

DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY

PROBLEMS: ONE-DIMENSIONAL CASES

Except where reference is made to the work of others, the work described in this thesis is

my own or was done in collaboration with my advisory committee.

ANIL RAJU

Certificate of Approval:

Anwar Ahmed Christopher. J. Roy, Chair
Associate Professor Assistant Professor
Aerospace Engineering Aerospace Engineering

Brian Thurow Stephen L. McFarland
Assistant Professor Dean
Aerospace Engineering Graduate School

DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY

PROBLEMS: ONE-DIMENSIONAL CASES

Anil Raju

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

December 16, 2005.

 ii

DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY

PROBLEMS: ONE-DIMENSIONAL CASES

Anil Raju

Permission is granted to Auburn University to make copies of this dissertation at its

discretion, upon request of individuals or institutions and at their expense. The author

reserves all publication rights.

 Signature of Author

 Date

 iii

VITA

 Anil Raju, son of Mr. and Mrs. Thomas Raju, was born on September 3, 1979, in

Trivandrum, India. He graduated with a Bachelors degree in Industrial Engineering from

University of Kerala, Trivandrum, India in May 2002. He joined the graduate program in

Aerospace Engineering at Auburn University in the fall of 2003.

 iv

THESIS ABSTRACT

DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY

PROBLEMS: ONE-DIMENSIONAL CASES

Anil Raju

Master of Science, December 16, 2005

 (Bachelor of Technology, Industrial Engineering, India, May 2002)

91 TYPED PAGES

Directed by Dr. Christopher J. Roy

Discretization error is defined as the difference between the solution of the

discretized equation and the exact solution of the original partial differential equation.

There are two main goals in this study. The first goal is to use of the method of nearby

problems to generate exact solutions to realistic problems so that we can asses the

performance of discretization error estimators can be assessed. The second goal is to

develop and use method of nearby problems itself as an error estimator. Different

polynomial curve fitting techniques are examined and fifth-order Hermite splines are

identified as the best approach for the method of nearby problems. Steady-state Burgers

equation and a modified form of Burgers equation are used as test cases. The analytical

curve fits are then the exact solution to a problem nearby the original problem. Results

are presented for Burgers equation corresponding to a viscous shock wave for Reynolds

 v

numbers of 8 and 64, as well as for a modified version of Burgers equation with a

variable viscosity at a nominal Reynolds number of 64. Various discretization error

estimators are evaluated for the original Burgers equation, the nearby problem, and the

modified version of Burgers equation which includes a nonlinear viscosity term. It is

also observed that the method of nearby problems itself performs well as a discretization

error estimator even on coarse meshes.

 vi

ACKNOWLEDGEMENT

 I would like to thank the Sandia National Laboratories for financial support

extended to this project.

I am sure this is a great opportunity for me to acknowledge several key people I

came across during my educational career in Aerospace Engineering. I would like to

thank my advisor Dr. Christopher J. Roy for honoring me with the project ‘Discretization

error estimation using the method of nearby problems: one-dimensional cases’, and

allowing me to work with him. I will be always thankful to him for guiding me and

supervising my work. I will also be obligated to him for the resources he spent on me.

His research and work practices will certainly have significant influence on my career.

 I want to express sincere gratitude towards my Masters committee members

Dr.Anwar Ahmed and Dr. Brian Thurow, for their comments and suggestions on my

Masters thesis.

I would like to thank Dr. Matthew Hopkins of Sndia National Laboratories for all

his comments during my work on this project.

Finally, everything I own is dedicated to my Mom, sister Simi, brother-in-law

John, nephew Jeff and last but not the least, Sherin. They mean everything to me.

 vii

Anil Raju.

