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Abstract

Precise estimates of irrigation yield effects are essential for farmers when making irrigation
investment decisions. The project goal is to improve our knowledge of irrigation yield effects in
the soils of the Alabama Blackland Prairie region. The study objectives encompass estimating the
irrigation yield effects of corn (Zea mays) and soybeans (Glycine max L.) based on terrain, soil,
and climate parameters and determining the variables with the highest effect on crop yield. We
evaluated two statistical analyses: Integrated Nested Laplace Approximation (INLA) and machine
learning. The first analysis, assess the individual effect of irrigation, soil, and terrain properties
on crop yield, and the second analysis evaluated four machine learning algorithms, including Sup-
port Vector Machine, Elastic Net Regression, Stepwise Regression, and Random Forest, under
the following aspects: 1) identification of variables influencing yield predictions, 2) yield predic-
tions based on adjacent fields, 3) yield predictions from irrigated fields, 4) yield prediction for a
specific year utilizing data from other years within the same field, and 5) yield prediction of one
field for a specific year using other fields with crop production in the same years. On an area of
3,400 ha with 22 pivot-irrigated and rainfed fields in the Alabama Blackland Prairie region, the
research utilized 183 yield datasets collected from shrink and swell soils from 2012 to 2021. Spa-
tial derivatives derived from elevation information from the National Elevation Database, soil data
from the POLARIS database, and drought indices calculated using precipitation, evapotranspira-
tion, and temperature data from the Parameter elevation Regressions on Independent Slopes Model
(PRISM) Climate Group were integrated into the analysis. Results from INLA showed that terrain
variables had a greater effect in corn than in soybeans yield. Although, these variables had the
greatest effect, the yield increase or decrease was minimum in both crops. Results from machine
learning showed that the accuracy of corn and soybean yield predictions is lower when relying only

on one year of training data, where terrain attributes exhibited more significant influence compared

il



to soil and climate properties. Conversely, incorporating data from multiple fields spanning several
years and diverse crop yields into the training dataset led to greater accuracy of predictions, where

the impact of climate properties is more notorious.
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Chapter 1

Introduction

Determination of precise irrigation yield effects are essential for farmers in making irrigation in-
vestment decisions. The implementation of an irrigation system greatly enhances agricultural pro-
duction and mitigates the impact of climatic variability on crop yield (Calzadilla et al., 2013). In
the United States about 71% of the freshwater is used for irrigation (Amarasinghe & Smakhtin,
2014). Irrigation is higher in areas of high productivity such as the corn belt, and reduced in the
southeast. In Alabama, the rate of irrigation adoption remains low compared to other regions in
the US despite the droughts that have occurred since early 2000’s (Shange et al.,[2014). Neverthe-
less, due to its geographical position and subtropical climate, Alabama experiences high amounts
of precipitation. Although some initiatives have been created, the utilization of this technology
remains limited. Various reasons have contributed to this phenomenon, such as the availability of
surface water, the expenses associated with accessing groundwater, and the soil properties (Price
et al., 2022)). However, researchers do not attribute the low adoption to other reasons such as soil,
terrain, or climate conditions.

Droughts have a significant impact on crop production due to their direct relationship with wa-
ter usage (Meza et al.,[2020). These droughts substantial influence in ecosystems. Particularly with
regard to the impact on human lives (Z. Hao & Singh, 2015)). Over time, many indices have been
created to accurately detect these occurrences by integrating climatic data such as rainfall, tem-
perature, or potential evapotranspiration. The Palmer Drought Severity Index (PDSI) (W. Palmer,

19635)) is one of the most recognized and utilized drought index for assessing long-term drought



conditions. Other indices such as standardized precipitation index (SPI) McKee, Doesken, Kleist,
et al. (1993) or Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano, Be-
gueria, & L.opez-Moreno, 2010) are also used. The study conducted by Pena-Gallardo et al. (2018)
found that both, the SPEI and SPI, are effective in monitoring the impact of drought on crop yield.
Also, |Pena-Gallardo, Vicente-Serrano, Quiring, et al. (2019) found the direct correlation between
the SPEI and crop yield. The drought duration was shown to have a significant influence on crop
yield, which varied depending of the crop type. Additionally, it was shown that drought assess-
ments over short time scale represent a significant impact on crop yield response, particularly at
crucial phenomenological stages.

Sometimes areas present distinctive soil and terrain characteristics that make them difficult
to manage. In Alabama there is a region called Blackland Prairie. This region encompasses the
eastern part of Mississippi as well as the central and western areas of Alabama (USDA & NRCS,
2022). The soils in this area were formed from calcareous deposits from the cretaceous period and
have a clayey or loamy texture with smectitic clay that entails volumetric changes depending on
the water content. These soils belong to the vertisol and inceptisol soil orders.

Vertisols were first described by Van der Merwe, (1949) and are distributed all over the world,
covering around 2.4% of the land area worldwide and about 2.00% of the land area of the United
States, primarily in Texas. They are particularly common in subhumid and semiarid tropical re-
gions with thermic and hyperthermic soil conditions (Ahmad & Mermut, [1996). The clay content
ranges from 30 to 80% (Ahmad, 1983)), which results in a high water holding capacity, moderate to
poor drainage, and moderate to rapid runoff that tend drop in oxygen content (Bergtold & Sailus),
2020). This distinctive composition make them shrinks when are dry and swelling when hydrated,
resulting in the formation of cracks and polished surfaces, commonly referred to as slickensides.
These soils have significant agricultural potential, but they are mostly covered with savanna or
different types of vegetation. Particularly, due to their texture and unpredictable behavior, which
present challenges for plant growth, as well as engineering problems that prevent the formation of

well-developed horizons (Ahmad & Mermut, [1996).



With the use of digital soil maps researchers and farmers have access to a highly detailed map
of an area, offering valuable insights into the composition and processes occurring within the soils.
This includes information on soil texture (silt, sand, and clay), bulk density, pH, water content,
organic matter, pore size distribution, among others. On a larger scale, terrain derivatives, offer
information about the characteristics and properties of the land surface. Contrary to several data
layers used for creating digital soil maps, terrain derivatives require a single data layer containing
altitude information, known as Digital Elevation Model or DEM (Guth et al., |[2021).

These attributes can be categorized into two types: primary and secondary (Wilson, [2012).
Primary terrain derivatives, also know as basic land surface characteristics (Olaya & Conrad, [2009)
are derived directly from the DEMs. Examples of fundamental terrain derivatives include slope, as-
pect, and curvatures measurements. Secondary terrain attributes, are derived from the combination
of different primary terrain derivatives and are categorized into hydrologic, land-surface parame-
ters, solar radiation models, and methods for the quantification of surface-atmosphere interaction
(Olaya & Conrad, 2009). Terrain wetness index (WI) and stream power index (SPI) (BOohner &
Selige, 2006) are two commonly secondary terrain attributes.

Besides the soil properties, terrain attributes such as elevation have demonstrated to have a
high influence on crop yield (Kravchenko & Bullock, 2000). Similarly, slope and curvature directly
affect the processes of infiltration and runoff. Negative curvature increases runoff, while positive
curvature reduces infiltration (Daniels, Gilliam, Cassel, & Nelson, |1987). For instance, Kaspar
et al.| (2004) found that soybeans were more affected by pH and closed depressions on dry years,
but more by curvature on dry years. Yield was reduced on lower slope positions in wet years, but
not on dry years. In their study, [Kaspar et al. (2003) found that during periods of below-average
precipitation, there was a negative relationship between corn yield and relative elevation, slope, and
curvature. Conversely, in years with above-average precipitation, there was a positive correlation
between yield and relative elevation and slope. Also, it has been shown that the characteristics of
the terrain are closely linked to both agricultural productivity and the levels of nutrients in crops

(Kumhalova, Kumhala, Kroulik, & Matéjkoval 2011). The impact of precipitation, geography, and



soil factors on crop yield has been demonstrated throughout the years. These effects are reflected
along a field where we find differences on crop yield, with areas of high yield production or areas of
a very poor performance attributed to the spatial variability in the terrain. The combination of larger
datasets of soil and terrain variables enables a better understanding of the spatial variability in corn
and soybeans yield (Kaspar et al.,|2004) that provide information for site-specific management.
With the low adoption of irrigation in this area, it is important to consider different aspects that
might be affecting farmers decisions. Some farmers in the region have invested in pivot irrigation
systems aiming to manage drought effects and increase crop production. However, over time, they
have observed limited irrigation effects on crop yield, allocating this limitation to the inherent
characteristics of the terrain and soils in the area. Consequently, a precise estimation of factors
related to terrain, soil, and climate conditions affecting crop yield are necessary for decisions

regarding irrigation investments.

1.1 Research Objectives

The goal of this project is to improve our knowledge of the irrigation effects on crop yield in the
soils of the Alabama Blackland Prairie region by considering soil, terrain, and climate parameters.
The objectives of this study are: a) to evaluate different machine learning methods on crop yield
prediction and assess prediction accuracy based on different scenarios, b) to investigate which
predictor variables have the highest impact on crop yield predictions, ¢) to evaluate the irrigation
yield effects of corn (Zea mays) and soybeans (Glycine max L.) based on terrain and soil parameters
on the Alabama Blackland Prairie Region, and d) to perform an economic analysis to determine
the profitability of the implementation of an irrigation system in the research study area.

To answer the objectives, the work includes:

a) Evaluation of four machine learning algorithms: Support Vector Machine, Elastic Net Re-

gression, Stepwise Regression, and Random Forest under the following aspects:

* Identification of variables with the highest effect on yield predictions.



* Yield predictions based on adjacent fields with the same water management.
* Yield predictions from irrigated fields.

* Yield prediction for a specific year utilizing data from other years within the same field.

Yield prediction of one field for an specific year using other fields with crop production

in the same years.

b) Calculation of variable importance to select the variables with the highest effect in crop yield

predictions.

¢) An Integrated Nested Laplace Approximation (INLA) analysis to evaluate the individual

effect of irrigation, soil, and terrain properties on crop yield.

d) Utilization of the total annual cost of an irrigation system provided by the Alabama Cooper-
ative Extension System to compare it with the income produced by the crop yield increase

due to irrigation.

1.2 Hypothesis

We hypothesized that:

* The most accurate machine learning algorithm to create predictions will be Random Forest.
This is supported by previous studies conducted by Kayad, Sozzi, Gatto, Marinello, and
Pirotti (2019) or Khanal, Fulton, Klopfenstein, Douridas, and Shearer (2018) to be the best.
However, the accuracy of the estimates will vary, as crop yield predictions often rely on
remote sensing data. Only soil, terrain, and climatic variables will be considered for this

project.

* Due the inherent characteristics of the soils in the region, the soil properties, specifically

texture, will have a higher impact on crop yield predictions.

* The impact of irrigation will not be considerable at the research site due to high amount of

annual precipitation.



* The irrigation effect on crop yield in the Alabama Blackland Prairie region is not greater

enough to cover the total annual cost of a pivot irrigation system.

1.3 Thesis Structure

To address the aims outlined in the previous section, the thesis begins with a literature review,
followed by the materials and methods, the results and discussion of the two different statisti-

cal analyses, the conclusions and main findings, limitations, and the recommendations for future

research.



Chapter 2

Literature Review

2.1 Soil Classification

Thus animals and plants, soils also have a taxonomic classification that separates them in groups
with characteristics in common. The United States Department of Agriculture (USDA) classifies
the USA land regions into the Major Land Resources regions (MLRA) according to their location,
topography, vegetation, geology, engineering, etc (Austin, [1965)). In total, 273 MLRA have been
described. One MLRA of particular interest is the Alabama and Mississippi Blackland Prairie
MLRA 135A. This MLRA is also known as the Blackland Prairie or Black Belt is situated in
eastern Mississippi and central and western Alabama (USDA & NRCS|2022) covering a land area
of up to 2,632,722 ha with an average annual rainfall between 1,350-1,550 mm, and average annual
temperature between 15-19 °C. The soils in this area were formed from calcareous sediments from
the cretaceous and present a clayey or loamy texture with smectitic clay that shrinks and swells
depending on the water content.

These soils are part of the vertisol and inceptisol soil orders, and have an inherent fertility that
is optimal for agricultural production. However, they have suffered from erosion, result of exten-
sive cotton cultivation between 1850 and 1920 (Dixon & Nash, [1968). The soils can vary from
very shallow or very deep with typical slopes that ranges from 0-8%. Due to its high clay content
and water holding capacity, the soils have a moderate to poor drainage, and a moderate to rapid
runoff that can cause a decrease of oxygen content (Bergtold & Sailus, 2020). The predominant

soil series are Houston, Vaiden, and Oktibehha.



2.1.1 Vertisols

As one of the most common soils order in the region, vertisols stands out as one of the most inter-
esting. Initially described by Van der Merwe, (1949) as a dark clay soil with unusual characteristics.
These soils are distributed all over the world, occupying around 2.4% of the land area worldwide,
and approximately 2% of the land area of the United States, primarily in Texas. They are par-
ticularly common in subhumid and semiarid tropical regions with thermic and hyperthermic soil
regimes (Ahmad & Mermut, [1996). They were formed from various parent materials, including
calcareous sedimentary rocks (Dixon & Nash, 1968). These rocks experienced weathering and
erosion processes, resulting in gentle slopes of less than 8%. One particular characteristic of these
clayey soils is their unique behavior which causes a volume fluctuation depending on the water
content.

These soils exhibit different characteristics as determined by their composition and location.
The nature of the parent material can determine whether it reacts as acidic, neutral, or alkaline;
however, the must commons are neutral and alkalines (Ahmad & Mermut, [1996). These soils
typically originate from calcareous sediments that gradually fragments into smaller compounds
known as montmorillonites, a type 2:1 clay mineral that are part of the phyllosilicates group. These
soils are mainly constituted by clay and loam textures (Bergtold & Sailus, 2020). The clay content
ranges from 30 to 80% (Ahmad, 1983) that shrinks when are dry and swelling when hydrated,
causing cracks and polished surfaces, better known as slickensides.

When describing Vertisols, their color can vary considerably, ranging from very dark to
brownish. These soils exhibit moderate to poor drainage and medium to fine, granular or massive
structures. This structural composition results in a low infiltration and low permeability, mak-
ing them susceptible to flooding and prone to decrease oxygen concentration through the profile.
Vertisols can range in depth from shallow to very deep with a very low organic matter content.
However, they have a high chemical activity with a CEC between 20 and 45 cmol/kg (Staff, |1999)
that become then exceptionally fertile, ideal for agricultural production. Despite their agricul-

tural potential, most of these soils remain uncultivated, and are covered with savanna or different



types of vegetation, because their texture and unpredictable behavior that present challenges for
the correct growth of plants, as well as serious engineering problems that restrict the formation of

well-developed horizons (Ahmad & Mermut, [1996).

Cracking Behavior

The capacity of the soil to change the volume, leads to fluctuations in bulk density (Cornelis et al.,
2006) and porosity (Wang et al., 2022)). This intricate process promotes to the formation of cracks
and slickensides between aggregates (Ahmad & Mermut, |1996; Blokhuis, 1982). The cracking
behavior is complex to measure because some of these vertisols tend to form a microtopography
called gilgai, which is a surface formation of knolls and depressions (Kishné, Morgan, & Miller,
2009). These cracks often measure 1 cm wide or more, and can be classified into four categories:
structural shrinkage, linear shrinkage, residual shrinkage, and zero shrinkage.

In the first category, the water lost does not have a macroscopic effect on soil volume (Ahmad
& Mermut, [1996; 'Yule & Ritchie, [1980). In the second stage, the change in soil volume is equiv-
alent to the change in water content (Ahmad & Mermut, |1996; Yule & Ritchie, |1980). In the third
stage, the change in soil volume is lower than the change in water content (Ahmad & Mermut,
1996)). In the last stage, when the water content fluctuates, the volume of the soil is detectable
(Cornelis et al., 2006). To quantify the capacity of a soil to swell and shrink, the coefficient of
linear extensibility (COLE) is used. In vertisols the values range between 0.07 to 0.2 (Staff, [2015).

Depending of the cracks category, some benefits could be present, such as facilitate a rapid
water infiltration, although, some concerns persist. The rapid water movement through the pro-
file makes the lower part wetter first while the surface is still dry, which represent a problem if
there are crops in the area (Bergtold & Sailus, 2020), or infiltration of some pollutants to the
groundwater (Lin, Mclnnes, Wilding, & Hallmark, 1998)). However, some of these concerns can
be mitigated through strategic management practices, such as tillage, which disturbs the cracking

patterns (Bergtold & Sailus, [2020).



2.2 Soil Physical Properties

The horizons of a soil profile provide valuable information about their historical development
(Hartemink et al., 2020). While some observations around a field reveal some differences in both
the profile and the landscape, certain differences are no easy to identify. These variations are
product of different physical, chemical, and biological properties provided by different soil forming
factors (Jennyl, |1994). The soil is comprises of three phases; solid, liquid, and gaseous. The solid
phase of the soil is compounded by different mineral components known as texture, which is one
of the most important and stable features of the soil. The mineral part is formed by silt, sand, and
clay particles with different particle sizes between 2 mm to < 0.002 mm (of Soil Survey, |1993).
The combination of these soil particles leaves empty spaces between them called pores (X. Hao,
Ball, Culley, Carter, & Parkin, 2008) which are filled with either air or water. This fraction of
the total soil volume occupied by the pore space is measured by the porosity (¢) that ranges from
0-1, usually 0.3 to 0.7 in vertisols (Nimmo, 2004). Some of the spaces are larger than others, thus
making the soil more friable or more compact.

The indicator of the state of soil compaction is assessed by the bulk density (pb) (Buckman
& Brady, 1960; Grossman & Reinsch, [2002). It represents the mass or weight of a certain volume
of soil (Indoria, Sharma, & Reddy, [2020). The bulk density is affected by the texture and the
pore space. For example, sandy and rocky soils, have a high bulk density because the pore space
is lower. On the contrary, soils rich in organic matter or high clay or silt content have a lower
bulk density, because the pore space is higher (Sullivan, Shaw, & Rickman, [2005). The variation
in size, frequency, and arrangement of the spaces between soil particles is called soil structure.
This organization influence directly edaphic conditions (Bronick & Lal, [2005). It impacts the
water holding capacity (Emerson, |1995), the distribution of pore size and space, the availability
of nutrients for plant uptake (Chaudhari, Ahire, Ahire, Chkravarty, & Maity, 2013), as well as the
capacity and velocity of infiltration, and runoff (Horton, [1933) which affect directly the optimal

plant growth.
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The liquid phase of the soil is not constituted just of water; it also includes colloids, solutes,
and microorganisms (Ochsner, 2019). It is located in the pore space between solid particles that are
not filled with air (Topp & Ferre, 2002). The water in the soil, can be retained or moved through
it. The water contained in the soil can be measured in two different ways, as volumetric water
content (), which is a measure of the volume of water over the volume of soil, and gravimetric
water content (6,), which is a a measure of the mass of water over the mass of dry soil (Gardner,
Robinson, Blyth, & Cooper, [2000).

The water is moved through the soil profile by potential energy (Or, Wraith, & Warrick, |[2002).
The differences in the soil water potential cause water to flow from areas of higher water potential
to areas of lower water potential (Papendick & Campbell, 1981). The water movement through a
saturated soil is measured by the saturated hydraulic conductivity (ksat) (Klute & Dirksen, |1986)).
Soils with a higher content of sand particles present a higher pore space, thus, a higher ksat. Soils
with a higher content of silt and clay particles present a lower pore space, resulting in a lower ksat.

Water content can be represented graphically using Soil Water Retention Curves (SRWC).
These SWRCs express the amount of water retained in the soil in equilibrium at a specific soil
water potential (Tuller, Or, & Hillel, 2004). Three water content states are represented by the
curve; saturation, field capacity, and permanent wilting point. However, even after the soil water
has been drained, some water is still retained. Better known as residual soil water content, which
requires a lower matric potential to be removed (Zhai, Rahardjo, & Satyanaga, 2017).

At the same matric potential, soils with higher sand content retain less water than soils with
higher clay and loam content (Ochsner, 2019). The amount of water retained in the soil directly
influences plant growth, affecting plant transpiration (Bittelli, 2011), germination, and nutrient
availability in the soils, as well as soil processes such as infiltration, percolation, evaporation,

drainage, runoff, and ground water recharge (Jabro,|1992)).
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Gaseous Phase

The gaseous phase of the soil is located in the pore space between the solid particles that are not
filled with water. The liquid and gaseous phases are closely linked, and the increase in one involves
the decrease in the other. High crop productivity is dependent on good soil respiration. It can be
affected by texture, temperature, water content, pH, organic matter, or land use (Hillel, [1998). A
well-drained soil has a composition of gasses similar to that of the atmosphere (nitrogen 79.2%,
oxygen 20.6%, and carbon dioxide 0.25%), however, the oxygen concentration could decreases
to levels near zero. This decrease produces particular chemical reactions such as denitrification,
or changes in the composition of gasses, such as hydrogen sulfide (H5S), methane (C'H,), and

ethylene (C5 H,) or reduction of mineral oxides, such as iron or manganese (Shuklal, 2014).

2.3 Digital Soil Maps

Since the invention of the GPS, the possibility to implement geographic information (also known
as geospatial data or spatial data) to soil maps has been possible. It can be represented in vector
or raster format (Wilson & Gallant, [2000) through different type of data layers such as imagery,
elevation, boundaries, that combined, are the base of digital mapping (Brase, [2018)). Soil maps can
be produced by combining field data, laboratory analysis, soil observations, and different statistical
methods that reveal spatial patterns of soils over space and time (Grunwald, 2010).

When creating the maps, an important aspect to consider is the accuracy. For some layers like
field data, the accuracy will depend on the sampling technique, because some of them represent
a more realistic scenario of the variability in the terrain. Stratified simple random sampling, is
considered as one of the best samplings designs to create soil maps (Levi & Rasmussen, 2014) that
leads into more accurate soil maps with a appropriate representation of soil properties (Demsar,
Harris, Brunsdon, Fotheringham, & McLoone, 2013). But when data is obtained from databases
like the web soil survey we can create completely inaccurate maps if the soil map unit does not

correspond with the real soil type (Brus, Kempen, & Heuvelink, 2011).
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 https://websoilsurvey.nrcs.usda.gov/app/

Nowadays, open sources platforms provides very accurate and low cost data for creating dig-
ital soil maps. One example is the POLARIS database. This database contains soil series prob-
abilities for the United States, featuring a spatial resolution of 30 m (Chaney et al., 2016) and
provides information about thirteen soil properties (Table [2.1]) across different depths (0-5, 5-15,
15-30, 30-60, 60-100, 100-200 cm). Additionally, it provides statistical measures such as mean,

mode, percentile 5, percentile 50, and percentile 95.

Table 2.1: List of soil properties from Polaris database.

Variable Abbreviation Unit
Sand sand %

Silt silt %
Clay clay %
Bulk density db g/cm?
Saturated soil water content theta s m3/m3
Residual soil water content theta_r m3/m?
Saturated hydraulic conductivity ksat log10(em/hr)
Soil pH in H50 ph N/A
Organic matter om log10 (%)
Pore size distribution index (Brooks lambda N/A
Corey)

Bubbling pressure (Brooks Corey) hb log10 (kPa)
Measure of the pore size distribution n N/A

(van Genuchten)
scale parameter inversely proportional alpha log10 (kPa-1)

to mean pore diameter (van Genuchten)
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2.4 Terrain Derivatives

The soil maps provides valuable insights into the composition and the processes within the soils.
Similarly, terrain derivatives provide information about the characteristics and properties of the
land surface. Terrain attributes such as elevation have demonstrated to have a high influence on
crop yield (Kravchenko & Bullock, 2000). Similarly, slope and curvature directly affect the pro-
cesses of infiltration and runoff. Negative curvature increases runoff, while positive curvature
reduces infiltration (Daniels et al., |1987). For instance, Kaspar et al.| (2004) found that soybeans
were more affected by pH and closed depressions on dry years, but more by curvature on dry years.
Yield was reduced on lower slope positions in wet years, but not on dry years. Kaspar et al.| (2003)
revealed that during periods of below-average precipitation, corn yield was negatively correlated
with relative elevation, slope, and curvature, on the contrary, and in years with higher than normal
precipitation, yield was positively correlated with relative elevation and slope. Furthermore, it has
been shown that the characteristics of the terrain are closely linked to both agricultural productivity
and the levels of nutrients in crops (Kumhalova et al., 2011]).

Unlike the different data layers that can be used to create digital soil maps, terrain derivatives
require a single data layer containing altitude information. The altitude information for a speci-
fied location are represented typically in a raster format in Digital elevation models (DEM). The
DEMs can be obtained from The National Elevation Dataset (NED) (D. Gesch et al.| [2002). The
NED is a mosaic of elevation data, presented in a 1:24,000 scale (commonly referred as the 7.5
minute quadrangles) of the United States. This database provides data with a resolution of one-
third arc-second, equivalent to approximately 10 meters in a TIFF format. Widely recognized for
its applications in hydrologic modeling, resource monitoring, mapping, and visualization applica-
tions (D. B. Gesch, Evans, Oimoen, & Arundel, 2018]), the NED assigns specific names to each
downloaded DEM that provides valuable information. For example, one of the downloaded DEMs
was labeled “ned10m30084h8”, where “ned10m” represents 7.5-minute DEM, 730" and ”084”

represent Degrees Latitude and Degrees Longitude, and ’h8” stands for the Map Index Number
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for the Morrison Quadrangle. This database can be accessed through the NRCS Geospatial Data
Gateway (GDG).

With the information obtained from the NED we can calculate different terrain attributes.
This attributes can be categorized into two types: primary and secondary (Wilson, 2012). Primary
terrain derivatives, also know as basic land surface parameters (Olaya & Conrad, [2009), derived
directly from the DEMs. Some examples of primary terrain derivatives are slope, aspect, and
curvatures measurements. Secondary terrain attributes, are a combination of different primary
terrain derivatives and are separated into hydrologic, land-surface parameters, and solar radiation
models and methods for the quantification of surface-atmosphere interaction (Olaya & Conrad,
2009). Terrain wetness index (WI) and stream power index (SPI) (Bohner & Seligel [2006) are
recognized secondary terrain attributes.

A frequently used tool for calculating terrain derivatives is SAGA GIS (Conrad et al., [2015),
an open-source software initially developed at the University of Gottingen, Germany, in the early
2000s and continuously updated until now. SAGA, along with other GIS software like ArcGIS or
QGIS, facilitates map creation, interpolations, and various geostatistics calculations. SAGA has a
user-friendly Graphical User Interfaces (GUI) (available at https://saga—-gis.sourceforge
.1o/en/index.html). Additionally, it can be utilized in R software (R Core Team, 2023
through "RSAGA” (Brenning, Bangs, & Becker, |2022) R package and as a QGIS plug-in. SAGA
is structured into different modules that covers data import and export, vector tools, raster tools,

terrain analysis, cartographic projections, image analysis, and geostatistics.

2.5 Drought

Droughts have a significant impact on ecosystems. The greatest impact of these events lies on
on human lives (Z. Hao & Singh, 2015). According to its impact, drought can be classified into
four categories: meteorological, hydrological, agricultural, and socioeconomic (Mishra & Singh,
2010). The agricultural sector is vulnerable to drought because of its direct relationship with water

usage (Meza et al., 2020), being about 71% of the freshwater used for irrigation (Amarasinghe &
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Smakhtin, 2014), and its direct effect on the decline in food production (Pan et al., [2000), which

increases food insecurity.

2.5.1 Drought Indices

Monitoring drought is a very important aspect of agricultural production. Over the years, numer-
ous indices have been developed to effectively identify these events. Some indices are directly
associated with crops, including the Normalized Difference Vegetation Index (NDVI) (Tucker,
1979), which measures vegetation density and health; the Vegetation Condition Index (VCI) (Un-
ganai & Kogan,|1998), which identifies the climate impact on vegetation and its change over space
and time, and the Crop Moisture Index (CMI) (W. C. Palmer, |1968)), that produces a short-term
representation of agricultural drought, among others.

Rainfall is included in the standardized precipitation index (SPI). Precipitation and temper-
ature are used in other indices, such as the Palmer Drought Severity Index (PDSI) (W. Palmer,
1965), which is widely used and known to measure long-term drought. Other indices, such as
Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., [2010), com-
bine precipitation and evapotranspiration. Some are directly related to soil moisture, such as the
Standardized Soil Moisture Index (SSI) (AghaKouchak, 2014), and the Soil Water Deficit Index
(SWDI) (Keshavarz, Vazifedoust, & Alizadeh, [2014). However, some compounded indices have
been produced with complete integration of remote sensing, climate, soil moisture, rainfall, tem-
perature, evapotranspiration, to produce more accurate estimations, such as the Vegetation Drought
Response Index (VegDRI) (Brown, Wardlow, Tadesse, Hayes, & Reed, 2008), the Microwave In-
tegrated Drought Index (MIDI) (Zhang & Jia, 2013), and the Integrated Surface Drought Index
(ISDI) (Wu et al., 2013). These indices are important tools for monitoring and assessing drought
conditions during crop season to mitigate droughts. They can also be used to provide early warning

of potential drought events to reduce their impacts.
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Palmer Drought Severity Index (PDSI)

The Palmer Drought Severity Index (PDSI) (W. Palmer, |1965) is a widely used index to moni-
tor long-term drought that requires prior historical temperature and precipitation data to estimate
the drought. The values range from -10 when is dry to 10 when is wet. However, most of the

monitoring maps presented by drought monitoring agencies use a range from -4 to 4 (Table[2.2).

Table 2.2: Description of PDSI classification.

Value Description

4.0 and above  Extremely wet
3.0t0 3.9 Very wet
20t02.9 Moderate wet

1.0 to 1.99 Slightly wet

0.5 t0 0.99 Incipient wet spell
0.49 to -0.49 Near normal
-0.5t0-0.99 Incipient dry spell
-1.0t0 -1.99 Mild drought
-2.0t0-2.99 Moderate drought
-3.0t0-3.99  Severe drought

-4 orless  Extreme drought

Standard Precipitation Index (SPI)

The Standard Precipitation Index (SPI) (McKee et al.l [1993) is a widely used meteorological
drought index that monitors precipitation deficiency and drought conditions over time scales of
1,2,3,6,9, and 12 months. The index classifies the drought from - 0.50 to -2.0 (Table .

This index is calculated using the following formula:

P-r
o

SPI = 2.1)
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Where P is the total precipitation of a period of time, P, is the mean precipitation for the same

time period, and o is the standard deviation of precipitation for the same period.

Table 2.3: Description of SPI classification.

Value Description

-0.99 to -0.50 Mild drought
-1.49to -1 Moderate drought
-1.99t0-1.50  Severe drought

< -2.0 Extreme drought

Standardized Precipitation Evapotranspiration Index (SPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., [2010) is
a modification of the SPI. However, this index considers potential evapotranspiration. To compute
this index potential evapotranspiration and precipitation data are necessary. First, it requires the
calculation of a water balance, which is the difference between precipitation and potential evap-
otranspiration. The same classification from the SPI is used (Table [2.4)). This index is calculated
using the following formula:

SPEI = r-PE (2.2)

o

Where P is the total precipitation over a period of time, PE is the potential evapotranspi-
ration for the same time period, and o is the standard deviation of precipitation minus potential

evapotranspiration for the same period.

Table 2.4: Description of SPEI classification.

Value Description

-0.99 to -0.50 Mild drought

Continued on next page
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Continued from previous page

Value Description

-1.49to -1 Moderate drought
-1.99t0-1.50  Severe drought

< -2.0 Extreme drought

2.6 Crop Production

The land use in Alabama is predominantly timberland areas with about 65% of the total land area,
followed by agricultural land with about 26% of the total land area (Adje1, Li, Narine, & Zhang,
2023)). In this agricultural land, the most produced crops are cotton, followed by soybeans, corn,
wheat, and peanuts (U.S. Department of Agriculturel 2022). Some of the farms in the state use
conventional tillage, while others employ conservation tillage and no-till practices to enhance soil
health by boosting the microorganism population and reducing the fluctuation of soil temperature
(Kladivko, 2001)).

The goal of a crop production is to obtain the best crop yield by reducing production costs.
This includes proper water, nutrient, and agronomic management. However, during the crop cycle,
there are several factors that affect plant growth, such as pests, weeds, and unfavorable climate
conditions which might have a negative impact, and thus, reduce crop production.

Crop yield can be measured using different sensors that are integrated in combine harvesters.
Some direct methods, include volume, weight, and impact, and some indirect methods, include
radioactivity, capacitance, grain separation, etc (Kutzbach & Schneider, 1997} Reyns, Missotten,
Ramon, & De Baerdemaeker, |2002)). With the information provided by the sensors, yield maps
can be computed to monitor and understand the field and to identify the areas of lower and higher

production over the years.
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2.6.1 Crop Yield Measurements Errors

Approximately 10 to 50% of significant errors are identified within yield data (Stmbahan, Dober-
mann, & Ping,|2004). These errors are categorized into four groups: harvesting, yield and moisture
measurement, positioning system accuracy, and errors attributed to the operator (Lyle, Bryan, &
Ostendorf, [2014). To eliminate these errors, some methods and tools have been developed, such as
the Yield Editor 2.0 software developed by Sudduth, Drummond, and Myers| (2012), which pro-
vides a straightforward way to fix yield errors in maps. It leverages six distinct filtering techniques

to enhance data quality and reliability:

* Grain flow delay: adjust the time passed between harvest and sensing.

» Start and end pass delay: eliminates data points collected at the beginning and exit of the

Trow.

* Minimum and maximum velocity: eliminates data points outside the maximum and mini-

mum velocity established.

* Smooth velocity: eliminates abrupt velocity changes.

* Minimum swath: eliminates data points outside the minimum and maximum yield thresh-

olds.

» Standard deviation: remove data points outside the number of standard deviations deter-

mined.

* Position: deletes single data points from the area of interest.

* Manual: eliminates any errors that were not removed using the previously described filter

methods.

Some errors, such as spatial or local outliers, remain. As a result, Vega, Cordoba, Castro-
Franco, and Balzarini (2019) created a protocol for automated error removal that consists of four

steps:
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* Removal of data points outside the maximum yield: lower and maximum possible yield
ranges are established to avoid unreliable yield data points produced by the combined har-

vester and operator.

* Removal of boundary effects: technical problems such as harvest start and finish delays
might produce edge effects, thus producing point data sets with exaggerated minimum or

maximum values.

* Removal of global outliers (3 SD): to remove the global outliers, the mean and the standard
derivation (SD) are calculated , and all yield data outside of mean £3 SD is removed to obtain

a more symmetric distribution.

* Removal of local outliers (LM): the Local Moran (LM) of spatial autocorrelation is used to
determine local outliers and to identify the values of an observation and the average of its
surroundings. The Moran’s Index will be positive if the values have a tendency to cluster
spatially; however, if the values are not spatially correlated, the index will be negative and

the data points must be eliminated.

2.6.2 Crop Yield Prediction

Machine learning methods have been used in agriculture for several years (McQueen, Garner,
Nevill-Manning, & Witten, 1995) and has demonstrated to predict an appropriate yield predic-
tion, but still needs improvements (Filippi et al., [2019). Machine learning is part of artificial
intelligence (AI) and has the ability to learn (Samuel, |1959). It can be used to create crop yield
predictions based on several features (Van Klompenburg, Kassahun, & Catal, [2020). In modern
agriculture, machine learning has reached significance importance with applications in different
areas such as livestock, soil, water, and crop management. Within crop management, it is widely
used for predicting crop yield, being one of the most used techniques (Benos et al., 2021)) this
crop yield predictions are used to reduce losses by identifying variables the might be affecting the

crop (Burdett & Wellen, 2022). However, sometimes predict crop yield can be challenging due to
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the growing acknowledgment that the connections between ecological variables are often complex
and non-linear (Burdett & Wellen, 2022 D’ Amario et al., 2019; |Gonzalez Sanchez, Frausto Solis,
Ojeda Bustamante, et al., [2014).

Crop yield prediction is a challenging problem in precision agriculture (Van Klompenburg et
al., 2020). It is a technique that can be used to help farmer to predict crop yield or determine crop
yield production in areas that have not been cultivated. These yield predictions can be developed
using different model techniques such as machine learning or crop models. The selection of the
most suitable technique depends on the characteristics of the data set. The selection can vary
depending on whether the data is categorical or continuous, symmetric or unbalanced, correlated
or uncorrelated, and the number of samples and predictors (Kuhn, Johnson, et al., 2013)).

To asses a model, the data needs to be separated into train and validation data sets. The
training data is typically larger than the validation data. The data is used to fit the model and
learn different patterns, and then the model is used to predict the observations in the validation
data set. According to Van Klompenburg et al.| (2020) some of the most used features to predict
crop yield are temperature, rainfall, and soil type. On the other hand, Benos et al. (2021) found
that the most usual features implemented are remote sensing, weather, and soil parameters. In
both literature reviews, authors concluded that the most efficient ML model was Artificial Neural
Network (ANN).

In contrast, crop models which are mathematical algorithms that use quantitative information
of agronomy and crop physiology to explain crop predictions and development (Asseng, Zhu,
Basso, Wilson, & Cammarano, |2014; Boote, Jones, & Pickeringl (1996). Some models like The
Agricultural Production Systems Simulator (APSIM), developed to simulate biophysical process
in farming systems (Keating et al., 2003). The Decision Support System for Agrotechnology
Transfer (DSSAT) (Jones et al., 2003) a worldwide used model originally developed to integrate
information about soil, climate, crops, and management to reproduce technology from one location

to other with different conditions (Tsuji, Hoogenboom, & Thornton, 1998)).
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2.7 Machine Learning Algorithms

When dealing with big data, machine learning algorithms are widely used. However, computa-
tional time is very important, because models can take a few hours or several days to be processed
(Kuhn et al., [2013). These models can be used to classify or to predict features. These algorithms
have been used in different fields such as social media (Chavan & Shylaja, [2015), disease detec-
tion (Pahuja & Nagabhushan, 2021), fraudulent credit cards (Awoyemi, Adetunmbi, & Oluwadare,

2017), or digital soil mapping (Moonjun, Farshad, Shrestha, & Vaiphasa, [2010).

