
Dissertation
Towards understanding computer vision system

by

Peijie Chen

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 4, 2024

Keywords: Machine learning, Explainable ML, Multi-modeling, Adversarial robustness

Copyright 2024 by Peijie Chen

Approved by

Anh Nguyen, Assistant Professor of Computer Science and Software Engineering
Saad Biaz, Professor of Computer Science and Software Engineering

Heaton Haynes, Assistant Professor of Computer Science and Software Engineering
Cheryl D Seals, Charles W. Barkley Professor of Computer Science and Software Engineering

Gerry Dozier, Charles D. McCrary Eminent Chair Professor of Computer Science and Software
Engineering

Abstract

In the realm of machine learning and deep neural networks, despite the significant strides

made across diverse applications, the understanding and interpretation of these models, particularly

under adversarial conditions and in the context of large-scale, multimodal frameworks, remain

areas ripe for exploration. This thesis undertakes a detailed exploration into the biases inherent

in standard and adversarially trained convolutional neural networks (CNNs). Our findings reveal

a pronounced texture bias in standard CNNs, whereas their adversarially trained counterparts

predominantly leverage shape cues, a distinction underscored by cue conflict experiments [31].

Through a meticulous neuron-level analysis employing NetDissect [5], we observe a marked

increase in the monotonicity of neurons within robust networks, suggesting a fundamental shift in

their information processing characteristics.

Building on the insights gleaned from our investigation into CNNs, we delve into the domain

of large-scale foundation models, where we introduce gScoreCAM [17], an innovative visualization

technique designed to illuminate the focal points of interest within images for OpenAI’s CLIP [80],

marrying high performance with unparalleled computational efficiency, achieving a significant leap

over existing methods by 8 to 10 times in speed. However, recognizing the limitations of post-

hoc explanation methods in terms of their reliability and fidelity [57], we propose the Part-based

Image Classifiers with an Explainable and Editable Language Bottleneck (PEEB) [76]. PEEB

represents a paradigm shift towards self-explainable AI frameworks, offering a unique layer of

user controllability that enhances trustworthiness by enabling intuitive and transparent explanations

directly during inference. This innovation is supported by introducing the Bird-11K and Dog-160

datasets, specifically curated to advance the development of part-based self-explanatory models.

This thesis’s contributions illuminate the underlying biases and operational nuances of adver-

sarially trained CNNs while simultaneously pioneering advancements in the explainability and

ii

interpretability of complex, large-scale models. By introducing PEEB, complemented by gScore-

CAM, we unveil novel pathways to understanding these intricate systems and empower users with a

measure of control and transparency previously unattainable, heralding a new era of trust and clarity

in artificial intelligence.

iii

Table of Contents

Abstract . ii

List of Tables . viii

List of Figures . x

1 Introduction . 1

1.1 Motivations . 2

1.2 Contributions . 3

1.3 Organization . 5

2 Analysis of Shape/Texture Bias in CNNs . 6

2.1 Inconsistency between CNN and Human Perception 6

2.2 Experiment setup . 8

2.3 Adversarial Training Reduces Texture Bias in ImageNet Classifiers 10

2.4 Generalization Capabilities of Robust Networks . 11

2.4.1 R Networks Show No Evidence of Better Generalization to Distorted Images 11

2.5 Impact of Shape and Texture Biases on Network Performance 12

2.6 What internal mechanisms make adversarially trained CNNs more robust than

standard CNNs? . 13

2.6.1 Weight level: Smooth filters to block pixel-wise noise 14

2.6.2 Neuron level: Robust neurons prefer lower-level and fewer inputs 17

2.6.3 Which neurons are important for shape-based or texture-based image classi-

fication? . 21

2.7 Discussion and Conclusion . 22

iv

3 gScoreCAM: Understand the foundation model CLIP 24

3.1 The Emergence of Foundation Models . 24

3.2 gScoreCAM: A Simple Tool To Visualize CLIP . 25

3.2.1 Revisiting CAM and ScoreCAM . 26

3.2.2 Proposed method: Gradient-guided ScoreCAM (gScoreCAM) 27

3.3 Experiment setups . 28

3.3.1 Datasets & Localization evaluation metrics 28

3.3.2 CLIP networks . 30

3.4 gScoreCAM is the State-of-the-art CLIP Visualizer 31

3.5 Visualizing CLIP’s Attention . 32

3.5.1 Better Understanding of "Typographic Attack" 32

3.5.2 Inspecting Bias in CLIP . 33

3.6 Conclusion . 34

4 PEEB: A Part-based Image Classifiers with an Explainable and Editable Language

Bottleneck . 35

4.1 The Necessity and Benefits of Self-Explainable Frameworks 35

4.2 Datasets . 36

4.2.1 BirdSoup Dataset . 36

4.2.2 DogSoup Dataset . 36

4.3 Method: PEEB Architecture and Training Strategy 37

4.3.1 Backbone: OWL-ViT object-part detector 37

4.3.2 PEEB classifier . 38

4.3.3 Training strategy . 38

4.4 State of the Art Explainable Bird Classifier . 40

4.5 Editable Part-based Design . 41

4.6 Generalize to Unseen Classes . 42

4.7 Conclusion . 45

v

4.8 Limitations . 46

5 Reference . 48

6 Appendix . 63

6.1 Shape and Simplicity (Chapter 2) Supplementary Materials 63

6.1.1 Shapeless Images . 63

6.1.2 Convolutional layers used in Network Dissection analysis 64

6.1.3 Kernel smoothness visualization . 64

6.1.4 Object and color detectors of AlexNet . 64

6.1.5 Total variance (TV) of AlexNet & AlexNet-R on clean/noisy images . . . 65

6.1.6 ImageNet-C evaluation . 65

6.1.7 Examples of shape-less and texture-less images 65

6.1.8 Visualizing channel preference via cue-conflict and NetDissect 66

6.2 gScoreCAM (Chapter 3) supplementary materials 66

6.2.1 Experiments & Findings . 66

6.2.2 Ablation study of gScoreCAM . 67

6.2.3 Why gScoreCAM is better in weighting the activation maps? 68

6.2.4 Zero-shot Object localization . 70

6.2.5 Why does gScoreCAM perform better in COCO and PartImageNet? . . . 71

6.2.6 gScoreCAM consistently better on different CLIP models 73

6.2.7 Qualitative study via CLIP . 73

6.2.8 Derive bounding box from heatmap . 74

6.2.9 Visualizations of different methods . 76

6.3 PEEB (Chapter 4) Supplementary Materials . 76

6.3.1 Architecture details . 76

6.3.2 Model and dataset notations . 107

6.3.3 Generating part-based descriptors . 107

6.3.4 Datasets . 109

vi

6.3.5 Additional results . 111

6.3.6 Study on GPT-4 generated descriptors . 121

6.3.7 Qualitative Inspections . 124

vii

List of Tables

2.1 S v.s. R networks . 9

2.2 Shape/texture bias of CNNs . 11

2.3 Shape/texture bias of adversarially trained CNNs . 12

2.4 Mean total variation (TV) of the conv layers of 6 models. 13

3.1 Key hyperparameters of CLIP. 31

3.2 WSL evaluation on different methods. 31

4.1 PEEB fine-tuned comparison . 42

4.2 PEEB ZSL comparison . 45

6.1 Evaluation on 15 types of image corruptions. 65

6.2 Ablation study of k in gScorecAM. 67

6.3 Albaltion study of pooling in gScoreCAM. 67

6.4 Comparison of weighting quality of different methods. 69

6.5 WSL evaluation on RN50x4 and RN50x16. 73

6.6 Difference between Otsu and optimal thresholding. 75

6.7 Pre-training details of our pre-trained models. 106

6.8 Details of our finetuned models. 106

6.9 Three pre-training splits for PEEB. 107

6.10 Bird-11K data source . 109

viii

6.11 PEEB stress test on CUB and NABirds . 112

6.12 Noise analysis in iNaturalist . 113

6.13 PEEB effects on number of parts . 116

6.14 PEEB training on classification . 117

6.15 Error rate of box ground truth . 118

6.16 Box prediction evaluation of PEEB . 120

6.17 GPT-4v Prompts . 121

6.18 Manual inspection of GPT-4 generate descriptions . 122

6.19 Test on revised description . 123

ix

List of Figures

2.1 Example of distorted images . 9

2.2 Qualitative examples of texture bias in CNNS . 14

2.3 Quantitative results of texture bias in CNNS . 15

2.4 Neuron comparison of S and R AlexNet. 16

2.5 Total varivations of AlexNet neuron. 16

2.6 Preferences of S and R channels. 17

2.7 Visualization of AlexNet neuron striped. 19

2.8 Categorization of CNN channels. 20

2.9 Example of wrongly categorized channel. 20

3.1 A progressing plot when k in crease in gScoreCAM. 25

3.2 Explaination sample on typographic attack. 33

3.3 Bias in CLIP . 33

4.1 PEEB concept plot . 37

4.2 PEEB teaser . 41

x

4.3 PEEB editable example . 43

4.4 PEEB randomized description test . 44

6.1 All neurons in AlexNet conv1. 78

6.2 Comparison between conv1 filters of AlexNet-R and AlexNet. 79

6.3 Number of color detectors in AlexNet and AlexNet-R. 79

6.4 Total variances of AlexNet-R. 80

6.5 Examples of different transformation that remove shape/texture. 81

6.6 Shape/texture test on AlexNet conv419. 82

6.7 Shape/texture test on AlexNet-R conv5110. 83

6.8 Shape/texture test on AlexNet conv5221. 84

6.9 Smoothness comparison for AlexNet and AlexNet-R. 85

6.10 Channel category comparison of AlexNet and AlexNet-R 86

6.11 Top-5 NetDissect channels in AlexNet. 87

6.12 Channel diversity of AlexNet and ResNet to their counter part. 87

6.13 Controlled experiments on COCO and PartImageNet. 88

6.14 Zero-shot localization examples. 89

6.15 Visualization of process to derive bounding box with Otsu. 89

6.16 WSL results COCO dataset. 90

xi

6.17 WSL results on PartImageNet dataset. 91

6.18 WSL comparison on COCO and ImageNet. 92

6.19 Some samples that gScoreCAM performs better than GradCAM on COCO dataset. . 93

6.20 Some samples that gScoreCAM performs better than ScoreCAM on COCO dataset. . 94

6.21 Some samples that gScoreCAM performs better than HilaCAM on COCO dataset. . 95

6.22 Some samples that gScoreCAM performs better than GradCAM on Part ImageNet

dataset. 96

6.23 Some samples that gScoreCAM performs better than ScoreCAM on Part ImageNet

dataset. 97

6.24 Some samples that gScoreCAM performs better than HilaCAM on Part ImageNet

dataset. 98

6.25 PEEB architecture . 99

6.26 PEEB pre-training stage 1 . 104

6.27 PEEB pre-training stage 2 . 105

6.28 Dog-140 class distribution . 111

6.29 Bird-11K data distribution . 115

6.30 PEEB box examples . 125

6.31 PEEB random descriptor example 1 . 126

6.32 PEEB random descriptor example 2 . 126

xii

6.33 PEEB random descriptor example 3 . 127

6.34 PEEB explainable example 1 . 127

6.35 PEEB explainable example 2 . 128

6.36 PEEB explainable example 3 . 128

6.37 PEEB explainable example 4 . 128

6.38 PEEB explainable example 5 . 129

6.39 PEEB explainable example 6 . 129

xiii

Chapter 1

Introduction

Machine learning, particularly through the use of convolutional neural networks (CNNs), has

achieved remarkable success across a wide range of applications. However, despite these advances,

challenges remain, especially in understanding and interpreting the decisions made by these models.

For example, while CNNs, such as AlexNet [52], ResNet-50 [40], and GoogLeNet [97], have shown

strong performance in tasks like image classification, they exhibit a notable bias towards texture

over shape [31], differing significantly from human visual perception which relies heavily on shape.

Furthermore, these models are susceptible to adversarial examples [96], revealing a critical gap in

their ability to generalize to out-of-distribution data.

Adversarial training has emerged as a promising approach to mitigate these vulnerabilities

by enhancing model robustness [109]. However, the internal transformations within CNNs post-

adversarial training, particularly in how they process and prioritize visual features, remain largely

unexplored. Moreover, the advent of large-scale, multimodal neural networks, exemplified by

OpenAI’s CLIP [80], has introduced new complexities. While these foundation models unlock new

possibilities, they amplify the need for explainability, as their "black-box" nature makes it difficult

to ascertain the basis of their outputs.

This thesis introduces a multifaceted exploration into CNNs’ intricacies, addressing both the

biases present in image classification tasks and the quest for explainability in machine learning

models. We first dissect the shape and simplicity biases of adversarially robust ImageNet-trained

CNNs, uncovering the dynamics between texture and shape biases and their implications on model

1

performance across various data distributions. This analysis sets the stage for a deeper understanding

of model behavior under adversarial conditions and out-of-distribution scenarios.

Subsequently, we delve into the realm of foundation models, with a particular focus on CLIP. By

developing gScoreCAM, an efficient attribution method, we illuminate the operational mechanisms

of CLIP, offering insights into how it processes and prioritizes information within images. This

contribution not only enhances our understanding of CLIP but also sets a new benchmark in object

localization tasks, marrying accuracy with computational efficiency.

At the heart of this thesis is the proposal of a Part-based Image Classifier with an Explainable

and Editable Language Bottleneck (here after PEEB). PEEB embodies a significant leap towards

achieving self-explainability in machine learning models. By leveraging human-interpretable

knowledge for decision-making and explanation, PEEB offers a level of transparency and control

previously unseen. This framework not only provides explanations that are directly aligned with

human cognition but also introduces a controllable layer, allowing users to influence model behavior

in a predictable and understandable manner.

1.1 Motivations

This thesis is propelled by the goal of narrowing the cognitive divide between human perception

and artificial intelligence, especially in object recognition. Convolutional Neural Networks (CNNs),

despite achieving remarkable success in image classification, exhibit a pronounced preference for

texture over shape. This preference diverges from human perceptual strategies and makes these

models susceptible to adversarial attacks. This observation not only underscores a critical gap in

machine vision but also emphasizes the necessity for models capable of generalizing in a manner

analogous to human sight.

The exploration of adversarial training has shown potential in nudging models towards a

perception more aligned with human understanding, revealing, in the process, the opaque nature

of their decision-making. Delving into foundation models like CLIP has further highlighted the

imperative for interpretability. Although strides have been made with tools designed to unpack the

2

rationale behind model decisions, these efforts have not fully offered a comprehensive solution. This

realization has led to the insight that substantial progress requires the development of inherently

self-explanatory models capable of rendering their decision-making processes transparent in terms

congruent with human reasoning.

PEEB stands as a manifestation of this insight, marking a shift towards models that intrinsically

provide explanations understandable to humans. By embedding explainability at its core, PEEB

aims to mitigate the vulnerabilities and biases inherent in conventional machine learning models,

aspiring to initiate a new era of AI systems that are robust and capable of broad generalization

and characterized by their transparency. Consequently, this thesis delineates a trajectory from

pinpointing fundamental challenges in machine perception to the realization of AI that harmonizes

with human intellect, signifying a move towards machines that serve as tools and collaborators.

1.2 Contributions

The contributions of this thesis are diverse and significant, addressing several key challenges

in the field of machine learning, particularly in understanding and improving the functionality of

convolutional neural networks (CNNs) and large-scale foundation models. This work not only

deepens our understanding of the biases and operational mechanisms of these models but also

introduces novel methodologies and frameworks to enhance their explainability and usability. The

primary contributions are as follows:

1. Systematic Analysis of Shape/Texture Bias in CNNs: We conducted an extensive investi-

gation into the shape and texture biases of adversarially trained CNNs using two prevalent

datasets in ML interpretability—cue-conflict [32] and NetDissect [5]. This study spans three

widely-used architectures: AlexNet, GoogLeNet, and ResNet-50, all trained on ImageNet.

Our findings reveal that robust classifiers (R classifiers) exhibit a strong preference for shapes

over textures, contrasting sharply with standard classifiers (S classifiers). Additionally, our

research demonstrates that adversarial training enhances the ability of CNNs to generalize

3

from adversarial to natural images by modifying their internal representations towards simpler

and more generalized feature detection.

2. Development of gScoreCAM for Efficient Object Localization in CLIP: We proposed

gScoreCAM, an advanced visual attribution tool that significantly improves the efficiency and

accuracy of object localization tasks in CLIP models. gScoreCAM outperforms existing meth-

ods by reducing the computational overhead by approximately eight times while maintaining

or exceeding accuracy. This tool provides a more precise understanding of what specific

aspects within an image CLIP focuses on, enhancing our ability to interpret the decisions of

this foundation model across diverse scenarios.

3. Creation of PEEB, a Novel Self-Explainable Framework: Perhaps the most transforma-

tive contribution of this thesis is the development of PEEB (Part-based Image Classifiers

with an Explainable and Editable Language Bottleneck). PEEB integrates human-readable

explanations directly into the decision-making process of image classification models. This

framework utilizes a unique combination of visual and linguistic cues to facilitate an intu-

itive understanding of model judgments. In addition, we developed two extensive datasets,

Bird-11K and Dog-140, to support the training and evaluation of PEEB and other similar

models, addressing the lack of large, diverse datasets for fine-grained image classification and

vision-language tasks.

4. Empirical Validation and Application of Models: Our models demonstrate superior perfor-

mance in several benchmarks and practical applications. PEEB, in particular, significantly

outperforms existing CLIP-based classifiers by wide margins in zero-shot and generalized

zero-shot settings across multiple datasets. This underscores the effectiveness of PEEB in

real-world scenarios, providing a reliable and interpretable alternative to existing models,

which often rely heavily on opaque mechanisms.

4

These contributions significantly advance our understanding of the limitations and potential of

contemporary AI systems. By addressing both theoretical and practical aspects, this thesis paves the

way for developing more robust, generalizable, and transparent models in artificial intelligence.

1.3 Organization

This thesis is organized as follows: Chapter 1 introduces the core challenges and motivations

behind this work. Chapter 2 details our study on the biases of CNNs and their behavior under

adversarial training. In Chapter 3, we explore the foundation model CLIP and introduce gScore-

CAM. Chapter 4 is dedicated to PEEB, our proposed solution for enhancing explainability and

controllability in machine learning. Finally, we conclude with

5

Chapter 2

Analysis of Shape/Texture Bias in CNNs

2.1 Inconsistency between CNN and Human Perception

Human visual perception is inherently biased towards recognizing shapes rather than textures,

a trait that contributes significantly to our ability to navigate and understand diverse and unfamiliar

environments [31]. This shape bias allows humans to perform well on out-of-distribution (OOD)

data, where conditions or items differ markedly from those seen during learning. In contrast,

convolutional neural networks (CNNs), despite their prowess in image classification tasks, primarily

leverage texture information to make decisions [32]. Studies have shown that while CNNs can align

with human object recognition in some aspects [82, 92, 20], they often fail to generalize effectively

to new, unseen examples due to their texture bias.

The reliance on texture makes CNNs susceptible to adversarial examples—subtly modified

images that deceive the network into incorrect predictions while appearing normal to human eyes

[96, 64]. Adversarial training has emerged as a primary method to counteract this by encouraging

networks to learn from adversarial examples, thus shifting their focus from texture to shape [59].

This training approach not only aims to improve model robustness but also aligns CNNs closer to

human-like perception by reducing their texture bias.

Moreover, when real images are incorporated into the training process, some architectures

have shown improved accuracy on standard test sets [109], suggesting that adversarial training

could also enhance general performance. This leads us to examine whether networks trained to be

robust against adversarial attacks develop a preference for shapes over textures and whether this

shift influences their performance on OOD images. While research has indicated that CNNs trained

6

to emphasize shapes can better handle image corruptions and perturbations [31, 41, 8], it remains

unclear if this advantage extends to adversarially robust networks.

In this chapter, we delve into these questions by evaluating the performance of adversarially

trained networks (R networks) against standard networks (S networks) on ImageNet, a large-scale

dataset commonly used to train state-of-the-art CNNs [88]. We explore the internal mechanisms

by which adversarial training influences network behavior, particularly focusing on the changes

in neural representations that lead to a potential increase in shape bias. Our study employs three

well-known convolutional architectures—AlexNet, GoogLeNet, and ResNet-50—and analyzes their

responses using datasets designed for machine learning interpretability and neuroscience studies,

such as cue-conflict, NetDissect, and ImageNet-C [32, 5].

Our findings reveal several key insights:

1. Adversarially robust classifiers preferentially process shapes rather than textures, displaying

a strong shape bias in approximately 67% of decisions, compared to only 25% in standard

classifiers.

2. This shape bias enables R classifiers to outperform their standard counterparts on images with

distorted or absent textures, such as stylized or silhouetted images.

3. Adversarial training enhances robustness by modifying neural processing to filter out noise

and simplify the input patterns networks focus on, making them less susceptible to deceptive

adversarial inputs.

4. Surprisingly, neurons in robust networks do not exhibit a clear bias towards either shape or

texture but act as generalists, capable of handling low-level features across different visual

categories.

These insights not only highlight the potential of adversarial training to bridge the gap between

human and machine vision but also set the stage for subsequent discussions on the implications for

building more reliable and interpretable AI systems.

7

2.2 Experiment setup

Networks To understand the effects of adversarial training across a wide range of architectures,

we compare each pair of S and R models while keeping their network architectures constant. That

is, we conduct all experiments on two groups of classifiers: (a) standard AlexNet, GoogLeNet, &

ResNet-50 (hereafter, ResNet) models pre-trained on the 1000-class 2012 ImageNet dataset; and

(b) three adversarially-robust counterparts i.e. AlexNet-R, GoogLeNet-R, & ResNet-R which were

trained via adversarial training (see below).

Training A standard classifier with parameters θ was trained to minimize the cross-entropy loss L

over pairs of (training example x, ground-truth label y) drawn from the ImageNet training set D:

argmin
θ

E(x,y)∼D[L(θ, x, y)] (2.1)

On the other hand, we trained each R classifier via Madry et al. [59] adversarial training

framework where each real example x is changed by a perturbation ∆:

argmin
θ

E(x,y)∼D[max
∆∈P

L(θ, x +∆, y)] (2.2)

and P is the perturbation range allowed within an L2 norm.

Hyperparameters The S models were downloaded from PyTorch model zoo [79]. We adversarially

trained all R models using the robustness library [25], using the same hyperparameters in [26, 90, 4]

because these previous works have shown that adversarial training significantly changed the inner-

workings of ImageNet CNNs—i.e. becoming a strong image prior with perceptually-aligned deep

features. That is, adversarial examples were generated using Projected Gradient Descent (PGD)

[59] with an L2 norm constraint ϵ of 3, a step size of 0.5, and 7 PGD-attack steps. R models were

trained using an SGD optimizer for 90 epochs with a momentum of 0.9, an initial learning rate of

0.1 (which is reduced 10 times every 30 epochs), a weight decay of 10−4, and a batch size of 256 on

4 Tesla-V100 GPU’s.

8

Table 2.1: Top-1 accuracy (%) on 50K-image ImageNet validation-set and PGD adversarial exam-
ples.

AlexNet AlexNet-R GoogLeNet GoogLeNet-R ResNet ResNet-R
ImageNet 56.52 39.83 69.78 43.57 76.13 57.90
Adversarial 0.18 22.27 0.08 31.23 0.35 36.11

(a) Real (b) Adversarial (c) ImageNet-C (d) Scrambled (e) Stylized (f) B&W (g) Silhouette

Figure 2.1: Example distorted images (b–g). We show an example Gaussian-noise-added image (c)
out of all 15 ImageNet-C types. See Fig. 6.5 for more examples.

Compared to the standard counterparts, R models have substantially higher adversarial accuracy

but lower ImageNet validation-set accuracy (Table 2.1). To compute adversarial accuracy, we

perturbed validation-set images with the same PGD attack settings as used in training.

Datasets To systematically analyze the behaviors of two types of networks—standard (S) and

adversarially-robust (R)—with identical architectures but trained under different conditions, we

utilized several datasets designed to probe different aspects of model performance and robustness.

The primary dataset used for benchmarking was the largest subset of the ImageNet validation

set, referred to as ImageNet-CL. This subset contains images where both types of models achieve

100% accuracy, allowing for controlled comparisons. Specifically, for the AlexNet, GoogLeNet,

and ResNet architectures, the subsets contain 17,693, 20,238, and 27,343 images, respectively [4].

In addition to ImageNet-CL, we further evaluated the networks on ImageNet-C, a dataset

known for its rigorous assessment of model robustness against common types of image corruptions

[41]. ImageNet-C includes fifteen distortions, such as noise, blur, and weather effects (Figure 2.1,

column (c)). This dataset provides a robust platform to test how S and R models perform under

adverse conditions, focusing on images that were originally correctly classified by both models in

the ImageNet-CL dataset.

9

These evaluations help in understanding how networks perform on well-classified images and

reveal how their behavior changes when encountering altered input features like textures or shapes,

offering deeper insights into the fundamental differences between S and R network responses to

varied visual stimuli.

2.3 Adversarial Training Reduces Texture Bias in ImageNet Classifiers

Understanding the decision-making basis of classifiers, whether they prioritize shape or texture,

is crucial, particularly in adversarially robust networks trained to withstand deceptive inputs.

Traditionally, ImageNet-trained CNNs are known to favor textures over shapes [32], a trait that

adversarial training aims to modify.

To investigate the impact of adversarial training on this texture bias, we employed the cue-

conflict dataset by Geirhos et al. [32], which contains images designed with conflicting texture and

shape information. For instance, an image might display an elephant’s texture mapped onto a cat’s

silhouette, challenging the model to decide whether to classify the image based on texture (elephant)

or shape (cat).

Experimental Design Our analysis follows the experimental design set out by Geirhos et al. [32].

From the original dataset of 1,280 images, we removed 80 images lacking conflicting cues, thus

focusing on 1,200 images with clear texture-shape conflicts. These images are categorized under 16

coarse labels from the MS COCO dataset [9], such as cat or elephant.

