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ABSTRACT 

 

 

               This thesis investigates the ecology and evolution of virulence in Xylella fastidiosa, a 

xylem-limited bacterium with significant impacts on countless important agricultural plant 

species. Through microfluidic chamber experiments simulating plant xylem conditions, we 

assess the potential of X. fastidiosa strain EB92-1 to be used as a biocontrol agent against 

the highly virulent Temecula strain. Our results demonstrate that Xylella fastidiosa strain 

EB92-1 can outcompete a more virulent strain within mixed culture. Additionally, we 

investigate strain interactions and colonization dynamics in tomato plants, revealing 

systemic colonization patterns and strain interactions important for developing effective 

biocontrol strategies. Drawing from individual-based simulation models, we explore the 

intricate interplay between genetic trade-offs, population structure, and virulence 

evolution in pathogen populations. We find a general set of conditions in which selection 

for improved pathogen performance in a vector can cause correlational and potentially 

maladaptive changes to virulence in the host. This research reveals the complex 

evolutionary and ecological factors shaping virulence in X. fastidiosa and informs future 

approaches for disease management in agricultural settings. 
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CHAPTER 1 

Introduction 

 

 

Xylella fastidiosa, a xylem-limited, insect-vectored bacterium, is a significant threat to 

various plants of agricultural importance, including grapes, olives, citrus, and peach 

(Johnson et al. 2021, Trkulja et al. 2022, Rapicavoli et al. 2017, Kyrkou et al. 2018). Its 

pathogenicity derives from its ability to disrupt water and nutrient transport within plants, 

culminating in symptoms like leaf scorch, wilting, and eventual plant death (Rapicavoli et 

al. 2017).  There is currently no cure for Xylella fastidiosa-based diseases, and treatment 

options are severely limited due to its xylem-limited nature, making it challenging to 

access and control. Because of this, there is great interest in biocontrol methods, 

including the use of non-virulent strains of X. fastidiosa. 

 

One such strain is EB92-1. EB92-1 is a naturally occurring strain, originally found in 

elderberry.  It is infectious to Xylella fastidiosa susceptible plants, however it appears to 

cause only slight symptoms in hosts (Zhang et al. 2015). An analysis of its genome revealed 

that it is very similar genetically to the strains causing Pierce’s disease in grape. However, 

EB92-1 is missing 10 genes which are thought to encode secreted pathogenicity factors 

(Zhang et al. 2011).  Previous studies have suggested that it is an efficient biocontrol agent 

against a more virulent strain, Temecula, in grape (Hopkins 2005),  but the mechanisms of 

this effect are unknown. Additionally, research into the interactions of EB92-1 and 

Temecula in vitro in our lab have not shown this same biocontrol effect.   

 

The conflict between these lines of evidence could stem from the fact that Xylella 

fastidiosa exhibits a high degree of phenotypic plasticity, which aids in its survival in its 

plant hosts and transmission by insect vectors. Such plasticity can complicate the study of 

strain interactions in a laboratory setting as the bacteria can behaves quite differently in 
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vitro and in planta.  Due to the high degree to which Xylella can alter its behavior based on 

experimental conditions, further investigation was required to understand the dynamics of 

this interaction. We chose to explore the interactions of EB92-1 and Temecula in both a 

microfluidic chamber to simulate the plant xylem, as well as in planta in tomato. We also 

attempted to investigate insect transmission of this potential biocontrol strain; however, 

but our efforts were unsuccessful. A complete account of this work can be found in 

Chapter 2. 

 

In brief, we found that in the microfluidic chamber, the EB92-1 strain consistently out-

competes the Temecula strain in terms of growth in both single strain and mixed strain 

culture. We also found that the growth of Temecula colonies seemed to be inhibited by the 

EB92-1 strain. This is a positive results in the aim of using EB92-1 as a biocontrol agent. On 

the other hand, in planta, preliminary data suggests that the Temecula strain fares better in 

terms of growth. However, we reserve judgment until we have more data.  

 

Xylella fastidiosa has complex interactions with both its plant hosts and insect vectors. The 

theory of virulence evolution, rooted in life history trade-offs within pathogen populations, 

posits an optimal level of virulence balancing short- and long-term transmission efficiency 

(Anderson & May 1982; Ewald 1983; Frank 1996: Porco et al. 2005). While short-term 

transmission efficiency typically increases with within-host pathogen density, excessive 

virulence leads to host mortality, narrowing the window for pathogen transmission. 

Consequently, virulence evolution entails a meta-population-level negative feedback, 

aiming to maximize pathogen transmission over the long term.  In the case of Xylella 

fastidiosa, its virulence evolution presents a puzzle. In some cases, Xylella populations 

express virulence phenotypes that would seem non-adaptive (Redak et al. 2004), as plants 

that are heavily infected are in some cases avoided by vectors (Daugherty et al. 2011). One 

factor that could be driving this potentially non-adaptive virulence is antagonistic 

pleiotropy between traits affecting performance in the host and the vector. Transmission of 
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Xylella fastidiosa is boosted when cells express phenotypes which produce more EPS 

along with other virulence factors affecting insect retention. However, this expression also 

increases the extent to which they harm their host plant (Killiny et al. 2013). The emergence 

of highly virulent phenotypes in specific host-pathogen interactions, such as grapevine 

infections coinciding with the spread of the glassy-winged sharpshooter (Hemiptera: 

Cicadellidae: Homalodisca vitripennis) vector in California, suggests a complex interplay 

between pathogen evolution and vector dynamics. In comparison to many resident 

species of xylem-feeding insects, H. vitripennis is an inefficient vector of X. fastidiosa 

(Bextine 2006, Redak 2004). But as it established in California, it became so numerically 

dominant that most transmission to and from grapevine in California is now via H. 

vitripennis. With this establishment of the vector, came new highly virulent phenotypes. 

Given the complex ecology of Xf, including its association with a wide range of host species 

highlights its versatility, ranging from benign commensalism to highly virulent infections, it 

is not clear if selection in the vector actually could drive the evolution of phenotypes that 

are expressed in a host.  

 

To improve our intuition about how genetic architecture and environmental heterogeneity 

interact to shape the course of the evolution of virulence, we develop and analyze an 

individual-based simulation model. An account of this work can be found in Chapter 3. We 

found that, if there is strong negative pleiotropy, selection in the vector can indeed drive 

much correlational evolution in the host. However, this depends on a variety of other 

factors such as the relative abundance and carrying capacities of hosts and vectors. 

 

So, through a combination of experimental studies and computational simulations, we aim 

to shed light on the ecology and evolution of virulence in X. fastidiosa and explore potential 

biocontrol solutions. With this we hope to set the stage for the development of effective 

strategies for Xylella fastidiosa control in agricultural settings. 
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CHAPTER 2 

 

Interactions Between Xylella fastidiosa strains EB92-1 and Temecula  

 

 

2.1 ABSTRACT 

 

 Xylella fastidiosa, a xylem-limited bacteria, poses significant threats to various plant 

species of agricultural importance, causing diseases like Pierce's disease and citrus 

variegated chlorosis. This study evaluates the potential of X. fastidiosa strain EB92-1 as a 

biocontrol agent against the highly virulent Temecula strain using microfluidic chambers, 

which simulate plant xylem conditions, as well as in tomato. Additionally, we attempted to 

develop a protocol for an artificial diet transmission system for our vectors. Our results 

demonstrate consistent and significant out-competition of Temecula by EB92-1 in mixed 

culture within microfluidic chambers. These findings suggest that EB92-1 has potential 

efficacy as a biocontrol agent against X. fastidiosa-associated diseases. Our results for the 

tomato and artificial diet system were inconclusive and indicate the need for further study 

of this system. 

 

2.2 INTRODUCTION 

 

Field studies have indicated that infection of grapevine by EB92-1 may confer on plants 

protection against virulent strains of Xylella (Hopkins 2005). Over a 30+ period, prior 

infection with the EB92-1 strain significantly lowered disease severity in plants later 

infected with a virulent strain of X. fastidiosa. Likewise, in a related study, EB92-1 was used 

to mitigate the effects of Huanglongbing (HLB) caused by Candidatus Liberibacter 

asiaticus. The EB92-1 strain was shown to colonize citrus and decrease the incidence of 
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symptomatic trees as well as the percentage of trees seen with severe symptoms 

(Hopkins, Ager 2021). However, the mechanisms of this protection are unknown.  