2.7.1 Random Forest

Random Forest is a widely used machine learning algorithm. It is a combination of decision trees
that randomly select variables at each node to determine the split with the same distribution for
all trees in the forest (Breiman, 2001)). It is used for classification and regression. This algorithm
uses bootstrap aggregation (bagging) (Breiman, [1996)) to reduce variance withing the data set and
achieve a higher accuracy.

One of the advantages of employing random forest for prediction modeling is that it can
handle large data sets, avoid over-fitting in the predictions, and speed of process (Kuhn et al.,
2013). other technique to increase the efficiency of the model, is the reduction of number of
predictors (Speiser, Miller, Tooze, & Ip|, [2019).

Over the years, this model has demonstrated to be very efficient when predicting different
features. For example, yield in wheat, maize, potato, and silage maize Jeong et al. (2016)), or in
soil science, to create geopedologic maps in inaccessible areas (Moonjun et al., 2010), predict soil
classes (Stum, Boettinger, White, & Ramsey, 2010), predict soil properties (Hengl et al., 2015), or
predict parent material (Heung, Bulmer, & Schmidt, |2014). In R software (R Core Team, 2023)
there are two packages commonly used to asses this analysis; the “randomForest” package (Liaw

& Wiener, 2002) and the “caret” package (Kuhn & Max, |[2008).
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2.7.2  Support Vector Machine

It was proposed by (Cortes and Vapnik! (1995)). It is a classification and regression model that can
plot observations as points in space. This method finds the best boundary known as hyperplane
that maintains the maximum observations within the margins (Witten & James), 2013). The sup-
port vectors are the closest data points to the margins from each class. However, is not always
possible to separate the classes in a linear plane, for this, the Kernel trick is used. This method
maps non-linear data into a higher dimensional space where a hyperplane can separate the classes.
This method has been widely used in bioinformatics (Bradford & Westhead, [2005), econometrics
(Cincotti, Gallo, Ponta, & Raberto, 2014), analytic chemistry (Li, Liang, & Xu, 2009), among

others.

2.7.3 Elastic Net Regression

Elastic net is a regularization procedure for linear regression that performs automatic variable
selection (Zou & Hastie, [2005). The regularization aims to improve predictions based on ordinary
least squares (OLS) by continuously shrinking variables estimates toward zero (Hans, 2011)). This
occurs when the number of parameters to estimate the target variable is higher than the number of
samples used. Sometimes the OLS performs poorly and some penalization techniques are used to
improve the model. The first technique is ridge regression (Hoerl & Kennard, 1970). It reduces the
sum of squares on the Lo-penalty, enforcing the slope coefficients to be lower but no zero. It does
not remove predictors in the model, but minimizes their impact. The second technique is lasso
(Tibshirani, |1996)). It is a penalized least squares method that uses an L;-penalty on the regression

coefficients, setting the irrelevant values to 0, and removing features from the model.

2.7.4 Stepwise Regression

This model has a step-by-step iterative process of adding only the most important variables and
eliminating the remaining variables (Efroymson, 1960). Every time a regression from a dataset is

calculated, some not significant variables are present. Therefore, a selection process to eliminate

24



these variables is necessary. There are three types of stepwise regression; forward-selection, that
start the process with no explanatory variables and then add the variables by testing them one by
one , based on which is the most statistically significant until the model does not improve anymore.

Backward-elimination, is the opposite to forward-selection. It starts with all the explanatory
variables and gradually eliminates the variables least statistically significant that most decrease the
performance of the model.

Bi-directional, it is a combination of forward-selection and backward-elimination. It starts
without explanatory variables and adds variables one by one. But at the same time, the model
can also exclude variables (Pope & Webster, [1972). This model has been used in soil science to
identify the influence of environmental factor that affect the variability of heavy metals in soils

(Lv, Liu, Zhang, & Dai, |2013)) or to predict soil properties (Yu, Kong, Wang, Du, & Qiel 2018)).

2.8 Bayesian Statistics

Classic statistics approaches introduce the probabilities from random events resulting from differ-
ent treatments and replications. The probability is treated as the frequency of the occurrence of an
event and it is not related to the random sample that was obtained (Bolstad & Curran, 2016). This
approach is not possible for stationary treatments such as a pivot irrigation systems because it can-
not be separated into treatments and replications. For this reason, a different statistic approach is
required. This method is known as Bayesian statistics, where the parameters are treated as random
variables.

The analysis of data is based on the Bayes’ theorem, which is a mathematical formula for
conditional probabilities that describes the probability of an event occurrence based on a previous
condition (Berrar, [2018). The Bayesian method helps us to solve complex models that are difficult
to fit with normal methods, such as missing data, replication, and randomization (Blangiardo &

Cameletti, 2015). It is calculated using the following formula:

P(A|B) = (2.3)
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Where P(A) is the probability of event A, P(B) is the probability of B, P(A|B) is the

conditional probability of A given B, and P(B|A) is the conditional probability of B given A.

2.8.1 Integrated Nested Laplace Approximation (INLA)

In the past, the Markov chain Monte Carlo method (Gilks, Richardson, & Spiegelhalter, |1995)
was extensively employed for Bayesian inference. However, this method requires a high compu-
tational time. The results can take even days to be produced. To address this issue, Rue, Martino,
and Chopin| (2009) proposed the Integrated Nested Laplace Approximation (INLA) for the latent
Gaussian Markov random field (GMRF) which represents a progress in Bayesian inference.

This method is a computational approach for performing approximate Bayesian inference,
providing a accurate and higher computational speed for linear mixed and spatial and spatio-
temporal models (Blangiardo & Cameletti, 2015)). This approach has been used in different fields,
including health-related studies such as HIV infection in Kenya (Tonui, Mwalili, & Wanjoya, [2018)
and Chagas disease mortality in Brazil (Simoes et al., [2018), as well as environmental-related
studies, such as pollution (Samet, Dominici, Curriero, Coursac, & Zeger, |2000), climate change
(Laurini, 2019).

The INLA analysis has three steps, the first step including the estimation of the posterior
marginal distribution of # by using the Laplace approximation. The second step, involves calcu-
lating the Laplace approximation, and the third step, while the third step combines the previous
two steps by utilizing numerical integration. Different types of approximations can be found in
Rue et al. (2009). The INLA analysis also opportunity to compare several models through cross-
validation, the deviance information criterion (DIC), and Bayes factors. The INLA analysis can be
assessed in R using the R-INLA package (Finn & Havard, 2015).

The latent GMRF model is a hierarchical model where the observations y are usually assumed

to be conditionally independent given some latent parameters 7, and some hyper-parameters 61,

thatis 7w (y[n, 61) = [ I; 7(y;ln;, 1)

26



The latent parameters 7 are part of a larger latent random field =, which becomes in the the
second step of the hierarchical model. The latent field = is modeled as a GMRF with precision
matrix () depending on some hyperparameters 65, that is 7(z|62) o exp (—1(z — p)"Q(z — p)).

The last step of the model consist of the prior distribution for the hyperparameters 6 = (6, 605).
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Chapter 3

Materials and Methods

In this chapter, we provide a overview of the study area, encompassing its principal climate con-
ditions and soil characteristics. Additionally, we describe the different types of dataset utilized
and the open-source databases from which we sourced them. Furthermore, we describe two differ-
ent statistical approaches; machine learning and INLA analysis, employed to address our research
questions. Along the project development, we used softwares such as R software (R Core Team,

2023)), System for Automated Geoscientific Analyses (SAGA) (Conrad et al., 2015), and QGIS.

3.1 Study Site

This research covers an area of 3,400 ha, comprising 22 fields, 8 pivot-irrigated fields and 14 rain-
fed fields distributed on 6 farms between Hale, Marengo, Dallas, and Perry counties in Alabama,
USA (Figure [3.1). Over the period from 2012 to 2021, the primary cultivation included two cash
crops, soybeans and corn, along with a cover crop, winter wheat. These farms are located in a
specific region known as the Blackland Prairie, that covers the eastern part of Mississippi as well
as the central and western areas of Alabama (USDA & NRCS| [2022)).

The soils in this area originated from calcareous sediments, including clay and sandy clay
sediments. The calcareous deposit recognized as Selma Chalk and was formed around 60 millions
years ago during the Cretaceous age. This calcium carbonate is composed of the remain of flag-
ellate algae known as Coccolithophores, which settled to the ocean bottom and mixed with clays.

Much of the region consists of grassland, however, certain parts of the region have experienced
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severe erosion due to the intensive cotton production from 1850 to 1920 (Dixon & Nash, [1968)).
The Blackland Prairie is characterized by slopes less than 6%, with elevations ranging from 30 to
179 meters above sea level. The climate is classified as humid subtropical, with an average annual
temperature ranging from 15 to 19 °C and average annual precipitation between 1,340 to 1,550
mm (USDA & NRCS| 2022).

Withing the study site, the prevalent soil orders include inceptisols and vertisols (Table [A.T),
with vertisols being the prevailing type. These vertisols exhibit optimal characteristics for crop
production, featuring high chemical activity and fertility (Ahmad & Mermut, |1996)) with a high

clay content ranging between 30 to 80% (Ahmad, |1983)).
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Figure 3.1: Map of Alabama with the the counties that comprise the Blackland Prairie Region and
the counties where the fields of the study site are located (A). Fields of the study area (B)
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3.2 Data Acquisition and Pre-process

3.2.1 Yield Data

A total of 183 yield data sets for corn (Table [3.1) and soybeans (Table [3.2)) were acquired from
22 fields over a span of ten consecutive growing seasons (2012 to 2021) from a John Deere yield
monitoring. Notably, during the collection of yield data, it has been documented that 10 to 50 %
of significant errors may occur (Simbahan et al., [2004). Consequently, in order to eliminate them,

a protocol established by Vega et al. (2019) was employed. The protocol follow four steps:

1. Removal of data points falling outside the maximum and minimum yield values. A minimum
yield of 0.01 t/ha for corn and soybeans and a maximum yield of 18.5 t/ha for corn and 7
t/ha for soybeans were established. Those maximum values are the maximum yield values
obtained in corn and soybean during the ten years. Also, to account for potential future
yield increases, an additional 10% was included, and any values beyond this range were

eliminated.

2. Creation of a buffer area extending 30 m from the field edges to eliminate the boundary

effects.

3. Removal of global outliers: a mean of £3 SD was established, and any data points outside

this range were excluded.

4. Removal of local outliers: the Local Moran (LM) of spatial autocorrelation was used to de-
termine local outliers with a neighbor of < 40 m. Subsequently, these outliers were removed

from the dataset.

Following the above protocol, the yield data points were converted to a raster format using a
simple kriging method, defined as a spatial interpolation method that predicts an unknown value of
interest by using the weighted average of known values following Tobler’s first law of geography
(Tobler, 1970), that specifies that all values that are closer to each other are more similar than those

that are separated by a bigger distance (Miller, 2004).
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Table 3.1: List of corn yield datasets from 2012 to 2021 from the study area. Fields in orange are
irrigated.

Field | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021
SP X X X X X
AA X X X X X
JL X X X
CS X X X X X X X
2PB X X
1P X X
MP X
RD X X X X
BS X X X X
AM X X X X X X
HB X X X X
CF X X X X X
6 X X X X
NH X X X X X X
PB X X X
PLB X X X X X
PL X X X X X X
BBEA X X X X X
BG X X X X X
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Table 3.2: List of soybeans yield datasets from 2012 to 2021 obtained from the study area. Fields
in orange are irrigated.

Field | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021
SP X X X X X
AA X X X X
JL X X
CS X X X
2PB X X
1P X X
MP X
RD X X X X X X
BS X X X X X X X
PTB X X X X X X X X
AM X X X X X X
HB X X X X X X X X
CF X X X X X
PW X X X
6 X X X X X
NH X X X
PE X X X
PB X X X X X X X
PLB X X X X X
PL X X X X X
BBEA X X X X
BG X X X X
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3.2.2 Terrain Data

Elevation data from the study area was obtained from the National Elevation Database (NED). All
the DEMs were downloaded and adjusted to each field shape then reprojected into the WGS84/UTM 16
coordinate system. After this process, the DEMs served as inputs for calculating thirty-three terrain
derivatives to describe terrain characteristics within the study area using the System for Automated

Geoscientific Analyses (SAGA) (Conrad et al., [2015) through R software (R Core Team, 2023)).

List of terrain derivatives:

* Aspect: it is the direction of the slope, measured clockwise from 0 to 360, where O is north-

facing, 90 is east-facing, 180 is south-facing, and 270 is west-facing (Travis, |1975).
¢ Plan Curvature: contour curvature (Wilson & Gallant, 2000)).
 Slope: change in elevation over the terrain surface (Wilson & Gallant, [2000).

* Profile Curvature: curvature intersecting with the plane and maximum gradient direction

(Wood, (1996).
» Tangential Curvature: plan curvature multiplied by slope (Wilson & Gallant, 2000).

¢ Maximum Curvature: maximum value of a curvature of a terrain surface (Wilson & Gallant,

2000).

¢ Minimum Curvature: minimum value of a curvature of a terrain surface (Wilson & Gallant,

2000).

* Maximum Membership: highest fuzzy membership value assigned to each pixel for any of
the landform classes. It expresses the uncertainty of the classification (Schillaci, Braun, et

al., 2015).

* Convergence Index: identify whether the water is moving towards a point or away (Conrad

et al., 2015)).
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Gradient Difference: quantify downslope controls on local drainage (Hjerdt, McDonnell,

Seibert, & Rodhe, [2004).

Topographic Position Index (TPI): measures where a location is in the landscape (Wilson &

Gallant, 2000)).

TPI Based Landform classification: terrain classification based on the position in the terrain

(Conrad et al., [2015)

Slope Length: distance between each cell in a terrain surface and the nearest downslope cell

(Wilson & Gallant, [2000).

Normalized Height: vertical distance between each cell in a terrain surface and the lowest

point in its surrounding area (Bohner & Selige, 2006).

Standardized Height: normalized height multiplied with absolute height (Bohner & Selige,
2006)).

Valley Depth: difference between the elevation and a ridge level (Bohner & Seligel 2006).

Terrain Surface Classification (Iwahashi and Pike): terrain classification based on slope gra-

dient, surface texture, and convexity (Iwahashi & Pike, 2007).

Relative Slope Position: measure of the position of each cell compared to the highest and

lowest point within a moving window (Conrad et al., 2015).

Total Catchment Area: area draining to catchment outlet (Wilson & Gallant, [2000).

Channel Network: channel lines created from the water flow (Conrad et al., 2015)).

Channel Direction: direction of the channel (1-NE, 2-E, 3-SE, 4-S, 5-SW, 6-W, 7-NW, 8-N)
(Conrad et al., [2015).

Strahler Order: method of assigning a numerical order to each stream segment in a stream

network based on its position and connectivity (Olaya, 2004).
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* Channel Network Base Level: vertical distance of the interpolated channel network (Conrad

et al., 2015)).

» Specific Catchment Area: contributing area of each cell in a terrain surface to the water flow

(Gruber & Peckham, 2009).

* LS Factor: combination of slope and slope length to measure the erosion potential (Novotny,

1994).

» Stream power Index: potential flow erosion at the given point of the topographic surface

(Moore, Grayson, & Ladson,|1991).

* Topographic Wetness Index (TWI): soil moisture content of an area under steady-state con-

ditions based on its topography and elevation (Gallant, [2000).

* Analytical hillshading: measures the amount of light that hits the surface on the ground and

provide a representation of the topography (Horn, |1981).

3.2.3 Soil Data

Soil data for the study area was obtained from the National Soil Information System (NASIS)
(Table [A.1)) and the POLARIS database, which provides information of soil series probabilities
for the United States at 30 m resolution (Chaney et al., [2016). The information of the thirteen
soil properties (Table was available at different depths (0-5, 5-15, 15-30, 30-60, 60-100, 100-
200 cm). A weighted average was calculated withing 0 to 60 cm depth to have a more uniform
value. Additionally, we calculated the water content at field capacity (theta_33), water content at

permanent wilting point (theta_1500), and the available water content (AWC).

3.2.4 Climate Data

Temperature, precipitation, and evapotranspiration data were used to calculate three drought in-

dices. The first index, is the Palmer Drought Severity Index (PDSI) (W. Palmer, [1965), widely
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used index to monitor long-term drought that requires prior historical temperature and precipitation
data to estimate the drought in weeks. PDSI data was downloaded from the Parameter-elevation
Regressions on Independent Slopes Model PRISM Climate Group; Oregon State University . Pre-
cipitation and temperature data spanning 1981-2021 were downloaded from the same data source
to calculate the remaining drought indices. This index classifies drought in different categories,
ranging from -10 (dry) to 10 (wet). Although, most of drought monitoring maps presented by
drought monitoring agencies uses a range from -4 to 4 (Table [2.2).

The second index, is the Standard Precipitation Index (SPI) (McKee et al., [1993). It is a
widely used meteorological drought index used to monitor precipitation deficiency and drought
conditions across different time scales (1, 2, 3, 6, 9 and 12 months). SPI values ranges from -0.50
to -2.0 (Table2.3). The index was calculated utilizing precipitation data using the ”SPEI” package
(Begueria & Vicente-Serrano, |2023) in R software (R Core Team, 2023).

The third index, is the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-
Serrano et al.,[2010) which is a modification of the SPI and shares the same drought classification
categories (Table[2.4). However, SPEI incorporates potential evapotranspiration. To compute this
index, Potential Evapotranspiration (PET) and precipitation data are required. PET data from 2012
to 2021 was downloaded from the US Geological Survey (USGS) Famine Early Warning System
Network (FEWS NET) data portal , while precipitation data used in previous index was employed.
The ”SPEI” package (Begueria & Vicente-Serrano, 2023) in R software (R Core Team, [2023)
was required. The SPI and SPEI measured drought in a monthly time frame. Additionally, we
calculated the atmospheric water deficit by calculating the difference between precipitation and
potential evapotranspiration. Subsequently, cumulative drought indices for each growing season

(April to September) were determined.
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3.3 Statistical Analysis

3.3.1 Machine Learning

All datasets (yield, soil, terrain, and climate) were consolidated into a table, comprising 111,814
observations for corn and 100,109 observations for soybeans with 79 predictors at 30 m resolution.
Four different machine learning algorithms were evaluated; Support Vector Machine (SVM), Elas-
tic Net Regression (ENR), Stepwise Regression (SR) and Random Forest (RF). To enhance model
accuracy, all variables except for yield were transformed (centered and scaled) for SVM, ENR
or SR, but not for RF. To avoid overfitting the models were tuned using ten-fold cross-validation
as general resampling approach and the variable importance was calculated to determine which
were the variables with the highest effect in crop yield predictions (Kuhn et al., [2013). Usually
researchers split their data in 70 or 80% to use it as training and 30 or 20% to use it as validation.
Conversely, we did not divided our data based on those parameters, we created different scenarios
to test our hypotheses and to have better data management on a field scale. Those scenarios were

created under the following aspects:

* Yield predictions based on adjacent fields with the same water management: this assessment
was named as group A (Figure[3.2). To create these scenarios, two fields with the same water
management, the same crop, and year were used. Data from one field was used as training,
and data from the other field was used as validation. In total, 1182 scenarios were created,

comprising 488 scenarios for corn and 694 scenarios for soybeans.
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Figure 3.2: Graphic representation of the scenarios created in group A

* Yield predictions within irrigated fields: this assessment was named as group B (Figure
[3.3). To create these scenarios, just the irrigated fields were used. We selected two fields
with the same crop and the same year, but we made a slightly change compared to the
previous group. To understand this group, it is important to highlight that when there is a
pivot irrigation system on a field, there are areas under the pivot that are irrigated and areas
outside the diameter of the central pivot that are not irrigated. Afterwards, we selected all
the data (irrigated and non-irrigated areas) from one field to use if as the training field. In
the remaining field, we separated the data, irrigated and the non irrigated. The non-irrigated
areas were included in the training dataset and the irrigated areas were used as validation.
In total, 96 scenarios were created, comprising 62 scenarios for corn and 34 scenarios for

soybeans.
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Figure 3.3: Graphic representation of the scenarios created in group B

* Yield prediction for a specific year utilizing data from other years within the same field: this
assessment was named as group C (Figure [3.4). To create these scenarios the same field
was used as training and validation. The data from the field was separated into training and
validation, where one year was selected as validation and the remaining years as training.
This process was repeated until all years from every field were used as validation. The field
needed more than two year of yield data of the same crop to create the scenarios. In total,

178 scenarios were created, comprising 81 scenarios for corn and 97 scenarios for soybeans.
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Figure 3.4: Graphic representation of the scenarios created in group C

* Yield prediction of one field for an specific year and crop using other fields with crop pro-
duction in other years: this assessment was named as group D (Figure [3.3). To create these
scenarios, fields with the same water management were used. First, we selected one field,
then we determined one year and the crop in that year. We call them “validation field”, "val-
idation crop”, and “validation year”, respectively. After that, in the “validation field”, we
identified and selected all the “other years”, with crop production different from the valida-
tion crop” (i.e., if we selected corn in the validation field, now we need to select soybeans
and vice versa). For the training, we found all other fields that have the same “validation
crop” in the “validation year”. We call those fields as ”other fields”. Then, we selected from
the “other fields” data in the same years as “other years” from the validation field regardless
the crop. Finally, we compiled all the data from “other years” from the validation, data from
“other fields” with data in ”other years” in one dataset and created the training data. In total,

153 scenarios were created.
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Figure 3.5: Graphic representation of the scenarios created in group D

After creating the scenarios, the next step was to evaluate the machine learning algorithms

to make the predictions. The predictions were performed in R software (R Core Team), 2023)

using a general package called "caret” (Kuhn & Max, 2008), supplemented by additional packages

specific to each model. Packages such as ”dplyr” (Wickham, Francois, Henry, Miiller, & Vaughan,

2023)) was used in RF, SVM, and ENR, ranger” package (Wright & Ziegler,[2017) was used in RF
and SVM, 7e1071” package (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch|, 2023) was used

in RF and SVM, “tiyverse” package (Wickham et al., 2019)) was used in SVM and SR, “kernlab”

package (Karatzoglou, Smola, Hornik, & Zeileis, 2004)) was used in SVM, “glmnet” package

Narasimhan, & Hastiel 2023)) was used in ENR, "leaps” (based on Fortran code by Alan Miller,

2020) and "MASS” packages (Venables & Ripley, 2002) were used in SR.

To increase the computational time efficiency we developed this work in part with resources
provided by the Auburn University Easley Cluster. This super computer has a system system with

high computing resources that allow scientist to perform and accelerate research analysis in parallel
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computing. The process of big datasets is time consuming, in our case, the amount of scenarios
created and the amount of observations per scenarios was relatively high in some groups, resulting
in several days of computation. For this reason, we performed our analysis in the Easley cluster.
In the cluster, 30 scenarios run in parallel at the same time. Additionally, we established a wall
time of 10 days for conducting each scenario. The scenarios that were unable to complete the

predictions within this time frame were excluded.

Model Evaluation and Selection

The comparative evaluation of model performance in every group involved the calculation of dif-
ferent metrics such as the Root Mean Square Error (RMSE) (Equation [3.1)), the coefficient of

determination (%) (Equation , and Mean Absolute Error (MAE) (Equation .

* Root Mean Squared Error (RMSE): measures the differences between the predicted and the

real values. It is the standard deviation of the predicted errors.

RMSE = |~ (4; =)’ 3.1

j=1
Where y; is the predicted value, 7; is the observed value.

* Coefficient of determination (/?): explains the proportion of the variation explained by the

model.
RSS

2
:]_——
R 7SS

(3.2)
Where RSS is the sum of squares of residuals and 7SS is the total sum of squares.

* Mean Absolute Error (MAE): measures the deviation of predicted values from real values.
D

MAE =" |z; — yi| (3.3)

=1
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The initial filter to evaluate the performance of each scenario was to calculate the prediction
error. To achieve this, the mean yield for each field per crop and year was calculated, then we
evaluated which percentage of the total yield the RMSE of the predicted yield in each scenario
represents. Scenarios exhibiting an error percentage of higher than 100% were eliminated.

Following the first filter, we calculated the distance between every field used for training and
validation in group A and B to study its relationship with the RMSE of each scenario withing the
groups. Additionally, the number of observations in the training and the validation datasets for
each scenario within the groups were estimated to study its relationship with the RMSE of the
scenarios. A one-way ANOVA test was performed to evaluate the RMSE means of the scenarios
per model within each group. In models where significant results (p < 0.05) were found, a post
hoc Tukey’s Honest Significant Difference test was conducted. Finally, we calculated the measure
explanatory variable importance for the scenarios with the lowest RMSE per crop withing the
model the performed better in each group. This measurement was used to identify the variables
with the most significant impact on crop yield prediction.

To have a better understanding of the machine learning approach to predict corn and soybeans

yield, a framework was created to describe the steps followed (Figure [3.6)).
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Figure 3.6: Workflow developed to predict crop yield.
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3.3.2 Integrated Nested Laplace Approximation (INLA)

Spatial variation is common across agricultural fields. There are several factors that can produced
this variation such as the soil characteristics, water movement, or soil fertility. It directly affects
the performance and develop of crops, causing areas of high and low yields. Traditionally, this
variation is estimated using plot scale experiment with different treatments and replications, but
these approaches does not account for all the spatial variability.

This is not possible for on-farm irrigation research where we have a stationary treatment
(pivot) that will never change the location or will be separated by treatments. Conversely, we just
have the irrigated area inside the pivot and the non-irrigated areas outside the pivot. For this reason,
we cannot use classical statistics, instead, we used Bayesian statics that allow us to be more flexible
with the randomness of our analyses. The Integrated Nested Laplace Approximation (INLA) was
first introduced by Rue et al. (2009). This method is easy to implement in R through the "R-INLA”
package (Finn & Havard, 2015).

For this analysis just irrigated fields were used. Using soil, terrain variables, and water man-
agement covariables. In total we used 58 covariables. The yield effect was evaluated with just the
addition of irrigation, as well as the addition of each covariable per time. The INLA calculation
was based on 10,000 observations per field and year. We evaluated different models throughout
each covariable.

To select the bests models INLA has different criteria such as marginal likelihood, Conditional
Predictive Ordinate (CPO), Predictive Integral Transform (PIT), Deviance Information Criterion
(DIC), and Widely Applicable Bayesian Information Criterion (WAIC) (Gomez-Rubio, 2020). In
our analysis we based our model selection in each covariable in the Deviance information criterion
(DIC), this criterion takes into account the best fit and a penalty based on the complexity of the
model. The models with lower DIC means that values are better. The INLA analysis includes a
variety of random and fixed effects. When including a covariable to the model, they account as

a linear fixed effect that affect all observations in the same way. On the other hand, the random
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effects are included to take into account variation attributed to variables that are included in the
model but are not our target variable.

Regarding the random effects, there are several that can be included in the analysis, in our
case we just included the Independent and identically distributed Gaussian random effect (idd) and
the Autoregressive model of of order p called as AR(p). For instance, the first model implemented
was the standard model, the second, was the correlated random effects (idd) that adds a random
effect to the formula, and the autoregressive models of order 1 up to 10 (i.e, AR1, AR2...AR10),
as well as the combination of the correlated random effects (idd) with the autoregressive model of
order 1 to order 10 (i.e, random-AR1, random-AR?2...random-AR10). Resulting in a total of 22
models evaluated for each covariable.

The formulas created for every model are described as follows:

¢ Standard Model:

yield.t.ha ~ 1 + irrigation (3.4)

Where yield.t.ha is the response variable, / represents the intercept of the model, and irriga-

tion represents the variable predictor.

¢ Random Effect Model with iid:

yield.t.ha ~ 1 + irrigation + f(Id3, model = ”iid”, graph = y.adj) (3.5)

Where yield.t.ha is the response variable, / represents the intercept of the model, irrigation
represents the variable predictor, /d3 represents the ID column to use for 2nd spatial process,

iid adds the spatial random effect, and y.adj identify location to save it in a graph file.

* Autoregressive (AR) Models:

yield.t.ha ~ 1 + irrigation + f(Id2, model = "ar”, order = p, graph = y.adj) (3.6)
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Where yield.t.ha is the response variable, / represents the intercept of the model, irrigation
represents the variable predictor, Id2 represents the ID column to use for 1st spatial process,

and y.adj identify location to save it in a graph file.

* Autoregressive (AR) Models + Random effect:

yield.t.ha ~ 1 + irrigation 4 f(Id2, model = “ar”, order = p, graph = y.adj)

+ f(Id3, model = ™iid”, graph = y.adj) (3.7)

Where yield.t.ha is the response variable, / represents the intercept of the model, irrigation
represents the variable predictor, /d2 represents the ID column to use for 1st spatial process,
1d3 represents the ID column to use for 2nd spatial process, iid adds the spatial random

effect, and y.adj identify location to save it in a graph file.

Upon evaluating all the models, we excluded the yield effect that exceeded the maximum
yield achieved in each field and year from 2012 to 2021 for both corn and soybeans. Calculations
were performed based on the maximum yield obtained per field, year, and crop. Any yield effects
with errors over 100% or below -100% were excluded from the analysis. Then, we choose the
model that had the lowest DIC value for each covariate. In addition, to conduct a more detail
evaluation of the covariables, specifically chose 10 covariables with the lowest per each crop and

visually represented them on maps.

3.4 Economic Analysis

Irrigation is widely used as a management practice to control drought conditions and improve yield
performance in agricultural fields. The effect of this irrigation might vary according to the location,
climate, soil and terrain characteristics, among others. As mentioned before, in our study area,
the inherent characteristics of the soils make them very unique when dealing with management

practice, that differentiate from other areas. Over the years, differences in yield from the irrigated
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fields and non-irrigated fields for corn and soybeans production where minimum, even obtaining
higher yields in non irrigated fields, than in irrigated fields in some years.

Due to those minimum differences, we decided to implement an economic analysis to deter-
mine the profitability of investing in a pivot irrigation system in the study area. The analysis was
performed using the information of the irrigated fields. The data of those fields was separated in
two categories; irrigated”, for the areas under the pivot, and “not-irrigated” for the areas outside
the pivot.

To determine the profitability of the pivot irrigation system in the study area we followed
few steps. First, we calculated the income. We selected the model with the lowest DIC in the
crop yield response with the addition of irrigation as a covariable from the INLA analysis. Then,
we multiplied it by the commodities mean prices of corn and soybeans from 2012 to 2021 (Corn
= 171.64 $/ha and Soybeans = 397.49 $/ha) (Table obtained from the National Agricultural
Statistics Service (NASS). Additionally, we obtained the total annual cost of three different cases
of irrigation systems from the /Alabama Cooperative Extension System. Finally, we calculated the
net income, where we extracted the total annual cost of the three different cases from the income
produced in each year per crop.

Those cases from the Alabama Cooperative Extension System have different characteristics;
water source, pivot length, power source which result in different annual costs. Case 1, was a
center pivot of 400 m length, electric powered and pond as a source of water with a total annual
cost of 511 $/ha. Case 2, was a center pivot of 400 m length, electric powered, well as a source
of water with a total annual cost of 344 $/ha. Case 3, was a center pivot with 350 m length, diesel

powered, pond as a source of water with a total annual cost of 423 $/ha.
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Table 3.3: Commodities prices from 2012 to 2021.

Year Crop Price [$/ha]

2012 Corn 262.58
2012 Soybeans 51441
2013 Corn 242.11
2013 Soybeans 518.09
2014 Corn 161.80
2014 Soybeans 446.44
2015 Corn 146.05
2015 Soybeans 348.70
2016 Corn 137.00
2016 Soybeans 345.02
2017 Corn 132.28
2017 Soybeans 345.02
2018 Corn 136.61
2018 Soybeans 336.20
2019 Corn 147.63
2019 Soybeans 309.75
2020 Corn 137.79
2020 Soybeans 329.96
2021 Corn 212.59

2021 Soybeans 481.34
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Chapter 4

Results and Discussion

In this chapter, we provide the results and discussion of the effect of soil, terrain, and climate
variables on crop yield as well as the variables with the highest effect on crop yield from two
different statistical approaches used in our study; Machine learning and Integrated Nested Laplace
Approximation (INLA). In addition, we evaluated the profitability of a pivot irrigation system from

2012 to 2021 in the study site.

4.1 Machine Learning

In this statistical approach, we select the best performing machine learning algorithm in each
group, we study the relationship of the distance between training and validation datasets with
RMSE and the relationship of the number of variables between training and validation datasets
with mean RMSE. Also, we calculate the variable importance plots to determine which are the
variables with the highest effect in crop yield predictions on the scenarios with the lowest RMSE

within the groups.

4.1.1 Model Selection

After all the models were evaluated, we eliminated the scenarios that exhibited an error percentage
>100% or scenarios that encountered processing errors and never finished. In group A, a total
of 1182 scenarios, 488 scenarios for corn and 694 scenarios for soybeans across all models were

computed. The selection percentages for each model within this group were outlined as follows:
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RF 94.59% , SVM 94.16% , ENR 79.10%, and SR 59.39%. In group B, a total of 96 scenarios,
including 62 scenarios for corn and 34 scenarios for soybeans across all models were computed,
with selection percentages distributed as follows: RF, SR, SVM, and ENR 100.00%. In group C, a
total of 178 scenarios, 81 scenarios for corn and 97 scenarios for soybeans across all models were
computed, with selection percentages as follows: RF and SVM 94.38%, ENR 89.32%, and SR
69.10%. In group D, a total of 153 scenarios, 74 scenarios for corn and 79 scenarios for soybeans
across all models were computed, with selection percentages as follows: RF 100.00%, SVM and
ENR 96.73%, and SR 92.81%.

Upon eliminating the predictions that exceeded an error threshold of 100%, summary statis-
tics were computed to asses the differences in mean RMSE as well as the relative error from the
predictions regarding the mean yield per crop among the models evaluated in every group. The
mean yield for corn and soybeans from 2012 to 2021 are 10.10 and 3.2 t/ha, respectively.

For group A, in corn yield predictions, RF and SVM were the models with the highest number
of assessed scenarios, although RF achieved the lowest mean RMSE of 2.72 t/ha and the lowest
relative error of 0.27 t/ha. In soybeans, RF exhibited both the highest number of assessed scenarios

and the lowest RMSE of 1.35 t/ha, although the relative error of 0.42 t/ha was the same as SVM.

(Table 4. 1).

Table 4.1: Mean RMSE and SD from the selected scenarios of Elastic Net Regression, Random
Forest, Stepwise Regression and Support Vector Machine in group A for corn and soybeans yield
predictions.

Crop Model Count Mean RMSE [t/ha] SD Relative error

Corn ENR 450 3.74 1.95 0.37
RF 485 2.72 1.07 0.27

SR 361 3.93 1.99 0.39

SVM 486 2.81 1.06 0.28

Soybeans ENR 485 1.59 0.75 0.50

Continued on next page
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Continued from previous page

Crop Model Count Mean RMSE [t/ha] SD Relative error

RF 633 1.35 0.61 0.42
SR 341 1.62 0.76 0.50
SVM 627 1.37 0.59 0.42

In group B, for both corn and soybeans yield predictions, RF and SR were the models with
the highest amount of scenarios assessed, but RF achieved the lowest mean RMSE of 2.25 and
0.82 t/ha for corn and soybeans respectively, as well as the lowest relative error of 0.22 and 0.26

t/ha for corn and soybeans respectively (Table §.2)).

Table 4.2: Mean RMSE and SD from the selected scenarios of Elastic Net Regression, Random
Forest, Stepwise Regression and Support Vector Machine in group B for corn and soybeans yield
predictions.

Crop Model Count Mean RMSE [t/ha] SD Relative error

Corn ENR 62 2.27 0.50 0.23
RF 62 2.25 0.58 0.22

SR 62 2.31 0.53 0.23

SVM 62 2.35 0.49 0.23

Soybeans ENR 34 0.86 0.23 0.27
RF 34 0.82 0.20 0.26

SR 34 0.87 0.25 0.27

SVM 34 0.87 0.18 0.27

In group C, for corn yield predictions, RF, ENR, and SVM were identified as the models with
the highest number of scenarios assessed, with ENR achieving the lowest mean RMSE of 1.51 t/ha
and the lowest relative error of 0.15 t/ha. Similarly, in soybeans yield predictions, ENR was the
model with the highest number of scenarios assessed, the lowest mean RMSE of 0.54 t/ha, and the

lowest relative error of 0.17 t/ha. (Table[d.3).
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Table 4.3: Mean RMSE and SD from the selected scenarios of Elastic Net Regression, Random
Forest, Stepwise Regression and Support Vector Machine in group C for corn and soybeans yield
predictions.

Crop Model Count Mean RMSE [t/ha] SD Relative error

Corn ENR 79 3.13 1.40 0.31
RF 81 2.74 0.92 0.27

SR 60 3.53 1.70 0.35

SVM 81 2.88 0.98 0.28

Soybeans ENR 80 1.30 0.63 0.40
RF 87 1.18 0.55 0.36

SR 63 1.31 0.76 0.40

SVM 87 1.19 0.56 0.37

In group D, for corn yield predictions, RF , SVM, and ENR were identified as the models
with the highest number of scenarios assessed, but RF had lowest mean RMSE of 0.71 t/ha and
the lowest relative error of 0.07 t/ha. In soybeans, RF was the model with the highest amount of

scenarios assessed with the lowest mean RMSE of 0.23 t/ha and the lowest relative error of 0.07

t/ha (Table [4.4).

Table 4.4: Mean RMSE and SD from the selected scenarios of Elastic Net Regression, Random
Forest, Stepwise Regression and Support Vector Machine in group D for corn and soybeans yield
predictions.

Crop Model Count Mean RMSE [t/ha] SD Relative error

Corn ENR 74 2.27 0.97 0.22
RF 74 0.71 0.91 0.07

SR 67 1.91 0.48 0.19

SVM 74 227 0.97 0.22

Soybeans ENR 74 1.19 0.39 0.36

Continued on next page
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Crop Model Count Mean RMSE [t/ha] SD Relative error

RF 79 0.23 0.05 0.07
SR 75 0.81 0.19 0.25
SVM 74 1.19 0.39 0.36

After observe the differences within the models, an one-way ANOVA and a post-hoc Tukey’s
Honest Significant Difference test were conducted to select the best performing model in each
group. Overall, we found across groups A, B, C, and D statistical significant differences among

the models (p< 0.01) in corn (Table and soybeans (Table {.6)) yield predictions.

