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Discretization error is defined as the difference between the solution of the 

discretized equation and the exact solution of the original partial differential equation. 

There are two main goals in this study. The first goal is to use of the method of nearby 

problems to generate exact solutions to realistic problems so that we can asses the 

performance of discretization error estimators can be assessed. The second goal is to 

develop and use method of nearby problems itself as an error estimator. Different 

polynomial curve fitting techniques are examined and fifth-order Hermite splines are 

identified as the best approach for the method of nearby problems. Steady-state Burgers 

equation and a modified form of Burgers equation are used as test cases. The analytical 

curve fits are then the exact solution to a problem nearby the original problem. Results 

are presented for Burgers equation corresponding to a viscous shock wave for Reynolds 
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numbers of 8 and 64, as well as for a modified version of Burgers equation with a 

variable viscosity at a nominal Reynolds number of 64. Various discretization error 

estimators are evaluated for the original Burgers equation, the nearby problem, and the 

modified version of Burgers equation which includes a nonlinear viscosity term.  It is 

also observed that the method of nearby problems itself performs well as a discretization 

error estimator even on coarse meshes. 
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CHAPTER ONE 

 

INTRODUCTION 
 

1.1 Background on computational fluid dynamics 
 
 
            Computational fluid dynamics (CFD) is a term given to a variety of numerical 

techniques applied to solve the equations that govern fluid flow. Before computers, 

theory and experiments were the only methods for gaining insight into physical 

phenomena. Most of these physical phenomena can be modeled using differential 

equations. The ideal approach would be to solve these equations via analytical techniques 

and obtain exact solutions. But in most cases, these equations are complex and therefore 

difficult to solve analytically. For such cases we have to resort to approximate solutions. 

Using computer simulations is one method to obtain these approximate solutions.  

The seventeenth century saw the growth of experimental fluid dynamics in 

Europe. Experimental fluid dynamics is considered as the first approach [1] in the study 

and development of fluid dynamics. The eighteenth and nineteenth centuries saw the 

development of the second approach which is theoretical fluid dynamics. The latter part 

of the twentieth century saw the development of CFD which is the third approach. The 

growth of CFD can be attributed to the development of high-speed computers and 

accurate numerical algorithms to solve various problems. CFD complements the other 

two approaches of pure theory and pure experiment. There is still a need for theory and 
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experiments, and the future of fluid dynamics depends on the balance of all three 

approaches as shown in Fig 1.1.  

 

        Pure         Pure 
   Experiment       Theory 

 
        CFD 

 

Fig 1.1 Three approaches to fluid dynamics 

 

CFD has established itself as a research tool. Moreover, CFD is now establishing 

its use as a design tool as well. CFD can be used to predict the presence of vortices in the 

flow over vehicles [1] and by studying the behavior of these vortices and their 

interaction, one can come up with an optimal aerodynamic design for the vehicle. This is 

just one of many uses of CFD as a design tool. 

CFD is being used today in a wide variety of areas [1], for example, engine and 

automobile applications. By assessing the flow over the body of the vehicle, an 

aerodynamic shape can be determined. Today, automotive engineers use CFD to study 

details of flow in engines. CFD can be applied in industrial manufacturing as well, for 

example, to calculate the flow field in a mold filled by liquid metal or polymer. Civil 

engineering uses CFD to tackle problems related to lakes, rivers, estuaries, etc. CFD is 
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also used in other applications relating to heating, air conditioning, and general air 

circulation in buildings.  

 

1.2. Verification and validation in CFD 

Verification is the process of determining whether the implementation of the 

model, accurately represents the original problem of interest [2]. Validation is the process 

of determining the extent to which the model accurately represents reality. In other 

words, verification checks whether the model is solved correctly while validation ensures 

that the correct model is solved. In yet another way, verification can be described as 

dealing with the mathematical correctness of the solution, while validation deals with the 

physical correctness of the model. Both verification and validation are compared with a 

reference standard. In the case of verification the standard is exact solution of the partial 

differential equation while in the case of validation, the standard is real world 

observations.  

Verification is a two step process [3]. The first step is code verification where the 

computer code is verified and made free of unacknowledged errors, such as errors due to 

mistakes in code or inconsistent numerical schemes. The second step, solution 

verification, is the step in which the acknowledged errors such as round-off errors or 

discretization errors are assessed.  

Code verification [3] can be broadly classified into two areas: numerical 

algorithm verification and software quality assurance practices. Some types of algorithm 

testing are the method of manufactured solutions, benchmark solutions, iterative 

convergence tests, conservation tests, symmetry tests, and so forth. Software quality 
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assurance [4] involves the entire software development process: monitoring the process 

and trying to improve it, making sure that all standards and procedures are followed, and 

finally making sure that all the defects are found out and properly dealt with. Some of the 

software quality analysis tools are static analysis, dynamic testing, and formal testing. 

Solution verification has three main aspects [3]. The first aspect, verification of 

input data, makes sure that the data that is provided is correct. The second aspect, 

numerical error estimation, calculates the acknowledged errors in simulation. The third 

aspect, verification of output data, makes sure that the correct post-processing steps are 

used.  

 

1.3. Sources of numerical error 

In addition to the errors that can come in during the development of the solution 

algorithm, there are some acknowledged errors that occur in every computational 

simulation. These errors are called numerical errors. 

The main types of numerical errors are round-off errors, iterative errors, and 

discretization errors. Round-off errors [3] occur due to finite arithmetic in digital 

computers. An example of round-off error is ( ) 9999999.00.3/0.10.3 =×  for single 

precision. Here we see that the computation of  in single precision 

gives , which leads to the final result of 0.9999999 as opposed to 1.0. Round-

off error can be very important in the case of ill-conditioned problems or time accurate 

simulations where a large number of time steps can result in error accumulation. The way 

by which the round-off error can be reduced is by using more digits in the computation. 

0.3/0.1

3333333.0
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For example, round-off error can be reduced by using double precision instead of single 

precision. 

Iterative error [5] is the difference between the current iterative solution and the 

exact solution of the discretized equations. When the governing equations for fluid 

dynamics are discretized, they often result in a set of non-linear equations. The usual 

procedure that is followed to solve these equations is to first linearize them and then 

solve them using an iterative method. To stop the iterative process, a convergence 

criterion has to be introduced. The iteration goes on until the residual, which is calculated 

by substituting the current iterative solution into the discrete equations, is less than this 

convergence criterion. If the iterative process is run until the residual is as small as 

possible (i.e. machine zero), then the iterative error will be minimized. In this research, a 

small iterative error was desired and so a convergence criterion of  was used. 1410−

Discretization error is defined as the solution of the algebraic system of equations 

which is obtained by discretizing the conservation equation and the difference between 

the exact solutions of the conservation equations. It is important to estimate the 

discretization error before the CFD predictions can be compared with the experimental 

data. The first step to solve a set of governing equations numerically is to discretize them. 

Discretization is the process of converting the original partial differential equations to an 

algebraic set of equations. This algebraic set of equations is then solved on a discrete 

mesh to obtain numerical solutions. These solutions are approximate and are generally 

different from the exact solution of the governing equations. This difference is the 

discretization error. If the discretization approach is consistent, then the discretization 

error will decrease as the mesh is refined. 
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1.4. Discretization error estimators  

There are a number of ways to estimate the discretization error. Richardson 

extrapolation involves the computation of numerical solutions on two or more meshes. 

Solutions on these different meshes are then used to compute a higher-order estimate of 

the exact solution. This estimate of the exact solution can then be used to estimate the 

discretization error. There are certain assumptions that are used in Richardson 

extrapolation. The solution is assumed to be smooth, uniform meshes are assumed and 

the higher order terms are neglected. The discretization error [3] can be written as  

                                     (1.1) TermsOrderHigherhghghgffDE kkkexactkk +++=−= 3
3

2
21

where, is the discrete solution on mesh k,  is the exact solution to the partial 

differential equation,  is the coefficient of the i

kf exactf

ig th order term, and h is the measure of the 

element size. Consider a second order accurate scheme with solutions on two different 

meshes   and , with 1h 2h 12 2hh = . Neglecting the higher order terms, the discretization 

error equation can be written as 

                                                                                                           (1.2) 2
121 hgff exact +=

                                                                                                    (1.3) 2
122 )2( hgff exact +=

Solving these two equations for and we get 2g exactf

                                                        
3

21
1

ffffexact
−

+=                                                 (1.4)  

In general, if we consider a pth order accurate scheme with solutions on a fine mesh ( ) 

and a course mesh ( ),  can be approximated as 

1h

2h exactf
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1
21

1 −
−

+= pexact r
ffff                                          (1.5) 

where r is the grid refinement factor given by 12 / hhr = . Once  is estimated, then the 

relative discretization error (RDE) in the fine grid can be calculated as 

exactf

                                                         
exact

exact

f
ff

RDE
−

= 1
1                                                 (1.6) 

 

1.5. Objective 

The current study concentrates on verification. In particular, we focus on solution 

verification and use the method of nearby problems (MNP) as an error estimator. We 

have also used MNP to come up with an exact solution for a problem that is very close to 

(i.e. nearby) the original problem, and have evaluated various error estimators on those 

nearby problems.  
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CHAPTER TWO 

 

BACKGROUND 

2.1. Method of manufactured solutions (MMS) 

            MMS [7] provides a general procedure for generating an analytical solution for 

code verification. It is a general approach to find coding mistakes/bugs or inconsistent 

algorithms. The goal of MMS is code verification. It involves manufacturing an exact 

solution to a set of equations which are a modified form of the original partial differential 

equations. The solution obtained to this set of modified equations is not physically 

realistic. This method is used only to verify the mathematics involved in solving the 

original equations, and does not verify the solution obtained by solving the original 

equations. This procedure is used when the method of exact solutions cannot be used. 

The method of exact solutions [3] is one in which the numerical solution is compared to 

an exact solution to the partial differential equation. In the method of exact solution, the 

discretization error is computed and then the observed order of accuracy is calculated. 

This observed order of accuracy is compared with the formal order of accuracy. This 

method [2] is usually not followed for complex cases (geometric complexity, physical 

complexity, etc.) because of the limited number of exact solutions. 

           Once the problem of interest is identified then MMS is conducted for code 

verification. MMS is a five step process [3].  
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1. The first step is to choose a manufactured solution. There are certain guidelines 

[8] that should be followed in choosing a manufactured solution.  

• The manufactured solution should be sufficiently smooth so that the 

theoretical order of accuracy can be matched by the observed order of 

accuracy on relatively coarse meshes. 

• The solution should exercise all the terms of the governing equation. For 

example, for the unsteady heat equation, the temperature cannot be chosen 

as a function which is independent of time. 

• The solution should be such that it has a number of nontrivial derivatives. 

For example, in the heat equation which is a second-order equation in 

space, picking temperature as a linear function of the spatial coordinate 

will not provide a sufficient test. 

• The chosen solution should consist of simple analytic functions like 

polynomials, trigonometric functions, etc. 

• It is better to avoid exponential growth of the solution in time to avoid 

confusion with numerical instability. 

