
Timely Remote Estimation and Applications to Situational Awareness

by

Tasmeen Zaman Ornee

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 4, 2024

Keywords: Remote estimation, age of information, Gauss-Markov processes, restless
multi-armed bandit

Copyright 2024 by Tasmeen Zaman Ornee

Approved by

Yin Sun, Committee Chair, Associate Professor of Electrical and Computer Engineering,
Auburn University

Anthony Ephremides, Distinguished University Professor Emeritus, Electrical and
Computer Engineering, University of Maryland

Jitendra Tugnait, Professor of Electrical and Computer Engineering, Auburn University
Shiwen Mao, Professor of Electrical and Computer Engineering, Auburn University

SueAnne Griffith, Assistant Professor of Electrical and Computer Engineering, Auburn
University

Yazhou Tu, Assistant Professor of Computer Science and Software Engineering, Auburn
University



Abstract

In real-time monitoring and networked control systems, sensor observations from vehi-

cles, robots, UAVs, or stock markets, are transmitted to a monitoring or controlling unit,

which could be any kind of decision-making device. Real-time services often require fresh and

timely data which are usually in the form of a signal. A key performance metric characteriz-

ing data freshness is the Age of Information (AoI). However, data signals can exhibit diverse

behavior, sometimes evolving slowly and later on evolving very quickly. Therefore, only

considering the time difference is insufficient to characterize the variation of a signal. In this

dissertation, we investigate the performance of a remote estimation system by considering

both the data signal value and its timeliness.

First, we consider the sampling problem for the remote estimation of a scalar Gauss-

Markov process. The optimal sampling problem is a constrained continuous-time Markov

Decision Process (MDP) with an uncountable state space. Our analysis reveals that the

optimal sampling policy is a threshold policy on instantaneous estimation error and the

threshold is found. If the sampler has no knowledge of the process, the optimal sampling

problem reduces to an MDP for minimizing nonlinear age functions. In both problems, the

optimal sampling policies can be computed by low-complexity algorithms.

Next, We generalize this study from single-source, single-channel to multiple-source,

multiple-channel and formulate a scheduling problem for the remote estimation of multiple

Gauss-Markov processes. This problem is a continuous-time Restless Multi-armed Bandit

(RMAB) with a continuous state space. We prove that all bandits are indexable and derive

an exact expression of the Whittle index. Our results unite two theoretical frameworks

that are used for remote estimation and AoI minimization: threshold-based sampling and

Whittle index-based scheduling. In these investigations, the numerical evidence shows that

our proposed policy achieves high-performance gain over existing policies.

Finally, we study a scheduling problem for maximizing situational awareness in safety-

critical systems where a centralized monitor pulls updates from multiple agents monitoring

several safety-critical situations. Based on the received updates, multiple estimators deter-

mine the current safety-critical situations. We provide a novel framework that quantifies
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the loss due to the unawareness of potential danger which depends on the AoI and the

observed signal value. To minimize the penalty, we study an RMAB problem and provide

a low-complexity scheduling algorithm that is asymptotically optimal. Numerical evidence

shows that our scheduling policy can achieve up to 100 times performance gain over periodic

updating and up to 10 times over randomized policy.
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Chapter 1

Introduction

Networked control and cyber-physical systems have become extensively dominant over the

recent years. This rapid growth underscores the significance of timely updates of the system

states for accurate state estimation and effective decision making. For instance, a timely

and precise estimate of the nearby vehicles and pedestrians is essential in autonomous driv-

ing. The real-time knowledge of surgical robot movements is crucial in remote surgery.

Beyond these domains, such as UAV navigation, factory automation, environment watch,

augmented/virtual reality applications, etc, real-time state estimation in optimizing the per-

formance of networked systems is of paramount importance.

To evaluate the freshness of state updates, the concept of Age of Information, or simply

age, was introduced to measure the timeliness of state updates received from a remote

transmitter [1–3]. Let U(t) be the generation time of the freshest received state update at

time t. The age of information, as a function of t, is defined as ∆(t) = t − U(t), which is

the time difference between the freshest updates available at the transmitter and receiver.

Recently, the AoI has emerged as a crucial metric for the extensive applications of state

updates among systems connected over networks. As shown in Figure 1.1, the age ∆(t)

grows linearly with time and drops to a smaller value whenever a packet is delivered. In

addition to the linear AoI ∆(t), recent advancements have shown that nonlinear functions

p(∆(t)) of the AoI can serve as valuable metrics for information freshness in signal estimation,

control, and, wireless communications (e.g., the freshness of channel state information).

In many real-time systems, the information of interest — e.g., the trajectory of UAV

mobility trajectory, sensor measurements, and stock prices is conveyed through the value

of a time-varying signal Xt, which may change slowly at some time and exhibit more rapid

fluctuations later. Hence, the time difference described by the AoI ∆(t) = t − U(t) or its

nonlinear functions cannot fully characterize how much the signal value has varied during

the same time period, i.e., Xt−XUt . Hence, the status-update policy that minimizes the AoI

is insufficient for minimizing the signal estimation error. One important research question is

how to design efficient status updating policies that improve the system performance better

1
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Figure 1.1: An evolution of the age ∆(t) over time where Si is the generation time of the i-th
packet and Di is the delivery time of the i-th packet.

beyond just relying on AoI-based status updating policies, especially in more complex real-time

scenarios. Motivated by this, we seek the answer to the above-mentioned research question

to find structural properties of efficient status updating policies to handle more general signal

models.

In this dissertation, we aim to answer the following questions: (i) how to design an

optimal sampling policy for the remote estimation of scalar Gauss-Markov signal process

over a random delay channel, (ii) how to design a sampling and transmission scheduling

policy for the remote estimation of multiple Gauss-Markov processes over multiple random

delay channels, and (iii) how to design a transmission scheduling policy to maximize the

situational awareness in safety-critical systems.

1.1 Outline and Main Contributions

In Chapter 2, we answer the first question: (i) how to design an optimal sampling

policy for the remote estimation of the Gauss-Markov signal process over a random delay

channel? To answer this question, we consider a remote estimation system, where samples

of a scalar Gauss–Markov signal are taken at a source node and forwarded to a remote

estimator through an i.i.d. random delay channel. The estimator reconstructs an estimate

of the real-time signal value from causally received samples. The optimal sampling policy for

minimizing the mean square estimation error is a threshold policy, in which a new sample

is taken once the instantaneous estimation error exceeds a predetermined threshold. When

the sampler does not know current and history signal values, the optimal sampling problem

reduces to a nonlinear AoI minimization problem. A new sample is taken in the AoI-optimal

2



sampling policy once the expected estimation error exceeds a threshold. The threshold

can be computed by low-complexity algorithms, and the insights behind these algorithms

are provided. These optimal sampling results were established (i) for general service time

distributions of the queueing server, (ii) for both stable and unstable scalar Gauss–Markov

signals, and (iii) for sampling problems both with and without a sampling rate constraint.

In chapter 3, we consider a noisy sample of the scalar Gauss-Markov process over a noisy

channel. We obtain the performance upper and lower bounds for the remote estimation of

the noisy Gauss-Markov process.

In Chapter 4, we answer the second question: ii) how to design a sampling and trans-

mission scheduling policy for the remote estimation of multiple Gauss-Markov processes over

multiple random delay channels? To answer this question, we generalize the sampling prob-

lem of scalar Gauss-Markov signals in multi-source, multi-channel scenario, where a scheduler

determines when to take samples from multiple Gauss-Markov processes and send them to re-

mote estimators over multiple i.i.d. random delay channels. The objective of the scheduler is

to minimize the weighted sum of the time-average expected estimation errors of these Gauss-

Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB)

with a continuous state space. We prove that all bandits are indexable and derive an exact

expression of the Whittle index. To the extent of our knowledge, this is the first Whittle

index policy for multi-source signal-aware remote estimation of Gauss-Markov processes.

We further investigate signal-agnostic remote estimation and develop a Whittle index policy

for multi-source AoI minimization. Our results unite two theoretical frameworks that were

used for remote estimation and AoI minimization: threshold-based sampling and Whittle

index-based scheduling. In the single-source, single-channel scenario, we demonstrate that

the optimal solution to the sampling and scheduling problem can be equivalently expressed

as both a threshold-based sampling strategy and a Whittle index-based scheduling policy.

Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i)

the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the

threshold-based sampling strategy.
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In Chapter 5, we answer the third question: (iii) how to design a transmission scheduling

policy to maximize the situational awareness in safety-critical systems? To answer this ques-

tion, we investigate a status-updating system consisting of multiple agent-estimator pairs.

A centralized monitor pulls updates from multiple agents that are monitoring several safety-

critical situations (e.g., carbon monoxide density in forest fire detection, machine safety in

industrial automation, and road safety). Based on the received updates, multiple estima-

tors determine the current safety-critical situations. Due to transmission errors and limited

communication resources, the updates may not be fresh, resulting in the possibility of misun-

derstanding the current situation. In particular, if a dangerous situation is misinterpreted as

safe, the safety risk is high. In this study, we introduce a novel framework that quantifies the

penalty due to the unawareness of a potentially dangerous situation. This situation-unaware

penalty function depends on two key factors: the AoI and the observed signal value. To min-

imize the penalty, we study a pull-based multi-agent, multi-channel transmission scheduling

problem. Our analysis reveals that for optimal estimators, it is always beneficial to keep

the channels busy. Due to communication resource constraints, the scheduling problem can

be modeled as a Restless Multi-armed Bandit (RMAB) problem. By utilizing relaxation

and Lagrangian decomposition of the RMAB, we provide a low-complexity scheduling al-

gorithm that is asymptotically optimal. Our results hold for both reliable and unreliable

channels. Numerical evidence shows that our scheduling policy can achieve up to 100 times

performance gain over periodic updating and up to 10 times over randomized policy.

1.2 Literature Review

Next, I present the literature review of prior works.

AoI-based Sampling and Scheduling

There exists a significantly large number of studies on the AoI ∆(t), e.g., [1, 4–25].

In [1], the authors provided a simple example of a status updating system, where samples

of a Wiener process Wt are forwarded to a remote estimator. The age of the delivered

sample is ∆(t) = t − U(t) if U(t) is the generation time of the latest received sample.

Furthermore, the MMSE estimate of Wt is Ŵt = WU(t) and the variance of this estimator
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is E[(Wt − Ŵt)
2] = ∆(t). In [5], the authors proposed a sampling policy for a discrete-

time source process by incorporating mutual information as a measure for maximizing the

information freshness. The results in [5] were further extended for both continuous and

discrete-time source processes in [4] where the non-linear functions of the age were used to

measure data freshness. In [6], sampling and scheduling policy for multi-source systems was

studied by analyzing the peak age and peak average age. In [7], the authors analyzed the

status age when the message may take various routes in the network for queueing systems. In

[8], the optimal control for information updates traveled from a source to a remote destination

was studied and the optimal tradeoff between the updated policy and the AoI was found.

The authors also showed that in many cases, the optimal policy is to wait a certain amount

before sending the next update. The average age and average peak age have been analyzed

for various queueing systems in, e.g., [1, 7, 9, 10]. The optimality of the Last-Come, First-

Served (LCFS) policy, or more generally the Last-Generated, First-Served (LGFS) policy,

was established for various queueing system models in [13–15,19]. Optimal sampling policies

for minimizing non-linear age functions were developed in, e.g., [4, 5, 8, 24]. Age-optimal

transmission scheduling of wireless networks was investigated in, e.g., [11, 12, 16–18, 20, 21].

In [25], a game-theoretic perspective of the age was studied and the authors proposed a

sampling policy by studying the timeliness of the status update where an attacker sabotages

the system by jamming the channel and maximizing the age of information. which does not

have a signal model. A broad survey in the area of AoI is presented in [26].

Remote Estimation

The results in this dissertation also have a tight connection with the area of remote

estimation, e.g., [27–33] by adding a queue between the sampler and estimator. In [27],

remote state estimation in first-order linear time-invariant (LTI) discrete-time systems was

considered with a quadratic cost function and finite time horizon. They showed that a time-

dependent threshold-based sampler and Kalman-like estimator are jointly optimal. In [28],

the authors investigated the joint optimization of paging and registration policies in cellu-

lar networks, which is essentially the same as a joint sampling and estimation optimization

problem with an indicator-type cost function and an infinite time horizon. They used ma-

jorization theory and Riesz’s rearrangement inequality to show that, if the state process is
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modeled as a symmetric or Gaussian random walk, a threshold-based sampler and a nearest

distance estimator are jointly optimal. This is the first study pointing out that the sam-

pler and estimator have different information patterns. In [29], The authors considered a

remote estimation problem with an energy-harvesting sensor and a remote estimator, where

the sampling decision at the sensor is constrained by the energy level of the battery. They

proved that an energy-level dependent threshold-based sampler and a Kalman-like estimator

are jointly optimal. In [30], [31], optimal sampling of Wiener processes was studied, where

the transmission time from the sampler to the estimator is zero. Optimal sampling of OU

processes was also considered in [30], which is solved by discretizing time and using dynamic

programming to solve the discrete-time optimal stopping problems. In [34], the optimal

sampler of OU processes is obtained analytically. In the optimal sampling policy, sampling

is suspended when the server is busy and is reactivated once the server becomes idle. In

addition, the threshold precisely was also characterized. The optimal sampling policy for

the Wiener process in [35] is a limiting case. Remote estimation of the Wiener process with

random two-way delay was considered in [36]. Remote estimation over several different chan-

nel models was recently studied in, e.g., [32, 33]. In [27–34], the optimal sampling policies

were proven to be threshold policies. Because of the queueing model, the optimal sampling

policy in [34] has a different structure from those in [27–33]. Specifically, In [37], a jointly

optimal sampler, quantizer, and estimator design was found for a class of continuous-time

Markov processes under a bit-rate constraint. In [38], the quantization and coding schemes

on the estimation performance are studied. A recent survey on remote estimation systems

was presented in [39].

Restless Multi-armed Bandit Problems

AoI-based scheduling for timely status updating has been studied extensively in, e.g.,

[11,16,24,40–47]. In [11], the authors showed that under inference constraints, the schedul-

ing problem for minimizing the age in wireless networks is NP-hard. In [40], the authors

minimized the weighted-sum peak AoI in a multi-source status updating system, subject

to constraints on per-source battery lifetime. A joint sampling and scheduling problem for

minimizing increasing AoI functions was considered in [24]. When the system state follows

a binary ON-OFF Markov process, Whittle index scheduling policies for remote estimation
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were developed in [48]. AoI minimization in single-hop networks was considered in [45].

AoI-based scheduling with timely throughput constraints was considered in [16]. A Whittle

index-based scheduling algorithm for minimizing AoI for stochastic arrivals was considered

in [42]. In [43], [41], the Whittle index policy to minimize age functions for reliable and

unreliable channels was proposed. A Whittle index policy for multiple source scheduling

for binary Markov sources was studied in [47]. For signal-agnostic remote estimation, a

Whittle index policy was obtained in [49] for minimizing increasing AoI functions. In [46],

the authors proposed a Whittle index policy for minimizing non-monotonic AoI functions.

Besides Whittle index-based policies that require an indexability condition, non-indexable

scheduling policies were also studied in [50–54]. In this dissertation, we solve two RMAB

problems in Chapter 4 (by establishing indexability and developing a Whittle Index policy)

and Chapter 5 (by developing a Maximum Gain First policy that does not need to satisfy

indexability).

Related Metrics other than AoI

There exists a large number of studies on minimizing linear and nonlinear AoI functions

[4, 8, 24, 26, 34, 55, 56]. One limitation of AoI is that it only captures the timeliness of the

information while neglecting the actual influence of the conveyed information. To address

this, several performance metrics were introduced in conjunction with AoI [26,47,57–64]. In

[58], the concept of Age of Incorrect Information (AoII) was introduced which is characterized

as a function of both age and estimation error. In [57], Age of Synchronization (AoS) was

considered along with AoI to measure the freshness of a local cache. Urgency of Information

(UoI) was proposed in [59] that captures the context-dependence of the status information

along with AoI. Version AoI was introduced in [26] which represents how many versions

are outdated at the receiver compared to the transmitter. An AoI at Query (QAoI) metric

was investigated in [60], [62], [63] to capture the freshness only when required in a pull-

based communication system. Value of Information (VoI), defined by the Shannon mutual

information was investigated in [64]. In [61], the authors studied the cost of actuation error

which is a goal-oriented measure to capture the costs associated with decisions. Shanon

conditional entropy was utilized as the performance metric in [47] as the Uncertainty of

Information. In addition, several research papers studied information-theoretic measures
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to evaluate the impact of information freshness along with information content [4, 46, 47,

54, 64–67]. In [4, 64–66], the authors employed Shannon’s mutual information to quantify

the information carried by received data messages regarding the current signal value at the

source and used Shannon’s conditional entropy to measure the uncertainty about the current

signal value. Based on the studies of [4, 64–66], the authors in [47] utilized Uncertainty

of Information (UoI) by using the Shannon’s conditional entropy. However, there exists

a disparity between these information-theoretic metrics and the performance of real-time

applications such as remote estimation and inference. In [46,54,67], a generalized conditional

entropy associated with a loss function L, or L-conditional entropy HL(Yt|,∆(t), Xt−∆(t)) was

utilized to address this disparity, where Yt is the true state of the source and Xt−∆(t) is the

observed value. In Chapter 5, we consider a signal-aware scheduling scheme while the earlier

studies focused on signal-agnostic scenarios.

1.3 Thesis Organization

The thesis is organized as follows: In Chapter 2, we develop a low-complexity sampling

policy for the remote estimation of scalar Gauss-Markov process in single-source, single-

channel for general i.i.d. service time distributions. In Chapter 3, we extend this result

by considering noisy samples and noisy channels for which we derive an explicit expression

of the performance upper and lower bounds. In Chapter 4, we generalize the sampling

problem for the remote estimation of Gauss-Markov processes in single-source, single-channel

case to transmission scheduling problem in multi-source, multi-channel case. In Chapter 5,

we consider a status updating problem for safety critical systems to maximize situational

awareness. Finally, we present the concluding remarks and possible future research directions

in Chapter 6.
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Chapter 2

Remote Estimation of Single Gauss-Markov Process over Single Channel

2.1 Introduction

Timely updates of the system state are of significant importance for state estimation and

decision-making in networked control and cyber-physical systems, such as UAV navigation,

robotics control, mobility tracking, and environment monitoring systems. To evaluate the

freshness of state updates, the concept of AoI was introduced to measure the timeliness of

state samples received from a remote transmitter [1–3]. Let U(t) be the generation time

of the freshest received state sample at time t. The AoI, as a function of t, is defined as

∆(t) = t − U(t), which is the time difference between the freshest samples available at the

transmitter and receiver.

Recently, the AoI concept has received significant attention, because of the extensive

applications of state updates among systems connected over communication networks. The

states of many systems, such as UAV mobility trajectory and sensor measurements, are in the

form of a signal Xt, that may change slowly at some time and vary more dynamically later.

Hence, the time difference described by the age ∆(t) = t− U(t) only partially characterizes

the variation Xt−XU(t) of the system state, and the state update policy that minimizes the

AoI does not minimize the state estimation error. This result was first shown in [35], where

a sampling problem of Wiener processes was solved and the optimal sampling policy was

shown to have an intuitive structure. As the results therein hold only for signals that can

be modeled as a Wiener process, one would wonder how to, and whether it is possible to,

extend [35] for handling more general signal models.

In this chapter, we generalize [35] by exploring the problem of sampling a Gauss-Markov

process Xt. From the obtained results, we hope to find useful structural properties of the

optimal sampler design that can be potentially applied to more general signal models. The

Gauss-Markov process Xt is defined as the solution to the stochastic differential equation
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Figure 2.1: A single-source, single-channel remote estimation system.

(SDE) [68,69]

dXt = θ(µ−Xt)dt+ σdWt, (2.1)

where µ, θ, and σ > 0 are parameters and Wt represents a Wiener process. Based on the

parameter θ, Xt can be classified into three different cases. If θ > 0, then it is called a stable

Ornstein-Uhlenbeck (OU) process which is the continuous-time analog of the well-known

first-order autoregressive process, i.e., AR(1) process. It is the only nontrivial continuous-

time process that is stationary, Gaussian, and Markovian [69]. If θ = 0, then it becomes

a Wiener process. If θ < 0, it is known as the unstable Ornstein-Uhlenbeck (OU) process.

Examples of first-order systems that can be described as the Gauss-Markov process include

interest rates, currency exchange rates, and commodity prices (with modifications) [70],

control systems such as node mobility in mobile ad-hoc networks, robotic swarms, and UAV

systems [71,72], and physical processes such as the transfer of liquids or gases in and out of

a tank [27].

As shown in Figure 2.1, samples of a Gauss-Markov process are forwarded to a remote

estimator through a channel in a first-come, first-served (FCFS) fashion. The samples expe-

rience i.i.d. random transmission times over the channel, which is caused by random sample

size, channel fading, interference, congestions, etc. For example, UAVs flying close to WiFi

access points may suffer from long communication delay and instability issues, because they

receive strong interference from the WiFi access points [73]. We assume that at any time

only one sample can be served by the channel. The samples that are waiting to be sent are

stored in a queue at the transmitter. Hence, the channel is modeled as an FCFS queue with
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i.i.d. service times. The service time distributions considered in this paper are quite general:

they are only required to have a finite mean. This queueing model is helpful in analyzing

the robustness of remote estimation systems with occasionally long transmission times.

The estimator utilizes causally received samples to construct an estimate X̂t of the real-

time signal value Xt. The quality of remote estimation is measured by the time-average

mean-squared estimation error, i.e.,

mse = lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
. (2.2)

Our goal is to find the optimal sampling policy that minimizes mse by causally choosing

the sampling times subject to a maximum sampling rate constraint. In practice, the cost

(e.g., energy, CPU cycle, storage) for state updates increases with the average sampling rate.

Hence, we are striving to find the optimum tradeoff between estimation error and update

cost. In addition, the unconstrained problem is also solved. The contributions of this paper

are summarized as follows:

• The optimal sampling problem for minimizing the mse under a sampling rate constraint

is formulated as a constrained continuous-time Markov decision process (MDP) with an

uncountable state space. Because of the curse of dimensionality, such problems often

lack low-complexity solutions that are arbitrarily accurate. However, we were able

to solve this MDP exactly: The optimal sampling policy is proven to be a threshold

policy on instantaneous estimation error, where the threshold is a non-linear function

v(β) of a parameter β. The value of β is equal to the summation of the optimal

objective value of the MDP and the optimal Lagrangian dual variable associated with

the sampling rate constraint. If there is no sampling rate constraint, the Lagrangian

dual variable is zero, and hence β is exactly the optimal objective value. Among the

technical tools developed to prove this result is a free boundary method [74], [75] for

finding the optimal stopping time of diffusion processes.

• The optimal sampler design of the Wiener process in [35] is a limiting case of the

above result. By comparing the optimal sampling policies of OU process and the

Wiener process, we find that the threshold function v(β) changes according to the
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signal model, where the parameter β is determined in the same way for both signal

models.

• Further, we consider a class of signal-agnostic sampling policies, where the sampling

times are determined without using knowledge of the signal value of the observed

Gauss-Markov process; the parameters of the process are known. The optimal signal-

agnostic sampling problem is equivalent to an MDP for minimizing the time-average

of a nonlinear age function p(∆(t)), which has been solved recently in [4]. The age-

optimal sampling policy is a threshold policy on expected estimation error, where the

threshold function is simply v(β) = β and the parameter β is determined in the same

way as above.

• The above results hold for (i) general service time distributions with a finite mean and

(ii) sampling problems both with and without a sampling rate constraint. Numerical

results suggest that the optimal sampling policy is better than zero-wait sampling and

classic uniform sampling.

One interesting observation from these results is that the threshold function v(β) varies

with respect to the signal model and sampling problem, but the parameter β is determined

in the same way.

2.2 Model

This section describes the single-source, single-channel model as shown in Figure 2.1.

2.2.1 System Model

We consider the remote estimation system illustrated in Figure 2.1, where an observer

takes samples from a Gauss-Markov process Xt and forwards the samples to an estimator

through a communication channel. The channel is modeled as a single-server FCFS queue

with i.i.d. service times. The system starts to operate at time t = 0. The i-th sample is

generated at time Si and is delivered to the estimator at time Di with a service time Yi,

which satisfy Si ≤ Si+1, Si + Yi ≤ Di, Di + Yi+1 ≤ Di+1, and 0 < E[Yi] < ∞ for all i.
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Figure 2.2: Evolution of the age ∆(t) over time.

Each sample packet (Si, XSi
) contains the sampling time Si and the sample value XSi

. Let

U(t) = max{Si : Di ≤ t} be the sampling time of the latest received sample at time t. The

age of information, or simply age, at time t is defined as [1, 2]

∆(t) = t− U(t) = t−max{Si : Di ≤ t}, (2.3)

which is shown in Fig. 2.2. Because Di ≤ Di+1, ∆(t) can be also expressed as

∆(t) = t− Si, if t ∈ [Di, Di+1), i = 0, 1, 2, . . . (2.4)

The initial state of the system is assumed to satisfy S0 = 0, D0 = Y0, X0 and ∆(0) are

finite constants. The parameters µ, θ, and σ in (2.1) are known at both the sampler and

estimator.

Let It ∈ {0, 1} represent the idle/busy state of the server at time t. We assume that

whenever a sample is delivered, an acknowledgment is sent back to the sampler with zero

delay. By this, the idle/busy state It of the server is known at the sampler. Therefore, the

information that is available at the sampler at time t can be expressed as {Xs, Is : 0 ≤ s ≤ t}.

2.2.2 Sampling Policies

In causal sampling policies, each sampling time Si is determined based on the up-to-

date information that is available at the sampler, without using any future information. In

probability theory, such sampling times are represented by stopping times.
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To define stopping time precisely, the concepts of σ-field and filtration are needed. Let

us define the σ-field

Nt = σ(Xs, Is : 0 ≤ s ≤ t),

which is the set of events whose occurrence is determined by the realization of the process

{Xs, Is, 0 ≤ s ≤ t} up to time t. Filtration is a non-decreasing sequence of σ-fields. Our

analysis requires a strong Markov property, which is satisfied when the filtration is right-

continuous. Define

N+
t = ∩s>tNs, (2.5)

then {N+
t , t ≥ 0} is a right-continuous filtration of the information process {Xs, Is, t ≥ 0}

[76]. In a causal sampling policy, each sampling time is a stopping time with respect to

{N+
t , t ≥ 0}, i.e.,

{Si ≤ t} ∈ N+
t , ∀t ≥ 0. (2.6)

In other words, whether sample i has been generated by time t (i.e., whether {Si ≤ t} or

{Si > t}) is determined by the realization of the process {Xs, Is, 0 ≤ s ≤ t} up to time t.

Let π = (S1, S2, ...) represent a sampling policy. We use Π to represent the set of causal

sampling policies that satisfy two conditions: (i) Each sampling policy π ∈ Π satisfies (2.6)

for all i. (ii) The sequence of inter-sampling times {Ti = Si+1 − Si, i = 0, 1, . . .} forms a

regenerative process [77, Section 6.1]: There exists an increasing sequence 0 ≤ k1 < k2 < . . .

of almost surely finite random integers such that the post-kj process {Tkj+i, i = 0, 1, . . .}
has the same distribution as the post-k0 process {Tk0+i, i = 0, 1, . . .} and is independent

of the pre-kj process {Ti, i = 0, 1, . . . , kj − 1}; further, we assume that E[kj+1 − kj] < ∞,

E[Sk1 ] <∞, and 0 < E[Skj+1
− Skj ] <∞, j = 1, 2, . . .1

1We will optimize lim supT→∞ E[
∫ T

0
(Xt − X̂t)

2dt]/T , but operationally a nicer criterion is

lim supi→∞ E[
∫Di

0
(Xt − X̂t)

2dt]/E[Di]. These criteria correspond to two definitions of “average cost per
unit time” that are widely used in the literature of semi-Markov decision processes. These two criteria are
equivalent, if {T1, T2, . . .} is a regenerative process, or more generally, if {T1, T2, . . .} has only one ergodic
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From this, we can obtain that Si is finite almost surely for all i. We assume that the

Gauss-Markov process {Xt, t ≥ 0} and the service times {Yi, i = 1, 2, . . . } are mutually

independent, and do not change according to the sampling policy.

A sampling policy π ∈ Π is said to be signal-agnostic (signal-aware), if π is (not nec-

essarily) independent of {Xt, t ≥ 0}. Let Πsignal-agnostic ⊂ Π denote the set of signal-agnostic

sampling policies, defined as

Πsignal-agnostic={π∈ Π : π is independent of {Xt, t ≥ 0}}. (2.7)

2.2.3 MMSE Estimator

According to (2.6), Si is a finite stopping time. By using the expression of OU process

for stable scenario [83, Eq. (3)] and the strong Markov property of the OU process [74, Eq.

(4.3.27)], a solution to (3.1) for t ∈ [Si,∞) given by the following three cases:

Xt =


XSi

e−θ(t−Si) + µ
[
1− e−θ(t−Si)

]
+ σ√

2θ
e−θ(t−Si)We2θ(t−Si)−1, if θ > 0,

σWt, if θ = 0,

XSi
e−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
+ σ√

−2θ
e−θ(t−Si)W1−e2θ(t−Si) , if θ < 0.

(2.8)

At any time t ≥ 0, the estimator uses causally received samples to construct an estimate

X̂t of the real-time signal value Xt. The information available to the estimator consists of

two parts: (i) Mt = {(Si, XSi
, Di) : Di ≤ t}, which contains the sampling time Si, sample

value XSi
, and delivery time Di of the samples that have been delivered by time t and (ii) the

fact that no sample has been received after the last delivery time max{Di : Di ≤ t}. Similar

to [30, 35, 84], we assume that the estimator neglects the second part of the information.2

Then, as shown in Appendix 2.C, if t ∈ [Di, Di+1), i = 0, 1, 2, . . ., the minimum mean square

class. If no condition is imposed, however, they are different. The interested readers are referred to [78–82]
for more discussions.

2We note that this assumption can be removed by considering a joint sampler and estimator design
problem. Specifically, it was shown in [27–29,32,33] that when the sampler and estimator are jointly optimized
in discrete-time systems, the optimal estimator has the same expression no matter with or without the second
part of information. As pointed out in [28, p. 619], such a structure-property of the MMSE estimator can
be also established for continuous-time systems. The goal of this paper is to find the closed-form expression
of the optimal sampler under this assumption. The remaining task of finding the jointly optimal sampler
and estimator design can be done by further using the majorization techniques developed in [27–29, 32, 33];
see [37] for a recent treatment on this task.

15



error (MMSE) estimator is determined by

X̂t =E[Xt|Mt] =

XSi
e−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
, if θ ̸= 0,

σWSi
, if θ = 0.

(2.9)

Hence, the estimation error of the MMSE estimator for t ∈ [Di, Di+1), i = 0, 1, 2, . . . is

Xt − X̂t =


σ√
2θ
e−θ(t−Si)We2θ(t−Si)−1, if θ > 0,

σ(Wt −WSi
), if θ = 0,

σ√
−2θ

e−θ(t−Si)W1−e2θ(t−Si) , if θ < 0.

(2.10)

2.3 Problem Formulation

The goal of this paper is to find the optimal sampling policy that minimizes the mean-

squared estimation error subject to an average sampling-rate constraint, which is formulated

as the following problem:

mseopt = inf
π∈Π

lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
(2.11)

s.t. lim inf
n→∞

1

n
E

[
n∑

i=1

(Si+1 − Si)

]
≥ 1

fmax

, (2.12)

where mseopt is the optimum value of (2.11) and fmax is the maximum allowed sampling rate.

When fmax =∞, this problem becomes an unconstrained problem.

2.4 Signal-aware Sampling

2.4.1 Optimal Sampler without Sampling Rate Constraint

Problem (2.11) is a constrained continuous-time MDP with a continuous state space.

However, we found an exact solution to this problem.

16



To present this solution, let us consider a Gauss-Markov process Ot with the initial state

O0 = 0 and parameter µ = 0. According to (4.4), Ot can be expressed as

Ot =


σ√
2θ
e−θtWe2θt−1, if θ > 0,

σ(Wt −WSi
), if θ = 0,

σ√
−2θ

e−θtW1−e2θt , if θ < 0.

(2.13)

Define

mseYi
= E[O2

Yi
] =

σ2

2θ
E[1− e−2θYi ], (2.14)

mse∞ = E[O2
∞] =

σ2

2θ
. (2.15)

In the sequel, we will see that mseYi
and mse∞ are the lower and upper bounds of mseopt,

respectively. According to (2.10) and (2.13)-(2.15), mseYi
represents the estimation error

when the estimation is made based on a sample that was generated Yi seconds ago, and

mse∞ represents the estimation error for the case that no sample has been delivered to the

estimator before. We will also need to use the function3

G(x) =
ex

2

x

∫ x

0

e−t2dt=
ex

2

x

√
π

2
erf(x), x ∈ [0,∞), (2.16)

where erf(·) is the error function [85], defined as

erf(x) =
2√
π

∫ x

0

e−t2dt. (2.17)

We first consider the unconstrained optimal sampling problem, i.e., fmax =∞, such that

the rate constraint (2.12) can be removed. In this scenario, the optimal sampler is provided

in the following theorem.

Theorem 2.1 (Sampling without Rate Constraint). If fmax =∞ and the Yi’s are i.i.d. with

0 < E[Yi] <∞, then (S1(β), S2(β), . . .) with a parameter β is an optimal solution to (2.11),

3If x = 0, G(x) is defined as its right limit G(0) = limx→0+ G(x) = 1.
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where

Si+1(β) = inf
{
t ≥ Di(β) :

∣∣Xt − X̂t

∣∣≥v(β)
}
, (2.18)

Di(β) = Si(β) + Yi, v(β) is defined by

v(β) =
σ√
θ
G−1

(
mse∞ −mseYi

mse∞ − β

)
, (2.19)

G−1(·) is the inverse function of G(·) in (2.16) and β is the unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
−βE[Di+1(β)−Di(β)]=0. (2.20)

The optimal objective value to (2.11) is given by

mseopt =
E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (2.21)

Furthermore, β is exactly the optimal value to (2.11), i.e., β = mseopt.

The proof of Theorem 2.1 is explained in Section 2.6. The optimal sampling policy in

Theorem 3.1 has a nice structure. Specifically, the (i+ 1)-th sample is taken at the earliest

time t satisfying two conditions: (i) The i-th sample has already been delivered by time t,

i.e., t ≥ Di(β), and (ii) the estimation error |Xt − X̂t| is no smaller than a pre-determined

threshold v(β), where v(·) is a non-linear function defined in (2.19). In Section 2.6, it is shown

that mseYi
≤ β < mse∞. Further, it is not hard to show that G(x) is strictly increasing on

[0,∞) and G(0) = 1. Hence, its inverse function G−1(·) and the threshold v(β) are properly

defined and v(β) ≥ 0.

Three Algorithms for Solving (2.20)

We now present three algorithms for computing the root of (2.20). Because the Si(β)’s

are stopping times, numerically calculating the expectations in (2.20) appears to be a difficult
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Figure 2.3: f(β) in (2.30) for i.i.d. exponential service time with E[Yi] = 1, where the parameters
of the Gauss-Markov process are σ = 1 and θ = 0.5. For these parameters, mseYi = 0.5 and
mse∞ = 1.

task. Nonetheless, this challenge can be solved by resorting to the following lemma, which is

obtained by using Dynkin’s formula [75, Theorem 7.4.1] and the optional stopping theorem.

Lemma 2.1 In Theorem 2.1, it holds that

E[Di+1(β)−Di(β)] = E[max{R1(v(β))−R1(OYi
), 0}] + E[Yi], (2.22)

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
=E[max{R2(v(β))−R2(OYi

), 0}]

+mse∞[E(Yi)− γ] + E
[
max{v2(β), O2

Yi
}
]
γ, (2.23)

where

γ =
1

2θ
E[1− e−2θYi ], (2.24)

R1(v) =
v2

σ2 2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
, (2.25)

R2(v) = −
v2

2θ
+

v2

2θ
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
. (2.26)
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Proof 2.1 See Appendix 2.I.

In (2.25) and (2.26), we have used the generalized hypergeometric function, which is

defined by [86, Eq. 16.2.1]

pFq(a1, a2, · · · , ap; b1, b2, · · · bq; z) =
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp)n

zn

n!
, (2.27)

where

(a)0 = 1, (2.28)

(a)n = a(a+ 1)(a+ 2)· · ·(a+ n− 1), n ≥ 1. (2.29)

Using Lemma 1, the expectations in (2.20) can be evaluated by Monte Carlo simulations

of scalar random variables OYi
and Yi, which is much simpler than directly simulating the

entire random process {Ot, t ≥ 0}.
For notational simplicity, we rewrite (2.20) as

f(β) = f1(β)− βf2(β) = 0, (2.30)

where f1(β) = E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]
and f2(β) = E[Di+1(β)−Di(β)]. The function f(β)

has several nice properties, which are asserted in the following lemma and illustrated in

Figure 2.3.

Lemma 2.2 The function f(β) has the following properties:

(i) f(β) is concave, continuous, and strictly decreasing in β,

(ii) f(mseYi
) > 0 and lim

β→mse−∞

f(β) = −∞.

Proof 2.2 See Appendix 2.A.

The uniqueness of the root of f(β) follows immediately from Lemma 2.2.

Because f(β) is decreasing and has a unique root, one can use a bisection search method

to solve (2.20), which is illustrated in Algorithm 1. The bisection search method has a

globally linear convergence speed.
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Algorithm 1 Bisection search method for solving (2.20)

1: given l = mseYi
, u = mse∞, tolerance ϵ > 0.

2: repeat
3: β := (l + u)/2.
4: o := f1(β)− βf2(β).
5: if o ≥ 0, l := β; else, u := β.
6: until u− l ≤ ϵ.
7: return β.

Algorithm 2 Newton’s method for solving (2.20)

1: given tolerance ϵ > 0.
2: Pick initial value β0∈[mseopt,mse∞).
3: repeat
4: βk+1 := βk − f(βk)

f ′(βk)
.

5: until | f(βk)
f ′(βk)

| ≤ ϵ.
6: return βk+1.

Algorithm 3 Fixed-point iterations for solving (2.20)

1: given tolerance ϵ > 0.
2: Pick initial value β0∈[mseopt,mse∞).
3: repeat
4: βk+1 :=

f1(βk)
f2(βk)

.

5: until |βk+1 − f1(βk)
f2(βk)

| ≤ ϵ.
6: return βk+1.

To achieve an even faster convergence speed, we can use Newton’s method [87]

βk+1 = βk −
f(βk)

f ′(βk)
(2.31)

to solve (2.20), as shown in Algorithm 2. We suggest choosing the initial value β0 of Newton’s

method from the set [mseopt,mse∞), i.e., β0 is larger than the root mseopt. Such an initial

value β0 can be found by taking a few bisection search iterations, or by using the mse of a

sub-optimal sampling policy [88]. Because f(β) is a concave function, the choice of initial

value β0 ∈ [mseopt,mse∞) ensures that βk is a decreasing sequence converging to mseopt [89].

Moreover, because R1(·) and R2(·) are twice continuously differentiable, the function f(β)

is twice continuously differentiable. Therefore, Newton’s method is known to have a locally

quadratic convergence speed in the neighborhood of the root mseopt [87, Chapter 2].
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exponential with mean E[Yi] = 1, the parameters of the Gauss-Markov process are σ = 1 and
θ = 0.5.
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θ = 0.5. For bisection search, we plot the difference |u − l| between the upper bound u and lower
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Newton’s method requires to compute the gradient f ′(βk), which can be solved by a

finite-difference approximation, as in the secant method [87]. In the sequel, we introduce

another approximation approach of Newton’s method, which is of independent interest. In

Theorem 2.1, we have shown that

mseopt = argmax
β∈[mseYi

,mse∞)

f1(β)

f2(β)
. (2.32)

Hence, the gradient of f1(β)/f2(β) is equal to zero at the optimal solution β = mseopt, which

leads to

f ′
1(mseopt)f2(mseopt)− f1(mseopt)f

′
2(mseopt) = 0. (2.33)

Therefore,

mseopt =
f1(mseopt)

f2(mseopt)
=

f ′
1(mseopt)

f ′
2(mseopt)

. (2.34)

Because f1(β) and f2(β) are smooth functions, when βk is in the neighborhood of mseopt,

(2.34) implies that f ′
1(βk)− βkf

′
2(βk) ≈ f ′

1(mseopt)−mseoptf
′
2(mseopt) = 0. Substituting this

into (2.31), yields

βk+1 =βk −
f1(βk)− βkf2(βk)

f ′
1(βk)− f2(βk)− βkf ′

2(βk)

≈βk −
f1(βk)− βkf2(βk)

−f2(βk)

=
f1(βk)

f2(βk)
, (2.35)

which is a fixed-point iterative algorithm (see Algorithm 3) that was recently proposed

in [88]. Similar to Newton’s method, the fixed-point updates in (2.35) converge to mseopt

if the initial value β0∈[mseopt,mse∞). Moreover, (2.35) has a locally quadratic convergence

speed, see [88] for a proof of this result. A numerical comparison of these three algorithms

is shown in Figure 2.4 and Figure 2.5. One can observe that the fixed-point updates and

Newton’s method converge faster than the bisection search.
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Figure 2.6: The function h(β) in (2.36) for i.i.d. exponential service time with E[Yi] = 1, where the
parameters of the Gauss-Markov process are σ = 1 and θ = 0.5. For these parameters, mseYi = 0.5
and mse∞ = 1.
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Figure 2.7: The function g(β) in (2.40) for i.i.d. exponential service time with E[Yi] = 1 and
fmax = 0.8, where the parameters of the Gauss-Markov process are σ = 1 and θ = 0.5. For these
parameters, mseYi = 0.5 and mse∞ = 1.
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We note that although (2.20), and equivalently (2.30), has a unique root mseopt, the

fixed-point equation

h(β) =
f1(β)

f2(β)
− β =

f1(β)− βf2(β)

f2(β)
= 0 (2.36)

has two roots mseopt and mse∞. See Figure 2.6 for an illustration of the two roots of h(β).