 

X. fastidiosa exhibits a high degree of phenotypic plasticity, which aids in its survival in its 

plant hosts and transmission by insect vectors. However, this plasticity complicates the 

study of strain interactions in a laboratory setting as the bacteria can behave quite 

differently in vitro and in planta. As the name suggests, Xylella fastidiosa exhibits fastidious 

growth, and can be very sensitive to changes in environment or content of growth media. 

Previous research in the De La Fuente lab examined the interactions between the 

Temecula and EB92-1 lines in a 96 well plate. In that in vitro setting, EB92-1 did not appear 

to hinder the growth of Temecula. However, due to the high degree to which Xylella can 

alter its behavior based on the local environment, further investigation was required to 

understand the dynamics of this interaction, particularly in environments that more closely 

mimic the natural habitat of X. fastidiosa. Therefore, our goals for this study were to 

characterize the population dynamic interactions between EB92-1 and Temecula in (1) 

microfluidic chambers, (2) in planta, and (3) in vectors. 

 

Microfluidic chambers simulate the conditions within plant xylem, while also making what 

happens in such an environment easier to observe. They offer constant flows of media and 

nutrients, through fine channels, of approximately the same diameter as xylem vessels.  

 

For our in-planta assays, we used tomato as a model system. Previous research in the De 

La Fuente lab showed that tomato plants could be systemically, but asymptomatically 

colonized by the Temecula strain of X. fastidiosa (Chen et al. 2017).  So, the advantages of 

using tomato as a model, are that it is a viable host that is easy to cultivate and does not 

become ill when infected. Moreover, tomato also has the potential to be used for 

deployment of biocontrol strains in the field.  
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For our in-vector assays, we attempted to use insects from a colony established from a 

local population of Homalodisca vitripennis, the glassy-winged sharpshooter. Ultimately 

this line of research was unsuccessful. But here we provide a description of our culturing 

methods and assay designs, to help future researchers.  

 

2.3 METHODS 

 

2.3.1 Microfluidic chamber experiment 

 

The strains of X. fastidiosa used in this experiment were Temecula and EB92-1. Each has 

been previously transformed to carry an antibiotic resistance cassette. Specifically, EB92-

1 was transformed to be Kanamycin resistant, and Temecula was transformed to resist 

Chloramphenicol.  Use of these transformed stained allowed for quantification of 

experimental strain densities via plating on antibiotic media.  

 

The chloramphenicol-resistant Temecula strain and the kanamycin-resistant EB92-1 

strain, were grown on PW plates from glycerol stock. These initial plates were grown for 

approximately 7 days. The bacteria was then scraped off the plates, streaked onto new 

plates, and allowed to grow for another 7 days. Then, using a sterile inoculation loop, 

bacteria were collected from plates wand transferred into the test tubes containing PD2 

media. The suspension was then homogenized using a pipette to evenly distribute the 

bacteria without inducing bubble formation. A blank control was established by filling a 

separate test tube with 1 ml of media. Spectrophotometer measurements were conducted 

at 600nm wavelength after agitating each suspension to prevent bacterial settling. Each 

bacterial suspension was then adjusted to an OD₆₀₀ of 0.60. 

 

 The mixed strain culture was prepared by adding equal parts of the adjusted EB92-1 and 

Temecula-L suspensions into an empty test tube and vortexing to combine.  
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2.3.1a Chamber Assembly: 

 

 

 

 

 

  

 

 

Fig. 2.1: General setup of one microfluidic unit, containing two individual microfluidic chambers 

 

Outlet syringes were prepared by removing the plungers from two 5 ml syringes and 

attaching them to tubes labeled "Sink." These syringes were used to catch the media 

pushed out of the chamber, and along with it, the planktonic bacteria which did not attach 

to the chamber walls.  Sterile cotton balls were inserted into the syringe tops to block the 

tubes. Media inlets were prepared by drawing 5 ml of media into syringes, removing 

bubbles, and attaching them to the chamber. Similarly, adjusted bacterial solutions were 

drawn into 1 ml syringes, bubbles were removed, and syringes were attached to the 

chamber. Priming the chamber involved gently pushing media through to remove air 

bubbles.  

Bacterial 

Suspension 

Bacterial 

Suspension 
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2.3.1b Experimental Setup: 

 

The NIS-Elements software (Nikon Corporation – Tokyo, Japan) was used to monitor 

chamber conditions under the view of the microscope. Bacterial flow was set to 2-5 ul/min 

to clear remaining air from the tubing until reaching the chamber. Media flow was also set 

to 2-5 ul/min to clear bubbles, with speeds reduced to 500 nl/min when air began to clear 

from the chamber. Flow rates were adjusted throughout the process to maintain bubble-

free conditions. Once no bubbles were observed, media flow was reduced to 250-275 

nl/min, and bacterial flow was adjusted to 250-400 nl/min based on experimental needs. 

Upon achieving sufficient bacterial presence in both chambers (Fig. 2.2), the bacterial 

pump was turned off, and bacterial tubing was clamped to prevent bubble entry. Media 

flow was maintained at 250-275 nl/min for the duration of the experiment. 
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Fig. 2.2: Bacterial cells forming attachment to microfluidic chamber walls. 

 

Four individual treatments were run for each of the trials: the Temecula only control, the 

EB92-1 only control, and two individual mixed strain chambers. Two trials were performed, 

resulting in 4 replicates of the mixed strain culture treatment.  

 

The trials were run for 10 days at a media flow rate of 0.25 µl min-1 and samples were taken 

from both the outlet syringe as well as the biofilm formation of each chamber, which was 

pushed out via increase of flow rate. Cells in the suspension were enumerated by plating 

serially diluted samples onto PW agar, then incubated for 14 days. After this incubation 

period, colony forming units were counted and these results were quantified.  
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2.3.2 In Planta Experiment 

 

Our two strains, kanamycin resistant EB92-1 and chloramphenicol resistant Temecula 

were grown on their respective antibiotic PW (periwinkle wilt) media for 7 days, then 

streaked onto new plates and grown for an additional 7 days. The bacteria were then 

scraped off the plates and suspended in succinate-citrate-phosphate (SCP) buffer at 

OD600 of 1.0 prior to inoculation, as previously described (De La Fuente et al., 2013). Four 

treatments were used, the buffer only control, the Temecula only treatment, the EB92-1 

only treatment, and the mixed strain treatment. Each of these treatments had 10 replicate 

plants.  

 

Plants were inoculated using the pin-prick method as described in De La Fuente et al. 

(2013). The inoculation point was at the stem attached to the first true leaf pair. At the 

inoculation point, each plant was probed six times by a 1 ml tuberculin syringe with a 23-

gauge needle, and 100 μl inoculum were used. After inoculation, plants were placed into a 

randomized block design. 

 

Samples were taken at 15, 45, and 90 days. For these samples, leaf petiole tissue was 

taken from 3 plants per treatment at each sampling date. Petioles from the 2nd, 3rd, and 5th 

true leaf were taken at each sampling date, and surface sterilized using the protocol 

outlined in Chen et al. (2017). The petioles were then finely chopped and introduced in test 

tubes containing PD2 broth and incubated at 28 ℃ with shaking at 150 rpm for 1 h. The 

supernatant was serially diluted and spread-plated onto PW plates.  
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2.3.3 Insect Vector Transmission Experiment  

 

The X. fastidiosa strains Temecula and EB92-1 were initially cultured on PW medium for 7 

days, followed by streaking onto XFM-pectin medium for approximately 10 days. 

Subsequently, each strain was suspended in an artificial diet solution as described by 

Killiny (2009), comprising L-glutamine 0.7 mM, L-asparagine 0.1 mM, and 1 mM sodium 

citrate, adjusted to pH 6.4, and then adjusted to an optical density at 600 nm (OD600) of 

0.4, following the protocol by Rashed (2010). 