2. The second step in MMS is to derive the modified governing equation. Here the 

governing equations are applied to the chosen manufactured solution. This will 

result in the generation of analytical source terms. These analytic source terms 

are then added to the governing equations, resulting in a modified form of the 

original equations. 

3. Once the modified equations are obtained, then they are solved numerically on 

different meshes. 
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4. The next step is to evaluate the global discretization error, which can be 

calculated as a global norm of the difference between the numerical solution 

and the exact solution of the modified equation over the whole domain. The 

exact solution of the modified equation is nothing but the manufactured solution 

chosen in step 1.  

5. The last step in MMS is to compute the observed order of accuracy. If the exact 

solution is known, then the observed order of accuracy is calculated as 

                                                    
)ln(

)ln(
1

2

r
DE
DE

p =                                                     (2.1)  

where, and are the discretization error on the coarse and fine meshes 

respectively, and 

2DE 1DE

r is the grid refinement factor. Once the observed order of 

accuracy is calculated, it is compared to the formal order of accuracy. If they 

match, then the code is considered to be free of bugs or mistakes in the 

discretization. If they do not match, then it suggests that there is some problem 

in the code. 

 

2.2. Prior work in MNP 

            Standard benchmark problems are often used for testing codes. True solutions of 

these standard benchmark problems are often known, but it is hard to ascertain the 

relationship between the behavior of an algorithm on a standard benchmark problem and 

the behavior of the algorithm on the true problem of interest.  

Lee and Junkins [9] described the use of a problem near an original ordinary 

differential equation (ODE) to serve as a benchmark problem. They constructed a 

 10



benchmark problem near the original ODE which exactly satisfied the original ODE with 

a small, known forcing function. Their work can be summarized as follows: 

• Compute a numerical solution on a very refined mesh. 

• Generate a polynomial fit for the fine numerical solution by the least squares 

approximation using Chebyshev polynomials. A global polynomial was used 

instead of a local polynomial to avoid discontinuities. 

• Generate the analytic solution from the global fit. This analytic solution 

becomes the exact solution of the nearby benchmark problem. 

• Use symbolic manipulation to plug the analytic solution into the original 

problem and generate small source terms.  

• Add these small source terms to the original ODE to form the benchmark 

problem. 

Since the exact solution of the benchmark problem was known, it was easy to compute 

the global error and also to determine optimal integration parameters. 

Junkins and Lee [10] later extended the previous methodology to construct exact 

special-case solutions for hybrid ODE/PDE systems. This hybrid ODE/PDE system was 

able to serve as a benchmark problem to test approximate solution methods. In their 

work, they have described a method for coming up with a benchmark problem to 

determine optimal time integration parameters, while in our work we use method of 

nearby problems to come up with an exact solution to a nearby problem and also as an 

error estimator. 

Roy and Hopkins [11] examined the generation of exact solutions to problems 

near the original problem of interest. They studied two examples: fully developed laminar 
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flow in a channel and a lid-driven cavity. Two codes were used in their work. The 

SACCARA code was used to establish a refined numerical solution to the original 

problem while the Premo code was used for the implementation of source terms and 

generalized boundary conditions. In the first example, the fully developed laminar flow in 

a channel they employed a third-order polynomial for the polynomial fit and, 

Mathematica was used to compute the analytic source terms. Once the source terms were 

computed, they formulated the nearby problem and used the Premo code for the solution 

of the nearby problem. Computed solutions on various meshes were compared to the 

analytic solution. The L2 norms of the source term as a function of the underlying mesh 

solution are shown in Fig 2.1. It is seen that as the mesh becomes finer (i.e. as h goes to 

1), the magnitude of the source terms decrease. Since the magnitude of the source terms 

is small, the nearby problem that is formulated will be close to the original problem of 

interest. The method of nearby problems was successfully demonstrated for fully 

developed laminar flow in a channel. 

 

Fig 2.1. norm of the source term for the third-order polynomial fit (reproduced from 

Roy and Hopkins [11]) 

2L
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In the second example, a lid-driven cavity, the analytic source terms were 

generated using a fourth-order least square polynomial based on different underlying 

mesh refinement levels. To minimize the errors that arise due to singularities at the 

corners, a truncated domain was used. The norm of the source term did not get smaller 

with mesh refinement as is seen in Fig 2.2. The magnitude of the source term was found 

to be large near the boundaries. For this example, the global polynomial did not capture 

the solution well. 

2L

 
Fig 2.2. norm of the source term for the fourth-order polynomial fit (reproduced from 

Roy and Hopkins [11]) 

2L
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CHAPTER THREE 

 

BURGERS EQUATION 

3.1. Introduction to Burgers equation 

Burgers equation is a quasi-linear, one-dimensional, parabolic partial differential 

equation of the form 

                                                         2

2

x
u

x
uu

t
u

∂
∂

=
∂
∂

+
∂
∂ ν                                                 (3.1) 

where u(x,t) is a two-dimensional scalar field. As an example it can be assumed as 

representing velocity as a function of position ‘x’ and time ‘t’, and ‘υ’ is the viscosity. A 

quasi-linear equation is one in which the highest-order derivative occurs linearly. A 

second-order partial differential equation of the form 

                                02 2
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∂

+
∂
∂

+
∂
∂

+
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∂
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∂
∂ F
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x
uD

y
uC

yx
uB

x
uA                          (3.2)  

 is said to be parabolic if the matrix  satisfies the determinant ⎥
⎦

⎤
⎢
⎣

⎡
≡

C
B

B
A

Z 0=Z  

Burgers equation can be related to shock wave theory. The solutions of Burgers 

equation can describe the formation and decay of shocks in a compressible fluid. Burgers 

equation can also be used as a mathematical model for turbulence. The Navier-Stokes 

equation and Burgers equation are quite similar since both contain a non-linear term and 

a second-order term multiplied by a small parameter. 

3.2. Solution to Burgers equation 
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Benton and Platzmann [12] describe thirty five solutions to Burgers equation. Out 

of the thirty five solutions we have chosen three that are smooth and real:  

1. The steady state solution in dimensionless form (denoted by primes) is given by 

. This is a solution of Burgers equation when )'tanh(2)','(' xtxu −= 0'
=

∂
∂

t
u . It 

can model a steady shock, and it is smooth, non trivial, and in the real plane. 

The plot for this solution is given in Fig. 3.1. for a Reynolds number of 8. The 

abscissa is the spatial coordinate x, while the ordinate is the value of u. 

Sol 1
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-5 -4 -3 -2 -1 0 1 2 3 4 5
Sol 1

 

Fig 3.1. Steady state solution of Burgers equation 

2.   An unsteady solution to Burgers equation is given as ')'cosh(
)'sinh(2)','(' tex

xtxu −+
−=  

and this solution can model the coalescence of two equal, unsteady shocks and 

is shown in Fig. 3.2 for different time levels.  
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Fig 3.2. Unsteady solution of Burgers equation for shock coalescnese 

 3. Another unsteady solution to Burgers equation is given as 

'4/'2/1 2

'1
'/')','('

txet
txtxu

+
= . This solution can model the decay of a solitary pair of 

unsteady, equal compression and expansion pulses, as shown in Fig. 3.3. 
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Fig 3.3. Unsteady solution of Burgers equation for pulse decay 
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3.3. Conversion to dimensional quantities and scaling factors 

The solution of Burgers equation can be converted to dimensional quantities via 

transformations given by and . A scaling factor ,/' lxx = ,/ 2' ltt υ= υ/' ulu = α  can also 

be used to scale the solution. The scaling factor was used in the forms ,/αxx =   

,/ 2αtt =  and uu α= . The value of the scaling factor depends on the Reynolds number 

used. For a Reynolds number of 8, the scaling factor used was 2. The value of the scaling 

factor used for a Reynolds number of 64 was 16.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17



 

 
 
 

CHAPTER FOUR 

 

METHOD OF NEARBY PROBLEMS 

The method of nearby problems (MNP) is used to generate exact solutions to 

realistic problems, which in turn allows assessment of how discretization error estimators 

will perform on the original problem of interest. MNP can also be used as an a posteriori 

error estimation technique [13]. It is based on constructing a problem close to the original 

problem called the nearby problem. This nearby problem has an exact solution, and also 

is representative of the original problem if the source term is sufficiently small. The 

nearby problem is numerically solved just like the original problem. Since the exact 

solution of the nearby problem is known, the error in its numerical solution can be 

evaluated exactly. This information can then be used to estimate the discretization error 

in the original problem.  

4.1 MNP as an evaluator of discretization error estimators  

The method of nearby problems (MNP) involves five steps. These steps can be 

summarized as given below: 

• Establish an accurate numerical solution 

• Generate an analytical curve fit for the above accurate numerical solution 

• Generate analytic source terms 

• Numerically solve the nearby problem (original problem plus analytical 

source term) 
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• Evaluate the discretization error in the nearby problem 

An explanation to all of these five steps is given below. 

Accurate numerical solution 

Once the problem of interest is identified, the first step is to discretize the problem 

and come up with an accurate numerical solution.  

Analytic curve fit 

Once an accurate numerical solution is computed, the second step involves 

generating an analytic curve fit to this numerical solution. A curve fitting tool is used to 

generate this curve fit. It should be kept in mind that the tool used for the curve fitting 

should provide a particular level of continuity which is problem dependent. Once the 

curve fit is generated, it should be examined to see how good the fit approximates the 

numerical solution. This analytic curve fit will serve as the exact solution to the nearby 

problem. 

Generation of analytic source terms 

The nearby problem differs from the original problem by a (hopefully) small 

source term. This source term is obtained by operating the original equation on the 

analytic curve fit obtained from the previous step. In the limit as the size of the source 

terms approaches zero, the nearby problem approaches the original problem. The 

nearness of the nearby problem to the original problem can be judged by calculating the 

magnitude of the source term. A more rigorous assessment of the nearness of the nearby 

problem is presented in [13] for ordinary differential equations. Such an assessment for 

Burgers equation, a nonlinear PDE is beyond the scope of this work. 
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Numerical solution to the nearby problem 

The next step involves discretization of the nearby problem and then computation 

of the numerical solution on a series of meshes. For a consistent numerical scheme and 

sufficiently refined meshes, the formal order of accuracy of the scheme should be 

observed, even on the perturbed equations. In general, the discretization error should drop 

as , where r is the grid refinement factor and p the formal order of accuracy. In order 

to examine the global discretization error behavior, we define the discrete error function 

as: 

pr/1

                                                 
1/ 2

2
, ,

1

1( )
N

k k n exact n
n

E
N

φ φ φ
=

⎛
= −⎜⎜
⎝ ⎠
∑

⎞
⎟⎟                               (4.1) 

where k refers to the discrete mesh level and N is the number of mesh nodes in space 

including both interior and boundary nodes with the exception of any Dirichlet boundary 

nodes for which the discretization error is identically zero. Here, φexact,n refers to the exact 

solution (i.e., the curve fit) evaluated at node n. 

Evaluation of discretization error 

Since the exact solution to the nearby problem is now known, the discretization 

error in the numerical solution to the nearby problem no longer has to be estimated, but 

can be evaluated exactly.  