As shown in Appendix 2.O, the correct root for computing the optimal threshold is mseopt.

Interestingly, Algorithms 1-3 converge to the desired root mseopt, instead of mse∞. Finally,

we remark that these three algorithms can be used to find the optimal threshold in the

age-optimal sampling problem studied in, e.g., [4, 5].

2.4.2 Optimal Sampler with Sampling Rate Constraint

When the sampling rate constraint (2.12) is taken into consideration, a solution to (2.11)

is expressed in the following theorem:

Theorem 2.2 (Sampling with Rate Constraint). If the Yi’s are i.i.d. with 0 < E[Yi] < ∞,

then (2.18)-(2.20) is an optimal solution to (2.11). The value of β ≥ 0 is determined in two

cases: β is the unique root of (2.20) if the root of (2.20) satisfies

E[Di+1(β)−Di(β)] > 1/fmax; (2.37)

otherwise, β is the unique root of

E[Di+1(β)−Di(β)] = 1/fmax. (2.38)

The optimal objective value to (2.11) is given by

mseopt =
E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (2.39)

The proof of Theorem 2.2 is explained in Section 2.6. One can see that Theorem 2.1 is

a special case of Theorem 2.2 when fmax =∞.
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Algorithm 4 Bisection search method for solving (2.38)

1: given l = mseYi
, u = mse∞, tolerance ϵ > 0.

2: repeat
3: β := (l + u)/2.
4: o := E[Di+1(β)−Di(β)].
5: if o ≥ 1/fmax, u := β; else, l := β.
6: until u− l ≤ ϵ.
7: return β.

In Theorem 2.2, the calculation of β falls into two cases: In one case, β can be computed

by solving (2.20) via Algorithms 1-3. For this case to occur, the sampling rate constraint

(2.12) needs to be inactive at the root of (2.20). Because Di(β) = Si(β) + Yi, we can obtain

E[Di+1(β) − Di(β)] = E[Si+1(β) − Si(β)] and hence (2.37) holds when the sampling rate

constraint (2.12) is inactive.

In the other case, β is selected to satisfy the sampling rate constraint (2.12) with equality,

as required in (2.38). Before we solve (2.38), let us first use f2(β) to express (2.38) as

g(β) =
1

fmax

− f2(β) = 0. (2.40)

Lemma 2.3 The function g(β) has the following properties:

(i) g(β) is continuous and strictly decreasing in β,

(ii) g(mseYi
) ≥ 0 and lim

β→mse−∞

g(β) = −∞ if the root of (4.56) does not satisfy (2.37).

Proof 2.3 See Appendix 2.B.

According to Lemma 2.3, (2.38) has a unique root in [mseYi
,mse∞), which is denoted as β∗.

In addition, the numerical results in Figure 2.7 suggest that g(β) should be concave, for

which we do not have proof.

The root β∗ can be solved by using bisection search and Newton’s method, which are

explained in Algorithms 4-5, respectively. Similar to the discussions in Section 2.4.1, the

convergence of Algorithm 4 is ensured by Lemma 2.3. Moreover, if g(β) is concave and

β0 ∈ [β∗,mse∞), βk in Algorithm 5 is a decreasing sequence converging to the root β∗ of

(2.38) [89].
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Algorithm 5 Newton’s method for solving (2.38)

1: given tolerance ϵ > 0.
2: Pick initial value β0∈[β∗,mse∞).
3: repeat
4: βk+1 := βk − g(βk)

g′(βk)
.

5: until | g(βk)
g′(βk)

| ≤ ϵ.
6: return βk+1.

2.4.3 Special Case: Sampling of the Wiener Process

In the limiting case that σ = 1 and θ → 0, the Gauss-Markov process Xt in (3.1)

becomes a Wiener process Xt = Wt. In this case, the MMSE estimator in (2.9) is given by

X̂t = WSi
, if t ∈ [Di, Di+1). (2.41)

As shown in Appendix 2.E, v(·) defined by (2.19) tends to

v(β) =
√
3(β − E[Yi]). (2.42)

Theorem 2.3 If σ = 1, θ → 0, and the Yi’s are i.i.d. with 0 < E[Yi] < ∞, then

(S1(β), S2(β),

. . .) with a parameter β is an optimal solution to (2.11), where

Si+1(β) = inf
{
t ≥ Di(β) :

∣∣Xt − X̂t

∣∣≥√3(β − E[Yi])
}
, (2.43)

Di(β) = Si(β) + Yi. The value of β≥0 is determined in two cases: β is the unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
−βE[Di+1(β)−Di(β)]=0, (2.44)

if the root of (2.44) satisfies E[Di+1(β) − Di(β)] > 1/fmax; otherwise, β is the unique root

of E[Di+1(β)−Di(β)] = 1/fmax. The optimal objective value to (2.11) is given by

mseopt =
E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (2.45)

27



Theorem 2.3 is an alternative form of Theorem 1 in [35] and hence its proof is omitted.

The benefit of the new expression in Theorem 2.3 is that it allows to character β based on

the optimal objective value mseopt and the sampling rate constraint (2.12), in the same way

as in Theorems 2.1-2.2. This appears to be more fundamental than the expression in [35].

The new form of optimal sampling policy of Wiener processes was also discovered in [36]

without considering the constraint on (2.12).

2.5 Signal-agnostic Sampling

In signal-agnostic sampling policies, the sampling times Si are determined based only

on the service times Yi, but not on the observed Gauss-Markov process {Xt, t ≥ 0}.

Lemma 2.4 If π ∈ Πsignal-agnostic, then the mean-squared estimation error of the Gauss-

Markov process Xt at time t is

p(∆(t)) =E
[
(Xt − X̂t)

2
∣∣π, Y1, Y2, . . .

]
=

σ2

2θ

(
1− e−2θ∆(t)

)
, (2.46)

which is a strictly increasing function of the age ∆(t).

Proof 2.4 See Appendix 2.D.

According to Lemma 2.4, for every policy π ∈ Πsignal-agnostic,

E
[∫ T

0

(Xt − X̂t)
2dt

]
= E

[∫ T

0

p(∆(t))dt

]
. (2.47)

Hence, minimizing the mean-squared estimation error among signal-agnostic sampling poli-

cies can be formulated as the following MDP for minimizing the expected time-average of

the nonlinear age function p(∆(t)) in (2.46):

mseage-opt = inf
π∈Πsignal-agnostic

lim sup
T→∞

1

T
E
[∫ T

0

p(∆(t))dt

]
(2.48)

s.t. lim inf
n→∞

1

n
E

[
n∑

i=1

(Si+1 − Si)

]
≥ 1

fmax

, (2.49)
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where mseage-opt is the optimal value of (2.48). By (2.46), p(∆(t)) and mseage-opt are bounded.

Because Πsignal-agnostic ⊂ Π, it follows immediately that mseopt ≤ mseage-opt.

Problem (2.48) is one instance of the problems recently solved in Corollary 3 of [4] for

general strictly increasing functions p(·). From this, a solution to (2.48) for signal-agnostic

sampling is given by

Theorem 2.4 If the Yi’s are i.i.d. with 0 < E[Yi] < ∞, then (S1(β), S2(β), . . .) with a

parameter β is an optimal solution to (2.48), where

Si+1(β) = inf
{
t ≥ Di(β) :E[(Xt+Yi+1

−X̂t+Yi+1
)2]≥β

}
, (2.50)

Di(β) = Si(β) + Yi and β is the unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
−βE[Di+1(β)−Di(β)]=0, (2.51)

if the root of (2.51) satisfies E[Di+1(β)−Di(β)] > 1/fmax; otherwise, β is the unique root of

E[Di+1(β)−Di(β)] = 1/fmax. (2.52)

The optimal objective value to (2.48) is given by

mseage-opt =
E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (2.53)

Theorem 2.4 follows from Corollary 3 of [4] and Lemma 2.4. Similar to the case of

signal-aware sampling, the roots of (2.51) and (2.52) can be solved by using Algorithms 1-5.

In fact, Algorithms 1-5 can be used for minimizing general non-decreasing age penalty [4].

2.5.1 Discussions and Remarks

The difference among Theorems 2.1-2.4 is only in the expressions (2.18), (2.43), (2.50)

of threshold policies. In signal-aware sampling policies (2.18) and (2.43), the sampling time

is determined by the instantaneous estimation error
∣∣Xt − X̂t

∣∣, and the threshold function
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v(·) is determined by the specific signal model. In the signal-agnostic sampling policy (2.50),

the sampling time is determined by the expected estimation error E[(Xt+Yi+1
−X̂t+Yi+1

)2] at

time t+ Yi+1. We note that if t = Si+1(β), then t+ Yi+1 = Si+1(β) + Yi+1 = Di+1(β) is the

delivery time of the new sample. Hence, (2.50) requires that the expected estimation error

upon the delivery of the new sample is no less than β. The parameter β in Theorems 2.1-2.4

is determined by the optimal objective value and the sampling rate constraint in the same

manner. Later on in (2.67), we will further see that β is exactly equal to the summation of

the optimal objective value of the MDP and the optimal Lagrangian dual variable associated

with the sampling rate constraint. Finally, it is worth noting that Theorems 2.1-2.4 hold for

all distributions of the service times Yi satisfying 0 < E[Yi] < ∞, and for both constrained

and unconstrained sampling problems.

2.6 Proof of the Main Results

We first provide the proof of Theorem 2.2. After that Theorem 2.1 follows immediately

because it is a special case of Theorem 2.2. We prove Theorem 2.2 in four steps: (i) We

first show that sampling should be suspended when the server is busy, which can be used to

simplify (2.11). (ii) We use an extended Dinkelbach’s method [90] and Lagrangian duality

method to decompose the simplified problem into a series of mutually independent per-

sample MDP. (iii) We utilize the free boundary method from optimal stopping theory [74]

to solve the per-sample MDPs analytically. (iv) Finally, we use a geometric multiplier

method [91] to show that the duality gap is zero. The above proof framework is an extension

to that used in [4, 35], and the most challenging part is Step (iii).

2.6.1 Preliminaries

The Gauss-Markov process Ot in (2.13) with initial state Ot = 0 and parameter µ = 0

is the solution to the SDE

dOt = −θOtdt+ σdWt. (2.54)
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In addition, the infinitesimal generator of Ot is [92, Eq. A1.22]

G = −θu ∂

∂u
+

σ2

2

∂2

∂u2
. (2.55)

According to (2.18) and (2.9), the estimation error (Xt−X̂t) is of the same distribution with

Ot−Si
, if t ∈ [Di, Di+1). By using Dynkin’s formula and the optional stopping theorem, we

obtain the following lemma.

Lemma 2.5 Let τ ≥ 0 be a stopping time of the Gauss-Markov process Ot with E [τ ] <∞,

then

E
[∫ τ

0

O2
t dt

]
= E

[
σ2

2θ
τ − 1

2θ
O2

τ

]
. (2.56)

If, in addition, τ is the first exit time of a bounded set, then

E [τ ] = E[R1(Oτ )], (2.57)

E
[∫ τ

0

O2
t dt

]
= E[R2(Oτ )], (2.58)

where R1(·) and R2(·) are defined in (2.25) and (2.26), respectively.

Proof 2.5 See Appendix 2.F.

2.6.2 Suspend Sampling when the Server is Busy

By using the strong Markov property of the Gauss-Markov process Xt and the orthog-

onality principle of MMSE estimation, we obtain the following useful lemma:

Lemma 2.6 Suppose that a feasible sampling policy for problem (2.11) is π, in which at least

one sample is taken when the server is busy processing an earlier generated sample. Then,

there exists another feasible policy π′ for problem (2.11) which has a smaller estimation error

than policy π. Therefore, in (2.11), it is suboptimal to take a new sample before the previous

sample is delivered.

Proof 2.6 See Appendix 2.G.
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A similar result was obtained in [35] for the sampling of Wiener processes.

Because {Xt − X̂t, t ∈ [Di, Di+1)} and {Ot−Si
, t ∈ [Di, Di+1)} are of the same distribu-

tion, for each i = 1, 2, . . .,

E
[∫ Di+1

Di

(Xt − X̂t)
2dt

]
= E

[∫ Di+1

Di

O2
t−Si

dt

]
= E

[∫ Yi+Zi+Yi+1

Yi

O2
sds

]
. (2.59)

Because Ti is a regenerative process, the renewal theory [93] tells us that 1
n
E[Sn] is a conver-

gent sequence and

lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
= lim

n→∞

E
[∫ Dn

0
(Xt − X̂t)

2dt
]

E[Dn]

= lim
n→∞

∑n
i=1 E

[∫ Yi+Zi+Yi+1

Yi
O2

sds
]

∑n
i=1 E [Yi + Zi]

. (2.60)

Hence, (2.11) can be rewritten as the following MDP:

mseopt = inf
π∈Π1

lim
n→∞

∑n
i=1 E

[∫ Yi+Zi+Yi+1

Yi
O2

sds
]

∑n
i=1 E [Yi + Zi]

(2.61)

s.t. lim
n→∞

1

n

n∑
i=1

E [Yi + Zi] ≥
1

fmax

,

where mseopt is the optimal value of (2.61).

2.6.3 Reformulation of Problem (2.61)

In order to solve (2.61), let us consider the following MDP with a parameter c ≥ 0:

h(c)= inf
π∈Π1

lim
n→∞

1

n

n∑
i=1

E
[∫ Yi+Zi+Yi+1

Yi

O2
sds− c(Yi + Zi)

]
(2.62)

s.t. lim
n→∞

1

n

n∑
i=1

E [Yi + Zi] ≥
1

fmax

,

where h(c) is the optimum value of (2.62). Similar to Dinkelbach’s method [90] for nonlinear

fractional programming, the following lemma holds for the MDP (2.61):
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Lemma 2.7 [35] The following assertions are true:

(a). mseopt ⪌ c if and only if h(c) ⪌ 0.

(b). If h(c) = 0, the solutions to (2.61) and (2.62) are identical.

Hence, the solution to (2.61) can be obtained by solving (2.62) and seeking c = mseopt ≥
0 such that

h(mseopt) = 0. (2.63)

2.6.4 Lagrangian Dual Problem of (2.62)

Next, we use the Lagrangian dual approach to solve (2.62) with c = mseopt. We define

the Lagrangian associated with (2.62) as

L(π;λ) = lim
n→∞

1

n

n∑
i=1

E
[ ∫ Yi+Zi+Yi+1

Yi

O2
sds− (mseopt + λ)(Yi+Zi)

]
+

λ

fmax

, (2.64)

where λ ≥ 0 is the dual variable. Let

e(λ) = inf
π∈Π1

L(π;λ). (2.65)

Then, the dual problem of (2.62) is defined by

d = max
λ≥0

e(λ), (2.66)

where d is the optimum value of (2.66). Weak duality [91] implies d ≤ h(mseopt). In Section

2.6.6, we will establish strong duality, i.e., d = h(mseopt).

In the sequel, we decompose (2.65) into a sequence of mutually independent per-sample

MDPs. Let us define

β = mseopt + λ. (2.67)
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As shown in Appendix 2.H, by using Lemma 2.5, we can obtain

E
[∫ Yi+Zi+Yi+1

Yi

O2
sds−β(Yi+Zi)

]
=E

[∫ Yi+Zi

Yi

(O2
s − β)ds+ γO2

Yi+Zi

]
+

σ2

2θ
[E(Yi+1)− γ]− βE[Yi+1], (2.68)

where γ is defined in (2.24). For any s ≥ 0, define the σ-fields F s
t = σ(Os+r −Os : r ∈ [0, t])

and the right-continuous filtration F s+
t = ∩r>tF s

r . Then, {F s+
t , t ≥ 0} is the filtration of

the time-shifted Gauss-Markov process {Os+t − Os, t ∈ [0,∞)}. Define Ms as the set of

integrable stopping times of {Os+t −Os, t ∈ [0,∞)}, i.e.,

Ms = {τ ≥ 0 : {τ ≤ t} ∈ F s+
t ,E [τ ] <∞}. (2.69)

By using a sufficient statistic of (2.65), we can obtain

Lemma 2.8 An optimal solution (Z0, Z1, . . .) to (2.65) satisfies

inf
Zi∈MYi

E
[∫ Yi+Zi

Yi

(O2
s − β)ds+ γO2

Yi+Zi

∣∣∣∣OYi
, Yi

]
, (2.70)

where β ≥ 0 and γ ≥ 0 are defined in (2.67) and (2.24), respectively.

Proof 2.7 See Appendix 2.J.

By this, (2.65) is decomposed as a series of per-sample MDP (2.70).

2.6.5 Analytical Solution to Per-sample MDP (2.70)

We solve (2.70) by using the free-boundary approach for optimal stopping problems

[74]. Let us consider a Gauss-Markov process Vt with initial state V0 = v and parameter

µ = 0. Define the σ-fields FV
t = σ(Vs : s ∈ [0, t]), FV+

t = ∩r>tFV
r , and the filtration

{FV+
t , t ≥ 0} associated to {Vt, t ≥ 0}. Define MV as the set of integrable stopping times of

{Vt, t ∈ [0,∞)}, i.e.,

MV = {τ ≥ 0 : {τ ≤ t} ∈ FV+
t ,E [τ ] <∞}. (2.71)
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Our goal is to solve the following optimal stopping problem for any given initial state

v ∈ R

sup
τ∈MV

Ev

[
−γV 2

τ −
∫ τ

0

(V 2
s − β)ds

]
, (2.72)

where Ev[·] is the conditional expectation for given initial state V0 = v, γ and β are given by

(2.24) and (2.67), respectively. Hence, (2.70) is one instance of (2.72) with v = OYi
, where

the supremum is taken over all stopping times τ of Vt. In this subsection, we focus on the

case that β in (2.72) satisfies mseYi
≤ β < mse∞. Later on in Section 2.6.6, we will show

that this condition is indeed satisfied by the optimal solution to (2.62).

To solve (2.72), we first find a candidate solution to (2.72) by solving a free boundary

problem; then we prove that the free boundary solution is indeed the value function of

(4.128):

A Candidate Solution to (2.72)

Now, we show how to solve (2.72). The general optimal stopping theory in Chapter I

of [74] tells us that the following guess of the stopping time should be optimal for Problem

(2.72):

τ∗ = inf{t ≥ 0 : |Vt| ≥ v∗}, (2.73)

where v∗ ≥ 0 is the optimal stopping threshold to be found. Observe that in this guess,

the continuation region (−v∗, v∗) is assumed symmetric around zero. This is because the

Gauss-Markov process is symmetric, i.e., the process {−Vt, t ≥ 0} is also a Gauss-Markov

process started at −V0 = −v. Similarly, we can also argue that the value function of problem

(2.72) should be even.
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According to [74, Chapter 8], and [75, Chapter 10], the value function and the optimal

stopping threshold v∗ should satisfy the following free boundary problem:

σ2

2
H ′′(v)− θvH ′(v) = v2 − β, v ∈ (−v∗, v∗), (2.74)

H(±v∗) = −γv2∗, (2.75)

H ′(±v∗) = ∓2γv∗. (2.76)

In Appendix 2.K, we use the integrating factor method [94, Sec. I.5] to find the general

solution to (2.74), which is given by

H(v) =

− v2

2θ
+

(
1

2θ
− β

σ2

)
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
v2 + C1erfi

(√
θ

σ
v

)
+ C2, v ∈ (−v∗, v∗), (2.77)

where C1 and C2 are constants to be found for satisfying (2.75)-(2.76), and erfi(x) is the

imaginary error function, i.e.,

erfi(x) =
2√
π

∫ x

0

et
2

dt. (2.78)

Because H(v) should be even but erfi(x) is odd, we should choose C1 = 0. Further, in order

to satisfy the boundary condition (2.75), C2 is chosen as

C2 =
1

2θ
E
(
e−2θYi

)
v2∗−

(
1

2θ
− β

σ2

)
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2∗
)
v2∗, (2.79)

where we have used (2.24). With this, the expression of H(v) is obtained in the continuation

region (−v∗, v∗). In the stopping region |v| ≥ v∗, the stopping time in (2.73) is simply τ∗ = 0,

because |V0| = |v| ≥ v∗. Hence, if |v| ≥ v∗, the objective value achieved by the sampling

time (2.73) is

Ev

[
−γv2 −

∫ 0

0

(V 2
s − β)ds

]
=−γv2. (2.80)
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Combining (2.77)-(2.80), we obtain a candidate of the value function for (2.72):

H(v) =


−v2

2θ
+
(

1
2θ
− β

σ2

)
2F2

(
1, 1; 3

2
, 2; θ

σ2v
2
)
v2 + C2,

if |v| < v∗,

−γv2, if |v| ≥ v∗.

(2.81)

Next, we find a candidate value of the optimal stopping threshold v∗. By taking the

gradient of H(v), we get

H ′(v) = −v

θ
+

(
σ

θ
3
2

− 2β

σ
√
θ

)
F

(√
θ

σ
v

)
, v ∈ (−v∗, v∗), (2.82)

where

F (x) = ex
2

∫ x

0

e−t2dt. (2.83)

The boundary condition (2.76) implies that v∗ is the root of

−v

θ
+

(
σ

θ
3
2

− 2β

σ
√
θ

)
F

(√
θ

σ
v

)
= −2γv. (2.84)

Substituting (3.10), (2.15), and (2.24) into (2.84), yields that v∗ is the root of

(mse∞ − β)G

(√
θ

σ
v

)
= mse∞ −mseYi

, (2.85)

where G(·) is defined in (2.16). Because mseYi
≤ β < mse∞, G(x) is strictly increasing on

[0,∞), and G(0) = 1, we know that (2.85) has a unique non-negative root v∗. Further, the

root v∗ can be expressed as a function v(β) of β, where v(β) is defined in (2.19). By this,

we obtain a candidate solution to (2.72).

Verification of the Optimality of the Candidate Solution

Next, we use Itô’s formula to verify the above candidate solution is indeed optimal, as

stated in the following theorem:
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Theorem 2.5 If mseYi
≤ β < mse∞, then for all v ∈ R, H(v) in (2.81) is the value function

of the optimal stopping problem (2.72). In addition, the optimal stopping time for solving

(2.72) is τ∗ in (2.73), where v∗ = v(β) is given by (2.19).

In order to prove Theorem 4.7, we need to establish the following properties of H(v) in

(2.81), for the case that mseYi
≤ β < mse∞ is satisfied in (2.72):

Lemma 2.9 H(v) = Ev

[
−γV 2

τ∗ −
∫ τ∗
0
(V 2

s − β)ds
]
.

Proof 2.8 See Appendix 2.L.

Lemma 2.10 H(v) ≥ −γv2 for all v ∈ R.

Proof 2.9 See Appendix 2.M.

A function f(v) is said to be excessive for the process Vt if

Evf(Vt) ≤ f(v),∀t ≥ 0, v ∈ R. (2.86)

By using Itô’s formula in stochastic calculus, we can obtain

Lemma 2.11 The function H(v) is excessive for the process Vt.

Proof 2.10 See Appendix 2.N.

Now, we are ready to prove Theorem 4.7.

Proof 2.11 (Proof of Theorem 2.5) In Lemmas 2.9-2.11, we have shown that H(v) =

Ev

[
−γV 2

τ∗ −
∫ τ∗
0
(V 2

s − β)ds
]
, H(v) ≥ −γv2, and H(v) is an excessive function. Moreover,

from the proof of Lemma 2.9, we know that Ev[τ∗] <∞ holds for all v ∈ R. Hence, Pv(τ∗ <

∞) = 1 for all v ∈ R. These conditions and Theorem 1.11 in [74, Section 1.2] imply that τ∗

is an optimal stopping time of (2.72). This completes the proof.

Because (2.70) is a special case of (2.72), we can get from Theorem 2.5 that

Corollary 2.1 If mseYi
≤ β < mse∞, then a solution to (2.70) is (Z1(β), Z2(β), . . .), where

Zi(β) = inf{t ≥ 0 : |OYi+t| ≥ v(β)}, (2.87)

and v(β) is defined in (2.19).
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2.6.6 Zero Duality Gap between (2.62) and (2.66)

Strong duality is established in the following theorem:

Theorem 2.6 If the service times Yi are i.i.d. with 0 < E[Yi] < ∞, then the duality gap

between (2.62) and (2.66) is zero. Further, (Z0(β), Z1(β), . . .) is an optimal solution to both

(2.62) and (2.66), where Zi(β) is determined by

Zi(β) = inf{t ≥ 0 : |OYi+t| ≥ v(β)}, (2.88)

v(β) is defined in (2.19), β ≥ 0 is the root of

E

[∫ Yi+Zi(β)+Yi+1

Yi

O2
t dt

]
− βE[Yi + Zi(β)] = 0, (2.89)

if E[Yi + Zi(β)] > 1/fmax; otherwise, β is the root of E[Yi + Zi(β)] = 1/fmax. In both

cases, mseYi
≤ β < mse∞ is satisfied, and hence (2.19) is well-defined. Further, the optimal

objective value to (2.61) is given by

mseopt =
E
[∫ Yi+Zi(β)+Yi+1

Yi
O2

t dt
]

E[Yi + Zi(β)]
. (2.90)

Proof 2.12 We use [91, Prop. 6.2.5] to find a geometric multiplier for (2.62). This suggests

that the duality gap between (2.62) and (2.66) must be zero because otherwise there exists no

geometric multiplier [91, Prop. 6.2.3(b)]. The details are provided in Appendix 2.O.

Hence, Theorem 2.2 follows from Theorem 2.6. Because Theorem 2.1 is a special case of

Theorem 2.2, Theorem 2.1 is also proven.

2.7 Numerical Comparisons

In this section, we evaluate the estimation error achieved by the following four sampling

policies:

1. Uniform sampling : Periodic sampling with a period given by Si+1 − Si = 1/fmax.
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Figure 2.8: MSE vs fmax tradeoff for i.i.d. exponential service time with E[Yi] = 1, where the
parameters of the Gauss-Markov process are σ = 1 and θ = 0.5.

2. Zero-wait sampling [1, 8]: The sampling policy given by

Si+1 = Si + Yi, (2.91)

which is infeasible when fmax < 1/E[Yi].

3. Age-optimal sampling [4]: The sampling policy given by Theorem 2.4.

4. MSE-optimal sampling : The sampling policy given by Theorem 3.1.

Let mseuniform, msezero-wait, mseage-opt, and mseopt, be the MSEs of uniform sampling, zero-wait

sampling, age-optimal sampling, MSE-optimal sampling, respectively. We can obtain

mseYi
≤ mseopt ≤ mseage-opt ≤ mseuniform ≤ mse∞,

mseage-opt ≤ msezero-wait ≤ mse∞, (2.92)

whenever zero-wait sampling is feasible, which fit with our numerical results. The expecta-

tions in (2.25) and (2.26) are evaluated by taking the average over 1 million samples. The
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parameters of the Gauss-Markov process are given by σ = 1, θ = 0.5, and µ can be chosen

arbitrarily because it does not affect the estimation error.

Figure 2.8 illustrates the tradeoff between the MSE and fmax for i.i.d. exponential

service times with mean E[Yi] = 1. Because E[Yi] = 1, the maximum throughput of the

queue is 1. The lower bound mseYi
is 0.5 and the upper bound mse∞ is 1. In fact, as Yi is an

exponential random variable with mean 1, σ2

2θ
(1− e−2θYi) has a uniform distribution on [0, 1].

Hence, mseYi
= 0.5. For small values of fmax, age-optimal sampling is similar to uniform

sampling, and hence mseage-opt and mseuniform are close to each other in the regime. However,

as fmax grows, mseuniform reaches the upper bound mse∞ and remains constant for fmax ≥ 1.

This is because the queue length of uniform sampling is large at high sampling frequencies.

In particular, when fmax ≥ 1, the queue length of uniform sampling is infinite. On the other

hand, mseage-opt and mseopt decrease with respect to fmax. The reason behind this is that

the set of feasible sampling policies satisfying the constraint in (2.11) and (2.48) becomes

larger as fmax grows, and hence the optimal values of (2.11) and (2.48) are decreasing in

fmax. As we expected, msezero-wait is larger than mseopt and mseage-opt. Moreover, all of them

are between the lower bound mseYi
and upper bound mse∞.

Figures 2.9 and 2.10 depict the MSE of i.i.d. normalized log-normal service time for

fmax = 0.8 and fmax = 1.2, respectively, where Yi = eαXi/E[eαXi ], α > 0 is the scale parameter

of log-normal distribution, and (X1, X2, . . . ) are i.i.d. Gaussian random variables with zero

mean and unit variance. Because E[Yi] = 1, the maximum throughput of the queue is 1. In

Fig. 2.9, since fmax < 1, zero-wait sampling is not feasible and hence is not plotted. As the

scale parameter α grows, the tail of the log-normal distribution becomes heavier.

In both figures, mseage-opt and mseopt drop with α. This phenomenon may look surprising

at first sight, because mseage-opt and mseopt grow quickly in α in the previous study [35] on the

Wiener process. To understand this phenomenon, let us consider the age penalty function

p(∆(t)) in (2.46) for the OU process. As the scale parameter α grows, the service time tends

to become either shorter or much longer than the mean E[Yi], rather than being close to E[Yi].

When ∆(t) is small, p(∆(t)) reduces quickly in ∆(t), and hence the service time smaller than

E[Yi] leads to a fast decrease in the average age penalty; when ∆(t) is quite large, p(∆(t))

cannot increase much because it is upper bounded by mse∞, hence the service time much
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Figure 2.9: MSE vs. the scale parameter α of i.i.d. normalized log-normal service time distribution
with E[Yi] = 1 and fmax = 0.8, where the parameters of the Gauss-Markov process are σ = 1 and
θ = 0.5. Zero-wait sampling is not feasible here as fmax < 1/E[Yi] and hence is not plotted.
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Figure 2.10: MSE vs. the scale parameter α of i.i.d. normalized log-normal service time distribution
E[Yi] = 1 and fmax = 1.2, where the parameters of the Gauss-Markov process are σ = 1, θ = 0.5.
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longer than E[Yi] would not increase the average age penalty by much. By combining these

two trends, the average age penalty mseage-opt decreases in α. The dropping of mseopt in α

can be understood similarly. On the other hand, the age penalty function of the Wiener

process is p(∆(t)) = ∆(t), which is quite different from the case considered here. We also

observe that in both figures, the gap between mseopt and mseage-opt increases as α grows.

2.8 Conclusion

In this chapter, we have studied the optimal sampler design for remote estimation

of the scalar Gauss-Markov processes through queues. We have developed optimal causal

sampling policies that minimize the estimation error of Gauss-Markov processes subject to

a sampling rate constraint. These optimal sampling policies have nice structures and are

easy to compute. A connection between remote estimation and nonlinear age metrics has

been found. The structural properties of the optimal sampling policies shed light on the

possible structure of the optimal sampler designs for more general signal models, such as

Feller processes, which is an important future research direction.
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2.A Proof of Lemma 2.2

Part (i): According to (2.64) and (2.67), the Lagrangian L(π, β) is linear and strictly

decreasing in β. Further, (2.65) tells us that f(β) is the infimum of L(π, β) among all

policies π ∈ Π1. Because the infimum of a linear and strictly decreasing function is concave

and strictly decreasing, f(β) is concave and strictly decreasing in β. Moreover, because f(β)

is concave, it is also continuous.

Part (ii): We first show that f(mseYi
) > 0. According to (2.19), v(mseYi

) = 0. This,

together with (2.25), (2.26), and (2.30), implies

f(mseYi
) =f1(mseYi

)−mseYi
f2(mseYi

)

=mse∞{E[Yi]− γ}+ E[O2
Yi
]γ −mseYi

E[Yi]

=
σ2

2θ

{
E[Yi]−

1

2θ
E
[
1− e−2θYi

]
+

1

2θ

{
E
[
1− e−2θYi

]}2

− E
[
1− e−2θYi

]
E[Yi]

}
.

(2.93)

Therefore, it suffices to prove that

E[Yi]−
1

2θ
E[1− e−2θYi ] +

1

2θ

{
E[1− e−2θYi ]

}2

−E[1− e−2θYi ]E[Yi] > 0, (2.94)

which can be simplified as

(
E[Yi]−

1

2θ
E[1− e−2θYi ]

)
E[e−2θYi ] > 0. (2.95)

Because x > 1− e−x for all x > 0 and E[Yi] > 0, we get

E[2θYi] > E[1− e−2θYi ]. (2.96)

By this, f(mseYi
) > 0 is proven.

Finally, we prove that f(mse∞) < 0. When β → mse−∞, (2.19) tells us that v(β) grows

to infinite. Further, according to (2.25) and (2.26), R1(v(β)) and R2(v(β)) are quite large
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compared to R1(OYi
) and R2(OYi

). Therefore,

lim
β→mse−∞

f(β) =− 1

2θ
lim

β→mse−∞

v2(β)E[e−2θYi ]−mse∞γ

=−∞. (2.97)

This completes the proof.

2.B Proof of Lemma 2.3

Part (i): From (2.22), it is evident that the function f2(β) is continuous and hence,

from (2.40), g(β) is also continuous. The derivatives of R1(v) in (2.25) and v(β) in (2.19)

are given by

R′
1(v) =

√
π

σ
√
θ
erf

(√
θ

σ
v

)
e

θ
σ2 v

2

, (2.98)

v′(β) =
σ√
θ

{
G−1

(
mse∞ −mseYi

mse∞ − β

)}′

. (2.99)

Denote

G−1

(
mse∞ −mseYi

mse∞ − β

)
= y. (2.100)

Then, by using the derivative of inverse function [95], v′(β) in (2.99) becomes

v′(β) =
σ√
θ

1

G′(y)

mse∞ −mseYi

(mse∞ − β)2
, (2.101)

where

G′(x) =
√
πex

2

erf(x)− ex
2

x2

√
π

2
erf(x) +

1

x
> 0 (2.102)

for all x > 0. Hence, v(β) is strictly increasing in β. From (2.98), we know R′
1(v) > 0, i.e.,

R1(v) is strictly increasing in v. Therefore, R1(v(β)) is strictly increasing in β. This further

implies that in (2.22), max{R1(v(β)) − R1(OYi
), 0} is strictly increasing in β. Therefore,
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E[max{R1(v(β)) − R1(OYi
), 0}] is also strictly increasing in β and hence, f2(β) is strictly

increasing in β. Then, by (2.40), g(β) is strictly decreasing in β. This completes the proof.

Part (ii): We first show that g(mseYi
)≥0. If the root of (2.20) does not satisfy (2.37),

then, let β∗ is the root of (2.40). Therefore, g(β∗) = 0. As mseYi
≤ β ≤ mse∞ and from part

(i), g(β) is strictly decreasing in β, we get that

g(mseYi
) ≥ g(β∗) = 0. (2.103)

Hence, g(mseYi
) ≥ 0.

Finally, as β→mse−∞, because v(β) grows to infinite, R1(v(β)) becomes quite large com-

pared to R1(OYi
). Hence,

lim
β→mse−∞

g(β) =
1

fmax

− lim
β→mse−∞

R1(v(β))

=−∞. (2.104)

This complete the proof.

2.C Proof of Equation (2.9)

The MMSE estimator X̂t can be expressed as

X̂t = E[Xt|Mt]

= E[Xt|{(Sj, XSj
, Dj) : Dj ≤ t}]. (2.105)

Recall that Ut = max{Si : Di ≤ t} is the generation time of the latest received sample

at time t. According to the strong Markov property of Xt [74, Eq. (4.3.27)] and the fact

that the Yi’s are independent of {Xt, t ≥ 0}, {Ut, XUt} is a sufficient statistic for estimating

Xt based on {(Sj, XSj
, Dj) : Dj ≤ t}. If t ∈ [Di, Di+1), (2.4) suggests that Ut = Si and
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XUt = XSi
. This and (2.8) tell us that, if t ∈ [Di, Di+1), then

X̂t = E[Xt|{(Si, XSi
, Di) : Di ≤ t}]

= E[Xt|Si, XSi
]

= XSi
e−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
. (2.106)

This completes the proof.

2.D Proof of Lemma 2.4

In any signal-ignorant policy, because the sampling times Si and the service times Yi are

both independent of {Xt, t ≥ 0}, the delivery times Di are also independent of {Xt, t ≥ 0}.
Hence, for any t ∈ [Di, Di+1),

E
[
(Xt − X̂t)

2
∣∣Si, Di, Di+1

]
(a)
= E

[
σ2

2θ
e−2θ(t−Si)W 2

e2θ(t−Si)−1

∣∣∣∣Si, Di, Di+1

]
(b)
=

σ2

2θ

[
1− e−2θ(t−Si)

]
, (2.107)

where Step (a) is due to (2.8)-(2.9) and Step (b) is due to E[W 2
t ] = t for all constant t ≥ 0.

We note that in signal-aware sampling policies,

(Xt − X̂t)
2 =

σ2

2θ
e−2θ(t−Si)W 2

e2θ(t−Si)−1
(2.108)

could be correlated with (Si, Di, Di+1) and hence Step (b) of (2.107) may not hold. Substi-

tuting (2.4) into (2.107), yields that for all t ≥ 0

E
[
(Xt − X̂t)

2
∣∣π, Y1, Y2, . . .

]
=

σ2

2θ

(
1− e−2θ∆t

)
, (2.109)

which is strictly increasing in ∆t. This completes the proof.
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2.E Proof of Equation (2.42)

When σ = 1, (2.85) can be expressed as

(1− 2θβ)G
(√

θv
)
= E

[
e−2θYi

]
, (2.110)

The error function erf(x) has a Maclaurin series representation, given by

erf(x) =
2√
π

[
x− x3

3
+ o(x3)

]
. (2.111)

Hence, the Maclaurin series representation of G(x) in (2.16) is

G(x) = 1 +
2x2

3
+ o(x2). (2.112)

Let x =
√
θv, we get

G
(√

θv
)
= 1 +

2

3
θv2 + o(θ). (2.113)

In addition,

E
[
e−2θYi

]
= 1− 2θE[Yi] + o(θ). (2.114)

Hence, (2.110) can be expressed as

(1− 2βθ)

[
1 +

2

3
θv2 + o(θ)

]
= 1− 2θE[Yi] + o(θ). (2.115)

Expanding (2.115), yields

2θE[Yi]− 2βθ +
2

3
θv2 + o(θ) = 0. (2.116)

Dividing by θ and letting θ → 0 on both sides of (2.116), yields

v2 − 3(β − E[Yi]) = 0. (2.117)
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Equation (2.117) has two roots−
√

3(β − E[Yi]), and
√

3(β − E[Yi]). If v∗ = −
√
3(β − E[Yi]),

the free boundary problem in (2.74)-(2.76) are invalid. Hence, as θ → 0 and σ = 1, the root

of (2.19) is v∗ =
√
3(β − E[Yi]). This completes the proof.

