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Abstract 

Understanding fish movements and early life-history requirements is important for 

managing populations because they reflect changing resource needs across the life cycle. Riverine 

black basses (genus Micropterus) hold significant economic and ecological importance, but 

knowledge of their reproductive and early life-history requirements is lacking relative to rapidly 

evolving species designations. Thus, my study objectives were to determine seasonal movement 

patterns and the factors related to early life-history success of endemic Shoal Bass, M. cataractae, 

and native Largemouth Bass, M. salmoides, in the lower Flint River catchment, Georgia. Adult 

black basses were tagged and tracked for 15 months using radio telemetry. I used generalized 

additive mixed modelling to determine how biotic and environmental factors related to movement 

patterns. Both species included stationary and mobile individuals with some mobile bass moving 

greater than 70 km in one direction. Movements increased during the spring which was presumably 

related to spawning activity. There were numerous locations of fish aggregations during the spring, 

particularly below a hydropower dam. Shoal Bass females moved longer distances than males. 

Largemouth Bass moved less during periods of variable discharge. I also collected age-0 Shoal 

Bass and Largemouth Bass to analyze hatch success and growth using a hurdle model framework 

and linear regression. Largemouth Bass hatch success was negatively related to water temperature 

but positively related to increasing discharge. Shoal Bass hatch success was negatively related to 

discharge variability and was higher during relatively stable flows on the descending limb of the 

hydrograph. It appears that hydropeaking flows may have affected hatch success of both species, 

particularly Shoal Bass. Discharge and temperature conditions explained more variability in daily 

growth for Shoal Bass compared to Largemouth Bass. My results indicate important species-

specific relationships that influence movement patterns and successful hatching and underscore 

the importance of maintaining components of a natural flow regime. If the goal is to promote 

recruitment in these populations, then consideration of dam operations and examining the level of 

angler exploitation during important spawning times may be worth consideration by managers. 
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Chapter I 

Introduction and Research Objectives 

Rivers and associated wetlands represent diverse environments that provide important 

ecosystem services but are threatened by a myriad of human activities. Freshwaters support a 

significant portion of global biodiversity (6% of all described species; Hawksworth and Kalin-

Arroyo 1995) relative to their surface area (0.8% of the Earth’s surface; Gleick 1996). As much as 

one third of all vertebrate fauna is contained within freshwaters (Dudgeon et al. 2006) with an even 

larger proportion of fauna depending on them (Grosberg et al. 2012).  Humans also depend heavily 

on rivers and wetlands for drinking water, power generation, food production, natural water 

treatment, flood control, transportation, and recreation (Aylward et al. 2005). Despite their 

significance to human livelihoods, riverine ecosystems are among the most imperiled by human 

activities. Reid et al. (2019) estimated that an 83% decline in freshwater vertebrate populations 

occurred between 1970 and 2014. Flow regulation, over exploitation, pollution, land-use change, 

invasive species, climate change and associated interactions are all considered major threats to 

freshwater ecosystems (Dudgeon 2019). Impoundments are one of the largest threats to natural 

flows, fragmenting river corridors and habitat for many stream fish (Poff et al. 1997; Poff and 

Zimmerman 2010). 

Dam construction affects many attributes of river ecosystems including species phenology and 

the successful completion of life cycles. Dams alter natural flow regimes (Poff 1997) and reduce 

connectivity of almost half of global river volume (Grill et al. 2015). This, in turn, isolates aquatic 

populations, alters habitat, and degrades hydrologic conditions for all life stages (Ligon et al. 1995; 

Guenther and Spacie 2006; Freeman et al. 2007; Hastings et al. 2016; Reid et al. 2019). 
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Distributions and abundances of migrating species have declined worldwide in part due to artificial 

barriers such as dams (Jager et al. 2001; Flowers et al. 2009; Deinet et al. 2020). Changes in water 

quality (Ahearn et al. 2005), thermal regime (Caissie 2006), and channel morphology (Ligon et al. 

1995) resulting from impoundments affect lotic fauna. For example, Kondolf et al. (2014) 

estimated a 51% decrease in sediment deposition in the Mekong River, China would occur 

downstream of current and future dams. Correspondingly, rivers in the Pacific Northwest after 

dam construction were markedly cooler during summer and warmer during fall and winter which 

was hypothesized to affect Chinook salmon Oncorhynchus tshawytscha spawning phenology 

(Angilletta et al. 2008). Additionally, many life history traits of lotic fishes are cued by or related 

to aspects of a natural flow regime such as magnitude, rate of change, frequency, and timing of 

flows (Lytle and Poff 2004; Taylor and Cooke 2012). Thus, alteration of natural variability and 

patterns can disrupt the timing and success of key life-history events (Bunn and Arthington 2002; 

Pennock et al. 2022). For example, alteration of the timing and magnitude of peak and low flows 

by river regulation can reduce juvenile fish abundance and favor species that have less stringent 

spawning requirements (Poff et al. 1997; Freeman et al. 2001; Craven et al. 2010; McManamay 

and Frimpong 2015). Despite these realizations, there is a lack of information on fish and flow 

relationships during important reproductive and early-life stages, particularly for narrow-range 

endemics (Cooke et al. 2012).  

Black basses, Micropterus spp., are freshwater sportfish that are economically and ecologically 

important and occur over a wide range of habitats. There are 19 extant species of black bass in 

North America, with most restricted to relatively small ranges (Kim et al. 2022). Popularity as 

aggressive sportfishes has led to both riverine and reservoir populations of black bass conferring 

important economic benefits via recreational opportunities (Chen et al. 2003; Thomas et al. 2015; 
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Seguy and Long 2021). For instance, black basses are consistently ranked as the most sought-after 

fishes by freshwater anglers in the United States (USDOI et al. 2016) and have been introduced to 

every continent except Antarctica (NatureServe 2019). As aggressive predators, black basses can 

confer top-down ecosystem effects (Power et al. 1985; Boschung and Mayden 2004), which can 

also result in introduced populations being problematic invasives (Jackson 2002). These sportfish 

occur in all sizes of streams, lakes, and impoundments and display a variety of behaviors 

depending on their environmental context (Nack et al. 1993; Waters and Noble 2004; Carter et al. 

2012; Brewer and Long 2015). More widespread species such as Largemouth Bass M. salmoides, 

Smallmouth Bass M. dolomieu, and Spotted Bass M. punctulatus persist in a variety of 

environmental conditions and thus, appear more plastic in their ability to adapt to varying resource 

availability (Todd and Rabeni 1989; Greene and Maceina 2000; Richardson-Heft et al. 2000; 

Barthel et al. 2008). Narrow-range endemic black bass such as Shoal Bass M. cataractae, 

Guadalupe Bass M. treculii, and Suwannee Bass M. notius are restricted in their native 

distributions and may not be as tolerant to environmental changes (Birdsong et al. 2015; Shaw 

2015). Despite their popularity and ecological importance, riverine black basses remain 

understudied compared to reservoir populations. 

There are numerous threats to the persistence of riverine black bass populations. Habitat 

fragmentation and destruction appear to be primary threats for many populations. For example, 11 

dams on the Chattahoochee River in Georgia appear to block Shoal Bass dispersal (Birdsong et al. 

2015; Dakin et al. 2015; Taylor et al. 2018b), and similar fragmentation exists in the ranges of 

other narrow-range endemics including Neosho Bass M. velox (Brewer and Long 2015; Taylor et 

al. 2018a) and Bartram’s Bass M. cf coosae (Peoples et al. 2021). Additionally, the Redeye Bass 

complex is negatively associated with landscape disturbance (Bartram’s Bass, Peoples et al. 2021; 
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Warrior Bass M. warriorensis, Young 2022). The introduction of non-native congeners further 

threatens black bass populations through hybridization (Littrell et al. 2007; Alvarez et al. 2015; 

Koppelman 2015; Lewis et al. 2021; Judson et al. 2021) and competition (Sammons 2012). 

Hybridization results in the loss of genetically distinct populations, less-fit hybrid populations, and 

local extirpation (Rhymer and Simberloff 1996; Sinnatamby et al. 2020). Due to a combination of 

threats, some black bass populations have already been extirpated from portions of their range 

(e.g., Shoal Bass, Stormer and Maceina 2009; Sammons and Earley 2015; Bartram’s Bass, Judson 

et al. 2021). Lastly, growing water demand for cities and agriculture has reduced aquifer levels 

across the country (Foster and Chilton 2003; Rugel et al. 2012; Haacker et al. 2016) which may 

also affect riverine black bass populations. For instance, higher abundance and growth potential 

of Smallmouth Bass was found in streams with higher groundwater input (Whitledge et al. 2006; 

Brewer 2013; Middaugh et al. 2018). Such a myriad of threats prompts the need for a better 

understanding of reproductive strategies and hatching dynamics so that populations can be better 

managed. 

Populations of riverine Shoal Bass and Largemouth Bass in the Apalachicola-Chattahoochee-

Flint (ACF) Basin  in the southeast U.S. are of special interest to both scientists and managers, yet 

we lack information on many aspects of their life histories. Shoal Bass is endemic to this basin but 

was only recognized as a species in the late 1990s (Williams and Burgess 1999). Shoal Bass is 

commonly associated with swift-water shoal areas and rarely found in lentic conditions (Wheeler 

and Allen 2003; Goclowski et al. 2013; Bitz et al. 2015). Movements of up to 200 km have been 

observed in un-impounded portions of its range, indicating that a mosaic of riverine habitats may 

be used (Goclowski et al. 2013; Sammons 2015). However, little is known about relationships 

between abiotic conditions and its life history (Bitz et al. 2015; Woodside et al. 2015; Sammons 
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et al. 2021). Shoal Bass is popular among anglers due to their aggressive fight, picturesque habitats, 

and limited distribution (i.e., destination species; Sammons et al. 2015). Two major threats to the 

persistence of this species include habitat fragmentation (Stormer and Maceina 2009; Dakin et al. 

2015) and hybridization with the invasive Spotted Bass and Alabama Bass M. henshalli (Alvarez 

et al. 2015; Tringali et al. 2015). Contrastingly, Largemouth Bass populations appear to be 

relatively stable within the ACF basin. Largemouth Bass are found in both lotic and lentic 

environments (Waters and Noble 2004; Bonvechio and Allen 2005), but research on reproductive 

and early life history in riverine ecosystems is also lacking (but see Nack et al. 1993; Raibley et 

al. 1997b; Wheeler and Allen 2003; Sammons et al. 2021). Information on how environmental 

conditions relate to seasonal movements, hatch success, and growth of juveniles will allow for the 

development of more informed management actions for these species.  

Correspondingly, the goal of my thesis is to advance our understanding of riverine Shoal Bass 

and Largemouth Bass spawning and early life ecology, thereby informing the conservation and 

management of these species. Specifically, my first objective is to determine the seasonal 

movement patterns by adult Shoal Bass and Largemouth Bass in the lower Flint River. 

Understanding black bass movement can inform relevant management actions such as protecting 

river corridors and habitats that are important for fulfilling important life-history needs, 

particularly spawning. However, an understanding of reproductive dynamics is incomplete without 

considering what environmental factors are related to recruitment success. Thus, my second 

objective is to assess the environmental factors related to hatch date and daily growth of age-0 

Shoal Bass and Largemouth Bass. Investigation of these dynamics in a partially regulated system 

like the lower Flint River catchment (LFRC) will provide managers with a better understanding of 

how riverine black bass species persist across a riverscape and what may threaten this persistence 
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in the future. More specifically, these data will aid in the identification of important spawning 

locations, habitats, and the environmental factors conducive to successful hatching and survival of 

young-of-year fish.   

Study Area 

My study was conducted in the LFRC, within the Dougherty Plain and Fall Line Hills 

physiographic districts of Georgia (Figure 1). The Flint River begins in the Piedmont Province of 

Georgia and flows approximately 560 km south until it meets the Chattahoochee River to form the 

Apalachicola River at the GA-FL border (Couch et al. 1996). This confluence is impounded by 

Jim Woodruff Lock and Dam (JWLD), which forms Lake Seminole. The LFRC drains more than 

21,900 km2, receives about 132 cm of annual precipitation, and is characterized by a warm and 

humid, temperate climate (Couch et al. 1996; Rugel et al. 2012). Streams in the Fall Line Hills 

begin as seeps and springs emanating from the Claiborne aquifer and are dominated by sand or silt 

substrates with meandering channels and wide floodplains (Golladay and Battle 2002). The 

Dougherty Plain is dominated by mantled karst topography with the Flint River and its tributaries 

flowing through exposed portions of Ocala Limestone lithology (Bacchus 2000; Opsahl et al. 

2007). Streams in the LFRC are directly connected to the Upper Floridan Aquifer (UFA) with 

groundwater providing baseflows to many streams during times of low precipitation (Opsahl et al. 

2007). Stream channels throughout the basin are characterized by limestone shoals and bluffs, 

sandbars, and abundant woody debris. 

The LFRC is highly altered via land use and water allocations. Row-crop agriculture and 

pasture lands comprise more than 50% of land use and consumes approximately 5 million m3 of 

water daily from regional aquifers and surface waters (Hook et al. 2005; Rugel et al. 2019). 

Remaining land use in the catchment consists of pine plantation, deciduous forest, and 
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geographically isolated wetlands. Two run-of-the-river reservoirs (Lake Blackshear and Lake 

Chehaw) lie along the lower Flint River formed by hydropower dams that produce hydropeaking 

flows (Couch et al. 1996) and along with JWLD have transformed 96 km of riverine habitat into 

more lentic conditions. The Flint River has been further altered by a 1-m low-water navigation 

channel from Albany to Bainbridge, Georgia, created in the late 1800s by the U.S. Army Corps of 

Engineers to facilitate commercial boat traffic on the river (Thurston 1973). This resulted in the 

loss of large portions of continuous shoal habitat, increased current velocities, and less areas of 

refugia. 
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Chapter I Figure 

 

 

Figure 1. The lower Flint River catchment from Lake Blackshear to Lake Seminole within the 

Fall Line Hills (green) and Dougherty Plain (tan) ecoregions. The black triangles are U.S. 

Geological Survey stream gauges used in this study to obtain daily discharge data (from 

upstream to downstream by stream): Muckalee Creek: 02351500, 02351890, Kinchafoonee 

Creek: 02350600, 02350900, Chickasawhatchee Creek: 02354350, 02354500 Ichawaynochaway 

Creek: 02353265, 02353500, 02354800, 02355350, Flint River: 02350512, 02352500, 

02353000, 02355662 
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Chapter II 

Seasonal Movement Dynamics of Adult Shoal Bass and Largemouth Bass 

Introduction 

Fish movements allow populations to maintain genetic integrity, exploit or colonize 

environments, and meet their basic life needs. Movement can play an important role in 

reproductive strategies by enabling fish to be selective in spawning habitat and mate choice, 

thereby bolstering fish populations when spawning is successful (Lennox et al. 2019). Different 

portions of fish populations may exhibit divergent movement patterns (i.e., partial migration; 

Jonsson and Jonsson 1993; Chapman et al. 2012), suggesting the presence of both mobile and 

stationary components (Skalski and Gilliam 2000; Rodriguez 2002; Radinger and Wolter 2014). 

For example, both small-bodied fishes like Roach Rutilus rutilus and large salmonids such as Bull 

Trout Salvelinus confluentus can have migratory and resident components of their populations 

(Monnot et al. 2008; Chapman et al. 2011). The make-up of mobile and stationary fish in a 

population may be related to size, age, and the context of their environment (e.g., stream network, 

spatial-temporal variability of habitats; Schlosser 1991). Variation among individuals likely 

fulfills distinct roles within populations, with the mobile segment hypothesized to significantly 

contribute to genetic exchange, colonization, and recolonization (Barthel et al. 2008; Albanese et 

al. 2009; Chapman et al. 2012; Radinger and Wolter 2014). Prairie Chub Macrhybopsis australis, 

for example, are thought to recolonize habitats that cannot be used during droughts but benefit the 

population during wetter periods (Wedgeworth et al. 2022). Regardless of magnitude, movements 

enable fish to use diverse environments to meet their life-history needs (i.e., feeding, reproduction) 

and avoid physiological stress (Schlosser 1991). Annual movement cycles are often influenced by 

environmental cues such as temperature, photoperiod, discharge, and shifts in resource availability 
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(Bunn and Arthington 2002; Taylor and Cooke 2012). Therefore, disruption of these cues and 

habitats (e.g., natural flow regime; Poff et al. 1997) can lead to declines in lotic fish populations 

(Poff and Zimmerman 2010; Nagrodski et al. 2012). 

Altering river habitats via damming can have significant consequences on fish populations 

including preventing successful migrations, but also altering downriver habitats. Disrupting 

connectivity of river ecosystems can negatively affect fish populations. Globally, artificial barriers, 

overexploitation, and pollution, are estimated to have decreased the abundance of freshwater 

migratory fishes by 76% between 1970 and 2016 (Deinet et al. 2020). Economically and culturally 

important fish populations like Pacific salmon Oncorhynchus spp. and sturgeon Acipenseridae 

spp. have declined, in part due to disconnection from their natal spawning grounds (Williot et al. 

2002; Gustafson et al. 2007). Regulating flow regimes can disrupt thermal and discharge cues 

(Poff et al. 1997; Caissie 2006; Fullerton et al. 2010) and physically alter important stream fish 

habitats (e.g., sedimentation, channelization; Bunn and Arthington 2002; Poff and Zimmerman 

2010). These alterations may force fish to seek alternative spawning destinations or, in some cases, 

result in reproductive failure (Poff and Zimmerman 2010; Ding et al. 2023). Identifying external 

cues associated with fish movement is thus important for mitigating the effects of human alteration 

to river corridors (Capra et al. 2017; Lennox et al. 2019). 

North American black basses Micropterus spp. are both ecologically and economically 

important freshwater fishes, but our understanding of movement and reproductive ecology is 

limited for narrow-range endemics. There are 19 extant species of black bass in North America, 

with 12 species being restricted to relatively small ranges in the southeast United States (Kim et 

al. 2022). Functioning as top predators in their ecosystems, black basses' aggressive predatory 

behaviors also render them popular targets for recreational anglers in both reservoirs and streams 
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(Long et al. 2015). On an annual basis, it is estimated that approximately 9.6 million black bass 

anglers generate nearly $30 billion dollars in economic activity in the United States (USDOI et al. 

2016). Black bass angling in 10 major Texas rivers was estimated to contribute $71.5 million in 

annual economic benefits (Thomas et al. 2015). In contrast, reservoirs garner more support with 

single reservoirs contributing between $9-46.7 million annually (Chen et al. 2003; Driscoll and 

Myers 2014). However, the ease of access and high popularity of reservoirs have skewed research 

efforts towards lentic populations for some species. Largemouth Bass M. salmoides movements, 

for example, have been studied in numerous reservoir and lake ecosystems (e.g., Mesing and 

Wicker 1986; Ridgway 2002; Slipke and Maceina 2007; Hanson et al. 2007; Hunter and Maceina 

2008; Carter et al. 2012) but information on movements in riverine systems is lacking (but see 

Nack et al. 1993; Raibley et al. 1997a; Wallace and Hartman 2006; Goclowski et al. 2013). Recent 

studies on riverine black bass movement and reproduction have revealed marked plasticity in the 

magnitude and patterns of movement (e.g., Guadalupe Bass M. treculli, Perkin et al. 2010, 

Smallmouth Bass M. dolomieu, Schall et al. 2019; Neosho Bass M. velox, Miller and Brewer 2022, 

Suwannee Bass M. notius, Yeager et al. 2023). Riverine populations of black bass may exhibit 

potamodromous behavior (Barthel et al. 2008; Bitz et al. 2015; Sammons 2015; Cottrell 2018), but 

our understanding of the frequency and drivers of this behavior across species and populations is 

lacking. Differences in movement magnitudes likely reflect varying resource availability and 

requirements among catchments and populations (Turner et al. 1995; Northcote 1997). 

My study objective was to determine the seasonal movement dynamics of adult Shoal Bass 

M. cataractae and Largemouth Bass in the lower Flint River. Shoal Bass is a narrow range black 

bass that coexists with the more widespread Largemouth Bass in the Apalachicola-Chattahoochee-

Flint (ACF) basin making this system ideal for examining black bass movement dynamics. Large-
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scale movements (e.g.,  200 km) related to spawning have been indicated in some Shoal Bass 

populations (Ingram et al. 2013; Sammons 2015), but factors related to timing, frequency, and 

cues are poorly understood. Conversely, Largemouth Bass is often perceived as relatively 

sedentary in lentic settings (Minns 1995; Sammons et al. 2003; Wallace and Hartman 2006), but 

the species is understudied in riverine ecosystems (Moody 1960; Nack et al. 1993). Adding to our 

knowledge of lotic black bass movements will help us define key habitats (e.g., spawning), identify 

movement corridors, and better understand environmental cues and the relationship between river 

regulation and the management of riverine black bass (Birdsong et al. 2015). This is especially 

timely given local extirpations (Stormer and Maceina 2009; Birdsong et al. 2015; Bangs et al. 

2018), extensive hybridization (Littrell et al. 2007; Alvarez et al. 2015; Koppelman 2015; Bangs 

et al. 2018; Lewis et al. 2021), habitat loss (Hurst et al. 1975; Perkin et al. 2010; Taylor et al. 

2019), competition with invasive species (Pine et al. 2007; Sammons 2012; Sammons et al. 2023) 

and other threats facing our black bass populations.  