We evaluated both standard (S) and adversarially robust (R) models on these images. The

models’ output probability vectors for 1,000 classes were converted into 16-class vectors aligned

with the MS COCO labels. We then assessed the models based on their correct classifications,

determining whether they relied on shape or texture cues.

Findings on Shape and Texture Bias Our results significantly highlight the influence of ad-

versarial training on model preference for shape recognition. Across three different CNN ar-

chitectures—AlexNet, GoogLeNet, and ResNet-50—adversarially robust models demonstrated

a preference for shapes in decision-making approximately 67.08% of the time. This marks a

10

substantial increase compared to standard models, which exhibited a shape preference only 24.56%

of the time (Table 2.2).

Table 2.2: While standard classifiers rely heavily on textures, R classifiers rely heavily on shapes.
The top-1 accuracy scores (%) are computed on the cue-conflict dataset by Geirhos et al. [32].

AlexNet GoogLeNet ResNet50
Standard Robust Standard Robust Standard Robust adv-prop PGD1 adv-prop PGD5

Texture 73.61 34.67 74.91 34.43 77.79 29.63 68.24 63.11
Shape 26.39 65.32 25.08 65.56 22.20 70.36 31.75 36.89

This significant shift in cognitive focus from textures to shapes, as induced by adversarial

training, suggests not only an enhancement in robustness against adversarial attacks but also

a fundamental alignment of CNNs’ perceptual strategies with human visual processing, which

predominantly relies on shape information. By reducing the texture bias by about 2.7 times,

adversarially robust classifiers underscore the potential for creating more reliable and human-like

artificial neural networks. This advancement paves the way for further investigations into how these

perceptual adjustments can improve model performance and reliability across various challenging

scenarios, including handling out-of-distribution data and responding to adversarial inputs.

2.4 Generalization Capabilities of Robust Networks

Adversarially trained networks (R models), known for their shape bias ([32]) as discussed in

Section 2.3, provide an interesting case study for generalization to out-of-distribution (OOD) and

distorted images. This analysis explores how these networks compare to standard ImageNet-trained

networks (S models) when faced with various types of image distortions, especially focusing on

their response to both distorted and shape-less images.

2.4.1 R Networks Show No Evidence of Better Generalization to Distorted Images

The ImageNet-C dataset, detailed in Section 2.2, contains a wide array of common image

corruptions designed to test the robustness of models. It was observed that R models did not

11

Table 2.3: Adversarially-robust (R) models outperform vanilla (S) models when both are under
PGD-adversarial attacks (b). While R models do not generalize well to common distortions (c), yet,
they interestingly outperform S models on texture-less images (e–f). Here, we report top-1 accuracy
scores (%) on the transformed images whose original real versions were correctly-labeled (a) by both
S and R models. “ImageNet-C” column (c) shows the mean accuracy scores over all 15 distortion
types. “Scrambled” column (d) shows the mean accuracy scores over three patch-scrambling types
(details in Figure 2.3).

Network (a)
Real

ImageNet

(b)
Adversarial

Shape-less Texture-less
(c)

ImageNet-C
(d)

Scrambled
(e)

Stylized
(f)

B&W
(g)

Silhouette
AlexNet 100 0.18 35.06 34.59 6.31 20.08 7.72
AlexNet-R 100 22.27 44.94 16.92 9.11 35.25 9.30
GoogLeNet 100 0.08 58.27 49.74 13.74 43.48 10.17
GoogLeNet-R 100 31.23 38.76 31.15 12.54 44.55 24.12
ResNet 100 0.35 56.92 58.04 10.68 16.96 3.95
ResNet-R 100 36.11 48.80 34.46 15.62 53.89 22.30

demonstrate an expected generalization advantage over S models on this dataset, as shown in

Table 2.3. Despite the shape bias induced by adversarial training, the performance of R models

was comparable to or worse than that of S models, indicating that a preference for shape does not

inherently confer a broader generalization on all types of image corruptions.

2.5 Impact of Shape and Texture Biases on Network Performance

Our investigation into the performance differences between adversarially robust networks

(R models) and standard ImageNet-trained networks (S models) on controlled image sets reveals

significant insights into their operational biases and generalization capabilities.

Performance on Shape-less Images In experiments involving shape-less images, we modified

ImageNet-CL images by scrambling them into grids of p×p patches (where p ∈ {2,4,8}, effectively

removing coherent shape information while preserving texture details (as detailed in Appendix

Section 6.1.1 and illustrated in Fig. 2.1d). The performance of R models was notably worse than

that of S models on these manipulated images. Specifically, we observed a significant drop in

accuracy for R models, ranging from 1.6 to 2.04 times lower than that for S models, as summarized in

Table 2.3d. This substantial decrease highlights the reliance of R models on shape cues, underscoring

12

a vulnerability when such cues are absent (see Fig. 2.2 for examples of network predictions on

scrambled images).

Performance on Texture-less Images Conversely, in the assessment of texture-less images,

where textures were either modified, reduced, or removed entirely, R models demonstrated superior

performance. This set included stylized ImageNet images with altered textures, black-and-white

images, and silhouettes—all of which minimize or eliminate texture cues (see Appendix Section

6.1.1 for details on image preparation methods). Here, R models consistently outperformed S

models across all texture-less conditions, underscoring their capacity to utilize shape over texture.

The results are detailed in Table 2.3e–g, indicating a robust generalization capability of R models in

environments where shape information remains intact but textures are unreliable or misleading.

These contrasting outcomes from the experiments on shape-less versus texture-less images

elucidate the distinct dependencies of adversarially trained models on shape features and their

relative insensitivity to textures. Such findings emphasize the importance of considering these biases

in the design and evaluation of neural networks, particularly for applications where robustness to

image distortions or the ability to generalize across varied visual conditions is critical.

Table 2.4: Mean total variation (TV) of the conv layers of 6 models.

AlexNet AlexNet-R GoogLeNet GoogLeNet-R ResNet ResNet-R
Mean TV 110.20 63.59 36.53 22.79 18.35 19.96

2.6 What internal mechanisms make adversarially trained CNNs more robust than standard

CNNs?

We have shown that after adversarial training, R models are more robust than S models on

new adversarial examples generated for these pre-trained models via PGD attacks (Table 2.3b).

Furthermore, on non-adversarial, high-frequency images, R models may also outperform S models

(Table 6.1a; AlexNet-R) [112, 34].

13

R
es

N
et

-R
R

es
N

et
1× 1 2× 2 4× 4 8× 8

R
es

N
et

-R
R

es
N

et

1× 1 2× 2 4× 4 8× 8

Figure 2.2: Qualitative examples showing the strong texture bias of standard CNNs (here, ResNet)
and the strong shape bias of adversarially-robust models (here, ResNet-R). When patches are
scrambled, ResNet-R confidence drops substantially and its top-1 predicted labels often change
away from the original, correctly-predicted label, here, rule (left) and indigo bunting (right).

We further investigate the internal mechanisms that make R CNNs more robust to high-

frequency noise by analyzing the networks at the weight (Section 2.6.1) and neuron (Section 2.6.2)

levels.

2.6.1 Weight level: Smooth filters to block pixel-wise noise

Smoother filters To explain this phenomenon, we visualized the weights of all 64 conv1 filters

(11×11×3), in both AlexNet and AlexNet-R, as RGB images. We compare each AlexNet conv1

filter with its nearest conv1 filter (via Spearman rank correlation) in AlexNet-R. Remarkably, R

filters appear qualitatively much smoother than their counterparts (Figure 2.4a). The R filter bank is

also less diverse, e.g. R edge detectors are often black-and-white in contrast to the colorful AlexNet

edges (Figure 2.4b). A similar contrast was also seen for the GoogL-eNet and ResNet models

(Figure 6.1).

14

100 100 100 100 100 100

61.75

30.09

91.18

66.76

94.77

73.35

36.03

15.98

51.74

22.31

68.31

25.96

5.99 4.70 6.31 4.37
11.02

4.06

A
cc

ur
ac

y
(in

 %
)

0

25

50

75

100

AlexNet AlexNet-R GoogLeNet GoogLeNet-R ResNet ResNet-R

1x1 2x2 4x4 8x8

Figure 2.3: Standard CNNs substantially outperform R models on scrambled versions of the
ImageNet-CL images due to their capability of recognizing images using textures. Here, we report
top-1 accuracy (%) on the scrambled images whose original versions (ImageNet-CL) were correctly-
labeled by both standard and R classifiers (hence, the 100% for 1 × 1 blue bars).

We also quantify the smoothness, in total variation (TV) [87], of the filters of all six models

(Table 2.4) and found that, on average, the filters in R networks are much smoother.

For example, the mean TV of GoogLeNet-R is about 1.5 times smaller than GoogLeNet’s. In

almost all layers, R filters are smoother than S filters (Figure 6.9).

Blocking pixel-wise noise We hypothesize that the smoothness of filters makes R classifiers

more robust against noisy images. To test this hypothesis, we computed the total variation of the

channels across 5 conv layers when feeding ImageNet-CL images and their noisy versions (Fig. 2.1c;

ImageNet-C Level 1 additive noise ∼ N(0,0.08)) to S and R models. At conv1, the smoothness

of R activation maps remains almost unchanged before and after noise addition (Fig. 2.5a; yellow

circles are on the diagonal line). In contrast, the conv1 filters in standard AlexNet allow Gaussian

noise to pass through, yielding larger-TV channels (Fig. 2.5a; blue circles are mostly above the

diagonal). That is, the smooth filters in R models indeed can filter out pixel-wise Gaussian noise

despite that R models were not explicitly trained on this image type!

15

(a) Standard filters (top) & matching R filters (bottom)

AlexNet AlexNet-R

(b) 40 conv1 filters in AlexNet and AlexNet-R

Figure 2.4: Left: For each AlexNet conv1 filter (top row), we show the highest-correlated filter in
AlexNet-R (bottom row), their Spearman rank correlation (e.g. r: 0.93) and the Total Variation (TV)
difference (e.g. 22) between the top kernel and the bottom. Here, the TV differences are all positive
i.e. AlexNet filters have higher TV. See Fig.6.2 for full plot. Right: conv1 filters of AlexNet-R are
smoother and less diverse than the counterparts. See Figs. 6.1 for GoogLeNet & ResNet.

In higher layers, it is intuitive that the pixel-wise noise added to the input image might not

necessarily cause activation maps in both S and R networks to be noisy because higher-layered

units detect more abstract concepts. However, interestingly, we still found that R channels have

consistently less mean TV (Fig. 2.5b–c). Our result suggests that most de-noising effects occur at

lower layers (which contain more generic features) instead of higher layers (which contain more

task-specific features).

0 1000 2000 3000 4000 5000
TV of channels for Clean Images

0

1000

2000

3000

4000

5000

TV
 o

f c
ha

nn
el

s f
or

 N
oi

sy
 Im

ag
es

AlexNet conv1
AlexNet-R conv1

(a) 64 conv1 channels

0 200 400 600
TV of channels for Clean Images

0

100

200

300

400

500

600

700

TV
 o

f c
ha

nn
el

s f
or

 N
oi

sy
 Im

ag
es

AlexNet conv3
AlexNet-R conv3

(b) 384 conv3 channels

0 50 100 150 200
TV of channels for Clean Images

0

50

100

150

200

TV
 o

f c
ha

nn
el

s f
or

 N
oi

sy
 Im

ag
es

AlexNet conv5
AlexNet-R conv5

(c) 256 conv5 channels

Figure 2.5: In each subpanel, one point shows the mean Total Variation (TV) of one channel when
running clean ImageNet-CL images and their noisy versions through AlexNet () or AlexNet-R ().
R channels have similar TV before and after adding noise, suggesting that conv1 kernels filter out
the added noise. In higher layers (conv3 and conv5), R channels are consistently more invariant to
the input noise than S channels (dots are clustered around the diagonal line while dots have
higher variance).

16

2.6.2 Neuron level: Robust neurons prefer lower-level and fewer inputs

Here, via the NetDissect framework, we wish to characterize how adversarial training changed

the hidden neurons in R networks to make R classifiers more adversarially robust.

Network Dissection (hereafter, NetDissect) is a common framework for quantifying the functions

of a neuron by computing the Intersection over Union (IoU) between each activation map (i.e.

channels) and the human-annotated segmentation maps for the same input images.

That is, each channel is given an IoU score per human-defined concept (e.g. dog or zigzagged)

indicating its accuracy in detecting images of that concept. A channel is tested for its accuracy on

all ∼1,400 concepts, which span across six coarse categories: object, part, scene, texture, color, and

material [5] (c.f. Figure 6.11 for example NetDissect images in texture and color concepts).

Following [5], we assign each channel C a main functional label i.e. the concept that C has the

highest IoU with. In both S and R models, we ran NetDissect on all 1152, 5808, and 3904 channels

from, respectively, 5, 12, and 5 main convolutional layers (post-ReLU) of the AlexNet, GoogLeNet,

and ResNet-50 architectures (c.f. Section 6.1.2 for more details of layers used).

color texture object part scene material
40

20

0

20

40

60

80

100

120

Ch
an

ge
 in

 P
er

ce
nt

ag
e 117

7

-28 -33

48

0

102

34

-20 -26

-5
-21

33 29

-16

4

-42

-6

AlexNet
GoogLeNet
ResNet

(a) Total channel increases (%) in R
models

All Object Color Texture

0

10

20

30

40

Sh
ap

e/
Te

xt
ur

e
sc

or
e

200

400

600

800

1000

1200
Nu

m
be

r o
f C

ha
nn

el
s

Shape Score (AlexNet)
Texture Score (AlexNet)
of Channels (AlexNet)
Shape Score (AlexNet-R)
Texture Score (AlexNet-R)
of Channels (AlexNet-R)

(b) Shape & Texture score of AlexNet & AlexNet-R

Figure 2.6: Left: For all three architectures, the numbers of NetDissect color and texture detectors
in R models increase, e.g. by 117% and 7%, respectively, for AlexNet, while the number of object
units decreases by 28% (a). See Figure 6.3 for layer-wise plots for detectors in other categories.
Right: The average Shape () and Texture () scores over all channels in the entire network (“All”)
or in a NetDissect category (“Object”, “Color”, and “Texture”). While AlexNet-R has more color
and texture channels (above), these R channels are not heavily shape- or texture-biased. In
contrast, the corresponding channels in AlexNet are heavily texture-biased (is almost 2× of).

Shift to detecting more low-level features i.e. colors and textures We find a consistent trend—

adversarial training resulted in substantially more filters that detect colors and textures (i.e. in R

models) in exchange for fewer object and part detectors.

17

For example, throughout the same GoogLeNet architecture, we observed a 102% and a 34%

increase in color and texture detectors, respectively, in the R model, but 20% and 26% fewer object

and part detectors, compared to the S model (c.f. Figure 2.6a). After adversarial training, ∼11%,

15%, and 10% of all hidden neurons (in the tested layers) in AlexNet, GoogLeNet, and ResNet,

respectively, shift their roles to detecting lower-level features (i.e. textures and colors) instead of

higher-level features (see feature visualizations in Fig. 2.7).

Across three architectures, the increases in texture and color channels are often larger in higher

layers. The largest functional shifts in higher layers can be because the higher-layered units are

more task-specific [65, 113].

Consistent findings with ResNet CNNs trained on Stylized ImageNet We also compare the

shape-biased ResNet-R with ResNet-SIN, i.e. a ResNet-50 trained exclusively on stylized ImageNet

images where textures are removed via stylization [32]. ResNet-SIN also has a strong shape bias of

81.37%.1 Interestingly, similar to ResNet-R, ResNet-SIN also has more low-level feature detectors

(colors and textures) and fewer high-level feature detectors (objects and parts) than the vanilla

ResNet (Figure 2.8). In contrast, finetuning this ResNet-SIN on ImageNet remarkably changes the

model to be texture-biased (at a 79.7% texture bias) and to contain fewer texture and more object

and part units (Figure 2.8; ResNet-SIN+IN vs. ResNet-SIN).

That is, training or finetuning on ImageNet tend to cause CNNs to be more texture-biased

and contain more high-level features (i.e. detecting objects and parts). In contrast, training on

adversarial examples or texture-distorted images causes CNNs to focus more on shapes and learn

more generic, low-level features.

Shift to detecting simpler objects Analyzing the concepts in the object category where we

observed largest changes in channel count, we find evidence that neurons change from detecting

complex to simpler objects. That is, for each NetDissect concept, we computed the difference

in the numbers of channels between the S and R model. In the same object category, AlexNet-R

model has substantially fewer channels detecting complex concepts e.g. −30 dog, −13 cat, and −11

1model_A in https://github.com/rgeirhos/texture-vs-shape/. See Table 4 in [32].

18

https://github.com/rgeirhos/texture-vs-shape/

(a) AlexNet (b) AlexNet-R

Figure 2.7: Each 7×7 grid shows the top-49 training-set images that highest activate the center
unit in a channel. Each column shows five highest-IoU striped concept channels, each from one
AlexNet’s conv layer in their original resolutions. From top to bottom, AlexNet-R (b) consistently
preferred striped patterns, i.e., edges (conv1), vertical bars (conv2), tools, to grids and zebra (conv5).
In contrast, AlexNet striped images (a) are much more diverse, including curly patterns (conv4) and
dog faces (conv5).

19

color texture object part scene material
0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f C
ha

nn
el

s

127

1169 1180

795

502

131170

1508

980
832

291
123122

1249
1122

718
569

124134

1163
1272

809

397

129

Different ResNet50 ND Results
ResNet
ResNet-R
ResNet-SIN
ResNet-SIN+IN

Figure 2.8: Each column shows the number of channels (in a ResNet-50 model) categorized into one
of the NetDissect categories. For example, the standard ImageNet-trained ResNet has 127 color

detectors (leftmost column). Here, we compare the neural functions among four different ResNet-50
models trained differently: (1) ResNet was trained on ImageNet; (2) ResNet-R was trained

via PGD-adversarial training; (3) ResNet-SIN was trained on texture-removed ImageNet from

[32]; and (4) ResNet-SIN+IN was a ResNet-SIN that was then finetuned on ImageNet. Training
on texture-removed ImageNet or adversarial examples consistently produces CNNs that are (a)
heavily shape-biased; (b) contain more low-level, texture features; (c) fewer high-level, object
detectors compared to training on ImageNet which produces texture-biased CNNs (ResNet and
ResNet-SIN+IN).

Figure 2.9: Left: Top-25 highest-activation images of the AlexNet unit conv419, which has a
NetDissect label of spiralled under texture category. The unit prefers circular patterns, including car
wheels and clocks. Right: Example cue-conflict images originally labeled by AlexNet as shape
(top) or texture (bottom) but that were given a different label after the unit conv419 is ablated. For
example, “clock2-bicycle1” is a cue-conflict image that has the shape of a clock and the texture of a
bicycle. Qualitatively, the unit helps AlexNet detect clocks and cars using shapes (top) and reddish
pink cars, birds, chairs, and bicycles using textures (bottom). The unit has Shape and Texture scores
of 18 and 22, respectively.. See Figure 6.6 & Figure 6.7 for more examples.

20

person detectors (Figure 6.10b; rightmost columns), compared to the standard network. In contrast,

the R model has more channels detecting simpler concepts, e.g. +40 sky and +12 ceiling channels

(Figure 6.10b; leftmost columns). The top-49 images that highest-activated R units across five conv

layers also show their strong preference for simpler backgrounds and objects (Figure 2.7).

Shift to detecting fewer unique concepts The previous sections have revealed that neurons

in R models often prefer images that are pixel-wise smoother (Section 2.6.1) and of lower-level

features (Section 2.6.2), compared to S neurons. Another important property of the complexity

of the function computed at each neuron is the diversity of types of inputs detected by the neuron

[66, 67]. Here, we compare the diversity score of NetDissect concepts detected by units in S and R

networks. For each channel C, we calculated a diversity score, i.e. the number of unique concepts

that C detects with an IoU score ≥ 0.01.

Interestingly, on average, an R unit fires for 1.16 times fewer unique concepts than an S unit

(22.43 vs. 26.07; c.f. Figure 6.12a). Similar trends were observed in ResNet (Figure 6.12b).

Qualitatively comparing the highest-activation training-set images by the highest-IoU channels

in both networks, for the same most-frequent concepts (e.g. striped), often confirms a striking

difference: R units prefer a less diverse set of inputs (Fig. 2.7). As R hidden units fire for fewer

concepts, i.e. significantly fewer inputs, the space for adversarial inputs to cause R models to

misbehave is strictly smaller.

2.6.3 Which neurons are important for shape-based or texture-based image classification?

To understand how the found changes in R neurons (Section 2.6) relate to the shape bias of

R CNNs (Section 2.3), here, we zero out every channel, one at a time, in S and R networks and

measure the performance drop in recognizing shapes and textures from cue-conflict images.

Shape & Texture scores For each channel, we computed a “Shape score”, i.e. the number of

images originally correctly labeled into the shape class by the network but that, after the ablation,

are labeled differently (examples in Figure 2.9a–b). Similarly, we computed a Texture score per

21

channel. The Shape and Texture scores quantify the importance of a channel in image classification

using shapes and textures, respectively.

First, we find that the channels labeled texture by NetDissect are not only important to

texture-based but also shape-based classification. That is, on average, zero-ing out these channels

caused non-zero Texture and Shape scores (Figure 2.6b; Texture and are above 0). See Figure 2.9

for an example of texture channels with high Shape and Texture scores.

This result is aligned with the fact that R networks consistently have more texture units

(Figure 2.6a) but are shape-biased (Section 2.3).

Second, the texture units are, as expected, highly texture-biased in AlexNet (Figure 2.6b

Texture; is almost 2× of). However, surprisingly, those texture units in AlexNet-R are neither

strongly shape-biased nor texture-biased (Figure 2.6b; Texture ≈). That is, across all three

groups of the object, color, and texture, R neurons appear mostly to be generalist, low-level

feature detectors. This generalist property might be why R networks are more effective in transfer

learning than S networks [89].

Finally, the contrast above between the texture bias of S and R channels (Figure 2.6b) reminds

researchers that the single semantic label assigned by NetDissect to each neuron is not describing

a full picture of what the neuron does and how it helps in downstream tasks. To our knowledge,

this is the first work to align the NetDissect and cue-conflict frameworks to study how individual

neurons contribute to the generalizability and shape bias of the entire network.

2.7 Discussion and Conclusion

This chapter has detailed the differential reliance on shape and texture cues between standard

and adversarially robust convolutional neural networks (CNNs). Unlike their standard counterparts

(S networks), we discovered that R networks exhibit a pronounced preference for shape information.

This finding underscores the potential to merge these models—integrating an R network’s shape

bias with an S network’s texture sensitivity—to form a more robust and interpretable machine

22

learning model. Such a hybrid approach could enhance generalizability across out-of-distribution

data and provide clearer insights into the feature dependencies that underlie model predictions.

Moreover, our analysis revealed that units traditionally identified as texture detectors contribute

equally to shape-based recognition tasks. This observation challenges the notion that texture

detection is solely pivotal for texture-biased recognition and suggests a need to reevaluate how

features are categorized in network interpretability studies. Adjustments might include incorporating

low-frequency patterns like single lines or silhouettes to better capture the nuanced roles these units

play.

In light of these findings, we propose that future efforts in developing CNNs, particularly those

aimed at robust performance across varied visual tasks, should not only focus on modifying internal

network mechanisms. Instead, there is significant value in designing systems that allow end users to

exert higher-level control over model behavior. By enabling users to specify or adjust the balance

between shape and texture processing, models can be tailored to more closely align with human

visual processing and to meet specific task requirements.

Our exploration into the inherent capabilities and biases of CNNs thus not only enriches our

understanding of these complex systems but paves the way for the next generation of interpretable

and adaptable artificial intelligence tools. The next chapter will further explore the realm of

foundation models such as CLIP [80], focusing on understanding their underlying mechanisms and

their implications for advancing machine learning towards more human-like processing.

23

Chapter 3

gScoreCAM: Understand the foundation model CLIP

3.1 The Emergence of Foundation Models

Foundation models, large-scale, multimodal neural networks trained on extensive web data,

have quickly become indispensable in various domains ranging from academic research to industry

applications [7]. OpenAI’s CLIP [80], a prominent example of such models, has demonstrated

remarkable capabilities by learning to match captions with images. Within a year of its release,

it has been leveraged in diverse applications including text-to-image synthesis [73, 63, 48], video

retrieval [58, 54], visual question answering [94], and image editing [53, 103]. Despite their

growing ubiquity and scaling, the internal mechanisms of foundation models like CLIP remain

largely enigmatic, which poses risks related to safe deployment and bias [93, 102, 55].

Understanding these models is crucial not only to mitigate potential harms but also to enhance

their functionality [77]. For instance, it is particularly intriguing that a model as sophisticated as

CLIP can be misled by simple textual cues on objects [35]. This calls for robust methods to interpret

and verify the model’s decision-making processes, especially in complex scenes where the model’s

focus and the rationale behind its predictions can be ambiguous.

Current methods for visualizing and interpreting CLIP and other vision-language models

predominantly include ViT-based techniques which illuminate similarities between image and text

tokens [13, 95, 1]. However, these methods often fall short in complex, multi-object settings or do

not apply to all model architectures since many rely on cross-attention mechanisms absent in CLIP

[49, 80]. Alternatively, methods developed for convolutional networks like various CAM-based

24

Figure 3.1: In a complex MS COCO scene, SotA feature importance methods often produce noisy
heatmaps for CLIP RN50x16, questioning what objects are the most important to CLIP. Here, RISE
[75] heatmap covers both suitcases and the text “baggage” (top row) and ScoreCAM [105] heatmap
highlights both the racket and the background (bottom row), yielding a low IoU of 0.0 w.r.t. the
groundtruth box (◻). By using only the top-k channels of the highest gradients, we (1) localize the
most important objects in a complex scene (e.g., here, racket at IoU of 0.649); and (2) produce a
SotA zero-shot, open-vocabulary, object localization method for MS COCO and PartImageNet.

approaches [117, 91, 11] tend to produce noisy or inaccurate heatmaps when applied to CLIP’s

ResNet variants [35].