 

The artificial diet chambers were assembled using 50 mL Falcon tubes with the closed end 

removed, leaving one open end and one capped end. The open end of each chamber was 

covered with a thin layer of parafilm onto which 500 microliters of the bacterial suspension 

was placed. The suspension was then covered with an additional layer of parafilm to form 

a closed sachet, following modifications from Killiny (2009). An image of the experimental 

setup can be seen in Figure 2.3 below. Assembly of the chambers was conducted under a 

laminar flow hood to prevent contamination of the diet solution. 
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Fig. 2.3:  The chambers in which the artificial diet acquisition and transmission studies were conducted. 

 

A laboratory population of glassy winged sharpshooters was initiated from field collected 

insects from Auburn, Alabama. Pre-experiment, these insects were maintained in two tent-

shaped, 60 cm × 60 cm × 60 cm bugdorms (BioQuip, Rancho Dominquez, CA, USA). 

Insects were reared on a diet of sunflower, okra, periwinkle, tomato, and basil plants. The 

insects used for each replicate were reared on basil plants for a week prior to the 

experiment to ensure uniform conditions. They were then placed into the chambers and 

allowed to feed on the diet solution for a 24-hour acquisition period. 
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Following acquisition, the parafilm feeding sachet was replaced with a sachet containing 

only 1 mL of artificial diet solution, and the insects were allowed to feed for an inoculation 

access period of 24 hours. 

 

Afterward, each insect was removed from the chamber, decapitated, and the heads 

homogenized into 1 ml of PD2 media using a small pestle as per Almeida and Purcell 

(2003). This solution was then used for serial dilution plating as was described in previous 

sections.  The remaining diet solution in the sachet was also collected used for serial 

dilution plating. From these samples we took CFU counts to determine bacterial ratios. 

Each replicate consisted of 20 total diet chambers, with 10 containing the Temecula strain 

and 10 containing the EB92-1 strain. 

 

Four replicates were intended to be performed in 2–3-week intervals to avoid depleting the 

colony of Glassy-winged Sharpshooter adults and to allow sufficient time for bacterial 

growth. However, due to challenges in the study (see discussion section) only one 

replicate was completed.  

 

2.4 RESULTS AND DISCUSSION 

 

2.4.1 Microfluidic chamber experiment 

 

We found that the EB92-1 strain consistently outperformed the Temecula strain. It appears 

that the EB92-1 strain is better able to colonize the mock xylem of our model system; there 

were significantly more EB92-1 colonies, both in mixed-culture chambers as well as in the 

single strain controls.  (Fig. 2.4). In the mixed culture treatments, we found that that the 

abundance of both strains was diminished, indicating some form of antagonism (Fig. 2.4). 
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Fig. 2.4: Results of the single and mixed strain Log(CFU)/ml  counts for microfluidic chamber, 

sorted by location.  

 

Tukey multiple comparisons of means were performed for both the single and mixed strain 

treatment groups. For the single strain, each of the comparisons of mean CFU values were 

significantly different (p value < 0.05) except for the comparison between the Temecula 

strain in the sink environment and the Temecula strain in the channel environment (p value 

= 0.881). For the mixed treatment, the mean CFU count values were scaled by the mean 

CFU values in the single strain treatments. We found that there were significantly more of 

the EB92-1 strain than the Temecula strain in both the channel (p value = 0.00767) and the 

sink (p value = 0.00221).  

 

Additionally, when we look at the proportional change in CFU counts brought about by 

mixing for each strain, we find that the Temecula strain has a higher level of decrease than 

the EB92-1 in mixed culture (Fig. 2.5). 
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So, the performance of both strains is decreased in mixed cultures. But the antagonistic 

effects are asymmetrical; expose to EB92-1 much more drastically inhibits the growth of 

Temecula colonies than vice versa.  

 

The population dynamic interactions observed between X. fastidiosa strains EB92-1 and 

Temecula in mixed culture biofilms align with previous research indicating strain-specific 

interactions within microbial communities (Vandenkoornhuyse et al., 2002). The 

dominance of EB92-1 in both single and mixed culture settings suggests a superior ability 

Fig. 2.5: Percent change in abundance of colony forming units for each of the strains between the 

single strain and mixed strain treatments, sorted by location. 
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to colonize and establish within the mock xylem environment. This competitive advantage 

is consistent with findings in other pathogenic systems, where certain strains exhibit 

enhanced fitness in colonization and resource utilization (Trivedi et al., 2020). 

The observed antagonistic dynamics between EB92-1 and Temecula, resulting in 

decreased abundance of both strains upon mixing, resonate with studies on interspecies 

competition within biofilm communities (Pande et al., 2016). Such interactions often 

involve resource competition, metabolic interactions, and production of antimicrobial 

compounds, all of which influence the composition and stability of microbial consortia 

(Hibbing et al., 2010). The more pronounced inhibition of Temecula suggests a potential 

susceptibility to competition-induced stress or inhibition by EB92-1, indicating strain-

specific responses to environmental cues and interspecific interactions (Wei et al., 2019). 

 

The concept of using non-virulent or attenuated strains as biocontrol agents against 

pathogenic microbes has gained traction in recent years (Wu et al., 2021). By out-

competing and displacing virulent strains, biocontrol strains like EB92-1 disrupt disease 

progression and reduce pathogen load in host plants. This approach leverages ecological 

principles to manipulate microbial communities and mitigate disease incidence, offering a 

sustainable alternative to chemical pesticides (Raaijmakers et al., 2009). 

 

2.4.2 In planta experimentation 

 

From the 15-day time point we found that both strains appear to be systemically colonizing 

the tomato plants in both single and mixed strain culture, with bacteria being found in all 

sampling groups from 2nd to 5th true leaf. For the single strain treatments, our two strains, 

EB92-1 and Temecula, appear to be colonizing the plants in relatively similar amounts (Fig. 

2.6).  
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Fig. 2.6: L: single strain treatments of Temecula and EB92-1 at 2nd, 3rd, and 5th true leaf. R: Mixed 

strain treatments of Temecula and EB92-1 at 2nd, 3rd, and 5th true leaf. Both quantified in 

Log(CFU)/ml. 

 

From the mixed strain treatment, we can see that it does initially appear that the Temecula 

strain is colonizing the lowest region of the plant in higher amounts than the EB92-1 strain 

(p value = 0.0134016). However, this result may not be representative of the true 

colonization as contamination issues led to a much smaller sampling size for this data. 

This result will be reevaluated at later sampling dates.  
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2.4.3 Insect transmission experimentation 

 

We aimed to establish an artificial diet transmission system to inoculate insects with 

Xylella and assess transmission rates. We tried follow aa protocol developed for Blue 

green sharpshooter (BGSS) (Killiny et al., 2009), but this proved unsuitable due to the more 

discerning feeding habits of the Glassy-winged sharpshooter (GWSS) . Despite efforts to 

enhance feeding efficiency, the insects were reluctant to feed on the artificial diet. Many of 

the insects perished in the chambers rather than feeding on the artificial diet solution. 

 

Successful transmission of Xylella by the insect vectors necessitated growing the bacteria 

in minimal media in order to trigger the DSF pathway for colonization (Newman et al. 2004). 

For this study XFM media with pectin was used, as  in (Killiny et al. 2009) However, 

cultivating Xylella on such media presented challenges due to its finicky nature and slow 

growth rate. The limited bacterial yield impeded the progression of experiments. 

Compounding these challenges, we had issues with contamination. A non-target 

bacterium proliferated rapidly on the kanamycin plates, which obscured Xylella growth 

and made it impossible to accurately count colony-forming units (CFU) . It is likely that an 

error in media preparation allowed for the growth of this bacteria on the antibiotic plates.  

Additionally, efforts to maintain the GWSS colony and prevent diapause through light-dark 

cycle adjustments proved insufficient, leading to a decline in colony levels below what was 

needed for experiments. Ultimately, time constraints curtailed further attempts to 

overcome these obstacles, preventing the completion of the planned insect- transmission 

study. 
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2.5 CONCLUSIONS 

 

The microfluidic chamber study lends further credence to the potential of using the EB92-1 

strain as a biocontrol agent against the virulent Temecula strain. In microfluidic chambers, 

we observed consistent and significant inhibition of Temecula by EB92-1.  The fact that the 

Temecula strain is more inhibited by EB92-1 than vice versa is especially encouraging.    