 

4.2. Example of MNP as an evaluator of discretization error estimators 

The steps involved in MNP can be best explained by simple example. Consider 

that    

                                           0)( 2

2

=
∂
∂

+
∂
∂

=
x
u

x
uuL                                          (4.2) 

 20



is the differential operator of interest. The first step in MNP involves obtaining a highly 

refined numerical solution to this original problem. Any discretization scheme can be 

used, and the numerical solution can be obtained. The second step involves fitting an 

analytic curve fit to the refined numerical solution that we have from the first step. This 

problem demands continuity as the highest order of the differential operator is two 

and the source term that we develop should be slope continuous. So the tool that we use 

for curve fitting should be able to provide this continuity criterion. Consider that the 

resulting analytic curve fit is 

3C

                                                                             (4.3)  432)( exdxcxbxaxu ++++=
−

Now the third step of MNP is to operate the original equation on the analytic curve fit 

and come up with an analytic source term. By operating the original problem of interest 

on the analytic curve fit, we get 

                                                        (4.4)  )3(4)2(3)1(2)( 2 ++++++=
−

xexxdxxcbuL

 This is the source term,  and it is not equal to zero. Now this becomes the 

exact solution of a modified equation or the nearby equation,  

)(xs )(
_

xu

                                              )()( xsuL =   or  0)()( =− xsuL                              (4.5) 

It should be noted that as s(x) approaches zero, the nearby problem approaches the 

original problem. The next step is to come up with a numerical solution to the nearby 

problem. Since we have an exact solution to the nearby problem, we can evaluate the 

discretization error exactly. 
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CHAPTER FIVE 

 

POLYNOMIAL FITTING PROCEDURES 

5.1. Polynomial fitting in MNP 

Obtaining a good polynomial fit is the most difficult task in MNP. Two conditions 

have to be kept in mind while fitting the numerical solution. The first condition is the 

continuity criterion which is problem specific. For our example case, Burgers equation, 

continuity is needed in the solution to maintain slope continuity of the source term. 

The second condition is that the fit should approximate the numerical solution fairly well 

to obtain small source term. The magnitude of the source terms depends on the 

approximation that is used. If the approximation that is used is not good, then the 

magnitude of the source term will increase and the nearness of the nearby problem is 

affected.  

3C

5.2. Standard polynomial using MATLAB 

MATLAB [14] uses the function polyfit to fit a polynomial to a given set of data. 

Polyfit(X, Y, N) returns the coeffecients of a polynomial P(X) of degree N that fits the 

data P(X(I))~=Y(I) in a least-squares sense. Y = Polyval(P,X) gives the value of the 

polynomial evaluated at X.  

These functions were used to fit a twentieth order polynomial to numerical 

solutions of steady-state Burgers equation for various Reynolds numbers. As shown in 

Fig 5.1 for the low Reynolds number case, the polynomial fits the data well. But for the 
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high Reynolds number case (Re=64) as shown in Fig 5.2, the global polynomial does not 

fit the data well. As a result, the source term will not be sufficiently small, thus this 

approach is limited to low Reynolds number (i.e., smoothly varying) cases only. 
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Fig 5.1. Fitting the numerical solution of steady state Burgers equation with a standard 

20th order polynomial: Re=8 
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Fig 5.2. Fitting the numerical solution of steady state Burgers equation with a standard 

20th order polynomial: Re=64 
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5.3. Legendre polynomials 

Legendre polynomials are an orthogonal set of polynomials which can be used to 

represent a given function. The first few Legendre polynomials are given in equations 5.1 

to 5.5: 

                                                                1)(0 =xp                                (5.1)  

                                                                xxp =)(1                                           (5.2) 

                                                        )13(
2
1)( 2

2 −= xxp                    (5.3) 

                                                       )35(
2
1)( 3

3 xxxp −=         (5.4)  

                                                 )33035(
8
1)( 24

4 +−= xxxp
                              (5.5)  

These first five Legendre polynomials are shown graphically in Fig 5.3. 
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Fig 5.3. First five Legendre polynomials 
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The Legendre polynomials can be determined by using the following generating function:  

                                            
( ) ( )
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1 2 2 !
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n k x
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=

− −
=

− −∑                              (5.6) 

We can approximate a function f(x) with a truncated Legendre expansion fn(x) by 

                                                       
0

( ) ( )
n

n i
i

if x c p
=

=∑ x                                               (5.7) 

where the coefficients ci can be found by making use of the orthogonality of the Legendre 

polynomials 
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−

−

=
∫
∫

                         (5.8) 

The main reason for using Legendre polynomials instead of standard polynomials is that 

the Legendre polynomial-based procedure is more stable and robust. That is, the 

approximations are guaranteed not to get worse as more terms are included. In Fig 5.4, 

the numerical solution of steady-state Burgers equation for Reynolds number of 8 is well 

approximated by Legendre polynomials. But when we increase the Reynolds number, 

this global polynomial fitting technique again fails to provide a good approximation as is 

shown in Fig 5.5 and Fig 5.6. In the presence of a sharp gradient region, the global 

polynomial approximation does not perform well. 
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Fig 5.4 Numerical solution and 10th order Legendre and standard polynomial fits for 

steady-state Burgers equation at Re=8 
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Fig 5.5 Numerical solution and 10th order Legendre and standard polynomial fits for 

steady-state Burgers equation at Re=16  
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Fig 5.6 Numerical solution and 10th order Legendre and standard polynomial fits for 

steady-state Burgers equation at Re=512 

 

Since the Legendre polynomial does not approximate the numerical solution properly, the 

source term will not be small as shown in the Fig 5.7 for Re=8 and Fig 5.8 for Re=16. In 

these cases, the magnitude of the source term is unacceptably large, thus we will not be 

able to construct a problem which will be nearby the original problem. So global 

polynomials are not good candidates for curve fitting in MNP. 
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Fig 5.7 Size of source term using different order Legendre polynomial fits: Re=8 
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Fig 5.8 Size of source term using different order Legendre polynomial fits: Re=16 
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5.4. Cubic splines 

A cubic spline [15] is a spline polynomial constructed of piecewise third-order 

polynomials. A cubic polynomial spline is twice continuously differentiable and depends 

on four parameters. It can be written as: 

          for 32 )()()(:)( iiiiiiii xxdxxcxxbaxS −+−+−+= 1,...,0],,[ 1 −=∈ + nixxx ii   (5.9) 

and the setup of the system is given diagrammatically in Fig 5.9. This system has n+1 

spline points ranging from 0 to n and n spline zones.  

1−nS  0S  2−nS  1S  

0=i ni =1=i  2=i  2−= ni  1−= ni   

 

Fig 5.9. Schematic of the spline fitting system 

 

The conditions that are used to construct the polynomials are 

                                                   1.    niyxS iii ,...,0,)( ==  

       2.    nixSxS iiii ,...,1),()( 1 == −  
 

       3.     1,...,1),()( 1
'' −== − nixSxS iiii

 
     4.     nixSxS iiii ,...,1),()( 1

'''' == −

The first constraint sets the values at each node. The second constraint sets the continuity 

of the values at each node. The third constraint takes care of the continuity of the first 

derivative at each interior node and the fourth constraint takes care of the continuity of 

 29
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the second derivative at each interior node. Here we also set nnn axS =)(  and 

 for convenience. The first derivatives at end points are also specified 

which gives two additional conditions. As we have already seen, global polynomials do 

not do a good job approximating sharp gradients. The numerical solution was fit using 

cubic splines and the results were encouraging as shown in Figs 5.10, and 5.11. 

nnn cxS 2)('' =

  

   

 

 

 

 

 

 

 

 

 

 

Fig 5.10. Fitting the numerical solution with cubic spline fits using 257 nodes and 9 

spline points, Re=8  

 

 

 

 

 30



 

 

 

 

 

 

 

 

Fig 5.11. Fitting numerical solution with cubic spline fits using 257 nodes and 17 spline 

points, Re=8 

 

Since the cubic splines perform well in fitting the numerical solution, one can expect that 

the source term that result will be small as desired. Plots of the source term using cubic 

splines are given in Figs 5.12 and 5.13. Close examination of these figures indicates that 

the source terms exhibit slope discontinuities at the spline points. Since cubic splines are 

only continuous and Burgers equation contains a second derivative, the first criteria is 

not satisfied and we cannot use cubic splines 

2C
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Fig 5.12. Source term distribution using 9 spline points and 257 nodes 

 

 

 

 

 

 

 

 

 

Fig 5.13. Source term distribution using 17 spline points and 257 nodes 
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5.5. Fifth order Hermite spline 

A fifth-degree Hermite spline [15] is a spline polynomial constructed of piecewise 

fifth-order polynomials. This system also has n+1 spline points ranging from 0 to n and n 

spline zones. This can be given by 

                   5432 )()()()()(:)( iiiiiiiiiiii xxfxxexxdxxcxxbaxS −+−+−+−+−+=

                                                 for 1,...,0],,[ 1 −=∈ + nixxx ii                  (5.10) 

where the same spline system shown in Fig. 5.9 is used. The conditions used to construct 

a fifth-degree Hermite spline are: 

                                        1.    niyxS iii ,...,0,)( ==  
  
                                        2.     niyxS iii ,...,0,)( '' ==

 
                                          3.    nixSxS iiii ,...,1),()( 1 == −  
 
                                          4.     1,...,1),()( 1

'' −== − nixSxS iiii

 
                                          5.        1,...,1),()( 1

'''' −== − nixSxS iiii

 
                                          6.     1,...,1),()( 1

'''''' −== − nixSxS iiii

 
and also set   and  as two extra constraints. The first constraint 

sets the values at each node. The second constraint sets the first derivative at each node. 

The third constraint sets the continuity of the solution at each node. The fourth constraint 

takes care of the continuity of the first derivative at each interior node. The fifth 

constraint takes care of the continuity of the second derivative at each interior node, and 

the sixth constraint sets the third derivative continuity at each interior node.  

nnn axS =)( nnn bxS =)('

As is seen in Figs 5.14, 5.15 and 5.16, fifth-order Hermite splines do a good job in 

approximating the numerical solution for the various Reynolds number cases. Unlike 
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global polynomial fitting techniques, fifth-order Hermite splines approximates even the 

high Reynolds number cases well, including sharp gradient region. Fifth-order Hermite 

splines were found to be the best fitting tool that can be used for this problem. The 

chosen example of Burgers equation demanded continuity which is met by fifth-order 

Hermite splines. 

3C

 

 

Fig 5.14. Fifth order Hermite spline approximation for Re=8, using 17 spline points 
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Fig 5.15. Fifth order Hermite spline approximation for Re=64, using 65 spline points 

 

 

 

Fig 5.16. Fifth order Hermite spline approximation for Re=512, using 129 spline points 
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The numerical solution was fit accurately enough to provide small source terms as 

shown in Fig 5.17. for Re=8. In addition, the source term is slope continuous (  

continuous) over the entire domain. The size of the source terms for the fifth-order 

Hermite splines will be discussed in Chapter 7. A fortran program was developed to 

compute the coefficients of the fifth-order Hermite splines (see Appendix D). 