Methods  

Study Area 

My study was conducted on the springfed lower Flint River, Georgia within the karstic 

Dougherty Plain physiographic district (see also Chapter 1). It is characterized by a stable, deeply 

incised channel constrained by steep sandy banks and limestone outcrops with rocky islands 

interspersed (Mueller 1990). Substrates include silt, sand, cobble, boulders, and bedrock (Kaeser 

et al. 2013). I tracked radio tagged fish in the 112 -km section of the Flint River between Albany 

Dam at Lake Chehaw (RKM 164) and Lake Seminole (RKM 52; Figure 1). Jim Woodruff Lock 

and Dam at the terminus of Lake Seminole was located at RKM 0. A 1-m low-water navigation 

channel was excavated in the 19th century (Thurston 1973).  Dredge spoils from these operations 
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created numerous man-made islands and added to existing natural islands. Both channel form and 

hydrological conditions have been further altered due to hydropeaking flows from Albany Dam 

(Couch et al. 1996). 

Fish Sampling and Tracking  

In cooperation with Georgia Department of Natural Resources (GADNR), I collected and 

tagged 30 adult Largemouth Bass and 30 adult Shoal Bass during February and March 2022. My 

five tagging locations were in the 95-km reach of the Flint River between Lake Chehaw Dam 

(RKM 164) and the Mitchell-Decatur County Line Boat Ramp (RKM 69; Figure 1). We boat 

electrofished for adult basses using a 40-amp Midwest Lakes Electrofishing Systems shocking unit 

(Polo, Michigan) powered by a 6,500-watt generator. We used standard American Fisheries 

Society electrofishing settings based on conductivity and standardized for generator power output 

with initial settings placed at pulsed DC current, 60Hz, 25% duty cycle, and 500 volts; settings 

were adjusted depending on catch success (Guy et al. 2009). I used 14-g Model F1835 radio 

transmitters (Advanced Telemetry Systems, ATS; Isanti, Minnesota) equipped with a 500-d 

battery life expectancy and mortality sensors. Mortality sensors increased the signal rate from 50 

to 100 pulses per second if tags were motionless for at least 24 hours. Fish were measured (total 

length, TL, 1 mm) and weighed (1 g) prior to tagging. Only fish weighing more than 400 g were 

tagged (i.e., transmitter was ≤ 4% of body weight) conforming to the recommended limit of tag 

burden (Brown et al. 1999; Brownscombe et al. 2019). Fish were then anesthetized using 

electroanesthesia following Jennings and Looney (1998). Briefly, fish were placed on an 

electroanesthesia table that was immersed in water within a plastic container during surgery. 

Electricity safely immobilizes fish and has significantly faster induction and recovery time than 

chemical anesthesia (Kim et al. 2017). Once anesthetized, tags were inserted following Maceina 
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et al. (1999). Briefly, I created a 4-cm incision anterior to the pelvic fin along the ventral body 

cavity, then inserted the tag anteriorly so that the antenna trailed posteriorly out of the incision. I 

closed the incision with 2-3 sutures using Number 2 Prolene monofilament (Ethicon; Raritan, New 

Jersey; Appendix 1). Fish were released as soon as they regained equilibrium, usually within 3 

min. Fish were tagged in groups of 5-10, allowed to recover, and then released within 2 km of the 

collection location. 

Additional tagging of Shoal Bass and Largemouth Bass was completed throughout the 

study using recovered transmitters. Transmitters were recovered from eight Shoal Bass and five 

Largemouth Bass that were harvested by anglers and one Shoal Bass that was killed via boat 

propeller during a separate GADNR sampling event. If recovered transmitters were in good 

condition, then they were cleaned and sterilized and implanted into new fish by GADNR personnel 

following the protocol described above.  

I tracked tagged fish over different intervals depending on the season. Fish were tracked from 

March 2022 to May 2023 beginning 14 days after tag insertion to allow fish to recover from 

surgery (Sammons and Earley 2015). Fish were tracked weekly during the presumed spawning 

season each year (March-May; Johnson 1974; Nack et al. 1993; Bitz et al. 2015; Sammons et al. 

2021) to identify spawning reaches. I tracked fish weekly because I hypothesized greater 

movement during this time. Due to water depth and turbidity, I could not visually confirm 

spawning, but I assumed fish that exhibited relative site fidelity during this time were likely 

spawning (Nack et al. 1993; Goclowski et al. 2013; Bitz et al. 2015; Cottrell 2018; Ingram et al. 

2019) and could be supported by age-0 fish detections (see Chapter 3). During the rest of the study 

(June-August and October-February), I tracked fish biweekly or monthly as black bass are 

typically more sedentary during summer and winter (Smallmouth Bass, Todd and Rabeni 1989; 
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Largemouth Bass, Karchesky and Bennett 2004; Largemouth Bass, Shoal Bass, and Spotted Bass 

M. punctulatus, Goclowski et al. 2013; Alabama Bass M. henshalli and Redeye Bass M. coosae, 

Earley and Sammons 2015).  

Regular tracking was conducted from a boat using an ATS-R2000 receiver and 4-element fixed 

Yagi antenna following the methods of Eiler (2012). Each tracking event took three days and 

covered the area between Albany Dam (RKM 164) and Flint River Heights boat ramp (RKM 52; 

Figure 1). Briefly, I travelled downstream at a steady low speed while the receiver continually 

scanned frequencies. When a signal was detected, I used the directional Yagi antenna to sweep the 

area to determine the direction of strongest signal. I then used the homing method described by 

Koehn et al. (2012) to locate the tagged fish. I gradually reduced receiver gain to determine the 

area of strongest signal strength as I approached fish by boat. The fish location was determined by 

identifying the direction the antenna was pointed when the receiver gain was at the lowest setting 

while the strongest signal was detected. If fish moved due to a fright response, the initial point 

where fish location was determined was recorded. I used a handheld GPS (Garmin GPSMAP 64st) 

to record the position of each fish location on each tracking event. Before tracking, I determined 

the location accuracy of the homing method using dummy transmitters. An assistant hung a 

transmitter from an overhanging limb or tree root on the bank using fishing line (i.e., suspending 

the transmitter in the water column). I had no prior knowledge of the transmitter location. I then 

used the homing method to determine the point of the strongest signal and then measured the 

distance between my determined point and the actual transmitter location with a range finder. I 

repeated this three times at three unknown locations with an accuracy of approximately 15 m.  

Additional surveys were completed outside of my study area to look for any missing tagged 

fish. During February 2023, an aerial tracking survey was completed to search for missing fish. 
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This survey covered the lower Flint River catchment (LFRC) from Lake Blackshear to Jim 

Woodruff Lock and Dam including Lake Chehaw, Ichawaynochaway Creek, Spring Creek, Lake 

Seminole, and the Chattahoochee River up to George W. Andrews Lock and Dam. During April 

2023, Ichawaynochaway Creek (24-km long, located on The Jones Center at Ichauway property) 

was tracked via boat over 2 days to search for missing fish that were last observed near the Flint 

River-Ichawaynochaway Creek confluence. Our search terminated at a breached, 1920s-era power 

dam where fish passage is possible (Ingram et al. 2019), but boat passage is not. I did not observe 

any fish outside of the study area during these additional tracking events. 

Environmental Measurements 

I accessed discharge data (1.0 m3/s; USGS 2023) to relate flow conditions to patterns in 

bass movement (Table 1). Discharge patterns affect fish in many ways, and in combination with 

temperature changes, can cue fish movement (Taylor and Cooke 2012). Floods signal many 

freshwater fish species to move significant distances, particularly to spawn (Gordon et al. 1992; 

Taylor and Cooke 2012). Therefore, I hypothesized that movement in both species would be 

positively related to both mean discharge conditions and rate-of-change (ROC) in discharge 

conditions. I also wanted to examine variability in flows to see how increased variation (i.e., 

hydropeaking) may relate to riverine bass movement. To test these hypotheses, mean daily 

discharge data were obtained from four U.S. Geological Survey (USGS) stream gauges that span 

the study extent: Albany, Georgia (gauge 02352500), Newton, Georgia (gauge 02353000), and 

Hopeful, Georgia (gauge 02355662) (Figure 1). During the study period, pairwise correlations 

between mean daily discharge values for these gages were >0.93. Therefore, I averaged discharge 

data across stream gauges to calculate mean daily discharge, the coefficient-of-variation (CV; 



 

23 
 

mean/standard deviation) of instantaneous values (15-minute intervals) of discharge, and the ROC 

in discharge between fish relocations to relate to fish movements.  

I also collected water temperature data (0.1C) to relate thermal conditions to the timing 

and magnitude of fish movement (Table 1). Temperature cues fish to move to habitats that are 

more thermally suitable for their metabolic needs during a given stage of their life history, 

particularly reproduction (Shuter et al. 1980; Graham and Orth 1986; Peterson and Rabeni 1996; 

Northcote 1997). I hypothesized that both Shoal Bass and Largemouth Bass movement would have 

a quadratic relationship with water temperature, with higher movement rates occurring during 

periods of intermediate water temperatures (i.e., spring). Similarly, I also hypothesized that higher 

rates of movement would occur during periods of rising water temperature. To examine these 

hypotheses, water temperature was recorded at three locations throughout the study area. I used 

temperature data from the stream gauge located at RKM 43 in Bainbridge, Georgia (gauge 

02356000), the National Ecological Observatory Network’s (NEON) buoy-mounted sensor station 

(NEON Station: FLNT; Precision Measurement Engineering Inc. – T-Chain RS 232/485) located 

at RKM 86.5, and a continuous temperature logger (Onset Hobo MX2201, Bourne, Massachusetts) 

located at RKM 159 (0.1 °C; Figure 1). My temperature logger was attached to the inside of a 

cinderblock in a well-mixed and shaded area of river. Gaps in temperature logger data due to 

battery failure were estimated using least-squares regression with mean daily temperature values 

from the downstream USGS stream gage located in Bainbridge (gauge 02356000; R2 = 0.99). I 

averaged temperature data across these locations to calculate mean daily water temperature, CV 

of daily water temperature, and ROC in water temperature between fish relocations for comparison 

with fish movements.  
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I used my water temperature data to define my seasons. I used water temperature because 

temperature changes are variable between years (i.e., seasonal conditions may begin on different 

dates each year; Langan et al. 2001). Temperature can also be measured in any stream and similarly 

applied to compare this study to other black bass populations (Todd and Rabeni 1989). I defined 

the spring season as a period of increasing water temperatures. During this season, my water 

temperatures increased relatively quickly ranging 15-25 ℃.  I defined summer as a period of 

prolonged higher water temperatures over 25 ℃. Lastly, I defined autumn as a time period when 

water temperatures decline appreciably. In the Flint River, water temperatures ranged 25-15 ℃ 

during autumn. Winter was the coldest period when water temperatures were less than 15 ℃. Todd 

and Rabeni (1989) indicated these cold-water temperatures were associated with much lower 

movements by Smallmouth Bass in Missouri rivers. Based on mean-daily water temperature, I 

determined that categorical seasons began on the following dates: Spring- March 1, 2022, and 

February 22, 2023; Summer- May 14, 2022; Autumn- September 29, 2022; Winter- December 18, 

2022. 

Fish Home Range and Movement 

I inputted the tagged fish detections in geospatial software to calculate home ranges and 

movements. All geospatial methods were completed in ArcGIS Pro 3.3.1 (ESRI, Redlands, 

California 2024). First, I converted NHDFlowline stream data (National Hydrography Database 

plus V2- NHD+; USGS 2017) for the lower Flint River into a route. Then, I plotted observed fish 

locations collected in the field via GPS on top of this route. I used the “Locate Features Along 

Routes” tool to measure the distance from Jim Woodruff Lock and Dam (RKM 0) to each fish 

location (1 m). Locations with associated RKM values were then used to calculate home ranges 

and movement rates.  
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For each individual fish, I characterized both linear home range (LHR) and kernel density 

estimates. Linear home ranges were considered the entire stream area where an individual was 

observed. LHR was calculated as the distance between a fish’s most upstream and most 

downstream relocation points (Vokoun 2003; Vokoun and Rabeni 2005a; Gilroy et al. 2010). 

These LHRs were then examined within each species to determine if heterogenous movement 

patterns were present (Radinger and Wolter 2014; Yeager et al. 2023). I tested movement 

heterogeneity by examining the distribution and kurtosis of LHRs within each species using the 

kurtosis() function in the “moments” package (Komsta and Novomestky 2022) in the statistical 

software R (v4.3.2, R Core Team 2023). If the kurtosis of the LHR distribution was > 3 (i.e., 

leptokurtic), the sample was characterized as exhibiting heterogenous movement patterns (Fiori 

and Zenga 2009; Yeager et al. 2023). If LHR distribution was found to be leptokurtic within a 

species, individual fish were labelled as ‘mobile’ if that individual’s LHR was greater than the 

mean LHR summed with one standard error of the mean, otherwise they were classified as 

‘stationary’ (Yeager et al. 2023). For individual fish, I then calculated both 50% and 90% kernel 

home ranges. Kernel density estimates were based on use distributions calculated from the set of 

relocation points for each individual (Van Winkle 1975; Seaman and Powell 1996). These 

estimates are commonly used to define areas of use for individuals or populations and can be 

adjusted to delimit areas that have a higher probability of use (e.g., a 50% KDE predicts where an 

individual spent 50% of its time) or excludes portions of the LHR that may consist of outlier 

movements (e.g., outside of the 90% KDE; Seaman et al. 1999; Vokoun 2003). For these estimates, 

I followed procedures of Vokoun (2003) by creating kernel home range estimates of LHR (m) 

rather than area. With the statistical software R, I used the density() function to calculate both 50% 

and 90% kernel home ranges (m) per individual. Since time intervals between relocations varied 
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by season, I weighted relocations: spring = 0.15, summer = 0.25, autumn = 0.25, winter = 0.35. 

This corresponded to weekly tracking occurring during spring, biweekly tracking occurring during 

summer and autumn, and monthly tracking occurring during winter. Then weights were 

normalized per fish so that the sum of weights for all relocations for that fish equaled one. This 

allowed for more accurate estimates of time (%) spent in each portion of their home range.  

I quantified movement rates of Shoal Bass and Largemouth Bass between detections. The 

RKM value of each fish’s location was subtracted by the prior location’s RKM value to determine 

distance moved (m). This was the minimum displacement of each fish because fish likely moved 

more than detected between discrete relocations. The absolute value of this distance was divided 

by the number of days between relocations to obtain movement rate (m/d; Wilkerson and Fisher 

1997). Movement was analyzed as movement rates to account for uneven time intervals between 

relocations (Wilkerson and Fisher 1997; Goclowski et al. 2013). A small constant of 1 m/day was 

added to all movements to account for zero values in the data set. I also assumed it was unlikely 

that a fish did not move at all between relocations. Movement rates were then used as my response 

variable in subsequent statistical analyses. Any individual fish that had less than two relocations 

(i.e., no recorded movements) were not included in movement analyses (n = 2).  

Statistical Analyses 

Prior to my movement analyses, I made necessary variable calculations, transformations, 

and standardizations to predictor variables to meet the basic assumptions of linear regression. For 

each fish movement, I converted the final date of that movement to the day of the study (DOS, 

e.g., March 1st 2022 = Day 1, March 1st 2023 = Day 366) to account for time and season. In addition 

to DOS, I included the continuous covariates mean daily water temperature, the CV of mean daily 

water temperature, the ROC in mean daily water temperature, mean discharge, CV of discharge, 
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and the ROC in discharge. All flow and temperature variables were calculated over the time 

interval between fish relocations (i.e., during the movement). I log-transformed mean discharge 

and CV of discharge to account for skewness. Prior to model building and following 

transformations, I tested for multicollinearity among independent variables using Pearson’s 

correlation coefficient and only retained variables in the models with r < 0.6 (Roever et al. 2014). 

Mean daily water temperature and CV of water temperature were multicollinear (|r| = 0.62; Table 

2); therefore, I only retained mean daily water temperature. Retained continuous covariates were 

standardized to a mean of 0 and a standard deviation of 1 to aid in model interpretation and 

convergence (McCune et al. 2002). All analyses were conducted in R version 4.3.2 (R Core Team 

2023).  

I used generalized additive mixed models (GAMMs) and a model selection approach to 

assess both linear and non-linear relationships between bass daily movement rate (m/d) and 

selected covariates. Candidate model sets were investigated separately by species to investigate 

species-specific relationships with covariates. For each species, I built 13 a priori GAMMS based 

on my hypothesized relationships between covariates (additive and interactions) and movement 

rates (Table 3). I fit GAMMs using the mgcv package in R (Wood 2023) including smooth thin-

plate regression splines for continuous covariates and a restricted-maximum likelihood (REML) 

procedure (Mollenhauer et al. 2013; Wood 2017; Schall et al. 2019). I evaluated the strength of 

non-linear relationships for smoothed continuous covariates using the effective degrees of freedom 

(EDF). An EDF equal to one is a linear relationship whereas an EDF greater than one implies a 

non-linear relationship (Hunsicker et al. 2016; Wood 2017). Fixed effects considered in my 

candidate models included the continuous covariates listed above and the categorical effect of sex. 

I included individual fish as a random effect to account for unequal sampling of individuals (e.g., 
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unequal number of locations between individuals) and autocorrelation among locations (Wilkerson 

and Fisher 1997; Otis and White 1999; Wagner et al. 2006). I assumed random effects were 

normally distributed as N(0,2), where 2 represents the variance among individual fish (Gillies et 

al. 2006; Miller and Brewer 2022). The GAMM models built for each species can be expressed 

as:  

𝑌𝑖,𝑗  =   𝑓1(𝑋 1,𝑖𝑗) +  𝑓2(𝑋 2,𝑖𝑗) +  … + 𝑓𝑛(𝑋 𝑛,𝑖𝑗) + 𝑍𝑖,𝑗𝑏 + 𝜖𝑖,𝑗  

where Yij is the daily movement rate at relocation i for fish j, X1 through XN represent the values 

of the n covariates for that observation. The functions 𝑓1 to 𝑓𝑛 represent the relationships between 

each covariate and the response variable (i.e., either linear or non-linear). The term Zi,j  is a matrix 

that specifies the random effects design for each observation, b is a vector of random effects 

coefficients, and 𝜖𝑖,𝑗 represents the error term for each observation. For each species, I ranked 

candidate model sets using Akaike’s information criteria adjusted for small sample size (AICc; 

Hurvich and Tsai 1991) and by assessing residual plots (Wood 2017; Schall et al. 2019). I ranked 

my models based on ΔAICc values (i.e., difference between top ranked model and model at hand; 

Burnham and Anderson 2002).  All models with ΔAICc< 2 were considered to have equal empirical 

support (i.e., competitor for drawing inference) if they contained the same number of or fewer 

parameters than the top model to avoid unnecessary model complexity and reduce the inclusion of 

uninformative parameters (Burnham and Anderson 2002; DeVries et al. 2008; Arnold 2010; Miller 

and Brewer 2022). I also reported deviance explained (%) for each considered model as the 

proportion of deviance (variance) in residuals that is explained by fixed and random effects (i.e., 

equivalent to unadjusted R2 in linear regression; Guisan and Zimmermann 2000; Guisan et al. 

2002). 
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Before building a candidate set of models, I evaluated the assumption of temporal 

independence of residuals for each species with preliminary models. I compared a baseline model 

with only the covariate DOS to a model that explicitly models temporal autocorrelation (Table 3; 

Zuur et al. 2009; Mollenhauer et al. 2013). Temporal independence was assumed if the simpler 

model was preferred over the model with an autocorrelated error structure (based on AICc) and if 

true, no correlation structure was carried forward in other competing models. I expected that 

movements would primarily be associated with season, due to seasonal spawning and 

overwintering movements being observed in many species of black bass (Todd and Rabeni 1989; 

Goclowski et al. 2013; Bitz et al. 2015; Schall et al. 2019; Miller and Brewer 2022), therefore the 

effect of DOS was also included in all other subsequent models.  

Subsequent hypotheses evaluated whether movement would primarily be predicted by the 

additive relationship of DOS with all other covariates, or by interactions between covariates (Table 

3). I hypothesized that movement was positively related to mean discharge conditions due to fish 

commonly being cued by higher flows (Taylor and Cooke 2012; Mollenhauer et al. 2013). I 

hypothesized that movement would be quadratically related to mean water temperature, because 

movement of other black basses tends to be highest during spring water temperatures and then 

decreases (Graham and Orth 1986; Todd and Rabeni 1989; Peterson and Rabeni 1996; Northcote 

1997). I also wanted to investigate how discharge variability was related to movement as fish 

behavior can be related to rapid changes in flow conditions downstream of dams (Bunt et al. 1999; 

Young et al. 2011). My next models were built to assess whether rates of change in water 

temperature and discharge patterns, rather than the averages of these conditions, may cue bass to 

move more (Olden and Poff 2003; Mollenhauer et al. 2013; Marshall et al. 2016). My last additive 

model was based on the hypothesis that sex may have a strong relationship with movement, 
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specifically with females of both species having significantly higher movement rates than males 

(Jonsson and Jonsson 1993; Waters and Noble 2004; Ingram et al. 2019). My final models tested 

interactions between flow, temperature, and sex covariates and DOS. Thus, I hypothesized that 

higher movements associated with these conditions only occurred at certain times of year.  

Results 

Fish Sampling and Tracking 

We attempted to maintain an even distribution of size, sex, and species of tagged fish 

throughout the study (Table 4). Shoal Bass tagged in spring 2022 had a mean TL of 464 mm (SD: 

53.34, range: 369 – 541 mm), and a mean weight of 1452.71 g (SD: 523.62, range: 634 -2536 g). 