2.F Proof of Lemma 2.5

We first prove (4.100). It is known that the OU process Ot is a Feller process [96, Section

5.5]. By using a property of Feller process in [96, Theorem 3.32], we get that

O2
t −

∫ t

0

G(O2
s)ds

=O2
t −

∫ t

0

(−θOs2Os + σ2)ds

=O2
t − σ2t+ 2θ

∫ t

0

O2
sds (2.118)

is a martingale, where G is the infinitesimal generator of Ot defined in (4.89). According

to [76], the minimum of two stopping times is a stopping time and constant times are stopping

times. Hence, t∧τ is a bounded stopping time for every t ∈ [0,∞), where x∧y = min{x, y}.
Then, by Theorem 8.5.1 of [76], for every t ∈ [0,∞)

E
[∫ t∧τ

0

Os
2ds

]
= E

[
σ2

2θ
(t∧τ)

]
− E

[
1

2θ
O2

t∧τ

]
. (2.119)

Because E
[∫ t∧τ

0
O2

sds
]
and E[t∧τ ] are positive and increasing with respect to t, by using the

monotone convergence theorem [76, Theorem 1.5.5], we get

lim
t→∞

E
[∫ t∧τ

0

O2
sds

]
= E

[∫ τ

0

O2
sds

]
, (2.120)

lim
t→∞

E[(t∧τ)] = E[τ ]. (2.121)

In addition, according to [97, Theorem 2.2],

E
[
max
0≤s≤τ

O2
s

]
≤ C

θ
E
[
log

(
1 +

θτ

σ

)]
≤ C

σ
E [τ ] <∞. (2.122)
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Because O2
t∧τ ≤ sup0≤s≤τ O

2
s for all t and sup0≤s≤τ O

2
s is integratable, by invoking the domi-

nated convergence theorem [76, Theorem 1.5.6], we have

lim
t→∞

E
[
O2

t∧τ
]
= E

[
O2

τ

]
. (2.123)

Combining (4.105)-(4.108), (4.100) is proven.

We now prove (4.101) and (4.102). By using the solution of the ODE in Appendix 2.K,

one can show that R1(v) in (4.37) is the solution to the following ODE

σ2

2
R′′

1(v)− θvR′
1(v) = 1, (2.124)

and R2(v) in (4.38) is the solution to the following ODE

σ2

2
R′′

2(v)− θvR′
2(v) = v2. (2.125)

In addition, R1(v) and R2(v) are twice continuously differentiable. According to Dynkin’s

formula in [75, Theorem 7.4.1 and the remark afterwards], because the initial value of Ot is

O0 = 0, if τ is the first exit time of a bounded set, then

E0[R1(Oτ )] = R1(0) + E0

[∫ τ

0

1ds

]
= R1(0) + E0[τ ], (2.126)

E0[R2(Oτ )] = R2(0) + E0

[∫ τ

0

O2
sds

]
. (2.127)

Because R1(0) = R2(0) = 0, (4.101) and (4.102) follow. This completes the proof.

2.G Proof of Lemma 2.6

Suppose that in the sampling policy π, sample i is generated when the server is busy

sending another sample, and hence sample i needs to wait for some time before being

submitted to the server, i.e., Si < Gi. Let us consider a virtual sampling policy π′ =

{S0, . . . , Si−1, Gi, Si+1, . . .} such that the generation time of sample i is postponed from Si

to Gi. We call policy π′ a virtual policy because it may happen that Gi > Si+1. However,

51



this will not affect our proof below. We will show that the MSE of the sampling policy π′ is

smaller than that of the sampling policy π = {S0, . . . , Si−1, Si, Si+1, . . .}.
Note that {Xt : t ∈ [0,∞)} does not change according to the sampling policy, and the

sample delivery times {D0, D1, D2, . . .} remain the same in policy π and policy π′. Hence,

the only difference between policies π and π′ is that the generation time of sample i is

postponed from Si to Gi. The MMSE estimator under policy π is given by (2.9) and the

MMSE estimator under policy π′ is given by

X̂ ′
t =E[Xt|(Sj, XSj

, Dj)j≤i−1, (Gi, XGi
, Di)]

=

 E[Xt|XGi
, Gi], t ∈ [Di, Di+1);

E[Xt|XSj
, Sj], t ∈ [Dj, Dj+1), j ̸= i.

(2.128)

Next, we consider a third virtual sampling policy π′′ in which the samples (XGi
, Gi) and

(XSi
, Si) are both delivered to the estimator at the same time Di. Clearly, the estimator

under policy π′′ has more information than those under policies π and π′. By following the

arguments in Appendix 2.C, one can show that the MMSE estimator under policy π′′ is

X̂ ′′
t =E[Xt|(Sj, XSj

, Dj)j≤i, (Gi, XGi
, Di)]

=

 E[Xt|XGi
, Gi], t ∈ [Di, Di+1);

E[Xt|XSj
, Sj], t ∈ [Dj, Dj+1), j ̸= i.

(2.129)

Notice that, because of the strong Markov property of OU process, the estimator under policy

π′′ uses the fresher sample (XGi
, Gi), instead of the stale sample (XSi

, Si), to construct X̂ ′′
t

during [Di, Di+1). Because the estimator under policy π′′ has more information than that

under policy π, one can imagine that policy π′′ has a smaller estimation error than policy π,

i.e.,

E
{∫ Di+1

Di

(Xt − X̂t)
2dt

}
≥ E

{∫ Di+1

Di

(Xt − X̂ ′′
t )

2dt

}
. (2.130)
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To prove (4.82), we invoke the orthogonality principle of the MMSE estimator [98, Prop.

V.C.2] under policy π′′ and obtain

E
{∫ Di+1

Di

2(Xt − X̂ ′′
t )(X̂

′′
t − X̂t)dt

}
= 0, (2.131)

where we have used the fact that (XGi
, Gi) and (XSi

, Si) are available by the MMSE estimator

under policy π′′. Next, from (4.83), we can get

E
{∫ Di+1

Di

(Xt − X̂t)
2dt

}
=E

{∫ Di+1

Di

(Xt − X̂ ′′
t )

2 + (X̂ ′′
t − X̂t)

2dt

}
+ E

{∫ Di+1

Di

2(Xt − X̂ ′′
t )(X̂

′′
t − X̂t)dt

}

=E
{∫ Di+1

Di

(Xt − X̂ ′′
t )

2 + (X̂ ′′
t − X̂t)

2dt

}
≥E

{∫ Di+1

Di

(Xt − X̂ ′′
t )

2dt

}
. (2.132)

In other words, the estimation error of policy π′′ is no greater than that of policy π. Further-

more, by comparing (4.80) and (4.81), we can see that the MMSE estimators under policies

π′′ and π′ are exact the same. Therefore, the estimation error of policy π′ is no greater than

that of policy π.

By repeating the above arguments for all samples i satisfying Si < Gi, one can show

that the sampling policy {S0, G1, . . . , Gi−1, Gi, Gi+1, . . .} is better than the sampling policy

π = {S0, S1, . . . , Si−1, Si, Si+1, . . .}. This completes the proof.

2.H Proof of Equation (2.68)

According to Lemma 4.7,

E
[∫ Yi+Zi+Yi+1

Yi+Zi

O2
sds

]
=

σ2

2θ
E[Yi+1]−

1

2θ
E
[
O2

Yi+Zi+Yi+1
−O2

Yi+Zi

]
. (2.133)
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The second term in (2.133) can be expressed as

E
[
O2

Yi+Zi+Yi+1
−O2

Yi+Zi

]
=E

[(
OYi+Zi

e−θYi+1 +
σ√
2θ

e−θYi+1We2θYi+1−1

)2

−O2
Yi+Zi

]
=E

[
O2

Yi+Zi
(e−2θYi+1 − 1) +

σ2

2θ
e−2θYi+1W 2

e2θYi+1−1

]
+ E

[
2OYi+Zi

e−θYi+1
σ√
2θ

e−θYi+1We2θYi+1−1

]
. (2.134)

Because Yi+1 is independent of OYi+Zi
and Wt, we have

E
[
O2

Yi+Zi
(e−2θYi+1 − 1)

]
= E

[
O2

Yi+Zi

]
E
[
e−2θYi+1 − 1

]
, (2.135)

and

E
[
2OYi+Zi

e−θYi+1
σ√
2θ

e−θYi+1We2θYi+1−1

]
=E [2OYi+Zi

]E
[
e−θYi+1

σ√
2θ

e−θYi+1We2θYi+1−1

]
(a)
=E [2OYi+Zi

]E
[
E
[
e−θYi+1

σ√
2θ

e−θYi+1We2θYi+1−1

∣∣∣∣Yi+1

]]
. (2.136)

where Step (a) is due to the law of iterated expectations. Because E[Wt] = 0 for all constant

t ≥ 0, it holds for all realizations of Yi+1 that

E
[
e−θYi+1

σ√
2θ

e−θYi+1We2θYi+1−1

∣∣∣∣Yi+1

]
= 0. (2.137)

Hence,

E
[
2OYi+Zi

e−θYi+1
σ√
2θ

e−θYi+1We2θYi+1−1

]
= 0. (2.138)
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In addition,

E
[
σ2

2θ
e−2θYi+1W 2

e2θYi+1−1

]
(a)
=
σ2

2θ
E
[
E
[
e−2θYi+1W 2

e2θYi+1−1

∣∣∣∣Yi+1

]]
(b)
=
σ2

2θ
E
[
1− e−2θYi+1

]
, (2.139)

where Step (a) is due to the law of iterated expectations and Step (b) is due to E[W 2
t ] = t

for all constant t ≥ 0. Hence,

E
[∫ Yi+Zi+Yi+1

Yi+Zi

O2
sds

]
=
σ2

2θ
E[Yi+1] + γE

[
O2

Yi+Zi

]
− σ2

4θ2
E
[
1− e−2θYi+1

]
=
σ2

2θ
[E(Yi+1)− γ] + E

[
O2

Yi+Zi

]
γ, (2.140)

where γ is defined in (2.24). Using this, (2.68) can be shown readily.

2.I Proof of Lemma 2.1

According to (2.8) and (2.9), the estimation error (Xt − X̂t) is of the same distribution

with Ot−Si(β) for t ∈ [Di(β), Di+1(β)). We will use (Xt − X̂t) and Ot−Si(β) interchangeably

for t ∈ [Di(β), Di+1(β)). In order to prove Lemma 2.1, we need to consider the following two

cases:

Case 1: If |XDi(β)−X̂Di(β)| = |OYi
| ≥ v(β), then (4.55) tells us Si+1(β) = Di(β). Hence,

Di(β) = Si(β) + Yi, (2.141)

Di+1(β) = Si+1(β) + Yi+1 = Di(β) + Yi+1. (2.142)

Using these and the fact that the Yi’s are independent of the OU process, we can obtain

E
[
Di+1(β)−Di(β)

∣∣∣OYi
, |OYi

| ≥ v(β)
]
= E[Yi+1], (2.143)
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and

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi
, |OYi

| ≥ v(β)

]

=E
[ ∫ Yi+Yi+1

Yi

O2
sds

∣∣∣∣OYi
, |OYi

| ≥ v(β)

]
(a)
=
σ2

2θ
E[Yi+1] + γO2

Yi
− σ2

4θ2
E
[
1− e−2θYi+1

]
=mse∞[E(Yi+1)− γ] +O2

Yi
γ, (2.144)

where Step (a) follows from the proof of (2.140).

Case 2: If |XDi(β) − X̂Di(β)| = |OYi
| < v(β), then (4.55) tells us that, almost surely,

|XSi+1(β) − X̂Si+1(β)| = v(β). (2.145)

Let us consider the following equation:

E
[
Di+1(β)−Di(β)

∣∣∣OYi
, |OYi

| < v(β)
]

=E
[
(Di+1(β)− Si+1(β)) + (Si+1(β)− Si(β))

− (Di(β)− Si(β))
∣∣∣OYi

, |OYi
| < v(β)

]
. (2.146)

Because Di+1(β) = Si+1(β) + Yi+1, the remaining task is to find

E
[
Si+1(β)− Si(β)

∣∣∣OYi
, |OYi

| < v(β)
]
, and E

[
Di(β)− Si(β)

∣∣∣OYi
, |OYi

| < v(β)
]
to compute

(4.208). By invoking Lemma 4.7, we can obtain

E
[
Si+1(β)− Si(β)

∣∣∣OYi
, |OYi

| < v(β)
]
= R1(v(β)), (2.147)

E
[
Di(β)− Si(β)

∣∣∣OYi
, |OYi

| < v(β)
]
= R1(|OYi

|), (2.148)

Substituting (4.206), (4.207), and Di+1(β) = Si+1(β) + Yi+1 in (4.208), we get that

E
[
Di+1(β)−Di(β)

∣∣∣OYi
, |OYi

| < v(β)
]

=E[Yi+1] +R1(v(β))−R1(|OYi
|). (2.149)
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In addition, let us consider the following equation:

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi
, |OYi

| < v(β)

]

=E

[∫ Di+1(β)

Si+1(β)

(Xt − X̂t)
2dt+

∫ Si+1(β)

Si(β)

(Xt − X̂t)
2dt

−
∫ Di(β)

Si(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi
, |OYi

| < v(β)

]
(2.150)

Next, we need to compute the expectations in (2.150). By invoking Lemma 4.7 again, we

can obtain

E

[∫ Si+1(β)

Si(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi
, |OYi

| < v(β)

]

=E
[∫ Yi+Zi

0

O2
sds

∣∣∣∣OYi
, |OYi

| < v(β)

]
= R2(v(β)), (2.151)

E

[∫ Di(β)

Si(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi
, |OYi

| < v(β)

]

=E
[∫ Yi

0

O2
sds

∣∣∣∣OYi
, |OYi

| < v(β)

]
= R2(|OYi

|). (2.152)

By substituting (4.210), (4.211), and (2.140) in (2.150), we have

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi
, |OYi

| < v(β)

]
=mse∞[E(Yi+1)− γ] + v2(β)γ +R2(v(β))−R2(|OYi

|). (2.153)

By combining (2.143) and (2.149) of the two cases, yields

E
[
Di+1(β)−Di(β)

∣∣∣OYi

]
=E[Yi+1] + max{R1(v(β))−R1(|OYi

|), 0}. (2.154)
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Similarly, by combining (4.200) and (4.212) of the two cases, yields

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

∣∣∣∣OYi

]
=mse∞[E(Yi+1)− γ] + max{v2(β), O2

Yi
}γ +max{R2(v(β))−R2(|OYi

|), 0}. (2.155)

Finally, by taking the expectation over OYi
in (4.214) and (4.217) and using the fact that

R1(·) and R2(·) are even functions, Lemma 2.1 is proven.

2.J Proof of Lemma 2.8

Because the Yi’s are i.i.d., (2.68) is determined by the control decision Zi and the

information (OYi
, Yi). Hence, (OYi

, Yi) is a sufficient statistic for determining Zi in (2.65).

Therefore, there exists an optimal policy (Z0, Z1, . . .) to (2.65), in which Zi is determined

based on only (OYi
, Yi). By this, (2.65) is decomposed into a sequence of per-sample MDPs,

given by (4.126). This completes the proof.

2.K Proof of Equation (2.77)

Define S(v) = H ′(v). Then, (4.130) becomes

S ′(v)− 2θ

σ2
vS(v) =

2

σ2
(v2 − β). (2.156)

Equation (2.156) can be solved by using the integrating factor method [94, Sec. I.5], which

applies to any ODE of the form

S ′(v) + a(v)S(v) = b(v). (2.157)

In the case of (2.156),

a(v) = −2θ

σ2
v, b(v) =

2

σ2
(v2 − β). (2.158)
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The integrating factor of (2.156) is

M(v) = e
∫
a(v)dv = e−

θ
σ2 v

2

. (2.159)

Multiplying e−
θ
σ2 v

2

on both sides of (2.156) and transforming the left-hand side into a total

derivative, yields

[
S(v)e−

θ
σ2 v

2
]′
= b(v)e−

θ
σ2 v

2

. (2.160)

Taking the integration on both sides of (2.160), yields

S(v)e−
θ
σ2 v

2

=

∫
2

σ2
(v2 − β)e−

θ
σ2 v

2

dv

=

∫
2

σ2
e−

θ
σ2 v

2

v2dv −
∫

2

σ2
βe−

θ
σ2 v

2

dv. (2.161)

The indefinite integrals in (2.161) are given by [99, Sec. 15.3.1, (Eq. 36)]

∫
2

σ2
e−

θ
σ2 v

2

v2dv =

√
πσ

2θ
3
2

erf

(√
θ

σ
v

)
− v

θ
e−

θ
σ2 v

2

+ C1, (2.162)

∫
2

σ2
βe−

θ
σ2 v

2

dv =

√
πβ

σ
√
θ
erf

(√
θ

σ
v

)
+ C2, (2.163)

where erf(·) is the error function defined in (2.17). Combining (2.161)-(4.134), results in

S(v)=

(√
πσ

2θ
3
2

−
√
πβ

σ
√
θ

)
erf

(√
θ

σ
v

)
e

θ
σ2 v

2− v

θ
+C3e

θ
σ2 v

2

, (2.164)

where C3 = C1 + C2. We need to integrate S(v) in (2.164) again to get H(v)

H(v) =

∫
S(v)dv

=

∫ (√
πσ

2θ
3
2

−
√
πβ

σ
√
θ

)
erf

(√
θ

σ
v

)
e

θ
σ2 v

2

dv −
∫

v

θ
dv

+

∫
C3e

θ
σ2 v

2

dv, (2.165)
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which requires the following integral [100, Sec. 8.250 (Eq. 1,4)]:

∫
erf

(√
θ

σ
v

)
e

θ
σ2 v

2

dv

=
σ√
θ
√
π

θ

σ2
v22F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
+ C. (2.166)

By using (2.166), we can compute the first integral of (2.165)

∫ (√
πσ

2θ
3
2

−
√
πβ

σ
√
θ

)
erf

(√
θ

σ
v

)
e

θ
σ2 v

2

dv

=

(
1

2θ
− β

σ2

)
v2 2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
+ C4. (2.167)

The remaining integrals in (2.165) are as follows [100, Sec. 3.478 (Eq. 3)]

∫
C3e

θ
σ2 v

2

dv = C5erfi

(√
θ

σ
v

)
+ C6, (2.168)∫

v

θ
dv = −v2

2θ
+ C7, (2.169)

where erfi(·) is the imaginary error function defined in (4.140). Hence, by substituting

(2.167), (2.168), and (2.169) in (2.165), H(v) in (2.77) follows. This completes the proof of

(2.77).

2.L Proof of Lemma 2.9

The proof of Lemma 2.9 consists of the following two cases:

Case 1: If |v| ≥ v∗, (4.129) implies τ∗ = 0. Hence,

Ev

[
τ∗
∣∣|v| ≥ v∗

]
= Ev

[ ∫ τ∗

0

1ds

∣∣∣∣|v| ≥ v∗

]
= 0, (2.170)

and

Ev

[ ∫ τ∗

0

Vs
2ds

∣∣∣∣|v| ≥ v∗

]
= 0. (2.171)
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Because V0 = v, we have

Ev[V
2
τ∗ ] = Ev[V

2
0 ] = v2. (2.172)

By combining (2.170)-(2.172), we get

Ev

[
−γV 2

τ∗ −
∫ τ∗

0

(Vs
2 − β)ds

∣∣∣∣|v| ≥ v∗

]
= −γv2. (2.173)

Case 2: If |v| < v∗, (2.73) tells us that, almost surely,

Vτ∗ = v∗. (2.174)

Similar to the proof of Lemma 2.1, we can use Lemma 2.5 to obtain

Ev

[
τ∗
∣∣|v| < v∗

]
=Ev

[ ∫ τ∗

0

1ds

∣∣∣∣|v| < v∗

]
=R1(v∗)−R1(v)

=
v2∗
σ2 2

F2

(
1, 1;

3

2
, 2;

θ

σ2
v2∗

)
− v2

σ2 2
F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
, (2.175)

Ev

[ ∫ τ∗

0

Vs
2ds

∣∣∣∣|v| < v∗

]
=R2(v∗)−R2(v)

=− v2∗
2θ

+
v2∗
2θ

2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2∗

)
+

v2

2θ
− v2

2θ
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
, (2.176)

and

Ev

[
V 2
τ∗

∣∣|v| < v∗
]
= v2∗. (2.177)
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Combining (2.175)-(2.177), yields

Ev

[
−γV 2

τ∗ −
∫ τ∗

0

(Vs
2 − β)ds

∣∣∣∣|v| < v∗

]
=− v2

2θ
+

(
1

2θ
− β

σ2

)
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
v2

+
1

2θ
E
(
e−2θYi

)
v2∗−

(
1

2θ
− β

σ2

)
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2∗
)
v2∗. (2.178)

By combining (2.173) and (2.178), Lemma 2.9 is proven.

2.M Proof of Lemma 2.10

The proof of Lemma 2.10 consists of the following two cases:

Case 1: If |v| ≥ v∗, (2.81) tells us that

H(v) = −γv2. (2.179)

Hence, Lemma 2.10 holds in Case 1.

Case 2: |v| < v∗. Because H(v) is an even function and H(v) = −γv2 holds at v = ±v∗,
to prove H(v) ≥ −γv2 for |v| < v∗, it is sufficient to show that for all v ∈ [0, v∗)

H ′(v) < [−γv2]′ = −2γv. (2.180)

Hence, the remaining task is to prove that (2.180) holds for v ∈ [0, v∗).

After some manipulations, we can obtain from (2.85) that

(mse∞ − β)G

(√
θ

σ
v∗

)
= mse∞E(e−2θYi). (2.181)

Because G(·) > 0 is an increasing function, it holds for all v ∈ [0, v∗) that

(mse∞ − β)G

(√
θ

σ
v

)
< (mse∞ − β)G

(√
θ

σ
v∗

)
=mse∞E(e−2θYi). (2.182)
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One can obtain (2.180) from (4.144) and (2.182). Hence, Lemma 2.10 also holds in Case 2.

This completes the proof.

2.N Proof of Lemma 2.11

We need the following lemma in the proof of Lemma 2.11:

Lemma 2.12 (1− 2x2)G(x) ≤ 1 for all x ≥ 0.

Proof 2.13 Because G(0) = 1, it suffices to show that for all x > 0

[(1− 2x2)G(x)]′ ≤ 0. (2.183)

We have

[(1− 2x2)G(x)]′ = − 1

x2
ex

2

∫ x

0

e−t2dt+
1

x
− 4x2ex

2

∫ x

0

e−t2dt− 2x. (2.184)

Because e−t2 is decreasing on t ∈ [0,∞), for all x > 0

∫ x

0

e−t2dt ≥
∫ x

0

e−x2

dt = xe−x2

. (2.185)

Hence,

− 1

x2
ex

2

∫ x

0

e−t2dt+
1

x
≤ 0. (2.186)

Substituting (2.186) into (2.184), (2.183) follows. This completes the proof.

Now we are ready to prove Lemma 2.11.

Proof 2.14 (Proof of Lemma 2.11) The function H(v) is continuously differentiable on

R. In addition, H ′′(v) is continuous everywhere but at v = ±v∗. Since the Lebesgue measure

of those time t for which Vt = ±v∗ is zero, the values H ′′(±v∗) can be chosen in the sequel
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arbitrarily. By using Itô’s formula [101, Theorem 7.13], we obtain that almost surely

H(Vt)−H(v)

=

∫ t

0

σ2

2

[
H ′′(Vr)− θVrH

′(Vr)− (V 2
r − β)

]
dr +

∫ t

0

σH ′(Vr)dWr. (2.187)

For all t ≥ 0 and all v ∈ R, we can show that

Ev

{∫ t

0

[σH ′(Vr)]
2
dr

}
<∞.

This and [101, Theorem 7.11] imply that
∫ t

0
σH ′(Vr)dWr is a martingale and

Ev

[∫ t

0

σH ′(Vr)dWr

]
= 0, ∀ t ≥ 0. (2.188)

Hence,

Ev [H(Vt)−H(v)]

=Ev

[∫ t

0

σ2

2

[
H ′′(Vr)− θVrH

′(Vr)− (V 2
r − β)

]
dr

]
. (2.189)

Next, we show that for all v ∈ R

σ2

2
H ′′(v)− θvH ′(v)− (v2 − β) ≤ 0. (2.190)

Let us consider the following two cases:

Case 1: If |v| < v∗, then (2.74) implies

σ2

2
H ′′(v)− θvH ′(v)− (v2 − β) = 0. (2.191)
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Case 2: |v| > v∗. In this case, H(v) = −γv2. Hence,

σ2

2
H ′′(v)− θvH ′(v)

=
σ2

2
(−2γ)− θv(−2γv)

=− σ2γ + 2θγv2

=−mseYi
+ E[1− e−2θYi ]v2. (2.192)

Substituting (2.192) into (2.190), yields

E[e−2θYi ]v2 ≥ β −mseYi
. (2.193)

To prove (2.193), since |v| > v∗, it suffices to show that

E[e−2θYi ]v2∗ ≥ β −mseYi
, (2.194)

which is equivalent to

(mse∞ −mseYi
)

v2∗
mse∞

≥ (mse∞ −mseYi
)− (mse∞ − β). (2.195)

We now prove (2.195). By Lemma 2.12, we get

(
1− v2∗2θ

σ2

)
G

(√
θ

σ
v∗

)
≤ 1. (2.196)

Hence,

(
1− v2∗

mse∞

)
G

(√
θ

σ
v∗

)
≤ 1. (2.197)
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By substituting (2.85) into (2.198), we obtain

(mse∞ −mseYi
)

(
1− v2∗

mse∞

)
G

(√
θ

σ
v∗

)

≤ (mse∞ − β)G

(√
θ

σ
v∗

)
. (2.198)

Because G(x) > 0 for all x > 0,

(mse∞ −mseYi
)

(
1− v2∗

mse∞

)
≤ mse∞ − β, (2.199)

which implies (2.195). Hence, (2.190) holds in both cases. Thus, Ev [H(Vt)−H(v)] ≤ 0

holds for all t ≥ 0 and v ∈ R. This completes the proof.

2.O Proof of Theorem 2.6

According to [91, Prop. 6.2.5], if we can find π⋆ = (Z1, Z2, . . .) and λ⋆ that satisfy the

following conditions:

π⋆ ∈ Π1, lim
n→∞

1

n

n−1∑
i=0

E [Yi + Zi]−
1

fmax

≥ 0, (2.200)

λ⋆ ≥ 0, (2.201)

L(π⋆;λ⋆) = inf
π∈Π1

L(π;λ⋆), (2.202)

λ⋆

{
lim
n→∞

1

n

n−1∑
i=0

E [Yi + Zi]−
1

fmax

}
= 0, (2.203)

then π⋆ is an optimal solution to (2.62) and λ⋆ is a geometric multiplier [91] for (2.62).

Further, if we can find such π⋆ and λ⋆, then the duality gap between (2.62) and (2.66)

must be zero, because otherwise there is no geometric multiplier [91, Prop. 6.2.3(b)]. The

remaining task is to find π⋆ and λ⋆ that satisfy (2.200)-(2.203).

According to Theorem 4.7 and Corollary 4.2, a solution π⋆ = (Z0(β), Z1(β), . . .) to

(2.202) is given by (4.159), where β = mseopt + λ⋆. In addition, because the Yi’s are i.i.d.,

the Zi(β)’s in policy π⋆ are i.i.d. Using (2.200), (2.201), and (2.203), the value of λ⋆ can be
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obtained by considering two cases: If λ⋆ > 0, because the Zi(β)’s are i.i.d., we have from

(2.203) that

lim
n→∞

1

n

n−1∑
i=0

E [Yi + Zi(β)] = E [Yi + Zi(β)] =
1

fmax

. (2.204)

If λ⋆ = 0, then (2.200) implies

lim
n→∞

1

n

n−1∑
i=0

E [Yi + Zi(β)] = E [Yi + Zi(β)] ≥
1

fmax

. (2.205)

Next, we compute mseopt and β = mseopt+λ⋆. To compute mseopt, we substitute policy

π⋆ into (2.61), which yields

mseopt = lim
n→∞

∑n−1
i=0 E

[∫ Yi+Zi(β)+Yi+1

Yi
O2

sds
]

∑n−1
i=0 E [Yi+Zi(β)]

=
E
[∫ Yi+Zi(β)+Yi+1

Yi
O2

sds
]

E[Yi + Zi(β)]
, (2.206)

where in the last equation we have used that the Zi(β)’s are i.i.d. Hence, the value of

β = mseopt + λ⋆ can be obtained by considering the following two cases:

Case 1 : If λ⋆ = 0, then (2.205) and (2.206) imply that

E [Yi + Zi(β)] ≥
1

fmax

, (2.207)

β = mseopt =
E
[∫ Yi+Zi(β)+Yi+1

Yi
O2

sds
]

E [Yi+Zi(β)]
. (2.208)

Notice that (2.208) can rewritten as (2.36), which is a fixed-point equation on β. According

to Lemma 2.2, one root of (2.36) is in the set (mseYi
,mse∞), which is also the unique root of

(2.89); we denote this root as β1. We choose π⋆ = (Z0(β1), Z1(β1)...), where Zi(·) is given by

(2.88). In addition, λ⋆ must be 0 in Case 1. Because λ⋆ = β1 −mseopt, we get mseopt = β1,

which is required in (2.208). Case 1 occurs if the root β1 of (2.208) satisfies (2.207). We

67



note that β = mse∞ is another root of (2.208), but we do not pick policy π⋆ based on this

root.

Case 2 : If λ⋆ > 0, then (2.204) and (2.206) imply that

E [Yi + Zi(β)] =
1

fmax

, (2.209)

β > mseopt =
E
[∫ Yi+Zi(β)+Yi+1

Yi
O2

sds
]

E [Yi+Zi(β)]
. (2.210)

When the root β1 of (2.208) does not satisfy (2.207), Lemma 2.3 tells us that (2.209)

has a unique root in the set [mseYi
,mse∞), which is denoted by β2. We choose π⋆ =

(Z0(β2), Z1(β2)...), where Zi(·) is given by (2.88). Further, we choose λ⋆ = β2 −mseopt.

Theorem 4.7, together with the fact that β1, β2∈[mseYi
,mse∞) and the arguments above,

implies that the selected π⋆ and λ⋆ satisfy (2.200)-(2.203). By [91, Prop. 6.2.3(b)], the duality

gap between (2.62) and (2.66) is zero. A solution to (2.62) and (2.66) is π⋆. This completes

the proof.
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Chapter 3

Performance Bounds for Remote Estimation with Noisy Samples

3.1 Introduction

Many real-time applications, such as state estimation, tracking, and decision-making

require fresh and timely updates about the system state. In recent years, to measure the

freshness of state updates, the concept of AoI has received significant attention from the

research community due to its extensive importance in real-time systems [1, 2, 102]. AoI is

expressed as a time difference between the current time and the generation time of the latest

received sample.

In practice, the system states are usually in the form of a signal Xt, such as interest

rate, currency exchange rate, price of the stock market, and the trajectory of a flying UAV.

These real-time signals are random, sometimes the variations are small and later may become

huge. Hence, the time difference is not sufficient to distinguish the variation of the signal

state and the update policy that minimizes AoI does not produce a smaller estimation error.

The problem of sampling an Ornstein-Uhlenbeck (OU) process is recently addressed in [34]

and another problem of sampling a Wiener process in [55]. However, the optimal sampling

policy provided in [34] is only for the stable scenario. In practice, real-time applications of OU

processes consider both stable and unstable cases [103]. Therefore, a sampling problem that

considers only the stable scenario is insufficient for practical and more dynamic systems, and

a generalization of this problem that considers both stable and unstable cases is necessary.

Moreover, a real-time system often consists of noise along with the signal process. There-

fore, the analysis based on noisy observation of samples to minimize signal estimation error

is practically much more important in real-time networked control and communication sys-

tems. In this chapter, we consider noisy samples of OU process and compute the mse from

which we establish estimation performance bounds of mse.
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The OU process is defined as the solution to the following stochastic differential equation

(SDE) [68,69]

dXt = θ(µ−Xt)dt+ σdWt, (3.1)

where µ, θ, and σ > 0 are parameters and Wt represents a Wiener process. In case of stable

OU process, θ > 0 [34]. In (3.1), if θ → 0, and σ = 1, Xt reduces to a Wiener process. If

θ < 0, then Xt becomes an unstable OU process. Examples and properties of OU processes

are explained in [34].

We consider the samples of the Gauss-Markov process pass through a channel in a

first-come, first-serve (FCFS) strategy. A remotely located estimator utilizes these causally

received samples to make an estimate X̂t of Xt. First, we obtain a lower bound of mse in the

absence of any additional noise in the system. Second, our goal is to find the expression of

mse with the presence of noise in the system. This analysis provides an upper bound of mse

when the estimator receives noisy samples. We summarize the contributions of this paper

as follows:

• The optimal sampling problem in the absence of noise is formulated and the solved

optimal sampling policy is a threshold policy on instantaneous estimation error. The

structure of the thresholds v(β) of a parameter β are different for the three cases: θ > 0

(Stable OU process), θ = 0 (Wiener process), and θ < 0 (Unstable OU process). The

value of β is equal to the optimum value of the time-average expected estimation error.

The computation of β remains the same irrespective of the signal models.

• Further, we consider noisy samples and obtain an explicit expression for mse. From

the expression, we establish a performance upper bound of mse.

• Our results hold for general i.i.d. transmission time distributions of the queueing server

with a finite mean.

3.2 Model

This section describes the single-source, single-channel model as shown in Figure 3.1.
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observer

queue

ACK

sampler

estimator
channel

Figure 3.1: A single-source, single-channel remote estimation system consisting of a noisy sample
of Xt over a noisy channel.

3.2.1 System Model

We consider a continuous-time remote estimation system that is illustrated in Fig. 3.1,

where an observer takes samples from an Gauss-Markov process Xt. After sampling, addi-

tional noises from the sampler and the channel are added to the samples. Then, the noisy

samples are sent to the estimator. The channel is modeled as a single-server FIFO queue

with i.i.d. service times. The samples undergo random service times in the channel due to

fading, interference, congestions, etc. We also consider that at a time, only one sample can

be delivered through the channel.

The operation of the system starts at time instant t = 0. The generation time of the i-th

sample is Si, which satisfy Si ≤ Si+1 for all i. Then, i-th sample undergoes a random service

time Yi, and is delivered to the estimator at time Di, where Si + Yi ≤ Di, Di + Yi+1 ≤ Di+1,

and 0 < E[Yi] <∞ hold for all i. The i-th sample packet (Si, XSi
) contains the sample value

XSi
and its sampling time Si. Suppose that after sampling, noise NSi

is being added to the

sample XSi
and the noisy observation of the sample XSi

is denoted by USi
. Hence,

USi
= XSi

+NSi
, (3.2)

where NSi
is the additive noise with zero mean and variance b1. Each sample packet (Si, USi

)

contains the sampling time Si and the noisy sample USi
. If channel noise N ′

Si
with zero mean

and variance b2 is added to the sample during its transmission through the channel, then
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the sample value becomes

QSi
= USi

+N ′
Si
. (3.3)

Initially, at t = 0, the state of the system is assumed to hold S0 = 0, and D0 = Y0. The

initial state of the Gauss-Markov process X0 is a finite constant. The process parameters µ,

θ, and σ in (3.1) are known at both the sampler and estimator.

Let, the idle/busy state of the server at time t is denoted by It ∈ {0, 1}. We also assume

that an acknowledgement is immediately sent back to the sampler whenever a sample is

delivered and this operation has zero delay. By this assumption, the sampler is aware of

the idle/busy state of the server and the available information at time t can be given by

{Xs, Is : 0 ≤ s ≤ t}.

3.2.2 Sampling Policies

The sampling time Si is a finite stopping time with respect to the filtration {F+
t , t ≥ 0}

(a non-decreasing and right-continuous family of σ-fields) of the information that is available

at the sampler such that [76]

{Si ≤ t} ∈ F+
t ,∀t ≥ 0. (3.4)

Let π = (S1, S2, ...) denote a sampling policy and Π denote the set of causal sampling

policies that satisfy two conditions: (i) Each sampling policy π ∈ Π satisfies (4.87) for

all i. (ii) The sequence of inter-sampling times {Ti = Si+1 − Si, i = 0, 1, . . .} forms a

regenerative process [34, Section IIB]: An increasing sequence 0 ≤ l1 < l2 < . . . of almost

surely finite random integers exists such that the post-lk process {Tlk+i, i = 0, 1, . . .} is

independent of the pre-lk process {Ti, i = 0, 1, . . . , lk − 1} and has same distribution as the

post-l0 process {Tl0+i, i = 0, 1, . . .}; We further assume that E[lk+1 − lk] < ∞, E[Sl1 ] < ∞,

and 0 < E[Slk+1
− Slk ] <∞, k = 1, 2, . . .
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3.2.3 MMSE Estimator

In this section, we provide the MMSE estimator for noisy samples of the OU process.

By using the expression of OU process for stable scenario [83, Eq. (3)] and the strong

Markov property of the OU process [74, Eq. (4.3.27)], a solution to (3.1) for t ∈ [Si,∞)

given by the following three cases:

Xt =


XSi

e−θ(t−Si) + µ
[
1− e−θ(t−Si)

]
+ σ√

2θ
e−θ(t−Si)We2θ(t−Si)−1, if θ > 0,

σWt, if θ = 0,

XSi
e−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
+ σ√

−2θ
e−θ(t−Si)W1−e2θ(t−Si) , if θ < 0.

(3.5)

The estimator uses causally received samples to formulate an estimate X̂t of the real-

time signal value Xt at any time t ≥ 0. The available information at the estimator has

two parts: (i) Mt = {(Si, QSi
, Di) : Di ≤ t}, which contains the sampling time Si, noisy

sample value QSi
, and delivery time Di of the samples that have been delivered by time t

and (ii) no sample has been received after the last delivery time max{Di : Di ≤ t}. Similar

to [30,34,55,84], we assume that the estimator neglects the second part of the information.

Then, as shown in [38], the MMSE estimator for t ∈ [Di, Di+1), i = 0, 1, 2, . . . for all of the

cases in (3.5) is given as follows

X̂t =E[Xt|Mt]

=QSi
e−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
. (3.6)

3.3 Main Results

We evaluate the performance of remote estimation by the time-average mean square

error which is expressed as follows:

mse = lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
. (3.7)

A lower bound of (3.7) can be obtained when the additive noises are not considered

(NSi
= 0, N ′

Si
= 0). On the other hand, an upper bound can be found by taking both the
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noises into account. Moreover, we formulate the following optimal sampling problem that

minimizes the time-average mean-squared estimation error over an infinite time-horizon when

no noise is considered.

mseopt-wn = min
π∈Π

lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
, (3.8)

where mseopt-wn is the optimum value of (3.8) without noise.

3.3.1 Lower Bounds for mse

Let us consider a Gauss-Markov process with initial state O0 = 0 and parameter µ = 0,

which can be expressed as

Ot =


σ√
2θ
e−θtWe2θt−1, if θ > 0,

σWt, if θ = 0,

σ√
−2θ

e−θtW1−e2θt , if θ < 0.

(3.9)

Before presenting the optimal sampler without noise, let us define the following parameter:

mseYi
=

 σ2

2θ
E[1− e−2θYi ], if θ ̸= 0,

σ2E[Yi], if θ = 0,
(3.10)

where mseYi
is the lower bound of mse. We will also need to use the following two functions

G(x) =

√
π

2

ex
2

x
erf(x), x ∈ [0,∞), (3.11)

K(x) =

√
π

2

e−x2

x
erfi(x), x ∈ [0,∞), (3.12)

where if x = 0, both G(x) and K(x) are defined as their right limits G(0) = limx→0+ G(x) =

1, and K(0) = limx→0+ K(x) = 1. Furthermore, erf(·) and erfi(·) are the error function and

imaginary error function respectively, defined as

erf(x) =
2√
π

∫ x

0

e−t2dt, erfi(x) =
2√
π

∫ x

0

et
2

dt. (3.13)
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Note that G(x) is strictly increasing on x ∈ [0,∞) [34], whereas K(x) is strictly decreasing

on x ∈ [0,∞). Hence, their inverses G−1(·) and K−1(·) are properly defined.

First, we consider that the system has no noise, i.e., NSi
= 0 and N ′

Si
= 0. Therefore,

from (3.2) and (3.3), we get, XSi
= USi

= QSi
. Then, the following theorem illustrates that

the optimal sampling policy is a threshold policy and the threshold is found for all the three

cases of the Gauss-Markov process parameter θ.