To address these limitations, we introduce gScoreCAM, a novel interpretability method de-

signed specifically for CLIP. gScoreCAM significantly reduces the computational complexity of

existing ScoreCAM [105] approaches by focusing only on the most gradient-significant channels

of the model. This method not only accelerates the interpretability process by up to 10 times but

also enhances the accuracy of zero-shot, open-vocabulary object localization in challenging datasets

like MS COCO and PartImageNet [56, 39]. Through gScoreCAM, we aim to provide a more

practical and precise tool for discerning the most crucial elements in images that influence CLIP’s

decision-making, thereby offering deeper insights into the inner workings of foundation models.

3.2 gScoreCAM: A Simple Tool To Visualize CLIP

We first describe the original Class Activation Map (CAM) method [117] and then ScoreCAM

[105] before introducing our gScoreCAM, which extends ScoreCAM and is the state-of-the-art

method for CLIP ResNets in zero-shot, open-vocab localization.

25

3.2.1 Revisiting CAM and ScoreCAM

CAM [117] The idea of CAM is to use the output of global average pooling in CNNs to generate

a class activation map that indicates a region in the image for a given class. For a given CNN, CAM

takes the activation maps from the last convolutional layer and calculates a weighted sum of the

activation maps as the class activation map. The class activation map M c
CAM is given by:

M c
CAM = ∑

i

wiA
c
i (3.1)

where wi is the ith weight of global average pooling layer, Ai is the ith feature map (output of

the last convolutional layer). i ∈ C, C is the number of channels in the last convolutional layer.

ScoreCAM [105] ScoreCAM utilizes the network itself to derive the weights for the activation

maps so that it no longer relies on the weights in the average pooling layer. ScoreCAM algorithm is

given by Algorithm 1.

Algorithm 1 ScoreCAM Algorithm for Visualizing Convolutional Neural Networks
Input: Input image I ∈ Rw×h, target class c, CNN model F , target layer T
Output: A heatmap M ∈ Ru×v

Extract activation maps {Ai}
C
i=1 from layer T of F using I .

for i = 1 to C do
Up-sample activation map Ai to the size of I using bilinear interpolation to obtain mask Mmask

i .
end
Initialize a vector Sc ∈ RC to store scores for each mask.
for i = 1 to C do

Apply mask Mmask
i to I to produce a masked image Imask

i = I ⊙Mmask
i .

Compute the prediction score sci = F (I
mask
i)c for the target class c.

Store the score sci in Sc.
end
Compute weights W = softmax(Sc).
Compute the ScoreCAM heatmap M = ∑

C
i=1Wi ⋅Ai.

26

Algorithm 2 gScoreCAM Algorithm for Visualizing CLIP ResNets
Input: Input image I ∈ Rw×h, a prompt P , target layer T
Output: A heatmap M ∈ Ru×v

Run one forward pass through CLIP (I,P) to get 3,072 channel activations {Ai}3072 at layer T .
Run one backward pass to get the channel-wise gradients.
Select the top-k channels based on the highest gradients and use them as masks to generate k
masked input images, {I∗i }k.

for i = 1 to k do
Run a forward pass through CLIP (I∗i , P) to get a cosine similarity score for each masked image
I∗i .

end
Use the cosine similarity scores as weights to linearly combine the k channels into a single
gScoreCAM heatmap.

3.2.2 Proposed method: Gradient-guided ScoreCAM (gScoreCAM)

ScoreCAM requires computing all weights wc through CNN, resulting in high computational

overhead. We propose a simple but much more efficient modification based on ScoreCAM. Algo-

rithm 2 shows a simplified workflow of our method.

Instead of exhaustively computing all the weights, we only compute a small subset of wc (via

CNN) and assign others to zero. The idea is that only a small subset of the channels is important for

the final class activation map. We use the gradient of the target layer to help us select the important

channels. First, we define a function to derive the first k index from a sequence:

Definition 1 (sort) Let A be a sequence of real numbers. The sequence sort(A) ⊂ R is defined as

the result of sorting A in descending order, preserving duplicate elements.

Definition 2 (topIndex) Let N ∈ N and for all 0 ≤ i ≤ N , let ai ∈ R and let A = (ai)Ni=0 be a

sequence. Define B = (bi)Ni=0 = sort(A). Then topIndex(A,k) is defined as the set of all indices c

such that ac > bk and c ∈ Z.

Definition 3 (gScoreCAM) The activation map of gScoreCAM M c
gScoreCAM (for class c) is then

given by:

M c
gScoreCAM = ∑

i

wc
iA

c
i (3.2)

27

where

wc = softmax(sc) (3.3)

and the scores are calculated by

sci =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

F (I ⋅Mmask
i)c, if i ∈ Ctopk.

0, otherwise.
(3.4)

where the top k channels are determined by the gradient ranking;

Ctopk = topIndex(g
c, k) (3.5)

Where gc is the mean value of the gradient of each channel for class c, sc is the confidence

score of the model output (for class c). F (⋅) denotes the CNN output, Ai is the feature map ith

(output of the targeted convolutional layer), i ∈ C, C is the number of channels in the targeted

convolutional layer.

3.3 Experiment setups

3.3.1 Datasets & Localization evaluation metrics

We conduct our main experiments on three datasets: ImageNet-v2 [84], PartImageNet [39],

and COCO [56]. We use the 2017 COCO dataset and all experiments are tested in the validation

set except the experiment in Section 6.2.3. We also use some randomly sampled images of the

training set to search for the binarization threshold. For the experiment in Section 6.2.5 we use the

combination of labels in the LVIS and COCO training set.

BoxAcc metric For PartImageNet and COCO, we follow Gupta et al. [37] which measures the

intersection over union (IoU) between the predicted box and the ground truth box under a certain

28

threshold. The box accuracy is defined as:

BoxAcc(δ) ∶=
1

N
∑
n

1IoU(Xn,Bn)≥δ (3.6)

Where X is the predicted box, B is the ground truth box, and δ is the IoU threshold, we use δ = 0.5

in our BoxAcc.

MaxBoxAccV2 metric For ImageNet-v2, we adopt the recommended evaluation metric MaxBoxAccV 2

proposed by Junsuk et al. [19]:

MaxBoxAccV 2(δ) ∶=
1

3
∑
δ

maxτBoxAcc(τ, δ) (3.7)

where δ ∈ {0.3,0.5,0.7}, τ is the binary threshold for the resulting heatmap and τ ∈ [0 ∶ 0.05 ∶ 0.95].

We use the default hyperparameters from the authors.

We also directly measure the IoU (Section 6.2.5) as well as the area under the curve (AUC)

of IoU under different binary thresholds (Section 6.2.3) for the predicted bounding box to better

understand the difference between multiple types of visualization methods.

Inferring a bounding box from a heatmap

For the evaluation of ImageNet-v2, we follow the traditional procedure as described in [84, 27,

2] that uses the tightest bounding box at binary threshold τ ∈ [0 ∶ 0.05 ∶ 0.95] and consider the box

that has the highest IoU with ground truth box as the predicted box. For the evaluation of COCO

and PartImageNet, we use an alternative approach that is similar to the approach used in Chefer et

al. [75]. We employ Otsu’s method to binarize the heatmap instead of an exhaustive search for the

threshold based on the ground truth (see more detailed description of the Otsu-based evaluation in

Section 6.2.8).

We conduct an ablation study on the COCO validation set in Section 6.2.8 and find that the

use of searched optimal binary threshold does not improve significantly and the overall trend

between the different methods is the same. Therefore, we use Otsu’s method for both experiments

of PartImageNet and COCO because of its flexibility.

29

3.3.2 CLIP networks

Model & Methods All experiments are carried out on the basis of the CLIP [80] model. We use

the pre-trained model RN50x16 for all CNN-based methods (except for experiment in Section 6.2.6)

as it gives the best performance among the available convolutional-based variances. For comparison,

we also apply the CNN-based saliency method to CLIP ViT-B/32 by reshaping the embedding of

the target layer.

Target layers for visualization We use these layers to derive heatmaps and implement visualization

methods.

• RN50x16 and RN50x4: We use relu3 of the last BottleNeck in layer4, which is the last layer

of the image encoder in CLIP. RN50x16 has 3072 channels with spatial dimension 12 × 12.

RN50x4 has 2560 channels with spatial dimension 9 × 9.

• ViT-B/32: We use the second-last ResidualAttentionBlock in VisionTransformer. The output

dimension is: 50 × 1 × 768, which after excluding the [CLS] vector, is reshaped into 7×7×768

for CAM-based visualizations.

We choose the second-last layer in ViT-B/32 because the gradients in the last layer are zero

except for the [CLS] vector, and, only the [CLS] in the last layer embedding is used for the final

prediction. Note that to visualize the embedding in ViT, we discard the [CLS] vector and reshape

the embedding from 50 × 1 × 768 to 768 × 7 × 7.

The implementation of our attribution methods for CNNs is from PyTorchCAM [33]. The

CLIP models we used are from OpenAI [69]. Our HilaCAM implementation is from the code

released by [12].

CLIP models We use CLIP RN50x16, RN50x4, and ViT-B/32 for our experiments. We list some

key hyperparameters of the models in Table 3.1. More hyperparameters can be found in Table 19 of

Radford et al. [80].

30

https://github.com/openai/CLIP/blob/b46f5ac7587d2e1862f8b7b1573179d80dcdd620/clip/model.py#L54
https://github.com/openai/CLIP/blob/b46f5ac7587d2e1862f8b7b1573179d80dcdd620/clip/model.py#L10
https://github.com/openai/CLIP/blob/b46f5ac7587d2e1862f8b7b1573179d80dcdd620/clip/model.py#L152
https://github.com/openai/CLIP/blob/b46f5ac7587d2e1862f8b7b1573179d80dcdd620/clip/model.py#L172
https://github.com/openai/CLIP/blob/b46f5ac7587d2e1862f8b7b1573179d80dcdd620/clip/model.py#L207

Table 3.1: Some key hyperparameters of the CLIP models [80] used in our experiments.

Embedding Input ResNet-50 Vision Transformer (ViT)

dimension resolution blocks width layers width heads

RN50x4 640 288 (4,6,10,6) 2560
N/A

RN50x16 768 384 (6,8,18,8) 3072

ViT-B/32 512 224 N/A 12 768 12

Prompts of CLIP For ImageNet-v2 and COCO, we directly use "{class name}" (without

quotation marks) as the prompt. For PartImageNet, we use “{class name} {part name}"

as the prompt.

Table 3.2: CLIP zero-shot object localization results with different CAM variances. ScoreCAM
and gScoreCAM are similar in overall, but gScoreCAM is much faster in run-time. By default,
the results are for CLIP RN50x16 unless otherwise noted (ViT-B/32). Note that gScoreCAM on
RN-50x16 is substantially better HilaCAM [14], a state-of-the-art method for CLIP ViT-B/32. In
contrast, gScoreCAM on ViT-B/32 performs on par with HilaCAM on ViT-B/32.

ImageNet-v2 [84] COCO [56] PartImageNet [39] Run time (s) Number of Number of
(MaxBoxAcc) (BoxAcc) (BoxAcc) Forward passes Backward passes

GradCAM [91] 38.90 11.59 10.91 0.21 1 1
xGradCAM [28] 24.24 5.60 2.93 0.24 1 1
GradCAM++ [11] 44.15 9.68 6.57 0.39 1 1
LayerCAM [46] 43.70 9.19 12.42 0.82 1 1

GroupCAM [115] 50.85 13.06 6.16 1.99 96 1
RISE [75] 41.39 7.26 8.69 166.57 8001 0
HilaCAM [13] (ViT-B/32) 47.79 12.82 11.80 0.26 1 1

gScoreCAM (ViT-B/32) 45.26 12.73 10.67 0.84 301 1
ScoreCAM [105] 57.78 20.43 15.76 55.75 3073 0
gScoreCAM (ours) 56.61 20.83 16.34 7.40 301 1

3.4 gScoreCAM is the State-of-the-art CLIP Visualizer

As indicated in Table 3.2, gScoreCAM establishes itself as a state-of-the-art tool in COCO and

PartImageNet, achieving the highest localization accuracies among compared methods. Although its

performance on ImageNet-v2 is marginally lower than ScoreCAM, gScoreCAM’s runtime efficiency

significantly enhances its utility, operating 8 times faster.

31

Our analyses demonstrate that gScoreCAM excels in localization accuracy and computational

efficiency across various datasets. It particularly shines in complex scenarios with multiple objects

and diverse object sizes, outperforming existing CAM-based methods. Notably, gScoreCAM

delivers clearer and more interpretable heatmaps, effectively highlighting finer details and smaller

objects—key factors for enhanced model interpretability.

Qualitative evaluations reinforce these findings, showing gScoreCAM’s superior performance

in delineating pertinent features within images. Detailed discussions and additional analyses are

provided in Section 6.2.1, underscoring gScoreCAM’s capabilities as a robust tool for visualizing

CLIP models across different backbones and datasets.

3.5 Visualizing CLIP’s Attention

In Section 3.4, we demonstrate that gScoreCAM significantly enhances our understanding of

CLIP’s attention mechanisms by providing state-of-the-art visualization capabilities. This section

will focus on how gScoreCAM can help us understand CLIP.

3.5.1 Better Understanding of "Typographic Attack"

Our method provides insightful revelations into CLIP’s inner workings, particularly in the

context of “typographic attacks,” where text within an image can misleadingly influence the model’s

predictions. As illustrated in Figure 3.2, such attacks can lead to notable failures in detection

accuracy by exploiting the model’s text-image alignment mechanisms.

Through applying gScoreCAM, we uncover that despite the erroneous outcomes often associ-

ated with these attacks, CLIP retains the ability to adjust its focus dynamically in response to the

textual prompts. This observation is crucial as it demonstrates that the underlying misclassifications

are not due to a lack of recognition capacity but rather the softmax layer’s prioritization in the

presence of competing visual cues. Our visualizations suggest that CLIP can indeed discern and

separately attend to multiple relevant objects within the scene, such as apples and iPods, alongside

background elements.

32

This ability highlights the robust potential of foundation models like CLIP for open-vocabulary

tasks, suggesting they possess inherent capabilities to handle complex, multi-object scenarios that

are typically challenging for conventional image recognition systems. The visualization provided

by gScoreCAM thus not only enhances our understanding of typographic attacks but underscores

the sophistication of CLIP’s multimodal processing.

Granny Smith

iPod

library

Granny Smith iPod Granny Smith

dough

85.6%

0.4%

0.0%

0.0%

Granny Smith

iPod

library

dough

0.1%

99.7%

0.0%

0.0%

background fence

Figure 3.2: While Goh et al. [35] reported that CLIP is easily fooled by typographic attacks, our
gScoreCAM visualizations reveal interesting insights that CLIP indeed was able to distinguish
between apple, iPod and even the background objects. The misclassification was merely because
multiple objects are in the scene (i.e., ill-posed, single-label, image classification task).

3.5.2 Inspecting Bias in CLIP

CLIP’s training on a large corpus of unfiltered web data aims to enhance its generalization

capabilities across various image recognition tasks. However, this approach can inadvertently

incorporate and perpetuate societal biases in the training data.

Prompt: programmer Prompt: janitor

Figure 3.3: Illustration of occupational bias in CLIP: The model tends to associate racial stereotypes
with specific professions. Here, CLIP classifies a white man as a “programmer” and a black man as
a “janitor”, highlighting the need to evaluate training data and model outputs critically.

Our application of gScoreCAM provides a novel lens through which to examine these biases

more closely. By visualizing how CLIP focuses its attention when processing images, gScoreCAM

reveals patterns that might explain the model’s decision-making processes. For instance, the

33

visualizations generated by gScoreCAM show clear differences in attention allocation based on

racial features when predicting occupational roles, as seen in Figure 3.3.

This capability underscores the importance of using visualization tools like gScoreCAM to

detect and understand biases in AI models and emphasizes the necessity for diverse and inclusive

training datasets. By bringing these biases to light, we can better understand the limitations of

current models and work towards more equitable AI systems. Our findings stress the need for

developers and researchers to incorporate de-biasing techniques and ethical considerations in

developing and deploying AI technologies.

3.6 Conclusion

gScoreCAM has proven to be a valuable tool in elucidating the inner workings of CLIP,

providing critical insights into its strengths and the inherent biases that arise from its training on

extensive web data. While gScoreCAM effectively highlights areas for concern, such as embedded

societal biases, it is important to recognize the limitations inherent in any post-hoc explanatory

method. These techniques offer insights after making model decisions and do not inherently change

the underlying model behavior.

Addressing these deep-seated biases is challenging; it typically requires extensive filtering of

training datasets and potentially costly retraining of models. Such measures, while effective, pose

significant resource demands and logistical challenges.

The upcoming chapter will explore an innovative, self-explainable framework to mitigate these

issues. This framework aims to empower users to understand and rectify biases directly, offering a

more dynamic and interactive approach to model transparency and accountability. Through this

development, we seek to bridge the gap between post-hoc explanation and proactive intervention,

enhancing the ethical deployment of AI systems in diverse real-world applications.

34

Chapter 4

PEEB: A Part-based Image Classifiers with an Explainable and Editable Language Bottleneck

4.1 The Necessity and Benefits of Self-Explainable Frameworks

The rapid advancement and deployment of artificial intelligence (AI) systems, especially in

computer vision, have achieved remarkable feats, often surpassing human capabilities in tasks

like fine-grained image classification. However, the opacity inherent in these “black-box” systems

poses significant barriers to their wider acceptance, particularly in scenarios where trust and

understanding are paramount. Our proposed framework PEEB (Part-based image classifier with an

Explainable and Editable via a natural-language Bottleneck) emerges as a vital solution to these

challenges, underscoring the necessity of self-explainable systems in fostering trust and enhancing

user interaction.

Enhancing Transparency, Trust, and Model Understanding The PEEB framework increases AI

transparency by mapping visual parts to natural-language descriptors, allowing users to understand

and question AI decisions. This capability is crucial in fields requiring precise and justifiable

decisions, such as wildlife conservation and academic research [36, 86, 104]. Integrating this

human-like understanding into prediction models provides comprehensible explanations and uses

these insights to refine model robustness and accuracy [22, 15], aligning AI operations more closely

with user expectations and real-world needs.

Facilitating User Interaction and Editability PEEB’s design enables users to modify its descrip-

tors directly, allowing for the rapid adaptation of the model to new classes or the correction of errors.

This flexibility is particularly beneficial in managing rare or novel species not included in original

training datasets, thus bypassing the need for extensive re-training [108, 118].

35

Addressing Data and Diversity Limitations Utilizing a comprehensive and diverse dataset, PEEB

demonstrates how integrating textual descriptions with visual part detection can overcome typical

dataset size and species diversity constraints. Its adaptability across various domains, illustrated

through its application to bird and dog datasets, underscores its broad utility and scalability [70, 104].

4.2 Datasets

To facilitate the development of PEEB, we established two specialized datasets: Bird-11K and

Dog-140. These datasets are crucial for testing the framework’s capability to generalize across

different domains.

4.2.1 BirdSoup Dataset

The Bird-11K dataset is an extensive collection of bird images aggregated from seven distinct

sources, augmented by approximately 55,000 additional images (spanning 10,534 classes) sourced

from the Macaulay Library at Cornell. In total, Bird-11K contains 440,934 images covering 11,183

classes, making it arguably the first bird dataset to nearly encompass all bird species known globally.

This breadth supports Bird-11K’s role as a proof of concept, demonstrating that when our proposed

framework is trained on sufficiently large and diverse data, it can effectively generalize to previously

unseen classes. The methodology for assembling Bird-11K is not included in this paper; however,

we provide a script on Github for those interested in reconstructing the dataset.

4.2.2 DogSoup Dataset

Contrasting with the expansive nature of Bird-11K, Dog-140 is a smaller dataset specifically

designed to test the generalization capabilities of PEEB within a different, more restricted domain.

This dataset is composed of dog images derived from the ImageNet-21K dataset. Although smaller

in scale, Dog-140 is crucial for evaluating the adaptability of PEEB to various animal categories.

36

https://github.com/anguyen8/peeb

Image
Encoder

"back", "beak", "belly", ..., "throat"

Text
Encoder

12 part names

(a)
Visual Part
Embedding
Selection

Part MLP

Box MLP

12 visual part
embeddings

Long-tailed Duck

Long-tailed Duck

Painted Bunting

"back: vibrant green coloring",
"beak: conical, silver-gray",

"belly: rich red hue",
...,

"throat: bright red plumage"

Text
Encoder

(b)
Descriptor
Embedding
Matching

Painted Bunting

For classification

For box prediction

1
2
3
...

...

...

...

...

...

m

Li
ne

ar
 P

ro
je

ct
io

n

Frozen, shared weights

Trainable networks

Figure 4.1: During inference, 12 visual part embeddings with the highest cosine similarity with
encoded part names are selected (a). These visual part embeddings are then mapped (Ð→) to
bounding boxes via Box MLP. Simultaneously, the same embeddings are forwarded to the Part MLP
and its outputs are then matched (b) with textual part descriptors to make classification predictions
(Ð→). Figure 6.25 shows a more detailed view of the same process.

Details on the construction of both datasets are provided in Section 6.3.4, where we outline the

selection criteria, source integration, and preprocessing techniques used to ensure data quality and

relevance for training our model.

4.3 Method: PEEB Architecture and Training Strategy

4.3.1 Backbone: OWL-ViT object-part detector

OWL-ViT is an open-vocabulary detector that detects objects and parts in an image given a text

prompt, even if the model is not explicitly finetuned to detect those concepts. OWL-ViT consists of

four networks (Figure 4.1): (1) a standard ViT-based image encoder, (2) an architecturally identical

text encoder, (3) a bounding-box regression head called Box MLP, and (4) and a Linear Projection.

Box MLP is a three-layer Multilayer Perceptron (MLP) with a GELU activation [42] after each of

the first two layers. The Linear Projection projects the visual embeddings to the same dimensional

space with text embeddings (see Fig. 1 in [61]).

37

4.3.2 PEEB classifier

Architecture PEEB (Figure 4.1) has five networks: an image encoder, a text encoder, a Linear

Projection, a Part MLP, and a Box MLP. We introduce Part MLP to map the visual part embeddings

to the same space with text embeddings for computing dot products (logits) for classification (Ð→ in

Figure 4.1). This design allows PEEB to easily extend the number of classes without any re-training.

Except for Part MLP, all components are adopted from the OWL-ViT framework. Details of all

components are in Section 6.3.1.

Inference Given an input image, we first use the 12 generic part names to select the visual

part embeddings based on cosine similarity. These selected visual part embeddings are then

simultaneously fed into both Part MLP and Box MLP.

Box MLP predicts the bounding box from each part embedding. We compute a dot product

to measure the similarity between each embedding output from Part MLP and a corresponding

part-descriptor embedding. For classification, a class logit is the sum of the 12 dot products, which

essentially computes the distance between the 12 parts in the image and the 12 text descriptors of

each class.

4.3.3 Training strategy

Trainable networks In preliminary experiments, we find training only Part MLP (while keeping

all other networks frozen) to result in poor accuracy. Therefore, we train Part MLP from scratch

and also finetune the image encoder, Linear Projection, and Box MLP. All OWL-ViT components

are finetuned from their original weights. In contrast, our proposed Part MLP starts from random

weights. Our training has two phases:

1. A two-stage pre-training on the large-scale Bird-11K dataset.

2. Finetuning on downstream tasks.

More hyperparameter details are in Section 6.3.1.

38

Objectives We aim to train PEEB to classify images well while maintaining the ability to detect

object parts. This translates into three training objectives: (1) Train the Part MLP contrastively

using a symmetric cross-entropy (SCE) loss [80] to maximize the similarity between region-text

pairs while minimizing the similarity for negative pairs; (2) Train the Linear Projection using a

SCE loss to mimic OWL-ViT’s behaviors (i.e. the similarity matrix) for part selection; and (3)

Train Box MLP to predict bounding boxes with DETR losses [116] i.e. a linear combination of ℓ1

corner-to-corner distance loss and GIoU loss [85]. Loss functions are described in Section 6.3.1.

A challenge When jointly minimizing all three losses above is that PEEB’s validation loss improves

significantly slowly, perhaps because of some tension between the two SCE losses and the DETR

detection loss.

To overcome this challenge, we split the pre-training phase into two stages: (1) first, train the im-

age encoder and Part MLP for classification using the SCE loss; then (2) train the Linear Projection

and Box MLP using the 2nd and 3rd loss so they can adapt their weights to the updated image

encoder. We always keep the text encoder frozen since we want to preserve its generalizability to

the descriptors of unseen objects.

Pre-training on Bird-11K dataset

Stage 1: Contrastive learning The image encoder and Part MLP are jointly trained using a SCE

loss, which allows PEEB to learn to map the visual parts to corresponding text descriptors.

In this stage, we use a pre-trained OWL-ViTlarge to select 12 part embeddings per input image

(i.e., teacher forcing) to ensure the selection of part embeddings is meaningful and consistent while

the embeddings themselves are updating (see Figure 6.26).

Stage 2: Learning to detect from a teacher After the image encoder is modified in Stage 1,

we then train the Linear Projection and Box MLP jointly. We use the OWL-ViTlarge as the teacher

to train both components. Using SCE loss, we train the Linear Projection such that the similarity

matrix between the part-names and visual parts matches those of the teacher (Figure 6.27, 1a–c,

2a–c).

39

Given the absence of human-annotated boxes for object parts, we train Box MLP to predict

the same boxes as the predictions by OWL-ViTlarge using DETR losses (Figure 6.27, 2d). In this

Stage 2, the image encoder is frozen while Part MLP is not involved. After 2-stage training, PEEB

can perform zero-shot classification while providing the correspondences between visual parts and

descriptors as faithful explanations.