Largemouth Bass tagged were slightly larger, on average, with a mean TL of 467.33 mm (SD: 

77.62, range: 326 – 595 mm), and a mean weight of 1696.73 g (SD: 88.55, range: 474 – 3570 g). 

Over the duration of the study, 14 fish were either reported harvested or fatally wounded (n = 9 

Shoal Bass, n = 5 Largemouth Bass), 13 transmitters were recovered from these fish, and I used 

12 of these transmitters to tag new fish (n = 6 Shoal Bass, n = 6 Largemouth Bass). Over the 15-

month study, I completed 33 tracking events and logged 1450 locations of 72 tagged fishes. I 

collected n = 765 individual locations of 37 Shoal Bass (16 female, 21 male) and n = 685 individual 

locations from 35 Largemouth Bass (23 female, 12 male). No mortalities were detected via 

mortality signal or otherwise assumed via limited movement between relocations. Eight 

Largemouth Bass and four Shoal Bass had an unknown fate at the end of the study (i.e., no longer 

detected).  

Environmental Conditions 

Temperature and discharge conditions during the study period generally conformed to 

typical seasonal patterns of the region (Schoonover et al. 2006; Golladay et al. 2007; Figure 2; 
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Table 5). High flows occurred during spring both years and baseflow conditions occurred during 

the summer into autumn. Daily flow variability increased from late spring through autumn during 

baseflow conditions due to hydropeaking from Albany Dam (Figure 2). Average daily discharge 

throughout the study was 166.91 m3/s (SD: 127.94, range: 46.44 – 642.08 m3/s; Table 5). Water 

temperatures were highest in July and lowest in January. In late February and early March 2023, 

water temperatures were unusually high (20.7°C) but subsequently declined before the end of 

March (Figure 2). Mean daily-water temperature was 21.21°C (SD: 5.69, range: 8.54 – 30.82°C; 

Table 5).  

Fish Home Ranges 

Home ranges were variable among and within species, reflecting heterogenous movement 

patterns of my tagged fishes. Average LHRs for Shoal Bass and Largemouth Bass were 20.25 

RKM (SD: 26.14, range: 0.009 – 92.1 RKM) and 12.35 RKM (SD: 21.99, range: 61.59 – 90.86 

RKM), respectively (Table 6). The distributions of the dispersal kernels for both species were 

found to be leptokurtic (kurtosis = 3.35 (SHB) and 7.49 (LMB)) indicating heterogenous 

movement patterns by the tagged fishes. Therefore, individual fish were identified as either mobile 

or stationary if their LHR was greater than one SE above the species mean LHR (SE of SHB: 4.36, 

SE of LMB: 3.7). This resulted in 28% of Shoal Bass being classified as mobile (10 out of 36 

individuals) and 21% of Largemouth Bass classified as mobile (7 out of 34 individuals). Shoal 

Bass had larger KDEs than Largemouth Bass (Table 6) however, on average, mobile Largemouth 

Bass had larger core home ranges (50% KDE) than mobile Shoal Bass.  

Both species demonstrated interesting spatial patterns where particular locations were used 

by multiple tagged fish during certain seasons. During the spring of both years, several tagged 

Shoal Bass and Largemouth Bass aggregated at Albany Dam (RKM 164) and near the shoal 
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complexes known as Goat Island (RKM 145) and Hell’s Gate (RKM 79; Figures 3 and 4). These 

aggregations were denser (i.e., number of fish in an area) for Shoal Bass than Largemouth Bass. 

Only one fish (female Shoal Bass, Tag #482) was located near the river-reservoir interface at the 

downstream end of the study site (Figure 5), and it was not located thereafter. Lastly, there was a 

reach located RKM 120-135 where fish traversed during movements, but no tagged fish was 

located there during consecutive tracking events (Figures 3-6).  

Fish Movement  

Both species exhibited movement variability with some tagged fish making extensive movements 

but not others. Shoal Bass movement rates (mean: 250 m/d, SD: 1103, CV: 440, range: 1-15,614 

m/d) tended to be greater, on average, but also more variable than for Largemouth Bass (mean: 

193 m/d, SD: 690, CV: 356, range: 1-8981 m/d; Table 7). Both species made movements > 70 km 

between consecutive locations. Moreover, many of the same fish exhibited large movements on 

multiple occasions (Figures 5 and 6). The maximum movement rates for Shoal Bass and 

Largemouth Bass were 15.61 km/d and 8.98 km/d, respectively.  

Preliminary modeling related to movement of both species indicated that an autocorrelated 

error structure was not necessary. For my Shoal Bass models, the simpler model (AICc = 3446.1, 

log-likelihood = -1718.01, df = 5) was therefore chosen rather than the model with an 

autocorrelation structure (AICc = 3479.3, log-likelihood = -1732.56, df = 7). Likewise, my 

Largemouth Bass models showed a similar relationship (no autocorrelation structure: AICc = 

2757.5, log-likelihood = -1373.71, df = 5; autocorrelation structure included: AICc = 2778.5, log-

likelihood = -1382.16, df = 7). All subsequent models did not have an autocorrelated error 

structure.  
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 The top-ranked Shoal Bass movement model contained an interaction between DOS and 

fish sex (Tables 8 and 9). This model explained 30.2% of deviance in my data. The other models 

considered were > 2 ΔAICc from my top model indicating they had less support (Table 3). Both 

sexes of Shoal Bass moved more in the spring (i.e., presumed spawning season) than the rest of 

the year; however, females moved more in the spring compared to the males (Figure 7). Shoal 

Bass moved during the spring, on average, 380 m/d (SD: 1343), with females moving an average 

of 525 m/d (SD: 1622, range: 1 -15,614 m/d). Alternatively, males moved an average of 260 m/d 

(SD: 1050, range: 1-7715 m/d) during the spring. Both sexes were least active during the autumn, 

moving an average of 14 m/d (SD: 23, range: 1-161 m/d).  

My top model related to Largemouth Bass movement rates included the main effects of 

DOS and discharge variability (i.e., CV) (Tables 8 and 9). This model explained 36.1% of the 

deviance in my data. No other models considered had as much support (Table 3). Similar to Shoal 

Bass, Largemouth Bass had higher movement rates in the spring, and lower movement rates during 

the rest of the year (Figure 8). Largemouth Bass movement rates during spring averaged 291 m/d 

(SD: 842, range: 1-8981 m/d). However, movement rates during autumn and early winter (DOS 

~275) were higher than that of Shoal Bass, but less than spring Shoal Bass movements. Average 

Largemouth Bass movements in autumn and winter were 39 m/d (SD: 130, range: 1-1184 m/d) 

and 126 m/d (SD: 252, range: 1-1002 m/d), respectively. Movement rates by Largemouth Bass 

were also negatively related to discharge variability (Figure 8).   

Discussion 

Large movements and home ranges were documented in both Largemouth Bass and Shoal 

Bass. In contrast, other studies observed small home ranges in Largemouth Bass populations (2.36 

km - Mesing and Wicker 1986; 0.2 sq. km - Sammons et al. 2003), with few individuals exhibiting 
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unexplained longer-distance movements (Moody 1960; Nack et al. 1993). I show that Largemouth 

Bass is much more variable in movement behavior, with relatively large spring movements. This 

is an important first step towards understanding how Largemouth Bass successfully persists in 

riverine environments. Similarly, Shoal Bass display varying movement patterns across their 

native range (Stormer and Maceina 2009; Goclowski et al. 2013; Cottrell 2018; Ingram et al. 2019) 

with greater movements in riverine systems that had longer river fragments between 

impoundments (Ingram et al. 2013; Sammons 2015). I add to this growing body of information 

where I observed some individuals moving long distances within the study area over multiple 

years. Variability in movement across studies may be attributed to a myriad of factors including 

food availability, predator competition, habitat quality, flow regime, and human alteration (Turner 

et al. 1995; Northcote 1997; Schoby and Keeley 2011). Thus, in rivers where local habitat 

conditions adequately meet their life-history requirements, there may be little need for extensive 

long-range movements by riverine black bass (e.g., tributaries; Stormer and Maceina 2009; Cottrell 

2018; Ingram et al. 2019). Similar variation in movement dynamics has been noted by other black 

bass populations (e.g., Smallmouth Bass, Todd and Rabeni 1989; Schall et al. 2019; Neosho Bass, 

Miller and Brewer 2022) and in other riverine fishes (e.g., salmonids, Northcote 1997; Schoby and 

Keeley 2011; Mollenhauer et al. 2013), reflecting adaptations to diverse habitats.  

Having mobile and stationary members within a population confers advantages to 

population persistence. The percentages of mobile fish represented in my tagged population of 

Shoal Bass and Largemouth Bass (28% versus 21%, respectively) were slightly lower than in 

Suwannee Bass (34% mobile; Yeager et al. 2023) and across 62 freshwater fish species (34% 

mobile; Radinger and Wolter 2014).  Populations with a lower proportion of mobile fish may take 

longer to respond to habitat change, disperse slower, and have lower genetic diversity compared 
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to populations with more mobile individuals (Gowan et al. 1994; Radinger and Wolter 2014; 

Shelley et al. 2022). Having both mobile and less mobile members of a population can represent 

an important strategy in cases of catastrophic population events (Kokko and López-Sepulcre 2006; 

Albanese et al. 2009; Radinger and Wolter 2014). For example, some minnow species have a 

highly migratory portion of populations that are suspected to aid recolonization of habitats (Chase 

et al. 2015), whereas more stationary individuals may be important for population persistence in 

some areas (Meka et al. 2003). Shoal Bass movements may still exceed those of Largemouth Bass 

to meet their life-history needs, though it is curious why Largemouth Bass would have larger core 

home ranges (i.e., 50% KDE). This could relate to density-dependent factors (Marco-Rius et al. 

2013). It is increasingly apparent that there is variation in movement and home range exhibited by 

these species across their ranges. Thus, examination of the proportion and role of mobile 

individuals (independent of movement magnitude) in other Shoal Bass and Largemouth Bass 

populations would help inform these populations’ potential to recover from natural and human 

disturbance (Radinger and Wolter 2014). Additionally, similar investigation of the mobility 

potential of invasive congeners (e.g., Alabama Bass, Spotted Bass) may aid in the understanding 

of the mechanisms of such invasions (Dakin et al. 2015; Peoples et al. 2021). 

 As hypothesized, larger movements by both species were presumably associated with 

spring spawning. Larger movements in spring than other seasons by Flint River populations mirror 

observations in other black bass populations, and typically coincide with spawning (Goclowski et 

al. 2013; Cottrell 2018; Schall et al. 2019; Miller and Brewer 2022; Yeager et al. 2023). Support 

for spawning during that time is evidenced by movement synchronicity between years and my 

observed timing of age-0 bass hatches (see Chapter 3). Spring movements tend to be associated 

with the search for suitable spawning habitats (e.g., nesting and rearing), which may not fulfill 
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adult foraging and growth needs, necessitating adult movement to other locations (Northcote 1997; 

Lucas et al. 2001). Migrations within freshwater (i.e., potamodromy) are common by a variety of 

fishes (e.g., salmonids, Northcote 1997; Channel Catfish Ictalurus punctatus, Pellett et al. 1998; 

Colorado Pikeminnow Ptychocheilus lucius, Irving and Modde 2000; Paddlefish Polyodon 

spathula, Simcox et al. 2015) including black basses (Barthel et al. 2008; Sammons 2015; Cottrell 

2018; Schall et al. 2019; Miller and Brewer 2022). The spawning season for Largemouth Bass 

appears to occur sooner than spawning for Shoal Bass (see also Chapter 3). Protracted spawning 

by Largemouth Bass (Isely et al. 1987; Goodgame and Miranda 1993; Rogers and Allen 2009) and 

earlier hatch timing compared to Shoal Bass (Sammons et al. 2021) has been previously reported. 

This temporal difference is hypothesized to be related to habitat partitioning and divergent life-

history strategies enabling sympatric species occurrence (Wheeler and Allen 2003; Sammons et 

al. 2021). 

Greater movements by females during the spawning season may be related to 

morphological, energetic, and behavioral differences between the sexes. Interestingly, Shoal Bass 

movement was related to DOS and sex but none of the environmental covariates I measured. This 

sex-related movement disparity was observed on Ichawaynochaway Creek (Ingram et al. 2019) 

and has been observed in several freshwater fish species (salmonids, Lambert and Dodson 1990; 

Northcote 1997; Largemouth Bass, Waters and Noble 2004; Paddlefish, Miller and Scarnecchia 

2011). In my study, adult Shoal Bass females were generally larger than males, a trait commonly 

associated with increased movement due to greater overall fitness (Minns 1995; Mollenhauer et 

al. 2013; Radinger and Wolter 2014; Miller and Brewer 2022). Additionally, females may move 

further in search of optimal feeding habitats to enhance fecundity (e.g., post-spawn), as egg 

production typically increases with body size (Jonsson and Jonsson 1993; Northcote 1997) and is 
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often more energetically costly than sperm production in fishes (Wootton 1985; Hayward and 

Gillooly 2011). Movement magnitude may also relate to the presence (or absence) of males 

(Brown et al. 2019) and choices associated with mate selection (e.g., females being choosier; 

Hanson and Cooke 2009; Franckowiak et al. 2017). A better understanding of Shoal Bass mate 

choice may help elucidate this relationship and could also inform patterns of introgression with 

non-native congeners (e.g., preference for conspecifics versus heterospecifics; Kozak et al. 2009; 

Enriquez et al. 2016). Furthermore, investigating differences in habitat selection between sexes 

during spawning and non-spawning times may help explain these movement behaviors. 

In contrast, discharge variability associated with dam operations was negatively related to 

Largemouth Bass movement. Discharge patterns in the study area are primarily governed by a 

hydropower dam upstream. Operating as a "run-of-the-river" facility (Couch et al. 1996), this dam 

maintains some level of natural flow variability within the study area. However, during the study 

period, CV of discharge was highest during hydropeaking flow releases from Albany Dam rather 

than natural flood pulses. Thus, the negative relationship may be attributed to unnatural flow 

fluctuations, potentially reducing habitat connectivity in some locations (Bradford and Heinonen 

2008). Moreover, flow fluctuations may relate to behavioral changes where bass are seeking local 

refuge rather than moving (Liao 2007; Costa et al. 2018). Deviations from natural flow patterns 

can have negative effects on fish populations (Poff and Allan 1995; Poff and Zimmerman 2010; 

Young et al. 2011). Examination of the behavioral mechanisms associated with this relationship 

would be beneficial to see if growth or survival are affected (Costa et al. 2017). Thus, this 

relationship may be related to Largemouth Bass in the lower Flint River having lower growth rates 

than both Shoal Bass and reservoir Largemouth Bass in the same system (Sammons et al 2019).  
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There is a growing body of literature that demonstrates individual variability within movement 

studies. These phenomena are common in fish movement studies, highlighting the challenge of 

capturing patterns when movements are influenced by many internal (e.g., genetic, physiological, 

homing) and external (e.g., abiotic factors, food availability, territoriality, presence of mates) cues 

(Lucas et al. 2001; Rasmussen and Belk 2017). Under similar generalized additive mixed modeling 

frameworks, there is 13-47% of deviance explained in fish movements related to both 

environmental and individual predictors (Dance and Rooker 2015; Becker et al. 2016; Hughes et 

al. 2022; Pedaccini et al. 2023). Similarly, studies on black bass observe high levels of individual 

variability that may relate factors such as to body condition and/or reproductive status (Barthel et 

al. 2008; Sammons 2015; Schall et al. 2019; Miller and Brewer 2021; Yeager et al. 2023). 

Individual variation in fish movement behaviors is assumed to contribute to population-level 

robustness and adaptability (e.g., gene flow, recolonization, species turnover; Albanese et al. 2009; 

Radinger and Wolter 2014). 

Missing fish from my study may be attributed to angler exploitation, fish leaving the study 

area, or predation.  Anglers harvested 18% of my tagged fish and many others were caught-and-

released by anglers which may affect their movement behavior (Cooke et al. 2002; Halttunen et 

al. 2010). Unreported exploitation may account for the disappearance of several fish from the study 

area that were not located via aerial or tributary surveys. Other possibilities include transmitter 

failure, predation (e.g., alligators, Saalfeld et al. 2011; osprey, eagles, Goclowski et al. 2013; otters 

Roberts et al. 2008) or some fish left the study area and were undetected on the single aerial flight. 

It is interesting that one Shoal Bass was detected in the river-reservoir interface and then not 

detected thereafter suggesting it may have moved downstream out of the study area. Although 

Shoal Bass are considered riverine fishes, a variety of other black bass species can tolerate 
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reservoir conditions (Sammons et al. 1999; Hunter and Maceina 2008; Barthel et al. 2008). Despite 

the high exploitation and some missing tagged fish, I was able to detect a large number of fish, 

thereby limiting significant effects on my study results.  

The majority of my tagged fish appeared to remain in my study area during my 15-month 

study. It is not uncommon for some populations to be observed to stay primarily in mainstem rivers 

or tributaries (e.g., Rainbow Trout Oncorhynchus mykiss, Meka et al. 2003; Flathead Catfish 

Pylodictis olivaris, Vokoun and Rabeni 2005b). For example, Neosho Bass avoided reservoirs or 

river-reservoir interfaces despite connectivity (Miller and Brewer 2022). Likewise, Ingram et al. 

(2019) observed no telemetered Shoal Bass leaving Ichawaynochaway Creek (i.e., entering the 

lower Flint River), although that study also occurred over a 1-year period. These patterns are 

restricted to our observational period which tends to be a few years or less. Genetics studies reveal 

population mixing often occurs (Stepien et al. 2007; Underwood et al. 2016), but the temporal 

scale is much larger than the period over which tracking studies typically occur (Underwood et al. 

2016). A future study addressing population mixing via genetic testing may be beneficial to our 

understanding of how these populations interact (Fontaine et al. 1997; Schall et al. 2017).  

I observed locations where my tagged fish commonly aggregated suggesting they may be 

important to spawning or barriers to upstream movements (or both). Shoal Bass had denser 

aggregations compared to Largemouth Bass, reflecting differences in spawning habitat 

requirements or behaviors (Wheeler and Allen 2003; Bitz et al. 2015; Sammons et al. 2021). 

Individuals of both species congregated below Albany Dam (RKM 164) during the spring seasons 

of both years but were rarely present there during other periods. This observation is supported by 

the high numbers of age-0 bass collected here during this study (see Chapter 3). These observations 

suggests that Albany Dam may be an upstream barrier to movement even though we observed 
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some successful spawning at those locations. Additional areas of heavy spring use by both species 

included the shoal complexes known as Goat Island and Hell’s Gate. These areas are characterized 

by rocky shoals, mid-channel islands, and channel complexity (i.e., areas of current refugia, 

diversity of channel units; Jungwirth et al. 1993; O’Neill and Thorp 2011) and appear similar to 

areas of spawning aggregation in other portions of the Shoal Bass’s range (Goclowski et al. 2013; 

Bitz et al. 2015; Cottrell 2018). However, many other areas within my study area share similar 

characteristics. There is a shoal complex located at RKM 125 which was rarely used by tagged 

fish during my study, except via upstream and downstream movements. However, Ingram et al. 

(2013) documented this location as important for spawning fishes, so such locations may vary over 

time. There may be spatial and temporal variation in black bass spawning habitats within these 

populations. Interannual variation in spawning locations is not uncommon in freshwater fishes 

(e.g., Bluehead chub Nocomis leptocephalus, Bolton et al. 2015; darters Etheostoma spp., Roberts 

and Angermeier 2007; Chinook Salmon Oncorhynchus tshawytscha, Cram et al. 2017) and may 

relate to flow, temperature, and sediment patterns (Beechie and Moir 2008; Flowers et al. 2009; 

Kemp et al. 2011; Qiu et al. 2023), and the behaviors of fish as the presence of spawning partners 

and behaviors cue spawning for many species (Kekäläinen et al. 2011; Brown et al. 2019). 

Moreover, riverine habitat changes over time (Frissell et al. 1986; Ward 1989; Thorp et al. 2006) 

such that habitat that is suitable for spawning may vary. Efforts to understand longer-term patterns 

in spawning success would benefit our ability to conserve Shoal Bass (Humphries et al. 2002; 

Krabbenhoft et al. 2014) given stocking has been used to supplement successful spawning in some 

years (T. Ingram, GADNR, personal communication).  

My results indicate there are several management and conservation possibilities that could be 

considered to improve Largemouth Bass and Shoal Bass and populations. Because I observed 
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successful hatches by Largemouth Bass across the catchment (see Chapter 3), the primary concern 

for the population appears to be exploitation that can be managed through regulations. Shoal Bass 

populations, however, face a myriad of threats. Fish congregating during critical times of the year 

leave these fish vulnerable to exploitation. An ongoing study on the lower Flint River has observed 

high exploitation, especially at the dam during the spawning period (S. Brewer, USGS, personal 

communication). Moreover, aggregation behavior that I and others have observed by endemic 

black basses (Goclowski et al. 2013; Bitz et al. 2015; Cottrell 2018; Miller et al. 2021) suggests 

increased vulnerability to overexploitation at specific locations and times (Erisman et al. 2017). 

Management strategies such as protected areas or closed seasons (i.e., catch-and-release only) 

could mitigate potential angling pressure (Suski et al. 2002; Suski and Cooke 2007; Sammons 

2019), as successfully implemented in other black bass populations (e.g., black bass closed season 

in the Ozark Highlands of Missouri; catch-and-release only areas and times in Pennsylvania). This 

may be especially important to consider for Shoal Bass given agencies have had to stock fish 

during some years to bolster recruitment (T. Ingram, GADNR, personal communication). 