The observed success of EB92-1 in outcompeting Temecula within the microfluidic 

chamber contrasts with previous findings from studies conducted in different 

experimental setups, such as 96-well plates. This discrepancy underscores the 

importance of studying bacterial interactions in environments that closely mimic the 

natural habitat, especially for species such as X. fastidiosa which are known to be highly 

phenotypically platic. Further research into the mechanisms underlying the antagonistic 

interactions between EB92-1 and Temecula, as well as their implications for biofilm 

formation and resource competition within the plant xylem, will be crucial for optimizing 

the use EB92-1 as a biocontrol agent in agricultural settings. 

 

For the in-planta experiments, samples have yet to be taken for the 45 and 90 day post 

inoculation points. When these samples are taken, this data will be added to the 

manuscript and final conclusions will be made.  So, further research is needed to more 

accurately characterize the colonization (and transmission) dynamics of Xylella strains in 

planta. However, our preliminary results further highlight the extensive context 

dependency and complexity of Xylella ecology.  

 

Our efforts to study variation in insect transmission efficiency across strains of Xylella 

were unsuccessful. But the the ability of EB92-1 to be spread effectively by vectors of 

Xylella fastidiosa would be an important consideration for its use in biocontrol. Hence, 
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further research along this line will be valuable. We hope that our failures help others to 

succeed.  

 

In conclusion, our micro-fluidics experiment lends further support for the potential of using 

EB92-1 as a biocontrol strain to protect plant from more virulent strains of Xylella. Our 

preliminary observations of the interactions between strains in tomato would seem to 

provide evidence to the contrary, but that experiment is not yet complete, and so we 

cannot be sure how things will unfold. Regardless, every indication is that what happens 

between two strains of Xylella depends strongly on the context, and so experiments in 

other host plant species will be essential, as will be research into the specific molecular 

mechanisms of the interactions between strains and their hosts.   
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CHAPTER 3 

Virulence Evolution Via Pleiotropy in Insect-Vectored Plant Pathosystems 

 

 

3.1 ABSTRACT 

 

The dynamics and determinants of virulence evolution in insect-vectored plant 

pathosystems are complex and poorly understood.  Here we use individual-based 

simulations to investigate how virulence evolution depends on genetic trade-offs and 

population structure in pathogen populations. Although quite generic, the model was 

inspired by the ecology of the plant-pathogenic bacterium Xylella fastidiosa, and we use it 

to gain insight into the evolution of virulence in that group. We find that even when 

pathogens find themselves much more often in hosts than vectors, selection in the vector 

environment can indeed cause correlational and non-adaptive changes in virulence in the 

host. The extent on such correlational virulence evolution depends on many system 

parameters, including the transmission rate, the strength of pleiotropy, the proportion of 

the population occurring in hosts versus vectors, the strengths of selection in host and 

vector environments, and the extent of virulence. 

 

3.2 INTRODUCTION 

 

The theory of virulence evolution is based on pathogen life history trade-offs. It predicts an 

optimal level of virulence that balances short- and long-term transmission efficiency 

(Anderson & May 1982; Ewald 1983; Frank 1996). In general, short-term transmission 

efficiency increases with within-host pathogen density. But high pathogen density within a 

host causes virulence, that is, excess host mortality. This shrinks the temporal window in 

which an infected host can be the source for pathogen transmission to a new host. Thus, 

virulence evolution entails a meta-population-level negative feedback. A pathosystem’s 
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optimal level of virulence is the one that maximizes pathogen transmission over the long-

term (Porco et al. 2005).   

 

The classical trade-off theory is based on the epidemiological compartment models that 

are not explicitly population genetic (Gomez et al. 2020). They tell us about equilibrium 

conditions, that is, where a system is ultimately headed given a fixed set of ecological 

parameters. But they tell us nothing about how long a system might take to arrive at 

equilibrium conditions, or what might happen along the way (Day et al. 2004). Moreover, 

since epidemiological compartment models do not explicitly consider the genetic 

architectures of pathogen traits mediating virulence – or assume very simple monogenic, 

bi-allelic architectures – they tell us nothing about how the evolution of virulence might 

depend on variation in its genetic architecture. Nevertheless, certain genetic architectures 

could have strong impacts on how virulence evolves to its optimum. 

 

To make all this a little more concrete, consider the case of virulence evolution in the 

plant-pathogenic bacterium Xylella fastidiosa, which is xylem-limited and insect-vectored, 

that is, occurs in two types of environments: the xylem vessels of its host plants, or the 

mouths of its xylem-consuming insect vectors. X fastidiosa is associated with a wide range 

of host species (Rapicavoli et al. 2017). In most cases it is a benign commensalist, but in 

some cases, infections are highly virulent, and X. fastidiosa is the causative agent of 

several important agricultural diseases, such as phony peach disease (Johnson et al. 

2021), Olive Quick Decline Syndrome (Trkulja et al. 2022, Rapicavoli et al. 2017), and 

Pierce’s disease in grapevine (Rapicavoli et al. 2017). The emergence of the latter in 

California was co-incident with the spread of a new vector species, the glassy-winged 

sharpshooter (Hemiptera: Cicadellidae: Homalodisca vitripennis). In comparison to many 

resident species of xylem-consuming insects, H. vitripennis is an exceptionally inefficient 

vector (Bextine 2006, Redak 2004). But as it established in California, it became so 

numerically dominant that most transmission to and from grapevine in California is now 
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via H. vitripennis. Could it be that the evolution of increased virulence of X. fastidiosa on 

grapevine was a non-adaptive correlational response to strong selection on traits that 

increased transmission efficiency in H. vitripennis? 

 

In fact, there are other many cases in which the emergence of high-virulence pathogen 

genotypes is associated with the emergence of a new vector species or genotype. For 

example, the global spread of the Bemisia tabaci is thought to have driven extensive 

divergence and multiple independent cases of virulence evolution in begomoviruses, 

which now cause serious diseases problems in crops ranging from okra in western Africa 

to tomato in Peru and Taiwan (reviewed by Gilbertson et al. 2015). 

 

Nevertheless, in a heterogeneous environment, selection tends to be more efficient in 

habitat types that are more common or productive (Whitlock 1996; Via and Lande 1985; 

Draghi 2023), and in insect-vectored plant pathosystems, the host environment is much 

more common and productive than the vector environment. Thus, we might expect the 

evolution of virulence-affecting pathogen phenotypes to be driven by selection in the host 

environment, with evolutionary change in the vector being largely correlational until the 

pathogen population has gotten close to the adaptive optimum in the host (Via and Lande 

1985). And we might doubt the possibility of selection for increased performance in 

vectors driving the evolution of virulence in hosts. On the other hand, the evolution of high 

virulence in pathogens – which kills hosts – could effectively reduce disparities in the 

relative abundance and productivity of hosts versus vectors. And in a vector-borne 

pathosystem, the habitat variation experienced by parasite genotypes is largely of the 

course-grained temporal variety; transmission entails obligate, and asynchronous 

alternations between host and vector environments. How such a life history affects 

asymmetries in selection across habitat types is not clear. Does it entirely erase the effects 

of asymmetries in the abundance and productivity of different habitat types? Does it 

reduce them to disparities in the sway of neutral processes such as genetic drift? Or does 
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something more complex and nuanced happen? Here, to improve our intuition about how 

genetic architecture and environmental heterogeneity interact to shape the course of the 

evolution of virulence, we develop and analyze an individual-based simulation model. 

 

3.3 METHODS 

 

Simulations were performed with SLiM 4 (Haller & Messer, 2022). SLiM runs forward-time, 

individual-based, population genetic models. SLiM models are specified with codes 

written in the Eidos language. The Eidos code for the model described here is provided in 

Appendix 1.  