Theorem 3.1 If the Yi’s are i.i.d. with 0 < E[Yi] < ∞, then (S1(β), S2(β), . . .) with a

parameter β is an optimal solution to (3.8), where

Si+1(β) = inf
{
t ≥ Di(β) :

∣∣Xt − X̂t

∣∣≥v(β)
}
, (3.14)

Di(β) = Si(β) + Yi, and v(β) is given by

v(β) =


σ√
θ
G−1

(
σ2

2θ
−mseYi
σ2

2θ
−β

)
, if θ > 0,√

3(β − E[Yi]), if θ = 0,

σ√
−θ

K−1

(
σ2

2θ
−mseYi
σ2

2θ
−β

)
, if θ < 0,

(3.15)

where G−1(·) is the inverse function of G(·) in (3.11), K−1(·) is the inverse function of K(·)
in (3.12), and β is the unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
− βE[Di+1(β)−Di(β)] = 0. (3.16)

The optimal objective value to (3.8) is then given by

mseopt-wn =
E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (3.17)

In [34], it is proved that the optimal sampling policy for stable OU process, i.e., when

θ > 0 is a threshold policy. The threshold obtained in [34] coincides with v(β) in (3.15) for

the case of θ > 0. For θ = 0, the threshold is obtained for σ = 1 which represents a Wiener

process [35]. For θ < 0, the proof procedure works in the same way as explained in [34]
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for stable OU processes. The threshold v(β) is obtained by solving similar free boundary

problems explained in [34] and the optimality of (4.57) for θ < 0 is thus guaranteed. However,

the threshold structure is different for all the three cases in Theorem 3.1. The function K(x)

in (3.12) is related to the function G(x) in (3.11) as follows

K(x) = G(jx), (3.18)

where j is the imaginary number represented by j =
√
−1. Therefore, the threshold v(β)

for θ < 0 can be expressed by the following equation as well:

v(β) = j−1 σ√
−θ

G−1

(
σ2

2θ
−mseYi

σ2

2θ
− β

)
. (3.19)

Though the threshold functions v(β) varies with signal structure, the computation of

the parameter β remains the same for all cases and the uniqueness of the root of (4.56) is

proved in [34]. The decision of taking a new sample defined in (4.55) works in the same way

as explained in [34].

3.3.2 Upper Bounds for mse

Suppose that the additive noise in the sampler and channel exist in the system, i.e.,

NSi
̸= 0, N ′

Si
̸= 0. Moreover, the sampler follows the sampling strategy obtained in (3.14).

Because the noises NSi
and N ′

Si
are independent of the sampling times and the observed

Gauss-Markov process, by utilizing (3.2), (3.3), (3.5), (3.6), and (3.17), the mse at the

estimator which is an upper bound of (3.7) can be expressed as

mse =
E
[∫ Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]

=
E
[∫ Di+1(β)

Di(β)
(Ot−Si

− (NSi
+N ′

Si
)e−θ(t−Si))2dt

]
E[Di+1(β)−Di(β)]

=
E
[∫ Di+1(β)

Di(β)
O2

t−Si
dt
]

E[Di+1(β)−Di(β)]
+

E
[∫ Di+1(β)

Di(β)
(NSi

+N ′
Si
)2e−2θ(t−Si)dt

]
E[Di+1(β)−Di(β)]

, (3.20)
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where (3.20) follows due to the fact that the Gauss-Markov process Ot has initial state O0 = 0

and the noises NSi
and N ′

Si
with zero mean are independent of the observed Gauss-Markov

process and sampling times.

To compute (3.20), the first fractional term remains the same as the mseopt-wn in (4.57)

with NSi
= 0 and N ′

Si
= 0. For stable OU processes, the associated mseopt-wn is computed

in [34, Lemma 1]. The expression of O2
t−Si is the same for both stable and unstable OU

processes. Therefore, the solution for (3.20) holds for all three cases in (3.9). For computing

the second term, as NSi
and N ′

Si
are independent of the observed Gauss-Markov process and

the sampling times, the numerator of the second fractional term in (3.20) can be written as:

E

[∫ Di+1(β)

Di(β)

(NSi
+N ′

Si
)2e−2θ(t−Si)dt

]
= E[(NSi

+N ′
Si
)2]E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt

]
. (3.21)

Then, we have the following lemma for the last term in (3.21).

Lemma 3.1 It holds that

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt

]
=

1

2θ
E
[
e−2θYi

{
1−min

(
1,

1F1

(
1, 1

2
, θ
σ2O

2
Yi

)
1F1

(
1, 1

2
, θ
σ2v2(β)

))E[e−2θYi+1 ]

}]
.

(3.22)

Proof 3.1 See Appendix 3.A.

By using Lemma 3.1 and the expressions obtained in [34, Lemma 1], all the associated

expectations in (3.20) can be obtained by Monte Carlo simulations of scalar random variables

OYi
and Yi, which does not require to directly simulate the entire random process {Ot, t ≥ 0}.

3.4 Numerical Analysis

Figure 3.2 illustrates the MSE of i.i.d normalized log-normal service time, where Yi =

eαXi/E[eαXi ], and α > 0 is the scale parameter of log-normal distribution. The (X1, X2, . . . )

are i.i.d. Gaussian random variables, where E[Xi] = 0 and Var(Xi) = 1. The maximum

throughput of the queue is 1 as E[Yi] = 1. Both of the noises NSi
and N ′

Si
are considered

to have 0 mean and variance 0.1. With the growth of the scale parameter α, the tail of
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Figure 3.2: MSE vs. the scale parameter α of i.i.d. normalized log-normal service time distribution
with E[Yi] = 1, where the parameters of the Gauss-Markov process are σ = 1 and θ = 0.5.

the log-normal distribution becomes heavier. The MSE with noise curve shows performance

degradation as the additional term due to noise added with the mse without noise.

3.5 Conclusion

In this chapter, we have studied noisy samples over a noisy channel. We have obtained

the performance upper and lower bounds of mse. The additional term added in the upper

bound of mse due to noise is found. An optimal sampler design for noisy samples of Gauss-

Markov processes will be another interesting future research direction.
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3.A Proof of Lemma 3.1

In order to prove Lemma 3.1, we need to consider the following two cases:

Case 1: If |XDi(β) − X̂Di(β)| = |OYi
| ≥ v(β), then Si+1(β) = Di(β). Hence,

Di(β) = Si(β) + Yi, (3.23)

Di+1(β) = Si+1(β) + Yi+1 = Di(β) + Yi+1. (3.24)

Let us consider the following equation:

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi

= q, Yi = y, |OYi
| ≥ v(β)

]

=E
[∫ Yi+Yi+1

Yi

e−2θsds
∣∣∣OYi

= q, Yi = y, |OYi
| ≥ v(β)

]
=E
[
1

2θ
e−2θy(1− e−2θYi+1)

∣∣OYi
= q, Yi = y, |OYi

| ≥ v(β)

]
=

1

2θ
e−2θyE

[
1− e−2θYi+1

∣∣OYi
= q, Yi = y, |OYi

| ≥ v(β)

]
=

1

2θ
e−2θy

{
1− E[e−2θYi+1 ]

}
, (3.25)

where (3.25) holds due to the fact that Yi+1 is independent of OYi
and Yi.
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Case 2: If |XDi(β) − X̂Di(β)| = |OYi
| < v(β), then

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi

= q, Yi = y, |OYi
| < v(β)

]

=E
[∫ Yi+Zi+Yi+1

Yi

e−2θsds
∣∣∣OYi

= q, Yi = y, |OYi
| < v(β)

]
=E
[
1

2θ
e−2θy(1− e−2θZie−2θYi+1)

∣∣OYi
= q, Yi = y

]
=

1

2θ
e−2θyE

[
1− e−2θZie−2θYi+1

∣∣OYi
= q, Yi = y

]
=

1

2θ
e−2θy

{
1− E

[
e−2θZi

∣∣∣OYi
= q, Yi = y

]
E[e−2θYi+1 ]

}
=

1

2θ
e−2θy

{
1− E[e−2θZi |OYi

= q]E[e−2θYi+1 ]

}
, (3.26)

where the last equation in (3.26) holds because Zi is conditionally independent of Yi given

OYi
. Next, we need to compute E[e−2θZi |OYi

= q], where Zi is a hitting time of the time-

shifted OU process Ot+Yi
given as

Zi =

inf{t : Ot+Yi
̸∈ (−v(β), v(β))|OYi

= q ∈ (−v(β), v(β))}. (3.27)

By using the characteristic function of the hitting time of the OU process in [104, Eq. 15a],

we get that

E[e−2θZi |OYi
= q] =

1F1

(
1, 1

2
, θ
σ2 q

2
)

1F1

(
1, 1

2
, θ
σ2v2(β)

) . (3.28)

Therefore, (3.26) becomes

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi

= q, Yi = y, |OYi
| < v(β)

]

=
1

2θ
e−2θy

{
1− 1F1

(
1, 1

2
, θ
σ2 q

2
)

1F1

(
1, 1

2
, θ
σ2v2(β)

)E[e−2θYi+1 ]

}
. (3.29)
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By combining (3.25) and (3.29), we get that

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi

= q, Yi = y

]

=
1

2θ
e−2θy

[
1−min

{
1,

1F1

(
1, 1

2
, θ
σ2 q

2
)

1F1

(
1, 1

2
, θ
σ2v2(β)

)}E[e−2θYi+1 ]

]
. (3.30)

Finally, by taking the expectation over OYi
and Yi in (3.30), Lemma 3.1 is proven.
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Chapter 4

Remote Estimation of Multiple Gauss-Markov Processes over Multiple Channels

4.1 Introduction

Due to the prevalence of networked control and cyber-physical systems, real-time esti-

mation of the states of remote systems has become increasingly important for next-generation

networks. For instance, a timely and accurate estimate of the trajectories of nearby vehicles

and pedestrians is imperative in autonomous driving, and real-time knowledge about the

movements of surgical robots is essential for remote surgery. In these examples, real-time

system state estimation is of paramount importance to the performance of these networked

systems. Other notable applications of remote state estimation include UAV navigation,

factory automation, environment monitoring, and augmented/virtual reality.

To assess the freshness of system state information, the metric AoI has drawn significant

attention in recent years, e.g., [1], [2]. AoI is defined as the time difference between the current

time and the generation time of the freshest received state sample. Besides AoI, nonlinear

functions of the AoI have been introduced in [8], [64], [4] and illustrated to be useful as a

metric of information freshness in sampling, estimation, and control [26], [4].

In many applications, the system state of interest is in the form of a signalXt, which may

vary quickly at time t and change slowly at a later time t+ τ (even if the system state Xt is

Markovian and time-homogeneous). AoI, as a metric of the time difference, cannot precisely

characterize how fast the signal Xt varies at different time instants. To achieve more accurate

system state estimation, it is important to consider signal-aware remote estimation, where

the signal sampling and transmission scheduling decisions are made using the historical

realization of the signal process Xt. Signal-aware remote estimation can achieve better

performance than AoI-based, signal-agnostic remote estimation, where the sampling and

scheduling decisions are made using the probabilistic distribution of the signal process Xt,

and the mean-squared estimation error can be expressed as a function of the AoI. The

connection between signal-aware remote estimation and AoI minimization was first revealed
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Figure 4.1: A multi-source, multi-channel remote estimation system.

in a problem of sampling a Wiener process [105]. Subsequently, it was generalized to the

case of (stable) Ornstein-Uhlenbeck (OU) process in [34].

In many remote estimation and networked control systems, multiple sensors send their

measurements (i.e., signal samples) to the destined estimators. For example, tire pressure,

speed, and acceleration sensors in a self-driving vehicle send their data samples to the con-

troller and nearby vehicles to make safe maneuvers [1]. In this paper, we consider a remote

estimation system with N source-estimator pairs and L channels, as illustrated in Figure

2.1. Each source n is a continuous-time Gauss-Markov process Xn,t, defined as the solution

of a Stochastic Differential Equation (SDE)

dXn,t = θn(µn −Xn,t)dt+ σndWn,t, (4.1)

where θn, µn, and σn > 0 are the parameters of the Gauss-Markov process, and the Wn,t’s

are independent Wiener processes. If θn > 0, Xn,t is a stable Ornstein-Uhlenbeck (OU)

process, which is the only nontrivial continuous-time process that is stationary, Gaussian,

and Markovian [69]. If θn = 0, then Xn,t = σnWn,t is a scaled Wiener process [101]. If θn < 0,

we call Xn,t an unstable Ornstein-Uhlenbeck (OU) process, because limt→∞ E[X2
n,t] = ∞ in

this case. These Gauss-Markov processes can be used to model random walks [106], interest

rates [107], commodity prices [70], robotic swarms [72], biological processes [108], control

systems (e.g., the transfer of liquids or gases in and out of a tank) [27], state exploration

in deep reinforcement learning [109], and etc. A centralized sampler and scheduler decides
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when to take samples from the N Gauss-Markov processes and send the samples over L

channels to remote estimators. At any time, at most L sources can send samples over the

channels. The samples experience i.i.d. random transmission times over the channels due to

interference, fading, etc. The n-th estimator uses causally received samples to reconstruct

an estimate X̂n,t of the real-time source value Xn,t.

Our objective is to find a sampling and transmission scheduling policy that minimizes the

weighted sum of the time-average expected estimation errors of these Gauss-Markov sources.

We develop a Whittle index policy to solve this problem. The technical contributions of this

work are summarized as follows:

• We study the optimal sampling and transmission scheduling problem for the remote

estimation of multiple continuous Gauss-Markov processes over parallel channels with

i.i.d. random transmission times. This problem is a continuous-time Restless Multi-

armed Bandit (RMAB) problem with a continuous state space, for which it is typically

quite challenging to show indexability or to evaluate the Whittle index efficiently. We

are able to prove indexability (see Theorem 4.1) and derive an exact expression for the

Whittle index (Theorem 4.2 and Lemma 5.2). These results generalize prior studies on

the remote estimation of a single Gauss-Markov process [34,55,110] to the multi-source,

multi-channel case. To the best of our knowledge, such results for multi-source remote

estimation of Gauss-Markov processes were unknown before. Among the technical tools

used to prove these results are Shiryaev’s free boundary method [74] for solving optimal

stopping problems and Dynkin’s formula [75] for evaluating expectations involving

stopping times.

• We further investigate signal-agnostic remote estimation. In this context, the optimal

sampling and scheduling problem becomes a multi-source AoI minimization problem

over parallel channels with i.i.d. random transmission times. We establish the in-

dexability property and derive a precise expression of the Whittle index (Theorems

4.3-4.4 and Lemma 4.3). Technically, these results carry forth and expand upon prior

findings on Whittle index based AoI minimization [16,41,42] in the following manner:

In [16, 41, 42], the transmission time remains constant, resulting in the optimality of
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the zero-wait sampling policy defined in [111, 112]. Consequently, the Whittle index

derived in that case consistently maintains a non-negative value. In contrast, our re-

sults take into account scenarios involving i.i.d. random transmission times. In such

instances, the optimality of the zero-wait sampling policy is not guaranteed, leading

to the possibility of both positive and negative values for the Whittle index.

• Our results unite two important theoretical frameworks for remote estimation and

AoI minimization: threshold-based sampling [4, 34, 55, 110] and Whittle index-based

scheduling [16, 41, 42]. In the single-source, single-channel scenario, we demonstrate

that the optimal solution to the sampling and scheduling problem can be expressed

as both a threshold-based sampling strategy ( [34,55,110]) and a Whittle index-based

scheduling policy (see Theorems 4.5, 4.6). Particularly noteworthy is that the Whittle

index is equal to zero at time t if and only if two conditions are satisfied: (i) the

channel must be idle at time t, and (ii) the threshold condition is precisely met at

time t. Moreover, the methodology used for deriving threshold-based sampling in the

single-source, single-channel scenario plays a pivotal role in establishing indexability

and evaluating the Whittle index in the more complex multi-source, multi-channel

scenario.

• Our numerical results show that the proposed policy performs better than the signal-

agnostic AoI-basedWhittle index policy and the Maximum-Age-First, Zero-Wait (MAF-

ZW) policy. The performance gain of the proposed policy is high when some of the

Gauss-Markov processes are highly unstable.

4.2 Model

This section describes the multi-source, multi-channel system depicted in Figure 4.1

4.2.1 System Model

Consider a remote estimation system with N source-estimator pairs and L channels,

which is shown in Figure 4.1. Each source n is a continuous-time Gauss-Markov process

Xn,t, as defined in (4.1). The sources are independent of each other and the parameters θn,
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µn, and σn may vary across the sources. Hence, the N sources could be a mixing of scaled

Wiener processes, stable OU processes, and unstable OU processes. A centralized sampler

and transmission scheduler chooses when to take samples from the sources and transmit the

samples over the channels to the associated remote estimators. At any given time, each

source can be served by no more than one channel. In other words, if there are multiple

samples from the same source waiting to be transmitted, only one of these samples can be

transmitted over a single channel simultaneously. Sample transmissions are non-preemptive,

i.e., once a channel starts to send a sample, it must finish transmitting the current sample

before switching to serve another sample. Whenever a sample is delivered to the associated

estimator, an acknowledgment (ACK) is immediately sent back to the scheduler.

The operation of the system starts at time t = 0. Let Sn,i be the generation time of the

i-th sample of source n, which satisfies Sn,i ≤ Sn,i+1. This sample is submitted to a channel

at time Gn,i, undergoes a random transmission time Yn,i, and is delivered to the estimator n

at time Dn,i, where Sn,i ≤ Gn,i, and Gn,i+Yn,i = Dn,i. Because (i) each source can be served

by at most one channel at a time and (ii) the sample transmissions are non-preemptive,

Dn,i ≤ Gn,i+1. The sample transmission times Yn,i’s are i.i.d. across samples and channels

with mean 0 < E[Yn,i] < ∞. In addition, we assume that the Yn,i’s are independent of

the Gauss-Markov processes Xn,t. The i-th sample packet (Sn,i, Xn,Sn,i
) contains the sample

value Xn,Sn,i
and its sampling time Sn,i. Let Un(t) = maxi{Sn,i : Dn,i ≤ t, i = 1, 2, . . .} be

the generation time of the freshest received sample from source n at time t. The AoI of

source n at time t is defined as [1, 2]

∆n(t) = t− Un(t) = t−max
i
{Sn,i : Dn,i ≤ t, i = 1, 2, . . .}. (4.2)

Because Dn,i ≤ Dn,i+1, ∆n(t) can also be expressed as

∆n(t) = t− Sn,i, if t ∈ [Dn,i, Dn,i+1), i = 0, 1, . . . . (4.3)

At time t = 0, the initial state of the system satisfies Sn,0 = 0, and Dn,0 = Yn,0. The initial

value of the Gauss-Markov process Xn,0 is finite.
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4.2.2 MMSE Estimator

At any time t ≥ Sn,i, the Gauss-Markov process Xn,t can be expressed as

Xn,t =


Xn,Sn,i

e−θn(t−Sn,i) + µn

[
1− e−θn(t−Sn,i)

]
+ σn√

2θn
W

n,1−e−2θn(t−Sn,i) , if θn > 0,

σnWn,t, if θn = 0,

Xn,Sn,i
e−θn(t−Sn,i) + µn

[
1− e−θn(t−Sn,i)

]
+ σn√

−2θn
W

n,e−2θn(t−Sn,i)−1
, if θn < 0,

(4.4)

where three expressions are provided for stable OU process (θn > 0), scaled Wiener process

(θn = 0), and unstable OU process (θn < 0), respectively. The first two expressions in (4.4)

for the stable OU process and the scaled Wiener process were provided in [83]. The third

expression in (4.4) for the unstable OU process is proven in Appendix 4.A.

At time t, each estimator n utilizes causally received samples to construct an estimate

X̂n,t of the signal value Xn,t. The information that is available at the estimator contains

two parts: (i) Mn,t = {(Sn,i, Xn,Sn,i
, Gn,i, Dn,i) : Dn,i ≤ t, i = 1, 2, . . .}, which contains the

sampling time Sn,i, sample value Xn,Sn,i
, transmission starting time Gn,i, and the delivery

time Dn,i of the samples up to time t and (ii) no sample has been received after the last

delivery time maxi{Dn,i : Dn,i ≤ t, i = 1, 2, . . .}. Similar to [30, 34, 55, 84], we assume that

the estimator neglects the second part of the information. If t ∈ [Dn,i, Dn,i+1), the MMSE

estimator is given by [34,110]

X̂n,t =E[Xn,t|Mn,t]

=

Xn,Sn,i
e−θn(t−Sn,i) + µn

[
1− e−θn(t−Sn,i)

]
, if θn ̸= 0,

σnWn,Sn,i
, if θn = 0.

(4.5)

The estimation error εn(t) of source n at time t is given by

εn(t) = Xn,t − X̂n,t. (4.6)
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By substituting (4.4) and (4.5) into (4.6), if t ∈ [Dn,i, Dn,i+1), then

εn(t) =


σn√
2θn

W
n,1−e−2θn(t−Sn,i) , if θn > 0,

σn(Wn,t −Wn,Sn,i
), if θn = 0,

σn√
−2θn

W
n,e−2θn(t−Sn,i)−1

, if θn < 0.

(4.7)

4.3 Problem Formulation

Let π = (πn)
N
n=1 denote a sampling and scheduling policy, where πn= ((Sn,1, Gn,1), (Sn,2,

Gn,2), . . .) contains the sampling and transmission starting time instants of source n. Let πn

denote a sub-sampling and scheduling policy for source n. In causal sampling and scheduling

policies, each sampling time Sn,i is determined based on the up-to-date information that is

available at the scheduler, without using any future information. Let Π denote the set of

all causal sampling and scheduling policies and let Πn denote the set of causal sub-sampling

and scheduling policies for source n, both of which satisfy (i) each source can be served by at

most one channel at a time, and (ii) the sample transmissions are non-preemptive. At any

time t, cn(t) ∈ {0, 1} denotes the channel occupation status of source n. If source n is being

served by a channel at time t, then cn(t) = 1; otherwise, cn(t) = 0. Hence, if t ∈ [Gn,i, Dn,i),

then cn(t) = 1. Because there are L channels,
∑N

n=1 cn(t) ≤ L is required to hold for all

t ≥ 0.

Our objective is to find a causal sampling and scheduling policy for minimizing the

weighted sum of the time-average expected estimation errors of the N Gauss-Markov sources.

This sampling and scheduling problem is formulated as

inf
π∈Π

lim sup
T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

ε2n(t)dt

]
(4.8)

s.t.
N∑

n=1

cn(t) ≤ L, cn(t) ∈ {0, 1}, n = 1, 2, . . . , N, t ∈ [0,∞), (4.9)

where wn > 0 is the weight of source n. The sampling and scheduling policy π can be

simplified by simplifying the sub-sampling and scheduling policy πn. In Appendix 4.B, we

prove that in the optimal policies to (4.8)-(4.9), the sampling time of the i-th sample Sn,i and
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the transmission starting time of the i-th sample Gn,i are equal to each other, i.e., Sn,i = Gn,i.

Therefore, each sub-policy πn in π can be simply denoted as πn = (Sn,1, Sn,2, . . .).

4.4 Signal-aware Scheduling

Problem (4.8)-(4.9) is a continuous-time Restless Multi-armed Bandit (RMAB) with

a continuous state space, where the estimation error εn(t) of source n is the state of the

n-th restless bandit and each restless bandit is a Markov Decision Process (MDP) with two

actions: active and passive. If a sample of source n is taken and submitted to a channel at

time t, we say that bandit n takes an active action at time t; otherwise, bandit n is made

passive at time t. If a sample of source n is in service, only the passive action is available

for source n.

An efficient approach for solving RMABs is to develop a low-complexity scheduling

algorithm by leveraging the Whittle index theory [113,114]. If all the bandits are indexable

and certain technical conditions are satisfied, the Whittle index policy is asymptotically

optimal as the number of bandits N and the number of channels L increases to infinity,

keeping the ratio L/N constant [113]. In this section, we develop a Whittle index policy

for solving problem (8)-(9) in three steps: (i) first, we relax the constraint (4.9) and utilize

a Lagrangian dual approach to decompose the original problem into separated per-bandit

problems; (ii) next, we prove that the per-bandit problems are indexable; and (iii) finally, we

derive closed-form expressions for the Whittle index. Because the RMAB in (4.8)-(4.9) has

a continuous state space and requires continuous-time control, demonstrating indexability in

Step (ii) and efficiently evaluating the Whittle index in Step (iii) are technically challenging.

However, we are able to overcome these challenges.

4.4.1 Restless Multi-armed Bandit: Relaxation and Lagrangian Decomposition

In standard restless multi-armed bandit problems, the channel resource constraint needs

to be satisfied with equality. In this paper, we consider a scenario where less than L bandits

can be activated at any time t, as indicated by constraint (4.9). Following [115, Section

5.1.1], we introduce L additional dummy bandits that will never change state and hence
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their estimation errors are 0 (i.e., ε0(t) = 0). When a dummy bandit is activated, it occupies

one channel, but it does not incur any estimation error. Let c0(t) ∈ {0, 1, 2, . . . , L} denotes
the number of dummy bandits that are activated at time t. By considering dummy bandits,

the RMAB (4.8)-(4.9) is equivalent to

inf
π∈Π

lim sup
T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

ε2n(t)dt

]
(4.10)

s.t.
N∑

n=0

cn(t) = L, c0(t) ∈ {0, 1, . . . , L}, t ∈ [0,∞),

cn(t) ∈ {0, 1}, n = 1, 2, . . . , N, t ∈ [0,∞), (4.11)

which is an RMAB with an equality constraint.

Following the standard relaxation and Lagrangian dual decomposition procedure in the

Whittle index theory [114], we relax the constraint (4.11) as

lim sup
T→∞

N∑
n=0

Eπ

[
1

T

∫ T

0

cn(t)dt

]
= L. (4.12)

The relaxed constraint (4.12) only needs to be satisfied on average, whereas (4.11) is required

to hold at any time t. Then, the RMAB (4.10)-(4.11) is reformulated as

inf
π∈Π

lim sup
T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

ε2n(t)dt

]
(4.13)

s.t. lim sup
T→∞

N∑
n=0

Eπ

[
1

T

∫ T

0

cn(t)dt

]
= L,

c0(t) ∈ {0, 1, . . . , L}, cn(t) ∈ {0, 1}, n = 1, 2, . . . , N, t ∈ [0,∞). (4.14)

Next, we take the Lagrangian dual decomposition of the relaxed problem (4.13)-(4.14),

which produces the following problem with a dual variable λ ∈ R, also known as the activa-

tion cost [114]:

inf
π∈Π

lim sup
T→∞

Eπ

[
1

T

∫ T

0

N∑
n=1

wnε
2
n(t) + λ

( N∑
n=0

cn(t)− L

)
dt

]
. (4.15)
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The term 1
T

∫ T

0

∑N
n=0 λLdt in (4.15) does not depend on policy π and hence can be removed.

Then, Problem (4.15) can be decomposed into (N + 1) separated sub-problems. The sub-

problem associated with source n is

m̄n,opt = inf
πn∈Πn

lim sup
T→∞

Eπn

[
1

T

∫ T

0

wnε
2
n(t) + λcn(t)dt

]
, (4.16)

where m̄n,opt is the optimum value of (4.16) and n = 1, 2, . . . , N . On the other hand, the

sub-problem associated with the dummy bandits is given by

inf
π0∈Π0

lim sup
T→∞

Eπn

[
1

T

∫ T

0

λc0(t)dt

]
, (4.17)

where π0 = {c0(t), t ∈ [0,∞)} and Π0 is the set of all causal activation policies π0.

4.4.2 Indexability

We now establish the indexability of the RMAB in (4.10)-(4.11). Let γn(t) ∈ [0,∞)

denote the amount of time that has been used to send the current sample of source n at

time t. Here, if no sample from source n is currently in service at time t, then γn(t) = 0;

if a sample from source n is currently in service at time t, then γn(t) > 0. Consequently, if

γn(t) > 0, the active action is not available for source n at time t.

Let Ψn(λ) be a set of states (ε, γ) ∈ R× [0,∞) such that if εn(t) = ε and γn(t) = γ, the

optimal solution for (4.16) (or (4.17) when n = 0) is to take a passive action at time t.

Definition 4.1 (Indexability). [115] Bandit n is said to be indexable if, as the activation

cost λ increases from −∞ to ∞, the set Ψn(λ) increases monotonically, i.e., λ1 ≤ λ2 implies

Ψn(λ1) ⊆ Ψn(λ2). The RMAB (4.10)-(4.11) is said to be indexable if all (N + 1) bandits

are indexable.

In general, establishing the indexability of an RMAB can be a challenging task. Because

the per-bandit problem (4.16) is a continuous-time MDP with a continuous state space,

determining the indexability of (4.16) appears to be quite formidable. In the sequel, we

will utilize the techniques developed in our previous work [34] to solve (4.16) precisely and
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analytically characterize the set Ψn(λ). This analysis will allow us to demonstrate that (4.16)

is indeed indexable.

Define

G(x) =

√
π

2

ex
2

x
erf(x), (4.18)

K(x) =

√
π

2

e−x2

x
erfi(x), (4.19)

where erf(x) and erfi(x) are the error function and imaginary error function, respectively,

determined by [85, Sec. 8.25]

erf(x) =
2√
π

∫ x

0

e−t2dt, (4.20)

erfi(x) =
2√
π

∫ x

0

et
2

dt. (4.21)

If x = 0, both G(x) and K(x) are defined as their limits G(0) = limx→0G(x) = 1 and

K(0) = limx→0K(x) = 1, respectively. Both G(·) and K(·) are even functions. The function

G(x) is strictly increasing on x ∈ [0,∞) and G(0) = 1 [34]. On the other hand, K(x) is

strictly decreasing on x ∈ [0,∞) and K(0) = 1 [110]. Hence, the inverse functions of G(x)

and K(x) are well defined on x ∈ [0,∞). The relation between these two functions is given

by [110]

K(x) = G(jx), (4.22)

where j =
√
−1 is the unit imaginary number.

Proposition 4.1 If the Yn,i’s are i.i.d. with 0 < E[Yn,i] < ∞, then (Sn,1(βn), Sn,2(βn), . . .)

with a parameter βn is an optimal solution to (4.16), where

Sn,i+1(βn) = inf
t
{t ≥ Dn,i(βn) : |εn(t)|≥vn(βn)} , (4.23)
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Dn,i(βn) = Sn,i(βn) + Yn,i, vn(βn) is defined by

vn(βn) =



σn√
θn
G−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
−βn

)
, if θn > 0,

1√
wn

√
3(βn − wnσ2

nE[Yn,i]), if θn = 0,

σn√
−θn

K−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
−βn

)
, if θn < 0,

(4.24)

G−1(·) and K−1(·) are the inverse functions of G(x) in (4.18) and K(x) in (4.19), respec-

tively, defined in the region of x ∈ [0,∞), and βn is the unique root of

E

[∫ Dn,i+1(βn)

Dn,i(βn)

wnε
2
n(t)dt

]
−βnE[Dn,i+1(βn)−Dn,i(βn)] + λE[Yn,i+1]=0. (4.25)

The optimal objective value to (5.11) is given by

m̄n,opt =
E
[∫ Dn,i+1(βn)

Dn,i(βn)
wnε

2
n(t)dt

]
+ λE[Yn,i+1]

E[Dn,i+1(βn)−Dn,i(βn)]
. (4.26)

Furthermore, βn is exactly the optimal objective value of (4.16), i.e., βn = m̄n,opt.

Proof 4.1 Appendix 4.C.

Proposition 4.1 complements earlier optimal sampling results for the remote estimation

of the Wiener process (i.e., the case of θn = 0 and λ = 0) [35] and stable OU process (i.e.,

θn > 0 and λ = 0) [34], by (i) adding a third case on unstable OU process (i.e., θn < 0) and

(ii) incorporating an activation cost λ ∈ R.

By using Proposition 4.1, we can analytically characterize the set Ψn(λ). To that end,

we first show that the threshold vn(βn) in (4.23) is a function of the activation cost λ. For

any given λ, βn is the unique root of equation (4.25). Hence, βn can be expressed as an

implicit function βn(λ) of λ, defined by equation (4.25). Moreover, the threshold vn(βn)

can be rewritten as a function vn(βn(λ)) of the activation cost λ. According to (4.23) and

the definition of set Ψn(λ), a point (εn(t), γn(t)) ∈ Ψn(λ) if either (i) γn(t) > 0 such that a

sample from source n is currently in service at time t, or (ii) |εn(t)| < vn(βn(λ)) such that the

threshold condition in (4.23) for taking a new sample is not satisfied. By this, an analytical
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expression of set Ψn(λ) is derived as

Ψn(λ) = {(ε, γ) ∈ R× [0,∞) : γ > 0 or |ε| < vn(βn(λ))}. (4.27)

Using (4.27), we can prove the first key result of the present paper:

Theorem 4.1 The RMAB problem (4.10)-(4.11) is indexable.

Proof sketch. According to Proposition 4.1, for any λ, the optimal solution to (4.16) is

a threshold policy. Using this, we can show that the unique root βn(λ) of (4.25) is a strictly

increasing function of λ. In addition, vn(βn) in (4.24) is a strictly increasing function of

βn. Hence, vn(βn(λ)) is a strictly increasing function of λ. Substituting this into (4.27), if

λ1 ≤ λ2, then Ψn(λ1) ⊆ Ψn(λ2). For the dummy bandits, it is optimal in (4.17) to activate a

bandit when λ < 0. Hence, dummy bandits are always indexable. The details are provided

in Appendix 4.D. □

4.4.3 Whittle Index Policy

Next, we introduce the definition of the Whittle index.

Definition 4.2 [114] If bandit n is indexable, then the Whittle index Wn(ε, γ) of bandit n

at state (ε, γ) is defined by

Wn(ε, γ) = inf
λ
{λ ∈ R : (ε, γ) ∈ Ψn(λ)}, (4.28)

which is the infimum of the activation cost λ for which it is better not to activate bandit n.

Theorem 4.2 The following assertions are true for the Whittle index Wn(ε, γ) of problem

(4.16) at state (ε, γ):

(a) If γ = 0, then the Whittle index Wn(ε, γ) is presented in the following three cases:

(i) Case 1: If θn > 0 (i.e., Xn,t is a stable OU process), then

Wn(ε, 0) =

wn

E[Yn,i]

{
E[Dn,i+1(ε)−Dn,i(ε)]

σ2
n

2θn

(
1− E[e−2θnYn,i ]

G
(√

θn
σn

ε
) )− E

[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

]}
, (4.29)
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(ii) Case 2: If θn = 0 (i.e., Xn,t is a scaled Wiener process), then

Wn(ε, 0) =

wn

E[Yn,i]

{
E[Dn,i+1(ε)−Dn,i(ε)]

(
ε2

3
+ σ2

nE[Yn,i]

)
− E

[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

]}
, (4.30)

(iii) Case 3: If θn < 0 (i.e., Xn,t is an unstable OU process), then

Wn(ε, 0) =

wn

E[Yn,i]

{
E[Dn,i+1(ε)−Dn,i(ε)]

σ2
n

2θn

(
1− E[e−2θnYn,i ]

K
(√−θn

σn
ε
) )− E

[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

]}
, (4.31)

where G(·) and K(·) are defined in (4.18) and (4.19), respectively.

(b) If γ > 0, then

Wn(ε, γ) = −∞. (4.32)

Proof sketch. When γ = 0, by (4.27), (4.28), and the monotonicity of vn(·) and βn(·),
the Whittle index Wn(ε, 0) is equal to the unique root λ of equation

|ε| = vn(βn(λ)). (4.33)

Hence, Wn(ε, 0) = β−1
n (v−1

n (|ε|). By substituting (4.24) and (4.25) into (4.33) and using

the fact that G(·) and K(·) are even functions, statement (a) in Theorem 4.2 is proven.

When γ > 0, (ε, γ) is always in the set Ψn(λ) for any λ ∈ R. Hence, by using (4.28),

Wn(ε, λ) = −∞. By this, statement (b) in Theorem 4.2 is proven. The details are provided

in Appendix 4.E. □

In Theorem 4.2, the delivery time Dn,i(ε) is expressed as a function of ε for the following

reason: in the optimal solution to (4.16), the sample delivery time is a function of the

activation cost λ. If the activation cost λ in (4.16) is chosen as λ = Wn(ε, γ), then the

sample delivery time in the optimal solution to (4.16) is a function of ε. We use the notation
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Dn,i(ε) to remind us that the expectations E[Dn,i+1(ε)−Dn,i(ε)] and E[
∫ Dn,i+1(ε)

Dn,i(ε)
ε2n(s)ds] in

(4.29)-(4.31) change as ε varies.

In order to compute the Whittle index Wn(ε, γ), we need to calculate the expectations

E[Dn,i+1(ε) −Dn,i(ε)] and E[
∫ Dn,i+1(ε)

Dn,i(ε)
ε2n(s)ds] in (4.29)-(4.31). Because Sn,i(ε) and Dn,i(ε)

are stopping times of the process Xn,t, numerically evaluating these two expectations is

nontrivial. This challenge can be addressed by resorting to Lemma 5.2 provided below,

which is obtained by using Dynkin’s formula [75, Theorem 7.4.1] to simplify expectations

involving stopping times.

To that end, let us introduce a Gauss-Markov process On,t with a zero initial condition

On,0 = 0 and parameter µn = 0, which is expressed as

On,t =


σn√
2θn

Wn,1−e−2θnt , if θn > 0,

σnWn,t, if θn = 0,

σn√
−2θn

Wn,e−2θnt−1, if θn < 0.

(4.34)

By comparing (4.7) with (4.34), the estimation error process εn(t) has the same distribution

with as the time-shifted Gauss-Markov process On,t−Sn,i(ε), where t ∈ [Dn,i(ε), Dn,i+1(ε)).

Then, we have the following lemma for computing the expectations in (4.29), (4.30),

and (4.31).

Lemma 4.1 In Theorem 4.2, it holds that

E[Dn,i+1(ε)−Dn,i(ε)] =E
[
Rn,1

(
max

{
|ε|, |On,Yn,i

|
})]

, (4.35)

E

[∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

]
=E
[
Rn,2

(
max

{
|ε|, |On,Yn,i

|
}
+On,Yn,i+1

)]
− E

[
Rn,2

(
On,Yn,i

)]
, (4.36)

where if θn ̸= 0, then

Rn,1(ε) =
ε2

σ2
n

2F2

(
1, 1;

3

2
, 2;

θn
σ2
n

ε2
)
, (4.37)

Rn,2(ε) = −
ε2

2θn
+

ε2

2θn
2F2

(
1, 1;

3

2
, 2;

θn
σ2
n

ε2
)
; (4.38)
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if θn = 0, then

Rn,1(ε) =
ε2

σ2
n

, (4.39)

Rn,2(ε) =
ε4

6σ2
n

. (4.40)

Proof 4.2 See Appendix 5.A.

In (4.37) and (4.38), we have used the generalized hypergeometric function, which is

defined by [86, Eq. 16.2.1]

pFq(a1, a2, · · · , ap; b1, b2, · · · bq; z) =
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp)n

zn

n!
, (4.41)

where

(a)0 = 1, (4.42)

(a)n = a(a+ 1)(a+ 2)· · ·(a+ n− 1), n ≥ 1. (4.43)

Lemma 5.2 is more general than Lemma 1 in [34], because Lemma 5.2 holds for all three

cases of the Gauss-Markov processes, i.e., θn > 0, θn = 0, and θn < 0, whereas Lemma 1

in [34] was only shown for θn > 0. Moreover, (4.35)-(4.36) in Lemma 5.2 are neater than

(22)-(23) in Lemma 1 of [34].

The expectations in (4.35) and (4.36) can be evaluated by Monte-Carlo simulations of

scalar random variables On,Yn,i
and On,Yn,i+1

which is much easier than directly simulating

the entire process {εn(t), t ≥ 0}.
The Whittle index of the dummy bandits is derived in the following lemma.

Lemma 4.2 The Whittle index of the dummy bandits is 0, i.e., W0(ε, γ) = 0.

Proof 4.3 See Appendix 4.G.

This policy activates the L bandits with the highest Whittle index at any given time t.

As stated in Lemma 4.2, each dummy bandit has a Whittle index of W0(ε0(t),
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Algorithm 6 Whittle Index Policy for Signal-aware Remote Estimation

1: Initialize the set of passive bandits A = {1, 2, . . . , N}.
2: for all time t do
3: Update Xn,t and X̂n,t for all n = 1, 2, . . . , N using (4.4) and (4.5), respectively.
4: Update εn(t), γn(t), and the Whittle index Wn(εn(t), γn(t)) for all n = 1, 2, . . . , N

using (4.6) and (4.29), (4.30), (4.31), (4.32), (4.35), and (4.36).
5: Update A = {n ∈ {1, 2, . . . , N} : γn(t) = 0} for all n = 1, 2, . . . , N .
6: Initialize total number of selected bandits k = 0.
7: for all l = 1, 2, . . . , L do
8: if channel l is idle and max

n∈A
Wn(εn(t), γn(t)) ≥ 0 then

9: n = argmaxn∈A Wn(εn(t), γn(t)).
10: Take a sample of bandit n and send it on channel l.
11: Update total number of selected bandits k = k + 1.
12: A← A− {n}.
13: end if
14: end for
15: Select L− k dummy bandits.
16: end for

γ0(t)) = 0. Consequently, if a bandit n (for n = 1, 2, . . . , N) possesses a negative Whittle

index, denoted as Wn(εn(t), γn(t)) < 0, it will remain inactive. Furthermore, if source n is

being served by a channel at time t such that γn(t) > 0, then Wn(εn(t), γn(t)) = −∞ and

no more channel will be scheduled to serve source n.