Although it is unlikely that large dam removal is a viable option, examining possible passage 

strategies have been done on several large rivers (Bunt et al. 2012; Simcox et al. 2015) and may 

be an option. Moreover, revisiting dam operations such that hatching success increases is another 

consideration (see Chapter 3). Lastly, maintaining the current structure of shoals for spawning 

seems prudent; consideration for restoring shoals is possible though estimated to be very costly 

(Dobes et al. 2013; Williams 2015; Bakke et al. 2020).  
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Chapter II Tables 

 

Table 1. Environmental covariates that influence black bass movement with their associated units, data source, and ecological 

importance.  

Covariate Unit Gear/Source Justification and citation 

Temperature °C 
Hobo Pendant Logger, NEON buoy,   

U.S. Geological Survey stream gauge 

Temperature changes cue stream fish movement 

for varying life history stages, particularly 

reproduction1,2,3 

Discharge m3/s USGS stream gauge 
Streamflow is correlated with migratory and non-

migratory fish movement4 

Day of year 1 d Calendar day 
Movement by black bass varies seasonally and 

with photoperiod5,6,7,8 

1. (Graham and Orth 1986) 2. (Peterson and Rabeni 1996) 3. (Northcote 1997) 4. (Taylor and Cooke 2012) 5. (Goclowski et al. 2013) 

6. (Ingram et al. 2019) 7. (Todd and Rabeni 1989) 8. (Miller and Brewer 2022) 
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Table 2. Pearson’s Correlation matrix (rho values) for environmental covariates used for movement analysis. 

All covariates were calculated between relocations for each movement value. DOS = day of study, Mean Q = 

mean daily discharge (m3/s), Mean Temp = mean daily temperature (C), CV Q = coefficient of variation in 

instantaneous (15 minute) values of discharge, CV Temp = coefficient of variation in mean daily values of 

temperature, ROC Temp = rate of change in mean daily temperature, ROC Q = rate of change in mean daily 

discharge.  

 

 DOS Mean Q Mean Temp CV Q CV Temp ROC Temp ROC Q 

DOS 1.00       

Mean Q 0.29 1.00      

Mean Temp -0.51 -0.59 1.00     

CV Q 0.01 0.34 -0.21 1.00    

CV Temp 0.16 0.26 -0.62 0.41 1.00   

ROC Temp -0.10 0.22 0.14 0.09 -0.17 1.00  

ROC Q 0.04 -0.04 -0.02 0.11 0.01 -0.29 1.00 
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Table 3. Summary of considered a priori generalized additive mixed models for assessing linear and non-linear 

relationships between Largemouth Bass and Shoal Bass daily movement rate (m/d). All covariates were 

calculated between relocations for each movement value. DOS = day of study, Mean Q = mean daily discharge 

(m3/s), Mean Temp = mean daily temperature (C), CV Q = coefficient of variation in instantaneous (15 

minute) values of discharge, ROC Temp = rate of change in mean daily temperature, ROC Q = rate of change in 

mean daily discharge. Sex = sex of individual fish (categorical where female was the reference). s() denotes 

smoothed terms. The random effect of individual was included in all models. Preliminary models to assess 

temporal autocorrelation are denoted with “*”.  

 

Model Description 

~ s(DOS)* 

~ s(DOS) + corSpher(~DOS|FishID)* 

~ s(DOS )+ s(Mean Q) 

~ s(DOS) + s(Mean T) 

~ s(DOS) + s(CV Q) 

~ s(DOS) + s(ROC T) 

~ s(DOS) + s(ROC Q) 

~ s(DOS) + Sex 

~ s(DOS) x s(Mean Q) 

~ s(DOS) x s(Mean T) 

~ s(DOS) x s(CV Q) 

~ s(DOS) x s(ROC T) 

~ s(DOS) x s(ROC Q) 

~ s(DOY) x Sex 
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Table 4. Summary of tagged fish demographics, tagging dates, and fate of the tagged fish if known. Tag number, sex (Male (M) or 

Female (F)), length (TL, mm), weight (WT, g), tagging date, last date located (or harvested), and number of relocations (N) of adult 

Shoal Bass and Largemouth Bass implanted with radio tags in the lower Flint River are provided. Fate is defined as: Alive = Located 

on final tracking event; Harvested = angler harvest; Lost = fish no longer detected; Fatality = fish was killed via boat propeller during 

a separate DNR sampling event. Tag numbers with letters associated indicate transmitter was used again to tag another fish post-

harvest or mortality.   

 

 Tag Sex TL WT Tag Date Last Date 
Days at 

Large 
N Fate 

Largemouth Bass 11 F 488 1900 2/16/2022 8/4/2022 169 12 Lost 

 43b F 509 1644 3/30/2022 5/10/2023 406 26 Alive 

 52a M 408 976 2/17/2022 7/22/2022 155 12 Harvested 

 52b M 383 718 9/27/2022 12/21/2022 85 5 Lost 

 72 F 421 1190 2/15/2022 5/9/2023 448 33 Alive 

 112 M 434 2074 2/15/2022 5/9/2023 448 32 Alive 

 121 M 410 1016 2/17/2022 12/21/2022 307 15 Lost 

 132 F 590 3570 2/17/2022 5/10/2023 447 28 Alive 

 153 F 516 2534 2/16/2022 5/9/2023 447 28 Alive 

 162 F 540 2450 2/16/2022 5/9/2023 447 30 Alive 

 182 M 395 894 2/16/2022 5/9/2023 447 31 Alive 
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 203b M 427 1158 9/26/2022 12/21/2022 86 5 Lost 

 241 F 554 2818 2/15/2022 5/10/2023 449 29 Alive 

 292 F 399 776 2/16/2022 5/11/2023 449 27 Alive 

 313 F 570 2958 4/6/2022 5/9/2023 398 24 Alive 

 332 M 489 1492 3/30/2022 5/9/2023 405 29 Alive 

 381 F 565 2674 4/6/2022 8/10/2022 126 11 Lost 

 392 F 595 3214 3/30/2022 5/9/2023 405 26 Alive 

 401a M 378 620 3/30/2022 6/13/2022 75 8 Harvested 

 401b M 486 1540 8/8/2022 5/10/2023 275 14 Alive 

 451 M 326 474 3/30/2022 8/2/2022 490 12 Lost 

 460 F 541 2764 4/6/2022 5/5/2022 29 3 Lost 

 471a F 393 758 3/30/2022 5/20/2022 51 5 Harvested 

 471b F 405 992 6/6/2022 8/1/2022 56 3 Harvested 

 471c F 515 2138 8/8/2022 5/10/2023 275 17 Alive 

 492 F 509 1850 3/30/2022 5/9/2023 405 26 Alive 

 503 F 408 970 3/30/2022 4/26/2023 392 24 Alive 

 522 F 471 1880 4/6/2022 5/9/2023 398 28 Alive 

 542 F 551 2286 4/6/2022 4/12/2022 6 1 Lost 

 552 M 443 1140 4/4/2022 6/3/2022 60 6 Harvested 

 562 F 403 992 4/4/2022 5/11/2023 402 27 Alive 

 571 F 514 2128 4/6/2022 5/10/2023 399 27 Alive 
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 582 M 495 1678 3/30/2022 5/10/2023 406 27 Alive 

 591 F 365 654 4/4/2022 5/10/2023 401 27 Alive 

 602 F 340 528 3/30/2022 5/10/2023 406 28 Alive 

Shoal Bass 22 F 506 2028 2/15/2022 5/9/2023 448 27 Alive 

 32 M 524 2032 2/16/2022 5/9/2023 447 33 Alive 

 43a M 453 1446 2/16/2022 3/23/2022 35 1 Harvested 

 63 F 486 1720 2/15/2022 5/9/2023 448 31 Alive 

 82 M 452 1222 2/16/2022 3/30/2023 407 26 Lost 

 91 M 472 1530 2/16/2022 5/10/2023 448 32 Alive 

 100 M 449 1080 2/17/2022 5/10/2023 447 33 Alive 

 140a F 433 1124 2/16/2022 5/9/2022 82 8 Fatality 

 140b F 453 1438 5/9/2022 5/9/2023 365 24 Alive 

 172 M 454 1270 2/16/2022 9/1/2022 197 16 Harvested 

 191a F 541 2270 2/17/2022 8/13/2022 177 13 Harvested 

 191b M 383 580 10/27/2022 5/10/2023 195 14 Alive 

 203a F 532 2174 2/17/2022 7/18/2022 151 12 Harvested 

 211a M 450 1292 2/17/2022 9/12/2022 207 14 Harvested 

 211b M 344 528 11/2/2022 5/9/2023 188 14 Alive 

 223 F 540 2536 2/16/2022 5/9/2023 447 33 Alive 

 233 M 397 832 2/15/2022 4/21/2022 65 6 Lost 

 252 M 496 1520 3/30/2022 5/10/2023 406 26 Alive 
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 262 M 521 1756 2/15/2022 5/9/2023 448 29 Alive 

 274 F 525 2240 2/16/2022 5/9/2023 447 33 Alive 

 282 M 430 1022 2/17/2022 5/10/2023 447 31 Alive 

 302 M 481 1482 2/17/2022 4/13/2023 420 28 Alive 

 322 F 533 2164 4/4/2022 5/10/2023 401 33 Alive 

 341 M 369 804 4/4/2022 11/22/2022 232 12 Lost 

 352 M 370 634 4/4/2022 5/10/2023 401 27 Alive 

 361 F 452 1298 4/4/2022 5/10/2023 401 28 Alive 

 371a F 441 1214 4/4/2022 10/4/2022 183 10 Harvested 

 371b F 383 696 10/27/2022 5/11/2023 196 15 Alive 

 412a M 403 904 4/4/2022 8/1/2022 119 9 Harvested 

 412b M 498 1604 8/8/2022 5/10/2023 275 17 Alive 

 421 M 388 776 3/30/2022 5/10/2023 406 23 Alive 

 432 F 433 1194 4/1/2022 5/9/2023 403 23 Alive 

 442 F 537 2040 4/4/2022 5/10/2023 401 29 Alive 

 482 F 428 1004 4/1/2022 6/3/2022 63 8 Lost 

 513a M 377 674 3/30/2022 5/3/2022 34 3 Harvested 

 513b M 498 2122 6/6/2022 5/9/2023 337 21 Alive 

 532 F 511 1752 3/30/2022 5/10/2023 406 29 Alive 
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Table 5. Movement analysis covariate means, standard deviations (SD), and ranges (minimum and 

maximum values). All covariates were measured over the time interval of the movement (i.e., between 

relocations) unless noted otherwise. DOS = day of study (recorded on last day of each movement), Mean 

Q = mean daily discharge (m3/s), CV Q = coefficient of variation of instantaneous (15 min) values of 

discharge, ROC Q = rate of change in mean daily discharge, Mean Temp = mean daily temperature (C), 

CV Temp = coefficient of variation of mean daily temperature, ROC Temp = rate of change in mean 

daily temperature. 

 

Covariate Mean SD Min Max 

DOS 233.26 144.5 24 437 

Mean Q 166.91 127.94 46.44 848.56 

CV Q 21.98 11.62 3.42 59.3 

ROC Q -1.48 16.7 -65.45 91.08 

Mean Temp 21.21 5.69 8.54 30.82 

CV Temp 4.67 3.81 0.79 20.39 

ROC Temp 0.04 0.24 -0.69 0.63 
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Table 6. Summary statistics of estimated linear, 50% kernel-density estimated, and 90% kernel-density 

estimated home ranges for adult telemetered Shoal Bass and Largemouth Bass in the lower Flint River. 

Mean, standard-errors (±), and ranges (in parentheses) for each group of fish is presented. Linear home 

range is the distance between the most upstream and most downstream locations. Kernel estimates were 

produced by a univariate, fixed kernel density estimate that was calculated on the distribution of 

relocations for each individual. Two individuals (one per species) were not included in estimates due to 

only being relocated once. Mobile Largemouth Bass and Shoal Bass were individuals with  16.0 or  

24.6 km long linear home ranges, respectively. 

 

  Linear home range (m) Kernel estimate (km) 

Predictor N  90% 50% 

Largemouth Bass 34 12345.22 ± 3700.95 11.76 ± 4.16 5.67 ± 2.89 

Mobile 7 
47130.35 ± 10801.69 

(18056.78 - 90855.14) 

45.25 ±14.54 

(0.54 - 101.96) 

23.80 ± 12.34 

(0.18 - 78.32) 

Stationary 27 
3326.85 ± 743.95 

(61.59 - 15293.6) 

3.08 ± 0.95 

(0.06 - 19.35) 

0.97 ± 0.32  

(0.02 - 7.09) 

Shoal Bass 36 20249.98 ± 4356.23 21.72 ± 5.6 4.42 ± 1.59 

Mobile 10 
58005.00 ± 6002.63 

(24662 - 92090) 

64.09 ± 12.26 

(0.83 - 125.33) 

11.3 ± 4.77  

(0.14 - 35.48) 

Stationary 26 
5728.82 ± 1196.78 

(9.38 - 22570) 

5.42 ± 1.35 

(0.26 - 31.02) 

1.77 ± 0.86  

(0.08 - 21.58) 

All fish 70 16410.53 ± 2912.04 16.88 ± 3.54 5.03 ± 1.61 
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Table 7. Summary statistics for movement rates of radio-tagged adult Largemouth Bass and Shoal Bass. Movement rates were 

calculated as the fluvial distance moved between relocations divided by the duration of time between relocations. Means, standard-

errors (±), coefficients of variation (CV), max movement rate, and max movement are reported. Max Movement = longest recorded 

movement one way (upstream or downstream; duration of movement in days in parentheses). 

 

Species Sex N 
Mean movement    

rate (m/d) 

CV of             

movement rate 

Max movement    

rate (m/d) 

Max 

movement (m) 

Largemouth 

Bass 
 35 193.77 ± 27.06 356.11   

 F 21 200.5 ± 34.55 371.99 8,981.22 90,531.42 (12) 

 M 12 176.71 ± 38.63 296.58 4,058.25 50,380.12 (20) 

Shoal Bass  37 250.7 ± 40.87 440.18   

 F 16 323.16 ± 70.69 400.43 15,614.37 88,453.04 (19) 

 M 21 189.1 ± 45.74 480.17 7,715.31 50,380.12 (7) 
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Table 8. Top ranked generalized additive mixed models describing the relationship between movement of adult Shoal Bass (SHB) and 

Largemouth Bass (LMB) and my covariates. Only one model per species met the criteria for being considered my top model. The 

random effect of individual was included in all models. Model description = covariates included: + indicates the covariates are 

additive in the model; x indicates an interaction between two covariates; CV Q = loge transformation of the coefficient of variation for 

discharge measured between relocations. s() denotes smoothed terms. AICc = AIC corrected for small sample size, ∆AICc = the 

difference of between each model and the top ranked model, wi = Akaike weight, df = degrees of freedom, logLik = log-likelihood, 

Deviance explained = proportion of the deviance in residuals that is explained by fixed and random effects.  

 

Species Model description df logLik AICc ∆AICc wi 
Deviance 

explained  

SHB s(Day of study) x Sex 45 -3511.64 7119.38 0 0.99 30.2% 

LMB s(Day of study) + CV Q 46 -3161.07 6421.79 0 0.98 36.1% 
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Table 9. Estimates of each covariate included in the top generalized additive mixed models 

related to the movement rates of Shoal Bass (SHB) and Largemouth Bass (LMB). For non-linear 

smoothed s() terms: edf = effective degrees of freedom, F = F-statistic, P = p-value. For linear 

terms: the standard error (SE), 95% confidence interval (CI) and p-values (P) are provided for 

each estimate. Individual = random effect of individual fish, DOS = day of study, Male/Female = 

categorical fixed effect of sex interacting with DOS (day of study), CV Q = the coefficient of 

variation for discharge measured between relocations.  

 

Non-linear terms 

Species Covariate edf F P  

SHB s(DOS) x Female 6.21 6.71 <0.0001  

 s(DOS) x Male 7.78 18.05 <0.0001  

 s(Individual) 23.72 5.44 <0.0001  

      

LMB s(DOY) 12.04 19.63 <0.0001  

 s(Individual) 26.74 20.65 <0.0001  

      

      

Linear terms 

 Covariate Estimate SE 95% CI P 

LMB Intercept 4.04 0.22 (3.62, 4.47) <0.0001 

 CV Q -0.21 0.06 (-0.32, -0.10) 0.0003 
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Chapter II Figures  

 
Figure 1: The lower Flint River catchment showing the study extent for movement analysis. 

Dashed lines indicate the section of river that was scanned during each tracking event from Albany 

Dam to Flint River Heights Boat Ramp. Black x’s represent reservoir dams, black triangles are 

U.S. Geological Survey stream gauge locations, white circles are locations of continuous 

temperature data. The black line is the lower Flint River, light gray lines are major tributaries, and 

gray polygons are impoundments. Red arrows indicate areas where fish were captured, tagged, 

and released.   
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Figure 2. Water discharge (black) and temperature (red) conditions for the lower Flint River during 

the March 2022-May 2023 study of adult Shoal Bass and Largemouth Bass movement and habitat 

selection. Temperature values are averaged daily across data collected from continuous Hobo 

temperature logger (RKM 159), NEON station (RKM 86.5), and a U.S. Geological Survey stream 

gauge (02356000; RKM 43). Discharge values are averaged at 15-min intervals across data from 

three USGS stream gauges (02352500, 02353000, 02355662).  
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Figure 3. Aggregations of tagged Largemouth Bass during study period (March 2022 – May 2023). The left panel is during spring of both 

years and the right panel is during summer, autumn, and winter. Yellow denotes denser aggregation while blue indicates fewer fish in the 

same area. The black line is the lower Flint River and dashed lines indicate the section of river that was scanned during each tracking event 
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from Albany Dam to Flint River Heights Boat Ramp. Notable landmarks are pointed out. Number of locations (N) is how many fish 

relocations were recorded for each period of time.
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Figure 4. Aggregations of tagged Shoal Bass during study period (March 2022 – May 2023). The left panel is during spring of both years and 

the right panel is during summer, autumn, and winter. Yellow denotes denser aggregation while blue indicates fewer fish in the same area. 

The black line is the lower Flint River and dashed lines indicate the section of river that was scanned during each tracking event from Albany 
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Dam to Flint River Heights Boat Ramp. Notable landmarks are pointed out. Number of locations (N) is how many fish relocations were 

recorded for each period of time. 
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Figure 5. Mobile and stationary adult Shoal Bass movement patterns during study period (March 2022 – May 2023). Left y-axis is river 

kilometers going downstream to upstream (bottom to top) with RKM 0 being Jim Woodruff Lock and Dam and RKM 164 being Albany Dam 

(dashed horizontal line). Right y-axis is temperature (red line, C). Black lines indicate individual fish locations connected between relocations. 

Lines that end abruptly indicate fish was harvested or no longer located at subsequent tracking events. Mobile fish (Shoal Bass with linear 

home ranges  24.6 RKM long) are displayed on the left panel, stationary fish (Shoal Bass with linear home ranges < 24.6 RKM long) are 

displayed on the right panel. Gray shaded regions indicate the spring seasons (i.e., presumed spawning season; temperature increasing from 15-

25C). 



 

61 
 

 
Figure 6. Mobile and stationary adult Largemouth Bass movement patterns during study period (March 2022 – May 2023). Left y-axis is river 

kilometers going downstream to upstream (bottom to top) with RKM 0 being Jim Woodruff Lock and Dam and RKM 164 being Albany Dam 

(dashed horizontal line). Right y-axis is temperature (red line, C). Black lines indicate individual fish locations connected between relocations. 

Lines that end abruptly indicate fish was harvested or no longer located at subsequent tracking events. Mobile fish (Largemouth Bass with 

linear home ranges  16.0 RKM long) are displayed on the left panel, stationary fish (Largemouth Bass with linear home ranges < 16.0 RKM 

long) are displayed on the right panel. Gray shaded regions indicate the spring seasons (i.e., presumed spawning season; temperature increasing 

from 15-25C). 



 

62 
 

 

Figure 7. Summary of the interaction between fish sex and day of study (time) for radio tagged adult Shoal 

Bass. The black line represents the predicted relationship for females and the blue line represents the 

predicted relationship for males. Shaded regions indicate the 95% confidence intervals. The x-axis is the 

day of study (standardized) with day 1 being March 1st, 2022 and the final day of the study being May 5th, 

2023. The y-axis shows the natural-log-transformed model-predicted movement rate in meters per day.  
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Figure 8. The non-linear relationship between movement rate and day of study (time) (top) and the 

negative relationship with CV of discharge (m3/s) (bottom) for radio-tagged Largemouth Bass from 

generalized additive mixed models. Shaded regions indicate the 95% confidence intervals. The y-axis on 

both panels shows the natural-log-transformed model-predicted movement rate (m/day). The x-axis (top) 

is the day of study with day 1 being March 1st, 2022 and day 400 being April 4th, 2023.
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Chapter III 

Environmental factors related to hatch timing and daily growth of age-0 Shoal Bass and 

Largemouth Bass 

Introduction 

Hatch timing, survival, and growth of age-0 fishes determine recruitment of stream fish into 

the adult population. The timing of spawning can ultimately inform survival depending on the 

biotic and abiotic conditions present during hatching and early life (Sabo and Orth 1995; Mion et 

al. 1998; Dauwalter and Fisher 2007a). Survival in the first year of life, and subsequently moving 

into the adult population, is known as recruitment in fisheries (Humphries et al. 2020). Adequate 

recruitment of age-0 fishes over time is important to population persistence (Maceina and Pereira 

2007; Chambers and Trippel 2012). The majority of fish do not survive their first year of life due 

to predation and environmental stressors (Houde 1989; Ludsin and DeVries 1997). For example, 

total mortality was estimated to be 94.3% in age-0 Unspecked Hardyhead Craterocephalus 

stercusmuscarum fulvus during just the first three weeks of life (McCasker et al. 2014). 