Table 4.5: One-way ANOVA results: Determine the differences of mean RMSE between Random
Forest, Support vector Machine, Elastic Net Regression, and Stepwise Regression in corn yield
predictions.

GroupA  GroupB GroupC GroupD

Observations (n) 1782 247 300 288
Degrees of Freedom (DF) 3 3 3 3
Standard error 1.540686  0.5268145 1.255616 0.8628373
F-statistics 70.68 0.399 5.244 53.9
p-value <2 x 10716 0.754 0.00154 <2 x 10716

Table 4.6: One-way ANOVA results: Determine the differences of mean RMSE between Random
Forest, Support vector Machine, Elastic Net Regression, and Stepwise Regression in soybeans
yield predictions.

Group A GroupB Group C GroupD

Observations (n) 2086 135 316 301
Degrees of Freedom (DF) 3 3 3 3
Standard error 0.665583 0.2170902 0.619894 0.2906796

Continued on next page
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Group A GroupB GroupC GroupD

F-statistics 22.63 0.386 0.992 184.6
p-value 2.04 x 10714 0.763 0.397 <2 x 10716

In group A, RF and SVM were not statistically different from each other, but they were signif-
icant different from ENR and SR. On the contrary, ENR and SR did were not significant different
between them, but they were significant different from RF and SVM for both corn (Figure {.TJA)

and soybeans (Figure 4.1B) yield predictions.
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Figure 4.1: Box plot with standard error of mean RMSE of Random Forest, Support vector Ma-
chine, Elastic Net Regression, and Stepwise Regression in corn (A) and soybeans (B) in group
A. Models with different letters are significantly different (p < 0.05) as determined by a post-hoc
Tukey’s Honest Significant Difference test.

For group B, in both corn (Figure 4.2]A) and soybeans yield predictions (Figure #.2B) not

statistically significant differences were found between all the models.
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Figure 4.2: Box plot with standard error of mean RMSE of Random Forest, Support vector Ma-
chine, Elastic Net Regression, and Stepwise Regression in corn (A) and soybeans (B) in group
B. Models with different letters are significantly different (p < 0.05) as determined by a post-hoc
Tukey’s Honest Significant Difference test.

In group C, in corn yield predictions (Figure #.3]A), ENR was not statistically significant
different from RF, SVM, and SR. SR was statistically significant different from RF, SVM, and
ENR. Also, RF and SVM were not statistically significant different between them. In soybeans
yield predictions (Figure [4.3B) not statistical significant differences were found between all the

models.
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Figure 4.3: Box plot with standard error of mean RMSE of Random Forest, Support vector Ma-
chine, Elastic Net Regression, and Stepwise Regression in corn (A) and soybeans (B) in group
C. Models with different letters are significantly different (p < 0.05) as determined by a post-hoc
Tukey’s Honest Significant Difference test.

In group D, in corn yield predictions (Figure[4.4A), SVM, ENR, and SR were not statistically
significant different between them, but RF was statistically significant different between them. In
soybeans yield predictions (Figured.4B), SVM and ENR were not statistically significant different

between them, but they were statistically significant different from SR and RF.
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Figure 4.4: Box plot with standard error of mean RMSE of Random Forest, Support vector Ma-
chine, Elastic Net Regression, and Stepwise Regression in corn (A) and soybeans (B) in group
D. Models with different letters are significantly different (p < 0.05) as determined by a post-hoc
Tukey’s Honest Significant Difference test.

4.1.2 Distance and Prediction Accuracy

Each scenario within groups A and B used different fields as training and validation datasets.
Consequently, we performed a linear regression analysis to explore the correlation of the distance
between the training and validation fields with the mean RMSE in crop yield predictions. However,
we did not assess the analysis within group C, because the same field was used for both training
and validation. In group D, the training dataset included data from several fields and years with
different distances from the validation field, making it more challenging to measure the influence
of distance and the model accuracy. Random Forest was the model selected from group A and
group B for corn and soybeans yield predictions.

In group A, significant positive relationships were observed between distance and RMSE for

both corn (p< 0.01) (Figure d.5A) and soybean yield predictions (p< 0.01) (Figure d.5B).
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Figure 4.5: Linear regression of the distance between the training and the validation fields and the
RMSE of Random Forest in corn (A) and soybeans (B) in group A.

In group B, no statistical significant relationship was found between distance and RMSE
for corn yield prediction (p > 0.05) (Figure 4.6]A), but in soybeans yield prediction a statistical

significant relationship was found between distance and RMSE (p < 0.05) (Figure [4.6B).
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Figure 4.6: Linear regression of the distance between the training and the validation fields and the
RMSE of Random Forest in corn (A) and soybeans (B) in group B.
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In addition to the linear regression analysis, we employed variograms to investigate the spatial
autocorrelation of the distances between the training and validation fields and the RMSE of the
scenarios for each model selected in groups A and B.

In group A, for Corn (4.7A), the sill is 1.09 and the range of the nugget effect is 0.00, meaning
that the variations occur at a lag distance smaller than the considered in the variogram. A spherical
model was fitted, producing a sill of 0.00, indicating that the total variance of the model is just
accounted for the nugget effect, and a range of 3,719.76 m, indicating that beyond this distance,
the points are not spatially correlated. In Soybeans (4.7B), in the nugget effect, the sill is 0.29
and the range of the nugget effect is 0.00. A spherical model was fitted, producing a sill of 0.09,
suggesting that part of the total variance is explained by the spatial autocorrelation, with a range

of 2,737.96 m indicating that beyond that distance, the spatial correlation decreases.
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Figure 4.7: Variograms of the distance between the training and the validation fields and the RMSE
of the scenarios used in Random Forest in corn (A) and soybeans (B) in group A.

In group B, for Corn (Figure[4.8JA), in the nugget effect exhibited a sill of 0.32 and the range of
the nugget effect is 0, meaning that the variations occur at a lag distance smaller than the considered
in the variogram. A spherical model was fitted, producing a sill of 0.05, suggesting that spatial

autocorrelation explains part of the total variance, and a range of 902.93 m indicating points are
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not spatially correlated beyond this distance. In Soybeans (Figure [4.8B), in the nugget effect, the
sill is 0.31 and the range of the nugget effect is 0.00, suggesting variations might occur at distances
smaller than the minimum lag used in the variogram. A spherical model was fitted, producing a
sill of 0.01, indicating that spatial autocorrelation explains part of the total variance, and a range

of 1,867.16 m, indicating that beyond this distance the points are not spatially correlated.
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Figure 4.8: Variograms of spatial autocorrelation of the distance between the training and the
validation fields and the RMSE of the scenarios used in Random Forest in corn (A) and soybeans
(B) in group B.

4.1.3 Number of Observations and Prediction Accuracy

Each scenario within every group had different numbers of observations in the training and val-
idation datasets. Therefore, we conducted a linear regression analysis to evaluate the correlation
between the number of observations in the training and validation datasets and its impact on the
RMSE in crop yield predictions. In all groups, Random Forest (RF) was utilized to assess the
analysis for corn and soybean yield predictions. In group A, a significant statistical relationship

was observed between the number of observations in the training dataset and RMSE for both corn

(p< 0.05) (Figure {.9]A) and soybeans yield predictions (p< 0.05) (Figure 4.9B).
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Figure 4.9: Linear regression of the number of observations used in the training dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group A.

In group B, no significant statistical relationship was observed between the number of obser-
vations in the training dataset and the mean RMSE for both corn (p> 0.05) (Figure d.10A) and

soybeans yield predictions (p> 0.05) (Figure 4.10B).
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Figure 4.10: Linear regression of the number of observations used in the training dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group B.
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In group C, no significant statistical relationship was observed between the number of obser-
vations in the training dataset and the mean RMSE for both corn (p> 0.01) (Figure d.11]A) and

soybeans yield predictions (p> 0.01) (Figure d.T1B).
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Figure 4.11: Linear regression of the number of observations used in the training dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group C.

In group D, no significant statistical relationships were observed between the number of ob-
servations in the in the training dataset and RMSE for both corn (p> 0.05) (Figure §.12)A) and

soybeans yield predictions (p> 0.05 (Figure 4.12B).
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Figure 4.12: Linear regression of the number of observations used in the training dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group D.

In group A, no statistical significant relationship was observed between the number of obser-
vations in the validation dataset and RMSE for both corn (p> 0.05) (Figure @A) and soybeans
yield predictions (p> 0.05) (Figure {.13B).
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Figure 4.13: Linear regression of the number of observations used in the validation dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group A.

65



In group B, statistical significant relationship was observed between the number of obser-
vations in the validation dataset and RMSE for corn yield predictions (p< 0.01) (Figure 4.14)A),
while no statistical significant relationship was observed between the number of observations in

the validation dataset and the RMSE of soybeans yield predictions (p> 0.05) (Figure d.14B).
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Figure 4.14: Linear regression of the number of observations used in the validation dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group B.

In group C, not statistical significant relationship was observed between the number of obser-
vations in the validation dataset and RMSE for corn yield predictions (p> 0.01) (Figure 4.15A),
while statistical significant relationship was observed between the number of observations in the

validation dataset and the RMSE of soybeans yield predictions (p< 0.01) (Figure 4.15B).
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Figure 4.15: Linear regression of the number of observations used in the validation dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group C.

In group D, no significant statistical relationships were observed between the number of ob-
servations in the validation dataset and RMSE for both corn (p> 0.05) (Figure @A) and soybeans
(p> 0.05) yield predictions (Figure 4.16B).
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Figure 4.16: Linear regression of the number of observations used in the validation dataset and the
RMSE of the scenarios used in Random Forest analysis in corn (A) and soybeans (B) in group D.
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4.1.4 Variable Importance

Following the comprehensive evaluation of all scenarios within each group and model, considering
the relationship between distance and mean RMSE, as well as the relationship between the number
of observations and mean RMSE, we selected only the scenarios with the lowest RMSE for each
crop within the model that demonstrated superior performance, for a more detailed analysis.RF
forest was selected from all groups. We provide a description of the training and validation datasets,
the computational time to perform the prediction, the RMSE, the R?, and the relative RMSE.
Additionally, the measure of explanatory variable importance of every scenario was calculated.
Among the 78 explanatory variables used in the analysis, we identified the top 10 variables that
were most important for every crop yield prediction within every group.

In group A, we selected scenarios ”GroupA-0839” and ”GroupA-0026” for corn and soybeans
yield predictions respectively. In scenario ”GroupA-0839” corn yield was predicted for 2015 using
a training dataset with 276 observations and a validation dataset with 221 observations. The pre-
dictions were achieved in 28.59 seconds, resulting in a RMSE = 0.84, a R? = 0.03, and the relative
RMSE =0.12. In scenario ”"GroupA-0461" soybeans yield was predicted for 2012 using a training
dataset with 855 observations and a validation dataset with 502 observations. The predictions were
achieved in 86.25 seconds, resulting in a RMSE = 0.50, a R? = 0.05, and the relative RMSE = 0.14.

In corn yield predictions (Figure 4.17A), three out the ten more important variables were
soil properties, while the remaining seven were terrain properties. Notably, soil organic matter
exhibited the highest impact, followed by gradient difference, and silt content. In soybeans yield
predictions (Figure 4.17B), all ten more important variables were terrain properties. The variable
with the higher effect was channel network base level, followed by channel network distance, and

standardized height.
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Figure 4.17: Measure of explanatory variable importance based on the results from Random For-
est analysis showing the 10 variables with the highest effect in corn (A) and soybeans (B) yield
predictions in group A.

In group B, we selected scenarios ”GroupB-0064" and ”GroupB-0012" for corn and soybeans
yield predictions respectively. In scenario ”GroupB-0064" corn yield was predicted for 2016 using
a training dataset with 3,345 observations and a validation dataset with 1,083 observations. The
predictions were achieved in 451.78 seconds, resulting in a RMSE = 0.92, a R? = 0.02, and the

relative RMSE = 0.10. In scenario "GroupA-0012” soybeans yield was predicted for 2020 using
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a training dataset with 1,854 observations and a validation dataset with 1,084 observations. The
predictions were achieved in 220.51 seconds, resulting in a RMSE = 0.45, R? = 0.05, and the
relative RMSE = 0.10.

In corn yield predictions (Figure 4.I8/A), one out ten more important variables was a man-
agement practice; irrigation, one out of ten variables was soil properties, and the remaining eight
variables were terrain properties. Irrigation emerged as the most influential variable, followed by
gradient difference and channel network base level. In soybeans yield prediction (Figure {.18B),
one out ten more important variables was a management practice; irrigation, one out of ten more
important variables was a soil property, and the remaining eight variables were terrain properties.
Once again, irrigation emerged as the most influential variable, followed by channel network base

level, and slope.
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Figure 4.18: Measure of explanatory variable importance based on the results from Random For-
est analysis showing the 10 variables with the highest effect in corn (A) and soybeans (B) yield
predictions in group B.

In group C, we selected scenarios ”GroupC-0119” and ”GroupC-0001" for corn and soybeans
yield predictions, respectively. In scenario "GroupC-0119” corn yield was predicted for 2016
using a training dataset with 1,107 observations and a validation dataset with 222 observations.
The predictions were achieved in 99.77 seconds, resulting in a RMSE = 1.01, a R? = 0.15, and
the relative RMSE = 0.13. In scenario "GroupC-0001" soybeans yield was predicted for 2013
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using a training dataset with 994 observations and a validation dataset with 249 observations. The
predictions were achieved in 89.35 seconds, resulting in a RMSE = 0.39, a R? = 0.36, and the
relative RMSE = 0.10.

In corn yield predictions (Figure d.19]A), nine out ten more important variables were climate
properties, and one out of ten properties was a terrain variable. Moderate Drought (SPEI) exhibited
the highest impact, succeeded by Mild Drought (SPEI), and Moderate Drought Cumulative (SPEI).
In soybeans yield prediction (Figure 4.19B), eight out ten more important variables were climate
variables, and two of the ten variables were terrain variables. The variable with the most significant
effect was channel network base level, followed by Abnormal Drought (PDSI), and Water Balance

Cumulative.
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Figure 4.19: Measure of explanatory variable importance based on the results from Random For-
est analysis showing the 10 variables with the highest effect in corn (A) and soybeans (B) yield
predictions in group C.

In group D, we selected GroupD-0035" and “GroupD-0016" for corn and soybeans yield
predictions, respectively. In scenario "GroupD-0035" corn yield was predicted for 2016 using
a training dataset of nine fields with yield data from 2013, 2016, 2020 and 2021 with 28,618

observations and a validation dataset with 222 observations. The predictions were achieved in 4.83
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h, resulting in a RMSE = 0.24, a R? = 0.93, and the relative RMSE = 0.03. In scenario "GroupD-
0016 soybeans yield was predicted for 2012 using a training dataset of twelve fields with yield
data from 2012, 2013, 2014, 2017, 2018, 2020 with 19,645 observations and a validation dataset
with 1,099 observations. The predictions were achieved in 3.80 h, resulting in a RMSE = 0.14, a
R? =0.94, and the relative RMSE = 0.03.

In corn yield predictions (Figure 4.20/A), one out of the ten more important variables was
crop, while five out of the ten more important variables were climate properties, one out of the ten
more important variables was a terrain variable, one out the ten more important variables was a
management practice; irrigation, and two out of the ten more important variables were soil vari-
ables. The variable with the higher effect was crop, succeeded by irrigation, and Channel Network
Base Level. In soybeans yield prediction (Figure §.20B), six out of the ten more important vari-
ables were climate variables, one out of the ten more important variables was crop, one out of
the ten more important variables was a terrain variable, one out the ten more important variables
was a management practice; irrigation, and one out of the ten more important variables was a soil
variable. Similar to corn yield predictions, the variable with the higher effect was crop, succeeded

by irrigation, and Channel Network Base Level.
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Figure 4.20: Measure of explanatory variable importance based on the results from Random For-

est analysis showing the 10 variables with the highest effect in corn (A) and soybeans (B) yield
predictions in group D.

4.1.5 Discussion

The objective of this statistical approach was to evaluate different machine learning methods on
crop yield prediction and assess prediction accuracy based on different scenarios, and to investigate

which predictor variables have the highest impact on crop yield predictions. We have evaluated
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four machine learning algorithms: Support Vector Machine, Elastic Net Regression, Stepwise

Regression, and Random Forest under the following aspects:

Identification of variables with the highest effect on yield predictions.

Yield predictions based on adjacent fields with the same water management.

Yield predictions from irrigated fields.

Yield prediction for a specific year utilizing data from other years within the same field.

Yield prediction of one field for an specific year using other fields with crop production in

the same years.

Variable importance calculations were made to select the variables with the highest effect in
crop yield predictions. Here we will focus in four main discussion points; accuracy of the models
evaluated per group, the relationship of the distance between training and validation datasets with
mean RMSE, relationship of the number of variables between training and validation datasets with
mean RMSE, and the evaluation of the more important variables in the crop yield predictions in
the “’scenario” case.

Several variables have been used to calculate crop yield predictions, where remote sensing
data derived from satellites and UAVs is the most common feature, alongside weather, and soil
parameters. On the contrary, factors like topographic, irrigation, and fertilization data are less
frequently used features to predict crop yield Benos et al. (2021).

Multiple studies have focused on predicting crop yields, particularly in corn and soybeans,
utilizing diverse datasets of predictors. Some studies have only used satellite spectral data. As an
example, (Sayago, Bocco, et al., 2018) used satellite images from Landsat and SPOT to calculate
corn and soybeans yield predictions in Argentina. The researchers assessed two different mod-
els; Neural Networks (NN) and multiple linear regression models. The NN demonstrated higher

accuracy in the predictions of soybeans yield (R* = 0.90) and corn yield (R? = 0.92).
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Another investigation conducted by Kayad et al. (2019) utilized Sentinel-2 images to compute
vegetation indices (VIs) and machine learning to evaluate spatial variability in corn grain yield in
Italy. The researchers found that Green Normalized Difference Vegetation Index (GNDVI) pro-
duced the highest coefficient of determination (R? = 0.48) for monitoring crop yield throughout
the period of 105 to 135 (R4-R6) days after the planting date. The Random Forest (RF) model
achieved a higher accuracy in the predictions, with an R? = 0.60. These predictions were accom-
plished utilizing 50% of the observations in both the validation dataset and the training dataset.

Others studies have included weather data. Sun, Di, Sun, Shen, and Lai (2019) utilized en-
vironmental variables, including weather, Land Surface Temperature (LST), Surface Reflectance
(SR) data, and historical crop yield data to predict soybeans yield at a county level in the United
States. This was achieved by employing machine learning algorithms such as Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) individually and in a combination (CNN-
LSTM). Their findings demonstrated CNN-LSTM outperformed other models, with the highest
coefficient of determination (R? = 0.74).

Some authors implemented a hydrologic, weather, and satellite spectral data. An study con-
ducted by Kim et al.| (2019) utilized various data sources including cropland layers, satellite-
derived vegetation indices (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), Leaf Area Index (LAI), Fraction of Photosynthetically Activate Radiance ((FPAR)
and Gross Primary Production (GPP)), meteorological data derived from the PRISM climate group
(precipitation and maximum, minimum, and mean temperature), soil moisture data, and crop yield
statistics. The study aimed to predict corn and soybean yields in the Midwestern United States us-
ing 6 different machine learning algorithms: Multivariate Adaptive Regression Splines (MARS),
Support Vector Machine (SVM), Random Forest (RF), Extremely Randomized Trees (ERT), Arti-
ficial Neural Network (ANN) and Deep Neural Network (DNN). The researchers found that DNN
was the best model for predicting corn yield (RMSE = 0.76 t/ha) and soybeans (RMSE = 0.28
t/ha). Additionally, the months of July and August were identified as the optimal time period for

predicting crop production throughout the May to September crop season.
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Khanal et al.| (2018]) implemented soil properties (soil organic matter (SOM), cation exchange
capacity (CEC), magnesium (Mg), potassium (K), and pH), topographic, multispectral aerial im-
ages for predicting soil properties and corn yield. They evaluated 5 machine learning algorithms:
Random Forest (RF); Neural Network (NN); Support Vector Machine (SVM), Gradient Boosting
Model (GBM) and Cubist (CU). For every soil property predicted, a different model exhibited a
higher performance. For corn yield predictions, RF provided higher accuracy among the models
with an R? =0.53 and a RMSE = 0.97.

Each study presents unique combinations of predictors depending of the specific target. In
our study, we incorporate several climate, soil, and terrain properties to predict corn and soybeans
yield, a combination not previously explored in the literature. Among the various machine learning
algorithms employed in crop yield prediction, Artificial Neural Networks (ANNs), Random Forest

(RF), and Support Vector Machine (SVM) are commonly used.

Model Evaluation

In group A, in corn and soybeans yield predictions, we did not find statistical significant different
between RF and SVM or between ENR and SR. However, RF produced the lowest mean RMSE,
more scenarios, and the lowest mean relative error. For this reason, we reject the hypothesis that
RF is the most accurate machine learning algorithm in corn and soybeans yield predictions. We
attribute the low performance of our predictions to the scenarios features. As default, researchers
use 70 or 80% of the total data to train the models and 20 or 30% to validate it. In our case, we
have different fields with different amount of observations and characteristics for training and for
validation. Those field can be closer or further away and even if some terrain and soil properties
are similar some difference in space might persist.

The scenarios in group A and group B are similar. The same irrigated fields used in the
scenarios of group A, were used in group B, with the difference than in group B the rainfed data
outside the pivot were extracted from the validation dataset and combined with the training dataset.

Leaving just the irrigated areas under the pivot in the validation dataset. With this change, the
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accuracy of the predictions in this group increased (Table 4.7). In both crops predictions, we did
not find statistical significant different between all the models. Although RF produced the lowest
mean RMSE and the lowest, more scenarios, and the lowest relative error. For this reason we reject
the hypothesis that the most accurate machine learning algorithm is RF in corn and soybeans yield

predictions.

Table 4.7: Mean RMSE and SD from Random Forest in group A in irrigated fields compared to
group B for corn and soybeans yield predictions.

Crop Group Model Count Mean RMSE [t/ha] SD

Corn group A RF 62 2.70 0.65
group B RF 62 2.25 0.58

Soybeans group A  RF 38 1.10 0.33
group B RF 34 0.82 0.20

In group C, in corn, we did not find statistical significant different between ENR and the
other models (RF, SVM, and SR). RF and SVM were not statistical significant different between
them, and SR was statistically significant different from all the models. However, RF produced the
lowest mean RMSE and relative error. In soybeans, we did not find statistical significant different
between all the models. Although RF produced the lowest mean RMSE, the highest amount of
scenarios, and the lowest relative error. In group C, we reject the hypothesis that the most accurate
machine learning algorithm was Random forest in crop yield predictions.

Group C achieved a lower RMSE and higher coefficient of determination (R?) in comparison
to groups A and B. We attribute this difference to the group design, where historical data from the
same field was used in the training and in the validation dataset. For example, if there where field
with yield data from various years (2012, 2013, 2015, 2017, 2018, 2020). One year was chosen
for validation, while the remaining years were used for training. This process was iterated until all
years from every field were used as validation. The field needed more than two year of yield data

of the same crop to create the scenarios.

79



A similar approach was developed by (Maestrini & Basso, |2018). They used historical yield
data to create crop yield predictions. In their study, they used fields that had crop yield for at least
4 years. In the case of 4 years, they used the first three years as predictors, and the last year of crop
production as validation. In the case of 5 years, they used the first 3 years as predictors and the
fourth year as validation. Subsequently, they used the first 4 years as predictors and validated it in
the fifth year. They found that historical yield was the best predictor for the spatial distribution of
corn, wheat, and cotton yields, However, it was not a reliable predictor for soybean yield.

Group D, in both crops, it created scenarios with highest amount of observations, that included
two crops, more than 1 field and year, in the training data, resulting in a more varied and detailed
dataset to train the model. We found statistical significant different between all the models, where
RF obtained, the lowest mean RMSE (corn = 0.71 t/ha and soybeans = 0.23 t/ha) and mean relative
error (corn = 0.07 and soybeans = 0.07). We accept the hypothesis that the most accurate machine
learning algorithm was RF in corn and soybeans yield predictions.

In our scenario selected, in corn yield we obtained an RMSE = 0.24 and an R? = 0.93. In
soybeans, we obtained an RMSE = 0.14 and an R? = 0.94. Our results aligns with other studies
that found RF as the best model to predict crop yield. (Khanal et al.,[2018)) obtained an R? =0.53,
and (Kayad et al., 2019) obtained an R? = 0.60. However, our RMSE is lower and R? is higher
compared to them. We attribute these difference to the particular data used to create the scenarios.
Where the implementation of larger datasets provide a more realistic scenario of what its happening

in the field and what might be affecting the crop yield.

Distance Effect

In group A, we found a significant statistical relationship in the distance between training and
validation datasets in both crop predictions. In corn yield predictions, no spatial correlation was
found, although, in soybeans yield predictions, part of the total variance was explained by the
spatial autocorrelation. In group B, we did not find a significant statistical relationship in the

distance between training and validation datasets in corn yield predictions. However, we found
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significant statistical relationship in soybeans yield predictions. Overall, spatial correlation was
found in corn yield and soybeans predictions that suggest that in the scenarios, part of the total
variance was explained by the spatial autocorrelation. Based on this results, we can attribute that

distance might have in the predictions but further analysis and evaluations are required.

Number of Observations

In group A, the amount of observations used in the training and the validation dataset was rela-
tively low compared to the other groups. The scenarios were randomly created based on different
conditions given in a script. This resulted in some scenarios with lower amount of observations in
the training than in the validation dataset. Ideally, the training data should always be higher than
the validation data, because it is used to train the model and the larger the dataset the more complex
relationships can learn. This can affect the accuracy of the predictions, producing overffiting, or
predictions that don’t represent the variability of the data leading to a decrease of the model per-
formance. In the relationship of the number of observations in the training and validation datasets
with mean RMSE, no statistical significant relationship was observed between the number of ob-
servations between the validation and the RMSE in both crops. However, a statistical significant
relationship was observed between the number of observations between the training and the RMSE
in both crops.

In group B, a statistical significant relationship was observed between the number of obser-
vations between the validation and the RMSE in corn yield predictions, but no in soybeans yield
predictions. On the contrary, no statistical significant relationship was observed between the num-
ber of observations between the training and the RMSE in both crops.

In group C, no statistical significant relationship was observed between the number of obser-
vations between the validation and the training dataset with the RMSE in corn yield predictions.
However, a statistical significant relationship was observed between the number of observations in
the validation dataset and RMS, but not in the number of observations between the training dataset

and the RMSE in soybeans yield predictions.
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In this group, the amount of observations in the training dataset increased significantly be-
cause various years of data were included. The lowest amount of observations in the training data
for corn yield predictions were 660, and 224 for soybeans yield predictions, compared to group A,
where the lowest amount of observations used in the training dataset of two scenarios were 55, and
51 observations in eleven scenarios for soybeans yield predictions. We reduced the effect of the
spatial variability because the same field was used as training and validation. However here, the
temporal variability plays an important role because several years were used in the training dataset.
The results from this group showed that reducing the spatial variability and increasing the number
of years with different observations in the training data, produced more accurate predictions.

In group D, no statistical significant relationship was observed between between the number
of variables between the validation and the RMSE and the number of variables between the training
and the RMSE in both crops. In this group, the lowest amount of observations was 4,315 for corn
and soybeans yield predictions. In corn and soybeans yield prediction, the scenarios selected
achieved more accurate predictions compared to group A, B, and C. Although the predictions took
a higher computational time, the predictions in both crops have a very high accuracy, explaining
more than 90% of the variation. The results from this group showed that increasing the variety
of observations (different years, different crops, different distances between fields) in the training
data, produced more accurate predictions.

These results suggest that when the number of observations in the training or in the validation
datasets is limited, they might have an effects in the accuracy of the predictions. Conversely, when
the amount of observations is relatively high in the training or validation data, this effect is nos

statistical significant.

Variable Importance

In group A, in the scenarios selected for corn and soybeans yield predictions, the predictions were
achieved very fast, just in 28.5 seconds and 52.7 seconds, respectively. But the £2=0.03 in both

predictions is relatively low and demonstrate that just 3% of the variation in or data is represented
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by our model. In corn, the predictions were most affected by organic matter which aligns with
the findings of Burdett and Wellen| (2022) that demonstrated that OM was significant in crop yield
predictions. Soybeans the predictions were highly affected by the relative slope position.

In group B, in the scenarios selected in corn yield predictions, the number of observations
used in the training and the validation dataset increased compared to the selected scenario in group
A. This scenario achieved the predictions in 451.78 and 220.51 seconds for corn and soybeans
respectively. The RMSE remained low in both crop predictions. But the R2?=0.02 of corn and
soybeans R?=0.05 yield predictions was very very low that suggest that the model just explained
2% and 5 % of the variation in the predictions. Here, the irrigation had an effect in the predictions,
we attribute this result to the group characteristics, where the rainfed areas where removed from
the validation dataset. Also, in group A and B, our results showed that in corn and soybeans yield
predictions terrain properties had a higher impact than soil properties.

In group C, in corn yield predictions, the variable with the highest impact on crop yield predic-
tions was Moderate Drought (SPEI) and in soybeans was channel network base level. In soybeans
yield predictions, not other studies have previously explored the influence of this terrain variable
in crop yield prediction. However, it was used by Hateffard, Dolati, Heidari, and Zolfaghari (2019)
in mapping soil characteristics, resulting in one of the most effective factor for predicting organic
carbon and by |Guevara and Vargas (2019)) for predicting soil moisture using machine learning.

In group D, climate attributes played an important role in crop yield predictions followed by
few terrain and soil properties where data from multiple fields spanning several years and diverse
crop yields was included into the training dataset, contrary to group A, B and C, where terrain
properties and soil properties had a higher impact in corn and soybeans yield predictions. Due
to the requirements used to create this group, where both crops where included in the training
data, crop stand out as the variable with the highest effect on corn ans soybeans yield, followed by

irrigation and channel network base level.
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4.2 Integrated Nested Laplace Approximation (INLA)

In the second statistical analysis, we select the ten covariables with lowest DIC to evaluate their
effect on corn and soybeans yield, and evaluate the relationship between each drought index clas-

sification with the yield effect by irrigation.

4.2.1 Irrigation Effect

Corn and soybeans mean yield obtained from irrigated and non-irrigated fields during ten consec-
utive years are plotted in Figure 4.2 where we can identify the differences in yield obtained with
the pivot irrigation and the non irrigated areas. In some years the differences in yield are minimum,
but in other years, the non-irrigated produced higher yields. For example, in 2012, corn yield from
non-irrigated areas was 1.70 t/ha higher than the irrigated areas. Whereas, in 2015, soybeans yield
from not-irrigated areas were 0.20 t/ha higher than the irrigated areas. In 2021, soybeans yield
from the non-irrigated areas was 0.1 t/ha higher than the irrigated areas. On the other hand, in
2016, corn yield from irrigated areas was 3.9 t/ha higher than the not-irrigated areas. This year

produced the highest yield difference between the irrigated and the not-irrigated areas.
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Figure 4.21: Total mean yield in t/ha for corn and soybeans during 10 consecutive years.
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After the INLA analysis, the yield increase by the irrigation effect was estimated for every
crop and plotted for corn (Figure #.22)) and soybeans (Figure [4.23). From the models evaluated,
”ARS” produced the lowest DIC. In corn, the yield increase by the irrigation effect was not higher
than 2.00 t/ha for eight out of nine years. Except for 2016 that obtained the highest yield increase
of 3.07 t/ha in field CS. In some years, the effect was negative such as 2012 where the irrigation
had a negative effect of 0.4 t/ha, also in 2017, the irrigation had a negative effect on yield in three
out of the four fields, especially in field CS where yield had a negative effect of 1.12 t/ha. In 2021,
the irrigation had a negative effect of 0.5 t/ha on yield in one out of three fields. In soybeans, the
yield increased by the irrigation effect was not higher than 2 t/ha for all the years. In 2021, the
irrigation had a negative effect on yield in three out of the four fields with the highest negative

effect of 0.40 t/ha in field 2PB. The highest yield increase was 1.20 t/ha in 2014 in field RD.

2012 |2014 2015 2016 2017 2018 2019 2020 2021

N
1

o - --. I I —._. _-... -ll I --.

RD CS AA CS RD AA CS SP AA CS RD SP 1P 2PB AA CS SP CS RD SP 1P AA CS MP SP
Fields

Irrigation Effect [t/ha]
N

'
N
L

Figure 4.22: Irrigation effect in corn yield estimated with INLA analysis for the irrigated fields
from 2012 to 2021.
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Figure 4.23: Irrigation effect in soybeans yield estimated with INLA analysis for the irrigated fields
from 2013 to 2021.

The water balance was estimated per crop season (March to September) from 2012 to 2021
for corn and soybeans. We performed a linear regression analysis to explore the correlation be-
tween the water balance and the yield increase by the irrigation effect for corn (Figure 4.24]A) and
soybeans (Figure 4.24B). This relationship was statistically significant (p < 0.05). When precip-
itation is higher than evapotranspiration, the water balance is positive, but when precipitation is
lower than evapotranspiration, the water balance is negative. Resulting in a higher water supply
for plants from irrigation. As expected, in both crops, results shows when the cumulative water

balance is more positive, the irrigation effect is lower, but when the water balance is more negative,

the irrigation effect is higher.
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Figure 4.24: Relationship between the yield increase by the irrigation effect in corn (A) and soy-

beans (B) and the cumulative water balance during the crop season (March to September) from
2012 to 2021.
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4.2.2 Drought Indices

A relationship between the crop yield increase produced by the irrigation effect and the drought
indices and cumulative drought values per crop season were computed for corn and soybeans.
The first drought index is the Palmer Drought Severity Index (PDSI) where we calculated two
categories; abnormal and moderate drought. The relationship between abnormal drought and the
irrigation effect on corn (Figure d.25]A) and soybeans (Figure #.25B) yield increase and the rela-
tionship between moderate drought and the irrigation effect on corn (Figure B.25(C) and soybeans

(Figure 4.25D) yield increase was not statistically significant (p > 0.05).
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Figure 4.25: Relationship between the crop yield increase by the irrigation effect and the number

of weeks of abnormal drought in corn (A) and soybeans (B), and moderate drought in corn (C) and
soybeans (D) from PDSI during the crop season (March to September) from 2012 to 2021.
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Likewise, the same effect is shown for the cumulative abnormal drought and the irrigation
effect on corn (Figure 4.26]A) and soybeans (Figure [4.26B) yield increase and the relationship be-

tween cumulative moderate drought and the irrigation effect on corn (Figure d.26/C) and soybeans

(Figure .26D) yield increase was not statistically significant (p > 0.05).
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Figure 4.26: Relationship between the crop yield increase by the irrigation effect and the number
of weeks of abnormal drought cumulative in corn (A) and soybeans (B), and moderate drought
cumulative in corn (C) and soybeans (D) from PDSI during the crop season (March to September)
from 2012 to 2021.

The second drought index is the Standard Precipitation Index (SPI) where we calculated four
categories; mild, moderate, severe, and extreme drought. The relationship between mild drought
(Figure 4.27A) and moderate drought (Figure 4.27C) with the irrigation effect on corn yield in-
crease is statistically significant (p < 0.05), showing that when both categories are present in more
months, the irrigation effect is higher. While the relationship between severe drought (Figure

M.27E) and extreme drought (Figure #.27G) is not statistically significant (p > 0.05).

88



The relationship between mild drought (Figure #.27B), moderate drought (Figure 4.27D),
severe drought (Figure 4.27F) and extreme drought (Figure 4.27H) in soybeans yield increase is
not statistically significant (p > 0.05). It is important to emphasize that in moderate, severe, and

extreme drought the maximum number of months with those categories was 1.
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Figure 4.27: Relationship between the crop yield increase by the irrigation effect and the number of
months of mild drought in corn (A) and soybeans (B), moderate drought in corn (C) and soybeans
(D), severe drought in corn (E) and soybeans (F), and extreme drought in corn (G) and soybeans
(H) from SPI during the crop season (March to September) from 2012 to 2021.

90



The relationship between cumulative mild drought (Figure 4.28A) with the irrigation effect
on corn yield increase is statistically significant (p < 0.05), showing that when the cumulative mild
drought increases, the irrigation effect is higher. While the relationship between cumulative mod-
erate drought (Figure 4.28C), cumulative severe drought (Figure 4.28E) and cumulative extreme
drought (Figure {.28|G) is not statistically significant (p > 0.05).

The relationship between cumulative mild drought (Figure[#.28B), cumulative moderate drought
(Figure[d.28D), cumulative severe drought (Figure [4.28F) and cumulative extreme drought (Figure
M.28H) in soybeans yield increase is not statistically significant (p > 0.05).
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Figure 4.28: Relationship between the crop yield increase by the irrigation effect and the number of
months of mild drought cumulative in corn (A) and soybeans (B), moderate drought cumulative in
corn (C) and soybeans (D), severe drought cumulative in corn (E) and soybeans (F), and extreme
drought cumulative in corn (G) and soybeans (H) from SPI during the crop season (March to
September) from 2012 to 2021.

92



The third drought index is the Standard Precipitation Evaporation Index (SPEI) where we
calculated four categories; mild, moderate, severe, and extreme drought (same from SPI). Extreme
drought category from this index was eliminated because it was never present from 2012 to 2021.
Also, it is important to emphasize severe drought was just present in 1 month during the crop
season of 2012, 2015, and 2019.

The relationship between mild drought (Figure #.29)A) and moderate drought (Figure 4.29(C)
with the irrigation effect on corn yield increase was statistically significant (p < 0.05), showing
that when both categories are present in more months, the irrigation effect is higher. While the
relationship between severe drought (Figure .29E) is not statistically significant (p > 0.05).