1C

 

 

 

 

 

 

 

 

 

Fig 5.17 Source term distribution using fifth-order Hermite splines with 9 spline 

points and 257 nodes, Re=8 
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CHAPTER SIX 

 

DISCRETIZATION ERROR ESTIMATORS 

 

Discretization error arises due to the fact that the original partial differential 

equations must be discretized to numerically solve them. There are various methods to 

compute this discretization error and in this chapter we discuss those methods. 

6.1. Discretization error estimator using local order of accuracy 

The discretization error on the fine grid is given as: 

                                                           exactffDE −= 1                               (6.1) 

where  fexact is the exact solution to the partial differential equation and  is the 

numerical solution. We can estimate f

1f

exact using Richardson extrapolation [3] which is 

given by: 

                                                        
1
21

1 −
−

+= pexact r
ffff                               (6.2) 

where  r is the grid refinement factor, p  is the order of accuracy, and  2f and  1f are the 

solutions on the coarse and fine meshes, respectively. Here the order of accuracy can be 

computed using solutions on three meshes as  
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−

=                               (6.3)  
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where ,  and  are the solutions on fine, medium and coarse meshes, respectively. 

To use Richardson extrapolation with the local order of accuracy as an error estimator, 

we need numerical solution on three different meshes. 

1f 2f 3f

 

6.2. Discretization error estimator using global order of accuracy 

This technique is different from Richardson extrapolation with local order of 

accuracy in the sense that we use the formal order of accuracy instead of computing the 

local order of accuracy. As a result, this technique uses numerical solutions on just two 

meshes.  

 

6.3. Mixed order error estimator 

The mixed order error estimator [16] involves approximation of an exact solution 

using three different meshes. In this technique, instead of assuming a single dominant 

error term, both first and second order error terms are considered. 

                                                               (6.4) HOThghgff kkexactk +++= 2
21

Three discrete solutions are used to solve a linear set of equations (see [2] for details) and 

finally arrive at an approximation for the exact solution given by 

                                        2
12

2
23

)1)(1(
))(1()(

−+
−−+−−

=
rr

ffrrff
f exact                              (6.5) 

Once the exact solution is approximated, the discretization error relation is used to 

compute the error, which is given as: 

                                              exactffErrorOrderMixed −= 1                   (6.6)  
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6.4. Method of nearby problems 

The Method of nearby problems (MNP) itself can be used as an error estimator. 

The discretization error on any given mesh can be evaluated exactly for the nearby 

problem as the MNP approach involves the generation of an exact solution to the nearby 

problem. If the nearby problem is “close enough” to the original problem of interest, then 

the error on a given mesh for the nearby problem is expected to be very close to the error 

in the original problem on the same mesh. The expression for using MNP as an error 

estimator is given as: 

                                                    MNPexactMNP ffMNP ,,11 −=                               (6.7) 

where  is the numerical solution of the nearby problem on a mesh and  is 

the exact solution of the nearby problem. Here we see that for using this technique, we 

use numerical solutions on only one mesh unlike other schemes which use multiple 

meshes. MNP thus requires two solutions on the same mesh, one for the original problem 

and the second one for the nearby problem. 

MNPf ,1 MNPexactf ,
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CHAPTER SEVEN 

 

RESULTS 

We have applied MNP to three different one-dimensional test problems: 

1. Original Burgers equation (steady state): The exact solution to the steady 

state Burgers equation was given by Benton & Platzman [12].  

2. “Nearby” problem to Burgers equation: The exact solution to the nearby 

problem to Burgers equation is the fifth order Hermite spline fit to the 

numerical solution of the original Burgers equation. 

3.  Modified form of Burgers equation: A modified form of Burgers 

equation was generated which includes a nonlinear viscosity which 

varies as a function of both u and x thus giving a nominal Reynolds 

number of 64. 

 

7.1. Steady-state Burgers equation 

An implicit scheme was used to obtain the numerical solution to Burgers equation 

(see Appendix A). Two different Reynolds number cases were run for the original 

Burgers equation: Re=8 and Re=64. Both numerical solutions and exact solutions for 

these two cases are shown in Figs. 7.1, and 7.2. The numerical solution is right on top of 

exact solution which suggests that the implicit scheme used to obtain the numerical 

solution is performing well.  

 40



x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical solution
Exact solution

 

Fig 7.1 Comparison of the numerical solution with exact solution, Re=8 
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Fig 7.2 Comparison of the numerical solution with exact solution, Re=64 
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Since the exact solution of the steady Burgers equation is known, we can evaluate 

the discretization error exactly. The discretization error for two different mesh spacing 

( and ) is shown in Fig. 7.3. As expected, the discretization error 

increases when the mesh spacing increases. 

25.0=∆x 0625.0=∆x

 

 

Fig 7.3 Discretization error for the steady state Burgers equation, Re=8 

 

The observed order of accuracy was computed for the various mesh solutions. Since the 

exact solution is known, the observed order of accuracy can be computed by the relation 

                                                             
)ln(

)ln(
1

2

r
DE
DE

p =                                (7.2) 

where r is the grid refinement factor and DE2 and DE1 are the L2 norms of the 

discretization errors for the coarse and fine mesh, respectively. The plot for the observed 

order of accuracy is given in Fig. 7.4. The observed order of accuracy is seen to be 
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approaching two, which is the formal order of accuracy. This suggests that the numerical 

solution that was computed is good. 
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Fig 7.4 Observed order of accuracy for different meshes, Re=8 

 

 

7.2 Nearby problem to Burgers equation 

The nearby problem to Burgers equation is constructed by using fifth-order 

Hermite spline to fit the original numerical solution, then operating Burgers equation on 

the spline fit to generate analytical source terms. The source terms are then added to the 

original problem of interest to give the nearby problem (see Appendix B). When the 

source term approaches zero, the nearby problem approaches the original problem. The 

same implicit scheme is used to solve the nearby problem. Two different Reynolds 

number cases were run for the problem nearby Burgers equation: Re=8 and Re=64.  In 

both cases an underlying numerical solution from a 1025 node mesh is used. A 
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description of process of choosing the number of spline points is given in detail in 

chapter 7.4. The numerical solutions of the nearby problem for Re=8 and Re=64 are 

shown in Figs. 7.5 and 7.6. For Re=8 case, 17 spline points were used and for the Re= 64 

case, 65 spline points were used. The numerical solution to the nearby problem is 

compared with the exact solution to the nearby problem. The figures show that the 

numerical solution obtained is good. 
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Fig 7.5 Numerical solution of the nearby problem to Burgers equation, Re=8 
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Fig 7.6 Numerical solution of the nearby problem to Burgers equation, Re=64 

 

The order of accuracy of the nearby problem was also computed by comparing 

numerical solutions on different meshes. The plot of the order of accuracy of the nearby 

problem and the original Burger equation is shown in Fig. 7.7 for the Re = 8 case and 

Fig. 7.8 for the Re = 64 case. In both the cases, as the mesh becomes fine, the order of 

accuracy approaches two which is the formal order of accuracy. This suggests that the 

solution that we have obtained is good. 
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Fig 7.7 Observed order of accuracy for Burgers equation and the nearby problem, Re=8  
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Fig 7.8 Observed order of accuracy for Burgers equation and the nearby problem, Re=64 
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7.3 Modified form of Burgers equation 

A modified form of Burgers equation was generated which includes a nonlinear 

viscosity which varies as a function of both u and x: 
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The constants were chosen as υ0 = 0.25 m2/s, u0 = 2 m/s, xL = - 4 m, and xR = 4 m, thus 

giving a nominal Reynolds number of 64. This modified form of Burgers equation was 

solved numerically using a mesh with 1025 spatial points. The numerical solution and the 

viscosity distribution for this modified form of Burgers equation are given in Fig 7.9. 

Implicit scheme was used to obtain the numerical solution to the modified form of 

Burgers equation (see Appendix C).  
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Fig 7.9 Solution and viscosity variation for the modified form of Burgers equation 

 

The source terms were computed and added to the modified form of Burgers 

equation, which then resulted in a nearby problem the modified form of Burgers 

equation. The numerical solution is given in Fig 7.10. The plots shows the numerical 
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solution of modified Burgers equation with the numerical solution of the nearby problem 

to modified Burgers equation. The two solutions are very close to each other. 
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Fig 7.10 Numerical solution of the nearby problem to modified form of Burgers equation 

 

7.4. Nearness of the nearby problem 

  The nearness of the nearby problem can be measured using the source terms. 

The source terms are computed by operating the governing equations on the analytical 

curve fit. The source term should be small for the nearby problem to be close to the 

original problem. As the source term approaches zero, the nearby problem approaches the 

original problem of interest. Source terms were calculated for the nearby problem to the 

Burgers equation for three different cases: Re=8, Re=64, and Re=512 as shown in Figs. 

7.11, 7.12, and 7.13, respectively. In these figures we see that as the number of spline 

points increases, the magnitude of the source term decreases. We require that the source 
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term be small. Examining the Figs. 7.11, 7.12, and 7.13, the source term is the smallest 

for 17 spline point case and so this case will be the best option.   

 

 

 

 

 

 

 

 

Fig 7.11 Magnitude of the source term for the nearby problem with 5 spline points, Re=8 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.12 Magnitude of the source term for the nearby problem with 9 spline points, Re=8 
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Fig 7.13 Magnitude of the source term for the nearby problem with 17 spline points, 

Re=8 

For the Reynolds number 64 case, the distribution of the source term over the 

domain is given in Figs. 7.14, 7.15, and 7.16. Here again as the number of spline points 

increases the magnitude of the source term decreases. The smallest source term is 

obtained for 65 spline points and so we choose 65 spline points for Re= 64. 

 

 

 

 

 

 

 

 

Fig 7.14 Magnitude of the source term for the nearby problem with 17 spline points, 

Re=64 
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Fig 7.15 Magnitude of the source term for the nearby problem with 33 spline points, 

Re=64 

 

 

 

 

 

 

 

 

 

Fig 7.16 Magnitude of the source term for the nearby problem with 65 spline points, 

Re=64 
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For Re=512, since there is a very sharp gradient region, the number of spline 

points to capture the solution should be large. The distribution of the source term for 

Re=512 is presented in Figs. 7.17, 7.18, and 7.19. Here we see that for 129 and 257 

spline points, the source term is still relatively large and is not going to result in a 

problem close to the original problem. But using 1025 spline points, the size of the source 

term is decreased. This does not necessarily mean that for higher Reynolds number cases 

we have to use a large number of spline points. The number of spline points could be 

reduced by the use of spline points with variable spacing. That is, if we can recognize the 

areas of large variation, and include a large number of spline points to capture that 

variation and fewer points elsewhere, then the number of spline points can be 

significantly reduced. 