Recruitment can vary spatiotemporally, resulting in variation in the abundance of year classes 

(Woodside et al. 2015; Houde 2016). For instance, Prairie Chub Macrhybopsis australis hatch 

success is both spatially and temporally dependent, particularly in relationship to drought versus 

wetter periods (Wedgeworth et al. 2022). The proper environmental conditions to promote hatch 

success and early-life growth may increase the probability of survival through the first year of life. 

Larger individuals can typically out compete, depredate, and withstand greater physiological stress 

than smaller individuals (Miller et al. 1988; Pereira et al. 2017; Sogard and Olla 2015). Although 

a stock-recruit relationship has not been demonstrated for many fishes (e.g., Largemouth Bass 

Micropterus salmoides, Allen et al. 2011), survival of some age-0 fish to age one is certainly 

required for population persistence. Understanding the relationship between hatch success and 
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environmental factors is helpful in cases where management actions may be needed to support 

successful reproduction.  

Important relationships exist between biotic and abiotic factors and hatch success in freshwater 

fishes. Discharge and temperature regimes in streams have been correlated to patterns of spawn 

timing and recruitment by many fishes (Tyus 1990; Lobón-Cerviá 2004; Tornabene et al. 2020). 

In many freshwater species, interactions between high flows (Tornabene et al. 2020), warming 

temperatures (Fry 1971; Graham and Orth 1986), social interactions (e.g., courtship; Amorim et 

al. 2008; Brown et al. 2019), and chemical signals (e.g., gonadotropin hormones; Redding and 

Patino 1993) can cue spawning activity. Low variability in discharge after hatching is related to 

increased juvenile fish density and growth in several species (e.g., Atlantic Salmon Salmo salar, 

Jensen and Johnsen 1999; juvenile warmwater fishes, Craven et al. 2010). In contrast, extreme 

high discharge events at particular times of year can lead to larval mortality due to nest destruction 

and larval dislocation (e.g. centrarchids and cyprinids, Harvey 1987; salmonids, Young et al. 

2011). Spawning may occur over several weeks to months; thus, individuals that hatch earlier in 

the year experience different physicochemical conditions than those hatched later (Bogner et al. 

2016). Correspondingly, hatch phenology may confer a size and survival advantage or 

disadvantage to various cohorts (Phillips et al. 1995; Sammons et al. 2021; but see also Sabo and 

Orth 1995). In addition to cueing reproduction, thermal conditions can determine development of 

eggs and fry (Firkus et al. 2018). However, these important factors and cues can be disrupted by 

human alteration to streams, particularly via river regulation.   

 Flow regulation in streams can affect the phenology and successful spawning by stream 

fishes but can be mitigated using management strategies. A natural flow regime allows for seasonal 

and annual variation in discharge and temperature that stream fishes have adapted to for successful 
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reproduction and recruitment (Poff et al. 1997). Naturally varying discharge and temperature 

conditions across a watershed allow stream fishes to have among-population heterogeneity and 

robustness to extreme environmental events (Grossman and Sabo 2010; Miller 2019). Flow 

regulation disrupts the magnitude, duration, frequency, timing, and/or rate of change in discharge 

patterns (Poff et al. 1997).  Unnatural flow regimes (e.g., hydropeaking dams) can lessen long-

term variation (i.e., seasonal, interannual) in favor of short-term variation (i.e., daily; Lytle and 

Poff 2004). This can negatively affect stream fishes via stressors such as habitat alteration, nest-

site dewatering, egg or larvae displacement (Harvey 1987; Young et al. 2011), and alter the timing 

of environmental cues (Tornabene et al. 2020; Cooke et al. 2022) For example, Grabowski and 

Isely (2007) observed that over 50% of Robust Redhorse Moxostoma robustum nest sites were 

either dewatered or exposed low flow conditions due to river regulation. Further laboratory studies 

on Robust Redhorse revealed that simulated hydropeaking conditions were lethal to some eggs 

and all hatched larvae (Fisk et al. 2013). Additionally, fish growth, physiological condition, and 

abundance have been negatively associated with unnatural and extreme pulsed flows (Freeman et 

al. 2001; Shaw and Richardson 2001). In many streams, costly mitigation strategies such as dam 

removal are not viable due to local reliance on energy, navigation, water supplies, and flood control 

(Stanley and Doyle 2003; Doyle et al. 2003). However, there are several mitigation strategies that 

have been used to balance the needs of fishes with the needs of humans (e.g., how and when we 

release water from dams Travnichek et al. 1995; Zarri et al. 2019; fish passage, Bunt et al. 2012). 

Understanding how warmwater stream fish reproduction and recruitment are related to human 

altered flows will aid managers in revisiting dam operations to approximate more appropriate flow 

conditions when possible. 
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 Black basses Micropterus spp. are important top predators in many warmwater stream 

ecosystems with a dynamic reproductive strategy; however reproductive information is lacking for 

populations in altered riverine ecosystems. Black basses occur in all sizes of streams under varying 

environmental conditions. Micropterus spp. are assumed to build nests to spawn (but see Miller 

and Brewer, 2021) and typically guard their larvae for a period of 1-3 weeks post spawn (Boschung 

and Mayden 2004). Some species demonstrate extensive spring spawning movements, but the 

magnitude of movements varies by species and by stream (see Chapter 2). Black bass typically 

spawn in the spring and summer, but the exact timing and duration differs by latitude, species, and 

the physicochemical conditions during a particular year (Stroud and Clepper 1975; Graham and 

Orth 1986; Sabo and Orth 1995). Mortality is greatest within the first two weeks post-hatch due to 

higher vulnerability to predation and fungal diseases (Knotek and Orth 1998; Dauwalter and Fisher 

2007a). For example, Neosho Bass M. velox mortality was 85% and 99% around two weeks post-

hatch in Buffalo Creek and Spring Creek, Oklahoma, respectively (Brewer et al. 2019).  Survival 

and growth of age-0 black bass can be further hindered by external stressors including disruptive 

flows (Reynolds and O’Bara 1991; Lukas and Orth 1995), extreme thermal conditions (Sabo and 

Orth 1995; Walsh et al. 2018), and density-dependence (Knotek and Orth 1998; Vøllestad et al. 

2002). Besides stream populations of Smallmouth Bass M. dolomieu (Pflieger 1966; Simonson 

and Swenson 1990; Reynolds and O’Bara 1991; Sabo and Orth 1995; Lukas and Orth 1995; Pert 

et al. 2002; Swenson et al. 2002; Smith et al. 2005; Dauwalter and Fisher 2007a; Walsh et al. 2018) 

and recently, Neosho Bass (Brewer et al. 2019; Miller 2019), most research on the reproduction 

and early life history in black bass has been conducted in stable reservoirs and small impoundments 

(Goodgame and Miranda 1993; Phillips et al. 1995; Irwin et al. 1997; Ludsin and DeVries 1997; 

Sammons et al. 1999; Greene and Maceina 2000; Olson et al. 2003; Nohner et al. 2018). 
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Recruitment in lotic populations, particularly for narrow ranged endemics (Birdsong et al. 2015), 

is hindered due to human disturbance including the introduction of nonnative congeners (i.e., 

genetic hybridization; Taylor et al. 2019), flow regulation, fragmentation (Brewer and Long 2015; 

Sammons and Earley 2015; Cottrell 2018), and habitat degradation (Hurst et al. 1975; Birdsong et 

al. 2015).  

Successful spawning and recruitment are of special concern in regionally endemic black bass 

species, such as Shoal Bass M. cataractae (Birdsong et al. 2015), whereas riverine Largemouth 

Bass M. salmoides are rarely studied compared to reservoir populations.  Sympatric Shoal Bass 

and Largemouth Bass typically differ in their spawning habitats, hatch phenology, and early 

growth. Wheeler and Allen (2003) found that ratios of age-0 Shoal Bass to Largemouth Bass were 

greater in shoals relative to pools in the Chipola River, Florida. Additionally, Shoal Bass can spawn 

in higher velocity habitats within shoals (Bitz et al. 2014), but also other areas (Cottrell 2018), 

whereas Largemouth Bass commonly spawn in lower-velocity backwaters and pools (Nack et al. 

1993; Goclowski et al. 2013). Similar to other black basses (Sabo and Orth 1995; Dauwalter and 

Fisher 2007a; Miller 2019), successful hatches (i.e., lived to be a larger age-0 fish) in the upper 

Flint River, Georgia, for both Shoal Bass and Largemouth Bass are associated with steady and 

lower stream discharge. Largemouth Bass in upper Flint River typically successfully hatch earlier 

and have more protracted hatch durations than Shoal Bass (Sammons et al. 2021). However, 

Sammons et al. (2021) only sampled over a three-week period in late summer each year at two 

sites thereby possibly missing information on hatch duration and responses to variable 

physicochemical conditions. Additionally, interannual hatch duration is variable among years in 

other black basses (Sabo and Orth 1995; Phelps et al. 2008; Miller 2019) and is an important 

component of our understanding of early life history.  Correspondingly, my study objective was 
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to determine the spatial and temporal variability in hatch success and growth of lotic populations 

of sympatric Shoal Bass and Largemouth Bass.  

Methods 

Study Sites 

The study area for my second objective was the lower Flint River catchment (LFRC). The 

study extent included the mainstem Flint River between Lake Blackshear and Lake Chehaw 

(hereafter the Flint River above Albany Dam - AAD), the Flint River between Lake Chehaw and 

Lake Seminole (hereafter the Flint River below Albany Dam – BAD), and several of the major 

tributaries of the Flint River (Figure 1). This portion of the catchment contains two hydropeaking 

dams (Albany/Lake Chehaw and Warwick/Lake Blackshear), numerous low-head dams, and 

reaches and tributaries with varying levels of groundwater influence which affects both 

temperature and discharge patterns (Figure 1; Opsahl et al. 2007; Rugel et al. 2016). Major 

tributaries in this catchment begin in the Fall Line Hills physiographic district as springs and seeps 

that become streams with high groundwater contributions, floodplain swamps, and Ocala 

limestone substrates in the Dougherty Plain (Golladay and Battle 2002).  

I chose 25 sites to sample for age-0 Shoal Bass and Largemouth Bass (Figure 1). I sampled 

11 of these sites in 2022 and sampled all 25 in 2023 (Table 1). Sites were selected based on 

accessibility, USGS stream gauge locations, representation of a range of environmental conditions 

characteristic of the catchment, and permission to access private lands where necessary. 

Streamflow, drainage area, and temperature varied among sites (Tables 2 and 3).  My sites included 

pools, run or glide habitat, shoals, and slackwater habitats (i.e., backwater, frontwater).  
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Fish Sampling 

I sampled at each site approximately once every 2 weeks in the spring and summer of 2022 

and 2023 (May through August). Shoal Bass is thought to spawn in April and May at water 

temperatures 16-26C (Johnson 1974; Bitz et al. 2015; Sammons et al. 2021), whereas riverine 

Largemouth Bass typically spawn between March and June at water temperatures 13-25C (Nack 

et al. 1993; Sammons et al. 2021). If age-0 bass were not detected at a site after 3 sampling events, 

that site was not revisited, and efforts were focused on sites that had age-0 fish of one or both 

species detected. This sampling strategy is desirable to both account for sampling inefficiencies, 

but also ensure enough fish are sampled during the rearing period.  

Daily bands on otoliths are increasingly hard to identify once fish reach >100 days old 

(Long and Grabowski 2017), therefore I attempted to only collect fish < 120-mm total length (TL). 

Sammons et al. (2021) estimated average growth rates of 0.76 and 0.67 mm per day for age-0 

Shoal Bass and Largemouth Bass, respectively, in the upper Flint River. Using these estimates, I 

established a liberal cutoff of 120-mm TL to maintain fish younger than 100-days old.  

 I sampled sites via electrofishing raft or canoe during the 2022 and 2023 sampling seasons. 

At sites accessible by raft, I electrofished for age-0 basses using a 40-amp Midwest Lakes 

Electrofishing Systems shocking unit (Polo, Michigan) housed on an inflatable raft and powered 

by a 4000-watt generator. The raft was 4.3-m wide and 9-m long, equipped with a rowing frame, 

outboard motor, and boom mounted anodes that extend off the front of the netting platform on the 

bow. I used standard American Fisheries Society electrofishing settings based on conductivity and 

standardized for generator power output with initial settings placed at pulsed DC current, 60Hz, 

25% duty cycle, and 500 volts and I adjusted settings based on water conductivity (Guy et al. 2009; 

Miranda 2009). At sites inaccessible by raft, I sampled using a DC electrofishing unit with hand-
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held anode, powered by a 2000-watt Honda generator, and housed in a canoe outfitted with a steel 

cathode curtain (Katechis 2015). Depending on channel width and the water depth of each site, I 

used the raft or canoe as either a barge or boat. As a barge, I shocked in an upstream direction and 

as a boat I shocked in a downstream direction, alternating from left to right bank to target available 

habitat. Multiple passes were made where I successfully captured age-0 basses on the first pass up 

until I collected 50 individuals or no more age-0 bass were captured. All age-0 Shoal Bass and 

Largemouth Bass were placed in a live well upon capture. They were then euthanized using an 

overdose of tricane methanesulphonate (MS-222) (300mg/L, Neiffer and Stamper 2009), separated 

by species, and stored in 1-L bottles of 70% ethanol until later laboratory processing.  

Laboratory Processing 

I measured size of each fish and removed their sagittal otoliths to estimate age (d). Daily 

ring formation in sagittal otoliths has been validated for both species (Miller and Storck 1982; 

Long and Porta 2019). However, varying levels of accuracy in daily ring formation of Shoal Bass 

were documented by Long and Porta (2019) due to unnaturally cold temperatures of hypolimnetic 

tailwater affecting growth rates and daily ring spacing. I assumed daily ring formation was accurate 

due to the temperature conditions experienced by the fish. Before otolith extraction, I measured 

TL (0.01 mm) of each fish using digital calipers (VWR Traceable Digital Calipers). I removed 

sagittal otoliths under a lighted magnifying glass using small scissors and fine-tipped forceps and 

then placed them in a petri dish. Otoliths were then placed on a microscope slide and mounted 

using thermoplastic cement (Crystalbond 509, Electron Microscopy Sciences, Hatfield, PA). I 

melted a very small amount of cement on the microscope slide and then placed otoliths in the 

pooled cement convex side up (i.e., sulcus ascusticus facing upwards; Ramsey 2023).  



 

72 
 

I sanded and polished the otoliths by hand in a circular pattern until the daily bands were 

visible. I began polishing with the coarsest paper and then transitioned to finer grains as daily rings 

became visible. For larger otoliths, I polished the otoliths using 800-3000-grit sandpaper, and then 

polished the otoliths using 1.0 and 3.0-μm diamond lapping film (Diamond Lapping Film, 8” 

diameter, plain backing, Electron Microscopy Sciences, Hatfield, Pennsylvania). For smaller 

otoliths, I began polishing with a finer grit paper (e.g., 1500) rather than 800. I regularly examined 

each otolith under a compound microscope at 40X-100X magnification to ensure it was not over-

polished. Larger otoliths had a more pronounced concavity compared to smaller ones. Therefore, 

after polishing the convex side so that the nucleus was clearly visible, I carefully flipped larger 

otoliths over, remounted them in cement, and polished the concave sides following the same 

methods described above (Miller and Storck 1982). Flipping the otolith was necessary to better 

polish the edge of the otolith without over polishing the nucleus. Polishing was complete when all 

daily bands were visible.  

We counted the daily bands of my polished age-0 Shoal Bass and Largemouth Bass otoliths 

to estimate hatch dates and daily growth rates using a compound microscope at 40X-100X. Mineral 

oil was applied to otoliths, as needed, for clarification. Daily rings were counted by two 

independent readers. Readers counted opaque daily bands from the outer edge of the otolith 

towards the center (Figure 2). Each reader aged each otolith once in a non-consecutive, random 

order with no prior knowledge of fish size, species, or previous reads. If mean counts between 

readers were within 10% of one another, the average of both counts was used as the final age. If 

>10% differences existed between both readers, a consensus was attempted via a joint reading. If 

a consensus could not be reached, that otolith was excluded from the dataset (Miller and Storck 
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1982; Graham and Orth 1987). This method of blind reading and reaching a standardized 

consensus reduces the bias of age estimates (Buckmeier et al. 2017). 

I estimated hatch date using the following equation (Sammons et al. 2021): 

𝐻𝑎𝑡𝑐ℎ 𝑑𝑎𝑡𝑒 = 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑒 − 𝐴𝑔𝑒 − 𝑋 

where collection date was the date of fish collection, age was the final mean daily ring count (days), 

and X was the estimated number of days between hatching and formation of the first daily ring 

increment (i.e., 5 days; Miller and Storck 1982; Sammons et al. 2021).  

I estimated mean daily growth rates (mm/day) from hatch date to collection date using the 

following equation (Sammons et al. 2021):  

𝐷𝑎𝑖𝑙𝑦 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  
𝑇𝐿

𝐴𝑔𝑒 + 𝑋
 

where TL (0.01 mm) is measured prior to otolith extraction, age is the final mean daily ring count 

(days), and X is equal to 5 as the number of days between hatching and formation of the first daily 

ring increment.  

Environmental Measurements 

I measured multiple environmental variables that I hypothesized would be related to 

successful hatch and growth of Shoal Bass and Largemouth Bass (Table 4). In lotic fishes, 

spawning, successful hatching, and growth rates can be dictated by changes in discharge, 

temperature, and photoperiod (Fry 1971; Shuter et al. 1980; Graham and Orth 1986). Multiple 

species of riverine black bass were documented successfully hatching during periods of receding 

and stable flows and after a threshold water temperature had been reached that is conducive to 
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early-life growth (Smallmouth Bass, Shuter et al. 1980; Bestgen 2016; Shoal Bass, Alabama Bass 

M. henshalli, Redeye Bass M. coosae, and Largemouth Bass, Sammons et al. 2021). Therefore, I 

collected mean daily discharge (m3/s; USGS 2023) data from the USGS stream gauges located 

nearest to my sites (Table 2; Figure 1). Discharge data were also provided by the Crisp County 

Power Commission for dam releases from Warwick Dam (site 32; Figure 1). I converted discharge 

data into measurements of scaled discharge (i.e., discharge divided by drainage area [m2] at stream 

gauge) to make discharge comparable across different stream sizes (Bosch and Hewlett 1982; Qi 

et al. 2022; Wedgeworth et al. 2022).  

I also quantified thermal conditions and time of year to further describe environmental 

conditions related to hatch success and age-0 growth (Table 4). To measure thermal conditions, I 

used continuous temperature loggers (Onset Hobo MX2201, Bourne, Massachusetts) fixed within 

submerged cinderblocks that block direct sunlight to measure water temperature (0.1 °C). 

Cinderblocks were submerged 1-3 m deep in well-mixed areas at each sampling site (Figure 1). I 

also used temperature data collected from the NEON sensor station (NEON Station: FLNT; 

Precision Measurement Engineering Inc. T-Chain RS 232/485) located downstream of Newton, 

Georgia (site 30; Figure 1). Hobo loggers were deployed in April 2022 (11 initial sites) and March 

2023 (remaining 14 sites). These dates were slightly later (~3-5 weeks) than I needed for 

appropriately modeling hatch success. Additionally, gaps of 1-2 weeks occurred in some 

temperature data due to battery failure or logger tampering. I estimated all temperature-data gaps 

using least-squares regression with temperature values from the closest upstream or downstream 

site, except for early-season 2022 sites which were estimated from the Flint River NEON sensor 

station. If gaps occurred on a stream that only had one sampling site, temperature values were 

estimated by comparison with another site of similar drainage area and latitude (all R2 = 0.89 – 
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0.99). Finally, I recorded calendar day (i.e., January 1st is 1, May 1st is 120, August 31st is 242; 

Wedgeworth et al. 2022) because timing of spawning, and thus hatch, can greatly affect survival 

and growth due to seasonally varying environmental conditions (Shuter et al. 1980; Goodgame 

and Miranda 1993; Miller and Brewer 2020). Additionally, calendar day is highly correlated with 

photoperiod which is linked to spawning initiation and termination in temperate fishes (de Vlaming 

1972; Munz and Higgins 2013). 

Hatch Analyses 

 I grouped observed hatches by week (7-d) and characterized flow and temperature 

conditions prior to each hatch week. Hatches were grouped by week starting in February and 

ending in August because stream fish often respond in their spawning behavior to antecedent flow 

and temperature variation and conditions rather than concurrent conditions (Forsythe et al. 2012; 

King et al. 2016; Vine et al. 2019). Additionally, grouping hatches by weeks helps accommodate 

hatch-date uncertainty due to inexact estimation of the timing of the first daily increment formation 

in otoliths and reader error when enumerating daily rings (Buckmeier et al. 2017). Therefore, I 

also calculated the coefficients-of-variation (CV; mean/SD) and means of scaled discharge and 

water temperature for 7-d prior to each grouped hatch week to represent conditions prior to 

successful hatches. By examining plots of my data, it appeared that, like other populations of black 

bass (Sabo and Orth 1995; Dauwalter and Fisher 2007a; Miller 2019; Sammons et al. 2021), most 

successful hatches by both species occurred after a flood-pulse and during a period of stable and 

receding flows. Therefore, for each grouped hatch week, I also characterized the rate of change 

(ROC; Olden and Poff 2003) in scaled discharge 14-d prior and the number of days post-peak flow 

(Bestgen 2016) to quantify this relationship. Peak flow was determined for each site as the date 

that flows reached their highest value during that calendar year (i.e., highest spring flow).  
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Prior to analysis of successful hatch date, I made any necessary transformations and 

standardizations to predictor variables to meet the basic assumptions of linear regression. I log-

transformed mean scaled discharge and CV of discharge due to skewness. I tested for 

multicollinearity among independent variables using Pearson’s correlation coefficient and only 

retained variables in the models that had reasonable correlation (| r | < 0.6; Roever et al. 2014). 