The Algorithm for solving (4.10)-(4.11) is provided in Algorithm 6. The set A of

available bandits is initialized as A = {1, 2, . . . , N}. At any time t, the set A is up-

dated for the bandits that do not have samples currently under service and the total

number of selected bandits for transmission k is initialized as 0. If channel l is idle and

maxn∈A Wn(εn(t), γn(t)) ≥ 0, then one sample is taken from bandit n = argmaxn∈A Wn(εn(t),

γn(t)) and sent over channel; meanwhile, the total number of selected sources k is increase

by 1 and bandit n is removed from the set A. Then, L − k dummy bandits are selected

for activation. Algorithm 6 can be either used as an event-driven algorithm or be executed

on discretized time slots t = 0, Ts, 2Ts, . . .. When Ts is sufficiently small, the performance

degradation caused by time discretization can be omitted.
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Algorithm 7 Whittle Index Policy for Signal-aware Remote Estimation

1: Initialize the set of passive bandits A = {1, 2, . . . , N}.
2: for all time t do
3: Update Xn,t and X̂n,t for all n = 1, 2, . . . , N using (4.4) and (4.5), respectively.
4: Update εn(t), γn(t), and the Whittle index Wn(εn(t), γn(t)) for all n = 1, 2, . . . , N

using (4.6) and (4.29), (4.30), (4.31), (4.32), (4.35), and (4.36).
5: Update A = {n ∈ {1, 2, . . . , N} : γn(t) = 0}.
6: for all l = 1, 2, . . . , L do
7: if channel l is idle and max

n∈A
Wn(εn(t), γn(t)) ≥ 0 then

8: n = argmaxn∈A Wn(εn(t), γn(t)).
9: Take a sample of bandit n and send it on channel l.
10: A← A− {n}.
11: end if
12: end for
13: end for

Now, we return to the original RMAB (4.8)-(4.9). The Whittle index scheduling policy

for solving the original sampling and scheduling problem (4.8)-(4.9) is illustrated in Algo-

rithm 7. Because RMAB (4.8)-(4.9) and the RMAB (4.10)-(4.11) are equivalent to each

other, the Whittle index policy in Algorithm 6 and the Whittle index policy in Algorithm 7

are equivalent. Specifically, at any time t, L bandits having the highest non-negative Whittle

index Wn(ε, γ) will be activated. Because in the relaxed RMAB (4.13)-(4.14), a bandit n

having Wn(ε, γ) ≤ 0 will never be made active, the dummy bandits with W0(ε, γ) will be

made active. As there are L dummy bandits, the constraint (4.11) will be satisfied.

In Algorithm 7, the set A of passive bandits is initialized as A = {1, 2, . . . , N}. If

channel l is idle and maxn∈AWn(εn(t), γn(t)) ≥ 0, then one sample is taken from bandit

n=argmaxn∈AWn(εn(t), γn(t)) and sent over channel; meanwhile, bandit n is removed from

the set A of passive bandits.

4.5 Signal-agnostic Scheduling

A scheduling policy π ∈ Π is called signal-agnostic if the policy π is independent of the

observed process {Xn,t, t ≥ 0}Nn=1. Let Πagnostic ∈ Π denote the set of signal-agnostic, causal
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policies, defined by

Πagnostic = {π ∈ Π : π is independent of {Xn,t, t ≥ 0}Nn=1}. (4.44)

In a signal-agnostic policy, the mean-squared estimation error of the process Xn,t at

time t is [35], [34]

E[ε2n(t)] =pn(∆n(t))=


σ2
n

2θn
(1− e−2θn∆n(t)), if θn ̸= 0,

σ2
n∆n(t), if θn = 0,

(4.45)

where ∆n(t) is the AoI and pn(·) is an increasing function defined in (4.45). By using (4.45),

for any policy π ∈ Πagnostic

E
[ ∫ T

0

ε2n(t)dt

]
= E

[ ∫ T

0

pn(∆n(t))dt

]
. (4.46)

Hence, the signal-agnostic sampling and scheduling problem can be formulated as

inf
π∈Πagnostic

lim sup
T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

pn(∆n(t))dt

]
(4.47)

s.t.
N∑

n=1

cn(t) ≤ L, cn(t) ∈ {0, 1}, t ∈ [0,∞). (4.48)

4.5.1 Restless Multi-armed Bandit: Relaxation and Lagrangian Decomposition

Problem (4.47)-(4.48) is a continuous-time Restless Multi-armed Bandit (RMAB) with a

continuous state space, where ∆n(t) of source n is modeled as the state of the restless bandit.

Following the procedure developed in Section 4.4.1, we consider L additional dummy bandits

where c0(t) ∈ {0, 1, 2, . . . , L} denotes the number of dummy bandits that are activated at
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time t and reformulate (4.47)-(4.48) as

inf
π∈Πagnostic

lim sup
T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

pn(∆n(t))dt

]
(4.49)

s.t. lim sup
T→∞

N∑
n=0

Eπ

[
1

T

∫ T

0

cn(t)dt

]
= L,

c0(t) ∈ {0, 1, . . . , L}, cn(t) ∈ {0, 1}, n = 1, 2, . . . , N, t ∈ [0,∞). (4.50)

which is an RMAB with an equality constraint.

By relaxing constraint (4.50), the RMAB (4.49)-(4.50) is reformulated as

inf
π∈Πagnostic

lim sup
T→∞

N∑
n=0

wnEπ

[
1

T

∫ T

0

pn(∆n(t))dt

]
(4.51)

s.t. lim sup
T→∞

N∑
n=0

Eπ

[
1

T

∫ T

0

cn(t)dt

]
= L,

c0(t) ∈ {0, 1, . . . , L}, cn(t) ∈ {0, 1}, n = 1, 2, . . . , N, t ∈ [0,∞). (4.52)

Next, we take the Lagrangian dual decomposition of the relaxed problem (4.51)-(4.52),

which produces the following problem with a dual variable λ ∈ R:

inf
π∈Πagnostic

lim sup
T→∞

Eπ

[
1

T

∫ T

0

N∑
n=1

wnpn(∆n(t)) + λ

( N∑
n=0

cn(t)− L

)
dt

]
. (4.53)

Then, problem (4.53) can be decomposed into (N + 1) separated sub-problems. The sub-

problem associated with source n is

m̄n,age-opt = inf
πn∈Πn,agnostic

lim sup
T→∞

Eπn

[
1

T

∫ T

0

wnpn(∆n(t)) + λcn(t)dt

]
, (4.54)

where m̄n,age-opt is the optimum value of (4.54), πn = (Sn,1, Sn,2, . . .) denotes a sub-scheduling

policy for source n, and Πn,agnostic is the set of all causal sub-scheduling policies of source n.

4.5.2 Indexability

An optimal solution to problem (4.54) is provided in the following proposition.
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Proposition 4.2 For signal-agnostic scheduling, if the Yn,i’s are i.i.d. with 0 < E[Yn,i] <∞,

then (Sn,1(βn,age), Sn,2(βn,age), . . .) with a parameter βn,age is an optimal solution to (4.54),

where

Sn,i+1(βn,age)=inf {t ≥Dn,i(βn,age):E[pn(∆n(t+ Yn,i+1))] ≥ βn,age} , (4.55)

Dn,i(βn,age) = Sn,i(βn,age) + Yn,i, and βn,age is the unique root of

E

[∫ Dn,i+1(βn,age)

Dn,i(βn,age)

wnε
2
n(t)dt

]
−βn,ageE[Dn,i+1(βn,age)−Dn,i(βn,age)] + λE[Yn,i+1]=0. (4.56)

The optimal objective value to (4.54) is given by

m̄n,age-opt =
E
[∫ Dn,i+1(βn,age)

Dn,i(βn,age)
wnpn(∆n(t))dt

]
+ λE[Yn,i+1]

E[Dn,i+1(βn,age)−Dn,i(βn,age)]
. (4.57)

Furthermore, βn,age is exactly the optimal objective value of (4.54), i.e., βn,age = m̄n,age-opt.

Let Ψn,age(λ) be a set of states (δ, γ) ∈ [0,∞) × [0,∞) such that if ∆n(t) = δ and

γn(t) = γ, the optimal solution for (4.54) is to take a passive action at time t.

Definition 4.3 (Indexability). [115] Bandit n is said to be indexable if, as the activation

cost λ increases from −∞ to ∞, the set Ψn,age(λ) increases monotonically, i.e., λ1 ≤ λ2

implies Ψn,age(λ1) ⊆ Ψn,age(λ2). The RMAB (4.47)-(4.48) is said to be indexable if all

(N + 1) bandits are indexable.

By using Proposition 4.2, the set Ψn,age(λ) in Definition 4.3 can be simplified as

Ψn,age(λ) = {(δ, γ) ∈ [0,∞)× [0,∞) : γ > 0 orE[pn(δ + Yn,i+1)] < βn,age(λ)}. (4.58)

Following the techniques developed in Section 4.4, we can obtain

Theorem 4.3 If pn(δ) is a strictly increasing function of δ, the RMAB problem (4.47)-(4.48)

is indexable.

Proof 4.4 See Appendix 4.I.
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4.5.3 Whittle Index Policy

Theorem 4.4 In the RMAB problem (4.47)-(4.48), if pn(δ) is a strictly increasing function

of δ, the Yn,i’s are i.i.d. with 0 < E[Yn,i] <∞, then the following assertions are true for the

Whittle index of source n at state (δ, γ):

(a) If γ = 0, then

Wn,age(δ, 0) =

wn

E[Yn,i]

{
E[Dn,i+1(δ)−Dn,i(δ)]E[pn(δ + Yn,i+1)]− E

[ ∫ Dn,i+1(δ)

Dn,i(δ)

pn(s)ds

]}
, (4.59)

where Dn,i(δ) = Sn,i(δ) + Yn,i, and

Sn,i+1(δ) = Dn,i(δ) + max{δ − Yn,i, 0}. (4.60)

(b) If γ > 0, then

Wn,age(δ, γ) = −∞. (4.61)

Proof 4.5 See Appendix 4.J.

The expectations in (4.59) can be easily evaluated using the following lemma:

Lemma 4.3 In Theorem 4.4, it holds that

E[Dn,i+1(δ)−Dn,i(δ)] = E[max{δ, Yn,i}], (4.62)

E
[ ∫ Dn,i+1(δ)

Dn,i(δ)

pn(s)ds

]
=E[Rn,3(max{δ, Yn,i}+ Yn,i+1)]− E[Rn,3(Yn,i)], (4.63)

where

Rn,3(δ) =

∫ δ

0

pn(s)ds. (4.64)
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Algorithm 8 Whittle Index Policy for Signal-aware Remote Estimation

1: Initialize the set of passive bandits A = {1, 2, . . . , N}.
2: for all time t do
3: Update ∆n(t) for all n = 1, 2, . . . , N using (4.3), (4.59), (4.61), (4.62), and (4.63).
4: Update A = {n ∈ {1, 2, . . . , N} : γn(t) = 0}.
5: Initialize total number of selected bandits k = 0.
6: for all l = 1, 2, . . . , L do
7: if channel l is idle and max

n∈A
Wn(∆n(t), γn(t)) ≥ 0 then

8: n = argmaxn∈A Wn(∆n(t), γn(t)).
9: Take a sample of bandit n and send it on channel l.
10: Update total number of selected bandits k = k + 1.
11: A← A− {n}.
12: end if
13: end for
14: Select L− k dummy bandits.
15: end for

Proof 4.6 See Appendix 4.K.

Theorems 4.3-4.4 and Lemma 4.3 hold for all increasing functions pn(δ) of the AoI δ,

not necessarily the mean-square estimation error function in (4.45). The Algorithms for

solving RMAB (4.49)-(4.50) is provided in Algorithm 8 and for solving the original RMAB

is provided in (4.47)-(4.48) Algorithm 9.

Theorems 4.3-4.4, Lemma 4.3, and Algorithms 8-9 generalize prior studies on AoI-based

Whittle index policies, e.g., [16,41,42]. More specifically, the Whittle index policies detailed

in [16, 41, 42] were derived for the scenario of constant transmission times where the zero-

wait sampling policy [111, 112] is an optimal solution for the sub-problem (4.54), and the

resulting Whittle index always maintains a non-negative value. In contrast, our current

study accommodates scenarios involving i.i.d. random transmission times. In such cases,

the optimality of zero-wait sampling is not assured for sub-problem (4.54), resulting in the

potential for both positive and negative values for the Whittle index derived in Theorem 4.4.
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Algorithm 9 Whittle Index Policy for Signal-agnostic Remote Estimation

1: Initialize the set A of passive bandits A = {1, 2, . . . , N}.
2: for all time t do
3: Update ∆n(t), γn(t), and the Whittle indexWn,age(∆n(t), γn(t)) for all n = 1, 2, . . . , N

using (4.3), (4.59), (4.61), (4.62), and (4.63).
4: Update A = {n ∈ {1, 2, . . . , N} : γn(t) = 0}.
5: for all l = 1, 2, . . . , L do
6: if channel l is idle and max

n∈A
Wn,age(∆n(t), γn(t))≥0 then

7: n = argmaxn∈A Wn,age(∆n(t), γn(t)).
8: Take a sample of bandit n and send it on channel l.
9: A← A− {n}.
10: end if
11: end for
12: end for

4.6 Unity of Threshold-based Sampling and Whittle Index-based Scheduling

We find an interesting relationship between Threshold-based Sampling and Whittle

Index-based Scheduling for Remote Estimation and AoI minimization. Specifically, for single-

source, single-channel case, both of the policies are equivalent. We provide the details

thorughout this section.

4.6.1 Remote Estimation

Let consider the special case N = L = 1, where the system has a single source and a

single channel. Let w1 = 1, then problem (5.1)-(5.2) reduces to

m̄1,opt = inf
π∈Π

lim sup
T→∞

Eπ

[
1

T

∫ T

0

ε21(t)dt

]
. (4.65)

The single-source, single-channel sampling and scheduling problem (4.65) is a special case

of Proposition 4.1 with n = 1 and λ = 0. A threshold-based optimal solution to (4.65) is

provided by the following corollary of Proposition 4.1.

Corollary 4.1 If the Y1,i’s are i.i.d. with 0 < E[Y1,i] <∞, then (S1,1(β1), S1,2(β1), . . .) with

a parameter β1 is an optimal solution to (4.65), where

S1,i+1(β1) = inf
t
{t ≥ D1,i(β1) : |ε1(t)|≥v1(β1)} , (4.66)
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D1,i(β1) = S1,i(β1) + Y1,i, v1(β1) is defined by

v1(β1) =



σ1√
θ1
G−1

(
σ2
1

2θ1
E[e−2θY1,i ]

σ2
1

2θ1
−β1

)
, if θ1 > 0,√

3(β1 − σ2
1E[Y1,i]), if θ1 = 0,

σ1√
−θ1

K−1

(
σ2
1

2θ1
E[e−2θ1Y1,i ]

σ2
1

2θ1
−β1

)
, if θ1 < 0,

(4.67)

G−1(·) and K−1(·) are the inverse functions of G(x) in (4.18) and K(x) in (4.19), respec-

tively, for the region x ∈ [0,∞), and β1 is the unique root of

E

[∫ D1,i+1(β1)

D1,i(β1)

ε21(t)dt

]
−β1E[D1,i+1(β1)−D1,i(β1)]=0. (4.68)

The optimal objective value to (4.65) is given by

m̄1,opt =
E
[∫ D1,i+1(β1)

D1,i(β1)
ε21(t)dt

]
E[D1,i+1(β1)−D1,i(β1)]

. (4.69)

Furthermore, β1 is exactly the optimal objective value of (4.65), i.e., β1 = m̄1,opt.

Corollary 4.1 follows directly from Proposition 4.1. For the cases of the Wiener process

(θ1 = 0) and stable OU process (θ1 > 0), the threshold-based policy in Corollary 4.1 were

earlier reported in [34]. The case of unstable OU process (θ1 < 0) is new.

It is important to note that the threshold-based policy in Corollary 4.1 and the Whittle

index policy in the following theorem are equivalent.

Theorem 4.5 If the Y1,i’s are i.i.d. with 0 < E[Y1,i] <∞, then (S1,1, S1,2, . . .) is an optimal

solution to (4.65), where

S1,i+1 = inf
t
{t ≥ S1,i :W1(ε1(t), γ1(t))≥0} , (4.70)

and W1(εn(t), γn(t)) is the Whittle index of source 1, defined by (4.29), (4.30), (4.31), and

(4.32).
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Figure 4.2: Illustration of the Whittle index W1(ε, γ) and the optimal threshold v1(β1), where the
parameters of the Gauss-Markov process are σ1 = 1 and θ1 = 0.1 and the i.i.d. transmission times
follow an exponential distribution with mean E[Y1,i] = 2.

Proof sketch. Because (i) Corollary 4.1 provides an optimal solution to (4.65) and (ii) (4.70)

is equivalent to the solution in Corollary 4.1, (4.70) is also an optimal solution to (4.65).

The details are provided in Appendix 4.H. □

Corollary 4.1 and Theorem 4.5 reveal a unification of threshold-based sampling and

scheduling policy developed in [34] and the Whittle index policy developed in this chapter.

In particular, if the Whittle index W1(ε1(t), γ1(t)) = 0, then (i) the channel is idle at time t

and (ii) the instantaneous estimation error |ε1(t)| exactly crosses the optimal threshold v1(β1)

at time t. As illustrated in Figure 4.2, ε = ±v1(β1) are the roots of equation W1(ε, 0) = 0.

The threshold-based sampling and scheduling results outlined in Corollary 4.1 and [34]

are applicable specifically to the single-source, single-channel scenario. Nevertheless, our

exploration in Sections 4.4.1-4.4.3 illustrates the methodology for utilizing these findings

to establish indexability and evaluate the Whittle index in the multi-source, multi-channel

scenario.
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4.6.2 AoI Minimization

For single-source, single-channel special case with w1 = 1, problem (4.47)-(4.48) reduces

to

m̄1,age-opt = inf
π∈Πagnostic

lim sup
T→∞

Eπ

[
1

T

∫ T

0

p1(∆1(t))dt

]
(4.71)

Theorem 4.6 If p1(δ) is a strictly increasing function of δ, the Y1,i’s are i.i.d. with 0 <

E[Y1,i] <∞, then (S1,1, S1,2, . . .) is an optimal solution to (4.71), where

S1,i+1 = inf
t
{t ≥ S1,i : W1,age(∆1(t), γ1(t)) ≥ 0}, (4.72)

where W1,age(∆1(t), γ1(t)) is the Whittle index of source 1, defined by (4.59) and (4.61).

In the AoI literature, threshold-based scheduling and Whittle index have been two dis-

tinct approaches for AoI minimization. Our study unifies the two approaches: for AoI

minimization of a single source, the threshold policy in [4, Theorem 1] and the Whit-

tle index policy based in Theorem 4.6 are equivalent. Specifically, if the Whittle index

W1,age(ε1(t), γ1(t)) = 0, then (i) the channel is idle at time t and (ii) the expected age-

penalty function surpasses the threshold in [4, Theorem 1] at time t.

4.7 Numerical Results

In this section, we compare the following three scheduling policies for multi-source re-

mote estimation:

• Maximum Age First, Zero-Wait (MAF-ZW) policy: Suppose that N ≥ L. Whenever

one channel l becomes free, the MAF-ZW policy will take a sample from the source

with the highest AoI among the sources that are currently not served by any channel,

and send the sample over channel l.

• Signal-agnostic, Whittle Index policy: The policy that we proposed in Algorithm 9.

• Signal-aware, Whittle Index policy: The policy that we proposed in Algorithm 7.
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Figure 4.3: Total time-average MSE vs the parameter σ1 of the Gauss-Markov source 1, where the
number of sources is N = 4 and the number of channels is L = 2. The transmission times are i.i.d.,
following a normalized log-normal distribution with parameter ρ = 1.5, and E[Yn,i] = 1. The other
parameters of the Gauss-Markov sources are σ2 = 0.8, σ3 = 0.9, σ4 = 1, and θ1 = −0.1, θ2 = θ3 =
θ4 = 0.1.
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Figure 4.4: Total time-average MSE vs the parameter θ1 of the Gauss-Markov source 1, where the
number of sources is N = 4 and the number of channels is L = 2. The transmission times are i.i.d.,
following a normalized log-normal distribution with parameter ρ = 1.5, and E[Yn,i] = 1. The other
parameters for the Gauss-Markov sources are σ1 = σ2 = σ3 = σ4 = 1, and θ2 = 0.2, θ3 = 0.3, θ4 =
0.1.
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Figure 5.3 depicts the total time-average mean-squared estimation error versus the pa-

rameter σ1 of the Gauss-Markov source 1, where the number of sources is N = 4 and the

number of channels is L = 2. The other parameters of the Gauss-Markov processes are

σ2 = 0.8, σ3 = 0.9, σ4 = 1, and θ1 = −0.1, θ2 = θ3 = θ4 = 0.1. The transmission times are

i.i.d. and follow a normalized log-normal distribution, where Yn,i = eρQn,i/E[eρQn,i ], ρ > 0 is

the scale parameter of the log-normal distribution, and (Qn,1, Qn,2, . . .) are i.i.d. Gaussian

random variables with zero mean and unit variance. In our simulation, ρ = 1.5. All sources

are given the same weight w1 = w2 = w3 = w4 = 1. In Figure 5.3, the signal-aware Whittle

index policy has a smaller total MSE than the signal-agnostic Whittle index policy and the

MAF-ZW policy. The total MSE of the signal-aware Whittle index policy achieves up to

1.58 times performance gain over the signal-agnostic Whittle index policy, and up to 1.65

times than the MAF-ZW policy.

Figure 5.5 illustrates the total time-average mean-squared estimation error versus the

parameter θ1 of the Gauss-Markov source 1, where the number of sources is N = 4, and

the number of channels is L = 2. The other parameters of the Gauss-Markov processes are

θ2 = 0.2, θ3 = 0.3, θ4 = 0.1, and σ1 = σ2 = σ3 = σ4 = 1. The transmission time distribution

and the weights of the sources are the same as in Figure 5.3. In Figure 5.5, the total MSE

of the signal-aware Whittle index policy achieves up to 8.6 times performance gain over the

MAF-ZW policy and up to 1.32 times over the signal-agnostic Whittle index policy. When

θ1 < 0, the performance gain of the signal-aware Whittle index policy is much higher than

that in the case of θ1 > 0. This suggests a high performance gain can be achieved if the

Gauss-Markov sources are highly unstable. For all three policies, the total MSE decreases,

as θ1 increases.

4.8 Conclusion

In this chapter, we have studied a sampling and scheduling problem in which samples

of multiple Gauss-Markov sources are sent to remote estimators that need to monitor the

sources in real-time. The formulated sampling and scheduling problem is a restless multi-

armed bandit problem, where each bandit process has a continuous state space and requires

continuous-time control. We have proved that the problem is indexable and proposed a
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Whittle index policy. Analytical expressions of the Whittle index have been obtained. For

single-source, single-channel scheduling, we have showed that it is optimal to take a sample

at the earliest time when the Whittle index is no less than zero. This result provides a

new interpretation of earlier studies on threshold-based sampling policies for the Wiener and

Ornstein-Uhlenbeck processes.
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4.A Proof of (4.4) for θn < 0

A solution to (4.1) for initial state Xn,0 = 0 and parameter µn = 0 can be written in

terms of a stochastic integral as follows

Xn,t = σne
−θn(t−Sn,i)

∫ t−Sn,i

0

eθnsdWs, (4.73)

which holds for any value of θn. To derive an alternative formula for θn < 0, let consider the

following well-known lemma:

Lemma 4.4 Let Yn,t be a Gaussian process with Yn,0 = 0, E[Yn,t] = 0, and it has indepen-

dent increments. Then the distribution of Yn,t can be completely determined by its variance

function E[Y 2
n,t].

Define

Yn,t = eθn(t−Sn,i)Xn,t = σn

∫ t−Sn,i

0

eθnsdWs, (4.74)

Lemma 4.4 implies that Yn,t in (4.74) is a Gaussian process and its variance function is given

by

E[Y 2
n,t] =

σ2
n

2θn
(e2θn(t−Sn,i) − 1) (4.75)

Consider the following process

Zn,t =
σn√
2θn

W
n,e2θn(t−Sn,i)−1

. (4.76)

Because Brownian motion Wn,t is a Gaussian process with variance function t, Zn,t in (4.76)

is a Gaussian process with variance function σ2
n

2θn
(e2θn(t−Sn,i) − 1) which is the same as the

variance function of Yn,t. From Lemma 4.4, both the processes Yn,t and Zn,t are equal in

distribution.

114



When θn < 0, consider ρn = −θn > 0. In this setting, the variance function of Yn,t can

be written as

E[Y 2
n,t] =

σ2
n

2ρn
(1− e−2ρn(t−Sn,i)). (4.77)

Let

Z ′
n,t =

σn√
2ρn

W
n,1−e−2ρn(t−Sn,i) , (4.78)

which implies Z ′
n,t has the same variance function as Yn,t. Hence, Z ′

n,t and Yn,t are equal in

distribution. By using (4.77) and (4.78) in (4.74), we get that

Xn,t =
σ2
n

2ρn
eρn(t−Sn,i)W

n,1−e−2ρn(t−Sn,i) , (4.79)

from which (4.4) for θn < 0 follows. This completes the proof.

4.B Proof of the Simplification of Policy πn

The sampling and scheduling policy πn = ((Sn,1, Gn,1), (Sn,2, Gn,2), . . .) consists of the

sampling time Sn,i and the transmission starting time Gn,i for each sample i. In policy πn,

sample i can be generated when the server is busy sending another sample, and hence sample

i needs to wait for some time before being submitted to the server, i.e., Sn,i < Gn,i. Consider

a sampling and scheduling policy π′
n = {(Sn,1, Gn,1), . . . , (Sn,i−1, Gn,i−1), Gn,i, (Sn,i+1, Gn,i+1),

. . .} such that the generation time and transmission starting time of sample i are equal to

each other, i.e., Sn,i = Gn,i. We will show that the MSE of the sampling policy π′
n is smaller

than that of the sampling policy πn.

Note that {Xn,t : t ∈ [0,∞)} does not change according to the sampling policy, and the

sample delivery times {Dn,1, Dn,2, . . .} remain the same in policy πn and policy π′
n. Hence,

the only difference between policies πn and π′
n is that the generation time of sample i. The

MMSE estimator under policy πn is given by (4.5) and the MMSE estimator under policy
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π′
n is given by

X̂ ′
n,t =E[Xn,t|(Sn,j, Xn,Sn,j

, Gn,j, Dn,j)j≤i−1, (Gn,i, Xn,Gn,i
, Dn,i)]

=

 E[Xn,t|Gn,i, Xn,Gn,i
], t ∈ [Dn,i, Dn,i+1);

E[Xn,t|Sn,j, Xn,Sn,j
], t ∈ [Dn,j, Dn,j+1), j ̸= i.

(4.80)

Next, we consider another sampling and scheduling policy π′′
n in which the samples

(Gn,i, Xn,Gn,i
) and (Sn,i, Xn,Sn,i

) are both delivered to the estimator at the same time Dn,i.

Clearly, the estimator under policy π′′
n has more information than those under policies πn

and π′
n. One can also show that the MMSE estimator under policy π′′

n is

X̂ ′′
n,t =E[Xn,t|(Sn,j, Xn,Sn,j

, Gn,j, Dn,j)j≤i, (Gn,i, Xn,Gn,i
, Dn,i)]

=

 E[Xn,t|Gn,i, Xn,Gn,i
], t ∈ [Dn,i, Dn,i+1);

E[Xn,t|Sn,j, Xn,Sn,j
], t ∈ [Dn,j, Dn,j+1), j ̸= i.

(4.81)

Notice that, because of the strong Markov property of OU process, the estimator under

policy π′′
n uses the fresher sample (Gn,i,Xn,Gn,i

), instead of the stale sample (Sn,i, Xn,Sn,i
),

to construct X̂ ′′
n,t during [Dn,i, Dn,i+1). Because the estimator under policy π′′

n has more

information than that of under policy πn, one can imagine that policy π′′
n has a smaller

estimation error than policy πn, i.e.,

E

{∫ Dn,i+1

Dn,i

(Xn,t − X̂n,t)
2dt

}
≥ E

{∫ Dn,i+1

Dn,i

(Xn,t − X̂ ′′
n,t)

2dt

}
. (4.82)

To prove (4.82), we invoke the orthogonality principle of the MMSE estimator [98, Prop.

V.C.2] under policy π′′
n and obtain

E

{∫ Dn,i+1

Dn,i

2(Xn,t − X̂ ′′
n,t)(X̂

′′
n,t − X̂n,t)dt

}
= 0, (4.83)
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where we have used the fact that (Gn,i, Xn,Gn,i
) and (Sn,i, Xn,Sn,i

) are available by the MMSE

estimator under policy π′′
n. Next, from (4.83), we can get

E

{∫ Dn,i+1

Dn,i

(Xn,t − X̂n,t)
2dt

}

=E

{∫ Dn,i+1

Dn,i

(Xn,t − X̂ ′′
n,t)

2 + (X̂ ′′
n,t − X̂n,t)

2dt

}

+ E

{∫ Dn,i+1

Dn,i

2(Xn,t − X̂ ′′
n,t)(X̂

′′
n,t − X̂n,t)dt

}

=E

{∫ Dn,i+1

Dn,i

(Xn,t − X̂ ′′
n,t)

2 + (X̂ ′′
n,t − X̂n,t)

2dt

}

≥E
{∫ Dn,i+1

Dn,i

(Xn,t − X̂ ′′
n,t)

2dt

}
. (4.84)

In other words, the estimation error of policy π′′
n is no greater than that of policy πn. Fur-

thermore, by comparing (4.80) and (4.81), we can see that the MMSE estimators under

policies π′′
n and π′

n are exactly the same. Therefore, the estimation error of policy π′
n is no

greater than that of policy πn.

By repeating the above arguments for all samples i satisfying Sn,i < Gn,i, one can

show that the sampling policy {Gn,1, Gn,2, . . .} is better than the sampling policy π =

{(Sn,1, Gn,1), (Sn,2, Gn,2), . . .}. This completes the proof.

4.C Proof of Proposition 4.1

In this section, we present the proof of Proposition 4.1 for unstable OU process, i.e., for

θn < 0. The proofs for stable OU process (i.e., θn > 0) and Wiener process (i.e., θn = 0)

follow the similar steps.

Define the σ-field

Nn,t = σ(Xn,s : 0 ≤ s ≤ t), (4.85)
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which is the set of events whose occurrence are determined by the realization of the process

{Xn,s : 0 ≤ s ≤ t}. The right continuous filtration {N+
n,t, t ≥ 0} is defined by

N+
n,t = ∪s>tNn,s. (4.86)

In causal sampling policies, each sampling time is a stopping time with respect to the filtra-

tion {N+
n,t, t ≥ 0}, i.e., [76]

{Sn,i ≤ t} ∈ N+
n,t,∀t ≥ 0. (4.87)

Let the sampling and scheduling policy πn = (Sn,1, Sn,2, . . .) in (5.11) satisfy two con-

ditions: (i) Each sampling policy πn ∈ Πn satisfies (4.87) for all i. (ii) The sequence of

inter-sampling times {Tn,i = Sn,i+1 − Sn,i, i = 0, 1, . . .} forms a regenerative process [77, Sec-

tion 6.1]: There exists an increasing sequence 0 ≤ k1 < k2 < . . . of almost surely finite

random integers such that the post-kj process {Tn,kj+i, i = 0, 1, . . .} has the same distribu-

tion as the post-k0 process {Tn,k0+i, i = 0, 1, . . .} and is independent of the pre-kj process

{Tn,i, i = 0, 1, . . . , kj − 1}; further, we assume that E[kj+1 − kj] < ∞, E[Sn,k1 ] < ∞, and

0 < E[Sn,kj+1
− Sn,kj ] <∞, j = 1, 2, . . ..

We will prove Proposition 4.1 in three steps: First , we show that it is better not to

sample when no channel is free. Second, we decompose the MDP in (5.11) into a series of

mutually independent per-sample MDPs. Finally, we solve the per-sample MDP analytically.

The Gauss-Markov process On,t in (4.34) is the solution to the following SDE

dOn,t = −θnOn,tdt+ σndWn,t. (4.88)

In addition, the infinitesimal generator of On,t is [92, Eq. A1.22]

G = −θnu
∂

∂u
+

σ2
n

2

∂2

∂u2
. (4.89)

In Appendix 4.B, by using the strong Markov property of the Gauss-Markov process

and the orthogonality principle of MMSE estimation, we have shown that it is better not
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to take a sample before the previous sample is delivered. Hence, the sampling time and the

transmission starting time are equal to each other. By this, let us consider a sub-class of

sampling and scheduling policies Πn,1 ⊂ Πn such that each sample is generated and sent out

after all previous samples are delivered, i.e.,

Πn,1 = {πn ∈ Πn : Sn,i = Gn,i ≥ Dn,i−1 for all i}.

For any policy πn ∈ Πn,1, the information used for determining Sn,i includes: (i) the history

of signal values (Xn,t : t ∈ [0, Sn,i]) and (ii) the service times (Yn,1, . . . , Yn,i−1) of previous

samples. Let us define the σ-fields Fn,t = σ(Xn,s : s ∈ [0, t]) and F+
n,t = ∩r>tFn,r. Then,

{F+
n,t, t ≥ 0} is the filtration (i.e., a non-decreasing and right-continuous family of σ-fields) of

the Gauss-Markov processXn,t. Given the service times (Yn,1, . . . , Yn,i−1) of previous samples,

Sn,i is a stopping time with respect to the filtration {F+
n,t, t ≥ 0} of the Gauss-Markov process

Xn,t, that is

[{Sn,i ≤ t}|Yn,1, . . . , Yn,i−1] ∈ F+
n,t. (4.90)

Hence, the policy space Πn,1 can be expressed as

Πn,1 ={Sn,i : [{Sn,i ≤ t}|Yn,1, . . . , Yn,i−1] ∈ F+
n,t,

Tn,i is a regenerative process}. (4.91)

Let Zn,i = Sn,i+1−Dn,i ≥ 0 represent the waiting time between the delivery time Dn,i of the

i-th sample and the generation time Sn,i+1 of the (i+ 1)-th sample. Then,

Sn,i =
i−1∑
j=0

(Yn,j + Zn,j), (4.92)

Dn,i =
i−1∑
j=0

(Yn,j + Zn,j) + Yn,i (4.93)
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for each i = 1, 2, . . .. Given (Yn,0, Yn,1, . . .), (Sn,1, Sn,2, . . .) is uniquely determined by (Zn,0, Zn,1, . . .).

Hence, one can also use π = (Zn,0,

Zn,1, . . .) to represent a sampling and scheduling policy.

By using (4.6), (4.92), (4.93), and the assumption that the inter-sampling times follow

a regenerative process, the MDP in (5.11) can be transformed as the following.

m̄n,opt = inf
πn∈Πn,1

lim
t→∞

∑t
i=1 E

[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i
wnε

2
n(s)ds

]
+ λE[Yn,i+1]∑t

i=1 E[Yn,i + Zn,i]
. (4.94)

In order to solve (4.94), let consider the following MDP with parameter k ≥ 0:

h(k) = inf
πn∈Πn,1

lim
t→∞

t∑
i=1

E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i

wnε
2
n(s)ds+ λYn,i+1 − k(Yn,i + Zn,i)

]
, (4.95)

where h(k) is the optimum value of (4.95). Similar to the Dinkelbach’s method [90] for

non-linear fractional programming, the following lemma holds for the MDP in (4.94):

Lemma 4.5 [34], [35] The following assertions are true:

(a). m̄n,opt ⪌ k if and only if h(k) ⪌ 0.

(b). If h(k) = 0, the solutions to (4.94) and (4.95) are identical.

Hence, the solution to (4.94) can be obtained by solving (4.95) and finding k = m̄n,opt

for which h(m̄n,opt) = 0.

Define

βn = m̄n,opt. (4.96)

In this sequel, we need to introduce the following lemma.
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Lemma 4.6 For any βn ≥ 0, it holds that

E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i

wnε
2
n(s)ds+ λYn,i+1 − βn(Yn,i + Zn,i)

]
=E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i

(wnε
2
n(s)− βn)ds+ wnγnO

2
Yn,i+Zn,i

]
+ wn

σ2
n

2θn
(E[Yn,i]− γn) + λE[Yn,i+1]− βnE[Yn,i], (4.97)

where γn is a constant defined as

γn =
1

2θn
E[1− e−2θnYn,i ]. (4.98)

Proof 4.7 We can write (4.97) as

E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i

wnε
2
n(s)ds+ λYn,i+1 − βn(Yn,i + Zn,i)

]
=E
[ ∫ Yn,i+Zn,i

Yn,i

wnε
2
n(s)ds

]
+ E

[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i+Zn,i

wnε
2
n(s)ds

]
+ λE[Yn,i+1]− βnE(Yn,i + Zn,i). (4.99)

In order to prove Lemma 4.6, we need to compute the second term in (4.99). First, let us

introduce the following lemma which is more general than Lemma 5 in [34] and works for

any OU process irrespective of the signal structure, i.e., the value of parameter θ. By using

Dynkin’s formula and optional stopping theorem, we get the following useful lemma.

Lemma 4.7 [34] Let τ ≥ 0 be a stopping time of the OU process On,t with E [O2
τ ] < ∞,

then

E
[∫ τ

0

O2
n,tdt

]
= E

[
σ2
n

2θn
τ − 1

2θn
O2

n,τ

]
. (4.100)
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If, in addition, τ is the first exit time of a bounded set, then

E [τ ] = E[Rn,1(On,τ )], (4.101)

E
[∫ τ

0

O2
n,tdt

]
= E[Rn,2(On,τ )], (4.102)

where Rn,1(·) and Rn,2(·) are defined in (4.37) and (4.38), respectively.

Proof 4.8 We first prove (4.100). It is known that the OU process On,t is a Feller process

[96, Section 5.5]. By using a property of Feller process in [96, Theorem 3.32], we get that

O2
n,t −

∫ t

0

G(O2
n,s)ds

=O2
n,t −

∫ t

0

(−θnOn,s2On,s + σ2
n)ds

=O2
n,t − σ2

nt+ 2θn

∫ t

0

O2
n,sds (4.103)

is a martingale. According to [76], the minimum of two stopping times is a stopping time

and constant times are stopping times. Hence, t∧τ is a bounded stopping time for every

t ∈ [0,∞), where x∧y = min{x, y}. Then, by [76, Theorem 8.5.1], for all t ∈ [0,∞)

E
[∫ t∧τ

0

O2
n,sds

]
= E

[
σn

2

2θn
(t∧τ)

]
− E

[
1

2θn
O2

n,t∧τ

]
. (4.104)

Because E
[∫ t∧τ

0
O2

n,sds
]
and E[t∧τ ] are positive and increasing with respect to t, by using

the monotone convergence theorem [76, Theorem 1.5.5], we get

lim
t→∞

E
[∫ t∧τ

0

O2
n,sds

]
= E

[∫ τ

0

O2
n,sds

]
, (4.105)

lim
t→∞

E[(t∧τ)] = E[τ ]. (4.106)

In addition, according to Doob’s maximal inequality [76], we get that

E
[
sup

0≤s≤τ
O2

n,s

]
≤ 4E[O2

n,τ ] <∞. (4.107)
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Because 0 ≤ O2
n,t∧τ ≤ sup0≤s≤τ O

2
n,s for all t and (4.107) implies that sup0≤s≤τ O

2
n,s is inte-

gratable, by invoking the dominated convergence theorem [76, Theorem 1.5.6], we have

lim
t→∞

E
[
O2

n,t∧τ
]
= E

[
O2

n,τ

]
. (4.108)

Combining (4.105)-(4.108), (4.100) is proven.

Next, we prove (4.101) and (4.102). By using the solution of the ODE in Appendix 4.C,

one can show that Rn,1(v) in (4.37) is the solution to the following ODE

σ2
n

2
R′′

n,1(v)− θnvR
′
n,1(v) = 1, (4.109)

and Rn,2(v) in (4.38) is the solution to the following ODE

σ2
n

2
R′′

n,2(v)− θnvR
′
n,2(v) = v2. (4.110)

In addition, Rn,1(v) and Rn,2(v) are twice continuously differentiable. According to Dynkin’s

formula in [75, Theorem 7.4.1 and the remark afterwards], because the initial value of On,t

is On,0 = 0, if τ is the first exit time of a bounded set, then

E0[Rn,1(On,τ )] = Rn,1(0) + E0

[∫ τ

0

1ds

]
= Rn,1(0) + E0[τ ], (4.111)

E0[Rn,2(On,τ )] = Rn,2(0) + E0

[∫ τ

0

O2
n,sds

]
. (4.112)

Because Rn,1(0) = Rn,2(0) = 0, (4.101) and (4.102) follow. This completes the proof.