 

 

 

 

 

 

 

 

 

 

Fig 7.17 Magnitude of the source term for the nearby problem with 129 spline 

points, Re=512 
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Fig 7.18 Magnitude of the source term for the nearby problem with 257 spline points, 

Re=512 

 

 

 

 

 

 

 

 

 

Fig 7.19 Magnitude of the source term for the nearby problem with 1025 spline points, 

Re=512 
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Source terms were also computed for the nearby problem to the modified form of 

Burgers equation for a Reynolds number of 64. The magnitude of the source terms is 

given in Figs. 7.20, 7.21, and 7.22. Here it is found that the magnitude of the source term 

decreases when we go from 33 spline point to 65, and then increases slightly when we go 

from 65 to 129 spline points. So in this case we should use 65 spline points to formulate 

the nearby problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.20 Magnitude of the source term for the nearby problem to modified Burgers 

equation with 33 spline points, Re=64 
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Fig 7.21 Magnitude of the source term for the nearby problem to modified Burgers 

equation with 65 spline points, Re=64 

 

 

 

 

 

 

 

 

 

Fig 7.22 Magnitude of the source term for the nearby problem to modified Burgers 

equation with 129 spline points, Re=64 
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7.5. Evaluation of discretization error estimators 

Now that the nearness of the nearby problem has been established, we are in a 

position to evaluate the various discretization error estimators. We now examine 

discretization error estimates on various grid levels using four different methods: 1) 

Richardson extrapolation with global p, i.e. assuming the formal order of accuracy 

(requiring two grids), 2) Richardson extrapolation with local p, i.e. Richardson 

extrapolation employing the locally calculated order of accuracy (requiring three grids), 

3) a mixed-order error estimator (requiring three grids), and 4) the Method of Nearby 

Problems (MNP) (requiring only one grid). Numerical solutions are computed on a wide 

range of grid levels. In cases where multiple mesh levels are required to obtain the error 

estimate, the error is reported for the finest grid only. Grid refinement is performed by 

doubling the node spacing (i.e., grid doubling) in all cases.  

Fig 7.23 gives the discretization error estimates of all the error estimators 

described earlier for meshes using 1025, 513 and 257 points for Re=8 case. For these fine 

meshes we see that all the error estimators do a good job in estimating the error. Fig. 7.24 

gives the discretization error estimates for meshes using 257, 129 and 65 points. All the 

estimators again match the true error. Fig. 7.25 gives the discretization error estimates for 

the relatively coarse meshes using 65, 33 and 17 points. The mixed-order error estimator 

and Richardson extrapolation using the local order of accuracy underestimates the error, 

while MNP and Richardson extrapolation using the global order of accuracy match the 

true error. Fig. 7.26 gives the discretization error estimates for very coarse meshes using 

33, 17 and 9 points. The mixed-order error estimator and Richardson extrapolation using 

local order of accuracy do not provide good estimates, while MNP and Richardson 
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extrapolation using the global order of accuracy are in good agreement with the true 

error. 
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Fig 7.23 Discretization error estimators for Burgers equation, Re=8, finest mesh =1025 
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Fig 7.24 Discretization error estimators for Burgers equation, Re=8, finest mesh = 257 

points 
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Fig 7.25 Discretization error estimators for Burgers equation, Re=8, finest mesh = 65 

points 
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Fig 7.26 Discretization error estimators for Burgers equation, Re=8, finest mesh = 33 

points 
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Next we examine the higher Reynolds number case with Re=64. Here also we 

expect that all the error estimators will perform well on the finer meshes, while on 

coarser meshes, some of the error estimators will break down. The plots of the 

discretization error estimators for the Reynolds number of 64 are given in Figs. 7.27, 

7.28, 7.29, and 7.30. In Fig 7.27, where the finest mesh used is 1025 points, all the error 

estimators perform well. In Fig 7.28, where the finest mesh is 257 points, the mixed-order 

error estimator and Richardson extrapolation with the global order of accuracy begin to 

deviate from true error. In Fig. 7.29, only the error estimators using two or fewer mesh 

levels can be used, as the coarsest mesh that could be computed was 33, below which the 

solution was found to be numerically unstable. Here both MNP and Richardson 

extrapolation using the global order of accuracy gives a slightly higher estimate (but in 

reasonable limit). Due to the same reason, in Fig 7.30, only MNP could be used as all 

other estimators needed additional coarse meshes. MNP gives a slightly higher estimate 

of the error. 
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Fig 7.27 Discretization error estimators for Burgers equation, Re=64, finest mesh =1025 
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Fig 7.28 Discretization error estimators for Burgers equation, Re=64, finest mesh =257 
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Fig 7.29 Discretization error estimators for Burgers equation, Re=64, finest mesh =65 
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Fig 7.30 Discretization error estimators for Burgers equation, Re=64, finest mesh =33 

 

We now turn our attention to the discretization error in the nearby problem. Again 

different meshes are used for each Reynolds number case. For a Reynolds number of 8, 

we used 17 spline fit points. Fig 7.31 shows discretization error estimates with the finest 

mesh being 1025 points. In this case, we see that all the error estimators perform well. In 

Fig. 7.32, the finest mesh used was 257 points. Again all the estimators give a good 

estimate of the discretization error. In Fig. 7.33, the finest mesh that was used was 129 

points. Here we see that the mixed-order error estimator begins to under estimate the 

error. In Fig. 7.34, both the mixed-order error estimator and Richardson extrapolation 

using the local order of accuracy underestimate the error. 
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Fig 7.31 Discretization error estimators for the nearby problem, Re=8, finest mesh=1025 
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Fig 7.32 Discretization error estimators for the nearby problem, Re=8, finest mesh=257 
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Fig 7.33 Discretization error estimators for the nearby problem, Re=8, finest mesh=129 
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Fig 7.34 Discretization error estimators for the nearby problem, Re=8, finest mesh=65 
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For the Reynolds number of 64 case, we used 33 spline points. Fig. 7.35 shows 

the behavior of the error estimators with the finest mesh being 1025 points. In this case, 

we see that all the error estimators perform well. In Fig. 7.36, the finest mesh used was 

257 points. The mixed-order error estimator and Richardson extrapolation with the local 

order of accuracy underestimate the error. In Fig. 7.37, the finest mesh that was used was 

129 points. Here the mixed-order error estimator gives very poor estimates and 

Richardson extrapolation with the local order of accuracy also begins to fail. In Fig. 7.38, 

only Richardson extrapolation using the global order is used, because the other methods 

need three mesh solutions, but we cannot go coarser as the numerical solutions become 

unstable. 
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Fig 7.35 Discretization error estimators for the nearby problem, Re=64, finest 

mesh=1025 
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Fig 7.36 Discretization error estimators for the nearby problem, Re=64, finest mesh=257 
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Fig 7.37 Discretization error estimators for the nearby problem, Re=64, finest mesh=129 
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Fig 7.38 Discretization error estimators for the nearby problem, Re=64, finest mesh=65 

 

If we compare the performance of different error estimators on original Burgers 

equation and the nearby problem to Burgers equation, we see that they are very similar. 

For example, for Re=8 with finest mesh being 65 points, the error estimator on the 

original Burgers equation (Fig. 7.25) are quite similar to the estimates on the nearby 

problem (Fig. 7.34). This is also true for the Re=64 case for original Burgers equation 

(Fig. 7.28) and the nearby problem (Fig. 7.36). This similarity justifies evaluating error 

estimators on the nearby problem. 

The nearby problem to the modified form of the Burgers equation was solved and 

different error estimators were used to estimate the discretization error. In the modified 

form of Burgers equation, we ran only the Re = 64 case. Examining at Figs. 7.39 and 

7.40, we see that as we reduce the number of nodes, Richardson extrapolation using local 

order of accuracy and the mixed order error estimator breaks down, while Richardson 

extrapolation using the global order of accuracy gives the best estimate. In Fig. 7.40, 
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mixed-order error estimator fails while Richardson extrapolation using the local order 

also gives bad estimates.  
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Fig 7.39 Discretization error estimators for nearby problem to modified Burgers equation, 

Re=64, nodes=257 
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Fig 7.40 Discretization error estimators for nearby problem to modified Burgers equation, 

Re=64, nodes=129 
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CHAPTER EIGHT 

 

CONCLUSIONS AND RECOMMENDATIONS 

8.1. Conclusions  

 The current work on MNP has focused on two major goals. Using MNP to 

generate exact solutions to a problem nearby the steady-state Burgers equation in order to 

evaluate error estimators was the first goal. The second goal was to use MNP itself as an 

error estimator. To fulfill the first goal, a fifth-order Hermite spline was shown to be the 

best available curve fitting tool for Burgers equation. The polynomials fits were 

demonstrated to be accurate, and we were thus able to generate very small source terms. 

MNP was then used to evaluate various discretization error estimators and we found that 

Richardson extrapolation using the global order of accuracy provided the best estimates.  

MNP itself was used as an error estimator. It was shown that MNP provided error 

estimates that were at least as good as Richardson extrapolation with the global order of 

accuracy, and often better. The use of MNP as an error estimator requires numerical 

solutions on only one mesh. This is an advantage of using MNP, as other error estimators 

required multiple meshes. The cost of MNP alone will be approximately the same as the 

cost of solving the original problem, with some additional overhead involved in the curve 

fitting procedure. So the total cost of using MNP as an error estimator will be 

approximately twice the cost of numerically solving the original problem of interest 

alone. 
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8.2. Future work 

This research was focused on one-dimensional problems. The next step is to 

extend the MNP methodology to two-dimensions, three-dimensions, and four-dimensions 

(three spatial dimensions plus time). The biggest challenge is to develop a two-

dimensional or higher-dimensional fit which has  continuity. Rouff [17] has developed 

an approach for generating n-dimensional, continuous splines. Implementation of 

Rouff’s approach will allow the extension of MNP to more realistic two-dimensional and 

three-dimensional applications.  
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APPENDICES 

 

A.  Fortran program for solving original Burgers equation 

 

Program Steady_implicit 
      implicit doubleprecision(a-h,o-z) 
       
      Parameter(imax=81,lmax=imax-2) 
      Dimension uold(imax),up(imax),unew(imax),x(imax) 
      Dimension 
uexact(imax),Disc_error(imax),AA(imax),BB(imax),CC(imax) 
      Dimension G(imax),y(imax),ub(imax),unew1(imax),unew2(imax) 
 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
xxxxxxxxxxxxxxxxx    Initialization of constants   xxxxxxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
      rLen = 4.0d0 
      a=-4.0d0 
      b=4.0d0 
      rNu=2.0d0 
      rH=rLen*2.0d0/dfloat(imax-1) 
      cfl=200.0d0 
      rK=cfl*((rH*rH)/(rH + 2.0d0*rNu)) 
      n=imax-1 
      th=1.0d0 
      t=0.0d0 
      Tol = 2.7e-12 
      jmax = 400000000 
      al=2.0d0 
      alp=rK/(2.0d0*rH) 
      bet=rNu*rK/rH**2 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxx     Setting up of Initial Conditions    xxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      Do i = 1,imax 
         x(i) = a + (b-a)*dfloat(i-1)/dfloat(n) 
!         uold(i)=0.0 
         uold(i) = (-2.0d0*rNu*al/rLen)*(dsinh(x(i)*al/rLen))/ 
     &    (dcosh(x(i)*al/rLen)+dexp(-(t*rNu*al**2/rLen**2))) 
!         Write(*,*) x(i) 
      End Do 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxx     Setting up of Boundary Conditions     xxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      uold(1) = -2.0d0*al*rNu/rLen*dtanh(a*al/rLen) 
      uold(n+1)=-2.0d0*al*rNu/rLen*dtanh(b*al/rLen) 
 