Mean temperature was highly correlated with mean scaled discharge (r = -0.61), number of days 

post-peak flow (r = 0.73), and calendar week of hatch (r = 0.92; Table 5). Number of days post-

peak and calendar week of hatch were also multicollinear (r = 0.86), therefore I retained only mean 

temperature, CV of discharge, and ROC in discharge in hatch analyses. Retained continuous 

covariates were then standardized to a mean of 0 and a standard deviation of 1 to aid in model 

interpretation and convergence (McCune et al. 2002). 

I used two-part hurdle models to assess environmental variables associated with Shoal Bass 

and Largemouth Bass spawning and hatch success (Martin et al. 2005; Hofstetter et al. 2016; 

Wedgeworth et al. 2022). Shoal Bass and Largemouth Bass were modelled separately. Hurdle 

models accommodate zero-inflation (i.e., causing a non-standard distribution) and overdispersion 

(i.e., the variance of the data exceeds the mean; Mullahy 1986), both of which occurred in my data 

due to discontinuous hatches over the spawning season (Wedgeworth et al. 2022). I was not able 

to discriminate between true and false zeros in my data (i.e., failure to detect hatch versus no 

hatch). Hurdle models cannot account incomplete detection and instead consider all zeros to be 

true and models non-zero counts separately from zero counts in a two-part framework (Hofstetter 

et al. 2016).  

The two parts of my hurdle models were a zero model (e.g., the probability of hatch) and 

a count model (e.g., the number of hatches per day that hatches occur). The zero model was a 
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logistic regression model with a binary outcome (i.e., 0 = no hatches occurred, 1 = hatches 

occurred). If a successful hatch occurred (i.e., crossing the hurdle), the count model was then used 

to analyze variation in non-zero counts. The count model was a zero-truncated negative binomial 

model. I built my hurdle models following Wedgeworth et al. (2022) and built the zero and count 

models separately for each species. I built zero-models using the lme4 package (Bates et al. 2023) 

and count models using the glmmTMB package (Brooks et al. 2023) in the statistical software R 

(Version 4.3.2, R Core Team 2023). In these models, I analyzed all subsets of fixed effects and 

included the random effect of stream in every model to account for unequal sample sizes and 

unexplained variation among locations (Table 6; Wagner et al. 2006; West et al. 2007). Fixed 

effects included environmental covariates listed above and the categorical effect of year (2022 and 

2023). For count models, both linear and quadratic relationships between continuous covariates 

and hatch frequency were explored. I ranked candidate model sets for both zero models and count 

models using AICc as described in Chapter 2. Briefly, all models with ΔAICc< 2 were considered 

to have equal empirical support (i.e., competitor for drawing inference) if they contained the same 

number of or fewer parameters than the top model (Burnham and Anderson 2002; Arnold 2010). 

I calculated marginal and conditional R2 values using the performance package (Lüdecke et al. 

2021) in the statistical software R (Version 4.3.2, R Core Team 2023) to determine the variance 

explained by my fixed and random effects (Nakagawa and Schielzeth 2013). For my top ranked 

zero models, I then used binned residual plots to evaluate goodness-of-fit. If ~95% of residuals 

fell within the bounds, I concluded adequate model fit (Gelman and Hill 2006). For my top ranked 

count models, I used the DHARMa package (Hartig 2022; Wedgeworth et al. 2022) in the statistical 

software R (Version 4.3.2, R Core Team 2023) to examine and compare diagnostic residual plots 

(QQ and scatterplots of residual and fitted values).  
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Growth Analyses  

Prior to my analysis of growth rates, I calculated environmental metrics representative of 

conditions during the growing season and made any necessary transformations and 

standardizations to predictor variables to meet the basic assumptions of linear regression. I 

calculated environmental covariates during the period between hatch date and capture date of each 

fish (i.e., conditions during fish growth). These covariates included mean scaled discharge, CV of 

discharge, and mean temperature. I also included the calendar date of hatch based on the hypothesis 

that fish hatched at different times would exhibit different growth rates (Phillips et al. 1995; 

Durham and Wilde 2005; Rogers and Allen 2009). I log-transformed mean scaled discharge and 

CV of discharge due to skewness. I retained covariates that were not multicollinear (see above).  

Mean temperature and hatch date were multicollinear (r = 0.60; Table 7), therefore I only retained 

temperature to avoid confounding effects. Retained continuous covariates were then standardized 

to a mean of 0 and a standard deviation of 1 to aid in model interpretation and convergence 

(McCune et al. 2002). 

I built a set of linear mixed models using multiple regression and model selection to assess 

the relationships between average daily growth of basses and measured environmental variables 

(Maceina 1992; Miller 2019). Shoal Bass and Largemouth Bass were analyzed separately. Fixed 

effects included environmental covariates listed above and the categorical effect of year (2022 and 

2023). I included stream as a random effect to account for unequal sample sizes and unexplained 

variation among my sites (Wagner et al. 2006; West et al. 2007). I assumed random effects were 

normally distributed as N(0,2), where 2 represents the variance among levels (e.g., among years). 

The full mixed linear model can be expressed as a modified version of that described by West et 

al. (2007) :  
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Yit = β0 + β1X1i + β2X2i + …βNXNi+ vt + εit 

where Y is daily growth rate (mm/d) for fish I from stream t, β0 is the grand intercept, vt is the 

random intercept for stream, εit is the residual error term for fish I at stream t, and β0 through βN 

are the coefficients of covariates X1 through XN. I analyzed all subsets of fixed effects (Table 8), 

ranked and selected my models using AICc, calculated marginal and conditional R2 values for my 

top ranked models, and assessed goodness-of-fit using binned residual plots as described above 

for hatch analyses.  

Results 

Fish Sampling   

I completed 136 surveys (19 in 2022 and 117 in 2023) across 25 sites during my sampling 

seasons (Table 1). In 2022, sampling efforts were extended across the catchment to identify sites 

where age-0 Shoal Bass could be located and across a range of environmental conditions. During 

this period, I emphasized spatial coverage rather than extensive repeated sampling at each location. 

In contrast, in 2023, I conducted surveys approximately once every two weeks at each site until 

mid-June, pausing during extensive flooding and also for boat repairs. Thereafter, I prioritized 

sampling at locations where Shoal Bass had been detected to capture the hatch duration at these 

locations. Thus, after mid-June, sampling effort was uneven among sites (Table 1).  

 The detection and number of age-0 bass varied across species, years, and sites. Age-0 

Largemouth Bass were detected in all sampled streams but not at every site (Figure 3). Sites 20 

and 31 on the lower Ichawaynochaway Creek were the only sites sampled during both years where 

age-0 Largemouth Bass were detected in 2022 but not 2023. In contrast, age-0 Shoal Bass were 

found both upstream and downstream of Albany Dam in the Flint River in both years, but only 
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detected in Ichawaynochaway and Muckalee creeks in 2022 (Figure 4). Age-0 Shoal Bass were 

not detected in Kinchafoonee, Chickasawhatchee, Cooleewahee, or Abrams creeks. I collected 114 

and 415 Largemouth Bass (Table 9) and 149 and 140 Shoal Bass in 2022 and 2023, respectively. 

Over both years, I also collected 23 age-0 bass that were determined to be either Spotted Bass or 

hybrids of Spotted Bass and Shoal Bass. These fish were not aged. Overall, the most age-0 bass 

were found in the mainstem Flint River compared to tributaries, with the greatest number of both 

species collected between Warwick Dam and Lake Chehaw (sites 32 and 16) in the mainstem Flint 

River AAD during both sampling years. The fewest age-0 bass were collected from Abrams Creek.  

Ageing and Growth  

Otoliths that met my reader agreement criteria were retained for both hatch and growth 

analyses. I processed and aged 803 otoliths from age-0 Shoal Bass and Largemouth Bass (Table 

10). I retained 97% (502/514) of aged Largemouth Bass otoliths and 97% (282/289) of aged Shoal 

Bass otoliths for my analyses. Ages of Largemouth Bass ranged from 29 to 158 days and ages of 

Shoal Bass ranged from 26 to 118 days.  

 Largemouth Bass hatch timing was variable between years and among streams. Successful 

hatches began one week later in 2022 but ended later in 2023 (Figure 5). Thus, the 2023 hatch 

season was more protracted, lasting four weeks longer than the 2022 season (12 weeks). The 

earliest observed Largemouth Bass hatch date was March 15th in 2022 in Ichawaynochaway Creek 

and March 10th in 2023 in Chickasawhatchee Creek (Figures 7 and 8, Table 10). The latest 

observed hatch dates were June 1st, 2022, and June 26th, 2023 in the Flint River AAD and 

Cooleewahee Creek, respectively (Figures 6 and 8). The highest frequency of successful hatches 

across all sites was in mid-May in 2022 but shifted to late April in 2023 (Figure 5).  
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 Successful hatch dates of Shoal Bass were less protracted than Largemouth Bass but were 

similarly variable among streams and years. Successful hatching occurred among streams over a 

seven-week period in both 2022 and 2023 (Figure 5). However, hatches began and ended one week 

later in 2022 than in 2023 with the highest frequency of hatches occurring during the weeks of 

May 10th, 2022 and April 26th, 2023 (Table 10). In 2022, hatches initiated earliest in the mainstem 

Flint River BAD on April 25th. However, in 2023 hatching occurred earliest in the mainstem Flint 

River AAD on April 16th. In 2022, successful hatches extended into early June in both 

Ichawaynochaway Creek and the Flint River AAD whereas in 2023, the latest Shoal Bass hatch 

date detected was May 26th in the Flint River BAD (Figure 9, Table 10).  

 Age-0 black bass size and daily growth varied between species and years. Fish lengths for 

Largemouth Bass and Shoal Bass ranged 23.11 – 110.81 mm and 19.1 – 116.88 mm (Table 10), 

respectively. Growth rates ranged from 0.65 – 1.58 mm/day for Shoal Bass and 0.45 – 1.48 

mm/day for Largemouth Bass across all streams (Table 11).  

Environmental Conditions 

Discharge and water temperatures varied between years and among sites (Table 3). 

Discharge patterns across both years were similar with typical spring flood pulses occurring in 

April across most sites (Figure 11). These pulses represented the peak spring flow for mainstem 

sites in both years, whereas tributary sites experienced an earlier peak flow in 2023 due to variable 

local precipitation patterns (Table 3; Figure 11). Summer flow conditions generally reflected 

typical baseflow conditions of the catchment (Schoonover et al. 2006; Golladay et al. 2007), except 

for a flood pulse in mid-June 2023 that affected the entire catchment (Figure 11). These flows were 

the highest recorded June flows on record for Ichawaynochaway, Chickasawhatchee, 

Kinchafoonee, and Muckalee creeks (Figure 11).  Daily hydropeaking conditions were observed 
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below both Albany and Warwick dams after May 17th in both years, except during the mid-June 

2023 flood event (Figure 10). Overall, discharge was higher in 2023 than 2022. Correspondingly, 

water temperatures across the study site were slightly cooler and more variable in 2023 than in 

2022 (Figure 12). Between years, Flint River sites had the warmest water temperatures, whereas 

tributary sites had cooler average water temperatures (Table 3; Figure 12). 

Hatch Analyses  

My top ranked hatch probability model (zero model) for Largemouth Bass included the 

additive fixed effects of 7-d water temperature and year, and the random effect of stream (Table 

12). Successful Largemouth Bass hatches occurred at mean daily water temperatures ranging from 

11.9 C to 28.5 C. Water temperature was negatively related to the probability of successful 

hatches (Table 13; Figure 13), indicating that warmer water temperatures 7 d prior to hatch resulted 

in lower hatch probabilities. On average, the probability of successful hatching was higher in 2023 

than 2022 for Largemouth Bass. Assessment via a binned residual plot demonstrated adequate fit 

for this top ranked model (Gelman and Hill 2006; Appendix 2). Fixed effects explained 19% of 

variability in this model and the random effect of stream explained an additional 6% of variation 

in these data (Table 12).   

 In contrast, my top-ranked hatch probability model for Shoal Bass included the additive 

fixed effects of 7-day CV of discharge, 14-day ROC of discharge, and a random effect for stream 

(Table 12). Both discharge metrics were negatively related to the probability of hatching (Table 

13). Higher flow variability resulted in a lower hatch probability, whereas hatch probability was 

higher after 14-d of declining flows (i.e., negative ROC in discharge; Figure 14). The top-ranked 

model demonstrated adequate fit when assessed via a binned residual plot (Appendix 2). My fixed 
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effects explained 30% of variability in these data and an additional 8% of variation was explained 

by accounting for stream as a random effect (Table 12).  

 My top ranked hatch frequency model (count model) for Largemouth Bass contained 7-d 

CV of discharge as a fixed effect and the random effect of stream (Table 14). This model predicted 

a negative relationship between discharge variation prior to hatch and the number of successful 

Largemouth Bass hatches (Table 15; Figure 15). Adequate model fit was confirmed by the uniform 

distribution of the QQ-plot and the absence of patterns in residual distributions in the scatterplot 

of the DHARMa diagnostic figures (Appendix 3).  

 There were two top models with similar empirical support but differing predictor variables 

for the frequency of Shoal Bass hatches. My top two models contained 1) the fixed effect of 14-d 

ROC of discharge and the random effect of stream and 2) a quadratic term for 7-d water 

temperature as a fixed effect and the random effect of stream (Table 14). Hatch counts increased 

from ~18-24C then decreased from ~24-27C; however, these estimates had high uncertainty 

(Table 15; Figure 16). Additionally, hatch counts increased with lower rates-of-change in 

discharge (i.e., ROC near 0). These models had adequate fit as determined by uniform distribution 

of the QQ-plot and lack of patterns in residual distributions in the scatterplot of the DHARMa 

diagnostic figures (Appendix 4). Four other models were within 2 ΔAICc of the top ranked model. 

However, they were not considered to have adequate support due to either being 1) more complex 

than the top model or 2) not displaying reasonable model fit in DHARMa residual diagnostic plots 

(Table 14).  
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Growth Analyses  

 The top-ranked model for age-0 Largemouth Bass daily growth rate contained the fixed 

effects of mean discharge, CV of discharge, year, and the random effect of stream (Table 16). 

Growth rate for this species was positively related to mean discharge but negatively related to 

variability in discharge (Table 17; Figure 17). On average, growth rates were higher in 2022 than 

in 2023. Binned residual plot assessment indicated adequate fit for this top-ranked model 

(Appendix 5). Fixed effects explained 14% of the variability in this model, whereas the random 

effect of stream accounted for an additional 19% of variation (Table 16). 

 There were two top models with similar empirical support, but different predictor variables 

related to Shoal Bass growth rate. The first model included the fixed effects of mean discharge and 

year with the random effect of stream, whereas the second model included the fixed effects of 

mean water temperature and year (Table 16). Similar to Largemouth Bass, growth rates of age-0 

Shoal Bass were higher in 2022 than in 2023. However, there was a negative relationship between 

growth rate and discharge, but a positive relationship with water temperature (Table 17; Figure 

18). Both models demonstrated adequate fit when assessed via binned residual plots (Appendix 6). 

In the first model, fixed effects explained 40% of variability and random effects explained an 

additional 17% of variability (Table 16). For the second model, my fixed effects explained 49% 

of variation and including the random effects explained an additional 9%.  

Discussion 

Flow variability can affect species differently and is often context dependent. In rivers with 

minimal hydrologic alteration, flow variability is often positively related to fish growth and 

abundance (Tockner et al. 2000; Arthington and Balcombe 2011). For example, Freshwater Cod 

Maccullochella spp. growth increased with higher discharge and flow variability (Tonkin et al. 
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2017) which conforms to common theories of the importance of flooding to riverine productivity 

(e.g., flood pulse concept; Junk et al. 1989). However, increased river regulation, due to its 

suppression of natural flow magnitude and variability, is a major contributing factor in the decline 

of native fish populations. River regulation typically results in altered flow variability, with 

reductions in the magnitude, frequency, and duration of both high flow events during winter and 

spring, and extreme low flow events during summer and autumn (Walker and Thoms 1993; 

McMahon and Finlayson 2003). Hydropeaking can depress both seasonal and interannual flow 

variation (Poff 1997; Bowen et al. 1998), but also create artificially high, short-term variation that 

is problematic for some species (Cushman 1985) including Shoal Bass (my study). In many 

hydropeaking rivers, the numbers of diminutive fishes that rely on shallow-water habitats 

decreases (Bain et al. 1988; Kinsolving and Bain 1993). However, the persistence of small-bodied 

fishes below dams depends on a variety of factors including how the dam is operated, but also the 

specific traits (e.g., reproductive mode, swimming ability) of the fishes (Craven et al. 2010).  

My results indicate that successful black bass hatching below dams is interrupted by 

hydropeaking. Hydropeaking can dampen seasonal and interannual discharge variation in favor of 

short-term variation (Cushman 1985; Bowen et al. 1998; Lytle and Poff 2004). This can negatively 

affect stream biota (Power et al. 1996), including small-bodied fishes (Freeman et al. 2001), 

aquatic insects (Cushman 1985; Abernethy et al. 2021), and unionid mussels (Galbraith and 

Vaughn 2011; Wisniewski et al. 2019) that are unable to adapt to the artificial, rapid flow 

fluctuations (Lytle and Poff 2004). Given society’s prevailing reliance on dams, it is important to 

understand the interactions between dam operations and fisheries such that successful mitigation 

strategies can be developed. My results show that successful Shoal Bass hatches below the dam 

end abruptly when hydropeaking begins but continues at other mainstem sites less affected by 
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dams. Hydropeaking variability may result in nests being dewatered on a daily basis or abandoned 

by the guarding male due to water rapidly causing mortality of eggs and/or fry (Grabowski and 

Isely 2007; Young et al. 2011). Short term variation in discharge negatively affects numerous age-

0 stream fishes (Harvey 1987), particularly below hydropeaking facilities (Freeman et al. 2001; 

Halleraker et al. 2003; Korman et al. 2011). Thus, if Shoal Bass recruitment is a management 

priority, consideration of a longer period before the initiation of summer hydropeaking may be 

warranted. 

My hypothesis that Shoal Bass were more likely to successfully hatch on the descending limb 

of the hydrograph during relatively stable flow conditions was supported by my results. Similar 

results were found for Shoal Bass in the upper Flint River (Sammons et al. 2021) and many 

populations of riverine Smallmouth Bass (Graham and Orth 1986; Reynolds and O’Bara 1991; 

Sabo and Orth 1995; Dauwalter and Fisher 2007a; Bestgen 2016) and Neosho Bass (Miller 2019). 

Shoal Bass can nest in high velocity environments within shoal complexes, but usually in areas 

with flow refugia (Johnston and Kennon 2007; Goclowski et al. 2013; Bitz et al. 2015). Areas of 

refugia may change with different discharge conditions and nest washout may explain lower hatch 

probabilities after flows increased (Leonard and Orth 1988; Young et al. 2011). Thus, the timing 

of spring flood pulses relative to when hydropeaking occurs could be especially problematic for 

Shoal Bass recruitment if truncation of relatively stable conditions occurs.  

Interestingly, it appears that Largemouth Bass were able to successfully hatch during periods 

of higher discharge, however, the number of successfully hatched individuals that survived 

declined during these periods. Flow variability experienced by my age-0 Largemouth Bass was 

the greatest following spring and summer flood pulses and hydropeaking flows. Disruptions in 

stream fish recruitment via flood spates is well documented for some fishes (Graham and Orth 
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1986; Harvey 1987; Lukas and Orth 1995; Peterson and Kwak 1999; Bestgen 2016; Miller 2019). 

Thus, the protracted duration of successful Largemouth hatches may reflect a bet-hedging strategy 

to cope with natural environmental perturbations (Craven et al. 2010; McManamay and Frimpong 

2015). Protracted spawning may also explain why Largemouth Bass is so resilient in areas with 

altered flow regimes and outside of its native range (Bain et al. 1988; Young et al. 2011; Bae et al. 

2018).   

Although lower, relatively stable flows appear important for Shoal Bass and other black basses, 

higher flows are certainly important for creating and maintaining their habitats. Flood pulses may 

increase the quality of spawning conditions, thereby making the receding end of the hydrograph 

and relatively stable flow conditions more suitable for offspring. Spring flood spates flush fine 

sediments, thus improving oxygenation in coarser substrates resulting in higher quality nesting 

habitat (Craven et al. 2010; Reiser et al. 2018). Excessive sediment deposits can be problematic 

for successful spawning by black basses (e.g., Smallmouth Bass, Dauwalter and Fisher 2007a; 

Suedel et al. 2017; Suwannee Bass M. notius, Strong et al. 2010). Spring flood spates may also be 

an important cue for spawning initiation (Taylor and Cooke 2012; Tornabene et al. 2020) and be 

necessary for the maintenance of important spawning and rearing habitats by promoting channel 

heterogeneity and transporting nutrients and sediments both longitudinally and laterally (Junk et 

al. 1989; Poff et al. 1997). Thus, higher flow events are indirectly important for successful 

spawning over the longer term.  