By using Lemma 4.7, we can write

E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i+Zn,i

wnε
2
n(s)ds

]
=wn

σ2
n

2θn
E[Yn,i+1]−wn

1

2θn
E
[
O2

n,Yn,i+Zn,i+Yn,i+1
−O2

n,Yn,i+Zn,i

]
, (4.113)
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where

E
[
O2

n,Yn,i+Zn,i+Yn,i+1
−O2

n,Yn,i+Zn,i

]
=E

[(
On,Yn,i+Zn,i

e−θnYn,i+1 +
σn√
−2θn

e−θnYn,i+1W1−e2θnYn,i+1

)2

−O2
n,Yn,i+Zn,i

]
, (4.114)

=E
[
O2

n,Yn,i+Zn,i
(e−2θnYn,i+1−1)− σ2

n

2θn
e−2θnYn,i+1W 2

n,1−e2θnYn,i+1

]
+ E

[
2On,Yn,i+Zn,i

e−θnYn,i+1
σn√
−2θn

e−θnYn,i+1Wn,1−e2θnYn,i+1

]
. (4.115)

Because Yn,i+1 is independent of On,Yn,i+Zn,i
and Wn,t, we have

E
[
O2

n,Yn,i+Zn,i
(e−2θnYn,i+1−1)

]
=E
[
O2

n,Yn,i+Zn,i

]
E
[
e−2θnYn,i+1−1

]
, (4.116)

and

E
[
2On,Yn,i+Zn,i

e−θnYn,i+1
σn√
−2θn

e−θnYn,i+1Wn,1−e2θnYn,i+1

]
=E
[
2On,Yn,i+Zn,i

]
E
[
e−θnYn,i+1

σn√
−2θn

e−θnYn,i+1Wn,1−e2θnYn,i+1

]
(a)
=E

[
2On,Yn,i+Zn,i

]
E
[
E
[
e−θnYn,i+1

σn√
−2θn

e−θYn,i+1Wn,1−e2θnYn,i+1

∣∣∣∣Yn,i+1

]]
, (4.117)

where Step (a) is due to the law of iterated expectations. Because E[Wn,t] = 0 for all constant

t ≥ 0, it holds for all realizations of Yn,i+1 that

E
[
e−θnYn,i+1

σn√
−2θn

e−θnYn,i+1Wn,1−e2θnYn,i+1

∣∣∣∣Yn,i+1

]
= 0. (4.118)
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Hence,

E
[
2On,Yn,i+Zn,i

e−θnYn,i+1
σn√
−2θn

e−θnYn,i+1Wn,1−e2θnYn,i+1

]
= 0. (4.119)

In addition,

E
[
σ2
n

2θn
e−2θnYn,i+1W 2

n,1−e2θnYn,i+1

]
(a)
=

σ2
n

2θn
E
[
E
[
e−2θnYn,i+1W 2

n,1−e2θnYn,i+1

∣∣∣∣Yn,i+1

]]
(b)
=

σ2
n

2θn
E
[
e−2θnYn,i+1 − 1

]
, (4.120)

where Step (a) is due to the law of iterated expectations and Step (b) is due to E[W 2
n,t] = t

for all constant t ≥ 0. Hence,

E
[
O2

n,Yn,i+Zn,i+Yn,i+1
−O2

n,Yn,i+Zn,i

]
= E

[
O2

n,Yn,i+Zn,i

]
E[e−2θnYn,i+1 − 1] +

σ2
n

2θn
E[1− e−2θnYn,i+1 ]. (4.121)

By using (4.121) in (4.113), we get that

E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i+Zn,i

wnO
2
sds

]
=wn

σ2
n

2θn
E[Yn,i+1]− wn

1

2θn
E
[
O2

Yn,i+Zn,i

]
E[e−2θnYn,i+1 − 1]

− wn
σ2
n

4θ2n
E[1− e−2θnYn,i+1 ],

=wn
σ2
n

2θn

{
E[Yn,i+1]− γn

}
+ wnγnE

[
O2

Yn,i+Zn,i

]
, (4.122)
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where γn is defined in (4.98). Substituting (4.122) into (4.99) yields

E
[ ∫ Yn,i+Zn,i+Yn,i+1

Yn,i

wnO
2
sds+ λYn,i+1 − βn[Yn,i + Zn,i]

]
=E
[ ∫ Yn,i+Zn,i

Yn,i

wnO
2
sds

]
+ wn

σ2
n

2θn

{
E[Yn,i+1]− γn

}
+ wnγnE

[
O2

Yn,i+Zn,i

]
+ λE[Yn,i+1]− βnE[Yn,i + Zn,i], (4.123)

=E
[ ∫ Yn,i+Zn,i

Yn,i

(wnO
2
s − βn)ds+ wnγnO

2
Yn,i+Zn,i

]
+ wn

σ2
n

2θn

{
E[Yn,i+1]− γn

}
− βnE[Yn,i] + λE[Yn,i+1], (4.124)

from which (4.97) follows.

For any s ≥ 0, define the σ-fields F s
n,t = σ(On,s+r − On,s : r ∈ [0, t]) and the right-

continuous filtration F s+
n,t = ∩r>tF s

n,r. Then, {F s+
n,t , t ≥ 0} is the filtration of the time-shifted

OU process {On,s+t − On,s, t ∈ [0,∞)}. Define Mn,s as the set of integrable stopping times

of {On,s+t −On,s, t ∈ [0,∞)}, i.e.,

Mn,s = {τ ≥ 0 : {τ ≤ t} ∈ F s+
n,t ,E [τ ] <∞}. (4.125)

By using a sufficient statistic of (4.95), we can obtain

Lemma 4.8 An optimal solution (Zn,0, Zn,1, . . .) to (4.95) satisfies

inf
Zn,i∈MYn,i

E

[∫ Yn,i+Zn,i

Yn,i

(wnε
2
n(s)−βn)ds+γnO

2
Yn,i+Zn,i

∣∣∣∣OYn,i
, Yn,i

]
, (4.126)

where βn ≥ 0 and γn ≥ 0 are defined in (4.96) and (4.98), respectively.

Proof 4.9 Because the Yn,i’s are i.i.d., (4.123) is determined by the control decision Zn,i

and the information (Yn,i, OYn,i
). Hence, (Yn,i,

OYn,i
) is a sufficient statistic for determining Zn,i in (4.95). Therefore, there exists an optimal

policy (Zn,0, Zn,1, . . .) to (4.95), in which Zn,i is determined based on only (Yn,i, OYn,i
). By
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this, (4.95) is decomposed into a sequence of per-sample MDPs, given by (4.126). This

completes the proof.

Next, we solve (4.126) by using free-boundary method for optimal stopping problems.

Let consider an OU process Vn,t with initial state Vn,0 = v and µn = 0. Define the σ-fields

FV
n,t = σ(Vn,s : s ∈ [0, t]), FV+

n,t = ∩r>tFV
n,r, and the filtration {FV+

n,t , t ≥ 0} associated to

{Vn,t, t ≥ 0}. Define MV as the set of integrable stopping times of {Vn,t, t ∈ [0,∞)}, i.e.,

MV = {τ ≥ 0 : {τ ≤ t} ∈ FV+
n,t ,E [τ ] <∞}. (4.127)

Our goal is to solve the following optimal stopping problem for any given initial state

v ∈ R and for any βn > 0

sup
τ∈MV

Ev

[
−wnγnV

2
n,τ −

∫ τ

0

(wnV
2
n,s − βn)ds

]
, (4.128)

where Ev[·] is the conditional expectation for given initial state Vn,0 = v, where the supremum

is taken over all stopping times τ of Vn,t, and γn is defined in (4.98). In this subsection, we

focus on the case that βn in (4.128) satisfies σ2
n

2θn
E[1− e−2θnYn,i ] ≤ βn <∞.

In order to solve (4.128) for θn < 0, we first find a candidate solution to (4.128) by

solving a free boundary problem; then we prove that the free boundary solution is indeed

the value function of (4.128):

The general optimal stopping theory in Chapter I of [74] tells us that the following guess

of the stopping time should be optimal for Problem (4.128):

τ∗ = inf{t ≥ 0 : |Vn,t| ≥ v∗}, (4.129)

where v∗ ≥ 0 is the optimal stopping threshold to be found. Observe that in this guess,

the continuation region (−v∗, v∗) is assumed symmetric around zero. This is because the

OU process is symmetric, i.e., the process {−Vn,t, t ≥ 0} is also an OU process started at

−Vn,0 = −v. Similarly, we can also argue that the value function of problem (4.128) should

be even. According to [74, Chapter 8], and [75, Chapter 10], the value function and the
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optimal stopping threshold v∗ should satisfy the following free boundary problem:

σ2
n

2
H ′′(v)− θnvH

′(v) = wnv
2 − βn, v ∈ (−v∗, v∗), (4.130)

H(±v∗) = −wnγnv
2
∗, (4.131)

H ′(±v∗) = ∓2wnγnv∗. (4.132)

In this sequel, we solve (4.130) to find H(v).

We need to use the following indefinite integrals to solve (4.130) that can be obtained

by [99, Sec. 15.3.1, (Eq. 36)], [85, Sec. 3.478 (Eq. 3), 8.250 (Eq. 1,4)]. Let θn = −ρn.∫
2

σ2
n

wne
− θn

σ2
n
v2

v2dv=

√
πwnσn

2θn
3
2

erf

(√
θn
σn

v

)
− wnv

θn
e
− θn

σn2 v
2

+ C1,

=

√
πwnσn

−2jρn√ρn
erf

(
j
√
ρn

σn

v

)
+

wnv

ρn
e

ρn
σn2 v

2

+ C1, (4.133)∫
2

σ2
n

βne
− θn

σ2
n
v2

dv =

√
πβn

σn

√
θn

erf

(√
θn
σn

v

)
+ C2,

=

√
πβn

jσn
√
ρn

erf

(
j
√
ρn

σn

v

)
+ C2, (4.134)

∫
erf

(√
θn
σn

v

)
e

θn
σn2 v

2

dv

=
σn√
θn
√
π

θn
σn

2
v22F2

(
1, 1;

3

2
, 2;

θn
σ2
n

v2
)
+ C,

=− σn

j
√
ρn
√
π

ρn
σn

2
v22F2

(
1, 1;

3

2
, 2;−ρn

σ2
n

v2
)
+ C, (4.135)

∫ (√
πwnσn

2θn
3
2

−
√
πβn

σn

√
θn

)
erf

(√
θn
σn

v

)
e

θn
σn2 v

2

dv

=

(
wn

2θn
− βn

σn
2

)
v2 2F2

(
1, 1;

3

2
, 2;

θn
σ2
n

v2
)
+ C4,

=

(
− wn

2ρn
− βn

σn
2

)
v2 2F2

(
1, 1;

3

2
, 2;−ρn

σ2
n

v2
)
+ C4, (4.136)
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∫
C3e

θn
σn2 v

2

dv =C5erfi

(√
θn
σn

v

)
+ C6,

=C5erfi

(
−j
√
ρn

σn

v

)
+ C6, (4.137)

−
∫

wnv

θn
dv = wn

v2

2ρn
+ C7, (4.138)

where erf(·) and erfi(·) are the error function and imaginary error functions, respectively.

Hence, H(v) is given by

H(v) =

(
− wn

2ρn
− βn

σ2
n

)
v22F2

(
1, 1;

3

2
, 2;−ρn

σ2
n

v2
)
+ C1erfi

(
j

√
ρn

σn

v

)
+ wn

v2

2ρn
+ C2, v ∈ (−v∗, v∗), (4.139)

where C1 and C2 are constants to be found for satisfying (4.131)-(4.132), and erfi(x) is the

imaginary error function, i.e.,

erfi(x) =
2√
π

∫ x

0

et
2

dt. (4.140)

Because H(v) should be even but erfi(x) is odd, we should choose C1 = 0. Further, in order

to satisfy the boundary condition (4.131), C2 is chosen as

C2 =−
1

2ρn
E
(
e2ρnYn,i

)
v2∗+

(
1

2ρn
+
βn

σ2
n

)
2F2

(
1, 1;

3

2
, 2;−ρn

σ2
n

v2∗
)
v2∗, (4.141)

where we have used (4.98). With this, the expression of H(v) is obtained in the continuation

region (−v∗, v∗). In the stopping region |v| ≥ v∗, the stopping time in (4.129) is simply

τ∗ = 0, because |Vn,0| = |v| ≥ v∗. Hence, if |v| ≥ v∗, the objective value achieved by the

sampling time (4.129) is

Ev

[
−γnwnv

2 −
∫ 0

0

(wnV
2
n,s − βn)ds

]
=−γnwnv

2. (4.142)
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Combining (4.139)-(4.142), we obtain a candidate of the value function for (4.128):

H(v) =


wn

v2

2ρn
−
(

wn

2ρn
+ βn

σn
2

)
2F2

(
1, 1; 3

2
, 2;− ρn

σ2
n
v2
)
v2 + C2,

if |v| < v∗,

−γnwnv
2, if |v| ≥ v∗.

(4.143)

Next, we find a candidate value of the optimal stopping threshold v∗. By taking the

gradient of H(v), we get

H ′(v) = wn
v

ρn
−
(

wnσn

jρn
√
ρn

+
2βn

jσn
√
ρn

)
F

(
j

√
ρ
n

σn

v

)
, v ∈ (−v∗, v∗), (4.144)

where

F (x) = ex
2

∫ x

0

e−t2dt. (4.145)

The boundary condition (4.132) implies that v∗ is the root of

wn
v

ρn
−
(

wnσn

jρn
√
ρn

+
2βn

jσn
√
ρn

)
F

(
j

√
ρ
n

σn

v

)
= −2γnwnv. (4.146)

Substituting (4.98) into (4.146), yields that v∗ is the root of

−
(
wn

σ2
n

2ρn
+ βn

)
G

(
j

√
ρn

σn

v

)
= −wn

σ2
n

2ρn
E[e2ρnYn,i ], (4.147)

where G(·) is defined in (4.18). By using (4.22) in (4.147), we get that

−
(
wn

σ2
n

2ρn
+ βn

)
K

(√
ρn

σn

v

)
= −wn

σ2
n

2ρn
E[e2ρnYn,i ], (4.148)

where K(·) is defined in (4.19). Rearranging (4.148), we obtain the threshold as follows

v(βn) =
σn√
ρn

K−1

(
wn

σ2
n

2ρn
E[e2ρnYn,i ]

wn
σ2
n

2ρn
+ βn

)
(4.149)

Substituting ρn = −θn in (4.149), we get (4.24) for θn < 0.
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In addition, when θn → 0, (4.147) can be expressed as

(
σ2
n −

2θnβn

wn

)
G

(√
θn
σn

v

)
= σ2

nE
[
e−2θnYn,i

]
, (4.150)

The error function erf(x) has a Maclaurin series representation, given by

erf(x) =
2√
π

[
x− x3

3
+ o(x3)

]
. (4.151)

Hence, the Maclaurin series representation of G(x) in (4.18) is

G(x) = 1 +
2x2

3
+ o(x2). (4.152)

Let x =
√
θn
σn

v, we get

G

(√
θn
σn

v

)
= 1 +

2

3

θn
σ2
n

v2 + o(θ). (4.153)

In addition,

E
[
e−2θnYn,i

]
= 1− 2θnE[Yn,i] + o(θn). (4.154)

Hence, (4.150) can be expressed as

(
σ2
n −

2βnθn
σ2
nwn

)[
1 +

2

3

θn
σ2
n

v2 + o(θn)

]
= σ2

n(1− 2θnE[Yn,i] + o(θn)). (4.155)

Expanding (4.155), yields

σ2
n2θnE[Yn,i]−

2βnθn
σ2
nwn

+
2

3

θn
σ2
n

v2 + o(θn) = 0. (4.156)

Divided by θ and let θ → 0 on both sides of (4.156), yields

v2 − 1

wn

3(βn − wnσ
2
nE[Yn,i]) = 0. (4.157)
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Equation (4.157) has two roots −(1/√wn)
√
3(βn − wnσ2

nE[Yn,i]), and (1/
√
wn)√

3(βn − wnσ2
nE[Yn,i]).

If v∗ = −(1/√wn)
√

3(βn − wnσ2
nE[Yn,i]), the free boundary problem in (4.130)-(4.132)

are invalid. Hence, the root of (4.157) is v∗ = (1/
√
wn)
√
3(βn − wnσ2

nE[Yn,i]), from which

(4.24) follows for θn = 0.

Verification of the Optimality of the Candidate Solution

Next, we use Itô’s formula to verify the above candidate solution is indeed optimal, as

stated in the following theorem:

Theorem 4.7 If σ2
n

2θn
E[1 − e−2θnYn,i ] ≤ βn < ∞, then for all v ∈ R, H(v) in (4.143) is the

value function of the optimal stopping problem (4.128). In addition, the optimal stopping

time for solving (4.128) is τ∗ in (4.129), where v∗ = v(βn) is given by (4.24).

In order to prove Theorem 4.7, we need to establish the following properties of H(v) in

(4.143), for the case that σ2
n

2θn
E[1− e−2θnYn,i ] ≤ βn <∞ is satisfied in (4.128):

Lemma 4.9 [34] H(v) = Ev

[
−γnV 2

n,τ∗ −
∫ τ∗
0
(V 2

n,s − βn)ds
]
.

Lemma 4.10 [34] H(v) ≥ −γnv2 for all v ∈ R.

A function f(v) is said to be excessive for the process Vn,t if

Evf(Vn,t) ≤ f(v),∀t ≥ 0, v ∈ R. (4.158)

By using Itô’s formula in stochastic calculus, we can obtain

Lemma 4.11 [34] The function H(v) is excessive for the process Vn,t.

Now, we are ready to prove Theorem 4.7.

Proof 4.10 (Proof of Theorem 4.7) In Lemmas 4.9-4.11, we have shown that H(v) =

Ev

[
−γnV 2

n,τ∗ −
∫ τ∗
0
(V 2

n,s − βn)ds
]
, H(v) ≥ −γnv2, and H(v) is an excessive function. More-

over, from Lemma 4.9, we know that Ev[τ∗] <∞ holds for all v ∈ R. Hence, Pv(τ∗ <∞) = 1

for all v ∈ R. These conditions and Theorem 1.11 in [74, Section 1.2] imply that τ∗ is an

optimal stopping time of (4.128). This completes the proof.
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Because (4.126) is a special case of (4.128), we can get from Theorem 4.7 that

Corollary 4.2 If σ2
n

2θn
E[1 − e−2θnYn,i ] ≤ βn < ∞, then a solution to (4.126) is (Zn,1(βn),

Zn,2(βn), . . .), where

Zn,i(βn) = inf{t ≥ 0 : |On,Yn,i+t| ≥ v(βn)}, (4.159)

and v(βn) is defined in (4.24).

This concludes the proof.

4.D Proof of Theorem 4.1

If γ = 0, i.e., no sample from source is currently in service, from Proposition 4.1, we

get that the optimal sampling policy of (5.11) is a threshold policy which is given by (4.55).

Given Proposition 4.1, for an instantaneous estimation error |εn(t) = ε|, it is optimal not to

schedule source n if

|ε| < vn(m̄n(λ)), (4.160)

where

m̄n(λ) =

E
[ ∫ Dn,i+1(m̄n(λ))

Dn,i(m̄n(λ))
wnε

2
n(s)ds

]
+ λE[Yn,i+1]

E[Dn,i+1(m̄n(λ))−Dn,i(m̄n(λ))]
, (4.161)

and m̄n(λ) is the optimal objective value of (5.11). We use m̄n,opt as the optimal objective

value in (5.11). For convenience of the proof and to illustrate the dependency of the activation

cost λ, we express it as a function of λ in this proof. The numerator in (4.161) represents the

expected penalty of source n strating from i-th delivery time to (i+ 1)-th delivery time and

the denominator represents the expected time from i-th delivery time to the end of (i+1)-th

delivery time. In order to prove Theorem 4.1, we need to introduce the following Lemma.

Lemma 4.12 m̄n(λ) is a continuous and strictly increasing function of λ.
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Proof 4.11 The (i+ 1)-th delivery time from source n is given by

Dn,i+1(m̄n(λ)) = Sn,i+1(m̄n(λ)) + Yn,i+1, (4.162)

and for (4.55), the (i+ 1)-th sampling time is

Sn,i+1(m̄n(λ)) = inf{t ≥ Dn,i(m̄n(λ)) : |εn(t)| ≥ vn(m̄n(λ))}. (4.163)

Let the waiting time after the delivery of the i-th sample is

Zn,i(m̄n(λ)) = inf{z ≥ 0 : |εn(Dn,i(m̄n(λ)) + z)| ≥ vn(m̄n(λ))}, (4.164)

which represents the minimum time z upto which it needs to wait after the delivery of the i-th

sample before generating the (i+1)-th sample. Hence, by using (4.162), (4.163), and (4.164)

the sampling time Sn,i(m̄n(λ)) and the delivery time Dn,i(m̄n(λ)) can also be expressed as

Sn,i(m̄n(λ)) =
i−1∑
j=0

Yn,j + Zn,j(m̄n(λ)), (4.165)

Dn,i(m̄n(λ)) =
i−1∑
j=0

Yn,j + Zn,j(m̄n(λ)) + Yn,i. (4.166)

By substituting (4.165) and (4.166) in (4.161), we get that

m̄n(λ) =

E
[ ∫ Yn,i+Zn,i(m̄n(λ))+Yn,i+1

Yn,i
wnε

2
n(s)ds

]
+ λE[Yn,i+1]

E[Yn,i+1 + Zn,i(m̄n(λ))]
. (4.167)

The optimal objective value m̄n(λ) in (4.167) is exactly equal to the root of the following

equation:

f(βn) + λE[Yn,i+1] = 0, (4.168)
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where

f(βn) =E
[ ∫ Yn,i+Zn,i(βn)+Yn,i+1

Yn,i

wnε
2
n(s)ds

]
− βnE[Zn,i(βn) + Yn,i+1]. (4.169)

Because f(βn) is a concave, continuous, and strictly decreasing function of βn [34, Lemma

2], from (4.168), it is evident that the root of (4.168) is unique and continuous in λ. Hence,

m̄n(λ) is unique and continuous in λ. From (4.168), we get that

f(βn) = −λE[Yn,i+1]. (4.170)

For any 0 ≤ λ1 ≤ λ2 and βn = m̄n(λ), from (4.170), we have

f(m̄n(λ1)) = −λ1E[Yn,i+1], (4.171)

f(m̄n(λ2)) = −λ2E[Yn,i+1]. (4.172)

As f(βn) is a continuous and strictly decreasing function of β, for any non-negative λ2 > λ1

implies m̄n(λ1) < m̄n(λ2). Therefore, m̄n(λ) is continuous and strictly increasing function

of λ.

The next task is to show the properties of the threshold vn(m̄n(λ)) in (4.160) by using

the (4.24) for the three cases of Gauss-Markov processes. In that sequel, we need to use the

following lemma.

Lemma 4.13 The threshold vn(m̄n(λ)) is continuous and strictly increasing in λ irrespective

of the signal structure.

Proof 4.12 For θn > 0, vn(m̄n(λ)) is as follows

vn(m̄n(λ)) =
σn√
θn

G−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(λ)

)
. (4.173)
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The derivative of vn(m̄n(λ)) is given by

v′n(m̄n(λ)) =
σn√
θn

{
G−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(λ)

)}′

. (4.174)

Let

G−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(λ)

)
= y. (4.175)

By using the property of derivative of an inverse function [116], v′n(m̄n(λ)) in (4.179) can

be expressed as

v′n(m̄n(λ)) =
σn√
θn

1

G′(y)

wn
σ2
n

2θn
E[e−2θnYn,i ]

(wn
σ2
n

2θn
− m̄n(λ))2

, (4.176)

where G′(x) is as follows

G′(x) = −
√
π

2

ex
2

x2
erf(x) +

√
πex

2

erf(x) +
1

x
> 0, (4.177)

for all x > 0. Hence, by using Lemma 4.12 and the fact that v′n(m̄n(λ)) > 0, it is proved

that vn(m̄n(λ)) is a strictly increasing function of λ.

In addition, for θn < 0, vn(m̄n(λ)) can be expressed as

vn(m̄n(λ)) =
σn√
−θn

K−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(λ)

)
. (4.178)

The derivative of vn(m̄n(λ)) is then given by

v′n(m̄n(λ)) =
σn√
−θn

{
K−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(λ)

)}′

. (4.179)

Let

K−1

(
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(λ)

)
= p. (4.180)
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Utilizing the property of the derivative of an inverse function, v′n(m̄n(λ)) in (4.179) can be

expressed as

v′n(m̄n(λ)) =
σn√
−θn

1

K ′(p)

wn
σ2
n

2θn
E[e−2θnYn,i ]

(wn
σ2
n

2θn
− m̄n(λ))2

, (4.181)

where K ′(x) is as follows

K ′(x) = −
√
π

2

e−x2

x2
erfi(x)−√πe−x2

erfi(x) +
1

x
< 0, (4.182)

for all x > 0. Hence, from Lemma 4.12 and the fact that v′n(m̄n(λ)) > 0, it is proved that

vn(m̄n(λ)) is a strictly increasing function of λ. By using similar proof arguments, the result

can be proven for θn = 0. Hence, combining the results for all of the three cases of θn, Lemma

4.13 is proven.

From (4.183), the set Ψn(λ) is

Ψn(λ) = {(ε, γ) : γ > 0 or |ε| < vn(m̄n(λ))}. (4.183)

Moreover, for a given ε, if γ = 0 and ε ∈ Ψn(λ1), then

|ε| < vn(m̄n(λ1)). (4.184)

Because Lemma 4.13 implies that vn(m̄n(λ)) is continuous and strictly increasing in λ, we

get that for γ = 0, (ε, γ) ∈ Ψn(λ2) for any λ1 < λ2. Hence, Ψn(λ1) ⊆ Ψn(λ2). Thus from

the definition of indexability, the arm n is indexable for all n. This completes the proof.

4.E Proof of Theorem 4.2

Substituting (4.183) into the definition of Whittle index in (4.28), we obtain that

Wn(ε, γ) = inf
λ
{λ ∈ R : γ > 0 or |ε| < vn(λ)}. (4.185)
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First, we consider the case when γ = 0. By using Lemma 4.13, (4.185) implies that the

Whittle index Wn(ε, γ) is unique and it satisfies the following at λ = Wn(ε, γ):

|ε| = vn(m̄n(Wn(ε, γ))), (4.186)

where vn(·) is defined in (4.24). First, consider the case of stable OU process (i.e., θn > 0).

Substituting (4.24) for θn > 0 into (4.186), we get that

|ε| = σn√
θn

G−1
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(Wn(ε, γ))

, (4.187)

which implies

G

(√
θn
σn

|ε|
)

=
wn

σ2
n

2θn
E[e−2θnYn,i ]

wn
σ2
n

2θn
− m̄n(Wn(ε, γ))

. (4.188)

After some rearrangements, (4.188) becomes

m̄n(Wn(ε, γ)) =
wn

σ2
n

2θn

(
G
(√

θn
σn
|ε|
)
− E[e−2θnYn,i ]

)
G
(√

θn
σn
|ε|
) . (4.189)

The optimal objective value m̄n(Wn(ε)) to problem (5.11) is defined by

m̄n(Wn(ε, γ)) =

E
[ ∫ Yn,i+Zn,i(ε,m̄n(Wn(ε)))+Yn,i+1

Yn,i
wnO

2
n,sds

]
+Wn(ε, γ)E[Yn,i+1]

E[Zn,i(ε, m̄n(Wn(ε, γ))) + Yn,i+1]
. (4.190)

Substituting (4.190) into (4.189) implies

E
[ ∫ Yn,i+Zn,i(ε,m̄n(Wn(ε)))+Yn,i+1

Yn,i
wnO

2
n,sds

]
+Wn(ε, γ)E[Yn,i+1]

E[Zn,i(ε, m̄n(Wn(ε, γ))) + Yn,i+1]

=
wn

σ2
n

2θn

(
G
(√

θn
σn
|ε|
)
− E[e−2θnYn,i ]

)
G
(√

θn
σn
|ε|
) , (4.191)
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which yields

E
[∫ Yn,i+Zn,i(ε,m̄n(Wn(ε,γ)))+Yn,i+1

Yn,i

wnO
2
n,sds

]
+Wn(ε, γ)E[Yn,i+1] =

E[Zn,i(ε, m̄n(Wn(ε, γ)))+Yn,i+1]
wn

σ2
n

2θn

(
G
(√

θn
σn
|ε|
)
−E[e−2θnYn,i ]

)
G
(√

θn
σn
|ε|
) . (4.192)

After rearranging (4.192), we get that

Wn(ε, γ) =
1

E[Yn,i]

{
E[Zn,i(ε, m̄n(Wn(ε, γ))) + Yn,i+1]

wn
σ2
n

2θn

(
G
(√

θn
σn
|ε|
)
− E[e−2θnYn,i ]

)
G
(√

θn
σn
|ε|
)

− E
[ ∫ Yn,i+Zn,i(ε,m̄n(Wn(ε,γ)))+Yn,i+1

Yn,i

wnO
2
n,sds

]}
, (4.193)

where (4.193) holds because Yn,i’s are i.i.d.. In Theorem 4.2, we have used Zn,i(ε) to represent

Zn,i(ε, m̄n(Wn(ε, γ))) because Zn,i is dependent on mn(Wn(ε, γ)) through the state ε.

In addition, for unstable OU process, when θn < 0, by using the similar proof arguments,

we can prove (4.31) for θn < 0.

Subsequently, when θn = 0, by using (4.24), (4.28), and Lemma 4.13, at λ = Wn(ε, γ),

we get that

|ε| = 1√
wn

√
3(m̄n(Wn(ε, γ))− wnσ2

nE[Yn,i]), (4.194)

which implies

wnε
2 = 3(m̄n(Wn(ε, γ))− wnσ

2
nE[Yn,i]). (4.195)

After some rearrangements, (4.195) becomes

wn

(
ε2

3
+ σ2

nE[Yn,i]

)
= m̄n(Wn(ε, γ)). (4.196)
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Substituting (4.190) into (4.196), we obtain that

wn

(
ε2

3
+ σ2

nE[Yn,i]

)
=

E
[ ∫ Yn,i+Zn,i(ε,m̄n(Wn(ε,γ)))+Yn,i+1

Yn,i
wnO

2
n,sds

]
+Wn(ε, γ)E[Yn,i]

E[Zn,i(ε, m̄n(Wn(ε, γ))) + Yn,i+1]
, (4.197)

which yields

wnE
[ ∫ Yn,i+Zn,i(ε,mn(Wn(ε,γ)))+Yn,i+1

Yn,i

O2
n,sds

]
+Wn(ε, γ)E[Yn,i]

= wnE[Yn,i + Zn,i(ε,mn(Wn(ε, γ)))]

(
ε2

3
+ σ2

nE[Yn,i]

)
, (4.198)

from which (4.30) follows for θn = 0.

Next, we consider γ > 0. From Definition 4.1 and Definition 4.3, the possible infimum

cost λ for which to activate and not to activate are equally desirable is −∞, from which

(4.32) follows. This concludes the proof.

4.F Proof of Lemma 5.2

In order to prove Lemma 5.2, we need to consider the following two cases:

Case 1: If |εn(Dn,i)| = |On,Dn,i−Sn,i
| = |On,Yn,i

| ≥ |ε|, then Sn,i+1 = Dn,i. Hence,

E[Dn,i+1(ε)−Dn,i(ε)] =E[Sn,i+1(ε) + Yn,i+1 − Sn,i+1(ε)],

=E[Yn,i+1]. (4.199)
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Using the fact that the Yn,i’s are independent of the OU process, we can obtain

E
[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]

=E
[ ∫ Yn,i+Yn,i+1

Yn,i

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]

=E
[ ∫ Yn,i+Yn,i+1

0

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]

− E
[ ∫ Yn,i

0

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]
. (4.200)

By invoking Lemma 4.7, we get that

E
[ ∫ Yn,i+Yn,i+1

0

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]

=Rn,2(OYn,i+Yn,i+1
), (4.201)

E
[ ∫ Yn,i

0

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]
= Rn,2(OYn,i

). (4.202)

Substituting (4.201) and (4.202) into (4.200), it becomes

E
[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

∣∣∣∣On,Yn,i
, |On,Yn,i

| ≥ |ε|
]

=Rn,2(OYn,i+Yn,i+1
)−Rn,2(OYn,i

),

=Rn,2(|ε|+On,Yn,i+1
)−Rn,2(OYn,i

), (4.203)

where (4.203) holds because at t = Dn,i(ε), the estimation error On,Yn,i
reaches the threshold

|ε|.
Case 2: If |εn(Dn,i)| = |On,Yn,i

| < |ε|, then, almost surely,

|εn(Sn,i+1)| = |ε|. (4.204)

141



Then,

E[Dn,i+1(ε)−Dn,i(ε)]

=E[Dn,i+1(ε)− Sn,i+1(ε) + Sn,i+1(ε)− Sn,i(ε) + Sn,i(ε)−Dn,i(ε)]. (4.205)

Because Dn,i+1(ε) = Sn,i+1(ε)+Yn,i+1, by invoking Lemma 4.7, we can obtain the remaining

expectations in (4.205) which are given by

E
[
Sn,i+1(ε)− Sn,i(ε)

∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]
= Rn,1(ε), (4.206)

E
[
Dn,i(ε)− Sn,i(ε)

∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]
= Rn,1(On,Yn,i

). (4.207)

Using (4.206) and (4.207), we get that

E
[
Dn,i+1(ε)−Dn,i(ε)

∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]

=E[Yn,i+1] +Rn,1(ε)−Rn,1(On,Yn,i
). (4.208)

In addition,

E
[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

∣∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]

=E
[ ∫ Yn,i+Zn,i(ε)+Yn,i+1

Yn,i

O2
n,sds

]
,

=E
[ ∫ Yn,i+Zn,i(ε)+Yn,i+1

0

O2
n,sds

]
− E

[ ∫ Yn,i

0

O2
n,sds

]
. (4.209)

By invoking Lemma 4.7 again, we can obtain

E

[∫ Yn,i+Zn,i(ε)+Yn,i+1

0

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]

=Rn,2(On,Yn,i+Zn,i(ε)+Yn,i+1
), (4.210)

E
[∫ Yn,i

0

O2
n,sds

∣∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]
= Rn,2(On,Yn,i

). (4.211)
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By using (4.210) and (4.211) in (4.209), we have

E
[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

∣∣∣∣On,Yn,i
, |On,Yn,i

| < |ε|
]

=Rn,2(On,Yn,i+Zn,i(ε)+Yn,i+1
)−Rn,2(On,Yn,i

), (4.212)

=Rn,2(|On,Yn,i
|+On,Yn,i+1

)−Rn,2(On,Yn,i
), (4.213)

where (4.213) holds because at t = Dn,i(ε), the estimation error On,Yn,i
is below the threshold

|ε|.
By combining (4.199) and (4.208) of the two cases, yields

E
[
Dn,i+1(ε)−Dn,i(ε)

∣∣∣On,Yn,i

]
=max{Rn,1(|ε|)−Rn,1(On,Yn,i

), 0}

+ E[Yn,i+1]. (4.214)

By taking the expectation over On,Yn,i
in (4.214) gives

E
[
E
[
Dn,i+1(ε)−Dn,i(ε)

∣∣∣On,Yn,i

] ]
=E[max{Rn,1(|ε|)−Rn,1(On,Yn,i

), 0}+ Yn,i+1]

=E[max{Rn,1(|ε|)−Rn,1(On,Yn,i
), 0}+Rn,1(On,Yn,i

)], (4.215)

where (4.215) follows from the fact that Yn,i’s are i.i.d. and (4.101) in Lemma 4.7. Because

Rn,1(·) is an even function, form (4.215) we get that

E
[
Dn,i+1(ε)−Dn,i(ε)

∣∣On,Yn,i

]
= max{Rn,1(max{|ε|, |On,Yn,i

|}). (4.216)

Similarly, by combining (4.203) and (4.213) of the two cases, yields

E
[ ∫ Dn,i+1(ε)

Dn,i(ε)

ε2n(s)ds

∣∣∣∣On,Yn,i

]
=Rn,2(max{|ε|, |On,Yn,i

|}+On,Yn,i+1
)−Rn,2(On,Yn,i

). (4.217)
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Finally, by taking the expectation over On,Yn,i
in (4.214) and (4.217) and using the fact that

Rn,1(·) and Rn,2(·) are even functions, Lemma 5.2 is proven.

4.G Proof of Lemma 4.2

Because λ represents the cost to activate an arm, it is optimal in (5.5) to activate a

dummy bandit only when λ < 0. Conversely, when λ ≥ 0, it is optimal not to activate the

dummy bandit. Hence, from Definition 4.1, the dummy bandits are always indexable. In

addition, from Definition 4.3 and the fact that the dummy bandits are activated only when

λ < 0, we get W0(ε, γ) = 0.

4.H Proof of Theorem 4.5

In order to prove Theorem 4.5, we first show that (4.66) and (4.70) are equivalent to

each other. For single source, the source weight w1 = 1 and the transmission cost λ = 0.

We first show the proof for stable OU process, i.e., for θ1 > 0. When ε = v1(β1) in

(4.67), we have

G

(√
θ1
σ1

v1(β1)

)
=G

(√
θ1
σ1

σ1√
θ1
G−1

( σ2
1

2θ1
E[e−2θ1Y1,i ]

σ2
1

2θ1
− β1

))
,

=
σ2
1E[e−2θ1Y1,i ]

σ2
1 − 2θ1β1

. (4.218)

Substituting (4.218) into (4.29) for single source results

W1(v1(β1), γ)=
1

E[Y1,i]

{
E[D1,i+1(ε)−D1,i(ε)]

σ2
1

2θ1

(
1− E[e−2θ1Y1,i ]

σ2
1E[e

−2θ1Y1,i ]

σ2
1−2θ1β1

)

− E
[ ∫ D1,i+1(ε)

D1,i(ε)

ε21(s)ds

]}
, (4.219)
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which becomes

W1(v1(β1), γ) =

1

E[Y1,i]

{
E[D1,i+1(ε)−D1,i(ε)]β1 − E

[ ∫ D1,i+1(ε)

D1,i(ε)

ε21(s)ds

]}
, (4.220)

The parameter β1 in (4.220) can be found from (4.68) and (4.69), which is exactly equal to

the optimal objective value m̄1,opt. Hence, substituting β1 in (4.220) yields

W1(v1(β1), γ) = 0. (4.221)

If ε > v1(β1), as G(x) is a strictly increasing function in [x,∞), we have

G

(√
θ1
σ1

ε

)
> G

(√
θ1
σ1

v1(β1)

)
, (4.222)

which yields

(
1− E[e−2θ1Y1,i ]

G
(√

θ1
σ1

ε
) ) >

(
1− E[e−2θ1Y1,i ]

G
(√

θ1
σ1

v1(β1)
)). (4.223)

From the above arguments, it is proved that W1(ε, γ) > W1(v1(β1), γ)

= 0 for ε > v1(β1). Similarly, as G(x) is an even function, for ε < v1(β1), it holds that

W1(ε, γ) < W1(v1(β1), γ) = 0.

By using the similar proof arguments we can show that for all θ1, W1(v1(β1), γ) = 0,

W1(ε, γ) > 0 for ε > v1(β1), and W1(ε, γ) < 0 for ε < v1(β1). Hence, the two statements in

(4.66) and (4.70) are equivalent to each other. This result also illustrate in Fig. 4.2 from

which it is evident that W1(ε, γ) is an even function. We prove the optimality of Proposition

4.1 for any number of sources in Appendix 4.C. Hence, Theorem 4.5 is also optimal. This

completes the proof.
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4.I Proof of Theorem 4.3

If γ = 0, i.e., no sample from source is currently in service, from Proposition 4.2, we get

that for an AoI ∆n(t) = δ, it is optimal not to schedule source n if

E[p(δ + Yn,i+1)] < m̄n,age(λ), (4.224)

where

m̄n,age(λ) =

E
[ ∫ Dn,i+1(m̄n,age(λ))

Dn,i(m̄n,age(λ))
wnpn(∆n(s))ds

]
+ λE[Yn,i+1]

E[Dn,i+1(m̄n,age(λ))−Dn,i(m̄n,age(λ))]
, (4.225)

and m̄n,age(λ) is the optimal objective value to (4.54). We use m̄n,age-opt as the optimal

objective value in (4.54). For convenience of the proof and to illustrate the dependency of

the activation cost λ, we express it as a function of λ in the rest of the proofs.