To reiterate, our main research questions are about how the evolution of virulence may 

depend on pathogen population structure and genetic trade-offs affecting pathogen 

phenotypes in host and vector environments. Thus, they are quite general. Nevertheless, 

our motivation for developing the model was to gain insights into the evolution of virulence 

in X. fastidiosa, and so some decisions about model parameterization were made so as to 

approximate X. fastidiosa pathosystems. 
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Table 3.1: On top - Model parameter definitions along with   the range of values explored. On bottom – 

model variable definitions and domains.   

 

Paramete

r Symbols 

Parameter Definitions                          Range of Parameter Values 

k Strength of pleiotropic 

covariance 

-0.9 – 0.9 

Ѡv strength of vector selection 1 – 10 

Ѡh strength of host selection  1 -10 

mr migration rate 0.001 - 0.2 

Hm rate of host mortality 0.0001 - 0.01 

Vmax maximum virulence effect  0.01 - 0.8 

Kh host carrying capacity 200 – 2000 

Kv vector carrying capacity 10 – 100 

ρ proportion of hosts  0.1 - 0.5 

Variable 

Symbols  

Variable Definitions Range of Variable Values 

 

 

T 

 

 

 

How many generations it 

takes to evolve a mean host-

performance phenotype 

within 10% of the optimum 

 

 

201 – 10,000 

 

 

 

Γ 

 

Measure of the degree to 

which the population’s 

evolutionary path bends 

towards the optimum in the 

vector or host environment 

 

 

 

-2.0 – 2.0 
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We simulated the evolution of a structured meta-population of pathogen individuals, each 

of which has a diploid, single-chromosome, 40kb genome.  To be clear, these details about 

the genomic architecture are arbitrary and should not affect our inferences. Individuals in 

the simulations reproduce clonally and without recombination, and there are no 

dominance interactions between alleles. Hence, the genome is essentially a container for 

mutations, and should function equivalently to a haploid, circular genome of twice the 

size. That would still be much smaller than the genomes of Xylella fastidiosa (Simpson et 

al. 2000), but the mutation rate in the simulation is much higher. Again, our intention is to 

gain insights into the general causes of virulence evolution, not to parameterize a model in 

strict accordance with Xylella pathosystems.   

 

At the start of each simulation, the population is genetically uniform.  The pathogen 

population is divided into Nd=100 demes, each of which occurs in either a host or vector 

individual. So as not to be confused with pathogen individuals, we refer to these as two 

kinds of habitat patches. We let the proportion of host patches to vector patches, ρ, vary 

across simulations {0.1-0.5}. Below, we focus on our discussion on simulations in which ρ 

= 0.1.   

 

This is not a multi-species model; we assume that host and vector habitats are fixed during 

a simulation. That being said, we do allow for turnover of vector and host patches. In each 

pathogen generation, each pathogen deme runs the risk of extinction, at background 

mortality rates μv {0.05} in vector patches and and muh {0.0001 – 0.01} in host patches. In 

hosts, this background rate can be elevated by a virulence effect. Specifically, vi = vmax / (1 + 

exp(-a*di)), where vi is the excess risk of mortality experience by host i, vmax is the maximum 

possible virulence effect {0.01 – 0.8}, di is the density of pathogens within host i, that is 

ni/Ki, and a=5 controls the steepness of the logistic mapping of pathogen density to 

virulence. Patch replacement is instantaneous. When vector or host dies, the number of 
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pathogens in that particular patch is set to zero. The patch is then immediately available 

for re-colonization in the next pathogen generation. 

 

The pathogen life cycle begins with offspring production. Reproduction is clonal, with each 

surviving individual producing one offspring individual. Generations are overlapping. 

Offspring genomes are generated by random mutation of the parental genome. The 

mutation rate is 1e-8 per site, per genome, per generation. When a mutation occurs, a two-

dimensional vector of allele effects is drawn from a zero-meaned random bivariate normal 

distribution with variances of 1.0, and symmetrical covariances, k, the sign and magnitude 

of which controls the pleiotropy between two pathogen quantitative phenotypes. An 

individual’s host-performance phenotype is determined by the sum of the first elements of 

allele effect vectors. Likewise, an individual’s vector-performance phenotype is the sum of 

the second elements of allele effect vectors. So, if k > 0, positive pleiotropy prevails and an 

allele that increase the host-performance phenotype value tends to also increase the 

vector-performance phenotype value. Conversely, when k < 0, antagonistic pleiotropy 

prevails. Here our main goal is to get a sense for how antagonistic pleiotropy between 

phenotypes affecting performance in vectors and hosts might drive the evolution of 

virulence. Therefore, we focus on models in which k=-0.8. But we also consider a range of 

other values {-0.9 – 0.9}. 

 

The next step in the life cycle is migration. This happens at per capita rate mr {0.001 - 0.2} 

and is random between patches except for the constraint that migrants from a host patch 

can only move to a vector patch and vice versa. In an alternative version of the model, we 

relax this constraint and let migration be completely random between patches. In other 

words, we do away with vector transmission, and consider the evolution of a population in 

an environment in which there are two kinds of hosts, one being large, rare and susceptible 

to infection, and the other being small, abundant and tolerant of infection. By comparing   

pathogen evolutionary dynamics in this system to the main vector-born model, we can 
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zero in on the effects of vector-based transmission. For an example of population setups in 

the main and alternative versions of the model, see Fig. 3.1. 

 

 

 

 

Fig. 3.1: A visual example of each type of population setup used in our simulations. On the left, the main 

model version in which migration of individuals is constrained to only occur from vector to host and vice 

versa, to mimic a vector borne transmission system. On the right, the alternative model version, in 

which migration is entirely random between resource patches. 

 

 

After migration comes selection and population regulation. This entails genotype-

environment matching, and density dependence. In the vector environment, the match 

between a pathogen’s vector performance phenotype and the local optimum, determines 

their viability, that is, their survival probability. This matching is via a standard Gaussian 

fitness function, with variance ɷv {1.0-10.0} setting the weakness of selection. In the host 

environment, viability is the output of the same kind of Gaussian fitness function, but with 

variance ɷh {1.0-10.0}. Thus, we can examine how the evolution of the pathogen 

population depends on the absolute and relative strengths of selection in host and vector 

environments. In vector and host patches, individual-level fitness is also density 

dependent; in patch i, each individual’s viability is rescaled by the ratio of the patch 
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carrying capacity Ki and the current pathogen population size, ni. As mentioned above, in 

the host, there is also group-level selection via a virulence effect. As populations evolve 

mean host-performance phenotype values that more closely match the optimal value for 

the host environment and their within-host fitness increases, so too does the rate of host 

death, that is, deme extirpation. Note that selection is hard; it affects survival and thus has 

demographic effects. 

 

After selection, the life cycle starts again with offspring production.  

 

At the start of each simulation, pathogens are monomorphic, with a value of zero for their 

vector-performance and host-performance phenotypes, and the optimal value for each of 

these phenotypes is set to 5.0 phenotypic units. During the first 200 generations, the 

pathogen population is subject only to density-dependent regulation; selection and 

virulence effects are not applied, and so genetic diversity accumulates. Then, starting at 

generation 201, selection and virulence commence.  

 

Our view of how the population approaches the phenotypic optima in host and vector 

habitats is based on two test statistics. The first, T, is simply how many generations it takes 

to evolve a mean host-performance phenotype within 10% of the optimum, and thus 

closely approach their maximum virulence effect on the host. Note that because of the 

negative meta-population-level feed-backs induced by high virulence, such proximity to 

the optimum host value might not be adaptive for the pathogen population; in other words, 

a mean host-performance phenotype value within 10% of the optimum might not the 

equilibrium state of a pathosystem. So, T is best interpreted as the hazard of evolving high 

virulence, even if only temporarily.  

 

The second statistic we track, Γ, is a measure of the degree to which, until the 10% 

phenotype-host-environment threshold is hit, the population’s evolutionary path bends 
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towards the optimum in the vector or host environment. In other words, we look at the 

extent to which adaptive responses in the pathogen population are dominated by the 

vector or host habitat types (See Fig 3.2 for an example).  

 

 

 

Fig. 3.2: Calculation of the Γ statistic. (a) An example evolutionary path through the phenotype space. 