Finetuning on classification tasks

We further finetune the pre-trained PEEB on downstream tasks, e.g., CUB, NABirds, and

iNaturalist, to further improve its accuracy. In this phase, to adapt to a downstream task, all

components except the text encoder are trained jointly, and the loss for Part MLP is changed from

SCE (contrastive) to CE (classification) while other losses are kept intact.

4.4 State of the Art Explainable Bird Classifier

Explainability and Transparency Many bird classifiers, including prominent models cited in

the literature [15, 22], claim explainability by comparing the input image with a set of learned

part prototypes (Figure 4.2b) or through natural-language concepts (Figure 4.2a). However, these

prototypes are essentially feature vectors that users cannot modify. Moreover, when using textual

concepts, the comparison often spans the entire image, leaving it unclear which specific image

details correspond to a given descriptor [60, 111]. Our PEEB model (Figure 4.2c) innovates by

using direct text input and providing detailed text-to-part mappings and scores for each mapping.

This approach enhances transparency by showing the classification and rationale behind it, making

it superior in clarity to other methods.

State-of-the-Art Performance in Bird Classification Our PEEB model, fine-tuned on the CUB

dataset, achieves unprecedented results among explainable classifiers. Initially, when trained with

the OWL-ViTbase32 backbone, PEEB records a respectable 77.80% accuracy. Pre-training on

the comprehensive Bird-11K dataset significantly boosts this performance, reaching accuracies of

86.73% and 88.80% with two different backbones, as detailed in Table 4.1. PEEB not only surpasses

40

 back: vibrant green coloring
 beak: conical, silver-gray
 belly: rich red hue
 ...
 throat: bright red plumage

(a) textual concept explanations
operate at the image level

(c) PEEB explanations pair up each detected object part with a textual descriptor

Input image

 green back
 long, pointed beak
 yellow or red belly
 ...
 vibrant red throat

Text descriptors

(b) part-based prototypes represent
image patches and not editable by humans

Part prototypesInput image

Painted bunting
0.72

Figure 4.2: Existing explanations are either (a) textual but at the image level; or (b) part-level but
not textual. Combining the best of both worlds, PEEB (c) first matches each detected object part to
a text descriptor, then uses the part-level matching scores to classify the image.

the Deformable ProtoPNet, which achieves an 86.4% accuracy, and ProtoTree, with 87.20%, but

also establishes a new standard for the field, underscoring PEEB’s role as a leading solution in

accuracy and explainability in bird classification. The detailed hyperparameters of the fine-tuned

model are documented in Table 6.8,

4.5 Editable Part-based Design

PEEB directly utilizes the input prompt for classification. Therefore, the user can easily edit

the classifier by changing the definition of a class as shown in Figure 4.3. And unlike CLIP, which

responds in trivial differences for different inputs, PEEB correct leverages the input information for

better classification as shown in Figure 4.4 (See Section 6.3.7 for more examples). We also find that

41

Table 4.1: PEEB is a state-of-the-art model (here, top-1 accuracy on CUB-200) w.r.t. explainable
classifiers in supervised learning. * Five ensembled models.

Methods Model size Backbone Accuracy

Base (ViT) [2021] 22M DeiT-S [2021] 84.28

– Concept bottleneck classifiers
Concept Bottleneck Models [2020] 11M ResNet-18 [2016] 80.10
CPM [2023] 155M ViT-B/16 [2021] 72.00
CDM [2023] 155M ViT-B/16 74.31
LaBo [2023] 427M ViT-L/14 81.90

– Part-based classifiers
ProtoPNet [2019] 22M DeiT-S 84.04
ProtoTree [2021] 92M* ResNet-50 [2016] 87.20*
TesNet [2021] 79M Dense121 [2017] 84.80
Deformable ProtoPNet [2022] 23M ResNet-50 86.40
ProtoPFormer [2022] 22M DeiT-S 84.85

PEEB (ours) – w/o pre-training 155M OWL-ViTbase32 77.80
PEEB (ours) 155M OWL-ViTbase32 86.73
PEEBB16 (ours) 155M OWL-ViTbase16 88.80

a more precise input will result in better classifications (Section 6.3.6). However, due to the fact

that there is a lot of noise in our training data, the current version does not guarantee to provide

correct classification even if the class definition is correct.

4.6 Generalize to Unseen Classes

The ability to generalize to unseen classes is a crucial aspect of vision-language models

[45, 118, 74, 18, 51, 83]. In our evaluation, we utilize the ZSL (Zero-Shot-Learning) split as defined

by Akata et al. on the CUB dataset, along with the Super-Category-Similar/Exclusive (SCS/SCE)

splits proposed by Elhoseiny et al. on both CUB and NABirds. These splits introduce two levels

of difficulty in the ZSL test: SCS (easy) and SCE (hard), intentionally designed based on species

hierarchies to assess different generalization capabilities.

Adhering to the traditional ZSL setting, we exclude all classes from CUB and NABirds during

pre-training and finetune the model using the splits designed by Akata et al. and Elhoseiny et al..

42

crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: distinct black patch
0.30

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with small white square
0.57

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: rusty
0.43

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with black tips
0.74

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

(a) Input image (b) Indigo Bunting 0.0331 (c) Eastern Bluebird 0.0445 (d) Example
Indigo Bunting

PEEB

Explainable
Editable
Bottleneck

Figure 4.3: Given an input image (a) from an unseen class of EasternBluebird, PEEB misclassifies
it into IndigoBunting (b), a visually similar blue bird in CUB-200 (d). To add a new class for
EasternBluebird to the 200-class list that PEEB considers when classifying, we clone the 12 textual
descriptors of IndigoBunting (b) and edit (- -▸) the descriptor of throat and wings (c) to reflect their
identification features described on AllAboutBirds.org (“Male Eastern Bluebirds are vivid, deep
blue above and rusty or brick-red on the throat and breast”). After the edit, PEEB correctly predicts
the input image into EasternBluebird (0.0445) out of 201 classes (c).

We allocate approximately 10% of the training set for validation and select checkpoints based on

the lowest validation loss.

PEEB significantly outperforms all baselines across three test splits (from CUB and NABirds)

by a margin of (+4 to +10 points) in terms of harmonic mean. This performance indicates a robust

generalization of PEEB not only to seen classes, where it achieves an 80.78 v.s. 65.80 lead, but also

to unseen classes, as detailed in Table 4.2. In the easier SCS tests, where the presence of classes is

similar to those in the training set, models that perform well on the training data typically show high

accuracy. However, the more challenging SCE splits, which feature test classes from categories

distinct from those in the training set, provide a stringent measure of a model’s generalization ability.

Here, PEEB excels over all baselines by (+5 to +15 points) in accuracy for the SCE split and by

+2.64 points compared to CLORECLIP .

Moreover, in a further evaluation without any CUB and NABirds classes in the pre-training

phase, PEEB surpasses the performance of both CLIP and M&V methods on the CUBsci and

NABirdssci scenarios. Specifically, PEEB outperforms these baselines by (+10 to +12 points) on

43

https://www.allaboutbirds.org/guide/Eastern_Bluebird/id

Original Descriptors (a) Incorrect Descriptors (b)

BlueJay BlueJay 0.0059 BlueJay 0.0058

M
&

V
[6

0]

0.367

0.360

0.364

0.366

0.363

0.366

0.359

bright blue, white, and black plumage

crest on its head

chunky bird with a full, rounded tail

black band around the neck and head
black, bristle-like feathers covering the
nostrils
blue wings and tail with black banding and white
tips
large, black beak.

0.361
0.326
0.357
0.372
0.363
0.364
0.370
0.364
0.360

bird species
also known as Oriental turtle dove or Rufous
turtle dove
medium-sized dove
predominantly grey or brown body
black and white striped patch on the neck
dark, slender bill
long, rounded tail with a white border
black eyes surrounded by a pale eye-ring
pinkish or reddish legs and feet

Blue Jay 0.6899 (c) Least Tern 0.0611 (d)

PE
E

B
(o

ur
s)

0.871
0.871
0.809
0.876
0.869
0.842
0.828
0.854
0.828
0.857
0.869
0.868

crown: bold blue crest
forehead: vibrant blue hues
nape: transitional blue and white feathers
eyes: curious black orbs
beak: sturdy black bill
throat: white/gray frontal feathering
breast: blended blue and white plumage
belly: white/gray underbelly
back: striking blue feathers
wings: brilliant blue with black bands
legs: strong gray limbs
tail: long, blue, fan-like appendage

0.639
0.502
0.531
0.497
0.721
0.434
0.492
0.423
0.738
0.783
0.441
0.128

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

Figure 4.4: With original descriptors, M&V [60] correctly classifies the input image into BlueJay
(a). Yet, interestingly, when randomly swapping the descriptors of this class with those of other
classes (b), M&V’s top-1 prediction remains unchanged, suggesting that the class names (hidden)
in the prompt have the most influence over the prediction (not the expressive descriptors). In
contrast, PEEB changes its top-1 prediction from BlueJay (c) to LeastTern when the descriptors are
randomized (d).

44

CUB and (+1 to +3 points) on NABirds, as shown in Section 6.3.5. These findings solidly affirm

the superior generalization capability of our method.

Table 4.2: PEEB consistently outperforms other vision-language methods under Harmonic mean
and especially in the hard split (SCE) by (+5 to +15) points, highlighting its generalization capability
on ZSL.

Methods CUB NABirds
Seen Unseen Harmonic Seen Unseen Harmonic

Data split by Akata et al. [3]

CLORECLIP [2023] 65.80 39.10 49.05
n/a

PEEB (ours) 80.78 41.74 55.04

SCS/SCE splits by Elhoseiny et al. [24]

SCS SCE Harmonic SCS SCE Harmonic
(Easy) (Hard) (Easy) (Hard)

S2GA-DET [2018] 42.90 10.90 17.38 39.40 9.70 15.56
GRZSL [2018] 44.08 14.46 21.77 36.36 9.04 14.48
ZEST [2020] 48.57 15.26 23.22 38.51 10.23 16.17
CANZSL [2020] 45.80 14.30 21.12 38.10 8.90 14.43
DGRZSL [2021] 45.48 14.29 21.75 37.62 8.91 14.41
DPZSL [2023] 45.40 15.50 23.11 40.80 8.20 13.66
PEEB (ours) 44.66 20.31 27.92 28.26 24.34 26.15

4.7 Conclusion

PEEB stands out as a transparent and editable classifier to users by grounding the text de-

scriptors to the visual parts in the image (Figure 4.4-bottom). This transparent decision-making

process plays an important role in user understanding. For instance, in Figure 4.4 (upper right),

the challenge of understanding why the model predicts accurately persists, particularly when we

already know that the descriptors are incorrect. In contrast, PEEB’s explanations not only make

errors like the mismatch between throat and wings more apparent but also enable users to adjust

descriptions, thereby improving model accuracy without the need for re-training (Figure 4.3).

We introduce PEEB, a pioneering part-based, explainable, and editable image classifier that

leverages textual descriptors for bird parts. By grounding natural language descriptors with visual

45

features, PEEB brings transparency to its decision-making. Besides, PEEB achieves superior

performance in both GZSL and ZSL settings compared to existing state-of-the-art explainable

models.

Moreover, we contribute to the broader research community by developing the Bird-11K

dataset, which encompasses a diverse range of bird species and presents a valuable resource for

further explorations in fine-grained classification and beyond.

4.8 Limitations

Text encoder may not fully comprehend the bird descriptors Our text encoder, pre-trained on

a broad image-text dataset, may not fully capture the intricate details specific to birds. Furthermore,

CLIP text encoders trained by contrastive learning are known to suffer from the binding problem

and do not understand some logical operators such as “and”, “or”, or negation. PEEB accuracy

depends directly on the quality of the text encoder.

Dependency on image encoder for part visibility The image encoder’s role in determining

the visibility of bird parts in an image poses another limitation. Our model operates under the

assumption that 12 parts are always visible in a bird image, requiring it to score these parts even when

they might not be visually present. In an ideal scenario, the model should learn to assign the absence

part a low score. This approach, which lacks direct supervision, relies heavily on unsupervised

learning derived from class labels. Consequently, the limited dataset size of approximately 290K

training images in Bird-11K may not sufficiently support robust unsupervised learning.

Hallucinations in GPT-4 descriptors The accuracy of our model is directly impacted by the

quality of GPT-4 descriptors. Our empirical analysis across 20 bird classes revealed that, on average,

45% of these descriptors do not accurately reflect the birds’ features (Section 6.3.6). However, we

observed that revising certain descriptors in the CUB dataset led to a significant improvement of

46

+10 points in classification accuracy for those classes (Section 6.3.6). This primitive observation

suggests that PEEB can be further improved if trained with human-labeled descriptors.

47

Chapter 5

Reference

[1] E. Aflalo, M. Du, S.-Y. Tseng, Y. Liu, C. Wu, N. Duan, and V. Lal. Vl-interpret: An

interactive visualization tool for interpreting vision-language transformers. arXiv preprint

arXiv:2203.17247, 2022.

[2] C. Agarwal and A. Nguyen. Explaining image classifiers by removing input features using

generative models. In Proceedings of the Asian Conference on Computer Vision, 2020.

[3] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for image classifi-

cation. IEEE transactions on pattern analysis and machine intelligence, 38(7):1425–1438,

2015.

[4] N. Bansal, C. Agarwal, and A. Nguyen. Sam: The sensitivity of attribution methods to

hyperparameters. In Proceedings of the IEEE conference on computer vision and pattern

recognition, 2020.

[5] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying

interpretability of deep visual representations. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6541–6549, 2017.

[6] T. Berg, J. Liu, S. Woo Lee, M. L. Alexander, D. W. Jacobs, and P. N. Belhumeur. Bird-

snap: Large-scale fine-grained visual categorization of birds. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2011–2018, 2014.

48

[7] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,

J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.

arXiv preprint arXiv:2108.07258, 2021.

[8] W. Brendel and M. Bethge. Approximating CNNs with bag-of-local-features models works

surprisingly well on imagenet. In International Conference on Learning Representations,

2019.

[9] H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and stuff classes in context. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1209–1218, 2018.

[10] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end

object detection with transformers. In European conference on computer vision, pages

213–229. Springer, 2020.

[11] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-cam++: Gener-

alized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE

winter conference on applications of computer vision (WACV), pages 839–847. IEEE, 2018.

[12] H. Chefer, S. Gur, and L. Wolf. Generic attention-model explainability for interpreting

bi-modal and encoder-decoder transformers. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pages 397–406, October 2021.

[13] H. Chefer, S. Gur, and L. Wolf. Generic attention-model explainability for interpreting

bi-modal and encoder-decoder transformers. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 397–406, 2021.

[14] H. Chefer, S. Gur, and L. Wolf. Transformer interpretability beyond attention visualization.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 782–791, 2021.

49

[15] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This looks like that: deep learning

for interpretable image recognition. Advances in neural information processing systems, 32,

2019.

[16] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic

image segmentation with deep convolutional nets, atrous convolution, and fully connected

crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[17] P. Chen, Q. Li, S. Biaz, T. Bui, and A. Nguyen. gscorecam: What objects is clip looking at?

In Proceedings of the Asian Conference on Computer Vision, pages 1959–1975, 2022.

[18] Z. Chen, J. Li, Y. Luo, Z. Huang, and Y. Yang. Canzsl: Cycle-consistent adversarial networks

for zero-shot learning from natural language. In Proceedings of the IEEE/CVF winter

conference on applications of computer vision, pages 874–883, 2020.

[19] J. Choe, S. J. Oh, S. Lee, S. Chun, Z. Akata, and H. Shim. Evaluating weakly supervised

object localization methods right. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 3133–3142, 2020.

[20] R. M. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva. Comparison of deep neural

networks to spatio-temporal cortical dynamics of human visual object recognition reveals

hierarchical correspondence. Scientific reports, 6(1):1–13, 2016.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

[22] J. Donnelly, A. J. Barnett, and C. Chen. Deformable protopnet: An interpretable image

classifier using deformable prototypes. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10265–10275, 2022.

50

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth

16x16 words: Transformers for image recognition at scale. In International Conference

on Learning Representations, 2021. URL https://openreview.net/forum?id=

YicbFdNTTy.

[24] M. Elhoseiny, Y. Zhu, H. Zhang, and A. Elgammal. Link the head to the" beak": Zero shot

learning from noisy text description at part precision. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 5640–5649, 2017.

[25] L. Engstrom, A. Ilyas, S. Santurkar, and D. Tsipras. Robustness (python library), 2019. URL

https://github.com/MadryLab/robustness.

[26] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, B. Tran, and A. Madry. Adversarial

robustness as a prior for learned representations, 2020. URL https://openreview.

net/forum?id=rygvFyrKwH.

[27] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful per-

turbation. In Proceedings of the IEEE international conference on computer vision, pages

3429–3437, 2017.

[28] R. Fu, Q. Hu, X. Dong, Y. Guo, Y. Gao, and B. Li. Axiom-based grad-cam: Towards accurate

visualization and explanation of cnns. arXiv preprint arXiv:2008.02312, 2020.

[29] Fédération Cynologique Internationale (FCI). Nomenclature of the breeds recognised by the

fci, 2023. URL https://www.fci.be/en/Nomenclature/. Accessed: 2014-02-

25.

[30] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 2414–2423, 2016.

51

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://github.com/MadryLab/robustness
https://openreview.net/forum?id=rygvFyrKwH
https://openreview.net/forum?id=rygvFyrKwH
https://www.fci.be/en/Nomenclature/

[31] R. Geirhos, C. R. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A. Wichmann. General-

isation in humans and deep neural networks. In Advances in Neural Information Processing

Systems, pages 7538–7550, 2018.

[32] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-

trained CNNs are biased towards texture; increasing shape bias improves accuracy and

robustness. In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=Bygh9j09KX.

[33] J. Gildenblat and contributors. Pytorch library for cam methods. https://github.com/

jacobgil/pytorch-grad-cam, 2021.

[34] J. Gilmer, N. Ford, N. Carlini, and E. Cubuk. Adversarial examples are a natural consequence

of test error in noise. In International Conference on Machine Learning, pages 2280–2289,

2019.

[35] G. Goh, N. Cammarata, C. Voss, S. Carter, M. Petrov, L. Schubert, A. Radford, and C. Olah.

Multimodal neurons in artificial neural networks. Distill, 6(3):e30, 2021.

[36] D. Gunning, E. Vorm, J. Y. Wang, and M. Turek. Darpa’s explainable ai (xai) program: A

retrospective. Applied AI Letters, 2(4):e61, 2021. doi: https://doi.org/10.1002/ail2.61. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/ail2.61.

[37] T. Gupta, A. Vahdat, G. Chechik, X. Yang, J. Kautz, and D. Hoiem. Contrastive learning for

weakly supervised phrase grounding. In European Conference on Computer Vision, pages

752–768. Springer, 2020.

[38] C. Han, H. Pei, X. Du, and H. Ji. Zero-shot classification by logical reasoning on natural

language explanations. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Findings of the

Association for Computational Linguistics: ACL 2023, pages 8967–8981, Toronto, Canada,

July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.

571. URL https://aclanthology.org/2023.findings-acl.571.

52

https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://onlinelibrary.wiley.com/doi/abs/10.1002/ail2.61
https://aclanthology.org/2023.findings-acl.571

[39] J. He, S. Yang, S. Yang, A. Kortylewski, X. Yuan, J.-N. Chen, S. Liu, C. Yang, Q. Yu, and

A. Yuille. Partimagenet: A large, high-quality dataset of parts. In European Conference on

Computer Vision, pages 128–145. Springer, 2022.

[40] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778, 2016.

[41] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common

corruptions and perturbations. In International Conference on Learning Representations,

2019. URL https://openreview.net/forum?id=HJz6tiCqYm.

[42] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint

arXiv:1606.08415, 2016.

[43] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convo-

lutional networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4700–4708, 2017.

[44] ImageMagick. Imagemagick, 2020. URL https://imagemagick.org.

[45] Z. Ji, Y. Fu, J. Guo, Y. Pang, Z. M. Zhang, et al. Stacked semantics-guided attention model

for fine-grained zero-shot learning. Advances in neural information processing systems, 31,

2018.

[46] P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng, and Y. Wei. Layercam: Exploring hierar-

chical class activation maps for localization. IEEE Transactions on Image Processing, 30:

5875–5888, 2021.

[47] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained image

categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual categorization

(FGVC), volume 2. Citeseer, 2011.

53

https://openreview.net/forum?id=HJz6tiCqYm
https://imagemagick.org

[48] G. Kim and J. C. Ye. Diffusionclip: Text-guided image manipulation using diffusion models.

arXiv preprint arXiv:2110.02711, 2021.

[49] W. Kim, B. Son, and I. Kim. Vilt: Vision-and-language transformer without convolution or

region supervision. In International Conference on Machine Learning, pages 5583–5594.

PMLR, 2021.

[50] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang. Concept

bottleneck models. In International conference on machine learning, pages 5338–5348.

PMLR, 2020.

[51] S. Kousha and M. A. Brubaker. Zero-shot learning with class description regularization.

arXiv preprint arXiv:2106.16108, 2021.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems, pages 1097–1105,

2012.

[53] G. Kwon and J. C. Ye. Clipstyler: Image style transfer with a single text condition. arXiv

preprint arXiv:2112.00374, 2021.

[54] J. Lei, L. Li, L. Zhou, Z. Gan, T. L. Berg, M. Bansal, and J. Liu. Less is more: Clipbert

for video-and-language learning via sparse sampling. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 7331–7341, 2021.

[55] Q. Li, L. Mai, M. A. Alcorn, and A. Nguyen. A cost-effective method for improving and

re-purposing large, pre-trained gans by fine-tuning their class-embeddings. In Proceedings

of the Asian Conference on Computer Vision, 2020.

[56] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.

Microsoft coco: Common objects in context. In European conference on computer vision,

pages 740–755. Springer, 2014.

54

[57] Z. C. Lipton. The mythos of model interpretability: In machine learning, the concept of

interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

[58] H. Luo, L. Ji, M. Zhong, Y. Chen, W. Lei, N. Duan, and T. Li. Clip4clip: An empirical study

of clip for end to end video clip retrieval. arXiv preprint arXiv:2104.08860, 2021.

[59] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models

resistant to adversarial attacks. In International Conference on Learning Representations,

2018. URL https://openreview.net/forum?id=rJzIBfZAb.

[60] S. Menon and C. Vondrick. Visual classification via description from large language models.

In The Eleventh International Conference on Learning Representations, 2023. URL https:

//openreview.net/forum?id=jlAjNL8z5cs.

[61] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-

hendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby.

Simple open-vocabulary object detection with vision transformers. ECCV, 2022.

[62] M. Nauta, R. Van Bree, and C. Seifert. Neural prototype trees for interpretable fine-grained

image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 14933–14943, 2021.

[63] nerdyrodent. nerdyrodent/vqgan-clip: Just playing with getting vqgan+clip running

locally, rather than having to use colab. https://github.com/nerdyrodent/

VQGAN-CLIP, 7 2022. (Accessed on 05/18/2022).

[64] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confi-

dence predictions for unrecognizable images. In Computer Vision and Pattern Recognition

(CVPR), 2015.

55

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=jlAjNL8z5cs
https://openreview.net/forum?id=jlAjNL8z5cs
https://github.com/nerdyrodent/VQGAN-CLIP
https://github.com/nerdyrodent/VQGAN-CLIP

[65] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred

inputs for neurons in neural networks via deep generator networks. In Advances in neural

information processing systems, pages 3387–3395, 2016.

[66] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the

different types of features learned by each neuron in deep neural networks. In Visualization

for Deep Learning Workshop, ICML conference, 2016.

[67] A. Nguyen, J. Yosinski, and J. Clune. Understanding neural networks via feature visualization:

A survey. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pages

55–76. Springer, 2019.

[68] T. Oikarinen, S. Das, L. M. Nguyen, and T.-W. Weng. Label-free concept bottleneck

models. In The Eleventh International Conference on Learning Representations, 2023. URL

https://openreview.net/forum?id=FlCg47MNvBA.

[69] OpenAI. openai/clip: Contrastive language-image pretraining. https://github.com/

openai/CLIP, 07 2022. (Accessed on 07/06/2022).

[70] OpenAI. Gpt-4 technical report, 2023.

[71] K. P. Panousis, D. Ienco, and D. Marcos. Hierarchical concept discovery models: A concept

pyramid scheme. arXiv preprint arXiv:2310.02116, 2023.

[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-

tala. Pytorch: An imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems 32, pages 8024–8035. Cur-

ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

56

https://openreview.net/forum?id=FlCg47MNvBA
https://github.com/openai/CLIP
https://github.com/openai/CLIP
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[73] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischinski. Styleclip: Text-driven

manipulation of stylegan imagery. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 2085–2094, 2021.

[74] T. Paz-Argaman, R. Tsarfaty, G. Chechik, and Y. Atzmon. ZEST: Zero-shot learning from text

descriptions using textual similarity and visual summarization. In T. Cohn, Y. He, and Y. Liu,

editors, Findings of the Association for Computational Linguistics: EMNLP 2020, pages 569–

579, Online, Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.

findings-emnlp.50. URL https://aclanthology.org/2020.findings-emnlp.

50.

[75] V. Petsiuk, A. Das, and K. Saenko. Rise: Randomized input sampling for explanation of

black-box models. arXiv preprint arXiv:1806.07421, 2018.

[76] T. M. Pham, P. Chen, T. Nguyen, S. Yoon, T. Bui, and A. Nguyen. Peeb: Part-based

image classifiers with an explainable and editable language bottleneck. arXiv preprint

arXiv:2403.05297, 2024.

[77] P. J. Phillips, C. A. Hahn, P. C. Fontana, D. A. Broniatowski, and M. A. Przybocki. Four

principles of explainable artificial intelligence. Gaithersburg, Maryland, 2020.

[78] G. Piosenka. Birds 525 - species image classification. 02 2022. URL https://www.

kaggle.com/datasets/gpiosenka/100-bird-species.