Shoal Bass and Largemouth Bass hatch success were also associated with water temperature; 

however, temperature was multicollinear with other factors not included in my models. 

Temperature is a common cue associated with spawning phenology in black basses (Graham and 

Orth 1987; Warren 2009). Thermal conditions can influence spawn timing (Shuter et al. 1980; 
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Isely et al. 1987) and egg and fry development (Wrenn 1984) of black basses, but cues can vary 

spatially (Graham and Orth 1986; Dauwalter and Fisher 2007a; Rogers and Allen 2009; Miller and 

Brewer 2021). Temperature is among a suite of biotic (e.g., gonadotropin, Brown et al. 2019) and 

environmental (e.g., flow, photoperiod, presence of mates, de Vlaming 1972; Munz and Higgins 

2013; Enriquez et al. 2016) factors that come together to set spawning chronologies. Water 

temperatures in my study area were negatively correlated with average discharge and positively 

correlated with calendar week of hatch and the number of days since peak spring flows. Therefore, 

I cannot isolate the relationship with water temperature from discharge conditions or photoperiod. 

Such interconnected relationships with environmental conditions may reflect the complexity of 

interactions between flow, temperature, and photoperiod related to spawn timing and hatch success 

resulting in seemingly different relationships among years (Reynolds and O’Bara 1991; Sabo and 

Orth 1995; Miller and Brewer 2020). My study had similar environmental conditions during the 

spring hatching season (apart from June 2023 flood pulse) between years, with neither being 

extremely wet nor dry. Monitoring recruitment in these populations over a longer period might 

better illuminate how environmental conditions interact to inform hatching success. Likewise, lab 

studies can complement field studies by isolating single factors and understanding the strength of 

interactions to facilitate making recruitment predictions.  

The spatial and temporal variability of my hatches and hatch frequencies rely on several 

assumptions. One major assumption, given my models did not account for incomplete sampling 

detection, is that my samples reflected the true relative abundance of each site. In many cases, this 

may be approximated; however, sampling efficiency for juvenile black bass can be relatively low 

in some systems (Jackson and Noble 1995; Young 2022). Several factors can affect sampling 

efficiency when using electrofishing including water temperature (Borkholder and Parsons 2001), 
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water depth (Dauwalter and Fisher 2007b), channel width, and visibility (Price and Peterson 2010; 

Lyon et al. 2014). Thus, during periods of higher water when visibility was reduced, it was more 

likely that I could have missed some bass at various sites. However, it is unlikely that I would have 

missed complete hatches across the spawning season with multiple sampling attempts in 

Ichawaynochaway, Muckalee, and Kinchafoonee creeks in 2023. Thus, although my sampling was 

likely biased during some period based on physicochemical conditions, the larger spatial and 

temporal patterns are likely unaffected. Moreover, when discharge was low and I did not detect 

juvenile bass, it is most likely an artifact of failed spawning or hatching due to extreme flow events 

rather than related to sampling detection. Of course, lack of detection does not indicate that fish 

were not spawning.  

Spawning may occur over a broader spatial and temporal scale, but spawning does not always 

relate to successful hatching. For example, I observed gravid adult females in Ichawaynochaway 

Creek and a male guarding a nest in Kinchafoonee Creek in May 2023 even though we did not 

detect juveniles. The record flood in mid-June may have been detrimental to age-0 Shoal Bass in 

many of the tributaries before they were at a size where they would be detected by my sampling 

gear. Multi-year recruitment failure of Shoal Bass in the Chipola River was similarly attributed to 

spring and summer high flows (Woodside et al. 2015). The relationship between spawning and 

successful hatches may vary over time depending on water quality and quantity (Mueller et al. 

2017; Wedgeworth et al. 2022), groundwater contributions (Power et al. 1999), disease and fungus 

(Reynolds and O’Bara 1991), and density-dependent factors (Vandenbos et al. 2006; Allen et al. 

2011).    

Physical spawning and rearing habitat were not quantified in this study but can have a 

marked influence on the survival and growth of age-0 black bass. For instance, age-0 abundance 
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of riverine Smallmouth Bass and Neosho Bass were influenced by fine scale (e.g., velocity, cover 

type; Simonson and Swenson 1990; Pert et al. 2002; Dauwalter and Fisher 2007a; Brewer et al. 

2019) and landscape-scale habitat factors (e.g., land use; Brewer and Rabeni 2011) including 

network position (Miller and Brewer 2020). Shoal Bass spawning and age-0 habitat has been 

studied in the Chipola River (Wheeler and Allen 2003; Bitz et al. 2015) but physicochemical 

factors (e.g., geology, drainage area, groundwater influence; Couch et al. 1996; Torak and Painter 

2006) differ greatly across the range of this species. Additionally, we know very little about how 

habitat influences survival and growth of age-0 riverine Shoal Bass and Largemouth Bass.  

My results indicate that Largemouth Bass daily growth was not as strongly associated with 

flow and water temperature as was Shoal Bass growth. The low R2 values associated with 

Largemouth Bass growth models indicate that there are other biotic and/or abiotic factors related 

to early life growth. Factors such as prey type and availability (Olson et al. 2003; Nohner et al. 

2018), disease (Walsh et al. 2018; Schall et al. 2020), habitat availability (Lukas and Orth 1995; 

Irwin et al. 1997; Dutterer et al. 2013), density dependence (Deangelis et al. 1993), and interactions 

among them can dictate early-life growth in black bass. For example, fall weights of juvenile 

Largemouth Bass in five Ohio reservoirs declined with higher bass densities (Garvey et al 2000). 

In the upper Flint and Chipola rivers, juvenile Shoal Bass diets mainly consisted of insects, 

whereas Largemouth Bass were primarily piscivorous during the first summer of life (Wheeler and 

Allen 2003; Sammons 2012). Similarly, juveniles of each species were associated with differing 

channel units and substrates (Wheeler and Allen 2003). Differences in diet and habitat use between 

these species may explain why Shoal Bass growth variability in my data was better explained by 

my models than that of Largemouth Bass (i.e., high R2).  
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I found growth of age-0 Shoal Bass was negatively related to increasing discharge which 

may have reduced optimum velocity habitats (e.g., optimum refugia, Simonson and Swenson 

1990; Swenson et al. 2002). Similar relationships were found for both young-of-year Spotted Bass 

(Ramsey 2023) and Neosho Bass (Miller 2019) in rivers of Oklahoma, Arkansas, and Texas. 

Decreased growth at higher flows may be related to several factors including greater 

concentrations of suspended solids diminishing invertebrate communities (i.e., main component 

of age-0 Shoal Bass diet; Bilotta and Brazier 2008), impairing foraging efficiency (i.e., impaired 

vision; Shaw and Richardson 2001), and causing physiological stress (e.g., gill abrasion; 

Newcombe and Jensen 1996; Young et al. 2011). Also, higher discharges may increase 

bioenergetic cost of swimming and associated foraging leading to lower growth rates (Shaw and 

Richardson 2001; Weyers et al. 2003).  

Temperature and growth are strongly coupled in warmwater fish species.  Thus, optimal 

growth occurs at species-specific optimal temperatures (Coutant 1977; Coutant and Deangelis 

1983). The highest growth rates in Shoal Bass were associated with mean temperatures between 

27-29 °C. Temperature was also highly correlated with hatch date revealing that earlier hatched 

individuals grew slower. It is often context dependent in juvenile black bass whether hatching 

early versus late confers an advantage to survival in the first year of life. For fish that hatch earlier, 

they have a longer period to grow prior to the first winter. However, the temperature when they 

hatch can dictate early growth and thus, the size at which juveniles switch to piscivory (Phillips et 

al. 1995; Ludsin and DeVries 1997). The timing of environmental perturbations can also influence 

both growth and survival (Sabo and Orth 1995; Bunn and Arthington 2002). Altogether, these 

factors may influence size advantages of juveniles as they enter their first winter (Phillips et al. 

1995; Ludsin and DeVries 1997). Overall, variability in growth rates and hatch dates of a year-
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class results in population heterogeneity which in turn confers resilience to environmental 

stochasticity.   

My results add to the broader knowledge of black bass ecology and thus, are useful for 

developing black bass management and conservation plans. In tandem with other studies (Long 

and Porta 2019; Sammons et al. 2021), my results emphasize a relatively short window for 

successful Shoal Bass hatching. This may help inform hatcheries of more appropriate water 

temperatures if propagation is needed. However, determining the thermal tolerance of Shoal Bass 

juveniles and adults would also be useful for propagation and understanding longer-term trends in 

Shoal Bass populations. In conjunction with findings from my movement analyses (Chapter 2), 

my results highlight important locations and likely habitats in the LFRC where Shoal Bass and 

Largemouth Bass hatching and rearing are occurring. Finally, it appears that hydropeaking flows 

may be negatively related to the hatch success and growth of age-0 black basses in this system. 

The lower Flint River has one of the last strong populations of Shoal Bass within its native range 

(Sammons 2021). Stocking fingerlings was completed in previous years (T. Ingram, GADNR, 

personal communication), indicating successful spawning is a management concern in the lower 

Flint River. Spawning by the in-river population is preferred over stocking for a variety of reasons 

(e.g., genetic integrity, disease, cost), thus local managers might consider prioritizing conditions 

that lead to reproductive success of this endemic species. Extension of the time when hydropeaking 

conditions are not occurring could positively influence recruitment, particularly when natural 

spring flood cues occur later in the year. Monitoring of the juvenile year class strength of this stock 

can help better inform adaptive management strategies.   
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Chapter III Tables 

 

Table 1. Number of fish surveys completed at each site between May-August during 2022 and 2023. I sampled 

11 sites in 2022 and 25 sites in 2023 (Figure 1).  Site numbers are listed from upstream to downstream for each 

stream. AAD = above (upstream) Albany Dam, BAD = below (downstream) Albany Dam. 

 

Stream Site number 2022 2023 Total 

Abrams Creek 1 - 6 6 

Chickasawhatchee Creek 7 1 5 6 
 15 - 3 3 

Cooleewahee Creek 17 - 7 7 

Ichawaynochaway Creek 18 - 3 3 
 28 - 2 2 
 19 - 2 2 
 24 1 3 4 
 20 1 4 5 
 31 4 5 9 

Kinchafoonee Creek 22 - 3 3 
 21 - 3 3 
 14 - 3 3 
 23 2 5 7 
 29 1 5 6 

Muckalee Creek 26 - 4 4 
 5 - 4 4 
 10 - 4 4 
 9 2 7 9 

Flint River AAD 32 - 10 10 
 16 2 8 10 

Flint River BAD 2 3 10 13 
 6 - 2 2 
 30 1 4 5 
 12 1 5 6 
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Table 2. U.S. Geological Survey stream gauges used to obtain discharge data for age-0 hatch and growth analyses. Mean annual flow values over the 

period of record are provided for each gauge. Ordered by stream from most upstream gauge to most downstream. Flint River at Warwick data were 

provided from the Crisp County Power Commission for the year 2023. No stream gauges were present for Abrams or Cooleewahee creeks. DA = 

Drainage area in km2, Qmean = mean annual flow in m3/s, QSD = standard deviation of mean annual flow in m3/s, Period = number of years of available 

flow data. AAD = above (upstream) Albany Dam, BAD = below (downstream) Albany Dam. 

Stream 

USGS 

stream 

gauge 

number 

Location Latitude Longitude DA Qmean QSD Period 

Ichawaynochaway 2353265 Morgan 31.52695 -84.58278 779.59 7.99 3.48 14 

Ichawaynochaway 2353500 Milford 31.38278 -84.54639 1616.16 20.84 7.56 78 

Ichawaynochaway 2354800 Elmodel 31.29389 -84.49194 2590.00 25.74 13.93 20 

Ichawaynochaway 2355350 Newton 31.21750 -84.47083 2693.60 21.86 16.37 11 

Chickasawhatchee 2354350 Albany 31.59378 -84.45325 305.62 3.31 1.50 14 

Chickasawhatchee 2354500 Elmodel 31.35056 -84.48250 841.75 8.55 5.35 30 

Flint AAD NA Warwick 31.84938 -83.94666 9764.30 145.58 134.19 1 

Flint AAD 2350512 Leesburg 31.72500 -84.01861 10196.83 118.93 42.48 57 

Flint BAD 2352500 Albany 31.59417 -84.14417 13701.10 167.92 58.33 105 

Flint BAD 2353000 Newton 31.30694 -84.33889 14946.89 177.26 57.48 68 

Flint BAD 2355662 Hopeful 31.14056 -84.48028 17961.65 185.48 82.69 13 

Kinchafoonee 2350600 Preston 32.05250 -84.54833 510.23 5.75 2.04 48 

Kinchafoonee 2350900 Dawson 31.71962 -84.18546 1517.74 22.34 10.82 30 

Muckalee 2351500 Americus 32.08306 -84.25806 362.60 3.77 1.33 14 
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Muckalee 2351890 Leesburg 31.77611 -84.13944 937.58 10.28 4.53 35 

Abrams NA Oakfield 31.71868 -83.98866 205.90 NA NA NA 

Cooleewahee NA Newton 31.33166 -84.33076 404.04 NA NA NA 
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Table 3. Environmental covariates used for hatch and growth analyses organized by stream name and site 

number (Figure 1). Means and ranges (in parentheses) of mean daily temperature (Temp; C) for 2022 and 2023 

sampling seasons and date of peak flow recorded in spring of each sampling year (PF2022 and PF2023) are 

included. No sampling occurring at a site in 2022 is denoted by ‘-‘. Streamflow data were not available for 

either Abrams or Cooleewahee creeks (NA). AAD = above (upstream) Albany Dam, BAD = below 

(downstream) Albany Dam. 

 

Stream Site number Temp 2022 Temp 2023 PF2022 PF2023 

Abrams Creek 1 - 
21.92 

(12.38-27.15) 
- NA 

Chickasawhatchee 

Creek 
15 - 

22.83 

(11.37-29.3) 
- 2/1 

 7 - 
22.47 

(11.49-29.32) 
- 2/4 

Cooleewahee Creek 17 - 
22.61 

(12.74-27.74) 
- NA 

Ichawaynochaway 

Creek 
18 - 

21.79 

(11.0-26.6) 
- 1/31 

 28 - 
22.38 

(11.71-27.92) 
- 2/2 

 19 - 
23.02 

(11.59-29.06) 
- 2/2 

 24 
23.68 

(11.32-29.61) 

23.01 

(11.59-29.06) 
1/19 2/2 

 20 
23.76 

(11.98 -29.87) 

23.42 

(12.42-28.47) 
1/20 2/3 

 31 
23.28 

(12.06-29.25) 

22.76 

(12.78-27.93) 
1/20 2/3 

Kinchafoonee Creek 22 - 
21.37 

(10.45-26.87) 
- 1/31 

 21 - 
21.28 

(10.61-27.58) 
- 1/31 



 

97 
 

 14 - 
21.68 

(10.77-28.01) 
- 2/1 

 23 
22.59 

(10.84-29.06) 

22.20 

(12.21-29.14) 
4/11 2/2 

 29 
22.59 

(10.84-29.06) 

22.60 

(12.66-29.67) 
4/11 2/2 

Muckalee Creek 26 - 
22.71 

(11.65-28.20) 
- 1/31 

 5 - 
22.10 

(11.70-28.13) 
- 1/31 

 10 - 
21.76 

(11.58-28.26) 
- 2/2 

 9 
22.36 

(11.05-28.90) 

22.50 

(11.85-29.39) 
4/8 2/2 

Flint River AAD 32 - 
24.18 

(13.64-31.29) 
- 4/1 

 16 
24.84 

(10.96-31.43) 

24.23 

(13.40-31.57) 
4/11 4/1 

Flint River BAD 2 
24.83 

(10.97-31.39) 

24.24 

(11.89-31.40) 
4/11 4/2 

 6 - 
24.13 

(12.74-30.37) 
- 4/2 

 30 
23.67 

(11.65-30.08) 

23.15 

(12.55-29.15) 
4/13 4/3 

 12 
23.77 

(11.92-30.15) 

24.08 

(13.11-30.43) 
4/13 4/4 

 

 



 

98 
 

Table 4. Environmental data collected to relate to variation in age-0 hatch timing, hatch success, and daily growth. 

 

Covariate Unit Gear/Source Justification and citation 

Temperature °C 
Hobo Pendant Logger, NEON 

buoy 

Temperature is a highly correlated with spawning initiation 

and growth rate in black basses 1,2,3 

Scaled discharge m/s 
USGS-stream gauge, NHDPlus 

Flowlines 

Black bass spawning and hatch success is linked to discharge 

and flood pulses1,4,5 

Calendar day 1 d Days since Jan. 1st 

Photoperiod is an influential cue in spawning timing in stream 

fishes6 due to consistency across years7, and hatch timing 

within a spawning season may affect survival and growth8,9 

Days post-peak spring 

flood 
1 d 

Days since highest recorded 

flow in that calendar year 

Many species of black bass have been observed to 

successfully hatch after flood pulses and during periods of 

receeding and stable flows4,5,8 

1. (Graham and Orth 1986) 2. (Rogers and Allen 2009) 3. (Long and Porta 2019) 4. (Sammons et al. 2021) 5. (Bestgen 2016) 6. (de Vlaming 

1972) 7. (O’Brien et al. 2012) 8. (Shuter et al. 1980) 9. (Goodgame and Miranda 1993) 
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Table 5. Pearson’s Correlation matrix (rho values) for environmental covariates used for age-0 hatch date 

analysis. Mean Q = mean discharge (m3/s) scaled by catchment area 7-days prior to hatch week, Mean temp = 

mean temperature (C) 7-days prior to hatch week, CV Q = coefficient of variation in discharge scaled by 

catchment area 7-days prior to hatch week, ROC Q = rate of change scaled discharge 14-days prior to hatch 

week, Post peak = number of days post-peak spring flow, Week = calendar week of hatch.  

 

 Mean Q Mean temp CV Q ROC Q Post peak Week 

Mean Q 1.00      

Mean temp -0.61 1.00     

CV Q 0.01 0.31 1.00    

ROC Q 0.24 0.01 0.25 1.00   

Post-peak -0.55 0.73 0.26 0.04 1.00  

Week -0.58 0.92 0.33 0.05 0.86 1.00 
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Table 6. Summary of considered covariate combinations for hatch analyses (zero and count models). Temp = 

mean daily temperature (C) 7-d prior to hatch week, CV Q = coefficient of variation in instantaneous (15 

minute) values of discharge 7-d prior to hatch week, ROC Q = rate of change in mean daily discharge 14 d prior 

to hatch week, Year = the categorical fixed effect of year where 2022 was the reference. The random effect of 

stream was included in all models. Quadratic terms of each continuous variables in negative-binomial models 

(count models) were also considered.  

 

Model Description 

~ Temp + CV Q + ROC Q + Year 

~ Temp + CV Q + Year 

~ Temp + ROC Q + Year 

~ Temp + CV Q + ROC Q 

~ CV Q + ROC Q + Year 

~ CV Q + ROC Q 

~ CV Q + Year 

~ Temp + CV Q 

~ Temp + ROC Q 

~ Temp + Year 

~ ROC Q + Year 

~ ROC Q 

~ Temp 

~ CV Q 
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Table 7. Pearson’s Correlation matrix (rho values) for environmental covariates used for age-0 growth-rate 

analysis. Hatch day = calendar day of hatch. All other covariates were measured between hatch date and capture 

date of each fish. Mean Q = mean discharge (m3/s) scaled by catchment area, Mean temp = mean temperature 

(C), CV Q = coefficient of variation in discharge scaled by catchment area.  

 

 Mean Q CV Q Mean temp Hatch Day 

Mean Q 1.00    

CV Q 0.33 1.00   

Mean temp -0.56 -0.26 1.00  

Hatch Day -0.27 0.02 0.60 1.00 
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Table 8. Summary of considered covariate combinations for growth analyses. Temp = mean daily temperature 

(C), CV Q = coefficient of variation of discharge, Mean Q = mean daily discharge (m3/s), Year = the 

categorical fixed effect of year where 2022 was the reference. The random effect of stream was included in all 

models.  

 

Model Description  

~ Temp + CV Q + Mean Q + Year 

~ Temp + Mean Q + Year 

~ Temp + CV Q + Year 

~ CV Q + Mean Q + Year 

~ Temp + CV Q + Mean Q 

~ Temp + Mean Q 

~ Temp + CV Q 

~ Temp + Year 

~ CV Q + Year 

~ CV Q + Mean Q 

~ Mean Q + Year 

~ Temp 

~ CV Q  

~ Mean Q  
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Table 9. The total number of age-0 Largemouth Bass and Shoal Bass collected from each of 25 sites (8 streams; 

Figure 1) during the summers of 2022 and 2023. Totals sum both 2022 and 2023 counts. ‘-‘ indicates site was 

not sampled in 2022. Site numbers are listed from upstream to downstream for each stream. AAD = above 

(upstream) Albany Dam, BAD = below (downstream) Albany Dam. 