 
      Do i=1,imax 
         uexact(i)=-2.0d0*rNu*al/rLen*dtanh(x(i)*al/rLen) 
      End Do 
 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxxxxxxxxxxxxxx      Main Loop    xxxxxxxxxxxxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
 
 
      Do j=1,jmax 
         Do i=1,imax 
             ub(i)=uold(i) 
         End do 
       
     
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxxxx     Setting up of Tridiagonal Matrix  xxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 

 
 

         Do i=3,imax-2 
             k=i-1 
             AA(k)=-1.0d0*th*(alp*ub(i)+bet) 
             BB(k)=(1.0d0+2.0d0*th*bet) 
             CC(k)=th*(alp*ub(i)-bet) 
             G(k)=uold(i)-((1.0d0-th)*alp*ub(i)*(uold(i+1)-uold(i-1)))+ 
     &        ((1.0d0-th)*bet*(uold(i+1)-2.0d0*uold(i)+uold(i-1)) ) 
         End Do 
          
         BB(1)=(1.0d0+2.0d0*th*bet) 
         CC(1)= (th*alp*ub(2)-th*bet) 
         AA(imax-2)=-1.0d0*(th*alp*ub(imax-1)+th*bet) 
         BB(imax-2)=(1.0d0+2.0d0*th*bet) 
         G(1)=uold(2)-((1.0d0-th)*alp*ub(2)*(uold(3)-uold(1)))+ 
     &    ((1.0d0-th)*bet*(uold(3)-2.0d0*uold(2)+uold(1)))+(th*alp* 
     &    ub(2)+th*bet)*uold(1) 
         G(imax-2)=uold(imax-1)-((1.0d0-th)*alp*ub(imax-1)*(uold(imax)- 
     &    uold(imax-2)))+((1.0d0-th)*bet*(uold(imax)-2.0d0*uold(imax-
1)+ 
     &    uold(imax-2)))-(th*alp*ub(imax-1)-th*bet)*uold(imax) 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxx     Calling the Tridiagonal Solver   xxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
      
         CALL TRDIAG (lmax,AA,BB,CC,y,G) 
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         Do i=1,imax-2 
             unew(i+1)=y(i) 
         End do 
          
         unew(1)=uold(1) 
         unew(n+1)=uold(n+1) 
         Residue = 0.0d0 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxx    Computation of Residual    xxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
         Do i=2,imax-1 
           Res = unew(i)/(2.0d0*rH)*(unew(i+1)-unew(i-1))-rNu/(rH**2)* 
     &      (unew(i+1)-2.0d0*unew(i)+unew(i-1)) 
           Residue = Residue + Res**2 
         End Do 
         rNorm=Residue 
         rL2Norm =dsqrt(rNorm/dfloat(imax-2)) 
         if (j.eq.1) r1 = rL2Norm 
         rL2Norm=rL2Norm/r1 
         write(11,*) j,rK*dfloat(j),rK,rL2Norm 
         if(mod(j,10).eq.0.0d0) then 
             Write(19,*) j,rL2Norm 
         End if 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxxx    Checking Convergence    xxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
         If (rL2Norm.LT.Tol) Goto 100 
 
 200     Do i =1,imax 
            uold(i) = unew(i) 
         End Do 
      End Do 
 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxxxxx    End of Main Loop    xxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
       
 100  Write(*,*) j 
 
      do i=2,imax-1 
        unew1(i)=(unew(i+1)-unew(i-1))/(2.0d0*rH) 
      End do 
      unew1(1)=(-3.0d0*unew(1)+4.0d0*unew(2)-unew(3))/(2.0d0*rH) 
      unew1(imax)=(3.0d0*unew(imax)-4.0d0*unew(imax-1)+unew(imax-2))/ 
     &            (2.0d0*rH) 
      unew2(1)=(-unew(4)+4.0d0*unew(3)-5.0d0*unew(2)+2.0d0*unew(1))/ 
     &         rH**2 
      unew2(imax)=(2.0d0*unew(imax)-5.0d0*unew(imax-1)+4.0d0* 
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     &         unew(imax-2)-unew(imax-3))/rH**2 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxx  Writing out Solution    xxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      open(30,file='velocity_der_new_17.dat',status='unknown') 
      open(40,file='distance_new_17.dat',status='unknown') 
      open(50,file='velocity_new_17.dat',status='unknown') 
      Do i=1, imax,5 
         write(30,6) unew1(i) 
         write(40,6) x(i) 
         write(50,6) unew(i) 
6        Format (e30.20) 
      end do 
 
       open(15,file='velocity.dat',status='unknown') 
       open(10,file='distance1.dat',status='unknown') 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxx    Computation of Discretization Error    xxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
         
      Do i=1,imax 
        Write (10,500) x(i) 
        Write (15,500) unew(i) 
500     Format(e30.20) 
        Write (16,501) x(i),unew(i),uexact(i) 
        Disc_error(i)=(unew(i)-uexact(i)) 
        Write(14,*) x(i),Disc_error(i) 
 501    Format(3(e30.20)) 
        Write(99,500) uexact(i) 
      End Do 
       
      rl2 = 0.0d0 
      rl1 = 0.0d0 
       
      Do i=1,imax 
        error = dabs(uexact(i) - unew(i)) 
        error2 = error*error 
        rl1 = rl1 + error 
        rl2 = rl2 + error2 
      End Do 
 
      rl1 = rl1/dfloat(n+1) 
      rl2 = dsqrt(rl2/dfloat(n+1)) 
 
      Write(*,*) 'L2Norm=',rl2 
      Write(*,*) 'L1Norm=',rl1 
      Write(*,8) unew2(1) 
      Write(*,8) unew2(imax) 
 8    Format(e30.20) 
      close(30) 
      close(40) 
      close(50) 
      End 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxx    Tridiagonal Solver Subroutine    xxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
 
      SUBROUTINE TRDIAG (N,A,B,C,X,G) 
      implicit doubleprecision(a-h,o-z) 
      DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000) 
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS 
C!.....BY GAUSS ELIMINATION 
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C) 
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX 
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING 
C!.....THE MATRIX 
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000) 
C!.....FORWARD ELIMINATION 
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY 
      DO 1 I=1,N 
      BB(I) = B(I) 
    1 CONTINUE 
      DO 2 I=2,N 
      T = A(I)/BB(I-1) 
      BB(I) = BB(I) - C(I-1)*T 
      G(I) = G(I) - G(I-1)*T 
    2 CONTINUE 
C!.....BACK SUBSTITUTION 
      X(N) = G(N)/BB(N) 
      DO 3 I=1,N-1 
      J = N-I 
      X(J) = (G(J)-C(J)*X(J+1))/BB(J) 
    3 CONTINUE 
      RETURN 
      END 

 

 

 

B. Fortran program for solving the nearby problem to Burgers equation 

                         Program Steady_implicit 
      implicit doubleprecision(a-h,o-z) 
       
      Parameter(imax=81) 
      Dimension uold(imax),unew(imax),x(imax),u(imax) 
      Dimension          
source(imax),Disc_error(imax),AA(imax),BB(imax),CC(imax) 
      Dimension G(imax),ub(imax),y(imax) 
       
      rLen = 4.0d0 
 
 10    Format (e25.14) 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
xxxxxxxxxxxxxxxxx    Initialization of constants   xxxxxxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
      a=-4.0d0 
      b=4.0d0 
      rNu=2.0d0 
      rH=rLen*2.0d0/dfloat(imax-1) 
      cfl=100.0d0 
      rK=cfl*((rH*rH)/(rH + 2.0d0*rNu)) 
      n=imax-1 
      th=1.0d0 
!     write(*,*) 'n = ',n 
      t=0.0d0 
      Tol = 1e-12 
      jmax = 400000000 
      al=2.0d0!255.828300733!7.99463621669!4.0!255.828300733 
      alp=rK/(2.0d0*rH) 
      bet=rNu*rK/rH**2 
       
      open(60,file='distance1.dat',status='unknown') 
      open(70,FILE='velocityterm.dat',status='unknown') 
      open(66,file='source_17.dat',status='unknown') 
 
      Do i=1,imax 
          Read(60,*) x(i) 
          Read(70,*) u(i) 
          Read(66,*) source(i) 
      End do 
       
      close(60) 
      close(70) 
      close(66) 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxx     Setting up of Initial Conditions    xxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      Do i = 1,imax 
         x(i) = a + (b-a)*dfloat(i-1)/dfloat(n) 
         uold(i) = (-2.0d0*rNu*al/rLen)*(dsinh(x(i)*al/rLen))/ 
     &    (dcosh(x(i)*al/rLen)+dexp(-(t*rNu*al**2/rLen**2))) 
      End Do 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxx     Setting up of Boundary Conditions     xxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      uold(1) = u(1)!-2.0d0*al*rNu/rLen*dtanh(a*al/rLen) 
      uold(n+1)=u(imax)!-2.0d0*al*rNu/rLen*dtanh(b*al/rLen) 
 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxxxxxxxxxxxxxx      Main Loop    xxxxxxxxxxxxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
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      Do j=1,jmax 
 
         Do i=1,imax 
             ub(i)=uold(i) 
         End do 
  
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxxxx     Setting up of Tridiagonal Matrix  xxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
         
         Do i=2,imax-1 
             AA(i)=-1.0d0*th*(alp*ub(i)+bet) 
             BB(i)=(1.0d0+2.0d0*th*bet) 
             CC(i)=th*(alp*ub(i)-bet) 
             G(i)=source(i)*rK+uold(i)-((1.0d0-
th)*alp*ub(i)*(uold(i+1)- 
     &        uold(i-1)))+((1.0d0-th)*bet*(uold(i+1)-2.0d0*uold(i)+ 
     &        uold(i-1)) ) 
         End Do 
          
         BB(1)=1.0d0 
         CC(1)= 0.0d0 
         AA(imax)=0.0d0 
         BB(imax)=1.0d0 
         G(1)=u(1) 
         G(imax)=u(imax) 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxx     Calling the Tridiagonal Solver   xxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      
         CALL TRDIAG (imax,AA,BB,CC,y,G) 
          
         Do i=1,imax 
             unew(i)=y(i) 
         End do 
          
 
         Residue = 0.0d0 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxx    Computation of Residual    xxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
 
         Do i=2,imax-1 
           Res =unew(i)-uold(i)! unew(i)/(2.0d0*rH)*(unew(i+1)-unew(i-
1))-rNu/(rH**2)* 
           Residue = Residue + Res**2 
         End Do 
 
         rNorm=Residue 
         rL2Norm =dsqrt(rNorm/dfloat(imax-2)) 
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         if (j.eq.1) r1 = rL2Norm 
 
         rL2Norm=rL2Norm/r1 
         write(11,*) j,rK*dfloat(j),rK,rL2Norm 
 
         if(mod(j,10).eq.0.0d0) then 
             Write(19,*) j,rL2Norm 
         End if 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxxx    Checking Convergence    xxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
         If (rL2Norm.LT.Tol) Goto 100 
 