[79] PyTorch. torchvision.models — pytorch master documentation. https://

pytorch.org/docs/stable/torchvision/models.html, 2019. (Accessed on

09/21/2019).

[80] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language

supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR,

2021.

57

https://aclanthology.org/2020.findings-emnlp.50
https://aclanthology.org/2020.findings-emnlp.50
https://www.kaggle.com/datasets/gpiosenka/100-bird-species
https://www.kaggle.com/datasets/gpiosenka/100-bird-species
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

[81] L. Radin, S. Osher, and E. Fatemi. Non-linear total variation noise removal algorithm. Phys

D, 60:259–268, 1992.

[82] R. Rajalingham, E. B. Issa, P. Bashivan, K. Kar, K. Schmidt, and J. J. DiCarlo. Large-

scale, high-resolution comparison of the core visual object recognition behavior of humans,

monkeys, and state-of-the-art deep artificial neural networks. Journal of Neuroscience, 38

(33):7255–7269, 2018.

[83] Y. Rao, Z. Yang, S. Zeng, Q. Wang, and J. Pu. Dual projective zero-shot learning using

text descriptions. ACM Transactions on Multimedia Computing, Communications and

Applications, 19(1):1–17, 2023.

[84] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet classifiers generalize to

imagenet? In International Conference on Machine Learning, pages 5389–5400. PMLR,

2019.

[85] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese. Generalized

intersection over union: A metric and a loss for bounding box regression. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[86] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and

use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

[87] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.

Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[88] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. Interna-

tional journal of computer vision, 115(3):211–252, 2015.

58

[89] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry. Do adversarially robust

imagenet models transfer better? Advances in Neural Information Processing Systems, 33,

2020.

[90] S. Santurkar, A. Ilyas, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Im-

age synthesis with a single (robust) classifier. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems, volume 32, pages 1262–1273. Curran Associates,

Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf.

[91] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:

Visual explanations from deep networks via gradient-based localization. In Proceedings of

the IEEE international conference on computer vision, pages 618–626, 2017.

[92] T. Serre. Deep learning: the good, the bad, and the ugly. Annual review of vision science, 5:

399–426, 2019.

[93] E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng. The woman worked as a babysitter: On

biases in language generation. arXiv preprint arXiv:1909.01326, 2019.

[94] H. Song, L. Dong, W.-N. Zhang, T. Liu, and F. Wei. Clip models are few-shot learners:

Empirical studies on vqa and visual entailment. arXiv preprint arXiv:2203.07190, 2022.

[95] S. Subramanian, W. Merrill, T. Darrell, M. Gardner, S. Singh, and A. Rohrbach. Re-

clip: A strong zero-shot baseline for referring expression comprehension. arXiv preprint

arXiv:2204.05991, 2022.

[96] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.

Intriguing properties of neural networks. In International Conference on Learning Represen-

tations, 2014. URL http://arxiv.org/abs/1312.6199.

59

https://proceedings.neurips.cc/paper/2019/file/6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf
http://arxiv.org/abs/1312.6199

[97] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[98] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-

efficient image transformers & distillation through attention. In International conference on

machine learning, pages 10347–10357. PMLR, 2021.

[99] P. Vaibhav Rokde, Matthew Jansen. Indian birds species image classification, 2023. URL

https://www.kaggle.com/datasets/ichhadhari/indian-birds. Dataset

originally sourced from eBird, Cornell Lab of Ornithology. https://media.ebird.org/.

[100] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry, P. Ipeirotis, P. Perona, and S. Belongie.

Building a bird recognition app and large scale dataset with citizen scientists: The fine print

in fine-grained dataset collection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 595–604, 2015.

[101] G. Van Horn, E. Cole, S. Beery, K. Wilber, S. Belongie, and O. Mac Aodha. Benchmarking

representation learning for natural world image collections. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 12884–12893, 2021.

[102] T. Verge. What a machine learning tool that turns obama white can (and can’t)

tell us about ai bias - the verge. https://www.theverge.com/21298762/

face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias,

7 2022. (Accessed on 05/19/2022).

[103] Y. Vinker, E. Pajouheshgar, J. Y. Bo, R. C. Bachmann, A. H. Bermano, D. Cohen-Or,

A. Zamir, and A. Shamir. Clipasso: Semantically-aware object sketching. arXiv preprint

arXiv:2202.05822, 2022.

60

https://www.kaggle.com/datasets/ichhadhari/indian-birds
https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias

[104] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-

2011 dataset. 2011. URL https://authors.library.caltech.edu/27452/1/

CUB_200_2011.pdf.

[105] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-cam:

Score-weighted visual explanations for convolutional neural networks. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition workshops, pages 24–25,

2020.

[106] J. Wang, H. Liu, X. Wang, and L. Jing. Interpretable image recognition by constructing

transparent embedding space. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 895–904, 2021.

[107] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,

T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-

the-art natural language processing. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, Oct.

2020. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/2020.emnlp-demos.6.

[108] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning—a comprehensive

evaluation of the good, the bad and the ugly. IEEE transactions on pattern analysis and

machine intelligence, 41(9):2251–2265, 2018.

[109] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le. Adversarial examples improve

image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 819–828, 2020.

61

https://authors.library.caltech.edu/27452/1/CUB_200_2011.pdf
https://authors.library.caltech.edu/27452/1/CUB_200_2011.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[110] M. Xue, Q. Huang, H. Zhang, L. Cheng, J. Song, M. Wu, and M. Song. Protopformer:

Concentrating on prototypical parts in vision transformers for interpretable image recognition.

arXiv preprint arXiv:2208.10431, 2022.

[111] Y. Yang, A. Panagopoulou, S. Zhou, D. Jin, C. Callison-Burch, and M. Yatskar. Language in

a bottle: Language model guided concept bottlenecks for interpretable image classification.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 19187–19197, 2023.

[112] D. Yin, R. Gontijo Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer. A fourier perspective on

model robustness in computer vision. Advances in Neural Information Processing Systems,

32:13276–13286, 2019.

[113] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural

networks? In Advances in Neural Information Processing Systems, pages 3320–3328, 2014.

[114] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual

denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2:

67–78, 2014.

[115] Q. Zhang, L. Rao, and Y. Yang. Group-cam: Group score-weighted visual explanations for

deep convolutional networks. arXiv preprint arXiv:2103.13859, 2021.

[116] M. Zheng, P. Gao, R. Zhang, K. Li, X. Wang, H. Li, and H. Dong. End-to-end object

detection with adaptive clustering transformer. 2021.

[117] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for

discriminative localization. 2016.

[118] Y. Zhu, M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal. A generative adversarial approach

for zero-shot learning from noisy texts. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1004–1013, 2018.

62

Chapter 6

Appendix

6.1 Shape and Simplicity (Chapter 2) Supplementary Materials

6.1.1 Shapeless Images

Stylized ImageNet To construct a set of stylized ImageNet images (see Fig. 2.1e), we took all

ImageNet-CL images (Sec. 2.2) and changed their textures via a stylization procedure in [32], which

harnesses the style transfer technique [30] to apply a random style to each ImageNet “content”

image.

B&W images For all ImageNet-CL images, we used the same process described in [32] to generate

silhouettes, but we did not manually select or modify the images. We used ImageMagick [44] to

binarize ImageNet images into B&W images via the following steps:

convert image.jpeg image.bmp

potrace -svg image.bmp -o image.svg

rsvg-convert image.svg > image.jpeg

Silhouette For all ImageNet-CL images, we obtained their segmentation maps via a PyTorch

DeepLab-v2 model [16] pre-trained on MS COCO-Stuff. We used the ImageNet-CL images that

belong to a set of 16 COCO coarse classes in [32] (e.g. bird, bicycle, airplane, etc.).

When evaluating classifiers, an image is considered correctly labeled if its ImageNet predicted

label is a subclass of the correct class among the 16 COCO classes (Fig. 2.1g; mapping sandpiper

→ bird).

63

6.1.2 Convolutional layers used in Network Dissection analysis

For both standard and robust models, we ran NetDissect on 5 convolutional layers in AlexNet

[52], 12 in GoogLeNet [97], and 5 in ResNet-50 architectures [40]. For each layer, we use after-

ReLU activations (if ReLU exists).

AlexNet layers: conv1, conv2, conv3, conv4, conv5. Refer to these names in Krizhevsky et al.

[52].

GoogLeNet layers: conv1, conv2, conv3, inception3a, inception3b, inception4a, inception4b,

inception4c, inception4d, inception4e, inception5a, inception5b

Refer to these names in PyTorch code https://github.com/pytorch/vision/

blob/master/torchvision/models/googlenet.py#L83-L101.

ResNet-50 layers: conv1, layer1, layer2, layer3, layer4

Refer to these names in PyTorch code https://github.com/pytorch/vision/

blob/master/torchvision/models/resnet.py#L145-L155).

6.1.3 Kernel smoothness visualization

We visualize the conv1 weights of the 6 models and plot them side by side to compare their

kernel smoothness (Fig. 6.1). The kernels in R models a consistently smoother than its counter

part. For a more straight forward visualization, we use Spearman rank correlation score to pair the

similar kernels in AlexNet and AlexNet-R (Fig. 6.2).

6.1.4 Object and color detectors of AlexNet

We compared the layer-wise difference of object and color detectors of AlexNet and AlexNet-R

(Fig. 6.3). We can see in Fig. 6.3a that AlexNet has more object detectors and fewer color detectors

compared to AlexNet-R.

64

https://github.com/pytorch/vision/blob/master/torchvision/models/googlenet.py#L83-L101
https://github.com/pytorch/vision/blob/master/torchvision/models/googlenet.py#L83-L101
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L145-L155
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L145-L155

6.1.5 Total variance (TV) of AlexNet & AlexNet-R on clean/noisy images

The total variances of AlexNet & AlexNet-R plot (Fig. 6.4) shows that the early layer i.e.

conv1 in AlexNet-R can filtered out Gaussian noise. The total variances of clean and noisy input

results in smilar value in conv1 in AlexNet-R, this means the noise has been filtered by conv1.

6.1.6 ImageNet-C evaluation

In Table 6.1, we evaluate the validation accuracy of 6 models on 15 common types of image

corruptions in ImageNet-C. It turns out that shape biased model does not necessary mean better

generalization on these image corruptions.

Table 6.1: Top-1 accuracy of 6 models (in %) on all 15 types of image corruptions in ImageNet-C
[41]. On average over all 15 distortion types, R models underperform their standard counterparts.

AlexNet GoogLeNet ResNet
Standard Robust Standard Robust Standard Robust adv-prop PGD1 adv-prop PGD5

(a) Noise
Gaussian 11.05 56.10 56.34 26.78 38.43 45.03 49.53 56.39
Shot 11.15 53.22 50.43 24.66 35.03 44.07 47.56 52.85
Impulse 8.93 52.49 42.10 24.90 38.40 41.68 49.53 52.39

(b) Blur

Defocus 24.34 28.15 39.63 26.52 43.77 37.95 49.71 56.06
Glass 22.76 44.50 22.62 43.17 20.71 51.53 30.38 37.74
Motion 33.87 41.74 44.24 41.25 44.92 50.16 48.27 54.63
Zoom 38.86 44.27 42.58 43.61 45.16 52.20 49.59 54.97

(c) Weather

Snow 26.59 26.91 52.78 15.60 42.13 40.39 46.01 51.46
Frost 21.46 13.85 46.14 8.38 37.72 33.51 43.88 50.66
Fog 27.86 1.64 64.37 12.30 56.78 3.81 54.81 58.64
Brightness 77.61 62.67 91.60 51.14 85.67 79.44 86.76 88.30

(d) Digital

Contrast 18.24 2.06 78.38 22.63 53.67 3.46 56.57 61.63
Elastic 75.97 80.98 78.18 77.15 67.86 82.11 74.23 78.44
Pixelate 57.94 79.46 82.47 79.35 62.40 83.21 67.88 76.38
JPEG 72.82 85.07 80.27 81.72 73.66 85.51 79.75 82.01

(e) Extra

Speckle Noise 17.55 58.42 51.32 31.31 41.74 52.57 52.80 58.07
Gaussian Blur 28.68 31.26 45.52 30.36 47.56 41.70 55.68 60.43
Spatter 28.68 31.26 45.52 30.36 47.56 41.70 55.68 60.43
Saturate 46.90 63.66 65.36 57.48 58.58 70.72 66.21 71.44

mean Accuracy 37.16 47.34 59.38 40.34 51.70 51.72 57.86 62.80

6.1.7 Examples of shape-less and texture-less images

We randomly choose one image in 7 COCO coarser classes (out of 16) and plot the correspond-

ing shape-less and texture-less version (Fig. 6.5).

65

6.1.8 Visualizing channel preference via cue-conflict and NetDissect

In Fig. 6.6- 6.8, Top is the top-49 images of the channels (Similar to Fig. 2.7). On the Middle

& Bottom, we zero-out the corresponding channel and re-run the conflict test to find out the images

that were mis-classified. i.e. Fig.6.6 the clock images in Middle were classified into shape category

by cue-conflict test. After zeroing-out the channel, the network lose the ability to classify the image

into shape category.

6.2 gScoreCAM (Chapter 3) supplementary materials

6.2.1 Experiments & Findings

In order to directly compare with performance, we use weakly supervised object localization

(WSL) to evaluate the heatmaps generated by different methods in Section 6.2.4. This evaluation

gives information on how accurate the generated heatmap is with respect to the target. In our

experiments , We find that gScoreCAM is the best method in COCO and PartImageNet (see

Table 3.2 for details).

In this section, we first introduce some ablation studies (Section 6.2.2) to explain the choice of

hyperparameter k and gradient dimension reduction. Then, we study why gScoreCAM is better than

other CAM-based methods in Section 6.2.3. With the choice of our design, we conduct a systematic

WSL evaluation

in Section 6.2.4. To better understand these WSL results, we further study how they perform in

different scenarios, e.g., object size and number of objects, in Section 6.2.5. Lastly, we conduct

the same experiment as in Section 6.2.4 but for a different model (RN50x4), which shows that our

method is consistently better than others.

66

6.2.2 Ablation study of gScoreCAM

We first introduce why we set k = 300 in our proposed method by studying how the hyper-

parameter k affects the WSL performance. We then compare WSL performance using different

pooling methods to rank the channels.

Effect of number of channels

From Table 6.2, we see that gScoreCAM reaches its peak performance as the number of

channels increases to 500. We choose k = 300 to conduct most of our experiments since it has

similar performance to k = 500 but runs much faster (at only 60% of the run-time).

Table 6.2: k = 300 is the smallest number of channels that yield a high localization accuracy on
ImageNet-v2 and COCO.

Number of ImageNet-v2 [84] COCO [56]
channels (MaxBoxAcc) (BoxAcc)

300 (random) 55.12 18.55

20 49.83 15.72
100 54.97 19.25
200 53.75 20.50
300 56.61 20.83
400 56.60 20.89
500 57.38 20.89
600 56.55 20.89

Table 6.3: Taking the mean of the channel-wise gradients yields the highest localization accuracy
when k = 300.

ImageNet-v2 [84] COCO [56]
(MaxBoxAcc) (BoxAcc)

Mean 56.61 20.83

Max pooling 56.46 20.62

Average pooling 54.57 20.35

67

Effects on the choice of gradient dimension reduction

To use the gradient to guide us in choosing important channels, we need to reduce the dimen-

sions of the gradient from Rc×w×h to Rc. Here, we study some of the most common methods, mean,

Max-Pooling, and Average-Pooling on gScoreCAM. As the result shows in Table 6.3, the best

method is the simple mean value. This result coincides interestingly with the choice of GradCAM

[91].

6.2.3 Why gScoreCAM is better in weighting the activation maps?

This section aims to examine weights quality by measuring levels of overlap between the target

and activation map. Therefore, we design an experiment that directly measures the quality of the

weights used by different methods. We compare methods that directly weigh the activation maps

(GradCAM, xGradCAM, GradCAM++, ScoreCAM, and gScoreCAM) and find that gScoreCAM is

the best among them. We also measure the noise level of the weighted activation map (Table 6.4)

with Total Variation [81]. Note that the noise level can not directly reflect the performance of the

object localization but instead indicates the confidence of the visualizing method.

gScoreCAM is the best weighting system among the candidates

Experiment We design an experiment to measure the quality of the weighting systems by

directly measuring the level of overlap of the weighted activation maps and the ground truth. More

specifically, we first measure the area under the curve (AUC) of the IoU over different binary

thresholds (e.g., τ ∈ [0.0 ∶ 0.05 ∶ 0.95]) for each activation map that CAM-based methods use.

We then compute the weighted sum of the corresponding AUC with the weights given by the

method. Finally, we average the weighted AUC of all testing samples. Note that in some methods

(GradCAM, xGradCAM, GradCAM++) in which the weights are not summed to one, we first

discard the negative values and divide the remaining by its sum. This will provide us the upper

68

bound of the mean weighted AUC. In this experiment, we use 4000 object-image pairs with 50

samples per class in the COCO training set. We set a baseline by simply assuming that all activation

maps have equal weights.

Results We find that the gScoreCAM weighting is 2x better than the upper bound of GradCAM

and slightly better than ScoreCAM (Table 6.4). The upper bound of the mean weighted AUC of

GradCAM (in ImageNet-v2) is actually similar to the baseline, which explains why the performance

of GradCAM is worse than the Gaussian noise baseline in [19]. Another interesting fact is that, on

average, the best IoU of the activation maps is about 0.76. This indicates that the model indeed

leverages the correct information (target object) during the process most of the time. Note that we

are not sure how the model will utilize this information; this just reminds us that the image encoder

is capable of finding the target.

Table 6.4: We directly evaluate the weighting of different CAM-based methods and found that
gScoreCAM is the best among them. The uniform baseline is simply averaging all the activation
maps. The total variation of the heatmap is generated by different methods. It gives us information
about how noisy the heatmap is. The lower Total Variation means that the heatmap tends to be less
noisy.

Mean weighted AUC Mean Total Variation

Baseline 0.0380 1745 ± 268

GradCAM [91] 0.0390 885 ± 484

xGradCAM [28] 0.0421 1090 ± 657

GradCAM++ [11] 0.0357 1500 ± 458

ScoreCAM [105] 0.0881 1363 ± 391

gScoreCAM (ours) 0.0936 1301 ± 422

gScoreCAM is less noisy compared to ScoreCAM

69

Experiment We use 10,000 randomly sampled object-image pairs from the COCO validation set

in this experiment. We compute the mean total variation of the heatmaps generated by different

methods.

Results The total variation gives us a statistical view of the noise level of the resulting heatmap

from different methods. We can see that gScoreCAM is statistically less noisy than ScoreCAM in

Table 6.4. An interesting result is that GradCAM is the least noisy method. Although we do want

the resulting heatmap to be less noisy, the level of noise itself can not guarantee better performance.

Why GradCAM is the least noisy method? As discussed above, GradCAM tends to give a much

cleaner and lower coverage heatmap compared to other methods. We study the weighted activation

maps of GradCAM over 4,000 random samples and find that the average resulting heatmap is

entirely negative. Statistically, about 47% of the weights in GradCAM are negative (averaged in

4,000 samples). On the other hand, the weights of gScoreCAM and ScoreCAM are all positive,

which leads to higher Total Variation and hence, a nosier heatmap. Note that the activation maps are

after ReLU; therefore, all the activation maps are positive.

6.2.4 Zero-shot Object localization

We evaluate different visualization methods based on their zero-shot object localization per-

formance. Thanks to CLIP, we are able to directly test the object/part localization in different

datasets without fine-tuning. Since the CAM-based methods aim to give the corresponding area

of a class/prompt, measuring the performance of localization will be a direct measurement of the

visualization results.

Evaluation Results

ScoreCAM and gScoreCAM are the best methods among the tests From the object localization

test on ImageNet-v2, COCO, and PartImageNet in Table 3.2, we can see that ScoreCAM and

gScoreCAM consistently outperform other methods. In particular, they are about 1.5-4 times better

in COCO and 1.2-2 times better in PartImageNet compared to other methods.

70

gScoreCAM runs 8 times faster than ScoreCAM Since the visualization methods are model

dependent, we will measure the run-time by its approximate run-time and the forward/backward

passes required by these methods. We measure the average run time (in seconds) for each image-

prompt pair under different CAM methods and report in Table 3.2. The average run-time is measured

by averaging the total time of 200 samples on a single Nvidia 1080Ti GPU.

The required forward pass of ScoreCAM is 10 times more than gScoreCAM, which means

that theoretically it needs 10 times more computation and results in 10 times longer run-time. In our

approximate experiments, the actual run-time of gScoreCAM is about 8 times less than ScoreCAM.

gScoreCAM performs better on complex tasks The object localization task on ImageNet-v2

is considered relatively "simple" because most of the test images are object-centric and a center

Gaussian blur could reach 52.5% accuracy as reported in [19]. However, the same task on COCO and

PartImageNet is much harder due to the variety of target sizes, shapes, and locations. Interestingly,

gScoreCAM performs better on these harder tasks than ScoreCAM.

Apply gScoreCAM to ViT-based CLIP Although gScoreCAM is designed for the CNN-based

model, we can also apply it to the ViT-based model by reshaping the embedding as we discussed in

Section 3.3.2. As shown in Table 3.2, we can achieve a similar performance compared to HilaCAM,

which is the state-of-the-art method to visualize ViT. One interesting note is that HilaCAM only

pays attention to generating heat maps, and our method only uses activation. Despite the enormous

differences in the approaches, both techniques end up giving similar results.

6.2.5 Why does gScoreCAM perform better in COCO and PartImageNet?

From Table 3.2 we find that gScoreCAM is slightly worse in ImageNet-v2 but better in COCO

and PartImageNet compared to ScoreCAM. In this section, we conduct two sets of controlled

experiments to find out why gScoreCAM is better in these two datasets.

71

gScoreCAM performs better when there are more objects in an image

Experiment We conduct a controlled experiment based on the number of objects in an image.

Specifically, we evaluate the performance of different methods when the number of classes (one

object per class) are different in the image. For diversity, we select images that each class only have

one instance. We use a union of the COCO and LVIS labels in this experiment because we can have

a more accurate label for each image. We directly measure the mean IoU in each group using the

same method as in Section 6.2.4. We test the number of classes from 1-9 in an image and split them

into three groups, 1-3 , 4-6, and 7-9 classes with 1150, 2790, and 874 samples correspondingly.

Results We find that as the number of classes per image increases, the IoU of all methods decreases.

gScoreCAM has the lowest IoU drop among them, resulting in better performance when the number

of classes per image is greater than 4. The median IoU of gScoreCAM is approximately 0.03 higher

than ScoreCAM and 0.07 to 0.10 higher than GradCAM and HilaCAM, as shown in Figure 6.13a.

This advantage makes gScoreCAM perform better in COCO given that COCO is a dataset that often

has multiple objects in an image.

gScoreCAM can better localize small or part of the object

Experiment Similar to Section 6.2.5, we conduct another controlled experiment on COCO and

PartImagenet based on the size of the target part/object. In this experiment, we divide the test

samples into three groups according to the target ratio. The target ratio is measured by the area of

the target part/object over the area of the full image. We simply divide images into three groups

by the target ratio: small (0-0.33), medium (0.33-0.67), and large (0.67-1). Where COCO and

PartImageNet have (13811, 607, 210) and (12727, 1222, 307) samples in the corresponding group.

Results As Figures 6.13b and 6.13c show that gScoreCAM consistently has a higher IoU in the

small object groups, while ScoreCAM always has a higher IoU in the large groups. Combined with

the results in Section 6.2.3, we find that ScoreCAM tends to generate a large and possibly noisy

heatmap, resulting in better performance in the WSL task when the object is large. On the other

72

hand, gScoreCAM can better locate small objects or parts. This capability is important because, in

terms of explainability, we would like the resulting heatmap to be as accurate as possible.

6.2.6 gScoreCAM consistently better on different CLIP models

We repeat the WSOL experiments in Section 6.2.4 for RN50x4 to confirm that our proposed

method can generally be applied to different models. For generality (i.e. no further hyperparameter

tuning), we use the same hyperparameters k = 300 as in Section 6.2.4.

Results Our proposed method is consistently the best in terms of zero-shot localization. As shown

in Table 6.5, the accuracy of gScoreCAM is around 2 to 4× higher than other methods (except

ScoreCAM). It suggests that gScoreCAM could be applied to other variations of CLIP without

hyperparameter tuning.

Table 6.5: For both CLIP RN50x16 and RN50x4, gScoreCAM is the most accurate localization
method in the CAM-based family on ImageNet-v2, COCO, and PartImageNet.

ImageNet-v2 [84] COCO [56] PartImageNet [39]

RN50x16 RN50x4 RN50x16 RN50x4 RN50x16 RN50x4

GradCAM [91] 38.9 32.61 11.59 9.86 10.91 9.60
xGradCAM [28] 24.24 18.94 5.6 6.11 6.57 5.01

GradCAM++ [11] 44.15 46.23 9.68 10.68 2.93 8.00
LayerCAM [46] 43.7 47.01 9.19 9.87 12.42 13.36

GroupCAM [115] 50.85 22.77 13.06 1.29 6.16 3.01
ScoreCAM [105] 57.78 57.99 20.43 21.31 15.67 15.39

gScoreCAM (ours) 56.61 58.76 20.83 22.17 16.34 16.22

6.2.7 Qualitative study via CLIP

CLIP had been shown to have a high recall in zero-shot cross-modal image retrieval [80]

in Flickr30K [114] and COCO [56]. In this section, we study the heatmaps given by CLIP with

different visualization methods. We first show a progressing plot that shows how the heatmap

changes with the number of channels used by gScoreCAM. We then visually compare the heatmap

from different methods. From the visual studies, we find that our purposed gScoreCAM gives a

more accessible explanation of the model.