The relationship between mild drought (Figure 4.29B) with the irrigation effect on soybeans
yield increase is statistically significant (p < 0.05), showing that when this categories is present
in more months, the irrigation effect is higher. While the relationship between moderate drought
(Figure 4.29D) and severe drought (Figure 4.29F) in soybeans yield increase is not statistically

significant (p > 0.05).
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Figure 4.29: Relationship between the crop yield increase by the irrigation effect and the number of
months of mild drought in corn (A) and soybeans (B), moderate drought in corn (C) and soybeans
(D), severe drought in corn (E) and soybeans (F) from SPEI during the crop season (March to

September) from 2012 to 2021.

The relationship between cumulative mild drought (Figure #.30A) and cumulative moderate

drought (Figure .30C) with the irrigation effect on corn yield increase is statistically significant

(p < 0.05), showing that when the cumulative categories increases, the irrigation effect is higher.

While the relationship between cumulative severe drought (Figure 4.30E) is not statistically sig-

nificant (p > 0.05).
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The relationship between cumulative mild drought (Figure 4.30B) with the irrigation effect
on soybeans yield increase is statistically significant (p < 0.05). While the relationship between
cumulative moderate drought (Figure #.30D) and cumulative severe drought (Figure {.30F) in

soybeans yield increase is not statistically significant (p > 0.05).
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Figure 4.30: Relationship between the crop yield increase by the irrigation effect and the number
of months of mild drought cumulative in corn (FigureA) and soybeans (B), moderate drought
cumulative in corn (FigureC) and soybeans (FigureD), severe drought cumulative in corn (FigureE)
and soybeans (FigureF) from SPEI during the crop season (March to September) from 2012 to
2021.
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4.2.3 Soil and Terrain Properties

After all the models were evaluated, we eliminated the values of yield effect that exceeded the
maximum yield obtained from every field and year from 2012 to 2021 for corn and soybeans. We
selected the models with the lowest DIC for corn (Table .8) and soybeans (Tabled.9). In addition,
we selected the 10 covariables with the lowest DIC for corn and soybeans to evaluate the yield
effect. Results showed that AA was the best performing field in corn followed by CS, and field

AA and RD in soybeans.

Table 4.8: Model with the lowest DIC per covariable in corn.

Year Model Yield Effect [t/ha] DIC Covariable Field
2017 random-AR7 4.07 -193749.74  Analytical Hillshading CS
2015 AR9 -0.04 -28129.92  Aspect AA
2018 AR2 -0.30 -26586.67  Channel Network Base AA
Level
2017 AR3 0.74 -25311.62  Channel Network Dis- AA
tance
2018 ARG6 0.11 -25651.77  Confusion Index AA
2018 ARS 0.27 -26810.72  Convergence Index AA
2018 AR9 0.11 -26384.21  Entropy AA
2016 ARS8 -0.05 -26347.31  Flow Connectivity AA
2016 random-AR10 -0.08 -27516.69  Flow Direction AA
2015 random-AR7 0.04 -26669.63  Flow Width AA
2016 AR9 0.11 -25551.02  Gradient Difference AA
2018 AR9 0.04 -27767.33 LS Factor AA
2020 random-AR2 -0.00 -26262.89  Landforms AA
2020 random-AR10 1.03 -24690.44  Landforms TPI AA

Continued on next page
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Continued from previous page

Year Model Yield Effect [t/ha] DIC Covariable Field
2018 AR2 0.15 -25637.35  Maximal Curvature AA
2018 ARG6 -0.14 -26327.14  Maximum Membership AA
2018 random-AR2 0.08 -31656.20  Minimal Curvature AA
2016 ARS -0.09 -28107.59  Normalized Height AA
2017 AR10 0.31 -26278.85  Plan Curvature AA
2018 AR7 0.08 -28706.06  Profile Curvature AA
2015 random-AR10 0.49 -25095.07  Relative Slope Position AA
2017 AR9 0.17 -25993.77  Slope AA
2020 ARI 0.33 -26543.05  Slope Height AA
2018 random-AR6 -0.23 -25715.47  Slope Length AA
2015 AR7 -0.02 -26547.56  Specific Catchment AA
Area
2015 random-ARS 0.52 -26667.50  Standardized Height AA
2016 AR9 -0.04 -25779.11  Strahler Order AA
2017 AR9 0.17 -27578.49  Stream Power Index AA
2018 AR10 0.48 -25916.06  Topographic Position AA
Index
2016 random-ARI10 0.02 -25462.85  Tangential Curvature AA
2018 ARS8 -0.46 -26280.09  Topographic Wetness AA
Index
2018 AR4 -0.25 -26299.28  Total Catchment Area ~ AA
2016 ARS 0.02 -26177.03  Valley Depth AA
2015 AR4 0.12 -25389.84  bd AA
2018 ARS8 -0.42 -25647.11  Clay AA
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Year Model Yield Effect [t/ha] DIC Covariable Field

2015 AR2 -0.49 -26645.85  Soil Series AA

2017 ARS8 -0.44 -26600.22  Bubbling Pressure AA

2018 ARS8 0.30 -26371.66  Saturated  Hydraulic AA
Conductivity

2020 random-AR7 0.38 -25043.35  Pore Size Distribution AA
Index

2015 AR7 -0.00 -25423.50  Map Unit Name AA

2016 AR10 0.01 -26062.36 Measure of the Pore AA
Size Distribution

2020 AR6 -0.34 -25636.41  Organic Matter AA

2020 random-ARI10 0.70 -25402.85  Particle Size famamily AA

2018 random-AR9 0.08 -24952.00 pH AA

2018 ARS 0.57 -26097.75  Sand AA

2018 AR2 0.07 -25095.64  Topographic Wetness AA
Index

2016 AR7 0.01 -26072.68  Taxonomic Class Name AA

2018 random-AR4 0.00 -2614291  Great Group AA

2017 random-ARS 0.06 -28792.79  Order AA

2016 random-AR6 0.00 -26112.25  Taxonomic Suborder AA

2018 ARS 0.33 -25881.60  Textural Class AA

2018 AR9 -0.62 -2581591  Permanent Wilting AA
Point

2018 AR9 -0.54 -26209.96  Field Capacity AA
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Year Model Yield Effect [t/ha] DIC Covariable Field

2018 random-ARS8 -0.64 -25495.27  Residual Soil Water AA
Content

2018 random-AR3 -0.26 -26230.47  Saturated Soil Water AA
Content

Table 4.9: Model with the lowest DIC per covariable in soybeans.

Year Model Yield Effect [t/ha] DIC Covariable Field

2019 random-AR7 -0.03 -26118.08  Analytical Hillshading AA

2021 AR2 0.02 -25513.61  Aspect AA

2021 random-AR9 -0.06 -25010.65  Channel Network Base AA
Level

2019 ARS8 -0.01 -25336.78  Channel Network Dis- AA
tance

2021 random-AR7 0.00 -25146.16  Confusion Index AA

2021 random-AR7 0.06 -25716.53  Convergence Index AA

2021 AR2 0.01 -25245.18  Entropy AA

2019 random-ARS5 -0.01 -25488.93  Flow Connectivity AA

2021 random-AR7 0.01 -25024.80  Flow Direction AA

2019 AR6 -0.01 -25392.49  Flow Width AA

2019 random-AR9 0.05 -24005.98  Gradient Difference AA

2019 random-AR9 0.01 -23626.13 LS Factor AA

2019 ARG6 -0.00 -24989.22  Landforms AA

2021 random-AR9 0.08 -24392.76  Landforms TPI AA

2019 ARS8 0.01 -26077.39  Maximal Curvature AA
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Year Model Yield Effect [t/ha] DIC Covariable Field
2019 AR2 -0.01 -25452.39  Maximum Membership AA
2014 ARS 0.02 -25427.40  Minimal Curvature AA
2019 ARS -0.02 -25166.42  Normalized Height AA
2014 ARS 0.04 -25558.48  Plan Curvature AA
2019 random-ARI10 0.02 -25250.55  Profile Curvature AA
2014 AR2 0.01 -25651.74  Relative Slope Position AA
2021 ARS 0.01 -25565.43  Slope AA
2021 AR10 0.05 -25178.16  Slope Height AA
2019 AR7 -0.03 -24251.00  Slope Length AA
2021 AR2 0.01 -25676.57  Specific Catchment AA
Area
2021 AR2 0.05 -24682.14  Standardized Height AA
2021 ARS -0.03 -25592.78  Strahler Order AA
2021 random-AR9 0.02 -25225.44  Stream Power Index AA
2016 ARI10 -1.16 -715606.93 Topographic Position Red
Index
2014 random-AR2 -0.00 -25328.58  Tangential Curvature AA
2019 random-AR7 -0.07 -25119.44  Topographic Wetness AA
Index
2019 ARS -0.06 -25942.83  Total Catchment Area  AA
2014 AR10 5.00 -175894.70  Valley Depth AA
2019 AR9 -0.02 -25825.27  bd AA
2014 random-AR4 -0.07 -25818.33  Clay AA
2019 ARS8 -0.10 -25663.54  Soil Series AA
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Year Model Yield Effect [t/ha] DIC Covariable Field

2021 AR1 -0.03 -24555.04  Bubbling Pressure AA

2021 AR10 -0.05 -25278.22  Saturated  Hydraulic AA
Conductivity

2019 AR9 0.05 -26376.32  Pore Size Distribution AA
Index

2021 random-ARI10 -0.00 -25441.29  Map Unit Name AA

2019 random-ARS8 0.05 -25097.20  Measure of the Pore AA
Size Distribution

2021 random-AR7 -0.03 -26040.16  Organic Matter AA

2014 random-ARS5S 0.19 -27132.32  Particle Size famamily AA

2014 random-AR2 -0.08 -27163.75  pH AA

2019 random-ARS5S 0.07 -25616.76  Sand AA

2019 AR9 -0.02 -26248.29  Topographic Wetness AA
Index

2014 random-AR9 0.17 -23909.51 Taxonomic Class Name AA

2021 AR9 0.00 -25795.21  Great Group AA

2021 random-ARS -0.00 -24265.31  Order AA

2019 random-ARI10 -0.00 -24907.73  Taxonomic Suborder AA

2019 ARS8 -0.00 -25664.05  Textural Class AA

2019 ARS -0.04 -25202.60  Permanent Wilting AA
Point

2019 random-AR9 -0.03 -24156.91  Field Capacity AA

2021 ARI1 0.02 -24151.24  Residual Soil Water AA
Content
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Year Model Yield Effect [t/ha] DIC Covariable Field
2019 ARI10 0.02 -25784.82 Saturated Soil Water AA
Content

Results show that in corn (Figured.3T)) seven out of ten covariables had a positive effect on
yield and three out of the ten covariables had a negative effect. Results shows that terrain variables
have a highest effect on corn yield with nine out of ten covariables, and soil properties with one out
of ten. The covariable with the highest positive yield effect is analytical hilllshading, producing a
yield increase of 4.06 t/ha, while the covariable with the highest negative yield effect is normalized

height, producing a yield decrease of 0.09 t/ha or 81.60 kg/ha.
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Figure 4.31: Covariables with the lowest DIC regarding the model evaluated in the INLA analysis
in corn.

Analytical Hillshading

Results from INLA analysis shows that analytical hillshading is the first covariable with the highest

positive effect on corn yield. This effect is 4.06 t/ha as shown in Figure[d.32] This terrain variable
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produces a representation of the terrain surface based on the light source and the slope and aspect
of the elevation surface (Hillshade function), n.d.).
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Figure 4.32: A. Map of corn yield from 2017 in CS field. B. Map of the Analytical Hillshading in
CS field. C. Map of the Analytical Hillshading effect on corn yield in 2017 in field CS.
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Convergence Index

Results from INLA analysis shows that convergence index is the second covariable with the highest
positive effect on corn yield. However, this effect is just 0.27 t/ha as shown in Figure £.33] It is a

terrain variable that represents the structure of the relief in convergence areas or channels and in

divergence areas or ridges (Dietrich & Bohner, 2008)). It is similar to plan horizontal curvature.

The results are in percentage, with negative values indicating convergent flow and positive values
indicating divergent flow. A value of -100 reflects the apex of a cone, +100 is a pit, and a value of

0 represents an even slope.
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Figure 4.33: A. Map of corn yield from 2018 in AA field. B. Map of the convergence index in AA
field. C. Map of the Convergence Index effect on corn yield in 2018 in field AA.

Stream Power Index (SPI)

Results from INLA analysis shows that SPI is the third covariable with the highest positive effect

on corn yield. However, this effect is just 0.17 t/ha as shown in Figure [#.34] This terrain variable

represents the erosive power of the flowing water (Wilson & Gallant, 2000) based on the the spe-

cific catchment area and the slope gradient (Sevgen, Kocaman, Nefeslioglu, & Gokceoglu, [2019).

Higher values mean a higher erosive vulnerability and lower values mean low erosion vulnerability.

It was defined by Moore et al.[(1991) as: SPI = A, - tan(f). Where A; is the specific catchment

area (m?m ') and 3 is the slope gradient (°).
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Figure 4.34: A. Map of corn yield from 2017 in AA field. B. Map of the Stream Power Index in
AA field. C. Map of the Stream Power Index effect on corn yield in 2017 in field AA.
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Minimal Curvature

Results from INLA analysis shows that minimal curvature is the fourth covariable with the highest
positive effect on corn yield. However, this effect is just 0.08 t/ha as shown in Figure .35 This

terrain variable represent the lowest value of a curvature in a given surface (Florinskyl 2016).

Positive values correspond to convex areas and negative values correspond to valleys.
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Figure 4.35: A. Map of corn yield from 2018 in AA field. B. Map of the Minimal Curvature in AA
field. C. Map of the Minimal Curvature effect on corn yield in 2018 in field AA.

Profile Curvature

Results from INLA analysis shows that profile curvature is the fifth covariable with the highest
positive effect on corn yield. However, this effect is just 0.07 t/ha as shown in Figure #.36] This
terrain variable measures the geometric curvature along a slope. It is commonly used to describe
the acceleration and deceleration of flow along a surface due to the force of gravity. Where regions
where the water accelerates experience erosion, whereas regions where it decelerates experience
deposition 2022). Negative values represent a convex surface, while positive values represent

a concave surface, and 0 values represent no slope.
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Figure 4.36: A. Map of corn yield from 2018 in AA field. B. Map of the Profile Curvature in AA
field. C. Map of the Profile Curvature effect on corn yield in 2018 in field AA.

Taxonomic Order

Results from INLA analysis shows that profile curvature is the sixth covariable with the highest
positive effect on corn yield. However, this effect is just 0.05 t/ha. This variable represent the three

different taxonomic orders present in the field (Figure 4.37).

Entisols
Inceptisols

. Vertisols

Figure 4.37: Map of the taxonomic order presents in AA field.

LS-Factor

Results from INLA analysis shows that LS-Factor is the seventh covariable with the highest posi-
tive effect on corn yield. However, this effect is just 0.03 t/ha (Figure[4.38)). This variable computes

the effect slope length and slope steepness on erosion. It is part of the Universal Soil Loss Equation
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(USLE) and the Revised Universal Soil Loss Equation (RUSLE). It can estimate hillslope erosion

2015)). Also, it can be classified into different categories(Nagaraju et al., 2011)) as described
in table

Table 4.10: Estimated classification of LS factor.

Class and Gradient

Moderately steeple slope (15-30%)
Moderate slope (5-10%)
Gentle slope (3-8%)

Very gentle slope (1-3%)

C
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Figure 4.38: A. Map of corn yield from 2018 in AA field. B. Map of the LS-Factor in AA field.
C. Map of the LS-Factor effect on corn yield in 2018 in field AA.

Aspect

Results from INLA analysis shows that aspect is the eighth covariable with the highest effect on
corn yield. It has a negative effect on corn yield. However, this effect is just -0.03 t/ha (Figure

4.39). This terrain variable represents the direction of the slope.
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Figure 4.39: A. Map of corn yield from 2015 in AA field. B. Map of the Aspect in AA field. C.
Map of the Aspect effect on corn yield in 2015 in field AA.

Flow Direction

Results from INLA analysis shows that flow direction is the ninth covariable with the highest effect
on corn yield. It has a negative effect on corn yield. However, this effect is just -0.08 t/ha (Figure

4.40). This variable indicates the direction of the water flow.
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Figure 4.40: A. Map of corn yield from 2016 in AA field. B. Map of the Flow Direction in AA
field. C. Map of the Flow Direction effect on corn yield in 2016 in field AA.

Normalized Height

Results from INLA analysis shows that normalized height is the tenth covariable with the highest
effect on corn yield. It has a negative effect on corn yield. However, this effect is just -0.09 t/ha

(Figure [.41). This covariable represents the relative elevation of each pixel within a area (Bohner

I 108 |




& Selige, [2006). It can be used to determine the hillslope position. Values closer to 1 are the

highest parts and values closer lower than O are the lowest parts.
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Figure 4.41: A. Map of corn yield from 2016 in AA field. B. Map of the Normalized Height in
AA field. C. Map of the Normalized Height effect on corn yield in 2016 in field AA.

a

In soybeans (Figure4.42)) five out of ten covariables had a positive effect on yield and 5 out of
the 10 covariables had a negative effect. Withing those variables, five out ten covariables were soil
properties, and five out of ten covariables, were terrain properties. The covariable with the highest
positive yield effect was valley depth, producing a yield increase of 5 t/ha, while the covariable
with the highest negative yield effect is Topographic Position Index (TPI) in 2016 producing a
yield decrease of 1.16 t/ha.
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Figure 4.42: Covariables with the lowest DIC regarding the model evaluated in the INLA analysis
in soybeans.

Valley Depth

Results from INLA analysis shows that valley depth is the first covariable with the highest positive

effect on soybeans yield. The effect is 5.00 t/ha (Figure #.43] This covariable represents the

difference between the elevation and a ridge level (Bohner & Seligel, 2006). It is “inverse of

vertical distance to channel network™ (Furze, O’Sullivan, Allard, Pronk, & Curry, [2021)). Higher

values mean areas with lower altitudes and lower values mean areas with higher altitudes.
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Figure 4.43: A. Map of soybeans yield from 2014 in AA field. B. Map of the Valley Depth in AA
field. C. Map of the Valley Depth effect on soybeans yield in 2014 in field AA.
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Particle Size Family

Results from INLA analysis shows that particle size family is the second covariable with the high-
est positive effect on soybeans yield. The effect is 0.18 t/ha (Figure |4.44). The map contains the
different types of particle size families in the field. The fine family (particle size less than 2 mm)

is the most abundant family within the field.

. Fine

Fine-silty
Loamy

. Very-fine

Figure 4.44: Map of the particle size families presents in AA field.

Pore Size Distribution Index

Results from INLA analysis shows that Pore Size Distribution Index is the third covariable with
the highest positive effect on soybeans yield. The effect is 0.05 t/ha (Figure {.45)). The pore size
distribution is the portion of pores given soil volume (Nimmo, 2004). Brooks (1965) created a
empirical model to measure the distribution of pore size in a porous meadia, it is defined with the
letter A. Higher values of X indicate uniformity in pore size, whereas lower values suggest indicates

the presence of a wide range of pore sizes (Ochsner, 2019).
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Figure 4.45: A. Map of soybeans yield from 2019 in AA field. B. Map of the Pore Size Distribution
Index in AA field. C. Map of the Pore Size Distribution Index effect on soybeans yield in 2019 in
field AA.

Maximal Curvature

Results from INLA analysis shows that maximal curvature is the fourth covariable with the highest

effect on soybeans yield. The effect is 0.01 t/ha (Figure4.46). This covariable represents the
maximal curvature in the terrain.
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Figure 4.46: A. Map of soybeans yield from 2019 in AA field. B. Map of the Maximal Curvature
in AA field. C. Map of the Maximal Curvatureeffect on soybeans yield in 2019 in field AA.
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Silt

Results from INLA analysis shows that silt is the fifth covariable with the highest effect on soy-
beans yield. The effect is -0.01 t/ha (Figure 4.47). The silt content is part of the fine particle size

family. Along the field it is higher in some areas and lower in some others.
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Figure 4.47: A. Map of soybeans yield from 2019 in AA field. B. Map of Silt in AA field. C. Map
of Silt on soybeans yield in 2019 in field AA.
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Analytical Hillshading

Results from INLA analysis shows that silt is the sixth covariable with the highest effect on soy-
beans yield. The effect is -0.02 t/ha (Figure #.48)). This terrain variable produces a representation

of the terrain surface based on the light source and the slope and aspect of the elevation surface

(Hillshade function, n.d.).
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Figure 4.48: A. Map of soybeans yield from 2019 in AA field. B. Map of the Analytical Hillshad-

ing in AA field. C. Map of the Analytical Hillshading effect on soybeans yield in 2019 in field
AA.

Organic Matter

Results from INLA analysis shows that organic matter is the seventh covariable with the highest

effect on soybeans yield. The effect is -0.03 t/ha (Figure 4.49). The organic matter it is higher in
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Figure 4.49: A. Map of soybeans yield from 2021 in AA field. B. Map of Organic Matter in AA
field. C. Map of Organic Matter effect on soybeans yield in 2021 in field AA.
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Total Catchment Area

Results from INLA analysis shows that organic matter is the eighth covariable with the highest
effect on soybeans yield. The effect is -0.06 t/ha (Figure #.50). This covariable is also known as

the flow accumulation.
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Figure 4.50: A. Map of soybeans yield from 2019 in AA field. B. Map of Total Catchment Area in
AA field. C. Map of Total Catchment Area effect on soybeans yield in 2019 in field AA.

pH

Results from INLA analysis shows that pH is the ninth covariable with the highest effect on soy-
beans yield. The effect is -0.03 t/ha (Figure 4.51)). The pH of the field is very alkaline due to the
characteristics of the parent material. Areas of higher pH are distributed along the field, particularly

located in the southeast area.
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Figure 4.51: A. Map of soybeans yield from 2014 in AA field. B. Map of the pH in AA field. C.
Map of the pH effect on soybeans yield in 2014 in field AA.
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Topographic Position Index (TPI)

Results from INLA analysis shows that TPI is the tenth covariable with the highest effect on soy-
beans yield. The effect is -1.16 t/ha (Figure.52). This terrain index determines the position in the

terrain evaluating the altitude of each observations with its neighborhood. More positive values

represent higher areas on the landscape, whereas more negative values represent lower areas in the

=

landscape such as valleys.

A
Figure 4.52: A. Map of soybeans yield from 2016 in RD field. B. Map of the Topographic Position

Index in RD field. C. Map of the Topographic Position Index effect on soybeans yield in 2016 in
field RD.
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4.2.4 Discussion

The objective of this statistical analysis was to evaluate the irrigation yield effects of corn and
soybeans based on terrain and soil parameters on the Alabama Blackland Prairie Region using
INLA analysis through R package INLA. We have fitted different models in the data as well as
evaluated different terrain and soil covariables. Here we will focus in two main discussion points;
the irrigation effect in the crop yield and its relationship with drought indices and the effect of
terrain and soil properties in corn and soybeans yield.

In our research, it has been demonstrated that the implementation of an irrigation system in the
study area does not have a high effect on crop yield. For this reason, we accept the hypothesis that
The impact of irrigation will not be considerable at the research site due to high amount of annual
precipitation. In the United States about 71% of the freshwater is used for irrigation (Amarasinghe
& Smakhtin, 2014). Irrigation is higher in areas of high productivity such as the corn belt, and
reduced in the southeast. In Alabama, the rate of irrigation adoption remains low compared to
other regions in the US despite the droughts that have occurred since early 2000’s (Shange et al.,
2014)), but the irrigated land has increased from 53,958.76 ha in 2017 to 67,151.91 ha in 2022
(USDA| 2022).

It is well known that the implementation of an irrigation system in a field improves the crop
yield while keep a better control of droughts. In 2021 the Alabama Cooperative Extension System
shared information about the break-even prices of the Alabama row crops. The expected yield
for various crops such as corn and soybeans from irrigated and non-irrigated farms was provided.
For irrigated corn the expected yield was 15.70 t/ha and for non-irrigated corn was 7.53 t/ha and
for irrigated soybeans the expected yield was 4.03 t/ha and for non-irrigated soybeans was 3.02
t/ha. The differences in crop yield from irrigated and non irrigated in areas in corn was 8.17 t/ha
and 1.01 t/ha for soybeans. In our study area, the mean corn yield in irrigated fields in 2021 was
13.6 t/ha and for non-irrigated fields was 11.6 t/ha. The mean soybeans yield in irrigated fields
was 4.4 t/ha and for non-irrigated fields was 4.5 t/ha. The differences in crop yield from irrigated

and non irrigated in areas in corn was 2 t/ha and -0.1 t/ha for soybeans. This differences are very
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low compared to the information provided by the Alabama Cooperative Extension System shared
information. We attribute this results to high amount of rainfall received in that year.

Despite the high amount of rainfall, in some years, the potential evapotranspiration exceeded
the amount of rain, resulting in a water deficit that was covered by irrigation (Figure [4.53). This
water deficit was predominant in most of the years of our study. But in 2017 and 2021, a positive
water deficit was observed, suggesting that the total amount of rainfall was higher than poten-
tial evapotranspiration, thereby resulting in a negative impact of irrigation on crop yield because
they were receiving enough water from precipitation. Conversely, in 2012, where irrigation had a
slightly negative impact on corn yield, the water deficit was negative. The right irrigation effect
is difficult to estimate because we do not have the amount of water applied through irrigation.
In addition, we attribute these differences to various factors such as pests, uneven distribution of

fertilizers, among others.
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Figure 4.53: Atmospheric Water Deficit (Rainfall-Potential Evapotranspiration).

In our study, we evaluated the relationships between three drought indices and the yield in-
crease by the irrigation effect. The relationship between the PDSI and the irrigation effect on corn
yield was higher when the number of weeks with abnormal drought increased, on the contrary, the

irrigation effect was lower where the number of weeks with moderate drought increased the same
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trend was obtained for the cumulative drought index in both categories. Same trend was showed in
soybeans but the impact was minimum. In the SPI and SPEI, in both crops where the drought per
category and the cumulative drought per category increased the irrigation effect was higher.

We attribute this differences in the time scale of the drought. (Pefia-Gallardo, Vicente-Serrano,
Dominguez-Castro, & Begueria, 2019) found that drought indices calculated at multiple timescales
such as SPEI, SPI, and PDSI, were more effective in capturing the influence of climate on crop
yields compared to drought indices of one scale such as PDSI. Same results were found by Pena-
Gallardo et al.| (2018)), that mentioned that shorter drought timescales are more effective in detect-
ing the effects of drought on crop yields. Although he demonstrated the lower performance of the
Palmer drought indices, it remains among one of the most widely accepted indices. The relation-
ship between the drought indices and the crop yield increase by the irrigation effect was different
in both crops. These droughts affect more corn yield than soybeans yield, we attribute this trend to
the difference of sensitivity to drought between both crops. This tendency can be explained by the
physiological differences between the two crops, with corn exhibiting a greater dependency of wa-
ter compared to soybeans. However, identifying the most suitable drought index for a specific crop
and region is challenging because each crop’s response to drought varies based on its sensitivity to
moisture scarcity and the environmental conditions (Mavromatis, 2007).

The impact of precipitation, geography, and soil factors on crop yield has been demonstrated
throughout the years. These effects are reflected along a field where we find differences on crop
yield, with areas of high yield production or areas of a very poor performance attributed to the
spatial variability in the terrain. The combination of larger datasets of soil and terrain variables
enables a better understanding of the spatial variability in corn and soybeans yield (Kaspar et
al., |2004) that provide information useful for site-specific management. Furthermore, it has been
shown that the characteristics of the terrain are closely linked to both agricultural productivity and
the levels of nutrients in crops Kumhalova et al. (2011). The vertisols present a high water holding
capacity, moderate to poor drainage, and moderate to rapid runoff that tend drop in oxygen content

(Bergtold & Sailus, |2020).
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Over the years, several authors have demonstrated that terrain attributes such as elevation
have a high influence on crop yield (Kravchenko & Bullock, [2000). Similarly, slope and curvature
directly affect the processes of infiltration and runoff. Negative curvature increases runoff, while
positive curvature reduces infiltration (Daniels et al., 1987). For instance, Kaspar et al.| (2004)
found that soybeans were more affected by pH and closed depressions on dry years, but more by
curvature on dry years. Yield was reduced on lower slope positions in wet years, but not on dry
years. Kaspar et al.| (2003)) revealed that during periods of below-average precipitation, corn yield
was negatively correlated with relative elevation, slope, and curvature, on the contrary, and in years
with higher than normal precipitation, yield was positively correlated with relative elevation and
slope.

The analysis revealed that certain terrain and soil variables have a higher effect on crop pro-
duction in irrigated fields than others. These terrain and soil properties encompass features related
to hydraulic properties, landform classification, soil erosion, soil texture, and pH. Corn yield has
demonstrated to be more affected by terrain properties, while soybeans yields is equally affected
by both soil and terrain characteristics, although most of their effect either positive or negative
remains minimum. We attribute this effect to the minimum differences in slope percentage around
the fields that is one of the main variables leading runoff, deposition, erosion, water content, among
others. Although the fields are the same, the effect of the terrain or soil variables will be different
depending of the crop. Soybeans yield was negative affected by Topographic Position Index (TPI).
Mieza, Cravero, Kovac, and Bargiano| (2016) found that TPI is highly correlated with yield due to
its capacity to identify the terrain variability.

Landform classification and erosion significantly impact crop yield and terrain stability. For
instance, profile curvature is used for soil modeling and could be affected by the neighborhood
size Khanifar and Khademalrasoul (2023). Similarly, plan curvature, categorizes hillsides into
concave, convex, and planar. (Ohlmacher| (2007) found that some hillsides with planar plan cur-
vature are more prone to earth flows and earth slides in clayey soils, while those with concave

plan curvature are slightly more prone to landslides compared to convex ones. Additionally, slope
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height is another important factor influencing hazard assessment and erosion. (Q1u et al. (2019)
demonstrated that landslide size tends to increase when slope height increases but decrease when
slope gradient increases|Q1u et al. (2019). Soil erosion driven by various factors, leads to significant
land degradation (Ansari & Tayfur, 2023).

The intrinsic fertility of soils also plays a fundamental role when obtaining high yields. In
our case, soils around Alabama are slightly acidic except for the calcareous soil of the Blackland
Prairie Region (Mitchell & Huluka, [2012) due to its calcareous parent material. Most plants need
a pH between 6.0 to 7.0 to growth properly. The pH of the soils are slightly alkaline over the years,
with a slight decrease from 7.28 in 2013 to 7.05 in the remaining years. Most of the soil nutrients
in those pHs are available for plants, nevertheless, some nutrients such as P, Zn, Fe and Mn become
more limited for plants uptake (Fernandez & Hoeftt, 2009).

The results obtained from the INLA analysis indicates that covariables obtained lowest DICs
in different models. These models include a random effect to take into account the variation at-

tributed to variables that are included in the model but are not our target variable.

4.3 Economic Analysis

In this section we evaluated the profitability of the implementation of a pivot irrigation system in
the study area. The yield increase by the irrigation effect was obtained from the INLA analysis.
From all the models evaluated in the effect of irrigation on crop yield, ARS8 was the model selected
due to the lowest DIC. The income was calculated multiplying the yield increase by the irrigation
effect times the mean price of the commodities from 2012 to 2021 (Corn = 182.0 $/ha, Soybeans=
415.1 $/ha), then we extracted the total annual cost of the three pivot irrigation systems provided
by the Alabama Cooperative Extension System to obtain the net income. In corn (Figure #.54), in
all the years the farmer lost money in cases 1 and 3, and just in 2016 in case 2 the farmer obtained
profits. This year, 2016, was the year with the highest yield increase by the irrigation effect. On
the other hand, in soybeans (Figure 4.55)), in all the years the farmer lost money in cases 1 and 3,

and just in 2014 in case 2 the farmer obtained profits.
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Figure 4.54: Net income produced in corn in the three cases of the pivot irrigation system.

. Case 1 . Case 2 |:| Case 3

2013 2014 2015 2016 2018 2019 2020 2021
200

s I l|:|

&8,

Q 200

S

(o]

o

£ 4001

Cases

Figure 4.55: Net income produced in soybeans in the three cases of the pivot irrigation system.

4.3.1 Discussion

In this section we performed an economic analysis to determine the profitability of the implemen-

tation of an irrigation system in the research study area using INLA results. The analysis required

three study cases with different total annual cost of an irrigation system provided by the Alabama

Cooperative Extension.
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In most of the years where the irrigation effect was positive, the economic implications of
maintaining the pivot irrigation system were negative. Analysis of three cases provided by the Al-
abama Cooperative Extension System from 2012 to 2021 revealed that in corn the farmer obtained
a net income just in 2016 in case two. The highest negative water balance was recorded in 2016,
indicating that the potential evapotranspiration exceeded the precipitation. Consequently, the yield
increase by the irrigation was the highest. In addition, the greatest net income was obtained in
case two, because it had the lowest total annual cost among the three cases. On the other hand, in
soybeans, the farmer obtained a net income just in 2014 in case two. In this year, the negative water
balance also led to increased the yield with irrigation. However, other factors such as fertilizers
that increase crop production where not accounted. For instance, we accept the null hypothesis
that irrigation effect on crop yield in this farm in Alabama Blackland Prairie region is not greater
enough to cover the total annual cost of a pivot irrigation system.

A lot of information necessary to calculate the profitability of this irrigation system was not
used because it was not provided by the farmer. This information includes variables and fixed costs.
From the variable costs we needed to include the seed price, fertilizers, labor, crop insurance, and
some fixed costs such as the machinery depreciation. The operating cost of a center-pivot will be
different from farm to farm due to factors such as the water source, the energy cost, the irrigation

labor, the reparation expenses, field size, among others.

4.4 Conclusions

4.4.1 Machine Learning

* In both crop yield predictions, in all groups RF obtained the lowest mean RMSE, although

not in all the groups was statistically significant different from other models.

* The accuracy of the predictions in group A is significantly influenced by the distance between
the training and validation fields. However, this is not the case in group B, as some of the

data from the validation field was included in the training data.
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The correlation between the number of observations and the accuracy on the predictions
vary depending on the specifications of the group. In scenarios large number of observations
from various years the relationship might not be statistically significant. However, when the
sample size is smaller and there is a limited amount of data spanning fewer years, the amount

of observations might have a statistical significant relationship.

Group D produced the scenarios with the lowest RMSEs and higher R?, although the com-
putational time of every scenario increased significantly due to the number of observations,

they were still computed in less than two days and were within the wall clock of ten days.

Most of the studies found in the literature used remote sensing data to increase the accuracy
on their predictions. However, in group D, we noticed that no spectral data was necessary
to achieve accurate predictions, therefore, more data corresponding to different years, crops,

fields, and varying distances from the training dataset improve the predictions accuracy.

Accuracy of corn and soybeans yield predictions is lower when relying only on one year
of training data where terrain attributes had a higher impact in corn and soybeans yield

predictions, than soil and climate properties.

Incorporating data from multiple fields spanning several years and diverse crop yields into

the training dataset led to higher accuracy of predictions.

Climate data is more important in crop yield predictions when several years of data are

included in the training.

When predictions are made with data from one year, terrain properties are more important

than soil properties in corn and soybeans.

The accuracy of the predictions might be affected by several factors that were not including
in the data. Including different aspects of the agricultural management such as the amount of

fertilizers applied to every field during the 10 consecutive years, the amount of water applied
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through irrigation to every field during the crop season, the crop varieties used in every field

and year, or the pests that affected the crop yield.

* In group A, in corn yield predictions terrain variables had a higher impact than soil variables,
though organic matter had the highest effect. While in soybeans yield predictions, terrain

properties had a greatest impact, with relative slope position having the highest effect.

* In group B, in corn and soybeans yield predictions, terrain variables had a higher impact
than soil variables, although due to specifications of the group, the irrigation stand out as the

variable with the highest effect in corn and soybeans yield predictions.

* In group C, in corn and soybeans yield predictions, climate variables had the highest impact.

* In group D, in corn and soybeans yield predictions, terrain variables had a high effect, climate
variables played an important role due to the integration of data from multiple fields and

years.

4.4.2 Integrated Nested Laplace Approximation (INLA)

* Field AA performed better than other irrigated fields. Obtaining different outstanding models
in the covariables with the highest effect that suggest that variables that are not our target

variable but are part of the model are being considered as random effects.

* Covariables preformed better in models that included random effects, this suggest that vari-
ables that are not our target variable but are part of the model are being considered as random

effects.

* Certain soil and terrain properties on a small or big scale are affecting the crop yield. Those
covariables related to hydraulic properties, landform classification, soil erosion and compo-
sition are the principal driving factors affecting the crop yield. However, the effect of these

factors may vary depending on the slope gradient of the terrain.
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Some covariables had a high positive or negative effect on crop yield that just correspond to

the values of the variable not to an actual effect on crop yield.

In years when the water deficit was more negative, the irrigation effect on crop yield was

higher.

In the study area the yield increase by the irrigation effect is not significant.

Crops respond different to droughts, where crops that have a higher water requirement are

more susceptible to drought.

Drought conditions measured on a shorter time scale have a higher relationship with crop

yield

Contrary to early assumptions that suggested a higher effect of soil properties on crop yield
due to the unique characteristics of soils in the study area, it was found that terrain properties

had a higher influence on corn and soybeans yield.

Soybeans yield is affected by both, terrain properties and soil properties.

Terrain covariables have the highest effect on corn yield.

The high clay content of the soils in the study area did not have a high impact on crop yield.

Economic Analysis

In the study site, irrigation is not required in corn and soybeans production because the

differences in yield from irrigated and non irrigated fields are not significant.

In both crops just in one year in one case the farmer obtained profits.

Pivot irrigation systems are not profitable in the studied farm of the Blackland Prairie Region.
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4.5 Limitations

* Detailed management data was not provided ( i.e., crop variety, planting date, row space,

amount of fertilizers applied, among others).

* Detailed irrigation data was not provided, we just knew if the field was irrigated or not.
Not additional information about water management was provided (i.e., irrigation dates and

depth, amount of water).

* The annual fixed cost of irrigation depends on the field size, the water source, and different

characteristics of the pivot.

» Several research studies include growing season remote sensing data to calculate some veg-
etation index such as NDVI and VI when estimating crop yield predictions. However it was

not included in our study.