For this simulation k=-0.2, vmax=0.3, mr=0.1, Kv=20, Kh=2000, ɷv=3.0, ɷh=3.0, mh = 0.0001, mv=0.1, and ρ 

= 0.1. (b) That same path translated to start at the origin and rotated so that the ideal path from the 

origin to the joint phenotypic optimum lies along the x-axis. (c) Γ is calculated as the sum of deviations 

from the ideal path, scaled by the length of the path in generations. 

 

To calculate Γ (the deviation from the ideal evolutionary path) we use  trigonometry. First, 

we translate a population’s evolutionary path through the phenotypic space so as to start 

at the origin. We do this by subtracting the first post-burnin (generation 201) mean value for 

each phenotype (z0, and z1) from the mean phenotype value for each subsequent 

generation. Since the optimal value for each phenotype is 5.0, and pathogen populations 

start out with phenotype values of 0.0, a straight evolutionary path to the joint optimal 

phenotype would have a slope of one. Therefore, for each simulation, we rotate the 

translated evolutionary path D radian degrees about the origin, where D is the inverse 

tangent of one. This rotation is done as follows: z0i’ = z0i*cos(D) + z1i*sin(D); z1i’ = z1i*cos(D) – 

z0i*sin(D), where (z0i, z1i) is point i along the simulated post-burnin translated evolutionary 
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path, z0i is the population’s mean value for the host performance phenotype, z1i is the mean 

value for the vector performance phenotype, and (z0i’, z1i’) is that same point in the rotated 

coordinate space. We can then calculate the degree to which the evolutionary path bends 

towards what is optimal in the vector environment as sum(z1i’)/T, in other words, the per 

generation average deviation from the ideal evolutionary path. 

 

To help parse and interpret what could be complex causal interactions among model 

parameters and variables we also keep track of the total pathogen population size 

occurring in hosts Nh, and vectors Nv. 

 

A total of 200 simulations were performed for each version of the model, that is the vector-

born transmission model, and the unfettered-migration model. For each run, a value for 

each free model parameter was drawn from a random uniform distribution with ranges as 

given in Table 3.1.   

 

We analyzed simulation model outputs by fitting mutli-variate linear models, using both 

maximum likelihood-based and Bayesian interference methods (Burkner 2021). In one 

model, the response variable was log(T). In the other, the response was Γ. For both models 

the fixed predictor variables were ɷh, ɷv, ρ, mr, mh, vmax, Kv, Kh, and the interactions ρ:Kh 

and ɷh:ɷv. Since there could be complex causal links in the system, we also analyzed 

model outputs by fitting structural equation models, using the R package lavvan (Rosseel 

et al. 2017). To make this more tractable, we replaced the terms for ρ and carrying 

capacities for hosts and vectors with the mean pathogen population size in each habitat 

type, Nh and Nv. As noted above, we focus on models in which pleiotropic covariances 

were strong and negative, that is, k=-0.8, and where vectors are more abundant than hosts, 

ρ=0.1, but have much smaller carrying capacities, and much higher mortality rates. But we 

also analyzed simulations in which these parameters were free to vary.  
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To sum up, we examined how (i) the time it takes a population to evolve a host-

performance phenotype close to the optimal value, and (ii) the degree to which a 

population’s evolution path through the phenotypic space bends towards either vector or 

host environments depends on (a) the relative abundance of host and vector patches, (b) 

the relative carrying capacities of host and vector demes, (c) the relative strengths of 

selection in host and vector demes, (d) the migration rate, and (e) the maximum virulence 

effect of high density in host demes. We also considered how all of this is affected by 

doing-away with vector-based transmission and allowing for completely random 

migration.  

 

3.4 RESULTS AND DISCUSSION 

 

Let us start by considering the linear model of the variance in log(T), when k=-0.8 and ρ=0.1 

and there is vector-based transmission. In this model, the predictors explained about half 

of the variance in log(T) (adjusted-R2 = 0.5). All effects are expressed in units of standard 

deviations. 

 

3.4.1 Log(T) 

 

Two parameters significantly decrease log(T), that is the time it takes for close adaptation 

to the host environment optimum. The first is ρ, that is, the proportion of host patches to 

vector patches (coefficient = -3.5 SD, p-value = 0.012). The second is Kh, that is the carrying 

capacity of each host patch (coefficient = -9.7e-4; p-value = 0.015). But there is a 

significant interaction between those parameters; as Kh increases, the negative effect on 

log(T) is diminished. This is intuitive; both parameters increase the total share of the 

pathogen population that occurs in host patches, and thus a decrease in one parameter 

value can be compensated for by an increase in the other. The sign and significance of 

these effects would seem to support the hypothesis that even with course-grained 
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temporal habitat variation, selection tends to be more efficient in a particular habitat when 

it is more common (Whitlock 1996; Draghi 2023). Recall that because of negative meta-

population-level feed-backs a close match between the mean host-performance 

phenotype and the optimum can be nonadaptive. In that case, hitting the host-habitat-

match threshold could be largely dictated by neutral or correlational evolutionary 

processes. But as the total size of the pathogen population found within the host 

environment increases, the odds of high virulence evolving via drift would seem to shrink. 

Moreover, as Kh and ρ increase, we expect the balance between within-host and meta-

population-level selection to shift more to within-host, and thus the evolutionarily stable 

strategy to shift to a closer match to the host optimum. Nevertheless, virulence effects 

certainly complicate the interpretation of variance in T, and therefore our alternative 

statistic Γ, is especially useful.  

 

Three parameters significantly increase log(T). First, we have vmax, the maximum additional 

host mortality than can be caused by an infection (coefficient = 2.9, p-value = <2e-16). This 

is as expected; as vmax rises, so does the meta-population-level fitness cost of evolving a 

within-host performance phenotype that closes matches the optimum; the negative 

feedback on virulence evolution increases in strength. The variable log(T) also tends to 

increase with larger values for ɷh, that is, with weaker selection in host patches 

(coefficient = 0.2; p-value < 2-e16), and this is also as expected. Simply put, adaptation to 

the host environment is slower when the within-host fitness consequences of 

maladaptation are less pronounced. The third significant effect is less intuitive; log(T) 

increases with weakening selection in vectors (coefficient = 0.09; p-value = 3.1e-4), 

although this effect is several orders of magnitude weaker than the effect of weakening 

selection in the host environment. At first blush, one might predict that with strong 

negative pleiotropies, weakening selection in the vector should increase the efficiency of 

selection in the host. But that would be to ignore the potential demographic effects of 

weaker selection in vectors. We suspected that since selection is hard, by weakening 
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selection in the vector, we might effectively increase the average proportion of the 

pathogen population that can survive in vector patches, and that this demographic effect 

would slow down adaptation to the host by increasing the odds of a particular genotype 

being exposed to habitat heterogeneity. 

 

Next, let us turn to the linear model of the variance in Γ, that is, the degree to which 

simulated evolutionary paths are dominated by the vector environment.  

 

3.4.2 Gamma  

 

Two parameters significantly increase Γ (the deviation from the ideal evolutionary path).  

The first is ɷh (coefficient = 0.53, p-value < 2e-16); the evolution of simulated pathogen 

populations is dominated more by selection in the vector environment when selection in 

the host is weaker.  The variable Γ is also positively correlated with vmax (coefficient = 0.64; 

p-value < 2e-16). This is consistent with our interpretation of the model decomposing 

variance in log(T); increasing the negative feedback on adaptation to the host environment 

should increase the relative efficiency of selection in vectors. On the other hand, two 

parameters significantly decrease Γ: migration rate (coefficient = -0.12; p-value = 1.9e-4), 

and ɷv (coefficient = -0.23; p-value = 2.14e-11). As one might expect, weakening selection 

in the vector environment reduces the extent to which it bends a population’s evolutionary 

path. As for the migration effect, much classical theory (Eshelman et al. 2010) suggests 

that increasing migration rate can attenuate meta-population-level fitness cost of 

virulence, and thereby reduce the negative feed-backs that interfere with adaptation to the 

host environment. 