73

The heatmap is getting nosier as the number of channels used by gScoreCAM increasing

Figure 3.1 shows a progressing plot when the number of channels used by gScoreCAM

increases from 300 to 3072 (ScoreCAM) and the heatmap generated by RISE (last column). We can

see a clear trend, which shows that the gradient-guided ranking successfully ranks the channels by

the heatmaps’ contribution to the target. This visualization further confirms the result in Section 6.2.2

that we only need the top k channels to localize the target.

Visual comparison of gScoreCAM to other methods

We study a series of visualization using different methods (see Figures 6.18 to 6.24). It

turns out that when the target object is very small (e.g., fish tail), gScoreCAM can generate a very

accurate heatmap, while other methods usually result in nosier or incorrect heatmaps, as shown in

Figure 6.14. These faithful heatmaps would allow us to study what the model is really looking at,

and hence can be a useful tool to study the model. See Figures 6.16 and 6.17 for more comparison

between gScoreCAM and other methods.

6.2.8 Derive bounding box from heatmap

Get bounding box with Otsu’s method

figure 6.15 shows the intermediate results during the procedure (prompt: dog). As described in

Algorithm 3, we obtain the bounding box using the following procedure:

1. From an input image, we used a CAM method to get a heatmap.

2. Binarize the heatmap with Otsu’s method.

3. Find the contours of the binary map (using the OpenCV function cv2.f indContours).

4. For each contour, determine a minimal bounding box (using the OpenCV function cv2.boundingRect).

5. Then choose the largest bounding box as result.

74

Algorithm 3 Derive Bounding Box from Heatmap
Input: (i) A heatmap M ∈ Ru×v from any CAM methods. (ii) Input image size (w,h).
Output: A bounding box for the target class or prompt.
M ← Upsample(M, size = (w,h),method = "bilinear");
M ← Otsu(M);
contours← findContours(M);
boxes← [[0,0,0,0], . . . , [0,0,0,0]];
for i = 0 to len(contours) − 1 do

boxes[i] ← boundingRect(contours[i]);
end
u← argmaxi Area(boxes[i]);
output← boxes[u];

Effects on using Otsu’s method

In this section, we study how Otsu’s method differs from the commonly used single threshold

by grid search. We performed the experiment on the COCO validation set. We keep the other

procedure the same as in Algorithm 3, except that we replace Otsu’s binarization with using a single

threshold. We perform a grid search for the optimal threshold on the subset of images in the training

set (100 images per class) for each method with gridsize = 0.05. The search is based on the mean

IoU over the search samples. We found that the difference between using Otsu’s method and using

optimal threshold by grid search is trivial.

Table 6.6: Difference between Otsu binarzation with optimal thesholding. The difference between
Otsu’s method and using optimal threshold value is very small.

Single value Otsu Difference

GradCAM 11.95% 11.56% -0.39%
GradCAM++ 9.03% 9.68% 0.65%
xGradCAM 6.85% 5.60% -1.25%
GroupCAM 5.58% 4.52% -1.06%
LayerCAM 9.99% 9.19% -0.80%
ScoreCAM 20.74% 20.43% -0.31%
gScoreCAM 20.27% 20.83% 0.56%
Hila’ method(ViT-B/32) 13.33% 12.82% -0.51%
ScoreCAM(ViT-B/32) 9.60% 10.21% 0.61%
gScoreCAM(ViT-B/32) 9.40% 10.10% 0.70%
Mean 11.67% 11.49% -0.18%

75

6.2.9 Visualizations of different methods

In this section, we show a series of comparisons between different methods. We found that for

these hard tasks (figure 6.18), gScoreCAM gives better performance in COCO and PartImageNet.

Advantages of gScoreCAM

We show a few sample visualizations of gScoreCAM, GradCAM, ScoreCAM and HilaCAM

in figures 6.17 and 6.18.

6.3 PEEB (Chapter 4) Supplementary Materials

6.3.1 Architecture details

Image encoder and text encoder

We employ the image encoder and text encoder from OWL-ViT. In order to maintain a general

understanding of natural languages and avoid overfitting our training samples, we keep the text

encoder frozen for all training and experiments. This setup allows our design to be flexible about

the choice of text encoder, e.g., one can easily replace the text encoder without changing other

architecture.

Linear projection (for part embedding selection)

The image embedding will be forwarded to a Linear Projection layer (see detail implementa-

tion here), which is composed of a learnable logit scale, a learnable logit shift, and an Exponential

Linear Unit (ELU) activation function. These processed image embeddings then have the same

dimension as the text embeddings. For OWL-ViTbase32, the image embeddings are projected from

768 to 512. We select a single image embedding for each text query. In this context, the text queries

correspond to the component names of the target object, which includes twelve distinct parts. This

selection is based on the cosine similarity between the projected image embeddings and the text

76

https://github.com/anguyen8/peeb/blob/0ae217336de95e9bb70d33c3b7161e2eea834172/src/owlvit_cls.py#L27C14-L27C20
https://github.com/anguyen8/peeb/blob/0ae217336de95e9bb70d33c3b7161e2eea834172/src/owlvit_cls.py#L27C14-L27C20

embeddings. Finally, the chosen images embeddings (before projection) will be sent to the Part

MLP for classification and Box MLP for box prediction (figure 6.25, Step 1).

Part MLP

We introduce Part MLP to enable part-based classification (see implementation detail here).

It comprises a three-layer MLP with GELU activations [42] . Part MLP takes in the selected part

embeddings (i.e. output of step 1 in figure 6.25) and outputs a vector of size Rd for each part, where

d is the dimension of descriptor embeddings (for OWL-ViTbase32, the input dimension is 768, and

d = 512). Part MLP is trained to map the selected part embeddings to the same dimensional space

with descriptor embeddings to compute final logits for classification.

Box MLP

The Box MLP retained from OWL-ViT consists of a three-layer MLP (see here for implementa-

tion detail). It takes the visual embedding as input and generates a four-element vector corresponding

to the center coordinates and size of a bounding box (e.g., [x, y, width, height]). It is

important to note that the image embedding inputs of Box MLP and Part MLP layers are the same,

as shown in figure 6.25, Step 2.

Visual part embedding selection

As shown in figure 6.25 step 1, 1c, the image embeddings are first projected by a Linear

Projection layer and compute the dot product with the encoded part names. The image embeddings

(before Linear Projection) are chosen as visual part embeddings by selecting the embedding that

has the highest similarity scores with the corresponding part after the Linear Projection.

77

https://github.com/anguyen8/peeb/blob/0ae217336de95e9bb70d33c3b7161e2eea834172/src/owlvit_cls.py#L117
https://github.com/anguyen8/peeb/blob/0ae217336de95e9bb70d33c3b7161e2eea834172/src/owlvit_cls.py#L69
https://github.com/anguyen8/peeb/blob/0ae217336de95e9bb70d33c3b7161e2eea834172/src/owlvit_cls.py#L69

AlexNet 11×11×3 AlexNet-R

GoogLeNet 7×7×3 GoogLeNet-R

ResNet 7×7×3 ResNet-R

Figure 6.1: All 64 conv1 filters of in each standard network (left) and its counterpart (right). The
filters of R models (right) are smoother and less diverse compared to those in standard models (left).
Especially, the edge filters of standard networks are noisier and often contain multiple colors in
them.

78

Figure 6.2: conv1 filters of AlexNet-R are smoother than the filters in standard AlexNet. In each
column, we show an AlexNet filter conv1 filter and their nearest filter (bottom) from the AlexNet-R.
Above each pair of filters are their Spearman rank correlation score (e.g. r: 0.36) and their total
variation (TV) difference (i.e. smoothness differences). Standard AlexNet filters are mostly noisier
than their nearest R filter (i.e. positive TV differences).

conv1 conv2 conv3 conv4 conv5
0

20

40

60

80

100

Nu
m

be
r o

f o
bj

ec
t c

ha
nn

el
s

0

18

71

46

104

5

28

57

33

49

AlexNet
AlexNet-R

(a) Number of object detectors per AlexNet layer

conv1 conv2 conv3 conv4 conv5
0

10

20

30

40

Nu
m

be
r o

f c
ol

or
 c

ha
nn

el
s

14

20 19

5

12
8

42
45

32

25

AlexNet
AlexNet-R

(b) Number of color detectors per AlexNet layer

Figure 6.3: In higher layers (here, conv4 and conv5), AlexNet-R have fewer object detectors but
more color detector units compared to standard AlexNet. The differences between the two networks
increase as we go from lower to higher layers. Because both networks share an identical architecture,
the plots here demonstrate a substantial shift in the functionality of the neurons as the result of
adversarial training—detecting more colors and textures and fewer objects. Similar trends were
also observed between standard and R models of GoogLeNet and ResNet-50 architectures.

79

0 500 1000 1500
TV of channels for Clean Images

0

250

500

750

1000

1250

1500

1750

TV
 o

f c
ha

nn
el

s f
or

 N
oi

sy
 Im

ag
es

AlexNet conv2
AlexNet-R conv2

(a) conv2

0 100 200 300 400
TV of channels for Clean Images

0

100

200

300

400

TV
 o

f c
ha

nn
el

s f
or

 N
oi

sy
 Im

ag
es

AlexNet conv4
AlexNet-R conv4

(b) conv4

Figure 6.4: Each point shows the Total Variation (TV) of the activation maps on clean and noisy
images for an AlexNet or AlexNet-R channel. We observe a striking difference in conv1: The
smoothness of R channels remains unchanged before and after noise addition, explaining their
superior performance in classifying noisy images. While the channel smoothness differences
(between two networks) are gradually smaller in higher layers, we still observe R channels are
consistently smoother.

80

(a) Real (b) Scrambled (c) Stylized (d) B&W (e) Silhouette

Figure 6.5: Applying different transformation that remove shape/texture on real images. We
randomly show an example of 7 out of 16 COCO coarser classes. See Table 2.3 for classification
accuracy scores on different images distortion dataset in 1000 classes(Except for Silhouette). *Note:
Silhouette are validate in 16 COCO coarse classes.

81

Figure 6.6: AlexNet conv419 with Shape and Texture scores of 18 and 22, respectively. It has
a NetDissect label of spiralled (IoU: 0.0568) under texture category. Although this neuron is in
NetDissect texture category, the misclassified images suggest that this neuron helps in both shape-
and texture-based recognition. Top: Top-49 images that highest-activated this channel. Middle:
Mis-classified images in shape category (18 images). Bottom: Mis-classified images in texture
category (22 images).

82

Figure 6.7: AlexNet-R conv5110 with Shape and Texture scores of 17 and 19, respectively. It has
a NetDissect label of banded (IoU: 0.0409) under texture category. This neuron has almost equal
Shape and Texture scores and is useful in detecting both the shape and textures of knives and bottles
at the same time. Top: Top-49 images that highest-activated this channel. Middle: Mis-classified
images in shape category. Bottom: Mis-classified images in texture category.

83

Figure 6.8: AlexNet conv5221 with Shape and Texture scores of 3 and 17, respectively. It has a
NetDissect label of cobwebbed (IoU: 0.0542) under texture category. This is a heavily texture-
biased neuron that helps networks detect animals by their fur textures. Top: Top-49 images that
highest-activated this channel. Middle: Mis-classified images in shape category. Bottom: Mis-
classified images in texture category.

84

con
v1

con
v2

con
v3

con
v4

con
v5

0

20

40

60

80

100

120

140

160

M
ea

n
TV

AlexNet
AlexNet-R

(a) Mean layer-wise kernel TV of AlexNet and AlexNet-R

con
v1

con
v2

con
v3

inc
ep

tio
n3

a

inc
ep

tio
n3

b

inc
ep

tio
n4

a

inc
ep

tio
n4

b

inc
ep

tio
n4

c

inc
ep

tio
n4

d

inc
ep

tio
n4

e

inc
ep

tio
n5

a

inc
ep

tio
n5

b

10

20

30

40

50

60

M
ea

n
TV

GoogLeNet
GoogLeNet-R

(b) Mean layer-wise kernel TV of GoogLeNet and GoogLeNet-R

con
v1

lay
er1

lay
er2

lay
er3

lay
er4

10

15

20

25

M
ea

n
TV

ResNet50
ResNet50-R

(c) Mean layer-wise kernel TV of ResNet and ResNet-R

Figure 6.9: For all main conv layers, AlexNet-R filters are smoother (i.e. lower TV mean) than their
counterparts in AlexNet (a). The same observation was found in GoogLeNet-R vs. GoogLeNet
comparison (b). In ResNet-R, its early filters at conv1 are also smoother than those in ResNet.

85

str
ipe

d

ba
nd

ed

che
qu

ere
d

fre
ckl

ed fril
ly

waff
led

int
erl

ace
d
ve

ine
d
wov

en

po
tho

led

lac
elik

e
line

d

mesh
ed
po

rou
s
ga

uzy

cry
sta

llin
e

sta
ine

d

zig
zag

ge
d

spr
ink

led

gro
ov

ed
fle

cke
d
bu

mpy

sm
ea

red

wrin
kle

d
fib

rou
s

ple
ate

d
kn

itte
d

cro
ssh

atc
he

d

pe
rfo

rat
ed

cra
cke

d

ho
ne

yco
mbe

d
pa

isle
y

stu
dd

ed

cob
web

be
d

po
lka

-do
tte

d

spi
ral

led gri
d
do

tte
d
sw

irly
40

20

0

20

40

60

80

In
cr

ea
se

 in
 n

um
be

r o
f c

ha
nn

el
s 80

23 21
14 13 11 9 8 5 4 4 4 2 2 2 1 1 1 1 1 1 -1 -1 -2 -2 -2 -3 -3 -5 -6 -8 -9 -10 -10 -10 -11

-20
-26

-35

(a) Differences in texture channels between AlexNet and AlexNet-R

sky
cei

ling
cur

tai
n
flo

or

mou
nta

in

pa
int

ing

sid
ew

alksno
w
fie

ld
tab

le
gra

ss

sky
scr

ap
er

bu
ildi

ng
ea

rth

san
d t

rap

sw
ive

l ch
air

cab
ine

t

gro
un

d
ligh

t

esc
ala

torbo
at
car

pe
t

tvm
on

ito
r
po

le

fire
pla

cebe
d

po
tte

dp
lan

t
she

lf

pla
tfo

rmbo
ok
pill

ar
toi

let

po
ol

tab
le
flo

wer

wind
ow

pa
ne

air
pla

ne
ho

usewate
r
foo

d
bic

ycl
e
tra

in
she

ep bu
s
bir

d

moto
rbi

ke
pla

nttre
e
ho

rse car

pe
rso

n catdo
g

30

20

10

0

10

20

30

40

In
cr

ea
se

 in
 n

um
be

r o
f c

ha
nn

el
s

40

12
8 6

3 3 2 2 2 1 1 1 1 1 1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 -4 -4 -4 -5 -6 -7 -8 -8 -8 -9 -11-13

-30

(b) Differences in object channels between AlexNet and AlexNet-R

Figure 6.10: In each bar plot, we column shows the difference in the number of channels (between
AlexNet-R and AlexNet) for a given concept e.g. striped or banded. That is, yellow bars (i.e.
positive numbers) show the count of channels that the R model has more than the standard network
in the same concept. Vice versa, teal bars represent the concepts that R models have fewer channels.
The NetDissect concept names are given in the x-axis.
Top: In the texture category, the R model has a lot more simple texture patterns e.g. striped and
banded (see Fig. 6.11 for example patterns in these concepts).
Bottom: In the object category, AlexNet-R often prefers simpler-object detectors e.g. sky or ceiling
(Fig. 6.10b; leftmost) while the standard network has more complex-objects detectors e.g. dog and
cat (Fig. 6.10b; rightmost).

86

Figure 6.11: The NetDissect images preferred by the channels in the top-5 most important concepts
in AlexNet (i.e. highest accuracy drop when zeroed out; see Sec. 2.6.2). For each concept, we show
the highest-IoU channels.

conv1 conv2 conv3 conv4 conv5

20

25

30

35

M
ea

n
di

ve
rs

ity
 sc

or
e

AlexNet
AlexNet-R

(a) AlexNet layer-wise mean diversity

conv1 layer1 layer2 layer3 layer4
5

10

15

20

25

30

35

40

45

M
ea

n
di

ve
rs

ity
 sc

or
e

ResNet
ResNet-R

(b) ResNet layer-wise mean diversity

Figure 6.12: In each plot, we show the mean diversity scores across all channels in each layer. Both
AlexNet-R and ResNet-R consistently have channels with lower diversity scores (i.e. detecting
fewer unique concepts) than the standard counterparts.

87

1-3
(1150)

4-6
(2790)

7-9
(874)

Number of classes per image

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

gScoreCAM
GradCAM

ScoreCAM
HilaCAM

(a) On experiment of COCO
multi-object, gScoreCAM has
the least IoU drops as the num-
ber of classes per image in-
creases.

0 - 0.33
 (13814)

0.33 - 0.67
 (607)

0.67 - 1.00
 (210)

The ratio of the object over image

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

gScoreCAM
GradCAM

ScoreCAM
HilaCAM

(b) On COCO dataset, gScore-
CAM performs the best in terms
of IoU in small objects. And
ScoreCAM is the best when the
object size is large.

0 - 0.33
 (12727)

0.33 - 0.67
 (1222)

0.67 - 1.00
 (307)

The ratio of the object over image

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

gScoreCAM
GradCAM

ScoreCAM
HilaCAM

(c) On PartImageNet, results
are similar to COCO. Where
gScoreCAM performs better on
small parts and ScoreCAM is
better on larger parts.

Figure 6.13: Controlled experiments on COCO and PartImageNet. Figure 6.13a shows how IoU
changes with different methods when the number of classes per image is different. Figures 6.13b
and 6.13c show how the object ratio affects the methods’ IoU. The number in parenthesis of x-axis
on each plot is the number of samples in that group. In sum, gScoreCAM is more accurate than
other methods when a scene contains more objects (a) and object size (measured as the ratio
between the object size and the image size) is smaller (b–c).

88

(a) Zero-shot, open-vocab, object localization on COCO using CLIP.

(b) Zero-shot, open-vocab, part localization on PartImageNet [39] using CLIP.

Figure 6.14: In complex scenes (i.e. not ImageNet-v2), gScoreCAM outperforms other methods,
yielding more precise localization and cleaner heatmaps. IoU scores between the groundtruth (◻)
and inferred box (◻) are shown next to each method name. More examples in Figures 6.16 and 6.17.

Input image Heatmap Binary map Contours Bounding box

Figure 6.15: From left to right is the procedure we derive bounding box from heatmap. We first
get the heatmap from input image. Then use Otsu’s method to find the binary map. We find sets of
bounding boxes from the contours and then choose the largest one as our final result.

89

Figure 6.16: WSL results COCO dataset.

90

Figure 6.17: WSL results on PartImageNet dataset.

91

(a) COCO (b) Part ImageNet

(c) COCO (d) Part ImageNet

(e) COCO (f) Part ImageNet

Figure 6.18: Sample visualize comparison between gScoreCAM to GradCAM, ScoreCAM, and
HilaCAM. We can see that GradCAM always has low coverage which ScoreCAM tends to have
large coverage. HilaCAM is something in the middle but have some "corner" issues. gScoreCAM
can capture the target object most of the time although the resulting bounding box (red) may not be
very accurate.

92

Figure 6.19: Some samples that gScoreCAM performs better than GradCAM on COCO dataset.

93

Figure 6.20: Some samples that gScoreCAM performs better than ScoreCAM on COCO dataset.

94

Figure 6.21: Some samples that gScoreCAM performs better than HilaCAM on COCO dataset.

95

Figure 6.22: Some samples that gScoreCAM performs better than GradCAM on Part ImageNet
dataset. 96

Figure 6.23: Some samples that gScoreCAM performs better than ScoreCAM on Part ImageNet
dataset.

97

Figure 6.24: Some samples that gScoreCAM performs better than HilaCAM on Part ImageNet
dataset.

98

Image
Encoder

"back",
"beak",
"belly",

...,
"throat"

Li
ne

ar
 P

ro
je

ct
io

n

Text
Encoder

B
ox

 M
LP

back

throat

beak

 Step 2: Part localization & image classification

Long-tailed Duck

Long-tailed Duck

Painted Bunting

"back: vibrant green coloring",
"beak: conical, silver-gray",

"belly: rich red hue",
...,

"throat: bright red plumage"

N sets of 12-part descriptors

 Step 1: Part embeddings selection

Text
Encoder

.8 .1 .6 .7

.9 .6 .4 .3

.2 .5 .1 .8

.1 .7 .3 .6

.8 .5 .4 .3

.2 .6 .8 .4

.2 .3 .9 .6

.1 .9 .6 .7

Pa
rt

M
LP

.9 .2 .3 .1

.2 .7 .6 .3

.5 .4 .8 .6

.1 .8 .2 .5

Painted Bunting Long-tailed Duck

argmax over embeddings
to select 12 part embeddings

argmax()

diagonal sum

12 part names 1a 1b

 2a

 2b 2c 2d

input for step 2

 1c

diagonal sum

predicted label

patches

belly

Figure 6.25: During the test time using PEEB, we perform 2 steps.
Step 1: (a) Encode an input image and texts (i.e. 12 part names) by the image and text encoder to
get patch embeddings pi and text embeddings t′i. (b) Feed pi to Linear Projection to get p′i in the
same dimensional space with t′i and compute dot product between {p′i} and {t′i}. (c) argmax over
m embeddings to select 12 part embeddings.
Step 2: (a) Encode input texts (i.e. N sets of 12-part descriptors) with the same text encoder to get
ti. (b) Feed the selected part embeddings to Box MLP to localize parts (in center format). (c) Also
feed the selected part embeddings to Part MLP to get si in the same dimensional space with ti (d)
Compute a dot product between {si} and {ti}, then diagonal sum for each class and argmax over
logits to get predicted label ŷ.

99

Descriptor embedding matching

To enhance the model’s flexibility, we do not use a linear layer for classification. Instead,

we adopt a strategy similar to CLIP: we compute the similarity matrix of the projected visual

embeddings (image embeddings after processing by the Part MLP) and the text embeddings. Then,

we sum the corresponding similarities of each part in the class; the class with the highest score is

considered the predicted class as shown in figure 6.25, step 2, 2d. This design enables our proposed

method to perform arbitrary ways of classification.

Implementation details

Our experiments are conducted under PyTorch [72]. We employ HuggingFace’s [107] imple-

mentation of OWL-ViT and use their pre-trained models. The DETR losses implementation [10] is

employed directly from their official implementation.

Training hyperparameters

We provide the hyperparameters of all models trained in this work. Table 6.7 shows the details

of the pre-training models. Table 6.8 presents the details of the finetuned models. All trainings

utilize optimizer AdamW with Plateau Scheduler.

Computational budget and infrastructures

We use 8 Nvidia RTX A100 GPUs for our experiments. The pertaining approximate takes ∼24

hours on Bird-11K. The finetuning takes 2 to 4 hours with one single GPU.

Training objectives

As discussed in section 4.3.3, we have three objectives during the two training stages: (a)

During the pre-training stage one, we contrastively pre-train the model to maximize the similarity

between related part-descriptor pairs while minimizing the unrelated pairs using symmetric cross-

entropy (SCE) loss [80]; (b) In pre-training stage two, we try to get rid of teacher model by mimic

100

the teacher’s choice of the boxes with SCE loss; (c) In stage two, we simultaneously train PEEB to

improve box prediction with DERT losses [116].

Pre-training stage one: Symmetric cross-entropy loss for contrastive pre-training We first

define the embeddings derived from the image and text encoders:

I ′f = image_encoder(I) (6.1)

where I is the input image, and I ′f ∈ Rn×di is output image embeddings. Here, di is the feature

dimension of the image encoder. The text embedding Tf is given by

Tf = text_encoder(T) (6.2)

where T represents the tesxt input, and Tf ∈ Rm×dt . In this case, dt is the feature dimension of the

text encoder. The image embedding I ′f is then transformed by Part MLP layer (figure 6.25, 1b) to

align its dimensions with the text embedding. This transformation is denoted as

If = Part MLP(I ′f) (6.3)

where If ∈ Rn×dt . The similarity matrix S between the image and text embeddings is computed as

the dot product of If and the transpose of Tf , expressed as

S = If ⋅ T
⊺

f (6.4)

where S ∈ Rn×m. The image logits (Si) and text logits (St) are then defined as

Si = softmax(S, axis=0) (6.5)

101

and

St = softmax(S, axis=1) (6.6)

Next, we define the symmetric cross-entropy loss for the multi-modal embeddings.

Lsce = −
(∑i y

i
i log(S

i
i) +∑m yti log(S

t
m)

2
(6.7)

where yi ∈ Rn is the label for image and yt ∈ Rm is the label for text.

Pre-training stage two: Symmetric cross-entropy loss to get rid of teacher model To get rid

of the teacher model, we train PEEB to mimic the feature selection between image embedding and

part name embeddings (as shown in figure 6.25, 1c). We first binary the teacher logits and consider

it as the ground truth label. Then, apply the same symmetric cross-entropy loss as described in

equation (6.7) with two minor differences: (1) The text input is part names rather than descriptions.

(2) The Part MLP is replaced by Linear Projection (figure 6.25, 2c).

Finetuning: DETR losses DETR losses are designed to optimize the box detection performance.