         Do i =1,imax 
            uold(i) = unew(i) 
         End Do 
 
      End Do 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxxxxx    End of Main Loop    xxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
     
 100  Write(*,*) j 
       open(14,file='MNP.dat',status='unknown') 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxx    Computation of Discretization Error    xxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      Do i=1,imax 
        Disc_error(i)=(unew(i)-u(i))/u(i) 
        Write(14,8) x(i),Disc_error(i) 
        Write (16,9) x(i),unew(i),u(i) 
      End Do 
 
 8    Format(2(e30.20)) 
 9    Format(3(e30.20)) 
 
 
      rl2 = 0.0d0 
      rl1 = 0.0d0 
       
      Do i=1,imax 
        error = dabs(u(i) - unew(i)) 
        error2 = error*error 
        rl1 = rl1 + error 
        rl2 = rl2 + error2 
      End Do 
 
      rl1 = rl1/dfloat(imax) 
      rl2 = dsqrt(rl2/dfloat(imax)) 
      Write(*,99) rl1 
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      Write(*,99) rl2 
99    Format(e30.20) 
      End 
       
       
       
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxx    Tridiagonal Solver Subroutine    xxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
 
 
      SUBROUTINE TRDIAG (N,A,B,C,X,G) 
      implicit doubleprecision(a-h,o-z) 
      DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000) 
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS 
C!.....BY GAUSS ELIMINATION 
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C) 
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX 
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING 
C!.....THE MATRIX 
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000) 
C!.....FORWARD ELIMINATION 
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY 
      DO 1 I=1,N 
      BB(I) = B(I) 
    1 CONTINUE 
      DO 2 I=2,N 
      T = A(I)/BB(I-1) 
      BB(I) = BB(I) - C(I-1)*T 
      G(I) = G(I) - G(I-1)*T 
    2 CONTINUE 
C!.....BACK SUBSTITUTION 
      X(N) = G(N)/BB(N) 
      DO 3 I=1,N-1 
      J = N-I 
      X(J) = (G(J)-C(J)*X(J+1))/BB(J) 
    3 CONTINUE 
      RETURN 
      END 
 
 
 
C. Fortran program to numerically solve the modified form of Burgers equation 

   Program Steady_implicit 
      implicit doubleprecision(a-h,o-z) 
       
      Parameter(imax=1025,lmax=imax-2) 
      Dimension uold(imax),up(imax),unew(imax),x(imax) 
      Dimension 
uexact(imax),Disc_error(imax),AA(imax),BB(imax),CC(imax) 
      Dimension G(imax),y(imax),ub(imax),unew1(imax),unew2(imax) 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
xxxxxxxxxxxxxxxxx    Initialization of constants   xxxxxxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
      
 
      rLen = 4.0d0 
      a=-4.0d0 
      b=4.0d0 
      rNu=0.25d0      !2.0d0,  0.25d0, 0.03125d0 
      rH=rLen*2.0d0/dfloat(imax-1) 
      cfl=1000.0d0 
      rK=cfl*((rH*rH)/(rH + 2.0d0*rNu)) 
      n=imax-1 
      th=1.0d0 
      t=0.0d0 
      Tol = 3e-12 
      jmax = 400000000 
      al=16.0d0    
      alp=rK/(2.0d0*rH) 
      bet=rNu*rK/rH**2 
      xxp = 0.25 
       
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxx     Setting up of Boundary Conditions    xxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      x(1) = a 
      x(imax) = b 
 
      uold(1) = 2. 
      uold(n+1) = -2. 
 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxx     Setting up of Initial Conditions    xxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
  
     Do i = 2,imax-1 
 
         x(i) = a + (b-a)*dfloat(i-1)/dfloat(n) 
         uold(i) = uold(1)+(uold(n+1)-uold(1))*dfloat(i-1)/dfloat(n) 
     End Do 
 
 
 
      Write(11,*) 'TITLE = "Solution Profiles"' 
      Write(11,*) 'variables="Iterations""rk*float(j)""rK""L2Norm"' 
 
      Do i=1,imax 
         uexact(i)=-2.0d0*rNu*al/rLen*dtanh(x(i)*al/rLen) 
      End Do 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxxxxxxxxxxxxxx      Main Loop    xxxxxxxxxxxxxxxxxxxxxxxx 

!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
       
      Do j=1,jmax 
         Do i=1,imax 
             ub(i)=uold(i) 
         End do 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
xxxxxxxxxxxxxxxx     Setting up of Tridiagonal Matrix  xxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
          
         Do i=3,imax-2 
             k=i-1 
             betvar=bet*( (ub(i)/2.)**2 + ( (x(i)-a)/(b-a)+0.25)**xxp ) 
             AA(k)=-1.0d0*th*(alp*ub(i)+betvar) 
             BB(k)=(1.0d0+2.0d0*th*betvar) 
             CC(k)=th*(alp*ub(i)-betvar) 
             G(k)=uold(i)-((1.0d0-th)*alp*ub(i)*(uold(i+1)-uold(i-1)))+ 
     &        ((1.0d0-th)*betvar*(uold(i+1)-2.0d0*uold(i)+uold(i-1)) ) 
         End Do 
          
         betvar=bet*( (ub(2)/2.)**2 + ( (x(2)-a)/(b-a) + 0.25)**xxp ) 
         BB(1)=(1.0d0+2.0d0*th*betvar) 
         CC(1)= (th*alp*ub(2)-th*betvar) 
         G(1)=uold(2)-((1.0d0-th)*alp*ub(2)*(uold(3)-uold(1)))+ 
     &    ((1.0d0-th)*betvar*(uold(3)-2.0d0*uold(2)+uold(1)))+(th*alp* 
     &    ub(2)+th*betvar)*uold(1) 
         betvar=bet*( (ub(imax-1)/2.)**2 +  
     &         ( (x(imax-1)-a)/(b-a) + 0.25)**xxp ) 
         AA(imax-2)=-1.0d0*(th*alp*ub(imax-1)+th*betvar) 
         BB(imax-2)=(1.0d0+2.0d0*th*betvar) 
         G(imax-2)=uold(imax-1)- 
     &    ((1.0d0-th)*alp*ub(imax-1)*(uold(imax)- 
     &    uold(imax-2)))+((1.0d0-th)*betvar*(uold(imax) 
     &     -2.0d0*uold(imax-1)+ 
     &    uold(imax-2)))-(th*alp*ub(imax-1)-th*betvar)*uold(imax) 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxx     Calling the Tridiagonal Solver   xxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
      
         CALL TRDIAG (lmax,AA,BB,CC,y,G) 
          
         Do i=1,imax-2 
             unew(i+1)=y(i) 
         End do 
          
         unew(1)=uold(1) 
         unew(n+1)=uold(n+1) 
         Residue = 0.0d0 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxx    Computation of Residual    xxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
 
         Do i=2,imax-1 
           rnuvar=rNu*( (unew(i)/2.)**2 + ( (x(i)-a)/(b-a)+0.25)**xxp ) 
           Res = unew(i)/(2.0d0*rH)*(unew(i+1)-unew(i-1))- 
     &       rnuvar/(rH**2)*(unew(i+1)-2.0d0*unew(i)+unew(i-1)) 
           Residue = Residue + Res**2 
         End Do 
         rNorm=Residue 
         rL2Norm =dsqrt(rNorm/dfloat(imax-2)) 
         if (j.eq.1) r1 = rL2Norm 
         rL2Norm=rL2Norm/r1 
         write(11,*) j,rK*dfloat(j),rK,rL2Norm 
         if(mod(j,100).eq.0.0d0) then 
             Write(19,*) j,rL2Norm 
             write(*,*) j,rL2Norm 
         End if 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxxx    Checking Convergence    xxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
         If (rL2Norm.LT.Tol) Goto 100 
 
 200     Do i =1,imax 
            uold(i) = unew(i) 
         End Do 
      End Do 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxxxxx    End of Main Loop    xxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
       
 100  Write(*,*) j 
  
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxx  Writing out Solution    xxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      do i=2,imax-1 
        unew1(i)=(unew(i+1)-unew(i-1))/(2.0d0*rH) 
      End do 
      unew1(1)=(-3.0d0*unew(1)+4.0d0*unew(2)-unew(3))/(2.0d0*rH) 
      unew1(imax)=(3.0d0*unew(imax)-4.0d0*unew(imax-1)+unew(imax-2))/ 
     &            (2.0d0*rH) 
      unew2(1)=(-unew(4)+4.0d0*unew(3)-5.0d0*unew(2)+2.0d0*unew(1))/ 
     &         rH**2 
      unew2(imax)=(2.0d0*unew(imax)-5.0d0*unew(imax-1)+4.0d0* 
     &         unew(imax-2)-unew(imax-3))/rH**2 
      open(30,file='velocity_der_new_33_F.dat',status='unknown') 
      open(40,file='distance_new_33_F.dat',status='unknown') 
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      open(50,file='velocity_new_33_F.dat',status='unknown') 
       
      
 
 
 Do i=1, imax,32 
         write(30,6) unew1(i) 
         write(40,6) x(i) 
         write(50,6) unew(i) 
6        Format (e30.20) 
      end do 
 
      open(15,file='velocity_F.dat',status='unknown') 
      open(10,file='distance1_F.dat',status='unknown') 
      open(51,file='distance1_M.dat',status='unknown') 
      open(52,file='distance1_C.dat',status='unknown') 
      open(11,file='ubar_F.dat',status='unknown') 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxx    Computation of Discretization Error    xxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      Do i=1,imax 
        Write (10,500) x(i) 
        Write (15,500) unew(i) 
        write(11,500) ub(i) 
500     Format(e30.20) 
        Disc_error(i)=(unew(i)-uexact(i)) 
        Write(14,*) x(i),Disc_error(i) 
      End Do 
       
      Do i=1,imax,2 
        Write (51,501) x(i) 
501     Format(e30.20) 
      Enddo 
 
      Do i=1,imax,4 
        Write (52,502) x(i) 
502     Format(e30.20) 
      Enddo 
 
 
      rl2 = 0.0d0 
      rl1 = 0.0d0 
       
      Do i=1,imax 
        error = dabs(uexact(i) - unew(i)) 
        error2 = error*error 
        rl1 = rl1 + error 
        rl2 = rl2 + error2 
      End Do 
 
      rl1 = rl1/dfloat(n+1) 
      rl2 = dsqrt(rl2/dfloat(n+1)) 
      write(*,*) rl1,rl2 
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      Write(*,8) rl2 
!      Write(*,*) 'L1Norm=',rl1 
      Write(*,8) unew2(1) 
      Write(*,8) unew2(imax) 
 8    Format(e30.20) 
      close(30) 
      close(40) 
      close(50) 
      End 
       
       
       
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxx    Tridiagonal Solver Subroutine    xxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx!       
 