According to (4.45), (4.46), and Lemma 4.12, m̄n,age(λ) is a continuous and strictly

increasing function of λ.

By utilizing (4.58), if γ = 0, for a given δ, if (δ, γ) ∈ Ψn,age(λ1), then

E[pn(δ + Yn,i+1)] < m̄n,age(λ1). (4.226)

By using the fact that m̄n,age(λ) is continuous and strictly increasing in λ, we get that

(δ, γ) ∈ Ψn,age(λ2) for any λ1 < λ2. Hence, Ψn,age(λ1) ⊆ Ψn,age(λ2). Thus from the definition

of indexability, the arm n is indexable for all n. This concludes the proof.

4.J Proof of Theorem 4.4

When γ = 0, from Definition 4.3, we get that

Wn(δ, γ) = inf
λ
{λ ∈ R : (δ, γ) ∈ Ψn,age(λ)}. (4.227)
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By utilizing (4.58) into (4.227), we obtain that

Wn(δ, γ) = inf
λ
{λ ∈ R : γ > 0 orE[pn(δ + Yn,i+1)] < m̄n,age(λ)}. (4.228)

At λ = Wn(δ, γ), we have

wnE[pn(δ + Yn,i+1)] = m̄n,age(Wn(δ, γ)). (4.229)

Substituting (4.225) into (4.229), we get that

wnE[pn(δ + Yn,i+1)] =

E
[ ∫ Dn,i+1(m̄n,age(λ))

Dn,i(m̄n,age(λ))
wnO

2
n,sds

]
+Wn(δ, γ)E[Yn,i+1]

E[Dn,i+1(m̄n,age(λ))−Dn,i(m̄n,age(λ))]
, (4.230)

which yields

wnE[pn(δ + Yn,i+1)]E[Dn,i+1(m̄n,age(λ))−Dn,i(m̄n,age)]

=E
[ ∫ Dn,i+1(m̄n,age(λ))

Dn,i(m̄n,age(λ))

wnpn(∆n(s))ds

]
+Wn(δ, γ)E[Yn,i+1], (4.231)

from which (4.59) follows because the Yn,i’s are i.i.d..

When γ > 0, from (4.58) and (4.228), (4.61) yields. This completes the proof.

4.K Proof of Lemma 4.3

In order to prove Lemma 4.3, we need to consider the following two cases:

Case 1: If E [pn(∆n(Dn,i + Yn,i+1)] = E [pn(∆n(Dn,i) + Yn,i+1)] = E [pn(Yn,i + Yn,i+1)] ≥
E [pn(δ + Yn,i+1)], then, Sn,i+1 = Dn,i. Hence,

E[Dn,i+1(δ)−Dn,i(δ)
∣∣δ, Yn,i]

=E[Sn,i+1(δ) + Yn,i+1 − Sn,i+1(δ)
∣∣δ, Yn,i], (4.232)

=E[Yn,i+1] = E[Yn,i], (4.233)
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where (4.233) holds because the Yn,i’s are i.i.d.. In addition,

E
[ ∫ Dn,i+1(δ)

Dn,i(δ)

pn(s)ds

∣∣∣∣δ, Yn,i

]
=E
[ ∫ Yn,i+Yn,i+1

Yn,i

pn(s)ds

∣∣∣∣δ, Yn,i

]
=E
[ ∫ Yn,i+Yn,i+1

0

pn(s)ds

∣∣∣∣δ, Yn,i

]
− E

[ ∫ Yn,i

0

pn(s)ds

∣∣∣∣δ, Yn,i

]
,

=Rn,3(Yn,i + Yn,i+1)−Rn,3(Yn,i). (4.234)

Case 2: If E [pn(∆n(Dn,i + Yn,i+1)] = E [pn(Yn,i + Yn,i+1)] < E [pn(δ + Yn,i+1)], then,

almost surely,

E [pn(∆n(Sn,i+1 + Yn,i+1)] = E [pn(δ + Yn,i+1)] . (4.235)

Then,

E[Dn,i+1(δ)−Dn,i(δ)
∣∣δ, Yn,i] = E[Zn,i(δ) + Yn,i+1

∣∣δ, Yn,i] = δ. (4.236)

In addition,

E
[ ∫ Dn,i+1(δ)

Dn,i(δ)

pn(s)ds

∣∣∣∣δ, Yn,i

]
=E
[ ∫ Yn,i+Zn,i(δ)+Yn,i+1

Yn,i

pn(s)ds

]
,

=E
[ ∫ Yn,i+Zn,i(δ)+Yn,i+1

0

pn(s)ds

]
− E

[ ∫ Yn,i

0

pn(s)ds

]
=Rn,3(δ + Yn,i+1)−Rn,3(Yn,i). (4.237)

By combining (4.233) and (4.236) of the two cases, yields

E
[
Dn,i+1(δ)−Dn,i(δ)

∣∣∣δ, Yn,i

]
=max{δ, Yn,i}. (4.238)
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Similarly, by combining (4.234) and (4.237) of the two cases, yields

E
[ ∫ Dn,i+1(δ)

Dn,i(δ)

pn(s)ds

∣∣∣∣Yn,i

]
=Rn,3(max{δ, Yn,i}+ Yn,i+1)−Rn,3(Yn,i) (4.239)

Finally, by taking the expectation over Yn,i in (4.238) and (4.239), Lemma 4.3 is proven.
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Chapter 5

Remote Estimation for Situational Awareness Maximization on Safety-critical Systems

5.1 Introduction

A broad range of safety-critical systems is ubiquitous across the world. For instance, in

industrial automation, it is essential to continuously monitor the safety of various machines

[117]. In patient health monitoring, precise tracking of the glucose level or heart rate is

imperative to swiftly implement precautionary measures when they are required [118]. In

disaster monitoring, it is important to promptly track any consistent changes in temperature

or humidity, as they could indicate a possible disaster [119]. In these safety-critical situations,

the monitoring system needs timely access and accurately interpret the states of remote

systems. Any misunderstanding of the system state can lead to severe consequences.

In practice, multiple sensors are required to track various safety-critical situations. One

challenge to efficiently utilize these sensor information in real-time is the limited capacity

of the communication medium. Moreover, continuous monitoring of all sensors at all times

is unnecessary if sensor measurements change slowly. Conversely, some sensor information

may have more crucial content than others and hence need more attention. Therefore, it is

efficient to adopt an on-demand approach. In this context, we consider a pull-based system

where a receiver selects sensors and requests information when required. This selective

retrieval of information ensures that the system receives essential information in a timely

manner while minimizing unnecessary resource consumption.

In this chapter, we consider a pull-based status updating system consisting of multiple

agents monitoring the status of different safety-critical situations. A receiver selects agents

to transmit their updates through multiple unreliable channels. Due to transmission errors,

the received packet may not be fresh. One performance metric that characterizes data fresh-

ness is the age of information (AoI) [1]. Let U(t) be the generation time of the freshest

observation that has been delivered to the receiver by time t. The AoI, as a function of t,

is defined as ∆(t) = t − U(t) which exhibits a linear growth with time t and drops down

to a smaller value whenever a fresher observation is delivered. However, the time difference
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represented by AoI can only capture the timeliness of the information but it cannot capture

its significance. Hence, relying solely on AoI-based decision-making is not perfect. This is

particularly relevant in safety-critical situations where misunderstanding about the situation

can lead to significant performance loss. By exploiting the knowledge of the signal observa-

tion along with AoI in decision making, the incurred performance loss can be significantly

improved. A key observation in this study is that any misinterpretation of a dangerous situ-

ation yields higher loss compared to the misinterpretation of a safe situation. Based on the

above mentioned insights, we introduce a framework for quantifying the cost of a dangerous

situation that characterizes the performance loss caused by situational unawareness.

In this chapter, we utilize both AoI and the most recently received observation to esti-

mate the current situation in the environment. For any given signal observation, the system

performance degradation due to situational unawareness can be expressed as a function of

the AoI which can be non-monotonic [67, 120, 121]. The goal of this chapter is to find the

optimal scheduling policy to select agents and to request observations while improving the

system performance. The contributions of this work are as follows:

• We introduce a novel framework where the current status of a safety-critical system

is estimated based on the AoI and the latest received signal observation. The loss

for wrong estimation is modeled by general loss functions L. Specifically, the loss of

wrongly estimating a dangerous situation is significantly high. By considering general

loss functions, we mitigate the limitations of 0-1 loss, quadratic loss, and logarithmic

loss as L can quantify the costs associated with the unawareness of a potentially dan-

gerous situation. By adopting appropriate loss functions L, our results can be applied

to health, safety, and security monitoring, which are paramount.

• We formulate a penalty function that represents the expected loss L given the AoI and

the received observation. This formulation works for both optimal and sub-optimal

estimators. We obtain an information-theoretic bound of the penalty function by uti-

lizing the optimal estimator and the L-conditional entropy (or generalized conditional

entropy) given the AoI and the received observation where L represents general loss

functions [120, 122, 123]. In literature, there exists numerous metrics that address the
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state of the information content along with AoI such as Age of Incorrect Informa-

tion (AoII) [58], Age of Synchronization (AoS) [57], Version AoI [26], AoI at Query

(QAoI) [60]. These studies could not explain this information-theoretic bound. More-

over, the penalty considered in prior studies was monotonically growing functions of

age whereas our study allows non-monotonic age penalty functions.

• In literature, numerous freshness metrics based on entropy and mutual information

were considered [4,53,66]. In this chapter, we demonstrate that for optimal estimators

the penalty function can be expressed as L-conditional entropy. In contrast to earlier

studies, the entropy-based freshness metric in our study holds a significant contribution

to remote estimation and prediction.

• We consider a multi-agent, multi-channel pull-based status updating problem. Our

findings demonstrate that when utilizing one-time slot transmission time and optimal

estimators, it is beneficial to always keep the servers busy (see Theorem 5.2). However,

channel resource limitations prevent all agents from transmitting information continu-

ously. To address this issue, we formulate the multi-agent, multi-channel transmission

scheduling problem as a Restless Multi-armed Bandit (RMAB) with expanding state

space. Because the state space contains the information on all historically received

observations and their AoI values. We simplify the state space by showing that the

latest received observation and its age is a sufficient statistic of all historically received

observations and their AoI values.

• We utilize relaxation and the Lagrangian method to decompose the original problem

into multiple separated Markov Decision Processes (MDPs). our analysis is different

from existing literature [48,53,121,124,125] that utilizes belief MDP and represents the

state space using belief states, i.e., the probability distribution over all possible states.

In our analysis, instead of formulating any belief MDP, we formulate an MDP where

the state of each MDP is the latest received observation and its age. Our state space

is linearly growing with age whereas in earlier studies the state space is geometrically

increasing with the belief states.
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<latexit sha1_base64="8QE3rIvGO8RQUtOtuprXsTziYvE=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBg5REBD14KHjxWMF+QBvKZrtpl242YXcilNAf4cWDIl79Pd78N27bHLT1wcDjvRlm5oWpFAY979spra1vbG6Vtys7u3v7B+7hUcskmWa8yRKZ6E5IDZdC8SYKlLyTak7jUPJ2OL6b+e0nro1I1CNOUh7EdKhEJBhFK7U7/dy/wGnfrXo1bw6ySvyCVKFAo+9+9QYJy2KukElqTNf3UgxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fu6UnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKObIBcqzZArtlgUZZJgQma/k4HQnKGcWEKZFvZWwkZUU4Y2oYoNwV9+eZW0Lmu+V/Mfrqr12yKOMpzAKZyDD9dQh3toQBMYjOEZXuHNSZ0X5935WLSWnGLmGP7A+fwB3XOPOg==</latexit><latexit sha1_base64="8QE3rIvGO8RQUtOtuprXsTziYvE=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBg5REBD14KHjxWMF+QBvKZrtpl242YXcilNAf4cWDIl79Pd78N27bHLT1wcDjvRlm5oWpFAY979spra1vbG6Vtys7u3v7B+7hUcskmWa8yRKZ6E5IDZdC8SYKlLyTak7jUPJ2OL6b+e0nro1I1CNOUh7EdKhEJBhFK7U7/dy/wGnfrXo1bw6ySvyCVKFAo+9+9QYJy2KukElqTNf3UgxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fu6UnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKObIBcqzZArtlgUZZJgQma/k4HQnKGcWEKZFvZWwkZUU4Y2oYoNwV9+eZW0Lmu+V/Mfrqr12yKOMpzAKZyDD9dQh3toQBMYjOEZXuHNSZ0X5935WLSWnGLmGP7A+fwB3XOPOg==</latexit><latexit sha1_base64="8QE3rIvGO8RQUtOtuprXsTziYvE=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBg5REBD14KHjxWMF+QBvKZrtpl242YXcilNAf4cWDIl79Pd78N27bHLT1wcDjvRlm5oWpFAY979spra1vbG6Vtys7u3v7B+7hUcskmWa8yRKZ6E5IDZdC8SYKlLyTak7jUPJ2OL6b+e0nro1I1CNOUh7EdKhEJBhFK7U7/dy/wGnfrXo1bw6ySvyCVKFAo+9+9QYJy2KukElqTNf3UgxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fu6UnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKObIBcqzZArtlgUZZJgQma/k4HQnKGcWEKZFvZWwkZUU4Y2oYoNwV9+eZW0Lmu+V/Mfrqr12yKOMpzAKZyDD9dQh3toQBMYjOEZXuHNSZ0X5935WLSWnGLmGP7A+fwB3XOPOg==</latexit><latexit sha1_base64="8QE3rIvGO8RQUtOtuprXsTziYvE=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBg5REBD14KHjxWMF+QBvKZrtpl242YXcilNAf4cWDIl79Pd78N27bHLT1wcDjvRlm5oWpFAY979spra1vbG6Vtys7u3v7B+7hUcskmWa8yRKZ6E5IDZdC8SYKlLyTak7jUPJ2OL6b+e0nro1I1CNOUh7EdKhEJBhFK7U7/dy/wGnfrXo1bw6ySvyCVKFAo+9+9QYJy2KukElqTNf3UgxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fu6UnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKObIBcqzZArtlgUZZJgQma/k4HQnKGcWEKZFvZWwkZUU4Y2oYoNwV9+eZW0Lmu+V/Mfrqr12yKOMpzAKZyDD9dQh3toQBMYjOEZXuHNSZ0X5935WLSWnGLmGP7A+fwB3XOPOg==</latexit>

X2,t
<latexit sha1_base64="ci+v/HdZUFs+asKR2cLG6uab6T0=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCFpYBGwsI5jkIDnC3maTLNnbO3fnhHDkT9hYKGLr37Hz37hJrtDEBwOP92aYmRcmUhh03W+nsLa+sblV3C7t7O7tH5QPj1omTjXjTRbLWPshNVwKxZsoUHI/0ZxGoeTtcHw789tPXBsRqwecJDyI6FCJgWAUreT7vax2QXDaK1fcqjsHWSVeTiqQo9Erf3X7MUsjrpBJakzHcxMMMqpRMMmnpW5qeELZmA55x1JFI26CbH7vlJxZpU8GsbalkMzV3xMZjYyZRKHtjCiOzLI3E//zOikOroNMqCRFrthi0SCVBGMye570heYM5cQSyrSwtxI2opoytBGVbAje8surpFWrem7Vu7+s1G/yOIpwAqdwDh5cQR3uoAFNYCDhGV7hzXl0Xpx352PRWnDymWP4A+fzBzZJj2U=</latexit><latexit sha1_base64="ci+v/HdZUFs+asKR2cLG6uab6T0=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCFpYBGwsI5jkIDnC3maTLNnbO3fnhHDkT9hYKGLr37Hz37hJrtDEBwOP92aYmRcmUhh03W+nsLa+sblV3C7t7O7tH5QPj1omTjXjTRbLWPshNVwKxZsoUHI/0ZxGoeTtcHw789tPXBsRqwecJDyI6FCJgWAUreT7vax2QXDaK1fcqjsHWSVeTiqQo9Erf3X7MUsjrpBJakzHcxMMMqpRMMmnpW5qeELZmA55x1JFI26CbH7vlJxZpU8GsbalkMzV3xMZjYyZRKHtjCiOzLI3E//zOikOroNMqCRFrthi0SCVBGMye570heYM5cQSyrSwtxI2opoytBGVbAje8surpFWrem7Vu7+s1G/yOIpwAqdwDh5cQR3uoAFNYCDhGV7hzXl0Xpx352PRWnDymWP4A+fzBzZJj2U=</latexit><latexit sha1_base64="ci+v/HdZUFs+asKR2cLG6uab6T0=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCFpYBGwsI5jkIDnC3maTLNnbO3fnhHDkT9hYKGLr37Hz37hJrtDEBwOP92aYmRcmUhh03W+nsLa+sblV3C7t7O7tH5QPj1omTjXjTRbLWPshNVwKxZsoUHI/0ZxGoeTtcHw789tPXBsRqwecJDyI6FCJgWAUreT7vax2QXDaK1fcqjsHWSVeTiqQo9Erf3X7MUsjrpBJakzHcxMMMqpRMMmnpW5qeELZmA55x1JFI26CbH7vlJxZpU8GsbalkMzV3xMZjYyZRKHtjCiOzLI3E//zOikOroNMqCRFrthi0SCVBGMye570heYM5cQSyrSwtxI2opoytBGVbAje8surpFWrem7Vu7+s1G/yOIpwAqdwDh5cQR3uoAFNYCDhGV7hzXl0Xpx352PRWnDymWP4A+fzBzZJj2U=</latexit><latexit sha1_base64="ci+v/HdZUFs+asKR2cLG6uab6T0=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCFpYBGwsI5jkIDnC3maTLNnbO3fnhHDkT9hYKGLr37Hz37hJrtDEBwOP92aYmRcmUhh03W+nsLa+sblV3C7t7O7tH5QPj1omTjXjTRbLWPshNVwKxZsoUHI/0ZxGoeTtcHw789tPXBsRqwecJDyI6FCJgWAUreT7vax2QXDaK1fcqjsHWSVeTiqQo9Erf3X7MUsjrpBJakzHcxMMMqpRMMmnpW5qeELZmA55x1JFI26CbH7vlJxZpU8GsbalkMzV3xMZjYyZRKHtjCiOzLI3E//zOikOroNMqCRFrthi0SCVBGMye570heYM5cQSyrSwtxI2opoytBGVbAje8surpFWrem7Vu7+s1G/yOIpwAqdwDh5cQR3uoAFNYCDhGV7hzXl0Xpx352PRWnDymWP4A+fzBzZJj2U=</latexit>

XN,t
<latexit sha1_base64="De+zLC1qW7TZFAR8YKvcjGQQGZc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsEkB8kR9jZ7yZK9vXN3TghH/oSNhSK2/h07/42bj0ITHww83pthZl6YSmHQdb+dwsrq2vpGcbO0tb2zu1feP2iaJNOMN1giE+2H1HApFG+gQMn9VHMah5K3wuHNxG89cW1Eoh5wlPIgpn0lIsEoWsn3u/ndGcFxt1xxq+4UZJl4c1KBOerd8lenl7As5gqZpMa0PTfFIKcaBZN8XOpkhqeUDWmfty1VNOYmyKf3jsmJVXokSrQthWSq/p7IaWzMKA5tZ0xxYBa9ifif184wugpyodIMuWKzRVEmCSZk8jzpCc0ZypEllGlhbyVsQDVlaCMq2RC8xZeXSfO86rlV7/6iUruex1GEIziGU/DgEmpwC3VoAAMJz/AKb86j8+K8Ox+z1oIznzmEP3A+fwBhKY+B</latexit><latexit sha1_base64="De+zLC1qW7TZFAR8YKvcjGQQGZc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsEkB8kR9jZ7yZK9vXN3TghH/oSNhSK2/h07/42bj0ITHww83pthZl6YSmHQdb+dwsrq2vpGcbO0tb2zu1feP2iaJNOMN1giE+2H1HApFG+gQMn9VHMah5K3wuHNxG89cW1Eoh5wlPIgpn0lIsEoWsn3u/ndGcFxt1xxq+4UZJl4c1KBOerd8lenl7As5gqZpMa0PTfFIKcaBZN8XOpkhqeUDWmfty1VNOYmyKf3jsmJVXokSrQthWSq/p7IaWzMKA5tZ0xxYBa9ifif184wugpyodIMuWKzRVEmCSZk8jzpCc0ZypEllGlhbyVsQDVlaCMq2RC8xZeXSfO86rlV7/6iUruex1GEIziGU/DgEmpwC3VoAAMJz/AKb86j8+K8Ox+z1oIznzmEP3A+fwBhKY+B</latexit><latexit sha1_base64="De+zLC1qW7TZFAR8YKvcjGQQGZc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsEkB8kR9jZ7yZK9vXN3TghH/oSNhSK2/h07/42bj0ITHww83pthZl6YSmHQdb+dwsrq2vpGcbO0tb2zu1feP2iaJNOMN1giE+2H1HApFG+gQMn9VHMah5K3wuHNxG89cW1Eoh5wlPIgpn0lIsEoWsn3u/ndGcFxt1xxq+4UZJl4c1KBOerd8lenl7As5gqZpMa0PTfFIKcaBZN8XOpkhqeUDWmfty1VNOYmyKf3jsmJVXokSrQthWSq/p7IaWzMKA5tZ0xxYBa9ifif184wugpyodIMuWKzRVEmCSZk8jzpCc0ZypEllGlhbyVsQDVlaCMq2RC8xZeXSfO86rlV7/6iUruex1GEIziGU/DgEmpwC3VoAAMJz/AKb86j8+K8Ox+z1oIznzmEP3A+fwBhKY+B</latexit><latexit sha1_base64="De+zLC1qW7TZFAR8YKvcjGQQGZc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsEkB8kR9jZ7yZK9vXN3TghH/oSNhSK2/h07/42bj0ITHww83pthZl6YSmHQdb+dwsrq2vpGcbO0tb2zu1feP2iaJNOMN1giE+2H1HApFG+gQMn9VHMah5K3wuHNxG89cW1Eoh5wlPIgpn0lIsEoWsn3u/ndGcFxt1xxq+4UZJl4c1KBOerd8lenl7As5gqZpMa0PTfFIKcaBZN8XOpkhqeUDWmfty1VNOYmyKf3jsmJVXokSrQthWSq/p7IaWzMKA5tZ0xxYBa9ifif184wugpyodIMuWKzRVEmCSZk8jzpCc0ZypEllGlhbyVsQDVlaCMq2RC8xZeXSfO86rlV7/6iUruex1GEIziGU/DgEmpwC3VoAAMJz/AKb86j8+K8Ox+z1oIznzmEP3A+fwBhKY+B</latexit>

p1
<latexit sha1_base64="i5CbvutGw8pnZvv6uObrmXPNG/A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHghePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/4zbNQVsfDDzem2FmXpAIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5Hbud55QaR7LRzNN0I/oSPKQM2qs9JAMvEG15tbdHGSVeAWpQYHmoPrVH8YsjVAaJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp6lkkao/Sw/dUbOrDIkYaxsSUNy9fdERiOtp1FgOyNqxnrZm4v/eb3UhNd+xmWSGpRssShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHpVGwI3vLLq6R9Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETWsBgBM/wCm+OcF6cd+dj0Vpyiplj+APn8wf9o42S</latexit><latexit sha1_base64="i5CbvutGw8pnZvv6uObrmXPNG/A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHghePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/4zbNQVsfDDzem2FmXpAIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5Hbud55QaR7LRzNN0I/oSPKQM2qs9JAMvEG15tbdHGSVeAWpQYHmoPrVH8YsjVAaJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp6lkkao/Sw/dUbOrDIkYaxsSUNy9fdERiOtp1FgOyNqxnrZm4v/eb3UhNd+xmWSGpRssShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHpVGwI3vLLq6R9Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETWsBgBM/wCm+OcF6cd+dj0Vpyiplj+APn8wf9o42S</latexit><latexit sha1_base64="i5CbvutGw8pnZvv6uObrmXPNG/A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHghePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/4zbNQVsfDDzem2FmXpAIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5Hbud55QaR7LRzNN0I/oSPKQM2qs9JAMvEG15tbdHGSVeAWpQYHmoPrVH8YsjVAaJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp6lkkao/Sw/dUbOrDIkYaxsSUNy9fdERiOtp1FgOyNqxnrZm4v/eb3UhNd+xmWSGpRssShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHpVGwI3vLLq6R9Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETWsBgBM/wCm+OcF6cd+dj0Vpyiplj+APn8wf9o42S</latexit><latexit sha1_base64="i5CbvutGw8pnZvv6uObrmXPNG/A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHghePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/4zbNQVsfDDzem2FmXpAIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5Hbud55QaR7LRzNN0I/oSPKQM2qs9JAMvEG15tbdHGSVeAWpQYHmoPrVH8YsjVAaJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp6lkkao/Sw/dUbOrDIkYaxsSUNy9fdERiOtp1FgOyNqxnrZm4v/eb3UhNd+xmWSGpRssShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHpVGwI3vLLq6R9Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETWsBgBM/wCm+OcF6cd+dj0Vpyiplj+APn8wf9o42S</latexit>

p2
<latexit sha1_base64="20j3+9WPcHEudjnXnYRPZPyXtvk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CEAuLgI1lRPMByRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9u533lCpXksH800QT+iI8lDzqix0kMyqA3KFbfqLkDWiZeTCuRoDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wp87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeG1n3GZpAYlWy4KU0FMTOZ/kyFXyIyYWkKZ4vZWwsZUUWZsOiUbgrf68jpp16qeW/XuryqNmzyOIpzBOVyCB3VowB00oQUMRvAMr/DmCOfFeXc+lq0FJ585hT9wPn8A/yeNkw==</latexit><latexit sha1_base64="20j3+9WPcHEudjnXnYRPZPyXtvk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CEAuLgI1lRPMByRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9u533lCpXksH800QT+iI8lDzqix0kMyqA3KFbfqLkDWiZeTCuRoDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wp87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeG1n3GZpAYlWy4KU0FMTOZ/kyFXyIyYWkKZ4vZWwsZUUWZsOiUbgrf68jpp16qeW/XuryqNmzyOIpzBOVyCB3VowB00oQUMRvAMr/DmCOfFeXc+lq0FJ585hT9wPn8A/yeNkw==</latexit><latexit sha1_base64="20j3+9WPcHEudjnXnYRPZPyXtvk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CEAuLgI1lRPMByRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9u533lCpXksH800QT+iI8lDzqix0kMyqA3KFbfqLkDWiZeTCuRoDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wp87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeG1n3GZpAYlWy4KU0FMTOZ/kyFXyIyYWkKZ4vZWwsZUUWZsOiUbgrf68jpp16qeW/XuryqNmzyOIpzBOVyCB3VowB00oQUMRvAMr/DmCOfFeXc+lq0FJ585hT9wPn8A/yeNkw==</latexit><latexit sha1_base64="20j3+9WPcHEudjnXnYRPZPyXtvk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CEAuLgI1lRPMByRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9u533lCpXksH800QT+iI8lDzqix0kMyqA3KFbfqLkDWiZeTCuRoDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wp87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeG1n3GZpAYlWy4KU0FMTOZ/kyFXyIyYWkKZ4vZWwsZUUWZsOiUbgrf68jpp16qeW/XuryqNmzyOIpzBOVyCB3VowB00oQUMRvAMr/DmCOfFeXc+lq0FJ585hT9wPn8A/yeNkw==</latexit>

..
.

<latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit>

..
.

<latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit>

pN
<latexit sha1_base64="jBducprp2Xp4exMFUdiWrQebwPw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMZKIpoPSI6wt9lLluztHbtzQjjyE2wsFLH1F9n5b9wkV2jig4HHezPMzAsSKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDsBNVwKxZsoUPJOojmNAsnbwfhm5refuDYiVo84Sbgf0aESoWAUrfSQ9O/65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fzU+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J45WdCJSlyxRaLwlQSjMnsbzIQmjOUE0so08LeStiIasrQplOyIXjLL6+S1kXVc6ve/WWlfp3HUYQTOIVz8KAGdbiFBjSBwRCe4RXeHOm8OO/Ox6K14OQzx/AHzucPKaaNrw==</latexit><latexit sha1_base64="jBducprp2Xp4exMFUdiWrQebwPw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMZKIpoPSI6wt9lLluztHbtzQjjyE2wsFLH1F9n5b9wkV2jig4HHezPMzAsSKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDsBNVwKxZsoUPJOojmNAsnbwfhm5refuDYiVo84Sbgf0aESoWAUrfSQ9O/65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fzU+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J45WdCJSlyxRaLwlQSjMnsbzIQmjOUE0so08LeStiIasrQplOyIXjLL6+S1kXVc6ve/WWlfp3HUYQTOIVz8KAGdbiFBjSBwRCe4RXeHOm8OO/Ox6K14OQzx/AHzucPKaaNrw==</latexit><latexit sha1_base64="jBducprp2Xp4exMFUdiWrQebwPw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMZKIpoPSI6wt9lLluztHbtzQjjyE2wsFLH1F9n5b9wkV2jig4HHezPMzAsSKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDsBNVwKxZsoUPJOojmNAsnbwfhm5refuDYiVo84Sbgf0aESoWAUrfSQ9O/65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fzU+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J45WdCJSlyxRaLwlQSjMnsbzIQmjOUE0so08LeStiIasrQplOyIXjLL6+S1kXVc6ve/WWlfp3HUYQTOIVz8KAGdbiFBjSBwRCe4RXeHOm8OO/Ox6K14OQzx/AHzucPKaaNrw==</latexit><latexit sha1_base64="jBducprp2Xp4exMFUdiWrQebwPw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMZKIpoPSI6wt9lLluztHbtzQjjyE2wsFLH1F9n5b9wkV2jig4HHezPMzAsSKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDsBNVwKxZsoUPJOojmNAsnbwfhm5refuDYiVo84Sbgf0aESoWAUrfSQ9O/65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fzU+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J45WdCJSlyxRaLwlQSjMnsbzIQmjOUE0so08LeStiIasrQplOyIXjLL6+S1kXVc6ve/WWlfp3HUYQTOIVz8KAGdbiFBjSBwRCe4RXeHOm8OO/Ox6K14OQzx/AHzucPKaaNrw==</latexit>

..
.

<latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit>

..
.

<latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit>

ŶN,t
<latexit sha1_base64="/xaNGK13sxZNC0XLnLWCNoSWTUs=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsF8SO4Ie5tNsmRv79idE8KRv2FjoYitf8bOf+MmuUITHww83pthZl6YSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqeFSKN5AgZK3E81pFEreCkc3U7/1xLURsXrAccKDiA6U6AtG0Uq+P6RIHrvZ3RlOuuWKW3VnIMvEy0kFctS75S+/F7M04gqZpMZ0PDfBIKMaBZN8UvJTwxPKRnTAO5YqGnETZLObJ+TEKj3Sj7UthWSm/p7IaGTMOAptZ0RxaBa9qfif10mxfxVkQiUpcsXmi/qpJBiTaQCkJzRnKMeWUKaFvZWwIdWUoY2pZEPwFl9eJs3zqudWvfuLSu06j6MIR3AMp+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1oKTzxzCHzifP3CZkUM=</latexit><latexit sha1_base64="/xaNGK13sxZNC0XLnLWCNoSWTUs=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsF8SO4Ie5tNsmRv79idE8KRv2FjoYitf8bOf+MmuUITHww83pthZl6YSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqeFSKN5AgZK3E81pFEreCkc3U7/1xLURsXrAccKDiA6U6AtG0Uq+P6RIHrvZ3RlOuuWKW3VnIMvEy0kFctS75S+/F7M04gqZpMZ0PDfBIKMaBZN8UvJTwxPKRnTAO5YqGnETZLObJ+TEKj3Sj7UthWSm/p7IaGTMOAptZ0RxaBa9qfif10mxfxVkQiUpcsXmi/qpJBiTaQCkJzRnKMeWUKaFvZWwIdWUoY2pZEPwFl9eJs3zqudWvfuLSu06j6MIR3AMp+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1oKTzxzCHzifP3CZkUM=</latexit><latexit sha1_base64="/xaNGK13sxZNC0XLnLWCNoSWTUs=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsF8SO4Ie5tNsmRv79idE8KRv2FjoYitf8bOf+MmuUITHww83pthZl6YSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqeFSKN5AgZK3E81pFEreCkc3U7/1xLURsXrAccKDiA6U6AtG0Uq+P6RIHrvZ3RlOuuWKW3VnIMvEy0kFctS75S+/F7M04gqZpMZ0PDfBIKMaBZN8UvJTwxPKRnTAO5YqGnETZLObJ+TEKj3Sj7UthWSm/p7IaGTMOAptZ0RxaBa9qfif10mxfxVkQiUpcsXmi/qpJBiTaQCkJzRnKMeWUKaFvZWwIdWUoY2pZEPwFl9eJs3zqudWvfuLSu06j6MIR3AMp+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1oKTzxzCHzifP3CZkUM=</latexit><latexit sha1_base64="/xaNGK13sxZNC0XLnLWCNoSWTUs=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBC0sAjZWEsF8SO4Ie5tNsmRv79idE8KRv2FjoYitf8bOf+MmuUITHww83pthZl6YSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqeFSKN5AgZK3E81pFEreCkc3U7/1xLURsXrAccKDiA6U6AtG0Uq+P6RIHrvZ3RlOuuWKW3VnIMvEy0kFctS75S+/F7M04gqZpMZ0PDfBIKMaBZN8UvJTwxPKRnTAO5YqGnETZLObJ+TEKj3Sj7UthWSm/p7IaGTMOAptZ0RxaBa9qfif10mxfxVkQiUpcsXmi/qpJBiTaQCkJzRnKMeWUKaFvZWwIdWUoY2pZEPwFl9eJs3zqudWvfuLSu06j6MIR3AMp+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1oKTzxzCHzifP3CZkUM=</latexit>
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Figure 5.1: A multi-agent, multi-channel safety monitoring system.

• We solve each MDP by dynamic programming [126]. By utilizing the solution to the

MDPs, we provide a low-complexity ”Maximum Gain First” scheduling policy which

is asymptotically optimal. Our results work for both reliable and unreliable channels.

• Numerical results illustrate that our multi-agent, multi-channel scheduling policy achieves

up to 100 times performance gain over periodic updating policy and up to 10 times

over randomized policy which randomly selects agents depending on the number of

available channels.

5.2 System Model

This section describes the multi-agent, multi-channel system depicted in Figure 5.1.

5.2.1 Communication Model

Let us consider the pull-based status updating system depicted in Figure 5.1, where

a central receiver pulls the status updates (e.g., car location) of N agents to monitor their

safety (e.g., safe, cautious, dangerous). Let Xn,t be the status of agent n at time t. The signal

Xn,t is a finite-state Markov chain with B states, where 2 ≤ B < ∞. We assume that the

status updates of N agents are independent of each other. Let Yn,t quantify the safety level

associated with agent n, where Xn,t and Yn,t evolve according to the Markovian relationship

illustrated in Figure 5.2, which can be described by the following three Markov chains for all

t:, (i) Xn,t−1 ↔ Xn,t ↔ Xn,t+1, (ii) Yn,t−1 ↔ Xn,t ↔ Xn,t−1, and (iii) Yn,t ↔ Xn,t ↔ Xn,t+1.
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· · · Xn,t−1 Xn,t Xn,t+1 · · ·

· · · Yn,t−1 Yn,t Yn,t+1 · · ·
Figure 5.2: Relationship between Xn,t and Yn,t.

The status updates of N agents are transmitted through M unreliable wireless channels.

In response to the pull request from the central receiver, each agent n generates and submits

a time-stamped updating message (Xn,t, t) to one wireless channel. We assume that it takes

one-time slot to transmit a message update to the receiver. Due to wireless channel fading,

the transmission of the status updates becomes unreliable. Let pn be the probability of a

successful transmission from agent n, irrespective of the selected wireless channel.

Our systems consist of N estimators. The goal of each estimator n is to estimate the

safety level Yn,t by utilizing causally received updates from agent n available at the receiver.

Due to transmission errors, the delivered information at the receiver may not be fresh and

is represented by Xn,t−∆n(t) that is generated ∆n(t) times ago. The time difference ∆n(t) is

usually called age of information (AoI) [1], which represents the staleness of the status of

the n-th agent.

Based on the latest available information, the n-th estimator estimates the safety level

Yn,t and outputs ŷ = ϕn(Ξn,t,Hn,t) ∈ Y , where ϕn(·, ·) is a function of all historically received

packets Hn,t and their AoI values Ξn,t. The estimator function ϕn(·, ·) is quite general, it

could be an optimal or sub-optimal estimator.

5.2.2 Loss Model for Situational Awareness

The loss due to the unawareness of potential danger is characterized by a loss function

L : Y×Y → R, where L(y, ŷ) is the incurred loss if Yn,t = y is the actual safety level and ŷ is

estimated value of the safety level. To better understand the behavior of the loss L, consider

the example in Figure 5.1, where the fire and smoke indicates a dangerous situation, only

smoke indicates a cautious situation, and otherwise, it is a safe situation. Let us consider

the following parameters of the loss function L for the event depicted in Figure 5.1:
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L(dangerous, safe) = 1000,

L(safe, dangerous) = 5,

L(dangerous, cautious) = 100,

L(cautious, dangerous) = 5,

L(cautious, safe) = 10,

L(safe, cautious) = 1.

If the dangerous situation is wrongly estimated as safe, the loss will be significantly high

due to the huge risk of damage. Conversely, if the safe situation is wrongly estimated as

dangerous, the loss will be small. This is because even if the estimation is incorrect, the risk of

damage is small. The loss for wrongly estimating a dangerous situation as cautious also has

some impact because a dangerous situation always involves high risk of damage. However,

the parameters used above may change according to the application context. Moreover, the

loss for perfect estimation is zero, i.e., L(safe, safe) = L(danger, danger) = 0. It might look

counter-intuitive that the loss associated with a dangerous situation is 0. However, this is

because even when the actual safety state is dangerous, the situational awareness is good

due to perfect estimation1.

The loss function L effectively captures the impact of situational awareness. Our results

apply to general loss functions including the well-known loss functions in the literature such

as 0-1 loss, quadratic loss, logarithmic loss, etc. The significance of the loss function L lies

in the fact that it can address safety issues based on situational awareness, which existing

loss functions cannot address.

1In this study, we are interested in maximizing situational awareness and not optimizing the control
policy. Hence, we consider L(dangerous, dangerous) = L(cautious, cautious)= 0.The joint design of the
scheduler and controller could be an interesting future direction. However, this is out of the scope of this
study.
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5.2.3 Scheduling Policy

Let π = (µn(0), µn(1), . . .)
N
n=1 denote a scheduling policy, where µn(t) ∈ {0, 1} is the

decision variable to schedule agent n at every time slot t. If agent n is scheduled for trans-

mission at time slot t, then µn(t) = 1; otherwise µn(t) = 0. Let Π denote the set of all

causal scheduling policies in which every decision is made by using the current and historical

information available at the receiver. If agent n is scheduled for transmission at time slot t,

then µn(t) = 1; otherwise µn(t) = 0. Let Π denote the set of all causal scheduling policies

in which every decision is made by using the current and historical information available at

the receiver.

If agent n is not scheduled for transmission, i.e., µn(t) = 0, then AoI will increase by

1, i.e., ∆n(t) = ∆n(t − 1) + 1. If agent n is scheduled for transmission, i.e., µn(t) = 1 and

the transmission succeeds (with probability pn), then AoI will drops to 1, i.e., ∆n(t) = 1;

otherwise, if transmission fails (with probability 1 − pn), then AoI will increase by 1, i.e.,

∆n(t) = ∆n(t− 1) + 1.

5.3 Problem Formulation

Our goal is to find an optimal scheduling policy that minimizes the time-average sum of

the expected loss of the N agents due to the unawareness of potential danger. The scheduling

problem is formulated as

Lopt=inf
π∈Π

lim sup
T→∞

N∑
n=1

1

T

T−1∑
t=0

Eπ

[
L(Yn,t, ϕn(Ξn,t,Hn,t))

]
(5.1)

s.t.
N∑

n=1

µn(t) ≤M,µn(t) ∈ {0, 1}, t = 0, 1, . . . , (5.2)

where Lopt is the optimum value of (5.1). Because our system consists of M channels,∑N
n=1 µn(t) ≤M is required to hold for all time slot t.

Problem (5.1)-(5.2) is a Restless Multi-armed Bandit (RMAB) because the age process

of associated with each agent n continues to evolve regardless of whether agent n is selected

for transmission [127]. Solving RMAB problems and finding optimal solutions are generally
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challenging and PSPACE-hard [128]. To find a solution for (5.1)-(5.2) is much harder because

it is a complicated RMAB with expanding state space. This complexity arises because it

involves the history of the signal observations Hn,t and their corresponding AoI values Ξn,t

at every time slot t. Consequently, a new piece information will be added to the history at

every time slot which makes the problem significantly more challenging to solve. However,

we are able to reduce the state space of problem (5.1)-(5.2) by utilizing the sufficient statistic

of the history information. The details are provided in Section 5.4.