We employ partial losses in our training for box predictions. Specifically, we employ ℓ1 corner-to-

corner distance loss and GIoU loss. For the selected embeddings, we predict the boxes with Box

MLP (figure 6.25, 2b)

B = Box MLP(I ′f) (6.8)

where I ′f is the image selected image embeddings from equation (6.1), B ∈ Rn×4 is the predicted

bounding boxes. Let Y GT ∈ Rn×4 be the ground truth boxes. The ℓ1 corner-to-corner distance loss

is defined as

Lℓ1 = ∑
i

∥Y GT
i −Bi∥ (6.9)

The GIoU loss LGIoU is defined in Section 6.3.1, and the total box loss is defined as

LBox =
Lℓ1 +LGIoU

2
(6.10)

102

Algorithm 4 Generalized Intersection over Union
Require: Two arbitrary convex shapes: A,B ⊆ S ∈ Rn

Ensure: GIoU
1: For A and B, find the smallest enclosing convex object C, where C ⊆ S ∈ Rn

2: IoU = ∣A∩B∣
∣A∪B∣

3: GIoU = IoU − ∣C/(A∪B)∣
∣C∣

103

Text
Encoder

Pa
rt

M
LPImage

Encoder

Class 1: Painted Bunting Class N: Long-tailed Duck

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Image
Encoder

"back",
"beak",
"belly",

...,
"throat"

Li
ne

ar
 P

ro
je

ct
io

n

 Step 1: Part embeddings selection from OWL-ViT

Text
Encoder

.8 .1 .6 .7

.9 .6 .4 .3

.2 .5 .1 .8

.1 .7 .3 .6

2 1 3

argmax over embeddings
to get 12 indices

12 part names 1a 1b

input for Part Selection in step 2

 1c
patches

Pa
rt

Se
le

ct
io

n
 Step 2: Contrastive training between parts and descriptions

Long-tailed Duck

Long-tailed Duck

Painted Bunting

"back: vibrant green coloring",
"beak: conical, silver-gray",

"belly: rich red hue",
...,

"throat: bright red plumage"

N sets of 12-part descriptors

patches

.8 .5 .4 .3

.2 .6 .8 .4

.2 .3 .9 .6

.1 .9 .6 .7

.9 .2 .3 .1

.2 .7 .6 .3

.5 .4 .8 .6

.1 .8 .2 .5

Symmetric Cross-entropy loss

 2a 2b 2c

 2d

frozen components from OWL-ViT

trainable components

Legend

Figure 6.26: In pre-training stage 1, the objective is to let the Image Encoder learn the general
representation of different parts of the birds. Therefore, in pre-training stage 1, we train the Image
Encoder and Part MLP contrastively. During the training, the Step 1 utilizes a teacher model
(OWL-ViTbase32) to help PEEB select 12 part embeddings. In Step 2, we update the model with
symmetric Cross-Entropy loss. Here’s the flow of Step 1: (1a) We utilize the teacher model to
encode 12 part names and the image to derive the text embedding t′i, and the patch embedding
pi. (1b) Then the patch embeddings p is forwarded to Linear Projection to obtain p′, matching
the dimension of t′. (1c) We compute the dot product between p and t′ and apply argmax over p
to derive 12 indices. In Step 2: (2a), We first encode the descriptors and the image with the Text
Encoder and Image Encoder to obtain descriptor embeddings t and patch embeddings q. (2b), Then
we select the 12 patch embeddings based on the 12 indices from (1c). (2c), The 12 patch embeddings
then forwarded to Part MLP to derive s, which has the same dimension as t. Then, we compute
the similarity matrix for the patch embedding and the descriptor embedding by computing the dot
product between s and t. (2d), we construct a one-hot encoded matrix based on the descriptors
as the ground truth label and minimize the Symmetric Cross-Entropy loss between the similarity
matrix in (2c) and the ground truth label. 104

Text
Encoder

"back",
"beak",
"belly",

...,
"throat"

Image
Encoder

Li
ne

ar
 P

ro
je

ct
io

n .8 .1 .6 .7

.9 .6 .4 .3

.2 .5 .1 .8

.1 .7 .3 .6

patches

argmax

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

teacher logits

over embeddings

12 part names

 Step 1: Getting teacher logits from OWL-ViT

 1a 1b

 1c

Image
Encoder

Li
ne

ar
 P

ro
je

ct
io

n .5 .8 .2 .8

.7 .6 .4 .3

.3 .7 .5 .9

.2 .7 .6 .6

patches

 Step 2: Training Linear Projection and Box MLP

Sy
m

m
et

ric
 C

ro
ss

-e
nt

ro
py

 lo
ss

argmax over embeddings
to select 12 part embeddings

 2c

B
ox

 M
LP

back

throat

beak

belly

DETR losses

teacher boxes from OwlViT-large

 2a 2b

 2d

frozen components from OWL-ViT

trainable components

Legend

frozen components from PEEB

Figure 6.27: In pre-training stage 2, the goal is to eliminate the teacher model to obtain a standalone
classifier. Therefore, the targeted components are Linear Projection and Box MLP. Since these
two components are taking care of different functionalities for patch embedding selection and
box prediction, respectively, stage 2 training is a multi-objective training. We employ Symmetric
Cross-Entropy loss to learn the patch embedding selection and DETR losses to refine the box
predictions. In Step 1: (1a), We first encode the 12 part names and the image with Text Encoder
and Image Encoder to obtain the text embedding t′i and patch embedding pi. (1b) Then the patch
embeddings p is projected by Linear Projection to obtain p′. (1c) We then compute dot product
between p′ and t′ and one-hot encode the matrix via the dimension of p′ to obtain the “teacher
logits”. In Step 2: (2a), We encoder the image with Image Encoder to obtain patch embedding qi.
(2b) The patch embeddings are then being projected by Linear Projection to derive q′. (2c), We
compute the dot product between projected patch embeddings q′ and part name embeddings t′ to
obtain the similarity matrix. Then, we employ Symmetric Cross-Entropy loss between the similarity
matrix and the “teacher logits” derived in (1c). (2d), Meanwhile, we select the 12 part embeddings
by taking argmax over q′. Then, the selected part embeddings are forwarded to Box MLP to predict
the coordinates of each part. We compute the DETR losses for the predicted coordinates and update
the model.

105

Table 6.7: Pre-training details of our pre-trained models.

Model Epoch Batch size LR Weight decay # in-batch classes Early stop Training set

Train Val Train Val

Pre-training stage 1

PEEB[−test] 32 32 50 2e−4 0.01 48 50 5 Bird-11K[−test]

PEEB[−CUB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−CUB]

PEEB[−NAB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−NAB]

Pre-training stage 2

PEEB[−test] 32 32 50 2e−5 0.01 48 50 5 Bird-11K[−test]

PEEB[−CUB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−CUB]

PEEB[−NAB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−NAB]

Table 6.8: Details of our finetuned models.

Model Fine-tune from Epoch Batch size LR Weight decay Early stop Training set

PEEBCUB
[−test]

PEEB[−test] 30 32 2e−5 0.001 5 CUB

PEEBAkata
[−cub]

PEEB[−CUB] 5 32 2e−5 0.001 5 CUB ZSL [2015]

PEEBSCS
[−cub]

PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCS

PEEBSCE
[−cub]

PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCE

PEEBSCS
[−nab]

PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCS

PEEBSCE
[−nab]

PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCE

106

6.3.2 Model and dataset notations

Dataset notations

Following the conventional setup of ZSL, we execute certain exclusions to make sure none

of the test classes or descriptors are exposed during pre-training. That is, Bird-11K[−CUB] and

Bird-11K[−NAB] exclude all CUB and NABirds classes, respectively. For GZSL, we exclude all test

sets in CUB, NABirds, and iNaturalist, denoted as Bird-11K[−test]. We provide detailed statistics for

the three pre-training sets in Table 6.9.

Table 6.9: Three pre-training splits for PEEB.

Training set Number of images Number of classes

Train Val Train Val

Bird-11K[−test] 234,693 29,234 10,740 9,746

Bird-11K[−CUB] 244,182 28,824 10,602 9,608

Bird-11K[−NAB] 216,588 27,996 10,326 9,332

Model notations

We adopt a strategy based on the datasets excluded during training to simplify our model

naming convention. Specifically:

• PEEB[−test] is pre-trained model using Bird-11K[−test] datset.

• PEEB[−CUB] is pre-trained model using the Bird-11K[−CUB] dataset.

• PEEB[−NAB] is pre-trained model using the Bird-11K[−NAB] dataset.

We named finetuned models after the pre-trained model and the finetuned training set. For example,

PEEBCUB
[−test]

is finetuned from PEEB[−test], on CUB training set.

6.3.3 Generating part-based descriptors

CUB annotations initially comprise 15 bird parts. However, distinctions between the left and

right part are not essential to our method, we merge them into a single part (i.e., “left-wing” and

107

“right-wing” are merged into “wings”) Hence, we distilled the original setup into 12 definitive

parts: back, beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail, throat. To compile

visual part-based descriptors for all bird species within Bird-11K, we prompted GPT-4 [70] with

the following input template:

A bird has 12 parts: back, beak, belly, breast, crown, forehead, eyes,

legs, wings, nape, tail and throat. Visually describe all parts of

{class name} bird in a short phrase in bullet points using the format

‘part: short phrase’

Where {class name} is substituted for a given bird name (e.g., PaintedBunting). The output

is a set of twelve descriptors corresponding to twelve parts of the query species. e.g. The response

for Cardinal is:

Cardinal: {

back: vibrant red feathers,

beak: stout, conical, and orange,

belly: light red to grayish-white,

breast: bright red plumage,

crown: distinctive red crest,

forehead: vibrant red feathers,

eyes: small, black, and alert,

legs: slender, grayish-brown,

wings: red with black and white accents,

nape: red feather transition to grayish-white,

tail: long, red, and wedge-shaped,

throat: bright red with sharp delineation from white belly

}

108

6.3.4 Datasets

Bird-11K

We provide a brief statistic of Bird-11K in table 6.10. Bird-11K is a diverse and long-tailed

avian dataset that only includes bird images. The descriptors generated by GTP4 are in English and

only describe the visual features of the corresponding class. We propose Bird-11K for academic

research only.

Table 6.10: Number of images and species of different bird datasets. Our proposed dataset Bird-11K
includes almost all avians on Earth.

Dataset # of Images # of Species

CUB-200-2011 [104] 12,000 200
Indian Birds [99] 37,000 25
NABirds v1 [100] 48,000 400
Birdsnap v7 [6] 49,829 500
iNaturalist 2021-birds [101] 74,300 1,464
ImageNet-birds [21] 76,700 59
BIRDS 525 [78] 89,885 525
Macaulay Library at the Cornell Lab of Ornithology 55,283 10,534

Bird-11K (Raw Data) 440,934 11,097
Bird-11K (pre-training set) 294,528 10,811

Data splits We provide data splits and metadata, e.g., file names, image size, and bounding boxes,

along with the instruction of Bird-11K construction in our repository. Note that the Bird-11K dataset

is for pre-training purposes; it is important to execute exclusion based on the test set.

License and terms

• CUB [104]: The dataset can be freely used for academic and research purposes; commercial

use is restricted.

• Indian Birds [99]: CC0: Public Domain.

109

• NABirds v1 [100]: For non-commercial research purposes, other use is restricted 1 here for

detail: .

• Birdsnap v7 [6]: The dataset creator provides no specific license or terms of use. We only use

this dataset for academic research until more specific details can be obtained.

• iNaturalist 2021-birds [101]: CC0: Public Domain.

• ImageNet-birds [21]: BSD-3-Clause license.

• BIRDS 525 [78]: CC0: Public Domain

• Cornell eBird: We used the following 55,384 recordings from the Macaulay Library at the

Cornell Lab of Ornithology. The data is for academic and research purposes only, not publicly

accessible unless requested. (Please refer to our Supplementary Material for the full list):
ML187387391, ML187387411, ML187387421, ML187387431, ML262407521, ML262407481, ML262407531, ML262407491, ML262407511, ML257194111 ML257194071,

ML257194081, ML257194061, ML495670791, ML495670781, ML495670801, ML495670771, ML183436431, ML183436451, ML183436441 ML183436411, ML183436421,

ML256545901, ML256545891, ML256545841, ML256545851, ML256545831, ML169637941, ML238083081, ML169637881 ML169637911, ML238083111, ML238083051,

ML169637971, ML299670841, ML64989231, ML299670831, ML64989241, ML299670791, ML64989251 ML246866001, ML246865941, ML246866011, ML246865961, ML246865971,

ML333411961, ML240835531, ML240835541, ML240835701, ML240835591 ML245260391, ML245260341, ML245260371, ML245260411, ML245260421, ML245260431,

ML245260441, ML240866351, ML240866331, ML240866321 ML240866341, ML240866371, ML248318661, ML248318571, ML248318591, ML248318581, ML248318631,

ML245204281, ML245204311, ML245204371 ML245204381, ML245204291, ML245603571, ML245603521, ML245603511, ML245603491, ML245603501, ML245603601,

ML245257771, ML245257651 ML245257631, ML245257661, ML245257761, ML247221051, ML247221061, ML247221071, ML247221081, ML240365811, ML240365751,

ML240365781 ML240365761, ML300579541, ML247298551, ML247298541, ML247298561, ML247298611, ML247298571, ML247298591, ML247298601, ML247298631...

Dog-140

To pre-train PEEB on dogs, we construct Dog-140 by combining dog images from ImageNet-

21K and Stanford Dogs. Specifically, we selected 189 dog classes from ImageNet-21K, and based

on Fédération Cynologique Internationale (FCI) [29], we merged them with 120 classes from

Stanford Dogs, ending up with 140 classes. After merging, Dog-140 has 206,076 images in total.

We provide a class distribution analysis in Figure 6.28, where we can find that Dog-140 is roughly

class-balanced.
1See Terms of Use

110

https://dl.allaboutbirds.org/merlin---computer-vision--terms-of-use?submissionGuid=4edd06f5-55b9-4050-a935-6054737e4a9f

0 1000 2000 3000 4000 5000 6000
Image Count

0

5

10

15

20
Nu

m
be

r o
f C

la
ss

es

Figure 6.28: The class distribution of Dog-140 dataset. The histogram indicates that most classes in
Dog-140 have around 1,000 to 2,000 images.

Data splits Similar to Bird-11K, we provide data splits and metadata, e.g., file names, image size,

and bounding boxes, along with the instruction of Dog-140 construction in our repository.

License and terms

• Stanford Dogs [47]: The dataset was constructed using images and annotations from ImageNet.

Therefore, all the images (including those presented in the paper) follow the ImageNet license.

• ImageNet-21K [21]: BSD-3-Clause license, non-commercial.

6.3.5 Additional results

PEEB outperforms M&V in CUB and NABirds in ZSL setting

To rigorously evaluate the ZSL capabilities of our pre-trained models, we introduce a stress

test on the CUB and NABirds datasets. The crux of this test involves excluding all classes from

111

the target dataset (CUB or NABirds) during the pre-training. The exclusion ensures that the model

has no prior exposure to these classes. Subsequently, we measure the classification accuracy on the

target dataset, comparing our results against benchmarks set by CLIP and M&V in the scientific

name test. In this experiment, we consider the scientific name test a ZSL test for CLIP and use them

as the baseline because the frequencies of scientific names are much lower than common ones.

Experiment To conduct this test, we pre-train our model on Bird-11K[−CUB] and Bird-11K[−NAB],

which deliberately exclude images bearing the same class label as the target dataset. Specifically,

we test on our pre-train model PEEB[−CUB] and PEEB[−NAB] (see Table 6.7 for details), respectively.

Results The primary objective is to ascertain the superiority of our pre-trained model, PEEB,

against benchmarks like CLIP and M&V. For CUB, our method reported a classification accuracy

of 17.9%, contrasting the 5.95% and 7.66% achieved by CLIP and M&V, respectively, as shown in

table 6.11. The PEEB score, which is marginally higher (+10) than M&V, highlights the advantages

of our method that utilizes component-based classification. On the NABirds, our method surpassed

the CLIP and M&V by (+1) point. The performance disparity between CUB and NABirds can be

attributed to two factors: the elevated complexity of the task (555-way classification for NABirds

versus 200-way for CUB) and the marked reduction in training data. An auxiliary observation,

detailed in Section 6.3.5, indicates that our pre-trained model necessitates at least 250k images to

achieve admirable classification accuracy on CUB, but we only have 210k images training images

in Bird-11K[−NAB] (Table 6.9).

Table 6.11: Stress test results on CUB and NABirds datasets. Despite the ZSL challenge, our
method consistently surpasses CLIP and M&V. This underscores the robust generalization of our
approach, which leverages descriptors for classification.

Method CLIP M&V PEEB (ours)

CUB 5.95 7.66 17.90

NABirds 4.73 6.27 7.47

112

Performance measurement on different noisy levels

In our evaluations, we discerned a marked performance disparity between the iNaturalist

dataset and others. Probing this further, we identified image noise as a principal contributor to these

discrepancies.

Experiment A qualitative assessment of the iNaturalist test images revealed a significantly higher

noise level than CUB or NABirds. To systematically study this, we utilize the object detector

OWL-ViTlarge to measure the size of the bird within the images. We formulated two filtered test

sets based on the detector’s output, categorizing them by the bird’s size, specifically, the detected

bounding box. Images were filtered out if the bird’s size did not exceed predetermined thresholds

(areas of 1002 or 2002 pixels). Larger birds naturally reduced other content by occupying more

image space, thus serving as a proxy for reduced noise. All three test sets, including the original,

were evaluated using our pre-trained model PEEB[−test].

Results The results presented in table 6.12 reveal a clear trend: as the image noise level decreases,

the classification accuracy consistently improves, with gains ranging from (+6 to +17) points across

the various methods. Notably, cleaner images consistently yield better results. At each noise level,

our method outperforms the alternatives. While our method exhibits an impressive (+17 points)

accuracy boost on the cleanest test set, this substantial gain also indicates that our model is sensitive

to image noise.

Table 6.12: The table showcases the classification accuracies on iNaturalist as we vary the noise
levels. The data underscores that the performance disparity on iNaturalist is predominantly due
to image noise. While all methods improve with cleaner images, our model exhibits the most
substantial gains, particularly in the least noisy sets.

Splits CLIP M&V PEEB (ours)

Original 16.36 17.57 25.74

> 1002 pixels 20.18 21.66 35.32

> 2002 pixels 22.88 24.90 42.55

113

Number of training images is the most critical factor towards classification accuracy

Bird-11K, as shown in figure 6.29a, is a highly imbalanced dataset characterized by a large

amount of long-tailed classes. We conduct a comprehensive study to discern how variations in

the number of classes and images affect the classification accuracy of our pre-trained models.

Predictably, the volume of training images occurred as the most influential factor. However, a

noteworthy observation was that the abundance of long-tailed data enhanced the model’s accuracy

by approximately +1.5 points.

Experiment We curated eight training sets based on varying class counts: 200, 500, 1,000, 2,000,

4,000, 6,000, 8,000, and 10,740. For each set, we maximized the number of training images. It is

important to note that a set with a lesser class count is inherently a subset of one with a higher count.

For instance, the 500-class set is a subset of the 2,000-class set. For each split, we apply the same

training strategy as in Section 4.3.3, and choose the checkpoint with the best validation accuracy.

We consider the CUB test set as a generic testing benchmark for all variants.

Results As illustrated in Figure figure 6.29b, there is a pronounced correlation between the

increase in the number of images and the corresponding surge in accuracy. For instance, an

increment from 106K to 164K images led to a rise in classification accuracy from 30.05% to

43.11%. The accuracy appears to stabilize around 60% when the image count approaches 250K.

This trend strongly suggests that the volume of training images is the most critical factor for the

pre-trained model. We believe that the accuracy of the pre-trained model could be further enhanced

if enough data is provided. Interestingly, a substantial amount of long-tailed data bolsters the

model’s performance, evident from +1.5 points accuracy improvement when comparing models

trained on 2,000 classes to those on 10,740 classes. Note that the additional classes in the latter set

averaged merely 2.2 images per class.

114

0 20 40 60 80 100
Cumulative Percentage of Classes

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f I
m

ag
es

2.32% Images5.49% Images9.00% Images
13.46% Images

(a) The Cumulative Distribution Function (CDF) plot for the Bird-11K dataset.

200 500 1000 2000 4000 6000 8000 10740
Number of Classes

0

50000

100000

150000

200000

250000

Nu
m

be
r o

f I
m

ag
es

106940

164242

219876
252658 259852 264895 268895 272177

0

10

20

30

40

50

60

70

80

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

30.05%

43.11%

58.49% 60.23% 61.20% 60.58% 61.17% 61.63%

Number of Images
Classification Accuracy

(b) Correlation between the number of training Figures/chapter4/classes and accuracy.

Figure 6.29: The CDF plot (a), underscores significant imbalance of the Bird-11K dataset. While
the dataset has abundant long-tailed classes, e.g., a striking 80% of the classes contribute to only
13.46% of the entire image count. The plot (b) showcases the correlation between the number
of training Figures/chapter4/classes and the resulting classification accuracy. As the image count
grows, there is a noticeable surge in accuracy, which nearly stabilizes upon surpassing 250K images.
Additionally, a significant amount of long-tailed data contributes to a +1.5 points boost in accuracy.

Ablation study on the influence of parts utilized

In this ablation study, we aimed to measure the impact of varying the number of distinct “parts”

(back, beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail, and throat) used in our
115

model. We experiment with a range from a single part to all 12 identifiable parts. Interestingly, even

with a solitary part, the model could make correct predictions, though there was an evident decline

in performance, approximately -20 points.

Experiment Our testing ground is the pre-trained model PEEB[−test], evaluated against the CUB

test set. We assessed the model’s prowess utilizing various subsets of parts: 1, 3, 5, 8, and all 12.

These subsets were derived based on the frequency of visibility of the parts within the CUB dataset,

enabling us to compare the model’s performance when relying on the most frequently visible parts

versus the least. For comparison, we also conduct a similar experiment on M&V, where we only

use 1, 3, 5, 8, and 12 descriptors (if possible).

Results Relying solely on the most frequent part led to a decline in classification accuracy by

around -20 points, registering at 45.44% (table 6.13). In contrast, utilizing the least frequent part

resulted in a sharper drop of around -27, with an accuracy of 37.02%. As the model was furnished

with increasing parts, its accuracy improved incrementally. The data underscores that optimal

performance, an accuracy of 64.33%, is attained when all 12 parts are included. For M&V, the

accuracy keeps increasing homogeneously from 5 to 12 descriptors, hinting that accuracy may

increase further by increasing the number of descriptors.

Table 6.13: Classification accuracy on the CUB test set that uses a different number of parts.
Performance dips significantly with just one part, especially for the least visible ones. Maximum
accuracy is reached with all 12 parts. The last row of the table also shows the accuracy of [60]
method which employs a different number of parts. It is evident that their method is insensitive to
the number of parts used, which may not reflect a realistic scenario.

Number of Parts (descriptors) 1 3 5 8 12

Accuracy (most frequent parts) 45.44 56.48 59.89 61.32 64.33

Accuracy (least frequent parts) 37.02 55.51 60.04 61.13 64.33

Accuracy of [60] 51.93 52.87 52.83 53.33 53.92

116

Training is essential for PEEB’s classification efficacy

In this ablation study, we highlight the pivotal role of training in the performance of PEEB on

bird classification tasks. We demonstrate that without adequate tuning, the results are indistinguish-

able from random chance.

Experiment We conduct the experiment based on OWL-ViTbase32. We retain all components

as illustrated in Figure 6.25, with one exception: we substitute the Part MLP with the MLP layer

present in the box prediction head of OWL-ViT because the proposed layers require training. The

MLP layers in the box prediction head project the part embeddings to match the dimensionality of

the text embeddings. Our focus is on assessing the classification accuracy of the untuned PEEB on

two datasets: CUB and NABirds.

Results Table 6.14 reveals the outcomes of our experiment. Without training, PEEB yields

classification accuracies of 0.55% for CUB and 0.31% for NABirds, both of which are proximate

to random chance (0.5% for CUB and 0.1% for NABirds). However, with training, the model’s

performance dramatically transforms: 64.33% for CUB (an increase of +63.78 points) and 69.03%

for NABirds (a leap of +68.72 points) for PEEB[−test]. These pronounced disparities underscore the

vital role of training in PEEB.

Table 6.14: Impact of Training on Classification Accuracies: Untuned PEEB yields 0.55% on CUB
and 0.31% on NABirds, almost mirroring random chance. With training (PEEB[−test]), accuracy
surges by +63.78 points on CUB and +68.72 points on NABirds.

CUB NABirds

PEEB (no training) 0.55 0.31

PEEB[−test] pre-trained 64.33 69.03

PEEBCUB
[−test]

finetuned 86.73 -

117

Failure analysis

Since PEEB has two branches, box detection, and descriptor matching, we would like to find

out, in the failure case, what is the main cause. i.e., is it because of the mismatch in the descriptor

to the part embeddings? Or is it because the box detection is wrong? From our ablation study, it

turns out that most errors come from the descriptor-part matching.

Experiment We conduct the experiment with PEEB[−test] on CUB test set. Specifically, we

measure the box detection accuracy based on the key point annotation in CUB dataset, i.e., We

consider the box prediction as correct if the prediction includes the human-annotated key point. We

report the box prediction error rate (in %) based on parts.

Results As shown in table 6.15, the average error rate difference between success and failure cases

is merely 0.38. That is, in terms of box prediction, the accuracy is almost the same, disregarding the

correctness of bird identification. It indicates that the prediction error is predominantly due to the

mismatch between descriptors and part embeddings. We also noted that some parts, like Nape and

Throat, have a very high average error rate, which may greatly increase the matching difficulties

between descriptors and part embeddings.

Table 6.15: Error rate of Box Prediction in Failure and Success Cases. We report the box prediction
error rate, depending on whether the prediction box includes ground truth key points. No major
difference is found between them, which means the failure is largely due to the part-descriptor
mismatch.

Body Part Average Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat

Failure Cases 16.52 23.38 3.28 8.06 15.96 7.41 24.72 7.29 5.63 3.36 64.79 7.25 27.07
Success Cases 16.14 23.03 2.96 7.44 18.64 7.13 21.53 3.93 6.85 2.68 68.66 6.40 24.38
Difference 0.38 0.35 0.33 0.62 -2.68 0.28 3.19 3.36 -1.22 0.68 -3.87 0.85 2.68

Evaluation of predicted boxes from PEEB

Our proposed method primarily aims to facilitate part-based classification. While the core

objective is not object detection, retaining the box prediction component is paramount for ensuring

118

model explainability. This section delves into an evaluation of the box prediction performance of

our method against the OWL-ViTbase32 model.