* Computational time was a key factor when processing the scenarios. When we started the
analysis of our scenarios, we had a pixel size of 10 m and a wall time of 30 days, unfortu-
nately, some scenarios never finished. For this reason, we had to increase the pixel size to 30
m and modify the wall time to 10 days. Scenarios that were not completed during that time,

or failed, where eliminated from the study.

* Soil data was obtained from an open source database. Not in-situ soil data was collected.

* The analysis was performed in 30 m pixel size and might not been capturing important data

in a smaller pixel resolution.

* Computational times plays an important role. Normally, utilize a personal computer would

take several days that in the Easley Auburn cluster would take few hours.

* High and good programming skills are required when working with big data.
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* No economical information regarding to irrigation fixed or variable costs were provided by

the farmer.

* Results from this study are just applicable to this farm in the Alabama Blackland Prairie

Region.

4.6 Future Research Recommendations

* In crop yield predictions, the pixel size should be reduced to 10 m and remote sensing data
should be implemented in the study to analyze if the accuracy of the predictions in group A

and B increases.

* Other machine learning algorithms such as ANN and deep learning could be implemented

to evaluate the accuracy of the predictions in group A and B.

* Yield data could be separated per growth stages to evaluate the accuracy of the predictions.
Areas of higher and lower yield should be identified to perform difference analysis and

analyze if the accuracy of the model improves.

* All the scenarios should be studied more in detail to observe if the most important vari-
ables obtained change between them and to find if there is a particular trend affecting those

predictions.

* Other soil and terrain properties could be predicted based on the actual data. This predictions

could be studied similarly to our predictions, in a group and scenario base.

* In the spatial variability assessment, every terrain and soil property should be analyzed more
in detail to identify the actual effect on crop yield. Other soil and terrain properties could be
used as a target variable based on the actual data. This work should be implemented using

the actual pixel size, but also reducing the pixel size to 10 m.

* Soil samples should be collected in the study are to increase the accuracy of the models.
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* Elevation information should be taken with a drone to increase the accuracy of the DEMs.

* This study should be replicated in other areas with similar soil, terrain, and climate charac-
teristics. It should be replicated in areas with completely different soil, terrain, and climate

variable performing the same statistical analysis to observe the differences between both.

* Select just the more important variables in crop yield predictions and in the INLA analysis

to evaluate the accuracy of the results.
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Appendix A

Soil characteristics of the Study Area
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Appendix B

Datasets

B.1 Climate Data
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Table B.1: Climate data from 2012 to 2021 in the study area.

Year Variable Value

2012 Abnormal Drought Cumulative PDSI -32.17
2013 Abnormal Drought Cumulative PDSI 0

2014 Abnormal Drought Cumulative PDSI -243
2015 Abnormal Drought Cumulative PDSI -38.56
2016 Abnormal Drought Cumulative PDSI -22.12
2017 Abnormal Drought Cumulative PDSI -17.67
2018 Abnormal Drought Cumulative PDSI -13.39
2019 Abnormal Drought Cumulative PDSI -22.15
2020 Abnormal Drought Cumulative PDSI 0

2021 Abnormal Drought Cumulative PDSI -1.37

2012 Moderate Drought Cumulative PDSI -18.56

2013 Moderate Drought Cumulative PDSI 0
2014 Moderate Drought Cumulative PDSI 0
2015 Moderate Drought Cumulative PDSI -8.45

2016 Moderate Drought Cumulative PDSI -4.59
2017 Moderate Drought Cumulative PDSI -12.66

2018 Moderate Drought Cumulative PDSI -2.02
2019 Moderate Drought Cumulative PDSI -2.30
2020 Moderate Drought Cumulative PDSI 0
2021 Moderate Drought Cumulative PDSI 0
2012 Mild Drought SPT 1.00
2013 Mild Drought SPT 1.00
2014 Mild Drought SPT 2.00
2015 Mild Drought SPT 1.00
2016 Mild Drought SPI 4.00
2017 Mild Drought SPI 0.00
2018 Mild Drought SPI 0.00
2019 Mild Drought SPI 2.00
2020 Mild Drought SPI 0.00
2021 Mild Drought SPI 0.00
2012 Moderate Drought SPI 1.00
2013 Moderate Drought SPI 0
2014 Moderate Drought SPI 1.00
2015 Moderate Drought SPI 1.00
2016 Moderate Drought SPI 1.00
2017 Moderate Drought SPI 0
2018 Moderate Drought SPI 0
2019 Moderate Drought SPI 1.00
2020 Moderate Drought SPI 0
2021 Moderate Drought SPI 0
2012 Severe Drought SPI 1.00
2013 Severe Drought SPI 0
2014 Severe Drought SPI 0
2015 Severe Drought SPI 0
2016 Severe Drought SPI 0
2017 Severe Drought SPI 0
2018 Severe Drought SPI 0
2019 Severe Drought SPI 1
2020 Severe Drought SPI 0
2021 Severe Drought SPI 0
2012 Extreme Drought SPI 0
2013 Extreme Drought SPI 0

Continued on next page
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Continued from previous page

Year Variable Value
2014 Extreme Drought SPI 0
2015 Extreme Drought SPI 0
2016 Extreme Drought SPI 0
2017 Extreme Drought SPI 0
2018 Extreme Drought SPI 0
2019 Extreme Drought SPI 1.00
2020 Extreme Drought SPI 0
2021 Extreme Drought SPT 0
2012 Mild Drought Cumulative SPI -1.65
2013 Mild Drought Cumulative SPI -0.70
2014 Mild Drought Cumulative SPT -2.13
2015 Mild Drought Cumulative SPT -1.12
2016 Mild Drought Cumulative SPI -2.95
2017 Mild Drought Cumulative SPI 0
2018 Mild Drought Cumulative SPI 0
2019 Mild Drought Cumulative SPI -3.77
2020 Mild Drought Cumulative SPI 0
2021 Mild Drought Cumulative SPI 0
2012 Moderate Drought Cumulative SPI -1.65
2013 Moderate Drought Cumulative SPI 0.00
2014 Moderate Drought Cumulative SPI -1.39
2015 Moderate Drought Cumulative SPI -1.12
2016 Moderate Drought Cumulative SPI -1.15
2017 Moderate Drought Cumulative SPI 0.00
2018 Moderate Drought Cumulative SPI 0.00
2019 Moderate Drought Cumulative SPI -3.03
2020 Moderate Drought Cumulative SPI 0.00
2021 Moderate Drought Cumulative SPI 0.00
2012 Severe Drought Cumulative SPI -1.65
2013 Severe Drought Cumulative SPI 0
2014 Severe Drought Cumulative SPI 0
2015 Severe Drought Cumulative SPI 0
2016 Severe Drought Cumulative SPI 0
2017 Severe Drought Cumulative SPI 0
2018 Severe Drought Cumulative SPI 0
2019 Severe Drought Cumulative SPI -3.03
2020 Severe Drought Cumulative SPI 0
2021 Severe Drought Cumulative SPI 0
2012 Extreme Drought Cumulative SPI 0
2013 Extreme Drought Cumulative SPI 0
2014 Extreme Drought Cumulative SPI 0
2015 Extreme Drought Cumulative SPT 0
2016 Extreme Drought Cumulative SPI 0
2017 Extreme Drought Cumulative SPI 0
2018 Extreme Drought Cumulative SPI 0
2019 Extreme Drought Cumulative SPI -3.03
2020 Extreme Drought Cumulative SPI 0
2021 Extreme Drought Cumulative SPI 0
2012 Mild Drought SPEI 3.00
2013 Mild Drought SPEI 2.00
2014 Mild Drought SPEI 3.00
2015 Mild Drought SPEI 1.00
2016 Mild Drought SPET 4.00

Continued on next page
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Continued from previous page

Year Variable Value
2017 Mild Drought SPET 2.00
2018 Mild Drought SPEI 2.00
2019 Mild Drought SPET 2.00
2020 Mild Drought SPEI 0
2021 Mild Drought SPEI 0
2012 Moderate Drought SPEI 2.00
2013 Moderate Drought SPEI 0
2014 Moderate Drought SPEI 1.00
2015 Moderate Drought SPEI 1.00
2016 Moderate Drought SPEI 2.00
2017 Moderate Drought SPEI 0
2018 Moderate Drought SPEI 1.00
2019 Moderate Drought SPEI 1.00
2020 Moderate Drought SPEI 0
2021 Moderate Drought SPEI 0
2012 Severe Drought SPEI 1.00
2013 Severe Drought SPEI 0
2014 Severe Drought SPEI 0
2015 Severe Drought SPEI 1.00
2016 Severe Drought SPEI 0
2017 Severe Drought SPET 0
2018 Severe Drought SPET 0
2019 Severe Drought SPET 1.00
2020 Severe Drought SPET 0
2021 Severe Drought SPET 0
2012 Extreme Drought SPEI 0
2013 Extreme Drought SPEI 0
2014 Extreme Drought SPEI 0
2015 Extreme Drought SPEI 0
2016 Extreme Drought SPEI 0
2017 Extreme Drought SPEI 0
2018 Extreme Drought SPEI 0
2019 Extreme Drought SPEI 0
2020 Extreme Drought SPEI 0
2021 Extreme Drought SPEI 0
2012 Mild Drought Cumulative SPEI -3.13
2013 Mild Drought Cumulative SPEI -1.41
2014 Mild Drought Cumulative SPEI -2.73
2015 Mild Drought Cumulative SPEI -1.54
2016 Mild Drought Cumulative SPEI -4.01
2017 Mild Drought Cumulative SPEI -1.41
2018 Mild Drought Cumulative SPEI -1.82
2019 Mild Drought Cumulative SPEI -2.74
2020 Mild Drought Cumulative SPEI 0
2021 Mild Drought Cumulative SPEI 0
2012 Moderate Drought Cumulative SPEI -2.58
2013 Moderate Drought Cumulative SPET 0
2014 Moderate Drought Cumulative SPEIL -1.05
2015 Moderate Drought Cumulative SPEI -1.54
2016 Moderate Drought Cumulative SPEI -2.67
2017 Moderate Drought Cumulative SPEI 0
2018 Moderate Drought Cumulative SPEI -1.11
2019 Moderate Drought Cumulative SPEI -1.82
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Continued from previous page

Year Variable Value
2020 Moderate Drought Cumulative SPET 0
2021 Moderate Drought Cumulative SPEI 0
2012 Severe Drought Cumulative SPEI -1.51
2013 Severe Drought Cumulative SPEI 0
2014 Severe Drought Cumulative SPEI 0
2015 Severe Drought Cumulative SPEI -1.54
2016 Severe Drought Cumulative SPEI 0
2017 Severe Drought Cumulative SPEI 0
2018 Severe Drought Cumulative SPEI 0
2019 Severe Drought Cumulative SPEI -1.82
2020 Severe Drought Cumulative SPEI 0
2021 Severe Drought Cumulative SPEI 0
2012 Extreme Drought Cumulative SPEI 0
2013 Extreme Drought Cumulative SPEI 0
2014 Extreme Drought Cumulative SPEI 0
2015 Extreme Drought Cumulative SPEI 0
2016 Extreme Drought Cumulative SPEI 0
2017 Extreme Drought Cumulative SPET 0
2018 Extreme Drought Cumulative SPEI 0
2019 Extreme Drought Cumulative SPEL 0
2020 Extreme Drought Cumulative SPEI 0
2021 Extreme Drought Cumulative SPEI 0
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Appendix C

Machine Learning

C.1 Group A
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Table C.1: Machine learning results from the scenarios of group A.

Train Val Year Crop Scenario RMSE R2 MAE Time [h] Distance [m] Error [%] Obs [Train] Obs[Val] Dif. Obs. Model
AM 6 2013 Soybeans GroupA-0001 0.71 0.15 0.60 0.06 1216.49 18.73 1748 249 1499 RF
HB 6 2013 Soybeans GroupA-0002 1.04 0.03 0.96 0.02 593.20 27.41 558 249 309 RF
NH 6 2013 Soybeans GroupA-0003 2.29 0.12 2.14 0.00 2271.12 60.07 173 249 -76 RF
PTB 6 2013 Soybeans GroupA-0004 0.50 0.00 0.41 0.01 1728.12 13.27 289 249 40 RF
BG 6 2013 Soybeans GroupA-0005 0.81 0.04 0.66 0.04 3938.74 21.39 1438 249 1189 RF

BBEA 6 2013 Soybeans GroupA-0006 1.57 0.03 1.48 0.11 4348.89 41.15 3081 249 2832 RF
AA 6 2013 Soybeans GroupA-0007 3.00 0.00 2.96 0.01 30211.35 78.79 378 249 129 RF
SP 6 2013 Soybeans GroupA-0008 2.94 0.02 2.90 0.05 32717.90 77.14 1994 249 1745 RF
BS 6 2013 Soybeans GroupA-0009 0.80 0.15 0.67 0.02 3688.53 20.96 656 249 407 RF
AM 6 2014 Soybeans GroupA-0010 0.82 0.06 0.71 0.06 1216.49 18.76 1748 250 1498 RF
HB 6 2014 Soybeans GroupA-0011 1.57 0.02 1.43 0.01 593.20 35.99 555 250 305 RF
PB 6 2014 Soybeans GroupA-0012 1.76 0.20 1.68 0.01 2775.62 40.30 334 250 84 RF
PTB 6 2014 Soybeans GroupA-0013 1.37 0.06 1.28 0.01 1728.12 31.31 299 250 49 RF
PL 6 2014 Soybeans GroupA-0014 0.79 0.01 0.70 0.03 632.74 18.11 974 250 724 RF
PLB 6 2014 Soybeans GroupA-0015 0.75 0.14 0.67 0.01 1403.96 17.27 500 250 250 RF
BG 6 2014 Soybeans GroupA-0016 2.86 0.01 2.79 0.05 3938.74 65.41 1438 250 1188 RF

BBEA 6 2014 Soybeans GroupA-0017 2.60 0.00 2.52 0.12 4348.89 59.40 3084 250 2834 RF
SP 6 2014 Soybeans GroupA-0018 2.66 0.00 2.59 0.05 32717.90 60.83 1993 250 1743 RF
BS 6 2014 Soybeans GroupA-0019 2.20 0.02 2.10 0.02 3688.53 50.42 656 250 406 RF
AM 6 2015 Soybeans GroupA-0020 0.88 0.02 0.78 0.05 1216.49 3324 1467 251 1216 RF
CF 6 2015 Soybeans GroupA-0021 0.87 0.01 0.72 0.03 1790.97 33.14 1097 251 846 RF
HB 6 2015 Soybeans GroupA-0022 1.77 0.00 1.67 0.02 593.20 67.18 549 251 298 RF
PB 6 2015 Soybeans GroupA-0023 0.95 0.04 0.83 0.01 2775.62 36.05 327 251 76 RF
PTB 6 2015 Soybeans GroupA-0024 0.78 0.06 0.71 0.01 1728.12 29.71 303 251 52 RF
PL 6 2015 Soybeans GroupA-0025 0.53 0.05 0.43 0.03 632.74 20.23 905 251 654 RF
PLB 6 2015 Soybeans GroupA-0026 0.48 0.06 0.36 0.01 1403.96 18.13 499 251 248 RF
BG 6 2015 Soybeans GroupA-0027 1.91 0.00 1.85 0.04 3938.74 72.46 1384 251 1133 RF

BBEA 6 2015 Soybeans GroupA-0028 2.12 0.05 2.06 0.10 4348.89 80.43 2811 251 2560 RF
BS 6 2015 Soybeans GroupA-0029 1.37 0.01 1.28 0.02 3688.53 52.06 659 251 408 RF
AM 6 2020 Soybeans GroupA-0030 0.65 0.04 045 0.03 1216.49 17.56 991 247 744 RF
HB 6 2020 Soybeans GroupA-0031 0.74 0.01 0.55 0.01 593.20 20.09 555 247 308 RF
NH 6 2020 Soybeans GroupA-0032 1.92 0.00 1.72 0.01 2271.12 51.84 181 247 -66 RF
PTB 6 2020 Soybeans GroupA-0033 2.13 0.00 2.05 0.01 1728.12 57.53 262 247 15 RF
BG 6 2020 Soybeans GroupA-0034 0.55 0.04 0.44 0.05 3938.74 14.86 1436 247 1189 RF

BBEA 6 2020 Soybeans GroupA-0035 0.63 0.00 0.53 0.12 4348.89 17.08 3036 247 2789 RF
BS 6 2020 Soybeans GroupA-0036 0.80 0.03 0.58 0.02 3688.53 21.51 748 247 501 RF
AM 6 2021 Soybeans GroupA-0037 0.85 0.01 0.69 0.06 1216.49 21.96 1730 246 1484 RF
CF 6 2021 Soybeans GroupA-0038 0.89 0.01 0.67 0.04 1790.97 23.02 1090 246 844 RF
HB 6 2021 Soybeans GroupA-0039 0.99 0.00 0.79 0.01 593.20 25.64 363 246 117 RF
NH 6 2021 Soybeans GroupA-0040 1.48 0.04 1.22 0.00 2271.12 38.30 51 246 -195 RF
PB 6 2021 Soybeans GroupA-0041 0.87 0.01 0.67 0.01 2775.62 22.63 246 246 0 RF
PE 6 2021 Soybeans GroupA-0042 1.59 0.02 1.39 0.03 3050.40 41.32 938 246 692 RF
PW 6 2021 Soybeans GroupA-0043 0.86 0.00 0.61 0.01 3135.13 2227 246 246 0 RF
PTB 6 2021 Soybeans GroupA-0044 1.95 0.01 1.80 0.01 1728.12 50.60 251 246 5 RF
PL 6 2021 Soybeans GroupA-0045 1.01 0.00 0.77 0.03 632.74 26.20 978 246 732 RF
PLB 6 2021 Soybeans GroupA-0046 1.13 0.02 0.87 0.02 1403.96 29.26 491 246 245 RF
JL 6 2021 Soybeans GroupA-0047 1.21 0.00 0.95 0.02 31086.42 31.30 884 246 638 RF
BS 6 2021 Soybeans GroupA-0048 2.83 0.02 2.71 0.00 3688.53 73.25 85 246 -161 RF

6 AM 2013 Soybeans GroupA-0049 0.78 0.21 0.60 0.01 1216.49 24.06 249 1748 -1499 RF
HB AM 2013 Soybeans GroupA-0050 0.93 0.11 0.78 0.01 1351.32 28.83 558 1748 -1190 RF
NH AM 2013 Soybeans GroupA-0051 1.95 0.24 1.78 0.01 1283.59 60.39 173 1748 -1575 RF
PTB AM 2013 Soybeans GroupA-0052 091 0.01 0.70 0.01 1901.85 28.13 289 1748 -1459 RF
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Train Val Year Crop Scenario RMSE R2 MAE Time [h] Distance [m] Error [%] Obs [Train] Obs[Val] Dif. Obs. Model
BG AM 2013 Soybeans GroupA-0053 0.93 0.01 0.72 0.04 4801.99 28.78 1438 1748 -310 RF
BBEA AM 2013 Soybeans GroupA-0054 1.09 0.01 0.93 0.09 5233.55 33.79 3081 1748 1333 RF
AA AM 2013 Soybeans GroupA-0055 2.46 0.01 2.33 0.01 29801.06 75.99 378 1748 -1370 RF
SP AM 2013 Soybeans GroupA-0056 248 0.02 2.36 0.05 32227.99 76.67 1994 1748 246 RF
BS AM 2013 Soybeans GroupA-0057 0.81 0.11 0.66 0.01 4011.02 25.19 656 1748 -1092 RF
6 AM 2014 Soybeans GroupA-0058 0.82 0.01 0.65 0.01 1216.49 20.94 250 1748 -1498 RF
HB AM 2014 Soybeans GroupA-0059 1.67 0.02 1.51 0.01 1351.32 42.78 555 1748 -1193 RF
PB AM 2014 Soybeans GroupA-0060 1.57 0.03 1.39 0.01 3991.90 40.04 334 1748 -1414 RF
PTB AM 2014 Soybeans GroupA-0061 1.11 0.01 0.96 0.01 1901.85 28.28 299 1748 -1449 RF
PL AM 2014 Soybeans GroupA-0062 0.83 0.05 0.68 0.02 1797.09 21.32 974 1748 -774 RF
PLB AM 2014 Soybeans GroupA-0063 0.93 0.00 0.79 0.01 2601.80 23.76 500 1748 -1248 RF
BG AM 2014 Soybeans GroupA-0064 233 0.01 2.20 0.04 4801.99 59.55 1438 1748 -310 RF
BBEA AM 2014 Soybeans GroupA-0065 2.15 0.01 2.01 0.09 5233.55 54.95 3084 1748 1336 RF
SP AM 2014 Soybeans GroupA-0066 2.16 0.00 2.00 0.05 32227.99 55.10 1993 1748 245 RF
BS AM 2014 Soybeans GroupA-0067 2.12 0.13 2.00 0.02 4011.02 54.25 656 1748 -1092 RF
6 AM 2015 Soybeans GroupA-0068 0.61 0.00 0.49 0.01 1216.49 29.69 251 1467 -1216 RF
CF AM 2015 Soybeans GroupA-0069 1.32 0.00 1.19 0.03 2925.31 63.97 1097 1467 -370 RF
HB AM 2015 Soybeans GroupA-0070 1.21 0.00 1.07 0.01 1351.32 58.85 549 1467 -918 RF
PB AM 2015 Soybeans GroupA-0071 0.71 0.00 0.59 0.01 3991.90 34.61 327 1467 -1140 RF
PTB AM 2015 Soybeans GroupA-0072 0.57 0.01 0.48 0.01 1901.85 27.71 303 1467 -1164 RF
PL AM 2015 Soybeans GroupA-0073 0.60 0.00 0.46 0.02 1797.09 28.93 905 1467 -562 RF
PLB AM 2015 Soybeans GroupA-0074 0.61 0.02 0.48 0.01 2601.80 29.67 499 1467 -968 RF
BG AM 2015 Soybeans GroupA-0075 1.38 0.00 1.27 0.04 4801.99 66.93 1384 1467 -83 RF
BBEA AM 2015 Soybeans GroupA-0076 1.48 0.00 1.38 0.09 5233.55 71.85 2811 1467 1344 RF
BS AM 2015 Soybeans GroupA-0077 1.02 0.07 0.92 0.02 4011.02 49.63 659 1467 -808 RF
CF AM 2019 Soybeans GroupA-0078 0.87 0.00 0.67 0.03 2925.31 31.73 1095 745 350 RF
HB AM 2019 Soybeans GroupA-0079 1.76 0.07 1.50 0.01 1351.32 63.82 174 745 -571 RF
PB AM 2019 Soybeans GroupA-0080 1.08 0.02 0.90 0.01 3991.90 39.24 278 745 -467 RF
PE AM 2019 Soybeans GroupA-0081 1.22 0.10 1.01 0.02 4256.93 44.23 942 745 197 RF
PW AM 2019 Soybeans GroupA-0082 1.12 0.02 0.89 0.01 4299.79 40.67 259 745 -486 RF
PTB AM 2019 Soybeans GroupA-0083 1.38 0.00 1.19 0.01 1901.85 50.12 270 745 -475 RF
PL AM 2019 Soybeans GroupA-0084 0.97 0.07 0.80 0.02 1797.09 35.11 968 745 223 RF
PLB AM 2019 Soybeans GroupA-0085 0.75 0.14 0.61 0.01 2601.80 27.18 502 745 -243 RF
JL AM 2019 Soybeans GroupA-0086 0.94 0.00 0.80 0.02 30699.89 34.18 888 745 143 RF
6 AM 2020 Soybeans GroupA-0087 1.17 0.00 1.07 0.01 1216.49 27.49 247 991 =744 RF
HB AM 2020 Soybeans GroupA-0088 1.24 0.01 1.05 0.01 1351.32 29.02 555 991 -436 RF
NH AM 2020 Soybeans GroupA-0089 1.81 0.00 1.54 0.01 1283.59 4227 181 991 -810 RF
PTB AM 2020 Soybeans GroupA-0090 2.60 0.00 2.53 0.01 1901.85 60.82 262 991 =729 RF
BG AM 2020 Soybeans GroupA-0091 0.85 0.00 0.71 0.04 4801.99 19.79 1436 991 445 RF
BBEA AM 2020 Soybeans GroupA-0092 0.90 0.03 0.80 0.09 5233.55 21.05 3036 991 2045 RF
BS AM 2020 Soybeans GroupA-0093 1.37 0.06 1.18 0.02 4011.02 32.02 748 991 -243 RF
6 AM 2021 Soybeans GroupA-0094 1.03 0.03 0.76 0.01 1216.49 29.17 246 1730 -1484 RF
CF AM 2021 Soybeans GroupA-0095 1.17 0.05 0.83 0.03 2925.31 33.19 1090 1730 -640 RF
HB AM 2021 Soybeans GroupA-0096 1.18 0.00 1.00 0.01 1351.32 33.33 363 1730 -1367 RF
NH AM 2021 Soybeans GroupA-0097 1.30 0.02 1.08 0.00 1283.59 36.70 51 1730 -1679 RF
PB AM 2021 Soybeans GroupA-0098 1.01 0.08 0.73 0.01 3991.90 28.65 246 1730 -1484 RF
PE AM 2021 Soybeans GroupA-0099 1.94 0.13 1.71 0.02 4256.93 54.98 938 1730 =792 RF
PW AM 2021 Soybeans GroupA-0100 1.14 0.07 0.79 0.01 4299.79 32.17 246 1730 -1484 RF
PTB AM 2021 Soybeans GroupA-0101 1.73 0.00 1.56 0.01 1901.85 49.02 251 1730 -1479 RF
PL AM 2021 Soybeans GroupA-0102 1.04 0.04 0.76 0.03 1797.09 29.59 978 1730 -752 RF
PLB AM 2021 Soybeans GroupA-0103 1.38 0.06 1.06 0.01 2601.80 39.18 491 1730 -1239 RF
JL AM 2021 Soybeans GroupA-0104 1.55 0.00 1.21 0.02 30699.89 43.94 884 1730 -846 RF
BS AM 2021 Soybeans GroupA-0105 2.86 0.01 2.68 0.00 4011.02 80.98 85 1730 -1645 RF
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PB CF 2012 Soybeans GroupA-0106 1.42 0.01 1.25 0.01 1477.63 37.17 335 1099 -764 RF
PL CF 2012 Soybeans GroupA-0107 0.78 0.02 0.61 0.02 1531.30 20.27 855 1099 -244 RF

PLB CF 2012 Soybeans GroupA-0108 0.74 0.08 0.58 0.01 1177.89 19.41 502 1099 -597 RF
CS CF 2012 Soybeans GroupA-0109 111 0.04 0.95 0.05 30336.27 29.01 1942 1099 843 RF
SP CF 2012 Soybeans GroupA-0110 1.58 0.02 1.45 0.05 32684.73 41.20 1929 1099 830 RF

6 CF 2015 Soybeans GroupA-0111 0.98 0.02 0.88 0.01 1790.97 29.48 251 1097 -846 RF

AM CF 2015 Soybeans GroupA-0112 1.74 0.03 1.67 0.04 2925.31 52.06 1467 1097 370 RF
HB CF 2015 Soybeans GroupA-0113 2.53 0.00 2.44 0.02 1609.48 75.60 549 1097 -548 RF
PB CF 2015 Soybeans GroupA-0114 1.62 0.00 1.49 0.01 1477.63 48.60 327 1097 -770 RF

PTB CF 2015 Soybeans GroupA-0115 1.58 0.03 1.50 0.01 2125.67 47.21 303 1097 =794 RF
PL CF 2015 Soybeans GroupA-0116 0.73 0.00 0.63 0.02 1531.30 21.88 905 1097 -192 RF

PLB CF 2015 Soybeans GroupA-0117 1.26 0.00 1.13 0.01 1177.89 3778 499 1097 -598 RF
BG CF 2015 Soybeans GroupA-0118 2.58 0.00 2.52 0.04 3976.07 77.16 1384 1097 287 RF

BBEA CF 2015 Soybeans GroupA-0119 2.50 0.00 245 0.10 4282.54 74.74 2811 1097 1714 RF
BS CF 2015 Soybeans GroupA-0120 2.29 0.00 2.24 0.02 3076.95 68.58 659 1097 -438 RF
HB CF 2016 Soybeans GroupA-0121 1.44 0.01 1.31 0.01 1609.48 40.82 181 1083 -902 RF
PB CF 2016 Soybeans GroupA-0122 1.48 0.02 1.37 0.01 1477.63 42.05 331 1083 -752 RF

PTB CF 2016 Soybeans GroupA-0123 1.06 0.04 0.95 0.01 2125.67 30.11 297 1083 -786 RF
BS CF 2016 Soybeans GroupA-0124 1.51 0.02 1.40 0.02 3076.95 42.79 655 1083 -428 RF
AM CF 2019 Soybeans GroupA-0125 1.20 0.02 1.00 0.02 2925.31 34.59 745 1095 -350 RF
HB CF 2019 Soybeans GroupA-0126 2.02 0.02 1.86 0.00 1609.48 58.34 174 1095 -921 RF
PB CF 2019 Soybeans GroupA-0127 1.25 0.04 1.11 0.01 1477.63 36.02 278 1095 -817 RF
PE CF 2019 Soybeans GroupA-0128 0.61 0.02 0.47 0.02 1470.34 17.71 942 1095 -153 RF
PW CF 2019 Soybeans GroupA-0129 0.62 0.01 0.48 0.01 1380.51 17.92 259 1095 -836 RF

PTB CF 2019 Soybeans GroupA-0130 222 0.00 2.12 0.01 2125.67 64.00 270 1095 -825 RF
PL CF 2019 Soybeans GroupA-0131 0.64 0.01 0.53 0.03 1531.30 18.53 968 1095 -127 RF

PLB CF 2019 Soybeans GroupA-0132 0.96 0.03 0.78 0.01 1177.89 27.61 502 1095 -593 RF
JL CF 2019 Soybeans GroupA-0133 1.24 0.01 1.13 0.02 30895.46 35.84 888 1095 -207 RF

6 CF 2021 Soybeans GroupA-0134 2.40 0.02 227 0.01 1790.97 54.03 246 1090 -844 RF

AM CF 2021 Soybeans GroupA-0135 1.40 0.02 1.18 0.06 2925.31 31.48 1730 1090 640 RF
HB CF 2021 Soybeans GroupA-0136 1.16 0.00 0.91 0.01 1609.48 26.02 363 1090 =727 RF
NH CF 2021 Soybeans GroupA-0137 3.04 0.00 2.94 0.00 4061.52 68.45 51 1090 -1039 RF
PB CF 2021 Soybeans GroupA-0138 0.98 0.01 0.77 0.01 1477.63 22.09 246 1090 -844 RF
PE CF 2021 Soybeans GroupA-0139 1.07 0.01 0.85 0.02 1470.34 24.02 938 1090 -152 RF
PW CF 2021 Soybeans GroupA-0140 1.03 0.01 0.84 0.01 1380.51 23.16 246 1090 -844 RF

PTB CF 2021 Soybeans GroupA-0141 2.66 0.00 2.55 0.01 2125.67 59.98 251 1090 -839 RF
PL CF 2021 Soybeans GroupA-0142 0.99 0.00 0.79 0.03 1531.30 22.34 978 1090 -112 RF

PLB CF 2021 Soybeans GroupA-0143 1.21 0.01 0.95 0.01 1177.89 27.20 491 1090 -599 RF
JL CF 2021 Soybeans GroupA-0144 0.82 0.00 0.62 0.02 30895.46 18.36 884 1090 -206 RF
BS CF 2021 Soybeans GroupA-0145 3.77 0.00 3.69 0.00 3076.95 84.79 85 1090 -1005 RF

6 HB 2013 Soybeans GroupA-0146 0.95 0.01 0.81 0.01 593.20 33.48 249 558 -309 RF

AM HB 2013 Soybeans GroupA-0147 0.72 0.01 0.58 0.05 1351.32 25.32 1748 558 1190 RF
NH HB 2013 Soybeans GroupA-0148 1.56 0.00 1.24 0.00 2580.18 55.15 173 558 -385 RF

PTB HB 2013 Soybeans GroupA-0149 1.12 0.00 0.94 0.01 1152.69 39.56 289 558 -269 RF
BG HB 2013 Soybeans GroupA-0150 0.94 0.01 0.75 0.04 4415.29 33.09 1438 558 880 RF

BBEA HB 2013 Soybeans GroupA-0151 0.71 0.00 0.60 0.11 4811.25 25.12 3081 558 2523 RF
AA HB 2013 Soybeans GroupA-0152 2.09 0.02 2.01 0.01 29656.73 73.70 378 558 -180 RF
SP HB 2013 Soybeans GroupA-0153 2.04 0.00 1.97 0.05 32179.07 72.23 1994 558 1436 RF
BS HB 2013 Soybeans GroupA-0154 0.74 0.00 0.58 0.02 3100.07 26.10 656 558 98 RF

6 HB 2014 Soybeans GroupA-0155 1.52 0.03 1.24 0.01 593.20 49.65 250 555 -305 RF

AM HB 2014 Soybeans GroupA-0156 1.33 0.03 1.14 0.05 1351.32 43.48 1748 555 1193 RF
PB HB 2014 Soybeans GroupA-0157 1.21 0.00 1.01 0.01 2853.21 39.56 334 555 -221 RF