 

Species Stream Site 2022 2023 Site Total Stream Total 

Largemouth Bass Abrams Creek 1 - 11 11 11 

 
Chickasawhatchee 

Creek 
15 - 0 0 21 

  7 0 21 21  

 Cooleewahee Creek 17 - 18 18 18 

 Ichawaynochaway 

Creek 
18 - 0 0  

  28 - 39 39  

  19 - 2 2  

  24 0 2 2  

  20 1 0 1  

  31 2 0 2 46 

 Kinchafoonee Creek 22 - 0 0  

  21 - 2 2  

  14 - 4 4  

  23 0 10 10  

  29 6 10 16 32 

 Muckalee Creek 26 - 0 0  

  5 - 23 23  

  10 - 7 7  

  9 44 4 48 78 

 Flint River AAD 32 - 178 178  

  16 30 18 48 226 

 Flint River BAD 2 27 30 57  

  6 - 9 9  

  30 2 18 20  
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  12 2 9 11 97 

Shoal Bass Abrams Creek 1 - 0 0 0 

 Chickasawhatchee 

Creek 
7 0 0 0  

  15 - 0 0  

 Cooleewahee Creek 17 - 0 0 0 

 Ichawaynochaway 

Creek 
18 - 0 0  

  28 - 0 0  

  19 - 0 0  

  24 0 0 0  

  20 0 0 0  

  31 12 0 12 12 

 Kinchafoonee Creek 22 - 0 0  

  21 - 0 0  

  14 - 0 0  

  23 0 0 0  

  29 0 0 0 0 

 Muckalee Creek 26 - 0 0  

  5 - 0 0  

  10 - 0 0  

  9 1 0 1 1 

 Flint River AAD 32 - 52 52  

  16 104 14 118 170 

 Flint River BAD 2 21 64 85  

  6 - 0 0  

  30 2 6 8  

  12 9 4 13 106 
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Table 10. Summary of age and hatch date estimates for Largemouth Bass and Shoal Bass collected from sites in the lower Flint River catchment 

during summer 2022 and 2023. Abrams and Cooleewahee creeks were not sampled in 2022; ‘-‘ therefore indicates either the stream was not sampled 

or that species was not found at that site during that year. The location of hatch (Stream), the number of otoliths aged in 2022 (R: retained otoliths 

meeting between reader agreement criteria in parentheses), otoliths aged in 2023 (R), the number of weeks during which a hatch occurred in 2022 

(HW2022) and 2023 (HW2023), average total length (TL; mm) of each species, Age (d), and range of hatch dates in 2022 (HD2022) and 2023 

(HD2023). AAD = above (upstream) Albany Dam, BAD = below (downstream) Albany Dam. 

 

Species Stream 
2022 Aged 

(R) 

2023 Aged 

(R) 
HW2022 HW2023 TL Ages HD2022 HD2023 

Largemouth 

Bass 
Abrams Creek - 11 (11) - 8 29.5-84.92 40-103 - 3/20-5/17 

 Chickasawhatchee 

Creek 
- 21 (21) - 11 29.78-77.87 33-127 - 3/10-6/23 

 Cooleewahee Creek - 18 (17) - 10 30.37-79.65 30-111 - 3/24-6/26 

 Ichawaynochaway 

Creek 
4 (4) 43(43) 3 7 24.4-94.07 29-125 3/15-4/8 3/11-5/29 

 Kinchafoonee Creek 6 (6) 26 (25) 5 10 37.01-83.89 42-131 3/20-4/28 3/27-5/24 

 Muckalee Creek 44 (43) 34 (31) 6 12 23.11-80.26 36-124 3/24-5/18 3/12-6/2 

 Flint River AAD 30 (30) 184 (177) 5 11 26.44-98.04 30-133 4/29-6/1 3/20-6/10 

 Flint River BAD 27 (27) 66 (66) 7 15 26.86-110.81 31-158 3/23-5/18 3/11-6/23 

Shoal Bass Abrams Creek - - - - - - - - 
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 Chickasawhatchee 

Creek 
- - - - - - - - 

 Cooleewahee Creek - - - - - - - - 

 Ichawaynochaway 

Creek 
12 (12) - 5 - 19.1-84.26 26-73 5/9-6/2 - 

 Kinchafoonee Creek - - - - - - - - 

 Muckalee Creek 1 (1) - 1 - 55.11 48 5/6 - 

 Flint River AAD 104 (101) 66 (64) 6 6 27.97-113.20 35-116 4/29-6/4 4/16-5/22 

 Flint River BAD 32(31) 74(73) 6 6 48.79-116.88 54-118 4/25-5/26 4/20-5/26 
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Table 11. Summary of mean and range (in parentheses) estimates of growth rate (mm/day) for Largemouth Bass 

and Shoal Bass for each stream during 2022 (GR2022) and 2023 (GR2023). AAD = above (upstream) Albany 

dam, BAD = below (downstream) Albany Dam.  

 

Species Stream GR2022 GR2023 

Largemouth 

Bass 
Abrams Creek - 0.72 (0.58-0.86) 

 Chickasawhatchee 

Creek 
- 0.74 (0.60-1.01) 

 Cooleewahee Creek - 0.81 (0.63-1.01) 

 Ichawaynochaway 

Creek 
0.85 (0.75-1.05) 0.83 (0.55-0.97) 

 Kinchafoonee 

Creek 
0.75 (0.58-0.97) 0.73 (0.50-1.29) 

 Muckalee Creek 0.69 (0.58-0.82) 0.71 (0.45-1.03) 

 Flint River AAD 1.08 (0.81-1.48) 0.84 (0.57-1.40) 

 Flint River BAD 0.88 (0.73-1.09) 0.76 (0.56-1.22) 

Shoal Bass Abrams Creek - - 

 Chickasawhatchee 

Creek 
- - 

 Cooleewahee Creek - - 

 Ichawaynochaway 

Creek 
0.98 (0.65-1.34) - 

 Kinchafoonee 

Creek 
- - 

 Muckalee Creek 1.148 (1.148-1.148) - 

 Flint River AAD 1.19 (0.86-1.58) 0.88 (0.67-1.14) 

 Flint River BAD 1.14 (0.80-1.51) 0.91 (0.71-1.17) 
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Table 12. Top ranked binomial models (zero models) describing the relationship between the probability of Largemouth Bass and Shoal Bass hatches 

and my covariates. The degrees of freedom (df), and log-likelihood (logLik) are indicated for each model, Akaike’s information criterion correlated 

for small sample size (AICc), the difference of between each model and the top ranked model (ΔAICc), model weight (𝑤i), and the conditional (𝑅2
c ; 

variance explained by fixed and random effects) and the marginal (𝑅2
m ; variance explained by fixed effects) R2 values are also reported. Included 

covariates were mean temperature (Temp; °C), coefficient of variation of discharge (CV Q), rate of change of discharge (ROC Q), and the categorical 

fixed effect of year where 2022 was the reference. The random effect of stream was included in all models. 

 

Species Model df logLik AICc ΔAICc wi R2
c R2

m 

Largemouth Bass Temp + Year 4 -292.39 592.84 0.00 0.33 0.25 0.19 

 Temp + CV Q + Year 5 -291.92 593.92 1.09 0.19 0.25 0.19 

         

Shoal Bass CV Q + ROC Q 4 -109.61 227.59 0.00 0.49 0.38 0.30 

 Temp + CV Q + ROC Q 5 -109.39 229.15 1.58 0.22 0.42 0.32 

 CV Q + ROC Q + Year 5 -109.61 229.42 1.83 0.20 0.37 0.30 
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Table 13. Estimates (logit) of each covariate included in the top model related to the probability of successful hatch for Largemouth Bass and Shoal 

Bass. The standard error (SE), 95% confidence interval (CI) and p-values (P) are provided for each estimate. Included covariates represent mean 

temperature (Temp; °C), coefficient of variation of discharge (CV Q), rate of change of discharge (ROC Q), and the categorical fixed effect of year 

where 2022 was the reference. The random effect of stream was included in all models.  

 

Species Covariate Estimate SE 95% CI P 

Largemouth Bass Intercept -2.06 0.32 (-2.74, -1.37) <0.0001 

 Temp -0.86 0.11 (-1.08, -0.64) <0.0001 

 Year 0.50 0.25 (0.02,0.99) 0.04 

      

Shoal Bass Intercept -2.19 0.38 (-3.08, -1.46) <0.0001 

 CV Q -0.89 0.25 (-1.41, -0.40) 0.0004 

 ROC Q -0.72 0.20 (-1.15, -0.35) 0.0004 
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Table 14.  Top ranked negative binomial models (count models) for describing the relationship between the 

frequency of Largemouth Bass and Shoal Bass hatches and my covariates. The degrees of freedom (df), and 

log-likelihood (logLik) are indicated for each model, Akaike’s information criterion correlated for small sample 

size (AICc), the difference of between each model and the top ranked model (ΔAICc), and model weights (𝑤i) 

are also reported. Included covariates represent mean temperature (Temp; °C), coefficient of variation of 

discharge (CV Q), rate of change of discharge (ROC Q), and the categorical fixed effect of year where 2022 

was the reference. The random effect of stream was included in all models.  

 

Species Model df logLik AICc ΔAICc wi 

Largemouth Bass CV Q 4 -224.77 457.87 0.00 0.19 

 CV Q + ROC Q2 6 -223.40 459.49 1.62 0.08 

 CV Q + Year 5 -224.56 459.61 1.74 0.08 

       

Shoal Bass ROC Q 4 -115.73 240.46 0.00 0.13 

 Mean T 4 -116.04 241.08 0.62 0.10 

 Mean T + Year 5 -115.01 241.56 1.10 0.08 

 CV Q 4 -116.32 241.63 1.18 0.07 

 Meant T2 5 -115.36 242.26 1.81 0.05 

 ROC Q2 5 -115.41 242.36 1.91 0.05 
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Table 15. Estimates (log) of each covariate included in the top model related to the frequency of successful 

hatches for Largemouth Bass and Shoal Bass. The standard error (SE), 95% confidence interval (CI) and p-

values (P) are provided for each estimate. Included covariates represent mean temperature (Temp; °C), 

coefficient of variation of discharge (CV Q), rate of change of discharge (ROC Q), and the categorical fixed 

effect of year where 2022 was the reference. The random effect of stream was included in all models.  

 

 

Species Covariate Estimate SE 95% CI P 

Largemouth Bass Intercept -1.73 4.23 (-10.03, 6.56) 0.68 

 CV Q -0.60 0.20 (-0.98, -0.21) 0.004 

      

Shoal Bass Intercept -0.2 3.4 (-6.85, -0.20) 0.95 

 ROC Q 0.46 0.34 (-0.20, 1.12) 0.17 

      

 Intercept 0.51 2.14 (-3.69, 4.72) 0.81 

 Mean T (quadratic) -0.39 0.30 (-0.97, 1.00) 0.19 
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Table 16. Top ranked linear regression models of daily growth rate for age-0 Largemouth Bass and Shoal Bass 

and their AICc scores. The degrees of freedom (df), and log-likelihood (logLik) are indicated for each model, 

Akaike’s information criterion correlated for small sample size (AICc), the difference of between each model 

and the top ranked model (ΔAICc), model weight (𝑤i), and the conditional (𝑅2
c ; variance explained by fixed 

and random effects) and the marginal (𝑅2
m ; variance explained by fixed effects) R2 values are also reported. 

Included covariates represent mean temperature (Temp; °C), CV of scaled discharge (CV Q), mean scaled 

discharge (Mean Q), and the categorical fixed effect of year where 2022 was the reference. The random effect 

of stream was included in all models. 

 

 

Species Model df logLik AICc ΔAICc wi 𝑅2
c 𝑅2

m 

Largemouth Bass CV Q + Mean Q + Year 6 259.53 -506.88 0.00 0.84 0.33 0.14 

         

Shoal Bass Mean Q + Year 5 163.79 -317.36 0.00 0.68 0.67 0.40 

 Mean Temp + Year 5 162.85 -315.49 1.87 0.27 0.58 0.49 
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Table 17. Estimates of each covariate included in the top model related to growth of age-0 Largemouth Bass 

and Shoal Bass. The standard error (SE), 95% confidence interval (CI) and p-values (P) are provided for each 

estimate. Included covariates represent mean temperature (Temp; °C), CV of scaled discharge (CV Q), mean 

scaled discharge (Mean Q), and the categorical fixed effect of year where 2022 was the reference. The random 

effect of stream was included in all models. 

 

 

Species Covariate Estimate SE 95% CI P 

Largemouth Bass Intercept 0.95 0.04 (0.88, 1.02) <0.0001 

 CV Q -0.04 0.01 (-0.06, -0.02) 0.0001 

 Mean Q 0.06 0.01 (0.03, 0.08) <0.0001 

 Year -0.20 0.02 (-0.25, -0.15) <0.0001 

      

Shoal Bass   Intercept 1.04 0.07 (0.90, 1.19) <0.0001 

 Mean Q -0.06 0.02 (-0.11, -0.01) 0.01 

 Year -0.17 0.05 (-0.26, -0.08) 0.003 

      

 Intercept 1.12 0.04 (1.05, 1.20) <0.0001 

 Temp 0.03 0.01 (0.01, 0.05) 0.012 

 Year -0.23 0.02 (-0.28, -0.19) <0.0001 
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Chapter III Figures 

 
Figure 1: The lower Flint River catchment within the Dougherty Plain (dark gray) and Fall Line Hills (light 

gray) physiographic regions showing the study extent for age-0 hatch timing and growth analyses. Black X’s 

represent hydropower and low-head dams, black triangles are USGS stream gauge locations, empty circles are 

numbered hatch (sampling) sites which are also associated with continuous temperature loggers. The thick 

black line is the lower Flint River, thin black lines are major tributaries, and blue polygons are impoundments. 
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Figure 2: Example of sagittal otolith from age-0 Shoal Bass Micropterus cataractae viewed under a 

10X magnification compound microscope (Nikon Eclipse E400 compound microscope). Each daily 

growth ring has an opaque and translucent unit. Opaque units were counted from the edge of the otolith 

towards the center. This fish had 34 daily rings, and therefore was estimated to be 39 days old (to 

account for 5 days swim-up time) at time of capture. 
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Figure 3. Sites where I detected and did not detect age-0 Largemouth Bass (LMB) during the 2022 and 2023 

sampling seasons. White circles represent non-detection only in 2023, black circles represent detection only in 

2023, black triangles represent detection in both years, and gray squares represent detection only in 2022. Not 
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all sites were sampled both years. The thick black line is the lower Flint River, thin black lines are major 

tributaries, and blue polygons are impoundments. 

 
Figure 4. Sites where I detected and did not detect age-0 Shoal Bass (SHB) during the 2022 and 2023 sampling 

seasons. White circles represent non-detection only in 2023, black circles represent detection only in 2023, 

white triangles represent non-detection both years, black triangles represent detection in both years, and gray 
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squares represent detection only in 2022. Not all sites were sampled both years. The thick black line is the lower 

Flint River, thin black lines are major tributaries, and blue polygons are impoundments. 
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Figure 5. Frequency of age-0 bass hatch dates across all sites for the 2022 and 2023 hatching seasons. Left panels display Shoal Bass hatches, right 

panels display Largemouth Bass hatches, top panels display 2022 hatches, bottom panels display 2023 hatches. Observed hatches are grouped into 

week-long (7 day) bins with the dates displayed on the x-axes being the beginning of each week. 

 
 

* 
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Figure 6. Largemouth Bass hatch dates across all lower Flint River sites for the 2022 and 2023 hatching seasons. Left panels display 2022 hatches, 

right panels display 2023 hatches, top panels display hatches for sites above Albany Dam (AAD), bottom panels display hatches for sites below 

Albany Dam (BAD). Observed hatches are grouped into week-long (7 day) bins with the dates displayed on the x-axes being the beginning of each 

week. Blue lines are mean daily discharge and bars represent the number of hatches per week. Weeks with over 40 hatches are indicated by “*”: 64 

hatches on the week of April 19th, 2023 in Flint AAD.  
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Figure 7. Largemouth Bass hatch dates across three tributaries for the 2022 and 2023 hatching seasons. Left panels display 2022 hatches, right panels 

display 2023 hatches, top panels display hatches for sites on Ichawaynochaway Creek, middle panels display hatches for sites on Muckalee Creek, 

and bottom panels display hatches for sites on Kinchafoonee Creek. Observed hatches are grouped into week-long (7 day) bins with the dates 

displayed on the x-axes being the beginning of each week. Blue lines are mean daily discharge and bars are the number of hatches per week. Weeks 

* 

* 
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with over 10 hatches are indicated by “*”: 31 hatches on the week of May 24th, 2023 in Ichawaynochaway Creek, and 28 hatches on the week of May 

10th, 2022 in Muckalee Creek are not displayed.  
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Figure 8. Largemouth Bass hatch dates across three tributaries for the 2023 hatching season. Top panel displays 

hatches for Abrams Creek, middle panel displays hatches for Cooleewahee Creek, and bottom panel displays 

hatches for Chickasawhatchee Creek. Observed hatches are grouped into week-long (7 day) bins with the dates 

displayed on the x-axes being the beginning of each week. Blue line is the mean weekly discharge and bars are 

the number of hatches per week. Discharge data were not available for Abrams and Cooleewahee creeks.



 

125 
 

 
 

Figure 9. Shoal Bass hatch dates across all LFRC sites for the 2022 and 2023 hatching seasons. Top panels display tributary sites where age-0 SHB 

were detected in 2022 (left – Ichawaynochaway, right – Muckalee). Age-0 SHB were not detected at any tributary sites in 2023. Middle panels 

display hatches for sites above Albany Dam (AAD; left – 2022, right - 2023), bottom panels display hatches for sites below Albany Dam (BAD; left 

– 2022, right - 2023). Observed hatches are grouped into week-long (7 day) bins with the dates displayed on the x-axes being the beginning of each 

week. Blue lines are mean daily discharge and bars represent the number of hatches per week. 
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Figure 10. Largemouth Bass (left panel) and Shoal Bass (right panel) hatch dates across sites below hydropeaking dams for the 2022 and 2023 

hatching seasons. Top panel and middle panels display hatches directly downstream of Albany Dam (site 2) in 2022 (top) and 2023 (middle). 

Bottom panel displays hatches directly downstream of Warwick Dam (site 32) in 2023. Observed hatches are grouped into week-long (7 day) bins 
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with the dates displayed on the x-axes being the beginning of each week. Blue lines are discharge (1-h intervals), bars represent the number of 

hatches per week. 
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Figure 11. The difference in magnitude and timing of peak spring and summer flows between tributaries (averaged across tributaries 

where data were available, as they show similar patterns) and the mainstem Flint River. Mean daily scaled discharge (m3/s divided by 

drainage area) averaged across all gauged tributaries (red) and all stream gauges on the Flint River (black). The x-axis ranges from 

January 2022 to September 2023 with a horizontal dashed line representing the beginning of 2023. Discharge data were not available 

for Cooleewahee or Abrams creeks. 
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Figure 12. Mean daily water temperature (C) across all streams for the 2022 (red) and 2023 

(black) hatching seasons (February 15th-August 31st). Left to right and top to bottom: 

Kinchafoonee Creek, Muckalee Creek, Ichawaynochaway Creek, Flint River above Albany Dam, 

Flint River below Albany Dam, Chickasawhatchee Creek, Cooleewahee Creek, and Abrams 

Creek. 
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Figure 13. Negative relationship between Largemouth Bass hatch probability and water temperature (C) during the 2022 (left panel) and 2023 (right 

panel) spawning seasons. The shaded areas represent the 95% confidence intervals. 
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Figure 14. Negative relationships between Shoal Bass hatch probability and standardized CV of discharge (CV 

Q; top), and standardized rate of change in discharge (ROC Q; bottom). The shaded areas represent the 95% 

confidence intervals.
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Figure 15. Negative relationship between Largemouth Bass hatch frequency (negative binomial) and CV of 

discharge (CV Q). The shaded area represents the 95% confidence interval.  
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Figure 16. Relationships between Shoal Bass hatch frequency (negative binomial) and water temperature (C; 

top) and rate-of-change of scaled discharge (ROC Q; bottom). The shaded area represents the 95% confidence 

intervals. 
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Figure 17. Positive relationship between age-0 Largemouth Bass daily growth and mean discharge (m3/s; top) 

and the negative relationship between growth and the CV of discharge (CV Q; bottom). Solid lines represent 

relationships for the year 2022 and dashed lines represent relationships for the year 2023. The shaded areas 

represent the 95% confidence intervals. 
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Figure 18. Negative relationship between age-0 Shoal Bass daily growth and mean discharge (m3/s; top) in 2022 

(left) and 2023 (right) and the positive relationship between growth and mean temperature (C; bottom). On the 

bottom panel, solid lines represent relationships for the year 2022 and dashed lines represent relationships for 

the year 2023. The shaded areas represent the 95% confidence intervals. 
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Appendix 1. Radio transmitter and anchor tag surgery on Shoal Bass and Largemouth Bass for movement 

analysis. Panel A shows a transmitter incision being sutured, with antenna trailing posteriorly out of the 

incision, while fish is immersed in water and anesthetized on electroanesthesia table. Panel B shows a fish 

recaptured approximately 7 months post-operation with incision wounds healed and tag placement 

displayed.  

A 
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Appendix 2. Binned residual plots for the binomial logistic probability of hatch models (zero models). Black dots are the plotted 

residuals, and the gray lines indicate the theoretical error bounds of the model. 
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Appendix 3. DHARMa residual diagnostic plots of the top-ranked negative binomial model of the frequency of Largemouth Bass 

hatches (count model). Plots indicate reasonable model fit. The red star is an outlier that was retained after the datum was 

checked for accuracy. 
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Appendix 4. DHARMa residual diagnostic plots of the top-ranked negative binomial models of the frequency of Shoal Bass 

hatches (count models). Plots indicate reasonable model fit. Top panel is the model containing the linear term of rate-of-change 

in discharge (ROC Q). Bottom panel is the model containing the quadratic term of mean temperature.  
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Appendix 5. Binned residual plots for growth models (linear mixed effects models) for each species. Black dots are the 

plots residuals, and the gray lines indicate the theoretical error bounds of the model.  