Experiment Given our focus on part-based classification, we aimed to ascertain the quality of our

model’s box predictions. To this end, we employed two metrics: mean Intersection over Union (IoU)

and precision based on key points. We opted for mean IoU over the conventional mAP because: (1)

Ground-truth boxes for bird parts are absent, and (2) our model is constrained to predict a single

box per part, ensuring a recall of one. Thus, we treat OWL-ViTlarge’s boxes as the ground truth

and evaluate the box overlap through mean IoU. Furthermore, leveraging human-annotated key

points for bird parts, we measure the precision of predicted boxes by determining if they contain the

corresponding key points. We evaluate our finetuned models on their corresponding test sets. For

instance, PEEBAkata
[−cub]

, finetuned based on the CUB split [3], is evaluated on the CUB test set.

Results Our evaluation, as presented in table 6.16, shows that PEEB’s box predictions do not

match those of OWL-ViTbase32. Specifically, on average, there is a -5 to -10 points reduction in mean

IoU for CUB and NABirds datasets, respectively. The disparity is less distinct when examining

precision based on human-annotated key points; our method records about -0.14 points lower

precision for CUB and -3.17 points for NABirds compared to those for OWL-ViTbase32. These

observations reinforce that while PEEB’s box predictions might not rival these dedicated object

detection models, they consistently highlight the same parts identified by such models as shown in

figure 6.30. It is important to note that our approach utilized the same visual embeddings for both

classification and box prediction tasks. This alignment emphasizes the part-based nature of our

model’s predictions.

119

Table 6.16: Model evaluation on CUB and NABirds test sets. We evaluate the predicted boxes on two
ground-truth sets; (1) predicted boxes from OWL-ViTlarge as ground-truths, and (2) OWL-ViTlarge’s
boxes that include the human-annotated key points. Our method has slightly lower performance in
terms of mean IoU but comparable precision.

Models
Mean IoU

(1) All (2) w/ Keypoints Precision

CUB OWL-ViTlarge 100.00 100.00 83.83
OWL-ViTbase32 44.41 49.65 83.53
PEEB (Average) 35.98 40.14 83.39

PEEBCUB
[−test]

37.45 41.79 81.55
PEEBAkata

[−cub]
35.11 39.14 82.72

PEEBSCS
[−cub]

35.77 39.96 84.89
PEEBSCE

[−cub]
35.58 39.67 84.38

NABirds OWL-ViTlarge 100.00 100.00 85.01
OWL-ViTbase32 40.14 47.63 83.89
PEEB (Average) 36.47 42.01 80.72

PEEBSCS
[−nab]

36.45 42.03 80.09
PEEBSCE

[−nab]
36.49 41.99 81.34

120

6.3.6 Study on GPT-4 generated descriptors

Assessment of the generated part-based descriptors

We test GPT-4V on the CUB test set using the generated descriptors of 200 classes to assess

their usability. Specifically, we feed GPT-4V with each test image encoded in the payload and 200

sets of part-based descriptors through a carefully designed prompt (Table 6.17). GPT-4V is asked to

output one of 200 provided class names to compute the classification accuracy. As a result, GPT-4V

achieves 69.4% accuracy which is slightly higher than PEEB’s generalized zero-shot accuracy

(64.33%) and significantly lower than PEEB results after finetuning (86-88%).

Table 6.17: Prompt for GPT-4V evaluation on CUB where {list_of_200_classes} is replaced by the
actual 200 CUB classes while {descriptors} is replaced by the actual descriptors associated with a
given bird image from the CUB test set.

You are an image classifier which can tell what type of a bird is from the given image and its associated
part descriptors describing 12 parts of the bird. Your answer should be strictly formatted as {"prediction":
"bird_class"}.

where "bird_class" is one of the following 200 bird classes: {list_of_200_classes}

Given the bird image and the following descriptors: {descriptors}

What kind of bird is this? Let’s think step by step.

Noise measurement in GPT-4 generated descriptors

In this section, we conduct an empirical analysis to quantify the noise in descriptors generated

by GPT-4 for 20 different classes within the CUB dataset. To achieve this, we manually inspect each

descriptor and tally the instances where at least one factual error is present. Our findings reveal that

every one of the 20 classes contains descriptors with errors, and on average, 45% of the descriptors

necessitate corrections. This substantial noise level underscores the need for further refinement in

our work, particularly in text descriptors.

121

We observe a notably high error rate in descriptors on the back and wings, with approximately

60% of these containing inaccurate information (refer to Table 6.18). This could be attributed to the

challenges in distinguishing between the back and wings, given that the back is typically positioned

behind the wings, yet exhibits considerable variability in size and shape. Addressing all descriptor

issues by revising all 11,000 fine-grained descriptors would demand a significant investment of time

and resources, which is beyond the scope of the current work. As such, we identify this as an area

for future research and development, aiming to enhance the quality of the Bird-11K dataset.

Table 6.18: Summary of manual inspection results for 20 classes, highlighting the need for revision
in GPT-4 generated descriptors. An average error rate of 45% indicates substantial room for
improvement.

Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat Average

Error Rate 60 30 50 40 50 55 50 20 60 50 35 40 45

Revising descriptors improves classification accuracy

As mentioned in the limitation section, the descriptors are generated from GPT-4 and therefore

noisy and incorrect. Given that PEEB accepts open vocabulary inputs for classification, a natural

way to improve classification accuracy is to improve the correctness of the descriptors.

Experiment We first collect descriptors of 183 CUB classes from AllAboutBirds. We then

prompt GPT-4 to revise our original descriptors by providing the collected descriptor. We revise the

descriptors with the following prompt:

Given the following descriptors of {class name}: {AllAboutBirds descriptors}.

Can you revise the incorrect items below (if any) of this bird, return them

as a Python dictionary, and use the key as the part name for each item? If

a partś descriptor is not specifically described or cannot be inferred from

the definition, use your own knowledge. Otherwise, leave as is. Note: please

use a double quotation mark for each item such that it works with JSON format.

{Original descriptors}

122

Where {class name} the placeholder for the class name, {AllAboutBirds descriptors} is the

description collected from AllAboutBirds, {Original descriptors} is the descriptors we used

for training.

Due to the errors in the descriptors we used to train PEEB, simply replacing the descriptors

with their revised version does not lead to better performance. Because the incorrect descriptors in

training change the meaning of some of the phrases. For example, the belly of Bluebunting is pure

blue, but the descriptors from GPT-4 is soft, creamy white. In addition, the GPT-4 uses the exact

same descriptor in the belly for other classes, e.g., Bluebreastedquail, which should be cinnamon.

BlueFrontedFlycatcher, which should be yellow. Training the same descriptors with different colors

confuses the model, and the model will convey the phrase “creamy white” with a different meaning

to humans. Therefore, simply changing the descriptors to their’ revised version will not work.

We empirically inspect the descriptors that PEEB can correctly respond to and replace the class

descriptors with the revised version. Specifically, we replace the descriptors of 17 classes in CUB

and test the classification accuracy on PEEB[−test].

Results As shown in Table 6.19, the overall accuracy increase +0.8 points. The average improve-

ment of the revised class is around +10.8, hitting that if we have correct descriptors of all classes, we

may significantly improve the classification accuracy of the pre-trained model. However, correcting

all 11k class descriptors is too expensive and out of the scope of this work. We leave it as a further

direction of improving the part-based bird classification.

Table 6.19: The revised descriptors result in +0.8 for PEEB[−test] in CUB. In particular, the average
improvement among the 17 revised classes is +10.8, hinting at the large potential of our proposed
model.

Descriptors Original Partially Revised Avg. Improvement

PEEB[−test] 64.33 65.14 10.80

123

6.3.7 Qualitative Inspections

Visual comparison of predicted boxes

We provide a visual comparison of the box prediction from OWL-ViTlarge, OWL-ViTbase32,

and PEEB in Figure 6.30. We find that despite the fact that our predicted boxes have lower mean

IoU compared to OWL-ViTlarge, they are visually similar to the boxes as OWL-ViTbase32.

Qualitative examples of using randomized descriptors

We visually compare M&V and PEEB based on their utilization of descriptors. (Figures 6.31

to 6.33). Specifically, we randomly swap the descriptors of the classes and then use these randomized

descriptors as textual inputs to the tested models to see how they perform. We observe that the scores

from M&V tend to cluster closely together. Surprisingly, M&V’s prediction remains unchanged

despite the inaccurate descriptors. In contrast, PEEB, when presented with randomized descriptors,

attempts to identify the best match grounded on the given descriptors.

Examples of PEEB explanations for birds

Figures 6.34 to 6.36 are examples of how PEEB makes classification based on the descriptors

and how it can reject the predictions made by M&V. Since we aggregate all descriptors for the final

decision, even if some of them are similar in two classes, our method can still differentiate them

from other descriptors. For instance, in Figure 6.34, while other descriptors are similar, PEEB can

still reject chesnut − sidedwarbler thanks to the distinct features of forehead, throat and belly.

Examples of PEEB explanations for dogs

Figures 6.37 to 6.39 are examples of how PEEB makes classification based on the descriptors

in Stanford Dogs dataset. We demonstrate that our model works well on dogs, which indicates that

our proposed method is transferable to other domains while maintaining high-quality explainability

as in birds.

124

Original PEEB OWL-ViTbase32 OWL-ViTlarge

Figure 6.30: Our predicted boxes (second column) often align closely with those of OWL-ViTbase32

(third column). However, slight shifts can lead to significant IoU discrepancies. For instance, in the
first row, both PEEB and OWL-ViTbase32 accurately identify the tail. Yet, variations in focus yield a
stark IoU contrast of 0.45 versus 0.81.

125

Original Descriptor Random nonsense Descriptor

M
&

V
PE

E
B

cerulean warbler
0.344

0.350

0.346

0.350

0.344

0.351

0.347

Small bird

Distinctive blue color on the upper parts and white
underneath

Thin, pointed beak

Black streaks on the back and flank

Black line through the eyes

Males are brighter blue than females

Often found in trees or shrubs

cerulean warbler | 0.006

0.347

0.347

0.343

0.347

0.351

0.351

long, curved beak

brownish-tan feathers

relatively large size for a shorebird

long legs

a small head in relation to its body

typically found in open grasslands or wetlands.

cerulean warbler | 0.006

0.875
0.864
0.865
0.874
0.876
0.843
0.849
0.872
0.838
0.853
0.875
0.866

crown: bright cerulean blue
forehead: blue and unmarked
nape: blue, similar to the crown
eyes: black, round and tiny
beak: small, pointed, and black
throat: clean white contrasting with blue upperparts
breast: blue-gray with dark streaks
belly: white and unmarked
back: deep blue with streaks of black
wings: cerulean blue with black edging
legs: dark gray and slender
tail: blue-black with white edges

cerulean warbler | 0.688
0.310
0.252
0.529
0.810
0.657
0.486
0.557
0.339
0.368
0.665
0.561
0.452

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

least tern | 0.041

Figure 6.31: Qualitative example of original descriptors vs. randomized descriptors. Upon swapping
descriptors randomly, the prediction outcomes from M&V exhibit minimal variations.

Original descriptor Random nonsense descriptor

M
&

V
PE

E
B

indigo bunting
0.374

0.372

0.373

0.366

0.371

0.354

Bright blue plumage (in males)

Small, finch-like body

Short, conical beak

Brownish wings and tail (in females and juveniles)

A habitat setting such as open areas with shrubs or trees,
or forest edges

Often seen near bird feeders.

indigo bunting | 0.006
0.378

0.374

0.374

0.368

0.370

0.366

0.376

0.378

medium-sized wading bird

slate-blue plumage

long, slender neck

long, dark legs

sharp, pointed beak

white morph with completely white plumage
often found near bodies of water, such as wetlands or
marshes
may be seen standing or walking slowly while hunting for
prey

indigo bunting | 0.006

0.357
0.753
0.748
0.452
0.813
0.676
0.612
0.530
0.568
0.684
0.375
0.492

crown: bold, indigo-blue crest
forehead: deep indigo-blue hue
nape: rich indigo-blue
eyes: small, dark, and alert
beak: short, conical, and silver-gray
throat: vivid indigo-blue with lighter shades
breast: bright indigo-blue plumage
belly: lighter indigo blue shading to white
back: vibrant indigo-blue feathers
wings: striking indigo-blue with black edges
legs: slender grayish-blue
tail: tapered, black with blue edges

indigo bunting | 0.154
0.437
0.387
0.624
0.448
0.663
0.482
0.534
0.370
0.457
0.314
0.753
0.420

crown: deep blue with smooth contour
forehead: bright blue and flat
nape: rich blue and rounded
eyes: black, small and circular
beak: silver-colored, conical shape
throat: bright blue and smooth
breast: vibrant blue feathers
belly: lighter blue plumage
back: deep blue feathers
wings: blue and black striped pattern
legs: dark grey, sturdy
tail: long, dark blue feathers

tennessee warbler | 0.072

Figure 6.32: Qualitative example of original descriptors vs. randomized descriptors. Since PEEB’s
decision is made by the descriptors, the model will try to find the descriptors that best match the
image. e.g., in the random descriptors, most parts are blue.

126

Original descriptor Random nonsense descriptor

M
&

V
PE

E
B

vermilion flycatcher
0.365

0.365

0.376

0.362

0.370

0.366

0.351

small bird species

bright red or vermilion plumage, especially in males

females and juveniles are more brown or grey

black mask around the eyes in adult males

relatively short beak

often perches on branches or wires

native to the Americas, particularly in warmer climates.

vermilion flycatcher | 0.006
0.351

0.376

0.380

0.366

0.366

0.367

0.362

0.364

small bird species (swallow)

glossy blue-black upperparts

pale underparts, usually white or light grey

deeply forked tail with long, slender outer feathers

pointed wings

short, pointed beak

often seen flying or perched near water or open areas

typically found in Africa and Asia

vermilion flycatcher | 0.006

0.659
0.440
0.487
0.558
0.775
0.676
0.727
0.293
0.646
0.622
0.541
0.578

crown: intense red-orange plumage
forehead: bright vermilion feathers
nape: striking vermilion feathers
eyes: sharp black beads
beak: short, pointy black beak
throat: vivid red-orange feathers
breast: fiery red-orange coloring
belly: bright vermilion hue
back: vibrant red-orange feathers
wings: black with red-orange highlights
legs: thin dark gray limbs
tail: long black with red-orange edges

vermilion flycatcher | 0.068
0.549
0.775
0.534
0.819
0.781
0.569
0.754
0.589
0.508
0.533
0.635
0.362

crown: deep rusty red
forehead: bright red-orange
nape: rich red hue
eyes: small and black
beak: strong, curved and crossed tip
throat: bright reddish-orange
breast: vibrant reddish-orange
belly: pale red-orange
back: dark rusty red
wings: dark brown with red-orange edges
legs: short and dark
tail: black with reddish tinge

red headed woodpecker | 0.103

Figure 6.33: Qualitative example of original descriptors vs. randomized descriptors. M&V main-
tains similar scores even for mismatched descriptors. For instance, “bright red or vermilion plumage,
especially in males” receives a score lower than “glossy blue-black upperparts”. Conversely, PEEB
leverages the descriptors for classification, consistently relying on the descriptors that most closely
align with the image.

0.637
0.374
0.613
0.430
0.527
0.552
0.596
0.261
0.665
0.618
0.608
0.327

crown: olive-green with faint black crown stripe
forehead: yellowish-green
nape: olive-green
eyes: dark with thin white eye-ring
beak: short, thin, and pointed
throat: yellow-orange
breast: bright yellow-orange with black streaks
belly: creamy white with subtle yellow wash
back: olive-green with black streaks
wings: blue-gray with white wing bars
legs: pale pinkish-gray
tail: blue-gray with white outer tail feathers

Our prediction: bay breasted warbler 0.431
because of the following...

0.433
0.097
0.613
0.480
0.488
0.268
0.339
0.085
0.630
0.585
0.585
0.367

crown: yellow with black stripe
forehead: bright yellow
nape: olive-green
eyes: black with white eye-ring
beak: thin, pointy, and black
throat: bright white
breast: white with distinct chestnut streaks
belly: white and unmarked
back: olive-green with streaks
wings: grayish-blue with two white wing-bars
legs: pale pinkish-brown
tail: grayish-blue, white-edged feathers

M&V's prediction: chestnut sided warbler 0.125
but we rejected it because...

Figure 6.34: An example of PEEB explanation. We can see that the descriptors of these two classes
are largely similar, but PEEB makes the correct prediction based on the distinctive feature of the
forehead in the two classes.

127

0.652
0.709
0.578
0.432
0.377
0.568
0.491
0.679
0.545
0.536
0.622
0.514

crown: smooth white with light gray area
forehead: white feathers
nape: white turning to pale gray
eyes: dark and round, surrounded by white
feathers
beak: dark red to orange, sturdy and sharp
throat: white feathers
breast: white feathers with gray shading
belly: white feathers
back: pale gray feathers
wings: pale gray with black tips and a white
trailing edge
legs: pinkish-red and medium-length
tail: white with black terminal band

Our prediction: heermann gull 0.786
because of the following...

0.149
0.676
0.224
0.000
0.000
0.403
0.000
0.180
0.433
0.167
0.112
0.000

crown: grey, subtly streaked
forehead: flat, extended white feathers
nape: white, short plumage
eyes: dark, intelligent gaze
beak: sharp, yellow-tipped hook
throat: white, soft feathering
breast: white, well-rounded
belly: smooth, white plumage
back: sleek, white-grey feathered
wings: long, black-tipped with white-grey
feathers
legs: vibrant red, slender
tail: white, fan-shaped feathers

M&V's prediction: red legged kittiwake 0.006
but we rejected it because...

Figure 6.35: An example of PEEB explanation. M&V incorrectly classifies it as
red − leggedkittiwake where the heermanngull does not have red legs but a red beak. This ex-
ample shows that CLIP is strongly biased towards some particular descriptors.

0.696
0.688
0.722
0.483
0.475
0.672
0.614
0.624
0.688
0.575
0.645
0.699

crown: orange-yellow with pale edges
forehead: yellowish with faint markings
nape: olive-brown, blending into the back
eyes: small and dark, framed by eye-ring
beak: short and sharp, black-colored
throat: bright yellow, blending into the breast
breast: bright yellow with dark streaks
belly: creamy white with faint streaks
back: olive-brown back with streaks
wings: olive-brown with white-edged feathers
legs: long and skinny, with blackish coloring
tail: short and dark, with white outer feathers

Our prediction: palm warbler 0.819
because of the following...

0.000
0.309
0.000
0.212
0.149
0.173
0.551
0.306
0.100
0.220
0.000
0.142

crown: yellowish-green
forehead: yellow with black markings
nape: greenish-yellow
eyes: dark with thin white eye-ring
beak: small and pointed
throat: bright yellow
breast: bright yellow with faint streaks
belly: yellowish with light brown streaks
back: olive-green with faint streaks
wings: dark grayish-brown with white streaks
legs: pinkish-brown
tail: dark grayish-brown with white edges

M&V's prediction: prairie warbler 0.002
but we rejected it because...

Figure 6.36: An example of PEEB explanation. We can see that when the descriptor does not match
the image, the matching score tends to be zero, e.g., crown: yellowish-green. The clear differences
in scores provide us transparency of the model’s decision.

0.673

0.514

0.437

0.756

0.626

0.631

head: round with a distinct "dome" shape, often covered in long,
silky fur that can vary in color from black, brown, or white

ears: long, floppy, and heavily feathered, usually in deep chestnut
brown or black, often hang down past the jawline

muzzle: short and tapered, usually the same color as the body fur,
with a black or brown nose at the end

body: compact and well-balanced, covered in silky fur that can
be a blend of white, black, and brown

legs: short and straight, often covered in feathered fur that matches
the body color, paws are small and compact

tail: medium-length, often covered in feathered fur, usually carried
aloft but not above the level of the back

Our prediction: Papillon (Continental Toy Spaniel) 0.190
because of the following...

0.589

0.096

0.084

0.061

0.219

0.363

head: round with a distinct dome shape, often a mix of white
and brown or black fur

ears: long, droopy and feathered, usually colored in rich brown
or black, framing each side of the face

muzzle: short and slightly tapered, covered in short brown,
black, or white fur, with a black nose at the end

body: compact and muscular, covered in a silky, wavy coat that
can be a mix of white, brown, black and tan

legs: short to medium length and straight, with feathered fur
that matches the color of the body

tail: medium length, often docked, covered in feathered fur,
carried happily but never much above the level of the back

Top-2 prediction: Beagle 0.021
but we rejected it because...

Figure 6.37: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the
predefined parts and then matches them to the descriptions.

128

0.671

0.497

0.428

0.200

0.637

0.641

head: round with a distinct dome shape, often a mix of white
and brown or black fur

ears: long, droopy and feathered, usually colored in rich brown
or black, framing each side of the face

muzzle: short and slightly tapered, covered in short brown,
black, or white fur, with a black nose at the end

body: compact and muscular, covered in a silky, wavy coat that
can be a mix of white, brown, black and tan

legs: short to medium length and straight, with feathered fur
that matches the color of the body

tail: medium length, often docked, covered in feathered fur,
carried happily but never much above the level of the back

Our prediction: Beagle 0.126
because of the following...

0.474

0.000

0.014

0.207

0.290

0.425

head: round with a distinct "dome" shape, often covered in long,
silky fur that can vary in color from black, brown, or white

ears: long, floppy, and heavily feathered, usually in deep chestnut
brown or black, often hang down past the jawline

muzzle: short and tapered, usually the same color as the body fur,
with a black or brown nose at the end

body: compact and well-balanced, covered in silky fur that can
be a blend of white, black, and brown

legs: short and straight, often covered in feathered fur that matches
the body color, paws are small and compact

tail: medium-length, often covered in feathered fur, usually carried
aloft but not above the level of the back

Top-2 prediction: Papillon (Continental Toy Spaniel) 0.023
but we rejected it because...

Figure 6.38: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the
predefined parts and then matches them to the descriptions.

0.662

0.452

0.394

0.748

0.636

0.587

head: rounded skull with a slight stop, often covered in silky, wavy chestnut
on white fur

ears: long, set high, droopy and well-feathered with chestnut-colored fur, framing
the face

muzzle: moderately short and rounded, usually white with patches of chestnut

body: compact but well-proportioned with a level topline, covered in wavy, silky
fur that's usually white with chestnut patches

legs: medium length, often covered in white fur that may have chestnut patches,
and adorned with feathering on the back of the thighs

tail: moderate length, carried happily but never much above the level of the
back, often covered in white fur with chestnut patches, feathering present

Our prediction: Redbone Coonhound 0.253
because of the following...

0.417

0.000

0.000

0.729

0.000

0.595

head: compact with a slightly rounded skull and a
well-defined stop

ears: long, feathered, and set low, hanging close
to the cheeks

muzzle: short, square and well proportioned with a
black or brown nose at the end

body: compact and well-balanced with a level topline

legs: muscular and straight with feathered fur, ending
in compact, cushioned feet

tail: medium length, carried happily but never much
above the level of the back, with feathered fur

Top-2 prediction: Australian Kelpie 0.032
but we rejected it because...

Figure 6.39: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the
predefined parts and then matches them to the descriptions.

129

	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivations
	Contributions
	Organization

	Analysis of Shape/Texture Bias in CNNs
	Inconsistency between CNN and Human Perception
	Experiment setup
	Adversarial Training Reduces Texture Bias in ImageNet Classifiers
	Generalization Capabilities of Robust Networks
	R Networks Show No Evidence of Better Generalization to Distorted Images

	Impact of Shape and Texture Biases on Network Performance
	What internal mechanisms make adversarially trained CNNs more robust than standard CNNs?
	Weight level: Smooth filters to block pixel-wise noise
	Neuron level: Robust neurons prefer lower-level and fewer inputs
	Which neurons are important for shape-based or texture-based image classification?

	Discussion and Conclusion

	gScoreCAM: Understand the foundation model CLIP
	The Emergence of Foundation Models
	gScoreCAM: A Simple Tool To Visualize CLIP
	Revisiting CAM and ScoreCAM
	Proposed method: Gradient-guided ScoreCAM (gScoreCAM)

	Experiment setups
	Datasets & Localization evaluation metrics
	CLIP networks

	gScoreCAM is the State-of-the-art CLIP Visualizer
	Visualizing CLIP's Attention
	Better Understanding of "Typographic Attack"
	Inspecting Bias in CLIP

	Conclusion

	PEEB: A Part-based Image Classifiers with an Explainable and Editable Language Bottleneck
	The Necessity and Benefits of Self-Explainable Frameworks
	Datasets
	BirdSoup Dataset
	DogSoup Dataset

	Method: PEEB Architecture and Training Strategy
	Backbone: OWL-ViT object-part detector
	PEEB classifier
	Training strategy

	State of the Art Explainable Bird Classifier
	Editable Part-based Design
	Generalize to Unseen Classes
	Conclusion
	Limitations

	Reference
	Appendix
	Shape and Simplicity (Chapter 2) Supplementary Materials
	Shapeless Images
	Convolutional layers used in Network Dissection analysis
	Kernel smoothness visualization
	Object and color detectors of AlexNet
	Total variance (TV) of AlexNet & AlexNet-R on clean/noisy images
	ImageNet-C evaluation
	Examples of shape-less and texture-less images
	Visualizing channel preference via cue-conflict and NetDissect

	gScoreCAM (Chapter 3) supplementary materials
	Experiments & Findings
	Ablation study of gScoreCAM
	Why gScoreCAM is better in weighting the activation maps?
	Zero-shot Object localization
	Why does gScoreCAM perform better in COCO and PartImageNet?
	gScoreCAM consistently better on different CLIP models
	Qualitative study via CLIP
	Derive bounding box from heatmap
	Visualizations of different methods

	PEEB (Chapter 4) Supplementary Materials
	Architecture details
	Model and dataset notations
	Generating part-based descriptors
	Datasets
	Additional results
	Study on GPT-4 generated descriptors
	Qualitative Inspections