PTB HB 2014 Soybeans GroupA-0158 1.04 0.02 0.78 0.01 1152.69 33.87 299 555 -256 RF
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PL HB 2014 Soybeans GroupA-0159 1.32 0.03 1.04 0.03 1056.49 43.03 974 555 419 RF
PLB HB 2014 Soybeans GroupA-0160 1.20 0.01 0.93 0.01 1650.52 39.31 500 555 -55 RF
BG HB 2014 Soybeans GroupA-0161 1.65 0.09 1.45 0.05 4415.29 53.94 1438 555 883 RF
BBEA HB 2014 Soybeans GroupA-0162 1.58 0.01 1.35 0.12 4811.25 5174 3084 555 2529 RF
SP HB 2014 Soybeans GroupA-0163 1.59 0.00 1.36 0.05 32179.07 51.97 1993 555 1438 RF
BS HB 2014 Soybeans GroupA-0164 1.68 0.08 1.27 0.02 3100.07 54.94 656 555 101 RF
BG HB 2015 Soybeans GroupA-0172 0.73 0.11 0.59 0.04 4415.29 72.36 1384 549 835 RF
BBEA HB 2015 Soybeans GroupA-0173 0.80 0.14 0.61 0.10 4811.25 79.82 2811 549 2262 RF
BS HB 2015 Soybeans GroupA-0174 0.85 0.04 0.75 0.02 3100.07 84.35 659 549 110 RF
CF HB 2016 Soybeans GroupA-0175 1.07 0.08 0.85 0.03 1609.48 44.42 1083 181 902 RF
PB HB 2016 Soybeans GroupA-0176 0.62 0.19 0.51 0.01 2853.21 2581 331 181 150 RF
PTB HB 2016 Soybeans GroupA-0177 0.81 0.00 0.62 0.01 1152.69 33.87 297 181 116 RF
BS HB 2016 Soybeans GroupA-0178 0.91 0.01 0.79 0.02 3100.07 38.03 655 181 474 RF
PB HB 2018 Soybeans GroupA-0179 1.40 0.02 1.24 0.01 2853.21 39.26 327 184 143 RF
PE HB 2018 Soybeans GroupA-0180 1.17 0.03 0.96 0.03 3020.77 32.74 941 184 757 RF
PW HB 2018 Soybeans GroupA-0181 1.47 0.00 1.28 0.01 2989.69 40.97 257 184 73 RF
PTB HB 2018 Soybeans GroupA-0182 1.07 0.02 0.88 0.01 1152.69 30.01 289 184 105 RF
BS HB 2018 Soybeans GroupA-0183 1.14 0.06 0.93 0.02 3100.07 31.85 752 184 568 RF
AM HB 2019 Soybeans GroupA-0184 1.08 0.04 0.81 0.02 1351.32 57.33 745 174 571 RF
CF HB 2019 Soybeans GroupA-0185 1.51 0.30 1.21 0.03 1609.48 80.25 1095 174 921 RF
PB HB 2019 Soybeans GroupA-0186 1.08 0.01 0.90 0.01 2853.21 57.36 278 174 104 RF
PTB HB 2019 Soybeans GroupA-0189 0.99 0.00 0.85 0.01 1152.69 52.59 270 174 96 RF
PL HB 2019 Soybeans GroupA-0190 1.45 0.24 1.24 0.03 1056.49 717.06 968 174 794 RF
PLB HB 2019 Soybeans GroupA-0191 0.96 0.11 0.74 0.02 1650.52 50.89 502 174 328 RF
JL HB 2019 Soybeans GroupA-0192 1.02 0.31 0.82 0.02 30527.42 54.16 888 174 714 RF
6 HB 2020 Soybeans GroupA-0193 0.92 0.08 0.75 0.01 593.20 28.53 247 555 -308 RF
AM HB 2020 Soybeans GroupA-0194 1.20 0.01 0.88 0.03 1351.32 37.41 991 555 436 RF
NH HB 2020 Soybeans GroupA-0195 1.83 0.32 1.57 0.00 2580.18 56.82 181 555 -374 RF
PTB HB 2020 Soybeans GroupA-0196 1.84 0.21 1.59 0.01 1152.69 57.15 262 555 -293 RF
BG HB 2020 Soybeans GroupA-0197 1.20 0.04 0.86 0.05 4415.29 37.20 1436 555 881 RF
BBEA HB 2020 Soybeans GroupA-0198 1.13 0.16 0.89 0.11 4811.25 35.03 3036 555 2481 RF
BS HB 2020 Soybeans GroupA-0199 0.76 0.40 0.60 0.02 3100.07 23.67 748 555 193 RF
6 HB 2021 Soybeans GroupA-0200 0.76 0.01 0.62 0.01 593.20 20.98 246 363 -117 RF
AM HB 2021 Soybeans GroupA-0201 0.63 0.04 0.47 0.06 1351.32 17.37 1730 363 1367 RF
CF HB 2021 Soybeans GroupA-0202 0.84 0.06 0.69 0.03 1609.48 23.07 1090 363 727 RF
NH HB 2021 Soybeans GroupA-0203 1.19 0.03 0.90 0.00 2580.18 32.73 51 363 -312 RF
PB HB 2021 Soybeans GroupA-0204 0.73 0.01 0.57 0.01 2853.21 20.23 246 363 -117 RF
PE HB 2021 Soybeans GroupA-0205 1.76 0.05 1.65 0.03 3020.77 48.47 938 363 575 RF
PW HB 2021 Soybeans GroupA-0206 0.74 0.00 0.59 0.01 2989.69 20.48 246 363 -117 RF
PTB HB 2021 Soybeans GroupA-0207 1.67 0.02 1.51 0.01 1152.69 46.00 251 363 -112 RF
PL HB 2021 Soybeans GroupA-0208 0.77 0.09 0.61 0.03 1056.49 21.35 978 363 615 RF
PLB HB 2021 Soybeans GroupA-0209 1.20 0.16 1.03 0.01 1650.52 33.18 491 363 128 RF
JL HB 2021 Soybeans GroupA-0210 1.34 0.03 1.18 0.02 30527.42 37.03 884 363 521 RF
BS HB 2021 Soybeans GroupA-0211 2.66 0.02 2.57 0.00 3100.07 73.39 85 363 -278 RF
6 NH 2013 Soybeans GroupA-0212 1.69 0.00 1.23 0.01 2271.12 67.62 249 173 76 RF
AM NH 2013 Soybeans GroupA-0213 1.35 0.21 0.94 0.06 1283.59 54.10 1748 173 1575 RF
HB NH 2013 Soybeans GroupA-0214 1.24 0.06 0.92 0.02 2580.18 49.64 558 173 385 RF
PTB NH 2013 Soybeans GroupA-0215 1.56 0.06 1.06 0.01 3164.44 62.36 289 173 116 RF
BG NH 2013 Soybeans GroupA-0216 2.02 0.11 1.66 0.04 4995.12 80.80 1438 173 1265 RF
BBEA NH 2013 Soybeans GroupA-0217 1.29 0.02 0.94 0.10 5431.98 5175 3081 173 2908 RF
AA NH 2013 Soybeans GroupA-0218 1.88 0.02 1.69 0.01 30478.82 7522 378 173 205 RF
SP NH 2013 Soybeans GroupA-0219 1.97 0.00 1.76 0.06 32824.38 78.90 1994 173 1821 RF
BS NH 2013 Soybeans GroupA-0220 1.22 0.01 1.05 0.02 5253.94 48.90 656 173 483 RF
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6 NH 2020 Soybeans GroupA-0221 1.15 0.04 0.93 0.01 2271.12 3528 247 181 66 RF
AM NH 2020 Soybeans GroupA-0222 1.43 0.16 1.03 0.03 1283.59 44.03 991 181 810 RF
HB NH 2020 Soybeans GroupA-0223 1.19 0.03 0.98 0.01 2580.18 36.73 555 181 374 RF
PTB NH 2020 Soybeans GroupA-0224 1.64 0.00 1.50 0.01 3164.44 50.58 262 181 81 RF
BG NH 2020 Soybeans GroupA-0225 1.39 0.03 0.93 0.04 4995.12 42.76 1436 181 1255 RF
BBEA NH 2020 Soybeans GroupA-0226 1.23 0.03 0.84 0.10 5431.98 37.70 3036 181 2855 RF
BS NH 2020 Soybeans GroupA-0227 1.15 0.05 0.92 0.02 5253.94 3545 748 181 567 RF
6 NH 2021 Soybeans GroupA-0228 1.76 0.09 1.54 0.01 2271.12 69.27 246 51 195 RF
AM NH 2021 Soybeans GroupA-0229 0.62 0.59 0.51 0.06 1283.59 24.51 1730 51 1679 RF
CF NH 2021 Soybeans GroupA-0230 1.95 0.19 1.78 0.03 4061.52 77.05 1090 51 1039 RF
HB NH 2021 Soybeans GroupA-0231 1.64 0.01 1.38 0.01 2580.18 64.62 363 51 312 RF
PB NH 2021 Soybeans GroupA-0232 1.72 0.22 1.52 0.01 4911.94 67.93 246 51 195 RF
PW NH 2021 Soybeans GroupA-0234 1.64 0.30 1.32 0.01 5399.77 64.83 246 51 195 RF
PTB NH 2021 Soybeans GroupA-0235 0.91 0.07 0.83 0.01 3164.44 3572 251 51 200 RF
PL NH 2021 Soybeans GroupA-0236 1.30 0.22 0.88 0.03 2690.61 51.10 978 51 927 RF
PLB NH 2021 Soybeans GroupA-0237 1.81 0.05 1.60 0.01 3474.91 71.43 491 51 440 RF
JL NH 2021 Soybeans GroupA-0238 2.18 0.15 1.94 0.02 31398.77 86.07 884 51 833 RF
BS NH 2021 Soybeans GroupA-0239 2.12 0.36 1.95 0.00 5253.94 83.54 85 51 34 RF
CF PB 2012 Soybeans GroupA-0240 1.13 0.00 0.87 0.03 1477.63 3529 1099 335 764 RF
PL PB 2012 Soybeans GroupA-0241 1.11 0.04 0.82 0.02 2233.71 34.89 855 335 520 RF
PLB PB 2012 Soybeans GroupA-0242 1.11 0.00 0.86 0.01 1437.03 34.88 502 335 167 RF
(& PB 2012 Soybeans GroupA-0243 1.26 0.25 0.88 0.05 31668.37 39.59 1942 335 1607 RF
SP PB 2012 Soybeans GroupA-0244 1.61 0.03 1.44 0.05 34025.37 50.30 1929 335 1594 RF
6 PB 2014 Soybeans GroupA-0245 1.28 0.03 0.90 0.01 2775.62 36.60 250 334 -84 RF
AM PB 2014 Soybeans GroupA-0246 1.03 0.03 0.83 0.04 3991.90 29.51 1748 334 1414 RF
HB PB 2014 Soybeans GroupA-0247 1.21 0.00 1.05 0.01 2853.21 34.74 555 334 221 RF
PTB PB 2014 Soybeans GroupA-0248 1.40 0.00 1.26 0.01 3582.30 40.07 299 334 -35 RF
PL PB 2014 Soybeans GroupA-0249 1.16 0.07 0.84 0.02 2233.71 33.17 974 334 640 RF
PLB PB 2014 Soybeans GroupA-0250 1.02 0.04 0.84 0.01 1437.03 29.33 500 334 166 RF
BG PB 2014 Soybeans GroupA-0251 233 0.02 2.10 0.03 3001.92 66.67 1438 334 1104 RF
BBEA PB 2014 Soybeans GroupA-0252 2.11 0.02 1.89 0.09 3203.03 60.49 3084 334 2750 RF
SP PB 2014 Soybeans GroupA-0253 1.78 0.07 1.61 0.05 34025.37 5113 1993 334 1659 RF
BS PB 2014 Soybeans GroupA-0254 2.02 0.01 1.84 0.02 4411.96 57.85 656 334 322 RF
6 PB 2015 Soybeans GroupA-0255 0.82 0.00 0.62 0.01 2775.62 40.34 251 327 -76 RF
AM PB 2015 Soybeans GroupA-0256 0.85 0.01 0.74 0.04 3991.90 42.20 1467 327 1140 RF
CF PB 2015 Soybeans GroupA-0257 1.21 0.00 0.99 0.03 1477.63 59.68 1097 327 770 RF
HB PB 2015 Soybeans GroupA-0258 1.08 0.05 0.93 0.01 2853.21 53.67 549 327 222 RF
PTB PB 2015 Soybeans GroupA-0259 0.94 0.04 0.81 0.01 3582.30 46.48 303 327 -24 RF
PL PB 2015 Soybeans GroupA-0260 1.29 0.00 1.09 0.02 2233.71 64.03 905 327 578 RF
PLB PB 2015 Soybeans GroupA-0261 0.72 0.12 0.54 0.01 1437.03 3559 499 327 172 RF
BG PB 2015 Soybeans GroupA-0262 1.49 0.01 1.35 0.04 3001.92 73.72 1384 327 1057 RF
BBEA PB 2015 Soybeans GroupA-0263 1.41 0.05 1.27 0.10 3203.03 69.65 2811 327 2484 RF
BS PB 2015 Soybeans GroupA-0264 1.05 0.00 0.92 0.02 4411.96 51.77 659 327 332 RF
CF PB 2016 Soybeans GroupA-0265 1.07 0.00 0.82 0.03 1477.63 41.15 1083 331 752 RF
HB PB 2016 Soybeans GroupA-0266 0.80 0.03 0.61 0.00 2853.21 30.64 181 331 -150 RF
PTB PB 2016 Soybeans GroupA-0267 0.87 0.00 0.66 0.01 3582.30 33.47 297 331 -34 RF
BS PB 2016 Soybeans GroupA-0268 1.17 0.03 1.04 0.02 4411.96 44.82 655 331 324 RF
HB PB 2018 Soybeans GroupA-0269 1.51 0.01 1.12 0.01 2853.21 52.59 184 327 -143 RF
PE PB 2018 Soybeans GroupA-0270 1.82 0.02 1.43 0.02 573.60 63.37 941 327 614 RF
PW PB 2018 Soybeans GroupA-0271 226 0.00 1.89 0.01 1133.42 78.54 257 327 -70 RF
PTB PB 2018 Soybeans GroupA-0272 1.54 0.00 1.19 0.01 3582.30 53.63 289 327 -38 RF
BS PB 2018 Soybeans GroupA-0273 1.35 0.00 1.18 0.02 4411.96 47.02 752 327 425 RF
AM PB 2019 Soybeans GroupA-0274 1.14 0.01 0.87 0.02 3991.90 56.30 745 278 467 RF
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CF PB 2019 Soybeans GroupA-0275 1.47 0.17 1.20 0.03 1477.63 72.63 1095 278 817 RF
HB PB 2019 Soybeans GroupA-0276 0.92 0.10 0.75 0.01 2853.21 45.36 174 278 -104 RF
PE PB 2019 Soybeans GroupA-0277 1.19 0.30 091 0.02 573.60 58.87 942 278 664 RF
PW PB 2019 Soybeans GroupA-0278 1.82 0.25 1.57 0.01 1133.42 89.51 259 278 -19 RF

PTB PB 2019 Soybeans GroupA-0279 1.16 0.12 1.02 0.01 3582.30 57.10 270 278 -8 RF
PL PB 2019 Soybeans GroupA-0280 2.01 0.03 1.77 0.02 2233.71 98.86 968 278 690 RF

PLB PB 2019 Soybeans GroupA-0281 1.65 0.01 1.34 0.01 1437.03 81.16 502 278 224 RF
JL PB 2019 Soybeans GroupA-0282 1.00 0.05 0.78 0.02 32178.80 49.22 888 278 610 RF

6 PB 2021 Soybeans GroupA-0283 1.77 0.02 1.51 0.01 2775.62 62.99 246 246 0 RF
AM PB 2021 Soybeans GroupA-0284 1.67 0.23 1.37 0.06 3991.90 59.56 1730 246 1484 RF
CF PB 2021 Soybeans GroupA-0285 2.13 0.35 1.70 0.03 1477.63 76.08 1090 246 844 RF
HB PB 2021 Soybeans GroupA-0286 1.73 0.04 1.51 0.01 2853.21 61.79 363 246 117 RF
NH PB 2021 Soybeans GroupA-0287 222 0.10 1.81 0.00 4911.94 79.09 51 246 -195 RF
PE PB 2021 Soybeans GroupA-0288 1.61 0.50 1.25 0.02 573.60 57.33 938 246 692 RF

PTB PB 2021 Soybeans GroupA-0290 2.06 0.23 1.68 0.01 3582.30 73.29 251 246 5 RF

PL PB 2021 Soybeans GroupA-0291 2.24 0.27 1.84 0.03 2233.71 79.97 978 246 732 RF

PLB PB 2021 Soybeans GroupA-0292 1.75 0.00 1.50 0.01 1437.03 62.24 491 246 245 RF
JL PB 2021 Soybeans GroupA-0293 2.78 0.11 2.29 0.02 32178.80 99.01 884 246 638 RF
BS PB 2021 Soybeans GroupA-0294 2.66 0.18 2.19 0.00 4411.96 94.90 85 246 -161 RF
HB PE 2018 Soybeans GroupA-0295 1.29 0.01 1.15 0.00 3020.77 27.73 184 941 =757 RF
PB PE 2018 Soybeans GroupA-0296 2.10 0.02 1.92 0.01 573.60 45.06 327 941 -614 RF
PW PE 2018 Soybeans GroupA-0297 0.64 0.01 0.51 0.01 602.45 13.79 257 941 -684 RF

PTB PE 2018 Soybeans GroupA-0298 1.17 0.00 1.01 0.01 3583.16 25.07 289 941 -652 RF
BS PE 2018 Soybeans GroupA-0299 1.63 0.05 1.51 0.02 4129.23 34.98 752 941 -189 RF
AM PE 2019 Soybeans GroupA-0300 1.07 0.28 0.97 0.02 4256.93 30.69 745 942 -197 RF
CF PE 2019 Soybeans GroupA-0301 0.61 0.16 0.50 0.03 1470.34 17.49 1095 942 153 RF
HB PE 2019 Soybeans GroupA-0302 1.89 0.09 1.67 0.00 3020.77 53.85 174 942 -768 RF
PB PE 2019 Soybeans GroupA-0303 1.51 0.14 1.34 0.01 573.60 43.27 278 942 -664 RF
PW PE 2019 Soybeans GroupA-0304 0.69 0.01 0.55 0.01 602.45 19.72 259 942 -683 RF

PTB PE 2019 Soybeans GroupA-0305 2.26 0.00 2.14 0.01 3583.16 64.46 270 942 -672 RF
PL PE 2019 Soybeans GroupA-0306 0.82 0.14 0.68 0.02 2576.96 23.42 968 942 26 RF

PLB PE 2019 Soybeans GroupA-0307 1.03 0.08 0.90 0.01 1832.05 29.33 502 942 -440 RF
JL PE 2019 Soybeans GroupA-0308 1.30 0.01 1.16 0.02 31805.51 37.21 888 942 -54 RF

6 PE 2021 Soybeans GroupA-0309 2.74 0.00 2.57 0.01 3050.40 58.25 246 938 -692 RF
AM PE 2021 Soybeans GroupA-0310 1.76 0.25 1.62 0.05 4256.93 37.40 1730 938 792 RF
CF PE 2021 Soybeans GroupA-0311 1.12 0.08 0.89 0.03 1470.34 23.84 1090 938 152 RF
HB PE 2021 Soybeans GroupA-0312 1.51 0.28 1.36 0.01 3020.77 32.11 363 938 -575 RF
NH PE 2021 Soybeans GroupA-0313 3.44 0.28 3.28 0.00 5265.97 72.98 51 938 -887 RF
PB PE 2021 Soybeans GroupA-0314 1.45 0.40 1.26 0.01 573.60 30.83 246 938 -692 RF
PW PE 2021 Soybeans GroupA-0315 1.39 0.00 0.95 0.01 602.45 29.44 246 938 -692 RF

PTB PE 2021 Soybeans GroupA-0316 3.23 0.11 3.05 0.01 3583.16 68.47 251 938 -687 RF
PL PE 2021 Soybeans GroupA-0317 1.44 0.01 1.27 0.02 2576.96 30.60 978 938 40 RF

PLB PE 2021 Soybeans GroupA-0318 2.03 0.00 1.86 0.01 1832.05 43.15 491 938 -447 RF
JL PE 2021 Soybeans GroupA-0319 1.52 0.41 1.10 0.02 31805.51 32.19 884 938 -54 RF
BS PE 2021 Soybeans GroupA-0320 4.11 0.09 3.96 0.00 4129.23 87.26 85 938 -853 RF
HB PW 2018 Soybeans GroupA-0321 1.26 0.00 1.12 0.01 2989.69 27.50 184 257 -73 RF
PB PW 2018 Soybeans GroupA-0322 233 0.22 2.26 0.01 1133.42 50.93 327 257 70 RF
PE PW 2018 Soybeans GroupA-0323 0.66 0.09 0.51 0.02 602.45 14.48 941 257 684 RF

PTB PW 2018 Soybeans GroupA-0324 0.94 0.12 0.80 0.01 3360.13 20.64 289 257 32 RF
BS PW 2018 Soybeans GroupA-0325 1.03 0.06 0.90 0.02 3638.27 22.54 752 257 495 RF
AM PW 2019 Soybeans GroupA-0326 1.01 0.06 0.92 0.02 4299.79 28.06 745 259 486 RF
CF PW 2019 Soybeans GroupA-0327 0.67 0.01 0.54 0.03 1380.51 18.48 1095 259 836 RF
HB PW 2019 Soybeans GroupA-0328 242 0.03 2.31 0.00 2989.69 67.01 174 259 -85 RF
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PB PW 2019 Soybeans GroupA-0329 1.17 0.00 1.07 0.01 1133.42 3248 278 259 19 RF
PE PW 2019 Soybeans GroupA-0330 0.57 0.00 0.44 0.03 602.45 15.82 942 259 683 RF

PTB PW 2019 Soybeans GroupA-0331 2.39 0.00 2.33 0.01 3360.13 66.21 270 259 11 RF
PL PW 2019 Soybeans GroupA-0332 0.73 0.06 0.60 0.03 2757.07 20.20 968 259 709 RF

PLB PW 2019 Soybeans GroupA-0333 0.90 0.06 0.76 0.02 2110.84 24.80 502 259 243 RF
JL PW 2019 Soybeans GroupA-0334 1.35 0.00 1.25 0.02 31235.93 37.32 888 259 629 RF

6 PW 2021 Soybeans GroupA-0335 2.40 0.06 222 0.01 3135.13 54.72 246 246 0 RF
AM PW 2021 Soybeans GroupA-0336 1.05 0.00 0.82 0.06 4299.79 23.95 1730 246 1484 RF
CF PW 2021 Soybeans GroupA-0337 0.76 0.00 0.62 0.03 1380.51 17.34 1090 246 844 RF
HB PW 2021 Soybeans GroupA-0338 0.71 0.02 0.56 0.01 2989.69 16.13 363 246 117 RF
NH PW 2021 Soybeans GroupA-0339 2.87 0.02 2.77 0.00 5399.77 65.28 51 246 -195 RF
PB PW 2021 Soybeans GroupA-0340 0.80 0.00 0.66 0.01 1133.42 18.23 246 246 0 RF
PE PW 2021 Soybeans GroupA-0341 1.23 0.00 1.07 0.03 602.45 27.90 938 246 692 RF

PTB PW 2021 Soybeans GroupA-0342 2.61 0.00 2.51 0.01 3360.13 59.49 251 246 5 RF
PL PW 2021 Soybeans GroupA-0343 0.74 0.01 0.60 0.03 2757.07 16.83 978 246 732 RF

PLB PW 2021 Soybeans GroupA-0344 0.75 0.03 0.61 0.01 2110.84 17.05 491 246 245 RF
JL PW 2021 Soybeans GroupA-0345 0.81 0.02 0.67 0.02 31235.93 18.43 884 246 638 RF
BS PW 2021 Soybeans GroupA-0346 3.56 0.00 3.49 0.00 3638.27 81.04 85 246 -161 RF

6 PTB 2013 Soybeans GroupA-0347 0.69 0.01 0.59 0.01 1728.12 19.03 249 289 -40 RF
AM PTB 2013 Soybeans GroupA-0348 1.32 0.00 1.17 0.06 1901.85 36.20 1748 289 1459 RF
HB PTB 2013 Soybeans GroupA-0349 1.09 0.01 1.02 0.01 1152.69 29.91 558 289 269 RF
NH PTB 2013 Soybeans GroupA-0350 2.44 0.05 227 0.00 3164.44 67.06 173 289 -116 RF
BG PTB 2013 Soybeans GroupA-0351 0.68 0.11 0.54 0.04 5528.32 18.64 1438 289 1149 RF

BBEA PTB 2013 Soybeans GroupA-0352 0.99 0.04 0.91 0.11 5911.78 27.23 3081 289 2792 RF
AA PTB 2013 Soybeans GroupA-0353 2.94 0.10 2.86 0.01 28506.53 80.61 378 289 89 RF
SP PTB 2013 Soybeans GroupA-0354 2.78 0.03 271 0.05 31037.05 76.39 1994 289 1705 RF
BS PTB 2013 Soybeans GroupA-0355 1.50 0.02 1.33 0.02 211472 4124 656 289 367 RF

6 PTB 2014 Soybeans GroupA-0356 1.17 0.11 0.96 0.01 1728.12 34.93 250 299 -49 RF
AM PTB 2014 Soybeans GroupA-0357 0.97 0.08 0.83 0.05 1901.85 28.95 1748 299 1449 RF
HB PTB 2014 Soybeans GroupA-0358 0.93 0.01 0.76 0.01 1152.69 27.81 555 299 256 RF
PB PTB 2014 Soybeans GroupA-0359 1.06 0.01 0.92 0.01 3582.30 31.51 334 299 35 RF
PL PTB 2014 Soybeans GroupA-0360 0.95 0.00 0.70 0.03 2192.01 28.31 974 299 675 RF

PLB PTB 2014 Soybeans GroupA-0361 1.13 0.05 0.89 0.01 2652.61 33.76 500 299 201 RF

BG PTB 2014 Soybeans GroupA-0362 1.63 0.08 1.48 0.05 5528.32 48.62 1438 299 1139 RF

BBEA PTB 2014 Soybeans GroupA-0363 1.56 0.00 1.40 0.12 5911.78 46.48 3084 299 2785 RF
SP PTB 2014 Soybeans GroupA-0364 1.63 0.06 1.46 0.05 31037.05 48.67 1993 299 1694 RF
BS PTB 2014 Soybeans GroupA-0365 1.94 0.01 1.75 0.01 2114.72 5778 656 299 357 RF
6 PTB 2015 Soybeans GroupA-0366 0.88 0.03 0.71 0.01 1728.12 50.19 251 303 -52 RF
AM PTB 2015 Soybeans GroupA-0367 0.69 0.01 0.58 0.04 1901.85 39.38 1467 303 1164 RF
CF PTB 2015 Soybeans GroupA-0368 1.37 0.09 1.25 0.03 2125.67 77.97 1097 303 794 RF
HB PTB 2015 Soybeans GroupA-0369 0.81 0.01 0.66 0.01 1152.69 46.17 549 303 246 RF
PB PTB 2015 Soybeans GroupA-0370 0.64 0.00 0.54 0.01 3582.30 36.65 327 303 24 RF
PL PTB 2015 Soybeans GroupA-0371 1.40 0.01 1.26 0.03 2192.01 79.70 905 303 602 RF

PLB PTB 2015 Soybeans GroupA-0372 0.94 0.01 0.78 0.01 2652.61 53.52 499 303 196 RF

BG PTB 2015 Soybeans GroupA-0373 1.06 0.07 0.93 0.04 5528.32 60.54 1384 303 1081 RF

BBEA PTB 2015 Soybeans GroupA-0374 1.02 0.00 0.86 0.10 5911.78 58.23 2811 303 2508 RF
BS PTB 2015 Soybeans GroupA-0375 0.92 0.00 0.78 0.01 2114.72 52.56 659 303 356 RF
CF PTB 2016 Soybeans GroupA-0376 0.60 0.00 0.46 0.03 2125.67 20.56 1083 297 786 RF
HB PTB 2016 Soybeans GroupA-0377 0.62 0.06 0.52 0.01 1152.69 21.27 181 297 -116 RF
PB PTB 2016 Soybeans GroupA-0378 0.88 0.07 0.80 0.01 3582.30 30.49 331 297 34 RF
BS PTB 2016 Soybeans GroupA-0379 1.23 0.11 1.09 0.01 2114.72 42.36 655 297 358 RF
HB PTB 2018 Soybeans GroupA-0380 0.73 0.01 0.59 0.00 1152.69 18.27 184 289 -105 RF
PB PTB 2018 Soybeans GroupA-0381 1.61 0.04 1.45 0.01 3582.30 40.27 327 289 38 RF
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PE PTB 2018 Soybeans GroupA-0382 0.85 0.04 0.64 0.03 3583.16 21.23 941 289 652 RF
PW PTB 2018 Soybeans GroupA-0383 112 0.00 0.94 0.01 3360.13 28.01 257 289 -32 RF
BS PTB 2018 Soybeans GroupA-0384 1.29 0.00 1.13 0.02 2114.72 32.30 752 289 463 RF
HB PTB 2019 Soybeans GroupA-0387 1.37 0.03 1.08 0.01 1152.69 96.95 174 270 -96 RF
PB PTB 2019 Soybeans GroupA-0388 1.08 0.04 0.90 0.01 3582.30 76.21 278 270 8 RF
JL PTB 2019 Soybeans GroupA-0393 1.19 0.04 0.94 0.02 29375.83 84.40 888 270 618 RF
6 PTB 2020 Soybeans GroupA-0394 1.47 0.06 1.33 0.01 1728.12 79.39 247 262 -15 RF
HB PTB 2020 Soybeans GroupA-0396 1.40 0.01 1.15 0.01 1152.69 75.77 555 262 293 RF
NH PTB 2020 Soybeans GroupA-0397 1.15 0.03 0.96 0.00 3164.44 62.15 181 262 -81 RF
BS PTB 2020 Soybeans GroupA-0400 0.99 0.10 0.83 0.02 2114.72 53.63 748 262 486 RF
6 PTB 2021 Soybeans GroupA-0401 1.25 0.00 1.01 0.01 1728.12 64.53 246 251 -5 RF
AM PTB 2021 Soybeans GroupA-0402 1.49 0.06 1.29 0.06 1901.85 76.95 1730 251 1479 RF
HB PTB 2021 Soybeans GroupA-0404 1.62 0.10 1.43 0.01 1152.69 84.00 363 251 112 RF
NH PTB 2021 Soybeans GroupA-0405 1.09 0.00 0.90 0.00 3164.44 56.27 51 251 -200 RF
PB PTB 2021 Soybeans GroupA-0406 1.60 0.01 1.38 0.01 3582.30 82.53 246 251 -5 RF
BS PTB 2021 Soybeans GroupA-0412 1.49 0.00 1.29 0.00 2114.72 77.12 85 251 -166 RF
CF PL 2012 Soybeans GroupA-0413 0.71 0.03 0.55 0.03 1531.30 19.73 1099 855 244 RF
PB PL 2012 Soybeans GroupA-0414 1.23 0.01 1.10 0.01 2233.71 34.12 335 855 -520 RF
PLB PL 2012 Soybeans GroupA-0415 0.71 0.03 0.56 0.02 809.82 19.61 502 855 -353 RF
Ccs PL 2012 Soybeans GroupA-0416 0.76 0.01 0.60 0.05 30903.15 21.03 1942 855 1087 RF
SP PL 2012 Soybeans GroupA-0417 1.52 0.05 1.31 0.05 33228.68 42.10 1929 855 1074 RF
6 PL 2014 Soybeans GroupA-0418 0.81 0.00 0.61 0.01 632.74 20.55 250 974 -724 RF
AM PL 2014 Soybeans GroupA-0419 0.81 0.03 0.63 0.05 1797.09 20.41 1748 974 774 RF
HB PL 2014 Soybeans GroupA-0420 1.54 0.00 1.37 0.01 1056.49 38.84 555 974 -419 RF
PB PL 2014 Soybeans GroupA-0421 1.40 0.04 1.24 0.01 223371 35.30 334 974 -640 RF
PTB PL 2014 Soybeans GroupA-0422 1.19 0.00 1.04 0.01 2192.01 30.13 299 974 -675 RF
PLB PL 2014 Soybeans GroupA-0423 0.74 0.04 0.59 0.01 809.82 18.67 500 974 -474 RF
BG PL 2014 Soybeans GroupA-0424 235 0.02 225 0.05 3360.23 59.40 1438 974 464 RF
BBEA PL 2014 Soybeans GroupA-0425 218 0.03 2.05 0.12 3759.77 54.94 3084 974 2110 RF
SP PL 2014 Soybeans GroupA-0426 223 0.02 2.12 0.06 33228.68 56.25 1993 974 1019 RF
BS PL 2014 Soybeans GroupA-0427 220 0.01 2.07 0.01 3972.53 55.53 656 974 -318 RF
6 PL 2015 Soybeans GroupA-0428 0.87 0.00 0.65 0.01 632.74 29.66 251 905 -654 RF
AM PL 2015 Soybeans GroupA-0429 1.42 0.10 1.23 0.04 1797.09 48.36 1467 905 562 RF
CF PL 2015 Soybeans GroupA-0430 0.80 0.01 0.64 0.03 1531.30 27.26 1097 905 192 RF
HB PL 2015 Soybeans GroupA-0431 2.12 0.00 1.98 0.02 1056.49 7237 549 905 -356 RF
PB PL 2015 Soybeans GroupA-0432 1.37 0.03 1.21 0.01 223371 46.64 327 905 -578 RF
PTB PL 2015 Soybeans GroupA-0433 1.27 0.01 1.07 0.01 2192.01 43.19 303 905 -602 RF
PLB PL 2015 Soybeans GroupA-0434 0.86 0.00 0.64 0.01 809.82 29.23 499 905 -406 RF
BG PL 2015 Soybeans GroupA-0435 221 0.00 2.08 0.04 3360.23 75.17 1384 905 479 RF
BBEA PL 2015 Soybeans GroupA-0436 232 0.05 222 0.10 3759.77 79.23 2811 905 1906 RF
BS PL 2015 Soybeans GroupA-0437 1.87 0.00 1.73 0.02 3972.53 63.73 659 905 -246 RF
AM PL 2019 Soybeans GroupA-0438 0.95 0.00 0.74 0.02 1797.09 29.47 745 968 -223 RF
CF PL 2019 Soybeans GroupA-0439 0.70 0.02 0.55 0.03 1531.30 21.76 1095 968 127 RF
HB PL 2019 Soybeans GroupA-0440 1.73 0.19 1.62 0.00 1056.49 53.56 174 968 -794 RF
PB PL 2019 Soybeans GroupA-0441 1.43 0.09 1.18 0.01 223371 44.54 278 968 -690 RF
PE PL 2019 Soybeans GroupA-0442 0.90 0.10 0.71 0.03 2576.96 27.80 942 968 -26 RF
PW PL 2019 Soybeans GroupA-0443 0.72 0.02 0.55 0.01 2757.07 2235 259 968 -709 RF
PTB PL 2019 Soybeans GroupA-0444 1.85 0.01 1.73 0.01 2192.01 5728 270 968 -698 RF
PLB PL 2019 Soybeans GroupA-0445 0.80 0.18 0.64 0.02 809.82 24.83 502 968 -466 RF
JL PL 2019 Soybeans GroupA-0446 0.97 0.17 0.86 0.02 31562.14 30.12 888 968 -80 RF
6 PL 2021 Soybeans GroupA-0447 2.19 0.06 1.90 0.01 632.74 4754 246 978 -732 RF
AM PL 2021 Soybeans GroupA-0448 1.57 0.00 1.35 0.06 1797.09 33.96 1730 978 752 RF
CF PL 2021 Soybeans GroupA-0449 0.93 0.00 0.74 0.03 1531.30 20.13 1090 978 112 RF
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HB PL 2021 Soybeans GroupA-0450 1.27 0.05 1.10 0.01 1056.49 2748 363 978 -615 RF
NH PL 2021 Soybeans GroupA-0451 3.02 0.09 278 0.00 2690.61 65.51 51 978 -927 RF
PB PL 2021 Soybeans GroupA-0452 1.48 0.02 1.22 0.01 223371 32.05 246 978 -732 RF
PE PL 2021 Soybeans GroupA-0453 1.01 0.01 0.76 0.03 2576.96 21.83 938 978 -40 RF
PW PL 2021 Soybeans GroupA-0454 0.99 0.01 0.82 0.01 2757.07 21.51 246 978 =732 RF
PTB PL 2021 Soybeans GroupA-0455 278 0.03 2.65 0.01 2192.01 60.36 251 978 =727 RF

PLB PL 2021 Soybeans GroupA-0456 0.95 0.00 0.69 0.01 809.82 20.60 491 978 -487 RF
JL PL 2021 Soybeans GroupA-0457 0.88 0.00 0.64 0.02 31562.14 19.06 884 978 -94 RF
BS PL 2021 Soybeans GroupA-0458 3.88 0.03 3.78 0.00 3972.53 84.18 85 978 -893 RF
CF PLB 2012 Soybeans GroupA-0459 0.55 0.04 0.43 0.03 1177.89 15.41 1099 502 597 RF
PB PLB 2012 Soybeans GroupA-0460 111 0.01 0.99 0.01 1437.03 31.09 335 502 -167 RF
PL PLB 2012 Soybeans GroupA-0461 0.50 0.06 0.39 0.02 809.82 14.08 855 502 353 RF
Ccs PLB 2012 Soybeans GroupA-0462 0.69 0.01 0.55 0.05 31271.27 19.27 1942 502 1440 RF
SP PLB 2012 Soybeans GroupA-0463 1.48 0.03 1.28 0.05 33608.76 4148 1929 502 1427 RF

6 PLB 2014 Soybeans GroupA-0464 1.02 0.00 0.76 0.01 1403.96 27.12 250 500 -250 RF
AM PLB 2014 Soybeans GroupA-0465 0.91 0.10 0.75 0.05 2601.80 24.13 1748 500 1248 RF
HB PLB 2014 Soybeans GroupA-0466 1.57 0.01 1.37 0.02 1650.52 41.61 555 500 55 RF
PB PLB 2014 Soybeans GroupA-0467 1.38 0.05 1.21 0.01 1437.03 36.44 334 500 -166 RF

PTB PLB 2014 Soybeans GroupA-0468 1.27 0.13 1.10 0.01 2652.61 33.51 299 500 -201 RF
PL PLB 2014 Soybeans GroupA-0469 0.85 0.15 0.63 0.03 809.82 2237 974 500 474 RF
BG PLB 2014 Soybeans GroupA-0470 2.17 0.04 1.99 0.05 2941.78 57.44 1438 500 938 RF

BBEA PLB 2014 Soybeans GroupA-0471 2.15 0.15 2.00 0.12 3296.50 56.79 3084 500 2584 RF
SP PLB 2014 Soybeans GroupA-0472 2.13 0.00 1.95 0.05 33608.76 56.32 1993 500 1493 RF
BS PLB 2014 Soybeans GroupA-0473 2.13 0.04 1.95 0.01 4109.93 56.30 656 500 156 RF

6 PLB 2015 Soybeans GroupA-0474 0.78 0.03 0.62 0.01 1403.96 34.53 251 499 -248 RF
AM PLB 2015 Soybeans GroupA-0475 0.94 0.18 0.80 0.04 2601.80 4123 1467 499 968 RF
CF PLB 2015 Soybeans GroupA-0476 1.21 0.00 0.96 0.03 1177.89 5324 1097 499 598 RF
HB PLB 2015 Soybeans GroupA-0477 1.60 0.10 1.41 0.02 1650.52 70.39 549 499 50 RF
PB PLB 2015 Soybeans GroupA-0478 0.90 0.05 0.78 0.01 1437.03 39.59 327 499 -172 RF

PTB PLB 2015 Soybeans GroupA-0479 0.84 0.02 0.73 0.01 2652.61 37.03 303 499 -196 RF
PL PLB 2015 Soybeans GroupA-0480 1.09 0.02 0.82 0.02 809.82 47.80 905 499 406 RF
BG PLB 2015 Soybeans GroupA-0481 1.62 0.02 1.43 0.04 2941.78 71.14 1384 499 885 RF

BBEA PLB 2015 Soybeans GroupA-0482 1.55 0.00 1.36 0.10 3296.50 68.15 2811 499 2312 RF
BS PLB 2015 Soybeans GroupA-0483 1.32 0.21 1.16 0.01 4109.93 5797 659 499 160 RF
AM PLB 2019 Soybeans GroupA-0484 0.88 0.33 0.72 0.02 2601.80 31.45 745 502 243 RF
CF PLB 2019 Soybeans GroupA-0485 111 0.02 0.85 0.03 1177.89 39.73 1095 502 593 RF
HB PLB 2019 Soybeans GroupA-0486 1.58 0.02 1.35 0.00 1650.52 56.41 174 502 -328 RF
PB PLB 2019 Soybeans GroupA-0487 1.31 0.05 111 0.01 1437.03 46.60 278 502 -224 RF
PE PLB 2019 Soybeans GroupA-0488 1.39 0.01 1.08 0.03 1832.05 49.49 942 502 440 RF
PW PLB 2019 Soybeans GroupA-0489 1.30 0.11 0.96 0.01 2110.84 46.22 259 502 -243 RF

PTB PLB 2019 Soybeans GroupA-0490 1.67 0.13 1.45 0.01 2652.61 59.51 270 502 -232 RF
PL PLB 2019 Soybeans GroupA-0491 0.94 0.31 0.67 0.03 809.82 33.63 968 502 466 RF
JL PLB 2019 Soybeans GroupA-0492 1.03 0.01 0.91 0.02 31878.96 36.77 888 502 386 RF

6 PLB 2021 Soybeans GroupA-0493 233 0.01 2.15 0.01 1403.96 56.26 246 491 -245 RF
AM PLB 2021 Soybeans GroupA-0494 1.52 0.13 1.35 0.06 2601.80 36.68 1730 491 1239 RF
CF PLB 2021 Soybeans GroupA-0495 1.33 0.02 0.93 0.03 1177.89 32.17 1090 491 599 RF
HB PLB 2021 Soybeans GroupA-0496 1.35 0.00 111 0.01 1650.52 32.67 363 491 -128 RF
NH PLB 2021 Soybeans GroupA-0497 298 0.05 2.79 0.00 347491 72.11 51 491 -440 RF
PB PLB 2021 Soybeans GroupA-0498 1.42 0.00 1.14 0.01 1437.03 34.29 246 491 -245 RF

PE PLB 2021 Soybeans GroupA-0499 1.56 0.00 1.08 0.03 1832.05 37.77 938 491 447 RF

PW PLB 2021 Soybeans GroupA-0500 1.70 0.16 1.23 0.01 2110.84 41.15 246 491 -245 RF

