochain on Qn mapping σi to 1 and the rest of the (2r−1)-dimensional simplices

to 0. That is

ωi(τ) =


1, ifτ = σi

0, ifτ ̸= σi

,

where τ is a 2r−1 dimensional simplex. And we can claim that the cochains ωi are cocycles. Because

σi is maximal simplex in Ci, there is no 2r-dimensional simplex in Ci containing σi. Therefore ∂ i(ωi)=

0, which means ωi are cocycles.

(4) Observe that σi is not contained as a term in α j for any i ̸= j. We can prove it by contradiction,

suppose that the maximal simplex σi in Ci, also lies in C j. Since σi is part of both Ci and C j, it follows

that σi ⊆Ci∩C j. Consequently, σi is a subset of the convex hull of σi, i.e. σi ⊆ cHull(σi)⊆Ci∩C j.

However, according to Lemma 3, cHull(σi) =Ci and Ci ̸⊆Ci∩C j, leading to a contradiction. Next, we

compute the following cap products [ωi]⌢
[
α j

]
and [ωi]⌢

[
α j

]
for i ̸= j. Let (2r−1)-dimensional

simplex τ j = τ j[v
j
0, ...,v

j
2r ], by the definition of cap product,

[ωi]⌢ [αi] =
∑
j∈J

1 ·ωi(τ j[v
j
0, . . . ,v

j
2r ]) · τ j[v j

2r ]

= 1 ·ωi(σi[vi
0, . . . ,v

i
2r ]) ·σi[vi

2r ]

= 1 ·1 ·σi[vi
2r ] ̸= 0

Similarly, we have [ωi]⌢
[
α j

]
= 0.

To demonstrate that the homology classes [αi] in H2r−1VR(Qn;r)) are linearly independent through

the natural inclusion, consider a linear combination
∑k

i=1 λi[αi] = 0 for coefficients λi ∈ Z. Applying

the cap product with [ω j], leading to λ j = 0 by (4) above. Specifically, for each j ∈ J, we know

[ω j] ⌢ 0 = 0, and instead of 0 as
∑k

i=1 λi[αi], i.e. [ω j] ⌢
∑k

i=1 λi[αi] = 0. Utilizing the bilinear

property of the cap product, we obtain [ω j]⌢
∑k

i=1 λi[αi] =
∑k

i=1([ω j]⌢ λi[αi]). Given that

[ω j]⌢ λi[αi] =


λi ·σi[vi

2r ], if i = j

0, if i ̸= j
,
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It follows that λi = 0 for all i ∈ {1,2, · · ·k}.

Therefore H2r−1(VR(Qn;r)) contains at least has k generators, that is rankHr−1(V R(Qn;r)) ≥ k =

2n−(r+1)( n
r+1

)
.
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