      SUBROUTINE TRDIAG (N,A,B,C,X,G) 
      implicit doubleprecision(a-h,o-z) 
      DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000) 
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS 
C!.....BY GAUSS ELIMINATION 
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C) 
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX 
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING 
C!.....THE MATRIX 
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000) 
C!.....FORWARD ELIMINATION 
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY 
      DO 1 I=1,N 
      BB(I) = B(I) 
    1 CONTINUE 
      DO 2 I=2,N 
      T = A(I)/BB(I-1) 
      BB(I) = BB(I) - C(I-1)*T 
      G(I) = G(I) - G(I-1)*T 
    2 CONTINUE 
C!.....BACK SUBSTITUTION 
      X(N) = G(N)/BB(N) 
      DO 3 I=1,N-1 
      J = N-I 
      X(J) = (G(J)-C(J)*X(J+1))/BB(J) 
    3 CONTINUE 
      RETURN 
      END 
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D. Fortran program to compute the coefficients of the Hermite spline polynomial 

 
                     Program Spline 
      implicit doubleprecision(a-h,o-z) 
      Parameter (imax=257,kmax=2000,nmax=33,lmax=nmax-2) 
      Dimension x(kmax),u(kmax),a(kmax),b(kmax),c(kmax),d(kmax),h(kmax) 
      Dimension 
g(kmax),aa(kmax),bb(kmax),cc(kmax),u_num(kmax),u_1(kmax) 
      Dimension e(kmax),f(kmax),y(kmax),z(kmax),p(kmax),q(kmax) 
      Dimension term(kmax),de2(imax) 
 
      
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxx  Reading Input Files    xxxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      open(60,file='distance_new_33.dat',status='unknown') 
      open(70,FILE='velocity_new_33.dat',status='unknown') 
      open(80,FILE='velocity_der_new_33.dat',status='unknown') 
      open(66,FILE='distance1.dat',status='unknown') 
      open(55,FILE='velocity.dat',status='unknown') 
 
      Do i=1,nmax 
          Read(60,*) x(i) 
          Read(70,*) u(i) 
          Read(80,*) u_1(i) 
!100       Format (F7.4) 
      End do 
      Do i=1,imax 
          Read(55,*) u_num(i) 
          Read(66,*) y(i) 
      Enddo 
       
      close(60) 
      close(70) 
      close(80) 
      close(66) 
      close(55) 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxx  Initializing Constants    xxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
       
      toler=0.25d0 
      rh=0.25d0 
      rnu=0.250d0 
      alp=1.0d0 
      bet1=-0.5d0*0.90949470177292824000E-12/rh 
      bet2=-0.5d0*0.20463630789890885000E-11/rh 
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!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxx    Initializing ‘a’ and ‘b’ Coefficients    xxxxxxxxxxx  
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
do i = 1,nmax 
          a(i)=u(i) 
          b(i)=u_1(i) 
      end do 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxx    Setting up Tridiagonal Matrix for the Coefficient ‘c’    xxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      c(1)=-0.5d0*0.90949470177292824000E-12!0.5/h(1)*(3.0/h(1)*(a(2)-
a(1))-3.0*ral1-ral1/2.0 
      c(nmax)=-0.5d0*0.20463630789890885000E-11!0.5*0.0101!ral2/2.0 
 
       
      i=2 
      k=i-1 
       
 
 
      g(k)=10.0d0/rh**3*(a(3)-2.0d0*a(2)+a(1))+4.0d0/rh**2*(b(1)-b(3))+ 
     &      1.0d0/rh*c(1) 
      
      i=nmax-1 
      k=i-1 
       
 
      g(k)= 10.0d0/rh**3*(a(nmax)-2.0d0*a(nmax-1)+a(nmax-2))+ 
     &      4.0d0/rh**2*(b(nmax-2)-b(nmax))+1.0d0/rh*c(nmax) 
      
      
      do i=3,nmax-2 
          k=i-1 
          g(k)=10.0d0/rh**3*(a(i+1)-2.0d0*a(i)+a(i-1))+4.0d0/rh**2* 
     &         (b(i-1)-b(i+1)) 
           aa(k)= -1.0d0/rh 
           bb(k)= 6.0d0/rh 
           cc(k)= -1.0d0/rh 
      end do 
       
 
      bb(1)=6.0d0/rh 
      cc(1)=-1.0d0/rh 
      aa(lmax)=-1.0d0/rh 
      bb(lmax)=6.0d0/rh 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxx  Calling Tridiagonal Solver    xxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
       
      CALL TRDIAG (lmax,aa,bb,cc,z,g) 
 
      Do i=1,nmax-2 
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          c(i+1)=z(i) 
      End do 
       
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxx    Computing’d’, ‘e’, and ‘f’ Coefficients    xxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      Do i=1,nmax-1 
          d(i)=10.0d0/rh**3*(a(i+1)-a(i))-2.0d0/rh**2*(2.0d0*b(i+1)+ 
     &          3.0d0*b(i))+1.0d0/rh*(c(i+1)-3.0d0*c(i)) 
          e(i)=5.0d0/rh**4*(a(i+1)-a(i))-
1.0d0/rh**3*(b(i+1)+4.0d0*b(i)) 
     &      -3.0d0/rh**2*c(i)-2.0d0/rh*d(i) 
          f(i)=1.0d0/(10.0d0*rh**3)*(c(i+1)-c(i)-3.0d0*d(i)*rh-6.0d0* 
     &    e(i)* rh**2) 
      End do 
       
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxx  Writing out Coefficients xxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
  
     open(20,file='OUTPUT_hermite_new_33.dat',status='unknown') 
 
 
      Do i=1,nmax-1 
          write(20,200) a(i), b(i), c(i), d(i), e(i), f(i) 
200       Format(6(e30.20)) 
      End do 
 
      close(20) 
       
      open(77,file='G.dat',status='unknown') 
      open(88,file='H.dat',status='unknown') 
 
      Do i=1,imax-1 
           Read(77,*) p(i) 
           Read(88,*) q(i) 
           Write(*,*) p(i),q(i) 
      End do 
 
      close(77) 
      close(88) 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxx  Computing Value of the Polynomial  xxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
 
      Do i=1,imax 
         Do j=1,nmax-1 
             if((y(i)-x(j)).le.toler) goto 300 
         enddo 
          
300     term(i)=a(j)+b(j)*(y(i)-x(j))+c(j)*(y(i)-x(j))**2+d(j)* 
     &         (y(i)-x(j))**3+e(j)*(y(i)-x(j))**4+f(j)*(y(i)-x(j))**5 
      enddo 
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      rl1norm=0.0d0 
 
      Do i=1,imax-1 
         Do j=1,nmax 
             if ((y(i)-x(j)).le.toler) goto 400 
         enddo 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxx  Computing the Norm    xxxxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
          
400     rl1norm = rl1norm + dabs(((p(i)*y(i+1)+q(i)/2.0d0*y(i+1)**2)- 
     &     (a(j)*y(i+1)+b(j)/2.0d0*(y(i+1)-x(j))**2+c(j)/3.0d0*(y(i+1)- 
     &     x(j))**3+d(j)/4.0d0*(y(i+1)-x(j))**4+e(j)/5.0d0*(y(i+1)- 
     &     x(j))**5+f(j)/6.0d0*(y(i+1)-x(j))**6))-((p(i)*y(i)+q(i)/ 
     &     2.0d0*y(i)**2)-(a(j)*y(i)+b(j)/2.0d0*(y(i)-x(j))**2+c(j)/ 
     &     3.0d0*(y(i)-x(j))**3+d(j)/4.0d0*(y(i)-x(j))**4+e(j)/5.0d0* 
     &     (y(i)-x(j))**5+f(j)/6.0d0*(y(i)-x(j))**6))) 
 
      end do 
 
      rl1norm=rl1norm/8 
      Write(*,145) rl1norm 
145   Format(e30.20) 
      open(22,file='term_33.dat',status='unknown') 
      open(44,file='velocityterm.dat',status='unknown') 
      Do i=1,imax 
         Write(44,141) term(i) 
141      format(e30.20) 
         Write(22,140) y(i),term(i),u_num(i) 
140      Format (3(e30.20)) 
      End do 
      Do i=1,imax 
         de2(i)=u_num(i)-term(i) 
      End do 
      open(23,file='de2.dat',status='unknown') 
      Do i=1,imax 
         Write(23,333) y(i),term(i),u_num(i),de2(i) 
333      Format (4(e30.20)) 
      End do 
 
      close(22) 
 
      end 
       
       
       
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxx  Tridiagonal Solver Subroutine  xxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
      SUBROUTINE TRDIAG (N,A,B,C,X,G) 
      implicit doubleprecision(a-h,o-z) 
      DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000) 
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS 
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C!.....BY GAUSS ELIMINATION 
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C) 
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX 
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING 
C!.....THE MATRIX 
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000) 
C!.....FORWARD ELIMINATION 
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY 
      DO 1 I=1,N 
      BB(I) = B(I) 
    1 CONTINUE 
      DO 2 I=2,N 
      T = A(I)/BB(I-1) 
      BB(I) = BB(I) - C(I-1)*T 
      G(I) = G(I) - G(I-1)*T 
    2 CONTINUE 
C!.....BACK SUBSTITUTION 
      X(N) = G(N)/BB(N) 
      DO 3 I=1,N-1 
      J = N-I 
      X(J) = (G(J)-C(J)*X(J+1))/BB(J) 
    3 CONTINUE 
      RETURN 
      END 
 
E. Matlab program to calculate the source terms 
 

clc 
clear all 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxx  Reading in Coefficients xxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
op=load('OUTPUT_hermite_new_17.dat'); 
y=load('distance1.dat'); 
x=load('distance_new_17.dat'); 
a=op(:,1); 
b=op(:,2); 
c=op(:,3); 
d=op(:,4); 
e=op(:,5); 
f=op(:,6); 
tol=0.50; 
nu=2.0; 
 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxx  Computation of Source Term   xxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
for i=1:81 
    for j=1:16 
        if y(i)-x(j)<=tol ,break,end 
    end 
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    source(i)=(a(j)+b(j)*(y(i)-x(j))+c(j)*(y(i)-x(j))^2+d(j)*(y(i)-
x(j))^3+e(j)*(y(i)-x(j))^4+f(j)*(y(i)-x(j))^5)*(b(j)+2*c(j)*(y(i)-
x(j))+3*d(j)*(y(i)-x(j))^2+4*e(j)*(y(i)-x(j))^3+5*f(j)*(y(i)-x(j))^4)-
nu*(2*c(j)+6*d(j)*(y(i)-x(j))+12*e(j)*(y(i)-x(j))^2+20*f(j)*(y(i)-
x(j))^3); 
end 
 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 xxxxxxxxxxxxxxxxxxxxx  Plotting Source Term    xxxxxxxxxxxxxxxxxxxxxx 
!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx! 
 
source=source'; 
plot(y,source); 
l1=0; 
l2=0; 
for i=1:81 
    res2=source(i)^2; 
    res1=abs(source(i)); 
    l1=l1+res1; 
    l2=l2+res2; 
end 
l1=l1/81; 
l2=(l2/81)^0.5; 
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