PTB PLB 2021 Soybeans GroupA-0501 2.54 0.02 2.34 0.01 2652.61 61.28 251 491 -240 RF
PL PLB 2021 Soybeans GroupA-0502 1.22 0.08 0.87 0.03 809.82 29.55 978 491 487 RF
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JL PLB 2021 Soybeans GroupA-0503 1.40 0.03 0.93 0.02 31878.96 33.94 884 491 393 RF
BS PLB 2021 Soybeans GroupA-0504 3.65 0.04 3.44 0.00 4109.93 88.16 85 491 -406 RF
6 BG 2013 Soybeans GroupA-0505 1.06 0.02 0.85 0.01 3938.74 30.40 249 1438 -1189 RF
AM BG 2013 Soybeans GroupA-0506 1.43 0.00 1.18 0.04 4801.99 41.13 1748 1438 310 RF
HB BG 2013 Soybeans GroupA-0507 1.34 0.09 1.14 0.01 4415.29 38.45 558 1438 -880 RF
NH BG 2013 Soybeans GroupA-0508 242 0.01 2.14 0.00 4995.12 69.34 173 1438 -1265 RF

PTB BG 2013 Soybeans GroupA-0509 1.08 0.05 0.88 0.01 5528.32 30.95 289 1438 -1149 RF

BBEA BG 2013 Soybeans GroupA-0510 1.22 0.32 1.03 0.11 438.12 34.88 3081 1438 1643 RF
AA BG 2013 Soybeans GroupA-0511 2.83 0.00 2.64 0.01 33970.15 81.17 378 1438 -1060 RF
SP BG 2013 Soybeans GroupA-0512 2.72 0.05 2.52 0.05 36543.85 78.09 1994 1438 556 RF
BS BG 2013 Soybeans GroupA-0513 1.52 0.00 1.26 0.02 7029.70 43.67 656 1438 -782 RF
HB BG 2014 Soybeans GroupA-0516 1.27 0.01 1.07 0.01 4415.29 7247 555 1438 -883 RF
PB BG 2014 Soybeans GroupA-0517 1.09 0.01 0.90 0.01 3001.92 62.41 334 1438 -1104 RF

PTB BG 2014 Soybeans GroupA-0518 1.42 0.08 1.26 0.01 5528.32 80.97 299 1438 -1139 RF

BBEA BG 2014 Soybeans GroupA-0521 0.65 0.02 0.54 0.12 438.12 37.29 3084 1438 1646 RF
SP BG 2014 Soybeans GroupA-0522 0.72 0.01 0.59 0.05 36543.85 40.83 1993 1438 555 RF
BS BG 2014 Soybeans GroupA-0523 0.73 0.01 0.61 0.01 7029.70 41.90 656 1438 -782 RF
HB BG 2015 Soybeans GroupA-0527 0.61 0.14 0.49 0.01 4415.29 74.56 549 1384 -835 RF

BBEA BG 2015 Soybeans GroupA-0532 0.50 0.17 0.41 0.10 438.12 61.90 2811 1384 1427 RF
BS BG 2015 Soybeans GroupA-0533 0.64 0.00 0.56 0.01 7029.70 79.24 659 1384 -725 RF
6 BG 2020 Soybeans GroupA-0534 1.00 0.02 0.83 0.01 3938.74 26.64 247 1436 -1189 RF
AM BG 2020 Soybeans GroupA-0535 0.91 0.00 0.70 0.02 4801.99 24.36 991 1436 -445 RF
HB BG 2020 Soybeans GroupA-0536 1.29 0.03 1.06 0.01 4415.29 34.36 555 1436 -881 RF
NH BG 2020 Soybeans GroupA-0537 2.17 0.01 1.96 0.00 4995.12 57.79 181 1436 -1255 RF

PTB BG 2020 Soybeans GroupA-0538 2.06 0.01 1.90 0.01 5528.32 54.92 262 1436 -1174 RF

BBEA BG 2020 Soybeans GroupA-0539 0.82 0.09 0.66 0.12 438.12 21.86 3036 1436 1600 RF
BS BG 2020 Soybeans GroupA-0540 1.38 0.01 1.16 0.02 7029.70 36.69 748 1436 -688 RF
6 BBEA 2013 Soybeans GroupA-0541 1.11 0.00 0.90 0.01 4348.89 40.28 249 3081 -2832 RF
AM BBEA 2013 Soybeans GroupA-0542 1.02 0.01 0.82 0.04 5233.55 37.08 1748 3081 -1333 RF
HB BBEA 2013 Soybeans GroupA-0543 0.96 0.00 0.77 0.01 4811.25 34.65 558 3081 -2523 RF
NH BBEA 2013 Soybeans GroupA-0544 1.90 0.00 1.64 0.00 5431.98 68.74 173 3081 -2908 RF

PTB BBEA 2013 Soybeans GroupA-0545 1.19 0.00 0.96 0.01 5911.78 43.09 289 3081 -2792 RF
BG BBEA 2013 Soybeans GroupA-0546 1.14 0.16 0.90 0.03 438.12 41.41 1438 3081 -1643 RF
AA BBEA 2013 Soybeans GroupA-0547 2.06 0.03 1.86 0.01 34316.27 74.57 378 3081 -2703 RF
SP BBEA 2013 Soybeans GroupA-0548 2.01 0.00 1.80 0.05 36905.03 73.01 1994 3081 -1087 RF
BS BBEA 2013 Soybeans GroupA-0549 1.08 0.02 0.88 0.02 7352.54 39.21 656 3081 -2425 RF
AM BBEA 2014 Soybeans GroupA-0551 1.74 0.01 1.56 0.04 5233.55 95.86 1748 3084 -1336 RF
HB BBEA 2014 Soybeans GroupA-0552 1.17 0.00 0.93 0.01 4811.25 64.71 555 3084 -2529 RF
PB BBEA 2014 Soybeans GroupA-0553 0.98 0.01 0.79 0.01 3203.03 54.03 334 3084 -2750 RF

PTB BBEA 2014 Soybeans GroupA-0554 1.39 0.00 1.17 0.01 5911.78 76.75 299 3084 -2785 RF
BG BBEA 2014 Soybeans GroupA-0557 0.79 0.01 0.65 0.03 438.12 43.82 1438 3084 -1646 RF
SP BBEA 2014 Soybeans GroupA-0558 0.77 0.00 0.63 0.05 36905.03 42.38 1993 3084 -1091 RF
BS BBEA 2014 Soybeans GroupA-0559 0.81 0.00 0.67 0.01 7352.54 44.84 656 3084 -2428 RF
HB BBEA 2015 Soybeans GroupA-0563 0.66 0.11 0.54 0.01 4811.25 87.46 549 2811 -2262 RF
BG BBEA 2015 Soybeans GroupA-0568 0.51 0.22 0.41 0.03 438.12 67.60 1384 2811 -1427 RF
BS BBEA 2015 Soybeans GroupA-0569 0.68 0.00 0.60 0.01 7352.54 90.64 659 2811 -2152 RF
6 BBEA 2020 Soybeans GroupA-0570 0.99 0.00 0.79 0.01 4348.89 29.26 247 3036 -2789 RF
AM BBEA 2020 Soybeans GroupA-0571 1.13 0.00 0.82 0.02 5233.55 33.62 991 3036 -2045 RF
HB BBEA 2020 Soybeans GroupA-0572 1.21 0.02 0.98 0.01 4811.25 35.79 555 3036 -2481 RF
NH BBEA 2020 Soybeans GroupA-0573 1.75 0.02 1.44 0.00 5431.98 51.78 181 3036 -2855 RF
PTB BBEA 2020 Soybeans GroupA-0574 1.85 0.00 1.68 0.01 5911.78 54.84 262 3036 -2774 RF
BG BBEA 2020 Soybeans GroupA-0575 0.98 0.10 0.70 0.03 438.12 29.11 1436 3036 -1600 RF
BS BBEA 2020 Soybeans GroupA-0576 1.14 0.02 0.92 0.02 7352.54 33.82 748 3036 -2288 RF
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(& AA 2013 Soybeans GroupA-0577 0.94 0.01 0.82 0.07 1521.14 85.30 2440 378 2062 RF
RD AA 2014 Soybeans GroupA-0579 1.08 0.12 0.78 0.03 28035.93 27.68 1259 3968 -2709 RF
1P AA 2019 Soybeans GroupA-0580 1.04 0.07 0.87 0.02 14966.67 27.13 770 3976 -3206 RF
2PB AA 2019 Soybeans GroupA-0581 0.71 0.07 0.55 0.04 14577.73 18.65 1767 3976 -2209 RF
1P AA 2021 Soybeans GroupA-0582 0.77 0.00 0.61 0.02 14966.67 16.64 770 3966 -3196 RF
2PB AA 2021 Soybeans GroupA-0583 0.75 0.00 0.60 0.04 14577.73 16.28 1771 3966 -2195 RF
RD AA 2021 Soybeans GroupA-0584 1.71 0.00 1.56 0.03 28035.93 36.98 1259 3966 -2707 RF
RD CS 2013 Soybeans GroupA-0585 1.09 0.16 0.84 0.03 28340.32 44.10 1256 2440 -1184 RF
SP CS 2020 Soybeans GroupA-0586 0.82 0.03 0.67 0.06 2392.70 17.14 1984 2437 -453 RF
MP CS 2020 Soybeans GroupA-0587 1.05 0.08 0.88 0.02 10327.57 21.94 954 2437 -1483 RF
RD CS 2020 Soybeans GroupA-0588 1.99 0.00 1.87 0.03 28340.32 41.46 1254 2437 -1183 RF
AM JL 2019 Soybeans GroupA-0589 0.64 0.01 0.53 0.02 30699.89 29.20 745 888 -143 RF
CF JL 2019 Soybeans GroupA-0590 1.20 0.00 1.08 0.03 30895.46 55.12 1095 888 207 RF
HB JL 2019 Soybeans GroupA-0591 0.85 0.06 0.71 0.00 30527.42 39.25 174 888 -714 RF
PB JL 2019 Soybeans GroupA-0592 0.81 0.03 0.64 0.01 32178.80 37.32 278 888 -610 RF
PE JL 2019 Soybeans GroupA-0593 1.56 0.01 1.45 0.02 31805.51 71.62 942 888 54 RF
PW JL 2019 Soybeans GroupA-0594 1.47 0.00 1.38 0.01 31235.93 67.69 259 888 -629 RF
PTB JL 2019 Soybeans GroupA-0595 0.71 0.01 0.57 0.01 29375.83 32.69 270 888 -618 RF
PL JL 2019 Soybeans GroupA-0596 1.11 0.05 0.99 0.02 31562.14 50.84 968 888 80 RF
PLB JL 2019 Soybeans GroupA-0597 0.74 0.01 0.60 0.01 31878.96 3422 502 888 -386 RF

6 JL 2021 Soybeans GroupA-0598 225 0.01 2.06 0.01 31086.42 49.52 246 884 -638 RF

AM JL 2021 Soybeans GroupA-0599 1.76 0.00 1.59 0.05 30699.89 38.85 1730 884 846 RF
CF JL 2021 Soybeans GroupA-0600 0.77 0.00 0.61 0.03 30895.46 16.90 1090 884 206 RF
HB JL 2021 Soybeans GroupA-0601 1.15 0.00 0.97 0.01 30527.42 25.39 363 884 -521 RF
NH JL 2021 Soybeans GroupA-0602 3.28 0.01 3.19 0.00 31398.77 72.31 51 884 -833 RF
PB JL 2021 Soybeans GroupA-0603 1.24 0.00 1.02 0.01 32178.80 27.33 246 884 -638 RF
PE JL 2021 Soybeans GroupA-0604 1.01 0.01 0.82 0.02 31805.51 22.24 938 884 54 RF
PW JL 2021 Soybeans GroupA-0605 0.80 0.01 0.63 0.01 31235.93 17.53 246 884 -638 RF
PTB JL 2021 Soybeans GroupA-0606 2.51 0.02 2.41 0.01 29375.83 55.35 251 884 -633 RF
PL JL 2021 Soybeans GroupA-0607 0.73 0.00 0.56 0.02 31562.14 16.14 978 884 94 RF
PLB JL 2021 Soybeans GroupA-0608 0.86 0.01 0.67 0.01 31878.96 18.98 491 884 -393 RF
BS JL 2021 Soybeans GroupA-0609 4.01 0.01 3.96 0.00 27818.58 88.37 85 884 =799 RF
CS SP 2013 Soybeans GroupA-0610 0.93 0.15 0.84 0.06 2392.70 91.44 2440 1994 446 RF
AA SP 2014 Soybeans GroupA-0612 1.16 0.03 0.93 0.14 3305.23 54.84 3968 1993 1975 RF
RD SP 2014 Soybeans GroupA-0613 1.33 0.01 1.10 0.03 30697.43 62.72 1259 1993 =734 RF
CS SP 2020 Soybeans GroupA-0614 0.62 0.05 0.47 0.07 2392.70 14.40 2437 1984 453 RF
MP SP 2020 Soybeans GroupA-0615 0.75 0.19 0.59 0.02 10398.84 17.39 954 1984 -1030 RF
RD SP 2020 Soybeans GroupA-0616 1.57 0.01 1.46 0.03 30697.43 36.10 1254 1984 -730 RF
AA 1P 2019 Soybeans GroupA-0617 0.86 0.12 0.66 0.12 14966.67 24.55 3976 770 3206 RF
2PB 1P 2019 Soybeans GroupA-0618 0.73 0.36 0.55 0.05 884.63 20.83 1767 770 997 RF
AA 1P 2021 Soybeans GroupA-0619 0.75 0.00 0.60 0.12 14966.67 15.69 3966 770 3196 RF
2PB 1P 2021 Soybeans GroupA-0620 0.95 0.06 0.82 0.05 884.63 19.83 1771 770 1001 RF
RD 1P 2021 Soybeans GroupA-0621 1.44 0.02 1.27 0.03 28988.76 30.19 1259 770 489 RF
AA 2PB 2019 Soybeans GroupA-0622 0.91 0.04 0.74 0.11 14577.73 25.04 3976 1767 2209 RF
1P 2PB 2019 Soybeans GroupA-0623 1.00 0.06 0.80 0.02 884.63 27.37 770 1767 -997 RF
AA 2PB 2021 Soybeans GroupA-0624 0.80 0.01 0.59 0.11 14577.73 18.83 3966 1771 2195 RF
1P 2PB 2021 Soybeans GroupA-0625 0.91 0.02 0.71 0.02 884.63 2143 770 1771 -1001 RF
RD 2PB 2021 Soybeans GroupA-0626 1.15 0.00 0.92 0.03 29606.60 27.18 1259 1771 -512 RF
CS MP 2020 Soybeans GroupA-0627 0.86 0.47 0.68 0.07 10327.57 2241 2437 954 1483 RF
SP MP 2020 Soybeans GroupA-0628 1.09 0.01 0.82 0.06 10398.84 28.35 1984 954 1030 RF
RD MP 2020 Soybeans GroupA-0629 1.55 0.20 1.39 0.03 29241.14 40.45 1254 954 300 RF

6 BS 2013 Soybeans GroupA-0630 0.87 0.05 0.62 0.01 3688.53 27.22 249 656 -407 RF

AM BS 2013 Soybeans GroupA-0631 0.78 0.07 0.60 0.04 4011.02 24.36 1748 656 1092 RF
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HB BS 2013 Soybeans GroupA-0632 0.87 0.02 0.74 0.01 3100.07 27.21 558 656 -98 RF
NH BS 2013 Soybeans GroupA-0633 1.93 0.00 1.64 0.01 5253.94 60.68 173 656 -483 RF

PTB BS 2013 Soybeans GroupA-0634 0.92 0.00 0.65 0.01 2114.72 28.97 289 656 -367 RF
BG BS 2013 Soybeans GroupA-0635 0.94 0.01 0.69 0.04 7029.70 29.62 1438 656 782 RF

BBEA BS 2013 Soybeans GroupA-0636 1.21 0.09 1.07 0.11 7352.54 38.10 3081 656 2425 RF
AA BS 2013 Soybeans GroupA-0637 2.39 0.00 227 0.01 26984.06 75.25 378 656 -278 RF
SP BS 2013 Soybeans GroupA-0638 2.44 0.00 2.31 0.05 29622.57 76.58 1994 656 1338 RF

6 BS 2014 Soybeans GroupA-0639 2.01 0.03 1.76 0.01 3688.53 83.65 250 656 -406 RF
AM BS 2014 Soybeans GroupA-0640 1.75 0.07 1.49 0.05 4011.02 72.70 1748 656 1092 RF
HB BS 2014 Soybeans GroupA-0641 1.09 0.01 0.83 0.01 3100.07 45.47 555 656 -101 RF
PB BS 2014 Soybeans GroupA-0642 0.95 0.08 0.76 0.01 4411.96 39.72 334 656 -322 RF

PTB BS 2014 Soybeans GroupA-0643 1.22 0.02 0.89 0.01 2114.72 50.73 299 656 -357 RF
PL BS 2014 Soybeans GroupA-0644 1.58 0.04 1.31 0.02 3972.53 65.87 974 656 318 RF

PLB BS 2014 Soybeans GroupA-0645 1.51 0.06 1.21 0.01 4109.93 63.03 500 656 -156 RF
BG BS 2014 Soybeans GroupA-0646 1.31 0.00 1.14 0.05 7029.70 54.35 1438 656 782 RF

BBEA BS 2014 Soybeans GroupA-0647 1.16 0.05 1.02 0.12 735254 48.33 3084 656 2428 RF
SP BS 2014 Soybeans GroupA-0648 1.18 0.00 1.03 0.05 29622.57 49.12 1993 656 1337 RF

6 BS 2015 Soybeans GroupA-0649 1.25 0.02 1.09 0.01 3688.53 90.91 251 659 -408 RF
AM BS 2015 Soybeans GroupA-0650 0.87 0.05 0.69 0.04 4011.02 63.31 1467 659 808 RF
HB BS 2015 Soybeans GroupA-0652 0.80 0.01 0.67 0.01 3100.07 58.40 549 659 -110 RF
PB BS 2015 Soybeans GroupA-0653 0.67 0.02 0.56 0.01 4411.96 48.51 327 659 -332 RF

PTB BS 2015 Soybeans GroupA-0654 0.81 0.01 0.64 0.01 2114.72 58.97 303 659 -356 RF
PL BS 2015 Soybeans GroupA-0655 1.24 0.00 1.07 0.02 3972.53 90.34 905 659 246 RF

PLB BS 2015 Soybeans GroupA-0656 1.12 0.06 0.97 0.01 4109.93 81.72 499 659 -160 RF
BG BS 2015 Soybeans GroupA-0657 0.83 0.00 0.69 0.04 7029.70 60.50 1384 659 725 RF

BBEA BS 2015 Soybeans GroupA-0658 0.95 0.02 0.80 0.10 735254 69.38 2811 659 2152 RF
CF BS 2016 Soybeans GroupA-0659 1.14 0.02 0.96 0.03 3076.95 45.20 1083 655 428 RF
HB BS 2016 Soybeans GroupA-0660 0.83 0.01 0.71 0.00 3100.07 32.86 181 655 -474 RF
PB BS 2016 Soybeans GroupA-0661 0.82 0.00 0.71 0.01 4411.96 32.51 331 655 -324 RF

PTB BS 2016 Soybeans GroupA-0662 0.66 0.02 0.53 0.01 2114.72 26.12 297 655 -358 RF
HB BS 2018 Soybeans GroupA-0663 1.03 0.04 0.86 0.01 3100.07 27.20 184 752 -568 RF
PB BS 2018 Soybeans GroupA-0664 1.76 0.02 1.58 0.01 4411.96 46.46 327 752 -425 RF
PE BS 2018 Soybeans GroupA-0665 1.17 0.01 0.88 0.02 4129.23 31.02 941 752 189 RF
PW BS 2018 Soybeans GroupA-0666 1.32 0.00 1.02 0.01 3638.27 34.78 257 752 -495 RF

PTB BS 2018 Soybeans GroupA-0667 1.00 0.00 0.71 0.01 2114.72 26.42 289 752 -463 RF

6 BS 2020 Soybeans GroupA-0668 0.85 0.02 0.67 0.01 3688.53 24.88 247 748 -501 RF
AM BS 2020 Soybeans GroupA-0669 1.04 0.00 0.75 0.02 4011.02 30.62 991 748 243 RF
HB BS 2020 Soybeans GroupA-0670 1.01 0.03 0.82 0.01 3100.07 29.69 555 748 -193 RF
NH BS 2020 Soybeans GroupA-0671 1.62 0.19 1.32 0.01 5253.94 4753 181 748 -567 RF

PTB BS 2020 Soybeans GroupA-0672 1.86 0.01 1.70 0.01 2114.72 54.75 262 748 -486 RF
BG BS 2020 Soybeans GroupA-0673 0.96 0.01 0.67 0.05 7029.70 28.17 1436 748 688 RF

BBEA BS 2020 Soybeans GroupA-0674 0.92 0.04 0.74 0.12 7352.54 26.97 3036 748 2288 RF

PTB BS 2021 Soybeans GroupA-0683 1.07 0.09 0.98 0.01 2114.72 98.63 251 85 166 RF
CS RD 2013 Soybeans GroupA-0687 1.82 0.16 1.65 0.06 28340.32 50.38 2440 1256 1184 RF
AA RD 2014 Soybeans GroupA-0688 1.33 0.24 1.18 0.13 28035.93 29.11 3968 1259 2709 RF
CS RD 2020 Soybeans GroupA-0689 1.13 0.05 0.86 0.07 28340.32 31.10 2437 1254 1183 RF
SP RD 2020 Soybeans GroupA-0690 1.35 0.01 1.08 0.05 30697.43 37.17 1984 1254 730 RF
MP RD 2020 Soybeans GroupA-0691 0.94 0.08 0.71 0.02 29241.14 25.88 954 1254 -300 RF
AA RD 2021 Soybeans GroupA-0692 1.35 0.00 0.95 0.13 28035.93 35.17 3966 1259 2707 RF

1P RD 2021 Soybeans GroupA-0693 1.34 0.04 0.97 0.02 28988.76 34.95 770 1259 -489 RF
2PB RD 2021 Soybeans GroupA-0694 1.37 0.07 0.98 0.05 29606.60 35.69 1771 1259 512 RF
AM 6 2016 Corn GroupA-0695 1.21 0.01 1.00 0.06 1216.49 13.43 1759 249 1510 RF
HB 6 2016 Corn GroupA-0696 1.22 0.00 0.91 0.01 593.20 13.57 366 249 117 RF
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NH 6 2016 Corn GroupA-0697 1.94 0.03 1.71 0.00 2271.12 21.50 222 249 -27 RF
PL 6 2016 Corn GroupA-0698 1.14 0.02 0.93 0.03 632.74 12.60 978 249 729 RF

PLB 6 2016 Corn GroupA-0699 1.18 0.01 0.97 0.02 1403.96 13.08 501 249 252 RF
BG 6 2016 Corn GroupA-0700 1.30 0.03 1.09 0.05 3938.74 14.40 1426 249 1177 RF

BBEA 6 2016 Corn GroupA-0701 1.25 0.16 1.01 0.12 4348.89 13.85 3066 249 2817 RF
AM 6 2017 Corn GroupA-0702 2.59 0.01 2.18 0.06 1216.49 21.40 1746 248 1498 RF
CF 6 2017 Corn GroupA-0703 2.36 0.00 2.05 0.04 1790.97 19.54 1099 248 851 RF
HB 6 2017 Corn GroupA-0704 2.92 0.06 247 0.02 593.20 24.17 557 248 309 RF
NH 6 2017 Corn GroupA-0705 3.19 0.01 2.64 0.01 2271.12 26.39 226 248 -22 RF
PB 6 2017 Corn GroupA-0706 2.60 0.04 221 0.01 2775.62 21.51 338 248 90 RF

PTB 6 2017 Corn GroupA-0707 6.78 0.02 6.41 0.01 1728.12 56.11 296 248 48 RF
PL 6 2017 Corn GroupA-0708 2.67 0.13 225 0.03 632.74 22.06 979 248 731 RF

PLB 6 2017 Corn GroupA-0709 345 0.02 2.94 0.01 1403.96 28.55 508 248 260 RF
BG 6 2017 Corn GroupA-0710 322 0.00 2.71 0.05 3938.74 26.61 1426 248 1178 RF

BBEA 6 2017 Corn GroupA-0711 2.57 0.00 220 0.11 4348.89 21.30 2889 248 2641 RF
JL 6 2017 Corn GroupA-0712 2.69 0.01 2.31 0.02 31086.42 2223 862 248 614 RF
BS 6 2017 Corn GroupA-0713 3.60 0.01 3.04 0.02 3688.53 29.76 757 248 509 RF

AM 6 2018 Corn GroupA-0714 242 0.05 2.02 0.06 1216.49 30.65 1727 244 1483 RF
CF 6 2018 Corn GroupA-0715 2.77 0.00 2.12 0.03 1790.97 35.15 1098 244 854 RF
HB 6 2018 Corn GroupA-0716 3.82 0.03 335 0.01 593.20 48.42 363 244 119 RF
NH 6 2018 Corn GroupA-0717 3.19 0.03 2.70 0.00 2271.12 40.51 222 244 -22 RF
PL 6 2018 Corn GroupA-0718 223 0.11 1.88 0.03 632.74 28.30 974 244 730 RF

PLB 6 2018 Corn GroupA-0719 3.09 0.01 2.62 0.02 1403.96 39.25 506 244 262 RF

BG 6 2018 Corn GroupA-0720 2.25 0.11 1.84 0.05 3938.74 28.54 1421 244 1177 RF

BBEA 6 2018 Corn GroupA-0721 227 0.03 1.93 0.11 4348.89 28.84 3047 244 2803 RF
JL 6 2018 Corn GroupA-0722 2.88 0.05 2.45 0.02 31086.42 36.49 901 244 657 RF
AM 6 2019 Corn GroupA-0723 1.18 0.15 0.97 0.03 1216.49 17.84 992 246 746 RF
HB 6 2019 Corn GroupA-0724 1.72 0.11 1.35 0.01 593.20 25.95 365 246 119 RF
NH 6 2019 Corn GroupA-0725 1.38 0.00 1.09 0.00 2271.12 20.83 215 246 -31 RF
BG 6 2019 Corn GroupA-0726 1.79 0.11 1.54 0.05 3938.74 27.05 1428 246 1182 RF
BBEA 6 2019 Corn GroupA-0727 1.46 0.00 1.20 0.12 4348.89 22.08 3067 246 2821 RF
BS 6 2019 Corn GroupA-0728 3.48 0.00 3.18 0.02 3688.53 52.68 749 246 503 RF
NH AM 2015 Corn GroupA-0729 1.30 0.00 1.06 0.01 1283.59 18.21 221 276 -55 RF
PL AM 2015 Corn GroupA-0730 1.90 0.08 1.57 0.00 1797.09 26.65 55 276 -221 RF

6 AM 2016 Corn GroupA-0731 1.07 0.00 0.82 0.01 1216.49 12.09 249 1759 -1510 RF
HB AM 2016 Corn GroupA-0732 1.18 0.02 0.87 0.01 1351.32 13.39 366 1759 -1393 RF
NH AM 2016 Corn GroupA-0733 1.67 0.00 1.43 0.01 1283.59 18.92 222 1759 -1537 RF
PL AM 2016 Corn GroupA-0734 1.26 0.00 0.97 0.03 1797.09 14.22 978 1759 =781 RF

PLB AM 2016 Corn GroupA-0735 1.12 0.01 0.85 0.01 2601.80 12.61 501 1759 -1258 RF

BG AM 2016 Corn GroupA-0736 1.26 0.02 0.97 0.04 4801.99 14.21 1426 1759 -333 RF

BBEA AM 2016 Corn GroupA-0737 1.26 0.02 1.03 0.10 5233.55 14.30 3066 1759 1307 RF
6 AM 2017 Corn GroupA-0738 2.54 0.02 2.09 0.01 1216.49 21.13 248 1746 -1498 RF
CF AM 2017 Corn GroupA-0739 2.36 0.00 2.02 0.03 2925.31 19.56 1099 1746 -647 RF
HB AM 2017 Corn GroupA-0740 4.49 0.00 3.80 0.01 1351.32 37.27 557 1746 -1189 RF
NH AM 2017 Corn GroupA-0741 341 0.00 2.92 0.01 1283.59 28.34 226 1746 -1520 RF
PB AM 2017 Corn GroupA-0742 2.42 0.00 2.05 0.01 3991.90 20.11 338 1746 -1408 RF

PTB AM 2017 Corn GroupA-0743 6.42 0.01 6.06 0.01 1901.85 53.29 296 1746 -1450 RF
PL AM 2017 Corn GroupA-0744 3.12 0.01 2.68 0.02 1797.09 25.88 979 1746 =767 RF

PLB AM 2017 Corn GroupA-0745 2.97 0.00 2.55 0.01 2601.80 24.63 508 1746 -1238 RF
BG AM 2017 Corn GroupA-0746 2.84 0.00 2.45 0.04 4801.99 23.58 1426 1746 -320 RF