 

Now, let us put it all together with a structural equation model (Fig 3.3.). 
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Fig. 3.3: Structural equation model of the vector borne pathogen population setup. Values in units of 

effect and standard deviation, and the thickness of the lines corresponds to the level of effect the 

parameter had on another parameter or response variable. 

 

 

Can selection in vectors on antagonistically pleiotropic loci affect correlational and 

potentially non-adaptive evolution of virulence in the host?  The structured equation model 

suggests that it is possible. Weakening selection in the vector significantly reduces log(T) 

(coefficient = -0.12; p-value < 1e-4) and Γ (coefficient = -0.57; p-value < 1e-4). Conversely, 

weakening selection in the host environment tends to increase log(T) (coefficient = 0.82; p-

value < 1e-4) and Γ (coefficient = 0.54; p-value < 1e-4). But the frequency at which 
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pathogen genotypes encounter host or vector environments is also important; Larger 

values for Nh tend to reduce log(T) (coefficient = -0.15; p-value < 1e-4) and Γ (coefficient = -

0.15; p-value < 1e-4). Meanwhile, increasing the total number of pathogens in vectors, Nv 

increases Γ and log(T), although the latter effect is not significant. So, the structural 

equation models is telling us that habitat type frequency (i.e. the values for Nh and Nv) 

certainly has a powerful effect on the evolution of the pathogen population, as per the 

classical theoretical work of Whitlock (1996) and others, but these effects are of a smaller 

magnitude than the strength of selection in each habitat type, and selection in vectors is 

just about as important as selection in hosts.  

 

The evolution of virulence in hosts also depends strongly on pathogen transmission rate, 

mr, and the upper limit of the virulence effect, vmax. Transmission rate has a negative effect 

on log(T) (coefficient = -0.18; p-value < 1e-4), and a positive effect on Γ (coefficient = 0.10; 

p-value = 0.021). Previous theoretical work has shown that in simple pathosystems, the 

optimal level of virulence increases with pathogen transmission rate (Porco et al. 2005); 

this likely explains the negative effect of mr on log(T) and Γ  – since it makes a close match 

between the host-performance phenotype and the optimum value more adaptive. Before 

fitting the model, we hypothesized that the vmax parameter could affect pathogen evolution 

in two ways. It could affect log(T) and Γ directly by changing the adaptive landscape, to wit, 

by reducing the maximum productivity of host patches. Or it could affect log(T) and Γ 

indirectly, by reducing Nh. The model shows that both are important; vmax has a strong 

negative effect on Nh (coefficient = -0.81; p-value < 1e-4) as well as strong positive direct 

effects on log(T) and Γ. (coefficient for log(T) = 0.35; p-value < 1e-4; coefficient for Γ = 0.26; 

p-value < 1e-4). 
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3.4.3 Non-vector borne simulations 

 

To get a better sense for the importance of vector-based transmission, we also ran 

simulations in which pathogen migration was completely random. We put this together 

with a structural equation model as well (see Fig 3.4)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: structural equation model of the non-vector-borne pathogen population setup. Values 

are in units of effect and standard deviation, and the thickness of the lines corresponds to the level 

of effect the parameter had on another parameter or response variable. 
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As mentioned above, in this case, the model is better interpreted as one of the evolution of 

a pathogen population in an environment composed of a mix of susceptible and tolerant 

hosts. Comparison of the two SEMs indicates that the effects of vector-born transmission 

are rather subtle, entailing changes in the specific weights but not the signs of causal 

interactions. Without vector-based transmission, the effects of the weakness of selection 

in each type of habitat on both log(T) and Γ are attenuated. The same is true of the direct 

effects of vmax, although its indirect effects via the size of the pathogen population in the 

susceptible host type is stronger. In all, it appears that vector-born transmission tends to 

increase the importance of divergent selection between habitat types, and somewhat 

decrease the importance of demographic disparities between habitat types. 

 

3.5 CONCLUSIONS 

 

Let us close by reconsidering the evolution of virulence in Xylella fastidiosa. In California 

vineyards, the emergence of new highly virulent genotypes closely followed the 

establishment of a new, markedly inefficient vector species. To reiterate, similar 

sequences of vector turnover and virulence evolution have been found in other 

pathosystems, in particular those involving the whitefly species B. tabaci (Gilbertson et al. 

2015). Could this have been because of negative genetic correlations between traits 

affecting performance in vectors and hosts? Our simulation model suggests the answer is 

yes, possibly. Strong selection for improved performance in the vector can in fact cause 

correlational evolution of pleiotropic host-performance traits. In theory this could also 

arise via tight linkage rather than pleiotropy per se, although we did not investigate that 

here (Via and Lande 1985). Moreover, if such correlational evolution in the host causes a 

non-adaptive increase in virulence, that is increase vmax, the demographic consequences 

could further bend the evolutionary path towards the vector optimum. And this could slow 

down fitness optimization in the host.  

 



 

 

 

54 

Of course, using this hypothesis to explain the evolution of virulence in Xylella 

presupposes that there are some strong antagonistic pleiotropies affecting performance in 

hosts and vectors. But this could be. Indeed, much of the virulence of Xylella infections 

has been attributed to the plastic induction of “sticky” cell phenotypes which ultimately 

clog xylem vessels, but which also increase the efficiency of acquisition by vectors (Kyrkou 

et al. 2018). Of course, there are other tenable hypotheses for the evolution of increased 

virulence in X. fastidiosa in Californian vineyards. In particular, in addition to be an 

especially poor vector, H. vitripennis is an exceptionally polyphagous vector. And so, the 

story of virulence evolution in Californian populations of X. fastidiosa likely also entails 

changes their population structure, perhaps increasing the alpha diversity of pathogen 

communities and the potential for phenotypic evolution via recombination (many 

examples of which can be found in Gilbertson et al. 2015).   Nevertheless, we cannot yet 

reject the maladaptive correlational evolution hypothesis. 
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3.7 APPENDIX 1 (EIDOS CODE) 
 
 
//This is a Non-Wright-Fisher model of the evolution of virulence via 
//pleiotropy in a host-vector-parasite system 
 
initialize() {  
 initializeSLiMModelType("nonWF");  
 initializeMutationRate(1e-8); 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 39999); 
 initializeRecombinationRate(1e-8); 
 defineConstant("mu", c(0.0, 0.0)); //[0.2] this was weird positive 
 defineConstant("cov", cv);//-0.2 
 defineConstant("sigma", matrix(c(1.0, cov,cov,1.0), nrow=2)); //the variance here is 
1.0  
 //defineConstant("MR", 0.05); //Migration Rate [0.15] 
 defineConstant("vMax", vmx); // maximum virulence effect 
 defineConstant("Host_Optima", 5.0); 
 defineConstant("Vector_Optima", 5.0);  
 defineConstant("MR", mra); 
 //defineConstant("HK", hk); 
 defineConstant("Run", ru); //you might want this later 
 defineConstant("HK", hk); //Host carrying capacity [120,2000] 
 defineConstant("VK", vk); //Vector carrying capacity [20] 
 //defineConstant("VK", vk); 
 //defineConstant("VS", 5.0); //strength of vector selection [HMMM... both of these 
are pretty weak] 
 defineConstant("VS", vs);  
 //defineConstant("HS", 5.0);//strength of host selection 
 defineConstant("HS", hs); 
 defineConstant("HM", hm); 
 //defineConstant("HM", 0.0001); //baseline host mortality 
 defineConstant("VM", 0.05); //vector mortality [0.01] too low, changing to [0.05] 
 defineConstant("Np", 100); //number of subpops [40,100] 
 defineConstant("Ph", rho); //proportion of subpops that are hosts 
 defineConstant("hostN", asInteger(Np*Ph)); 
 defineConstant("vectorN", Np - hostN); 
 defineConstant("Vv", sv); //variation in optimum in vectors across cycles 
} 
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reproduction() { 
 subpop.addCloned(individual);    
}  
 
mutation(m1){ 
 Mutation_Effect= rmvnorm(1, mu, sigma); //draw from multivariate normal 
 mut.setValue("e0", Mutation_Effect[0]); // set mutation effects (not sim effects) 
 mut.setValue("e1", Mutation_Effect[1]); 
 return T; 
} 
 