5.4 Problem Simplification

In order to simplify problem (5.1)-(5.2), we leverage the sufficient statistic of the history

[126]. By using the sufficient statistic, we can significantly reduce the complexity of problem

(5.1)-(5.2). In this sequel, we have the following theorem.

Theorem 5.1 If Xn,t is a Markov chain and Yn,t follows the relationship illustrated in Figure

5.2, then (∆n(t), Xn,t−∆n(t)) is a sufficient statistic of (Ξn,t,Hn,t) for estimating Yn,t.

Then, RMAB (5.1)-(5.2) can be equivalently expressed as the following problem:

Lopt=inf
π∈Π

lim sup
T→∞

N∑
n=1

1

T

T−1∑
t=0

Eπ

[
L(Yn,t, ϕn(∆n(t), Xn,t−∆n(t)))

]
(5.3)

s.t.
N∑

n=1

µn(t) ≤M,µn(t) ∈ {0, 1}, t = 0, 1, . . . . (5.4)

By this, we obtain an equivalent RMAB (5.1)-(5.2) with a reduced state space, where the

age ∆n(t) and the latest received observation Xn,t−∆n(t) of agent n at time slot t are the state

of the n-th bandit.

In literature, there exists numerous studies that utilized belief states (i.e., the probability

distribution over all possible states) to reduce the state space of each bandit n in RMAB

problems [53,121,124,125]. Such formulations render the state space uncountable and leads

to the curse of dimensionality. Although [53, 121, 124, 125] made the state space countable

under a positive recurrent assumption and used a sufficiently large truncated age value, the

state space still exhibits a quadratic increase with the age. For a truncated set {1, 2, . . . , τ}
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of AoI values, the state space increases as τ × |Xn|2, where Xn,t ∈ Xn represents the n-th

bandit process. The difference between the formulation in [53, 121, 124, 125] and problem

(5.3)-(5.4) is that we do not need to utilize belief states. Instead, we use the latest received

observation and the corresponding age value. As a result, our state space remains much

smaller that demonstrate linear growth with age, such as τ × |Xn|. Consequently, the state

space remains much simpler than [53,121,124,125].

5.4.1 Restless Multi-armed Bandit: Relaxation and Lagrangian Decomposition

To find an optimal solution to RMAB (5.3)-(5.4) is quite challenging and is still PSPACE-

hard. Because constraint (5.4) need to be satisfied at every time slot t. A Whittle index

Policy is known to be an efficient approach to solve RMAB problems which requires to satisfy

a condition called indexability [127], [113].

A key challenge in solving problem (5.3)-(5.4) is that indexability is very difficult to

establish. This difficulty arises due to the following reasons: (i) The state of each bandit of

RMAB (5.3)-(5.4) exhibits a complicated transition, (ii) the transmission channels are unre-

liable, and (iii) the expected penalty associated with each bandit can be either monotonic or

non-monotonic function of the AoI while most of the previous studies considered monotonic

penalty function of AoI [4,41,64,112] is a non-monotonic function of the age. In addition, we

allow the estimator function ϕn(·, ·) to be both optimal and sub-optimal where most of the

prior studies considered optimal estimators [53,121]. Hence, (5.3)-(5.4) is a more challenging

problem than the problems studied in [4, 41, 53, 64, 112, 121] and the requirements to solve

RMAB (5.3)-(5.4) become quite complicated. However, we are able to develop a Maximum

Gain First policy that does not need to satisfy indexability.

5.4.2 Relaxation and Lagrangian Decomposition

In standard RMAB problems, the constraint (5.4) needs to be satisfied with equality,

i.e., exactly M bandits are activated at any time slot t. However, in our problem, constraint

(5.4) activates less thanM bandits at any time t. Following [115, Section 5.1.1] , [129, Section

IV-A], we introduceM additional dummy bandits that never change state and therefore, they

incur 0 cost. If a dummy bandit is activated, it occupies one channel but does not incur any
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cost. Let µ0(t) ∈ {1, 2, . . . ,M} be the number of dummy bandits that are activated at time

slot t. After incorporating these dummy bandits, the RMAB (5.3)-(5.4) can be expressed as

Lopt=inf
π∈Π

lim sup
T→∞

N∑
n=1

1

T

T−1∑
t=0

Eπ

[
L(Yn,t, ϕn(∆n(t), Xn,t−∆n(t)))

]
(5.5)

s.t.
N∑

n=0

µn(t) = M,µ0(t)∈{1, 2, . . . ,M}, t = 0, 1, . . . ,

µn(t) ∈ {0, 1}, n = 1, 2, . . . , t = 0, 1, . . ., (5.6)

which is an RMAB with an equality constraint. Because the dummy bandits never change

state, problem (5.3)-(5.4) and (5.5)-(5.6) are equivalent. Therefore, a policy that optimizes

(5.3)-(5.4) will also optimize (5.5)-(5.6).

Next, we follow the standard relaxation and Lagrangian decomposition procedure for

RMAB [127] and relax the constraint (5.6) and obtain the following relaxed problem:

Lopt=inf
π∈Π

lim sup
T→∞

N∑
n=1

Eπ

[
1

T

T−1∑
t=0

L(Yn,t, ϕn(∆n(t), Xn,t−∆n(t)))

]
, (5.7)

s.t. lim sup
T→∞

N∑
n=1

Eπ

[
1

T

T−1∑
t=0

µn(t)

]
= M,

µ0(t) ∈ {1, 2, . . . ,M}, t = 0, 1, . . .,

µn(t) ∈ {0, 1}, n = 1, 2, . . . , t = 0, 1, . . .. (5.8)

The relaxed constraint (5.8) needs to be satisfied on average, instead of satisfying at every

time slot t. To solve the relaxed problem (5.7)-(5.8), we take a dual cost λ ≥ 0 (also known

as Lagrange multiplier) for the relaxed constraint. The dual problem is given by

sup
λ≥0

L̄(λ), (5.9)
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where

L̄(λ) = inf
π∈Π

lim sup
T→∞

Eπ

[ N∑
n=1

1

T

T−1∑
t=0

L(Yn,t, ϕn(∆n(t), Xn,t−∆n(t)))+λ

( N∑
n=0

µn(t)−M

)]
.

(5.10)

The term 1
T

∑T−1
t=0

∑N
n=0 λM in (5.10) does not depend on policy π and hence can be removed.

For a given λ, problem (5.10) can be decomposed into (N + 1) separated sub-problems and

each sub-problem associated with agent n is formulated as

L̄n(λ) = inf
πn∈Πn

lim sup
T→∞

Eπn

[
1

T

T−1∑
t=0

L(Yn,t, ϕn(∆n(t), Xn,t−∆n(t))) + λµn(t)

]
, (5.11)

where L̄n(λ) is the optimum value of (5.11), πn = (µn(0), µn(1), . . .) is the sub-scheduling

policy for agent n, and Πn is the set of all causal sub-scheduling policies of agent n. Problem

(5.11) is a per-bandit problem associated with bandit n. On the other hand, the sub-problem

associated with the dummy bandits is given by

L̄0(λ) = inf
π0∈Π0

lim sup
T→∞

Eπ0

[
1

T

T−1∑
t=0

λµ0(t)

]
, (5.12)

where L̄0(λ) is the optimum value of (5.12), π0 = {µ0(t), t = 0, 1, . . .}, and Π0 is the set of

all causal activation policies π0.

5.4.3 MDP Framework of the Decomposed Problem

Given transmission cost λ, Problem (5.11) can be cast as an average-cost infinite horizon

MDP. The components of MDP (5.11) are described below:

• State: At any time slot t, the state of the MDP is the age ∆n(t) and the latest received

observation Xn,t−∆n(t) of agent n.

• Action: At any time slot t, the action is defined by µn(t) ∈ {0, 1} which denotes the

scheduling decision for agent n. Each bandit n associated with problem (5.3)-(5.4) is a

Markov Decision Process (MDP) with two actions: active and passive. If a packet from
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agent n is requested and submitted to a channel at time slot t, then restless bandit n

takes an active action at time slot t; otherwise, bandit n is made passive at time slot

t.

• State Transitions: The AoI process ∆n(t) for agent n evolves as follows

∆n(t) =


1, w. prob. pn, ifµn(t) = 1,

∆n(t− 1) + 1, w. prob. 1− pn, ifµn(t) = 1,

∆n(t− 1) + 1, w. prob. 1, ifµn(t) = 0.

The latest received observation Xn,t−∆n(t) evolves as

Xn,t−∆n(t) =


Xn,t, w. prob. pn, ifµn(t) = 1,

Xn,t−∆n(t), w. prob. 1− pn, ifµn(t) = 1,

Xn,t−∆n(t), w. prob. 1, ifµn(t) = 0.

• Penalty: Given ∆n(t) = δ andXn,t−∆n(t) = x, the expected penalty for agent n between

two consecutive transmissions is defined as

Ln(δ, x) = E[L(Yn,t, ϕn(∆n(t), Xn,t−∆n(t))|∆n(t) = δ,Xn,t−∆n(t) = x]. (5.13)

The function Ln(δ, x) has some interesting properties: (i) Ln(δ, x) exhibits information-

theoretic interpretation depending on the estimator ϕn(·, ·), (ii) Ln(δ, x) is non-monotonic

with age δ given observation x. The details are provided in Section 5.5.

5.5 Properties of Ln(δ, x) in (5.13)

In this section, we analyze the behavior of the penalty function Ln(·, ·) in (5.13). Our

analysis reveals two interesting observations: (i) Ln(·, ·) exhibits an information-theoretic

behavior based on different properties of the estimator ϕn(·, ·): (a) If ϕn(·, ·) be the optimal

estimator that minimizes (5.13), then Ln(·, ·) can be represented as L-conditional entropy,
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(b) if ϕn(·, ·) be the optimal estimator of another problem, i.e., ϕn(·, ·) minimizes any problem

other than (5.13), then Ln(·, ·) can be represented as L-conditional cross-entropy, and (c) if

ϕn(·, ·) is not an estimator, then Ln(·, ·) remains the same as (5.13), (ii) For a given received

observation x, Ln(·, ·) is not necessarily a monotonic function of the age. Both of these

observations provide useful insights and understanding to solve (5.3)-(5.4). The details are

provided below:

5.5.1 Information-theoretic Interpretation

Assume that Yn,t is conditionally independent of ∆n(t) given Xn,t−∆n(t). Under this

assumption, we present the information-theoretic analysis of Ln(δ, x) in the following three

cases:

Case 1: If ϕn(·, ·) is the optimal estimator of the underlying data distribution given by

ϕn(δ, x) = argmin
ŷ

EY∼PYn,t|Xn,t−δ=x
[L(Y, ŷ)], (5.14)

then (5.13) can be expressed as

Ln(δ, x) = HL(Yn,t|Xn,t−δ = x), (5.15)

where HL(Yn,t|Xn,t−δ = x) is the generalized conditional entropy of Yn,t given the latest

received observation generated δ times ago at time slot t [122, 123], [120]. The generalized

conditional entropy is given by

HL(Yn,t|Xn,t−δ = x) = min
ŷ∈Y

EY∼PYn,t|Xn,t−δ=x
[L(Y, ŷ)]. (5.16)

For optimal estimator ϕn(δ, x) in (5.14), Ln(δ, x) becomes

Ln(δ, x) = min
ŷ∈Y

EY∼PYn,t|Xn,t−δ=x
[L(Y, ŷ)], (5.17)

which provides a lower bound of (5.17). This lower bound is closely related to the concept

of generalized entropy [122, 123] or specifically, the L-entropy [120]. For a random variable
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Y , the L-entropy is given by

HL(Y ) = min
a∈A

EY∼PY
[L(Y, a)]. (5.18)

Let aY be the optimal solution to (5.18), or specifically the optimal estimator associated

with the random variable Y , which is also called a Bayes estimator [122]. The L-conditional

entropy of Y given X = x can be defined as [120,122,123]

HL(Y |X = x) = min
a∈A

EY∼PY |X=x
[L(Y, a)]. (5.19)

Comparing (5.14), (5.17), and (5.16), it is evident that for the optimal estimator, Ln(δ, x)

is indeed L-conditional entropy. By this, we obtain an information-theoretic lower bound

for Ln(δ, x). It represents the minimum achievable penalty that characterizes performance

degradation due to the lack of knowledge of the situation.

Case 2: If ϕn(·, ·) is the optimal estimator of another data distribution given by,

ϕn(δ, x) = argmin
ŷ

EY∼PỸn,t|X̃n,t−δ=x
[L(Y, ŷ)], (5.20)

then (5.13) can be expressed as

qn(δ, x) = HL(PYn,t|Xn,t−δ=x;PỸn,t|X̃n,t−δ=x), (5.21)

which is the L-conditional cross entropy [120] between Yn,t and Ỹn,t given the age and the

latest received observation at time slot t. The L-conditional cross-entropy is given by

HL(PYn,t|Xn,t−δ=x;PỸn,t|X̃n,t−δ=x) = EPYn,t|Xn,t−δ=x
[L(Y, ŷPỸn,t|X̃n,t−δ=x

]. (5.22)

For the optimal estimator of (5.20) Ln(δ, x) can be expressed as

Ln(δ, x) = EPYn,t|Xn,t−δ=x
[L(Y, ŷPỸn,t|X̃n,t−δ=x

]. (5.23)
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Figure 5.3: (a) Safety regions and (b) Penalty (Ln(δ, x)) vs AoI (δ) for given observations.

This result in (5.23) is closely related to L-conditional cross entropy [120]. The L-cross

entropy between random variables Y and Ỹ is given by

HL(Y ; Ỹ ) = EY∼PY
[L(Y, aỸ )], (5.24)

where aỸ is the optimal estimator associated with random variable Ỹ . In addition, the

L-conditional cross-entropy between Y and Ỹ given X = x is

HL(Y ; Ỹ |X = x) = EY∼PY |X=x
[L(Y, aỸ |X̃=x)], (5.25)

where aỸ |X̃=x is the optimal estimator associated with random variables Ỹ |X̃ = x. Com-

paring (5.20), (5.22), and (5.23), we can conclude that if ϕn(·, ·) is the optimal estimator of

another data distribution, then Ln(δ, x) becomes L-conditional cross entropy.

Case 3: If ϕn(·, ·) is not any optimal estimator, then Ln(δ, x) remains the same as (5.13).

5.5.2 Non-monotonic Information Aging

Our analysis reveals that Ln(δ, x) can be a non-monotonic function of age, particularly

when the knowledge of the surrounding situation is considered. Also, we analyze Ln(δ, x)

with received observation x given δ which demonstrates that the region for frequent updating

increases with δ.
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To do this experiment, we consider a safety-critical system where N robots are moving

in a region illustrated in Figure 5.3. This region is equally divided into 400 positions and

the received observation Xn,t of robot n is represented by the position x = (x1, x2) of robot

n at time t. The safety level Yn,t is divided into three regions: {safe, cautious, dangerous}.
A robot n can randomly move in any four directions: up, down, left, and right with equal

probability 0.2. If robot n is in the leftmost position, then moving left means it will stay

in the same position, similar criteria are applied for the rightmost, upmost, and downmost

positions. The losses considered in this experiment are: L(cautious, safe) = 50, L(safe,

cautious) = 10, L(dangerous, safe) = 200, L(safe, dangerous) = 10, L(dangerous, cautious)

= 50, L(cautious, dangerous)= 20, and L(dangerous, dangerous) = L(cautious, cautious)

= L(safe, safe) = 0. We consider the optimal estimator in this experiment.

Ln(δ, x) for fixed x and varying δ

The penalty vs AoI curve for the given observation is illustrated in Figure 5.3(b). When

a robot is in a safe, cautious, or dangerous region which is far from the safe and cautious or

cautious and dangerous boundary, the penalty is initially close to zero for small AoI values

and increases gradually with increasing age. This phenomenon tells us that we do not need

to update frequently when a robot is far from the boundary region. However, if the robot

moves closer to the boundary between safe and cautious or cautious and dangerous, the

penalty increases very quickly because of the uncertainty of its position in the subsequent

time slots. Hence, we need to update very frequently if any robot is close to the boundary.

Because situational awareness is not good at the boundary, frequent updating is required to

keep the loss small. With the increase in age, the curves at the boundary start decreasing,

specifically, when AoI becomes large. This is because, for larger AoI values, the best decision

for the estimator is to estimate a “dangerous” and as the loss for wrongly estimating “safe”

or “cautious” as ”dangerous” has less impact, the penalty reduces. Similarly, the other

curves can be explained.
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Figure 5.4: Penalty Ln(δ, x) vs received observation x for fixed AoI δ.

Ln(δ, x) for fixed δ and varying x

Figure 5.4 demonstrates the penalty vs received observation x curve for different AoI δ

values. In this figure, when AoI is small, i.e., δ = 1, the loss is high only at the two boundary

regions which illustrates that we need to update frequently if the received observation is at

the boundary. With increasing δ, the loss curve spreads to the adjacent regions of the

boundaries. Hence, the region for frequent updating is also increasing with increasing δ.

Because the penalty curves are not necessarily monotonic with age, only considering the

non-decreasing functions of the age is not sufficient for performance analysis of safety-critical

systems. The proposed metrics in prior works, i.e., AoII, VoI, AoS, QAoI cannot explain

this non-monotonicity with age.
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5.6 Penalty Minimization: An Information-theoretic Perspective

In Section 5.5.1, we demonstrate that for optimal estimators, the penalty function

Ln(δ, x) can be represented as L-conditional entropy. By leveraging this insight, we obtain

that for optimal estimators, always sending updates, or specifically taking active actions at

every time slot benefits the system by reducing the average penalty of the system.

Assume the estimator ϕn(·) in (5.3) is the optimal estimator. In addition, we have

available channel resources at every time slot. By this, constraint (5.4) will always be

satisfied. Under these assumptions and by utilizing (5.15) in (5.3), we can write problem

(5.1) as

Lopt = inf
π∈Π

lim sup
T→∞

N∑
n=1

Eπ

[
1

T

T−1∑
t=0

HL(Yn,t|∆n(t), Xn,t−∆n(t))

]
. (5.26)

Problem (5.26) can be decomposed into N separated sub-problems and each sub-problem

is a MDP that can be solved by Dynamic programming [126]. The optimal policy of the

subproblem associated with agent n satisfies the following Bellman optimality equation:

Jn(δ, x) =HL(Yn,δ|Xn,0 = x)− Ln,opt +min{Jn(δ + 1, x), (1− pn)Jn(δ + 1, x)

+ pnE[Jn(1, Xn,0)|Xn,−δ = x]}, (5.27)

where Jn(δ, x) is the value function associated with state (δ, x) and Ln,opt is the optimal

value of the subproblem associated with agent n. Because (Yn,t|Xn,t−δ = x) and Xn,t are

time-homogeneous, (5.27) holds.

As explained in [126], the optimal value function can be derived by using value iteration

and the sequence of value functions Jn,k(δ, x) can be written as

Jn,k+1(δ, x) =HL(Yn,δ|Xn,0 = x)− Ln,opt +min{Jn,k(δ + 1, x), (1− pn)Jn,k(δ + 1, x)

+ pnE[Jn,k(1, Xn,0)|Xn,−δ = x]}, (5.28)
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which converges to limk→∞ Jn,k = Jn for any Jn,0. After some rearrangements, we can write

(5.28) as

Jn,k+1(δ, x) =HL(Yn,δ|Xn,0 = x)− Ln,opt + Jn,k(δ + 1, x) + pnmin{0,−Jn,k(δ + 1, x)

+ E[Jn,k(1, Xn,0)|Xn,−δ = x]}. (5.29)

Then, we have the following lemma which illustrates sending is beneficial at every k.

Lemma 5.1 For any k, it holds that Jn,k(δ + 1, x) ≥ E[Jn,k(1, Xn,0)|Xn,−δ = x].

Lemma 5.1 states that the penalty for not sending at iteration step k is higher than

sending and therefore, taking the active action is beneficial to reduce the penalty. One

interesting observation from (5.29) is that each time a packet is successfully delivered with

probability pn, a new piece of information about the agent’s signal value is added with the

existing information (Xn,t−δ = x) (see the term E[Jn,k(1, Xn,0)|Xn,t−δ = x] in (5.28)). This

new information plays a crucial role in reducing the system penalty and hence benefits the

system through sending. In this sequel, we introduce the following useful lemma which

illustrates that more information reduces the L-conditional entropy.

Lemma 5.2 For random variables X, Y, and Z, it holds that HL(Y |Z = z) ≥ HL(Y |X,Z =

z), where

HL(Y |Z = z) = min
a∈A

E[L(Y, a)|Z = z], (5.30)

HL(Y |X,Z=z)=
∑
x∈X

P (X=x|Z=z)HL(Y |X=x, Z=z). (5.31)

Proof 5.1 See Appendix 5.A.

Given Lemma 5.2, we are ready to prove Lemma 5.1. The proof of Lemma 5.1 is provided

in Appendix 5.B.

Theorem 5.2 For optimal estimators, the optimal policy π in (5.26) chooses the active

action at every time slot t.
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Algorithm 10 Maximum Gain First Policy

1: At time t = 0:
2: Input λ∗ which is the optimal solution to (5.9).
3: Input αn,λ∗(δ, x) in (5.36) for every agent n.
4: For all time t = 0, 1, . . .,
5: Update (∆n(t), Xn,t−∆n(t)) for all agent n.
6: Update current “gain” αn,λ∗(∆n(t), Xn,t−∆n(t)) for all agent n.
7: Choose at most M agents with highest “gain”.

Proof 5.2 See Appendix 5.C.

Theorem 5.2 states that if ϕn(·, ·) is the optimal estimator, then it is always better to

send. Though the penalty Ln(δ, x) is not necessarily a monotonic function of the age, the

insights obtained from Lemma 5.2 tell us that having additional information helps reduce

the average penalty. Theorem 5.2 holds for the situation when there are no channel resource

constraints. The original problem stated in (5.3)-(5.4) has a channel resource constraint,

therefore, all of the agents cannot submit their updates at every time slot when N > M .

On the other hand, the estimator function ϕn(·, ·) in (5.3)-(5.4) is not necessarily the op-

timal estimator. Theorem 5.2 holds for optimal estimators. To solve problem (5.3)-(5.4)

for arbitrary estimators with a channel resource constraint, we have to design an efficient

scheduling policy that minimizes the time-average sum of the expected penalty of the N

sources ensuring that constraint (5.4) is satisfied. We provide the details in the next section.

5.7 Maximum Gain First Policy

For a given transmission cost λ, the per-bandit problem (5.11) can be cast as an average-

cost infinite horizon MDP with state (∆n(t), Xn,t−∆n(t)). We solve (5.11) by using dynamic

programming [126]. The Bellman optimality equation for the MDP in (5.11) is

hn,λ(δ, x) = min
µ∈{0,1}

Qn,λ(δ, x, µ), (5.32)

169



where hn,λ(δ, x) is the relative-value function of the average-cost MDP and Qn,λ(δ, x, µ) is

the relative action-value function defined as

Qn,λ(δ, x, µ) =


Ln(δ, x)− L̄n(λ) + hn,λ(δ + 1, x), ifµ = 0,

Ln(δ, x)− L̄n(λ) + (1− pn)hn,λ(δ + 1, x)

+pnE[hn,λ(1, Xn,0)|Xn,δ = x] + λ, otherwise.

(5.33)

The relative-value function hn,λ(δ, x) can be computed by using the relative value iteration

algorithm for average-cost MDP [126].

Let π∗
n,λ = (µ∗

n,λ(1), µ
∗
n,λ(2), . . .) be an optimal solution to (5.11). The optimal decision

at time slot t for agent n is given by

µ∗
n,λ(t) = argmin

µ∈{0,1}
Qn,λ(∆n(t), Xn,t−∆n(t), µ), (5.34)

where the dual cost is iteratively updated using the dual sub-gradient ascent method with

step size β > 0 [130]:

λ(j + 1) = λ(j) +
β

j

( N∑
n=1

µn,λ(j)(j)−M

)
, (5.35)

for j-th iteration. Let λ∗ be the optimal dual cost to problem (5.9) to which λ(t) converges.

Then, we can apply (πn,λ∗)Nn=1 for the relaxed problem (5.7)-(5.8). But applying this policy

to the original problem (5.3)-(5.4) may violate the constraint (5.4). Following [53, 54], we

define the “gain” αn,λ(δ, x) for choosing the action µn,λ(t) as

αn,λ(δ, x) = Qn,λ(δ, x, 0)−Qn,λ(δ, x, 1). (5.36)

If Qn,λ(δ, x, 0) > Qn,λ(δ, x, 1), i.e., αn,λ(δ, x) > 0, it is optimal to schedule agent n. If

Qn,λ(δ, x, 0) < Qn,λ(δ, x, 1), i.e., αn,λ(δ, x) < 0, it is optimal to not to schedule agent n.
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Substituting (5.33) into (5.36), we get

αn,λ(δ, x) = pn

(
hn,λ(δ+1, x)−E[hn,λ(1, Xn,0)|Xn,−δ = x]

)
− λ. (5.37)

By utilizing the “gain” in (5.37) as the priority measurement for choosing action µ, we provide

a low-complexity algorithm for solving problem (5.3)-(5.4) in Algorithm 10 which takes the

optimal dual cost λ∗ and the precomputed gain αn,λ∗(δ, x) associated with λ∗ as input. Then,

for all t ≥ 0, the state (∆n(t), Xn,t−∆n(t)) and the associated “gain” αn,λ∗(∆n(t), Xn,t−∆n(t))

are updated. Finally, Algorithm 10 maximizes the “Net-gain” (total gain of all agents) of the

system at time t. This is done by selecting at most M agents having the maximum “gain”

at time slot t. The benefit of “Maximum Gain First Policy” in Algorithm 10 is that it does

not need to satisfy the indexability condition.

5.8 Asymptotic Optimality

In this section, we demonstrate that the “Maximum Gain First Policy” in Algorithm 10

is asymptotically optimal in the same asymptotic regime as the Whittle index policy [127].

In this scenario, all N bandits are generalized to N classes, and the number of bandits in each

class and the number of channelsM are scaled by a parameter γ, while maintaining a constant

ratio between them. Two bandits are said to be in the same class if they have identical

penalty functions and transition probabilities. The dummy bandits belong to the same

class. None of the N agents have the same penalty functions and transition probabilities.

Therefore, we have N + 1 distinct class of bandits.

Let V γ
πgain

be the expected long-term average cost under policy πgain. The policy πgain will

be asymptotically optimal if V γ
πgain
≤ V γ

π for all π ∈ Π as γ approaches∞, while maintaining

a constant ratio γN/γM . To prove the asymptotic optimality, (i) we first introduce a linear

program in Section 5.8.1 for solving the relaxed optimization problem (5.7)-(5.8), (ii) next,

by using the solution to the LP, we define a uniform global attractor in Section 5.8.2. In the

relaxed problem (5.7)-(5.8), we have N +M bandits with N agents and M dummy bandits,

and M channels. We assume that in the state (δ, x), large AoI values, i.e., δ > δhigh are

rarely visited if δhigh is sufficiently large.
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Let W n
δ,x(t) be the fraction of class-n bandits in state (δ, x) at time t and Un,µ

δ,x (t) be the

fraction of class-n bandits in state (δ, x) at time t for which decision µ ∈ {0, 1} is taken.

If µ = 0, no agent is scheduled for transmission; otherwise, if µ = 1, an agent is scheduled

for transmission. Given state (δ, x) and action µ of a class-n bandit, let P
(n,µ)
(δ′,x′),(δ,x) be the

transition probability from state (δ, x) to a state (δ′, x′) for a class-n bandit under action µ.

Define

wn
δ,x = lim sup

T→∞

T−1∑
t=0

1

T
E[W n

δ,x(t)], (5.38)

un,µ
δ,x = lim sup

T→∞

T−1∑
t=0

1

T
E[Un,µ

δ,x (t)]. (5.39)

If µ = 1, a channel is occupied by a bandit. In this scenario, the time-average expected

fraction of bandits from class-n occupying a channel is determined by

∑
(δ,x)

un,1
δ,x . (5.40)

Let Vm(t), Um(t), vm, and um be the vectors that contain V n
δ,x(t), U

n,µ
δ,x (t), v

n
δ,x, and un,µ

δ,x ,

respectively, for all δ, x, and µ.

5.8.1 Linear Program for Solving Problem (5.7)-(5.8)

By utilizing un,µ
δ,x in (5.39), the on average constraint in (5.8) can be written as

N∑
n=0

∑
µ=1

un,µ
δ,x = N. (5.41)
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Let L̄rel be the optimal objective value of the relaxed problem (5.7)-(5.8). By solving the

following LP, we can obtain L̄rel:

min
(un)Nn=0

N∑
n=1

∑
δ,x,µ

L̄n(δ, x)u
n,µ
δ,x (5.42)

s.t.
N∑

n=0

∑
µ=1

un,µ
δ,x = N, (5.43)

∑
µ

un,µ
δ,x =

∑
δ′,x′,µ

un,µ
δ′,x′P

(n,µ)
(δ,x),(δ′,x′),∀n, δ, x, (5.44)

∑
δ,x,µ

un,µ
δ,x = 1,∀n, (5.45)

0 ≤ un ≤ 1,∀n. (5.46)

5.8.2 Uniform Global Attractor Condition

For a policy π, we can have the following mapping

Ψπ((w
n)Nn=1) = Eπ[(W

n(t+ 1))Nn=1|(Wn(t))Nn=1 = (wn)Nn=1]. (5.47)

We define the t-th iteration of the maps Ψπ,t≥0(·) as follows

Ψπ,0((w
n)Nn=1) = (wn)Nn=1, (5.48)

Ψπ,t+1((w
n)Nn=1) = Ψπ(Ψπ,t((w

n)Nn=1)). (5.49)

Definition 5.1 Uniform Global attractor. An equilibrium point (wn∗
)Nn=1 given by the

optimal solution of (5.42)-(5.46) is a uniform global attractor of Ψπ,t≥0(·), i.e., for all ϵ > 0,

there exists T (ϵ) such that for all t ≥ T (ϵ) and for all (wn∗
)Nn=1), one has ||Ψπ,t(((w

n)Nn=1))−
(wn∗

)Nn=1))||1 ≤ ϵ.

Theorem 5.3 Under Definition 5.1, the policy πgain is asymptotically optimal.

5.9 Numerical Results

In this section, we evaluate the performance of the following policies:
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Figure 5.5: Normalized average penalty vs Number of agents (N) where Number of channels are
M = 10 with success probability 0.95.

• Periodic Updating: The agents generate updates at every time slot and store them in

a FIFO queue. Whenever a channel is available, an update from the queue is sent.

• Randomized Policy: If M channel resources are available, this policy randomly selects

at most M agents.

• Maximum Gain First Policy: The policy provided in Algorithm 10.

We consider the same experimental setup of Figure 5.3 where 5 robots follow a deter-

ministic policy (they follow a fixed path). The cost associated with these 5 robots is zero at

every time slot because given an initial state, the position of these robots can be uniquely

determined by following the deterministic policy. The goal of the other N − 5 robots is to

move and scan the environment (e.g., Mars Rovers [131]) and send updates when requested.

We do not consider any termination state for these robots, the goal is to keep scanning for

an infinite time horizon. Our system consists of M = 10 erasure channels and the success

probability is 0.95.

The performance comparison of the three policies mentioned above is provided in Figure

5.5. The normalized average penalty in Figure 5.5 is obtained by dividing time-average cost

by the number of robots. From the figure, until N ≤ M , all of the three policies show the

same performance. Whenever N > M , periodic updating starts getting worse because the
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queue length is getting higher. In our simulation, we have used a buffer size of 20 for periodic

updating. Moreover, the randomized policy randomly selects at most 5 agents for sending

updates, whereas the maximum gain first policy decides a smarter way by considering the

AoI and the state of the surrounding situation. The performance gain of the maximum gain

first policy is up to 100 times compared to periodic updating and up to 10 times compared

to the randomized policy.

5.10 Conclusion

We address the importance of situational awareness in safety-critical systems. The

general loss function L has practical importance and an appropriate design of L can address

many safety-critical issues. In the future, we will study systems where multiple agents can

arrive and leave the system at any time. Another interesting direction is to consider a finite

time horizon problem where there is a termination state while encountering a danger.
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5.A Proof of Lemma 5.2

From the definition of L-conditional entropy in (5.19), we get that

HL(Y |Z = z)

=min
a∈A

E[L(Y, a)|Z = z],

=min
a∈A

∑
y∈Y

P (Y = y|Z = z)L(y, a),

=min
a∈A

∑
y∈Y

∑
x∈X

P (Y =y|X=x, Z=z)P (X=x|Z=z)L(y, a),

=min
a∈A

∑
x∈X

P (X=x|Z=z)
∑
y∈Y

P (Y =y|X=x, Z=z)L(y, a),

≥
∑
x∈X

P (X=x|Z=z)min
a∈A

∑
y∈Y

P (Y =y|X=x, Z=z)L(y, a), (5.50)

where (5.50) holds because min(f(w) + g(w)) ≥ min f(w) + min g(w) for all w. Continuing

from (5.50), we get that

HL(Y |Z = z)

≥
∑
x∈X

P (X = x|Z = z)min
a∈A

E[L(Y, a)|X = x, Z = z]. (5.51)

Utilizing (5.30), we obtain that [120,122,123]

HL(Y |X = x, Z = z) = min
a∈A

E[L(Y, a)|X = x, Z = z]. (5.52)

Substituting (5.52) into (5.51) yields

HL(Y |Z = z)

≥
∑
x∈X

P (X = x|Z = z)HL(Y |X = x, Z = z),

=HL(Y |X,Z = z), (5.53)

where (5.53) follows from (5.31). This completes the proof.
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5.B Proof of Lemma 5.1

Without loss of generality, we can assume that for all (δ, x), Jn,0(δ, x) = 0. At k = 0,

(5.28) becomes

Jn,1(δ, x) =HL(Yn,δ|Xn,0 = x)− Ln,opt. (5.54)

In this case, a minimum value can be achieved by both sending and not sending. Hence, we

can conclude that sending is beneficial at iteration step k=0. Next, at k = 1, (5.28) becomes

Jn,2(δ, x) =HL(Yn,δ|Xn,0 = x)− Ln,opt +min{Jn,1(δ + 1, x), (1− pn)Jn,1(δ + 1, x)

+ pnE[Jn,1(1, Xn,0)|Xn,−δ = x]}. (5.55)

Sending will be beneficial at k = 1 if

Jn,1(δ + 1, x) ≥ E[Jn,1(1, Xn,0)|Xn,−δ = x]. (5.56)

From the right-side term in (5.56), we get

E[Jn,1(1, Xn,0)|Xn,−δ]

=
∑
z∈X

Jn,1(1, z)P (Xn,0 = z|Xn,−δ = x)

=
∑
z∈X

HL(Yn,t|Xn,0 = z)P (Xn,0 = z|Xn,−δ = x)− Ln,opt,

=HL(Yn,t|Xn,0, Xn,−δ = x)− Ln,opt, (5.57)

where (5.57) holds from Lemma 5.2.

In (5.54), no new information is obtained because Jn,1(δ + 1, x) = HL(Yn,δ+1|Xn,0 =

x) − Ln,opt. However, in (5.57), a new piece of information is added. By comparing (5.54)

and (5.57) and by utilizing Lemma 5.2, we can conclude that

HL(Yn,δ+1|Xn,0 = x) ≥ HL(Yn,t|Xn,0, Xn,−δ = x) (5.58)
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from which (5.56) follows. Therefore, sending is beneficial for k = 1. Next, at k = 2, sending

will be beneficial if

Jn,2(δ + 1, x) ≥ E[Jn,2(1, Xn,0)|Xn,−δ = x]. (5.59)

Utilizing (5.54), (5.56), and (5.57) in (5.55) yields

Jn,2(δ, x) =HL(Yn,δ|Xn,0 = x)− 2Ln,opt + (1− pn)HL(Yn,δ+1|Xn,0 = x)+

pnHL(Yn,1|Xn,0, Xn,−δ = x). (5.60)

Similarly, the right-side term of (5.59) is given by

E[Jn,2(1, Xn,0)|Xn,−δ=x]=HL(Yn,1|Xn,0, Xn,−δ=x)−2Ln,opt+(1−pn)HL(Yn,2|Xn,0, Xn,−δ=x)

+ pnHL(Yn,2|Xn,0, Xn,1, Xn,−δ=x). (5.61)

From (5.60) and (5.61), we observe that every term in (5.61) has a piece of additional

information. Then, by utilizing Lemma 5.2, we can conclude that (5.59) holds. Therefore,

sending is beneficial at k = 2.

Next, assume that this result holds up to interation step k so that the following is true:

Jn,k(δ + 1, x) ≥ E[Jn,k(1, Xn,0)|Xn,−δ = x]}. (5.62)

By using the result in (5.63), we have to prove that for iteration step k + 1, the following

holds.

Jn,k+1(δ + 1, x) ≥ E[Jn,k+1(1, Xn,0)|Xn,−δ = x]}. (5.63)

The right side of (5.63) contains HL(Yn,k|Xn,0, Xn,1, . . . , Xn,k, Xn,−δ = x) which has more

information than the left-side term. Similarly, it can be shown that all the terms on the

right side of (5.63) have more information than the left side. By utilizing Lemma 5.2, we

can conclude that sending is beneficial at iteration step k + 1.
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Hence, it is beneficial to send for all k if a channel is available. This concludes the proof.

5.C Proof of Theorem 5.2

From Lemma 5.1, we get that sending is beneficial at every iteration step k. Hence,

sending is beneficial at every time slot. Therefore, Theorem 5.2 follows from Lemma 5.1.
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Chapter 6

Concluding Remarks and Future Work

In this dissertation, we study how to improve the performance of real-time monitoring ap-

plications by considering both the data signal value and the data freshness. To that end, we

have designed low-complexity sampling and scheduling algorithms. Numerical evidences il-

lustrate that our proposed algorithms achieve high performance gain over existing age-based

scheduling policies. The following research problems could be an interesting directions based

on our findings.

Joint Optimal Scheduling and Control. With the emerging number of intercon-

nected devices, an efficient design of jointly optimal scheduling and control policies has

significant importance where communication delays and uncertainties significantly impact

control performance. This is relevant to systems that have safety requirements. My goal is

to develop joint optimal scheduling and control policies that seamlessly optimize communi-

cation and control actions to improve situational awareness. In contrast with our existing

studies explained in Chapter 4, we can consider the state of the scheduler and controller

to make the system more practical. Leveraging insights from optimization theory, we strive

to design algorithms that dynamically adapt scheduling decisions based on the real-time re-

quirements of the control system. By tightly coupling the scheduling and control aspects, the

system performance can be improved. This research not only contributes to the theoretical

foundations of networked control systems but also holds practical implications for diverse ap-

plications, such as industrial automation to autonomous vehicles, remote surgery to health

monitoring, where the interconnection of wireless communications and control policies is

crucial for achieving optimal system performance.

Differential Privacy for Enhancing Security in Remote Estimation. Differen-

tial privacy offers a rigorous framework for quantifying and mitigating the risks associated

with the disclosure of sensitive information. We aim to incorporate this privacy analysis

with our earlier sampling and scheduling based studies in Chapter 2 and 3. By integrating

differential privacy mechanisms into the data transmission strategies, we aim to establish
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a policy that jointly optimize the privacy protection and the estimation error. This ap-

proach ensures not only the optimization of mean square error and data security but also

addresses concerns related to privacy-preserving data sharing. Practical examples of this

framework can be found in scenarios where remote monitoring of sensitive information, such

as financial transactions or personal health records, requires a balance between accuracy, se-

curity, and individual privacy. Through this approach, our research focuses on contributing

comprehensive solutions that navigate the complex landscape of wireless communication by

simultaneously improving system performance and data privacy.

Demonstration of Designed Policy. Our goal is to implement and validate the re-

search projects by using the designed control and transmission scheduling policy utilizing

robotics as a practical testbed. With a primary focus on safety-critical systems as illustrated

in Chapter 4, the incorporation of advanced control policies and transmission scheduling

strategies is essential for ensuring the reliability of these systems. Practical examples include

autonomous vehicles, where the coordination of control actions and transmission schedules

is crucial for timely and secure communication between vehicles and infrastructure. Addi-

tionally, in manufacturing environments with collaborative robots, the synchronization of

control and communication plays a pivotal role in maintaining safety protocols. Through

this research, I aim to contribute to the evidence of their effectiveness in enhancing the safety

and performance of critical systems.
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