BBEA AM 2017 Corn GroupA-0747 2.41 0.00 2.04 0.09 5233.55 20.04 2889 1746 1143 RF
JL AM 2017 Corn GroupA-0748 2.40 0.00 1.88 0.02 30699.89 19.93 862 1746 -884 RF
BS AM 2017 Corn GroupA-0749 3.49 0.00 2.96 0.02 4011.02 28.96 757 1746 -989 RF
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6 AM 2018 Corn GroupA-0750 221 0.05 1.82 0.01 1216.49 27.87 244 1727 -1483 RF
CF AM 2018 Corn GroupA-0751 2.44 0.08 1.81 0.03 2925.31 30.77 1098 1727 -629 RF
HB AM 2018 Corn GroupA-0752 3.10 0.04 2.56 0.01 1351.32 39.09 363 1727 -1364 RF
NH AM 2018 Corn GroupA-0753 3.10 0.03 2.67 0.01 1283.59 39.08 222 1727 -1505 RF
PL AM 2018 Corn GroupA-0754 2.39 0.00 2.04 0.02 1797.09 30.03 974 1727 =753 RF
PLB AM 2018 Corn GroupA-0755 221 0.03 1.86 0.01 2601.80 27.83 506 1727 -1221 RF
BG AM 2018 Corn GroupA-0756 2.05 0.06 1.53 0.04 4801.99 25.85 1421 1727 -306 RF
BBEA AM 2018 Corn GroupA-0757 2.07 0.00 1.65 0.09 5233.55 26.04 3047 1727 1320 RF
JL AM 2018 Corn GroupA-0758 2.28 0.03 1.88 0.02 30699.89 28.65 901 1727 -826 RF
6 AM 2019 Corn GroupA-0759 1.17 0.07 0.90 0.01 1216.49 18.39 246 992 -746 RF
HB AM 2019 Corn GroupA-0760 1.51 0.08 1.21 0.01 1351.32 23.73 365 992 -627 RF
NH AM 2019 Corn GroupA-0761 1.53 0.03 1.21 0.00 1283.59 24.05 215 992 =771 RF
BG AM 2019 Corn GroupA-0762 2.02 0.01 1.76 0.04 4801.99 31.79 1428 992 436 RF
BBEA AM 2019 Corn GroupA-0763 1.43 0.03 1.15 0.10 5233.55 22.55 3067 992 2075 RF
BS AM 2019 Corn GroupA-0764 3.04 0.00 2.67 0.02 4011.02 47.99 749 992 -243 RF
CF AM 2020 Corn GroupA-0765 1.76 0.01 1.40 0.03 2925.31 22.77 1095 742 353 RF
PB AM 2020 Corn GroupA-0766 2.00 0.01 1.66 0.01 3991.90 25.85 333 742 -409 RF
PE AM 2020 Corn GroupA-0767 4.17 0.03 3.92 0.02 4256.93 53.86 942 742 200 RF
PW AM 2020 Corn GroupA-0768 2.89 0.02 2.55 0.01 4299.79 37.38 260 742 -482 RF
PL AM 2020 Corn GroupA-0769 1.44 0.02 1.13 0.02 1797.09 18.67 976 742 234 RF
PLB AM 2020 Corn GroupA-0770 222 0.11 1.82 0.01 2601.80 28.63 498 742 -244 RF
JL AM 2020 Corn GroupA-0771 3.14 0.02 2.79 0.02 30699.89 40.53 889 742 147 RF
PB CF 2013 Corn GroupA-0772 1.17 0.01 0.94 0.01 1477.63 13.16 327 1093 -766 RF
PL CF 2013 Corn GroupA-0773 1.47 0.00 1.15 0.03 1531.30 16.54 972 1093 -121 RF
PLB CF 2013 Corn GroupA-0774 1.75 0.08 1.46 0.01 1177.89 19.68 503 1093 -590 RF
NH CF 2014 Corn GroupA-0775 2.89 0.03 2.36 0.01 4061.52 2391 223 1086 -863 RF
6 CF 2017 Corn GroupA-0776 2.18 0.02 1.84 0.01 1790.97 19.89 248 1099 -851 RF
AM CF 2017 Corn GroupA-0777 1.94 0.00 1.57 0.06 2925.31 17.73 1746 1099 647 RF
HB CF 2017 Corn GroupA-0778 2.74 0.01 2.12 0.01 1609.48 25.05 557 1099 -542 RF
NH CF 2017 Corn GroupA-0779 3.73 0.01 3.25 0.00 4061.52 34.10 226 1099 -873 RF
PB CF 2017 Corn GroupA-0780 1.76 0.03 1.34 0.01 1477.63 16.04 338 1099 -761 RF
PTB CF 2017 Corn GroupA-0781 5.01 0.03 4.63 0.01 2125.67 45.78 296 1099 -803 RF
PL CF 2017 Corn GroupA-0782 1.86 0.00 1.36 0.03 1531.30 17.00 979 1099 -120 RF
PLB CF 2017 Corn GroupA-0783 1.89 0.03 1.49 0.01 1177.89 17.32 508 1099 -591 RF
BG CF 2017 Corn GroupA-0784 2.34 0.09 1.67 0.05 3976.07 21.38 1426 1099 327 RF
BBEA CF 2017 Corn GroupA-0785 2.18 0.07 1.65 0.11 4282.54 19.93 2889 1099 1790 RF
JL CF 2017 Corn GroupA-0786 2.67 0.03 2.26 0.02 30895.46 24.38 862 1099 -237 RF
BS CF 2017 Corn GroupA-0787 3.29 0.05 2.78 0.02 3076.95 30.10 757 1099 -342 RF
6 CF 2018 Corn GroupA-0788 233 0.00 1.83 0.01 1790.97 31.36 244 1098 -854 RF
AM CF 2018 Corn GroupA-0789 2.37 0.01 1.85 0.06 2925.31 31.80 1727 1098 629 RF
HB CF 2018 Corn GroupA-0790 332 0.00 2.74 0.01 1609.48 44.64 363 1098 -735 RF
NH CF 2018 Corn GroupA-0791 4.49 0.02 4.07 0.01 4061.52 60.38 222 1098 -876 RF
PL CF 2018 Corn GroupA-0792 221 0.01 1.74 0.03 1531.30 29.69 974 1098 -124 RF
PLB CF 2018 Corn GroupA-0793 2.44 0.00 1.95 0.01 1177.89 32.83 506 1098 -592 RF
BG CF 2018 Corn GroupA-0794 2.29 0.00 1.85 0.05 3976.07 30.82 1421 1098 323 RF
BBEA CF 2018 Corn GroupA-0795 2.12 0.00 1.68 0.11 4282.54 28.44 3047 1098 1949 RF
JL CF 2018 Corn GroupA-0796 2.73 0.05 225 0.02 30895.46 36.66 901 1098 -197 RF
AM CF 2020 Corn GroupA-0797 1.53 0.03 1.19 0.02 2925.31 18.19 742 1095 -353 RF
PB CF 2020 Corn GroupA-0798 1.45 0.12 1.14 0.01 1477.63 17.20 333 1095 =762 RF
PE CF 2020 Corn GroupA-0799 3.29 0.04 2.96 0.03 1470.34 39.14 942 1095 -153 RF
PW CF 2020 Corn GroupA-0800 2.59 0.03 2.26 0.01 1380.51 30.80 260 1095 -835 RF
PL CF 2020 Corn GroupA-0801 1.98 0.07 1.64 0.03 1531.30 23.54 976 1095 -119 RF
PLB CF 2020 Corn GroupA-0802 1.91 0.00 1.52 0.02 1177.89 22.68 498 1095 -597 RF
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JL CF 2020 Corn GroupA-0803 2.37 0.14 1.97 0.02 30895.46 28.20 889 1095 -206 RF
6 HB 2016 Corn GroupA-0804 1.00 0.02 0.80 0.01 593.20 10.97 249 366 -117 RF
AM HB 2016 Corn GroupA-0805 1.12 0.00 0.96 0.06 1351.32 12.24 1759 366 1393 RF
NH HB 2016 Corn GroupA-0806 1.90 0.01 1.71 0.01 2580.18 20.71 222 366 -144 RF
PL HB 2016 Corn GroupA-0807 0.98 0.00 0.75 0.03 1056.49 10.73 978 366 612 RF
PLB HB 2016 Corn GroupA-0808 1.23 0.00 0.99 0.02 1650.52 13.42 501 366 135 RF
BG HB 2016 Corn GroupA-0809 1.17 0.00 0.95 0.05 4415.29 12.77 1426 366 1060 RF
BBEA HB 2016 Corn GroupA-0810 1.61 0.00 1.42 0.12 4811.25 17.58 3066 366 2700 RF
6 HB 2017 Corn GroupA-0811 3.73 0.12 2.97 0.01 593.20 39.60 248 557 -309 RF
AM HB 2017 Corn GroupA-0812 3.67 0.00 2.85 0.06 1351.32 38.92 1746 557 1189 RF
CF HB 2017 Corn GroupA-0813 3.83 0.14 293 0.04 1609.48 40.67 1099 557 542 RF
NH HB 2017 Corn GroupA-0814 3.51 0.00 2.90 0.01 2580.18 3722 226 557 -331 RF
PB HB 2017 Corn GroupA-0815 3.98 0.25 3.07 0.01 2853.21 42.24 338 557 -219 RF
PTB HB 2017 Corn GroupA-0816 5.14 0.01 4.41 0.01 1152.69 54.55 296 557 -261 RF
PL HB 2017 Corn GroupA-0817 3.48 0.00 2.79 0.03 1056.49 36.94 979 557 422 RF
PLB HB 2017 Corn GroupA-0818 3.27 0.04 2.67 0.02 1650.52 34.72 508 557 -49 RF
BG HB 2017 Corn GroupA-0819 3.31 0.06 2.64 0.05 4415.29 35.10 1426 557 869 RF
BBEA HB 2017 Corn GroupA-0820 345 0.11 2.57 0.11 4811.25 36.54 2889 557 2332 RF
JL HB 2017 Corn GroupA-0821 3.52 0.09 2.69 0.02 30527.42 37.37 862 557 305 RF
BS HB 2017 Corn GroupA-0822 3.58 0.02 3.05 0.02 3100.07 37.92 757 557 200 RF
6 HB 2018 Corn GroupA-0823 3.86 0.04 345 0.01 593.20 67.88 244 363 -119 RF
AM HB 2018 Corn GroupA-0824 291 0.06 2.50 0.06 1351.32 51.19 1727 363 1364 RF
CF HB 2018 Corn GroupA-0825 4.35 0.07 3.77 0.03 1609.48 76.49 1098 363 735 RF
NH HB 2018 Corn GroupA-0826 2.58 0.07 2.11 0.01 2580.18 45.29 222 363 -141 RF
PL HB 2018 Corn GroupA-0827 3.15 0.17 2.69 0.03 1056.49 55.45 974 363 611 RF
PLB HB 2018 Corn GroupA-0828 3.01 0.00 2.59 0.01 1650.52 52.92 506 363 143 RF
BG HB 2018 Corn GroupA-0829 3.62 0.24 3.13 0.05 4415.29 63.71 1421 363 1058 RF
BBEA HB 2018 Corn GroupA-0830 3.57 0.07 3.07 0.12 4811.25 62.82 3047 363 2684 RF
JL HB 2018 Corn GroupA-0831 2.70 0.10 2.20 0.02 30527.42 47.46 901 363 538 RF
6 HB 2019 Corn GroupA-0832 2.02 0.17 1.60 0.01 593.20 33.14 246 365 -119 RF
AM HB 2019 Corn GroupA-0833 2.10 0.11 1.67 0.03 1351.32 34.39 992 365 627 RF
NH HB 2019 Corn GroupA-0834 233 0.26 1.90 0.01 2580.18 38.15 215 365 -150 RF
BG HB 2019 Corn GroupA-0835 2.75 0.00 2.24 0.05 4415.29 44.97 1428 365 1063 RF
BBEA HB 2019 Corn GroupA-0836 2.46 0.02 1.96 0.12 4811.25 40.28 3067 365 2702 RF
BS HB 2019 Corn GroupA-0837 4.03 0.02 3.60 0.02 3100.07 66.02 749 365 384 RF
CF NH 2014 Corn GroupA-0838 1.47 0.02 1.16 0.03 4061.52 14.10 1086 223 863 RF
AM NH 2015 Corn GroupA-0839 0.85 0.03 0.65 0.01 1283.59 12.14 276 221 55 RF
PL NH 2015 Corn GroupA-0840 0.94 0.04 0.71 0.00 2690.61 13.49 55 221 -166 RF
6 NH 2016 Corn GroupA-0841 1.40 0.22 1.19 0.01 2271.12 18.31 249 222 27 RF
AM NH 2016 Corn GroupA-0842 1.14 0.02 0.92 0.06 1283.59 14.84 1759 222 1537 RF
HB NH 2016 Corn GroupA-0843 1.81 0.04 1.63 0.01 2580.18 23.61 366 222 144 RF
PL NH 2016 Corn GroupA-0844 1.06 0.07 0.85 0.03 2690.61 13.76 978 222 756 RF
PLB NH 2016 Corn GroupA-0845 0.92 0.09 0.70 0.01 3474.91 11.94 501 222 279 RF
BG NH 2016 Corn GroupA-0846 1.39 0.12 1.20 0.04 4995.12 18.08 1426 222 1204 RF
BBEA NH 2016 Corn GroupA-0847 0.92 0.01 0.74 0.10 5431.98 12.06 3066 222 2844 RF
6 NH 2017 Corn GroupA-0848 2.45 0.00 1.74 0.01 2271.12 23.69 248 226 22 RF
AM NH 2017 Corn GroupA-0849 2.82 0.01 227 0.06 1283.59 27.25 1746 226 1520 RF
CF NH 2017 Corn GroupA-0850 2.08 0.03 1.53 0.03 4061.52 20.14 1099 226 873 RF
HB NH 2017 Corn GroupA-0851 3.25 0.00 2.86 0.01 2580.18 31.47 557 226 331 RF
PB NH 2017 Corn GroupA-0852 2.48 0.01 1.82 0.01 4911.94 23.97 338 226 112 RF
PTB NH 2017 Corn GroupA-0853 5.49 0.12 5.22 0.01 3164.44 53.11 296 226 70 RF
PL NH 2017 Corn GroupA-0854 2.12 0.02 1.76 0.03 2690.61 20.51 979 226 753 RF
PLB NH 2017 Corn GroupA-0855 2.18 0.01 1.86 0.01 3474.91 21.04 508 226 282 RF
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BG NH 2017 Corn GroupA-0856 1.97 0.00 1.54 0.04 4995.12 19.05 1426 226 1200 RF
BBEA NH 2017 Corn GroupA-0857 2.10 0.00 1.53 0.09 5431.98 20.29 2889 226 2663 RF
JL NH 2017 Corn GroupA-0858 2.94 0.00 228 0.02 31398.77 28.46 862 226 636 RF
BS NH 2017 Corn GroupA-0859 2.65 0.14 2.29 0.02 5253.94 25.61 757 226 531 RF
6 NH 2018 Corn GroupA-0860 2.16 0.00 1.62 0.01 2271.12 34.41 244 222 22 RF
AM NH 2018 Corn GroupA-0861 2.87 0.07 2.40 0.06 1283.59 45.70 1727 222 1505 RF
CF NH 2018 Corn GroupA-0862 4.02 0.02 3.49 0.03 4061.52 64.07 1098 222 876 RF
HB NH 2018 Corn GroupA-0863 225 0.04 1.89 0.01 2580.18 35.87 363 222 141 RF
PL NH 2018 Corn GroupA-0864 2.24 0.03 1.81 0.03 2690.61 35.70 974 222 752 RF
PLB NH 2018 Corn GroupA-0865 2.13 0.00 1.79 0.01 3474.91 34.02 506 222 284 RF
BG NH 2018 Corn GroupA-0866 3.53 0.00 2.92 0.04 4995.12 56.22 1421 222 1199 RF
BBEA NH 2018 Corn GroupA-0867 2.64 0.01 2.04 0.10 5431.98 42.16 3047 222 2825 RF
JL NH 2018 Corn GroupA-0868 293 0.04 2.34 0.02 31398.77 46.67 901 222 679 RF
6 NH 2019 Corn GroupA-0869 1.85 0.00 1.53 0.01 2271.12 24.67 246 215 31 RF
AM NH 2019 Corn GroupA-0870 2.17 0.07 1.95 0.03 1283.59 28.90 992 215 777 RF
HB NH 2019 Corn GroupA-0871 1.80 0.14 1.42 0.01 2580.18 24.01 365 215 150 RF
BG NH 2019 Corn GroupA-0872 1.78 0.10 1.24 0.04 4995.12 23.72 1428 215 1213 RF
BBEA NH 2019 Corn GroupA-0873 1.78 0.01 1.42 0.10 5431.98 23.64 3067 215 2852 RF
BS NH 2019 Corn GroupA-0874 2.01 0.18 1.49 0.02 5253.94 26.77 749 215 534 RF
CF PB 2013 Corn GroupA-0875 3.07 0.04 2.41 0.03 1477.63 27.95 1093 327 766 RF
PL PB 2013 Corn GroupA-0876 2.50 0.11 1.94 0.03 2233.71 22.74 972 327 645 RF
PLB PB 2013 Corn GroupA-0877 2.86 0.07 225 0.01 1437.03 26.02 503 327 176 RF
6 PB 2017 Corn GroupA-0878 3.33 0.00 2.96 0.01 2775.62 25.50 248 338 -90 RF
AM PB 2017 Corn GroupA-0879 3.12 0.03 2.77 0.05 3991.90 23.90 1746 338 1408 RF
CF PB 2017 Corn GroupA-0880 2.24 0.01 1.91 0.03 1477.63 17.17 1099 338 761 RF
HB PB 2017 Corn GroupA-0881 4.63 0.06 4.11 0.01 2853.21 3545 557 338 219 RF
NH PB 2017 Corn GroupA-0882 4.65 0.03 4.26 0.00 4911.94 35.64 226 338 -112 RF
PTB PB 2017 Corn GroupA-0883 9.67 0.06 9.38 0.01 3582.30 74.11 296 338 -42 RF
PL PB 2017 Corn GroupA-0884 3.55 0.08 3.17 0.02 2233.71 27.16 979 338 641 RF
PLB PB 2017 Corn GroupA-0885 3.90 0.00 3.49 0.01 1437.03 29.86 508 338 170 RF
BG PB 2017 Corn GroupA-0886 6.27 0.04 5.89 0.04 3001.92 48.01 1426 338 1088 RF
BBEA PB 2017 Corn GroupA-0887 5.98 0.01 5.38 0.08 3203.03 45.85 2889 338 2551 RF
JL PB 2017 Corn GroupA-0888 3.68 0.00 3.31 0.02 32178.80 28.17 862 338 524 RF
BS PB 2017 Corn GroupA-0889 5.63 0.01 5.25 0.02 4411.96 43.10 757 338 419 RF
AM PB 2020 Corn GroupA-0890 291 0.05 2.51 0.02 3991.90 26.57 742 333 409 RF
CF PB 2020 Corn GroupA-0891 2.05 0.01 1.73 0.03 1477.63 18.74 1095 333 762 RF
PE PB 2020 Corn GroupA-0892 222 0.05 1.77 0.03 573.60 20.28 942 333 609 RF
PW PB 2020 Corn GroupA-0893 2.31 0.08 1.97 0.01 1133.42 21.13 260 333 =73 RF
PL PB 2020 Corn GroupA-0894 2.50 0.00 2.10 0.02 2233.71 22.87 976 333 643 RF
PLB PB 2020 Corn GroupA-0895 2.65 0.00 2.25 0.01 1437.03 24.18 498 333 165 RF
JL PB 2020 Corn GroupA-0896 245 0.03 2.06 0.02 32178.80 22.37 889 333 556 RF
AM PE 2020 Corn GroupA-0897 3.79 0.05 353 0.02 4256.93 32.58 742 942 -200 RF
CF PE 2020 Corn GroupA-0898 3.23 0.00 2.82 0.03 1470.34 27.72 1095 942 153 RF
PB PE 2020 Corn GroupA-0899 2.76 0.01 2.39 0.01 573.60 23.69 333 942 -609 RF
PW PE 2020 Corn GroupA-0900 1.89 0.00 1.57 0.01 602.45 16.22 260 942 -682 RF
PL PE 2020 Corn GroupA-0901 2.62 0.00 2.24 0.02 2576.96 2247 976 942 34 RF
PLB PE 2020 Corn GroupA-0902 2.85 0.01 249 0.01 1832.05 2445 498 942 -444 RF
JL PE 2020 Corn GroupA-0903 221 0.02 1.85 0.02 31805.51 18.99 889 942 -53 RF
AM PW 2020 Corn GroupA-0904 2.95 0.01 2.62 0.02 4299.79 28.49 742 260 482 RF
CF PW 2020 Corn GroupA-0905 2.58 0.05 2.31 0.03 1380.51 24.86 1095 260 835 RF
PB PW 2020 Corn GroupA-0906 2.10 0.01 1.73 0.01 1133.42 20.24 333 260 73 RF
PE PW 2020 Corn GroupA-0907 2.04 0.00 1.62 0.03 602.45 19.66 942 260 682 RF
PL PW 2020 Corn GroupA-0908 1.72 0.04 1.42 0.03 2757.07 16.58 976 260 716 RF
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PLB PW 2020 Corn GroupA-0909 2.06 0.01 1.77 0.01 2110.84 19.84 498 260 238 RF
JL PW 2020 Corn GroupA-0910 1.54 0.10 1.30 0.02 31235.93 14.89 889 260 629 RF
AM PTB 2017 Corn GroupA-0912 5.11 0.10 4.68 0.06 1901.85 85.89 1746 296 1450 RF
HB PTB 2017 Corn GroupA-0914 3.93 0.00 3.30 0.01 1152.69 66.07 557 296 261 RF
NH PTB 2017 Corn GroupA-0915 3.83 0.18 3.10 0.00 3164.44 64.47 226 296 -70 RF
PL PTB 2017 Corn GroupA-0917 5.17 0.02 4.69 0.03 2192.01 86.88 979 296 683 RF
PLB PTB 2017 Corn GroupA-0918 5.56 0.36 4.69 0.02 2652.61 93.54 508 296 212 RF
BG PTB 2017 Corn GroupA-0919 353 0.29 3.06 0.05 5528.32 59.32 1426 296 1130 RF
BBEA PTB 2017 Corn GroupA-0920 4.32 0.32 3.93 0.11 5911.78 72.63 2889 296 2593 RF
JL PTB 2017 Corn GroupA-0921 4.82 0.12 4.36 0.02 29375.83 81.02 862 296 566 RF
BS PTB 2017 Corn GroupA-0922 2.74 0.00 2.11 0.02 2114.72 46.04 757 296 461 RF
CF PL 2013 Corn GroupA-0923 1.87 0.01 1.61 0.03 1531.30 18.45 1093 972 121 RF
PB PL 2013 Corn GroupA-0924 1.54 0.00 1.30 0.01 2233.71 15.18 327 972 -645 RF
PLB PL 2013 Corn GroupA-0925 1.45 0.01 1.15 0.02 809.82 14.32 503 972 -469 RF
AM PL 2015 Corn GroupA-0926 177 0.00 1.49 0.01 1797.09 2221 276 55 221 RF
NH PL 2015 Corn GroupA-0927 1.32 0.01 1.03 0.01 2690.61 16.53 221 55 166 RF
6 PL 2016 Corn GroupA-0928 1.04 0.00 0.82 0.01 632.74 11.83 249 978 =729 RF
AM PL 2016 Corn GroupA-0929 1.04 0.02 0.81 0.06 1797.09 11.80 1759 978 781 RF
HB PL 2016 Corn GroupA-0930 1.12 0.00 0.86 0.01 1056.49 12.76 366 978 -612 RF
NH PL 2016 Corn GroupA-0931 1.68 0.01 1.47 0.01 2690.61 19.10 222 978 -756 RF
PLB PL 2016 Corn GroupA-0932 1.08 0.00 0.85 0.01 809.82 12.25 501 978 -471 RF
BG PL 2016 Corn GroupA-0933 1.16 0.01 0.92 0.05 3360.23 13.24 1426 978 448 RF
BBEA PL 2016 Corn GroupA-0934 1.42 0.00 1.15 0.12 3759.77 16.15 3066 978 2088 RF
6 PL 2017 Corn GroupA-0935 2.53 0.00 2.11 0.01 632.74 24.37 248 979 -731 RF
AM PL 2017 Corn GroupA-0936 2.17 0.00 1.74 0.06 1797.09 20.83 1746 979 767 RF
CF PL 2017 Corn GroupA-0937 2.04 0.01 1.54 0.03 1531.30 19.60 1099 979 120 RF
HB PL 2017 Corn GroupA-0938 3.13 0.04 2.40 0.02 1056.49 30.11 557 979 -422 RF
NH PL 2017 Corn GroupA-0939 2.61 0.00 2.15 0.01 2690.61 25.06 226 979 -753 RF
PB PL 2017 Corn GroupA-0940 2.20 0.00 1.72 0.01 2233.71 21.11 338 979 -641 RF
PTB PL 2017 Corn GroupA-0941 5.29 0.03 4.99 0.01 2192.01 50.89 296 979 -683 RF
PLB PL 2017 Corn GroupA-0942 2.16 0.01 1.74 0.02 809.82 20.79 508 979 -471 RF
BG PL 2017 Corn GroupA-0943 2.14 0.04 1.66 0.05 3360.23 20.54 1426 979 447 RF
BBEA PL 2017 Corn GroupA-0944 2.12 0.01 1.62 0.11 3759.77 2043 2889 979 1910 RF
JL PL 2017 Corn GroupA-0945 2.73 0.04 2.17 0.02 31562.14 26.21 862 979 -117 RF
BS PL 2017 Corn GroupA-0946 2.84 0.03 2.31 0.02 3972.53 27.30 757 979 -222 RF
6 PL 2018 Corn GroupA-0947 2.46 0.00 1.97 0.01 632.74 36.19 244 974 -730 RF
AM PL 2018 Corn GroupA-0948 2.29 0.01 1.88 0.05 1797.09 33.70 1727 974 753 RF
CF PL 2018 Corn GroupA-0949 2.75 0.02 2.19 0.03 1531.30 40.38 1098 974 124 RF
HB PL 2018 Corn GroupA-0950 291 0.00 243 0.01 1056.49 42.77 363 974 -611 RF
NH PL 2018 Corn GroupA-0951 3.30 0.03 2.82 0.01 2690.61 48.53 222 974 =752 RF
PLB PL 2018 Corn GroupA-0952 245 0.00 2.03 0.02 809.82 35.92 506 974 -468 RF
BG PL 2018 Corn GroupA-0953 2.50 0.01 1.97 0.05 3360.23 36.68 1421 974 447 RF
BBEA PL 2018 Corn GroupA-0954 2.20 0.02 1.79 0.11 3759.77 32.32 3047 974 2073 RF
JL PL 2018 Corn GroupA-0955 2.39 0.00 1.95 0.02 31562.14 35.12 901 974 -73 RF
AM PL 2020 Corn GroupA-0956 1.98 0.04 1.60 0.02 1797.09 21.61 742 976 -234 RF
CF PL 2020 Corn GroupA-0957 1.88 0.07 1.41 0.03 1531.30 20.44 1095 976 119 RF
PB PL 2020 Corn GroupA-0958 1.76 0.00 1.40 0.01 2233.71 19.13 333 976 -643 RF
PE PL 2020 Corn GroupA-0959 2.86 0.04 2.50 0.03 2576.96 31.20 942 976 -34 RF
PW PL 2020 Corn GroupA-0960 1.96 0.00 1.57 0.01 2757.07 21.34 260 976 -716 RF
PLB PL 2020 Corn GroupA-0961 1.73 0.00 1.40 0.02 809.82 18.84 498 976 -478 RF
JL PL 2020 Corn GroupA-0962 1.89 0.02 1.45 0.02 31562.14 20.56 889 976 -87 RF
CF PLB 2013 Corn GroupA-0963 1.56 0.00 1.28 0.03 1177.89 15.87 1093 503 590 RF
PB PLB 2013 Corn GroupA-0964 1.41 0.00 1.13 0.01 1437.03 14.28 327 503 -176 RF
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PL PLB 2013 Corn GroupA-0965 1.33 0.01 0.97 0.03 809.82 13.49 972 503 469 RF
6 PLB 2016 Corn GroupA-0966 1.29 0.00 1.01 0.01 1403.96 15.48 249 501 -252 RF
AM PLB 2016 Corn GroupA-0967 1.07 0.08 0.85 0.06 2601.80 12.91 1759 501 1258 RF
HB PLB 2016 Corn GroupA-0968 1.61 0.05 1.29 0.01 1650.52 19.43 366 501 -135 RF
NH PLB 2016 Corn GroupA-0969 1.43 0.00 1.21 0.01 3474.91 17.20 222 501 -279 RF
PL PLB 2016 Corn GroupA-0970 1.00 0.24 0.73 0.03 809.82 12.05 978 501 477 RF
BG PLB 2016 Corn GroupA-0971 1.37 0.03 1.07 0.05 2941.78 16.50 1426 501 925 RF
BBEA PLB 2016 Corn GroupA-0972 1.21 0.16 0.95 0.12 3296.50 14.61 3066 501 2565 RF
6 PLB 2017 Corn GroupA-0973 3.24 0.00 2.77 0.01 1403.96 33.80 248 508 -260 RF
AM PLB 2017 Corn GroupA-0974 2.60 0.01 2.17 0.06 2601.80 27.14 1746 508 1238 RF
CF PLB 2017 Corn GroupA-0975 2.38 0.08 1.86 0.03 1177.89 24.85 1099 508 591 RF
HB PLB 2017 Corn GroupA-0976 3.28 0.01 2.65 0.02 1650.52 34.24 557 508 49 RF
NH PLB 2017 Corn GroupA-0977 2.57 0.01 2.00 0.00 3474.91 26.87 226 508 -282 RF
PB PLB 2017 Corn GroupA-0978 2.88 0.00 2.35 0.01 1437.03 30.05 338 508 -170 RF
PTB PLB 2017 Corn GroupA-0979 4.79 0.02 435 0.01 2652.61 50.01 296 508 =212 RF
PL PLB 2017 Corn GroupA-0980 2.18 0.02 1.68 0.03 809.82 22.81 979 508 471 RF
BG PLB 2017 Corn GroupA-0981 2.20 0.00 1.71 0.05 2941.78 22.96 1426 508 918 RF
BBEA PLB 2017 Corn GroupA-0982 2.57 0.01 2.09 0.11 3296.50 26.84 2889 508 2381 RF
JL PLB 2017 Corn GroupA-0983 4.24 0.07 3.63 0.02 31878.96 44.25 862 508 354 RF
BS PLB 2017 Corn GroupA-0984 2.65 0.02 2.13 0.02 4109.93 27.68 757 508 249 RF
6 PLB 2018 Corn GroupA-0985 2.83 0.00 2.32 0.01 1403.96 50.55 244 506 -262 RF
AM PLB 2018 Corn GroupA-0986 2.71 0.03 2.20 0.05 2601.80 48.41 1727 506 1221 RF
CF PLB 2018 Corn GroupA-0987 2.72 0.00 223 0.03 1177.89 48.57 1098 506 592 RF
HB PLB 2018 Corn GroupA-0988 2.67 0.01 2.24 0.01 1650.52 47.68 363 506 -143 RF
NH PLB 2018 Corn GroupA-0989 3.17 0.03 2.58 0.00 3474.91 56.62 222 506 -284 RF
PL PLB 2018 Corn GroupA-0990 2.68 0.01 2.15 0.03 809.82 47.89 974 506 468 RF
BG PLB 2018 Corn GroupA-0991 3.54 0.01 2.87 0.05 2941.78 63.07 1421 506 915 RF
BBEA PLB 2018 Corn GroupA-0992 2.85 0.06 2.29 0.11 3296.50 50.81 3047 506 2541 RF
JL PLB 2018 Corn GroupA-0993 3.81 0.04 3.04 0.02 31878.96 67.94 901 506 395 RF
AM PLB 2020 Corn GroupA-0994 2.02 0.10 1.61 0.02 2601.80 21.74 742 498 244 RF
CF PLB 2020 Corn GroupA-0995 2.04 0.00 1.46 0.03 1177.89 22.02 1095 498 597 RF
PB PLB 2020 Corn GroupA-0996 1.85 0.00 1.40 0.01 1437.03 19.95 333 498 -165 RF
PE PLB 2020 Corn GroupA-0997 2.86 0.01 247 0.02 1832.05 30.78 942 498 444 RF
PW PLB 2020 Corn GroupA-0998 2.16 0.01 1.77 0.01 2110.84 23.25 260 498 -238 RF
PL PLB 2020 Corn GroupA-0999 1.86 0.01 1.51 0.03 809.82 20.08 976 498 478 RF
JL PLB 2020 Corn GroupA-1000 223 0.04 1.80 0.02 31878.96 24.06 889 498 391 RF
6 BG 2016 Corn GroupA-1001 1.68 0.01 1.28 0.01 3938.74 19.52 249 1426 -1177 RF
AM BG 2016 Corn GroupA-1002 1.77 0.02 1.40 0.05 4801.99 20.57 1759 1426 333 RF
HB BG 2016 Corn GroupA-1003 1.73 0.02 1.25 0.01 4415.29 20.04 366 1426 -1060 RF
NH BG 2016 Corn GroupA-1004 2.16 0.01 1.92 0.00 4995.12 25.02 222 1426 -1204 RF
PL BG 2016 Corn GroupA-1005 1.72 0.01 1.35 0.02 3360.23 19.92 978 1426 -448 RF
PLB BG 2016 Corn GroupA-1006 1.70 0.01 1.32 0.01 2941.78 19.65 501 1426 -925 RF
BBEA BG 2016 Corn GroupA-1007 1.82 0.06 1.49 0.12 438.12 21.15 3066 1426 1640 RF
6 BG 2017 Corn GroupA-1008 3.51 0.01 2.88 0.01 3938.74 37.40 248 1426 -1178 RF
AM BG 2017 Corn GroupA-1009 3.13 0.01 247 0.05 4801.99 33.37 1746 1426 320 RF
CF BG 2017 Corn GroupA-1010 341 0.11 2.62 0.03 3976.07 36.41 1099 1426 -327 RF
HB BG 2017 Corn GroupA-1011 3.12 0.08 248 0.01 4415.29 3333 557 1426 -869 RF
NH BG 2017 Corn GroupA-1012 3.12 0.00 2.50 0.00 4995.12 33.27 226 1426 -1200 RF
PB BG 2017 Corn GroupA-1013 3.72 0.21 2.76 0.01 3001.92 39.68 338 1426 -1088 RF
PTB BG 2017 Corn GroupA-1014 4.46 0.07 3.87 0.01 5528.32 47.59 296 1426 -1130 RF
PL BG 2017 Corn GroupA-1015 3.08 0.07 2.37 0.02 3360.23 32.82 979 1426 -447 RF
PLB BG 2017 Corn GroupA-1016 2.96 0.02 2.18 0.01 2941.78 31.60 508 1426 -918 RF
BBEA BG 2017 Corn GroupA-1017 2.26 0.34 1.77 0.11 438.12 24.13 2889 1426 1463 RF
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JL BG 2017 Corn GroupA-1018 335 0.09 2.73 0.02 34820.43 3575 862 1426 -564 RF
BS BG 2017 Corn GroupA-1019 2.89 0.03 2.30 0.02 7029.70 30.85 757 1426 -669 RF

6 BG 2018 Corn GroupA-1020 2.84 0.04 2.30 0.01 3938.74 36.76 244 1421 -1177 RF
AM BG 2018 Corn GroupA-1021 291 0.01 2.36 0.05 4801.99 37.68 1727 1421 306 RF
CF BG 2018 Corn GroupA-1022 2.61 0.08 2.10 0.03 3976.07 33.79 1098 1421 -323 RF
HB BG 2018 Corn GroupA-1023 3.54 0.12 297 0.01 4415.29 45.85 363 1421 -1058 RF
NH BG 2018 Corn GroupA-1024 4.69 0.03 4.13 0.00 4995.12 60.68 222 1421 -1199 RF
PL BG 2018 Corn GroupA-1025 3.11 0.00 2.57 0.02 3360.23 40.20 974 1421 -447 RF
PLB BG 2018 Corn GroupA-1026 3.12 0.09 2.64 0.01 2941.78 40.36 506 1421 -915 RF
BBEA BG 2018 Corn GroupA-1027 2.32 0.28 1.85 0.11 438.12 29.98 3047 1421 1626 RF
JL BG 2018 Corn GroupA-1028 2.76 0.02 2.19 0.02 34820.43 3574 901 1421 -520 RF

6 BG 2019 Corn GroupA-1029 2.46 0.02 2.05 0.01 3938.74 32.84 246 1428 -1182 RF
AM BG 2019 Corn GroupA-1030 2.77 0.00 2.39 0.02 4801.99 36.96 992 1428 -436 RF
HB BG 2019 Corn GroupA-1031 3.17 0.00 2.58 0.01 4415.29 42.38 365 1428 -1063 RF
NH BG 2019 Corn GroupA-1032 2.79 0.03 2.34 0.00 4995.12 37.24 215 1428 -1213 RF
BBEA BG 2019 Corn GroupA-1033 2.26 0.06 1.76 0.12 438.12 30.13 3067 1428 1639 RF
BS BG 2019 Corn GroupA-1034 2.59 0.01 2.06 0.02 7029.70 34.61 749 1428 -679 RF
BBEA BG 2021 Corn GroupA-1035 2.14 0.20 1.76 0.12 438.12 20.64 3029 1430 1599 RF
BS BG 2021 Corn GroupA-1036 5.26 0.08 4.86 0.01 7029.70 50.61 645 1430 -785 RF

6 BBEA 2016 Corn GroupA-1037 1.86 0.03 1.36 0.01 4348.89 22.96 249 3066 -2817 RF
AM BBEA 2016 Corn GroupA-1038 1.86 0.05 1.37 0.04 5233.55 22.98 1759 3066 -1307 RF
HB BBEA 2016 Corn GroupA-1039 222 0.04 1.64 0.01 4811.25 27.51 366 3066 -2700 RF
NH BBEA 2016 Corn GroupA-1040 2.09 0.00 1.74 0.00 5431.98 25.89 222 3066 -2844 RF
PL BBEA 2016 Corn GroupA-1041 2.00 0.00 1.53 0.02 3759.77 24.73 978 3066 -2088 RF

PLB BBEA 2016 Corn GroupA-1042 1.90 0.02 1.39 0.01 3296.50 23.52 501 3066 -2565 RF

BG BBEA 2016 Corn GroupA-1043 1.84 0.03 1.38 0.03 438.12 22.81 1426 3066 -1640 RF

6 BBEA 2017 Corn GroupA-1044 297 0.04 2.35 0.01 4348.89 27.80 248 2889 -2641 RF
AM BBEA 2017 Corn GroupA-1045 2.67 0.02 2.07 0.04 5233.55 25.02 1746 2889 -1143 RF
CF BBEA 2017 Corn GroupA-1046 2.98 0.11 2.29 0.02 4282.54 27.90 1099 2889 -1790 RF
HB BBEA 2017 Corn GroupA-1047 3.87 0.02 3.12 0.01 4811.25 36.25 557 2889 -2332 RF
NH BBEA 2017 Corn GroupA-1048 3.46 0.00 2.89 0.00 5431.98 3242 226 2889 -2663 RF
PB BBEA 2017 Corn GroupA-1049 3.13 0.16 2.37 0.01 3203.03 29.32 338 2889 -2551 RF
PTB BBEA 2017 Corn GroupA-1050 5.76 0.03 5.23 0.01 5911.78 54.01 296 2889 -2593 RF
PL BBEA 2017 Corn GroupA-1051 3.07 0.13 2.51 0.02 3759.77 28.80 979 2889 -1910 RF
PLB BBEA 2017 Corn GroupA-1052 3.00 0.02 2.44 0.01 3296.50 28.15 508 2889 -2381 RF
BG BBEA 2017 Corn GroupA-1053 2.51 0.25 1.99 0.03 438.12 23.51 1426 2889 -1463 RF
JL BBEA 2017 Corn GroupA-1054 2.77 0.10 2.12 0.02 35161.19 26.01 862 2889 -2027 RF
BS BBEA 2017 Corn GroupA-1055 3.11 0.09 2.58 0.02 7352.54 29.15 757 2889 -2132 RF
6 BBEA 2018 Corn GroupA-1056 3.07 0.01 2.53 0.01 4348.89 39.48 244 3047 -2803 RF
AM BBEA 2018 Corn GroupA-1057 3.00 0.01 2.41 0.04 5233.55 38.61 1727 3047 -1320 RF
CF BBEA 2018 Corn GroupA-1058 2.76 0.08 2.15 0.02 4282.54 35.50 1098 3047 -1949 RF
HB BBEA 2018 Corn GroupA-1059 3.27 0.11 2.66 0.01 4811.25 42.10 363 3047 -2684 RF
NH BBEA 2018 Corn GroupA-1060 4.22 0.10 3.67 0.00 5431.98 54.30 222 3047 -2825 RF
PL BBEA 2018 Corn GroupA-1061 3.16 0.00 2.61 0.02 3759.77 40.71 974 3047 -2073 RF
PLB BBEA 2018 Corn GroupA-1062 3.03 0.11 2.51 0.01 3296.50 39.03 506 3047 -2541 RF
BG BBEA 2018 Corn GroupA-1063 2.56 0.19 1.96 0.03 438.12 32.94 1421 3047 -1626 RF
JL BBEA 2018 Corn GroupA-1064 291 0.01 2.30 0.02 35161.19 37.53 901 3047 -2146 RF
6 BBEA 2019 Corn GroupA-1065 2.20 0.01 1.76 0.01 4348.89 30.48 246 3067 -2821 RF
AM BBEA 2019 Corn GroupA-1066 2.47 0.00 2.06 0.02 5233.55 3431 992 3067 -2075 RF
HB BBEA 2019 Corn GroupA-1067 2.68 0.00 2.08 0.01 4811.25 37.23 365 3067 -2702 RF
NH BBEA 2019 Corn GroupA-1068 2.31 0.03 1.87 0.00 5431.98 32.10 215 3067 -2852 RF
BG BBEA 2019 Corn GroupA-1069 2.06 0.04 1.59 0.03 438.12 28.52 1428 3067 -1639 RF
BS BBEA 2019 Corn GroupA-1070 248 0.01 1.95 0.02 7352.54 34.37 749 3067 -2318 RF
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BG BBEA 2021 Corn GroupA-1071 2.60 0.16 1.93 0.03 438.12 27.25 1430 3029 -1599 RF
BS BBEA 2021 Corn GroupA-1072 4.46 0.00 3.89 0.01 7352.54 46.80 645 3029 -2384 RF
CS AA 2015 Corn GroupA-1073 3.58 0.10 3.17 0.06 1521.14 30.55 2451 3961 -1510 RF
RD AA 2015 Corn GroupA-1074 4.12 0.04 3.77 0.03 28035.93 35.15 1261 3961 -2700 RF
CcS AA 2016 Corn GroupA-1075 2.15 0.21 1.71 0.06 1521.14 22.05 2440 3973 -1533 RF
SP AA 2016 Corn GroupA-1076 2.13 0.23 1.74 0.05 3305.23 21.86 1988 3973 -1985 RF
CS AA 2017 Corn GroupA-1077 2.80 0.08 2.29 0.06 1521.14 22.54 2373 3860 -1487 RF
SP AA 2017 Corn GroupA-1078 2.72 0.10 2.11 0.04 3305.23 21.86 1799 3860 -2061 RF
RD AA 2017 Corn GroupA-1079 291 0.04 242 0.03 28035.93 23.42 1261 3860 -2599 RF
CS AA 2018 Corn GroupA-1080 3.10 0.11 2.50 0.06 1521.14 27.62 2437 3975 -1538 RF
SP AA 2018 Corn GroupA-1081 2.94 0.15 2.34 0.05 3305.23 26.24 1988 3975 -1987 RF
1P AA 2018 Corn GroupA-1082 4.06 0.04 3.49 0.02 14966.67 36.23 770 3975 -3205 RF
2PB AA 2018 Corn GroupA-1083 3.79 0.00 3.26 0.04 14577.73 33.85 1764 3975 -2211 RF
1P AA 2020 Corn GroupA-1084 2.28 0.00 1.93 0.02 14966.67 18.06 770 3962 -3192 RF
2PB AA 2020 Corn GroupA-1085 2.44 0.05 2.09 0.04 14577.73 19.36 1769 3962 -2193 RF
AA CS 2015 Corn GroupA-1086 3.36 0.14 2.71 0.13 1521.14 38.45 3961 2451 1510 RF
RD CS 2015 Corn GroupA-1087 2.62 0.00 225 0.03 28340.32 29.91 1261 2451 -1190 RF
AA CS 2016 Corn GroupA-1088 2.07 0.37 1.64 0.13 1521.14 23.03 3973 2440 1533 RF
SP CS 2016 Corn GroupA-1089 1.87 0.50 1.38 0.06 2392.70 20.73 1988 2440 -452 RF
AA CS 2017 Corn GroupA-1090 2.02 0.11 1.58 0.13 1521.14 16.64 3860 2373 1487 RF
SP CS 2017 Corn GroupA-1091 2.09 0.08 1.62 0.04 2392.70 17.22 1799 2373 -574 RF
RD CS 2017 Corn GroupA-1092 1.89 0.12 1.46 0.03 28340.32 15.57 1261 2373 -1112 RF
AA CS 2018 Corn GroupA-1093 2.98 0.14 2.49 0.13 1521.14 26.02 3975 2437 1538 RF
SP CS 2018 Corn GroupA-1094 2.88 0.26 2.39 0.06 2392.70 25.11 1988 2437 -449 RF
1P CS 2018 Corn GroupA-1095 4.50 0.00 3.87 0.02 13564.88 39.26 770 2437 -1667 RF
2PB CS 2018 Corn GroupA-1096 3.73 0.03 3.21 0.05 13145.07 32.54 1764 2437 -673 RF
Sp Ccs 2019 Corn GroupA-1097 2.54 0.19 2.04 0.06 2392.70 23.32 1989 2440 -451 RF
RD CS 2019 Corn GroupA-1098 3.09 0.03 2.61 0.03 28340.32 28.38 1257 2440 -1183 RF
SP CS 2021 Corn GroupA-1099 1.98 0.14 1.59 0.06 2392.70 13.95 1978 2437 -459 RF
MP CS 2021 Corn GroupA-1100 3.50 0.20 3.16 0.02 10327.57 24.65 924 2437 -1513 RF
6 JL 2017 Corn GroupA-1101 3.02 0.04 2.49 0.01 31086.42 23.84 248 862 -614 RF
AM JL 2017 Corn GroupA-1102 2.78 0.00 2.33 0.05 30699.89 21.94 1746 862 884 RF
CF JL 2017 Corn GroupA-1103 3.32 0.22 2.87 0.03 30895.46 26.18 1099 862 237 RF
HB JL 2017 Corn GroupA-1104 5.54 0.01 4.99 0.01 30527.42 43.64 557 862 -305 RF
NH JL 2017 Corn GroupA-1105 5.13 0.00 4.58 0.00 31398.77 40.42 226 862 -636 RF
PB JL 2017 Corn GroupA-1106 3.03 0.01 2.58 0.01 32178.80 23.89 338 862 -524 RF
PTB JL 2017 Corn GroupA-1107 732 0.1