1 early(){ 
 //NEW METAPOP SETUP 
 //first make the hosts 
 //hostN = asInteger(Np * Ph); 
 for (i in 1:hostN){ 
     sim.addSubpop(i, HK); 
     sim.subpopulations[i-1].tag = 0; 
 } 
 //now do vectors 
 //vectorN = Np - hostN; 
 for (i in (hostN+1):Np){ 
     sim.addSubpop(i, VK); 
     sim.subpopulations[i-1].tag = 1; 
 } 
  
 //NB: Since we don't ever change these things, it makes more sense for them to be 
constants 
 //sim.setValue("Host_Optima", 5); //HMMM. We placed this within closer reach. 
Not sure that's right. 
 //sim.setValue("Vector_Optima", 5); //[10] changed to 5 to match hosts 
} 
  
early(){ 
 allSubs = sim.subpopulations; 
 hostSubs = allSubs[allSubs.tag == 0]; 
 vectorSubs = allSubs[allSubs.tag == 1]; 
 hostInds = hostSubs.individuals; 
 vectorInds = vectorSubs.individuals; 
 nHostMigrants = size(hostInds) ? rpois(1, size(hostInds)*MR) else 0; 
 nVectorMigrants = size(vectorInds) ? rpois(1, size(vectorInds)*MR) else 0; 
 hostMigrants = sample(hostInds, nHostMigrants); 
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 vectorMigrants = sample(vectorInds, nVectorMigrants); 
 //DO MIGRATION  
     
    for (migrant in hostMigrants){ 
        dest = sample(vectorSubs,1); 
        dest.takeMigrants(migrant); 
    } 
    for (migrant in vectorMigrants){ 
        dest = sample(hostSubs,1); 
        dest.takeMigrants(migrant); 
    } 
} 
 
//add a burnin phase for the populaiton to grow some diversity 
1:199 early(){ 
    allSubs = sim.subpopulations; 
 hostSubs = allSubs[allSubs.tag == 0]; 
 vectorSubs = allSubs[allSubs.tag == 1]; 
    hostSubs.fitnessScaling = (HK / hostSubs.individualCount);  
 vectorSubs.fitnessScaling = (VK / vectorSubs.individualCount); 
} 
 
//IN nonWF MODEL SELECTION NEEDS TO HAPPEN *EARLY* IN THE LIFE CYCLE 
200: early(){ 
 inds = sim.subpopulations.individuals; // that's everyone 
 //start by figuring out their phenotypes 
 for (ind in inds){ 
  muts = ind.genomes.mutationsOfType(m1);  
  Phenotype0 =  size(muts) ? sum(muts.getValue("e0")) else 0.0; 
  Phenotype1 =  size(muts) ? sum(muts.getValue("e1")) else 0.0;  
  ind.setValue("Phenotype0", Phenotype0); 
  ind.setValue("Phenotype1", Phenotype1);  
 } 
  
 //do individual- and group-level fitness effects 
 //NEEDED TO MAKE THIS WORK FOR ALL HOST AND VECTOR SUBPOPS 
 allSubs = sim.subpopulations; 
 hostSubs = allSubs[allSubs.tag == 0]; 
 vectorSubs = allSubs[allSubs.tag == 1]; 
 hostInds = hostSubs.individuals; 
 vectorInds = vectorSubs.individuals; 
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 //FOR HOSTS 
 //individual-level effects. viability increases with closer match between Phen0 and 
optimum 
 MaxMatch1 = dnorm(0.0, 0.0, HS);   
 //Host_Optima = sim.getValue("Host_Optima"); //DO WE CHANGE THIS? IF NOT 
MAKE A CONSTANT 
 hop = Host_Optima + rnorm(1,0.0,Vv); 
 host_devs = hop - hostInds.getValue("Phenotype0"); 
 Host_fit_effs = dnorm(host_devs, 0.0,  HS)/MaxMatch1; 
 hostInds.fitnessScaling = Host_fit_effs; 
  
 //group-level effects. but host patch mortality increases with parasite abundance 
 //THESE NEXT TWO LINES WE DON'T USE ANYMORE, SINCE THINGS VARY ACROSS 
PATCHES 
 //Host_MeanPh = mean(dnorm(Host_Optima - hostInds.getValue("Phenotype0"), 
0.0,  HS))/MaxMatch1; 
 //sim.setValue("Host_MeanPh", Host_MeanPh); 
  
 //NEXT WE'VE GOT TO FIGURE HOST DEATH 
 //WE WANT THIS TO WORK INDEPENDENTLY IN EACH HOST 
 for (hsub in hostSubs){ 
     if (size(hsub.individuals)){ 
         //NB: I think it makes more sense to have virulence be a function of abundance 
         //rather than mean phen0 value 
         //phenMean = mean(hsub.individuals.getValue("Phenotype0")); 
         //phenMatch = dnorm(Host_Optima - phenMean, 0.0, HS)/MaxMatch1; 
          
         //So, we'll use a logistic function to convert pathogen density to excess death 
         density = size(hsub.individuals)/HK; 
         virulence = vMax/(1+exp(-5.0*density)); 
          
         //pd = (HM + (1-phenMatch)); 
         pd = HM + virulence; 
          
         a = rbinom(1, 1, pd); 
         if (a==1){ //then, we're killing the host 
          sim.killIndividuals(hsub.individuals); 
         } 
     } 
 } 
 
 //FOR VECTORS 



 

 

 

63 

 //individual-level effects 
 MaxMatch2= dnorm(0.0, 0.0, VS); 
 //Vector_Optima = sim.getValue("Vector_Optima"); 
 vop = Vector_Optima + rnorm(1,0.0,Vv); 
 vec_devs = vop - vectorInds.getValue("Phenotype1"); 
 Vector_fit_effs = dnorm(vec_devs, 0.0,  VS)/MaxMatch2; 
 vectorInds.fitnessScaling = Vector_fit_effs; 
 //We need to use this to govern the the fitness of individuals in a vector 
 sim.setValue("Vector_MeanPh", mean(vec_devs));  
 
 //Vector extinction 
 //HERE AGAIN WE HAVE TO GENERALIZE ACROSS ALL VECTORS 
 //instead of a deterministic thing, where we kill the vector every X 
 //generations, we'll just use a background extinction rate 
 //We set this up in the initialization() callback 
 for (vsub in vectorSubs){ 
     deathCoin = rbinom(1, 1, VM); 
     if (deathCoin==1){ 
         sim.killIndividuals(vsub.individuals); 
     } 
 } 
 //NOW DO THE DENSITY-DEPENDENT FITNESS SCALING 
 hostSubs.fitnessScaling = (HK / hostSubs.individualCount);  
 vectorSubs.fitnessScaling = (VK / vectorSubs.individualCount); 
} 
 
//JUST DO LOGGING LATE 
200:10000 late(){ 
    inds = sim.subpopulations.individuals; 
    //Host_Optima = sim.getValue("Host_Optima"); 
    //Let's do all of our writing to stdout here, just once every 100 cycles 
    if (sim.cycle %10 == 0){ 
        mp0 = mean(inds.getValue("Phenotype0")); 
        mp1 = mean(inds.getValue("Phenotype1")); 
        catn("Gen: " + sim.cycle + " Mean phen0: " + mp0 + " | Mean phen1: " + mp1); 
        writeFile("EndAllBeAll.csv", 
paste(c(Run,cv,HS,VS,Ph,MR,HM,Vv,vMax,VK,HK,sim.cycle,mp0,mp1), sep=','), 
append=T); 
         
    } 
     Host_Mean = size(inds) ? mean(inds.getValue("Phenotype0")) else 0.0; 
     TheDeviation = abs(Host_Mean - Host_Optima); 
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 if (TheDeviation < (0.2 * Host_Optima)) { 
  catn("Cycle: " + sim.cycle + " | The deviation: " + TheDeviation + " | The mean: 
" +   Host_Mean);  
   
  //writeFile("EndalltestCVPOP.csv", 
paste(c(Run,HS,VS,Ph,MR,HM,sim.cycle), sep=','), append=T); 
   
  sim.simulationFinished(); 
 } 
} 
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