Date: December 16, 2005.

aniraju.c@gmail.com,anilraju2524@yahoo.com

 viii

TABLE OF CONTENTS

LIST OF FIGURES ………………………………………………………………….. xi

1. INTRODUCTION ………………………………………………………………… 1

1.1 Background on Computational Fluid Dynamics……………………………
1.2 Verification and Validation in CFD…………………….. ..………………..
1.3 Sources of Numerical Error…………………………………….………...…
1.4 Discretization Error Estimators………………………………...…………...
1.5 Objective………………….………………………………………………....

 1
 3
 4
 6
 7

2. BACKGROUND…………………………………………………………………... 8

 2.1 Method of Manufactured Solutions…………………………….…………..
 2.2 Prior Work in MNP………….……..………………………………….……

 8
10

3. BURGERS EQUATION…………………………………………………………... 14

 3.1 Introduction to Burgers Equation……………....…………………………….
 3.2 Solutions to Burgers Equation……………………………………………….
 3.3 Conversion to Dimensional Quantities and Scaling Factors.………………...

14
15
17

4. METHOD OF NEARBY PROBLEMS…………………………………………… 18

 4.1 MNP as an Evaluator of Discretization Error Estimators…………………....
 4.2 Example for MNP as an Evaluator of Discretization Error Estimators….......

18
20

5. POLYNOMIAL FITTING PROCEDURES……………………………………… 22

 5.1 Polynomial Fitting in MNP……………………………..…………………..
 5.2 Standard Polynomial using Matlab…. ……………………………………...
 5.3 Legendre Polynomial……………………………………………………..…
 5.4 Cubic Spline…………………………………………………………………
 5.5 Fifth Order Hermite Spline…………………………………….……………

22
22
24
29
33

6. DISCRETIZATION ERROR ESTIMATORS………………………………..….. 37

 ix

 6.1 Discretization Error Estimation Using Local Order of Accuracy……..…….
 6.2 Discretization Error Estimation Using Global Order of Accuracy…..…..….
 6.3 Mixed Order Error Estimator……………………………………………..…
 6.4 Method of Nearby Problems…………………………………………………

37
38
38
39

7. RESULTS………………………………………………………………………….. 40

 7.1 Steady State Burgers Equation…………………………………….…..…….
 7.2 Nearby Problem to Burgers Equation………………………………...…..….
 7.3 Modified Form of Burgers Equation..……………………………………..…
 7.4 Nearness of the Nearby Problems……………………………………………
 7.5 Evaluation of Discretization Error Estimates………………………………..

40
43
47
48
56

8. CONCLUSIONS…………………………………………………………………… 68

 8.1 Conclusions…………………..…………………………………….…..…….
 8.2 Future Work…………………………...……………………………...…..….

68
69

REFERENCES…………………………………………………………………….…. 70

APPENDICES………………………………………………………………………… 72

 A. Fortran Program for Solving Original Burgers Equation…………………..... 72
 B. Fortran Program to Solve Nearby Problem to Original Burgers Equation…... 76
 C. Fortran Program to Solve Modified Form of Burgers Equation……………… 80
 D. Fortran Program to Compute the Coefficients of the Spline Polynomial….…. 86
 E. Matlab Program to Calculate the Source Terms……………………………… 90

 x

LIST OF FIGURES

1.1: Three Approaches to Fluid Dynamics……………………………………….…..
2.1: Norm of source term: Prior work……………….………………………….........
2.2: Norm of source term: Prior work.......…………….…………………….……….
3.1: Steady State Exact Solution: Burgers Equation………………………………….
3.2: Unsteady Exact Solution-1: Burgers Equation ……….…………………………
3.3: Unsteady Exact Solution-1: Burgers Equation………….……………………….
5.1: Fitting Numerical Solution Using Standard Polynomial: Re=8………………...
5.2: Fitting Numerical Solution Using Standard Polynomial: Re=16………………..
5.3: First Five Legendre Polynomials…….………………………………………….
5.4: Fitting Numerical Solution Using Legendre Polynomial: Re=8…..………..……
5.5: Fitting Numerical Solution Using Legendre Polynomial: Re=16……………….
5.6: Fitting Numerical Solution Using Legendre Polynomial: Re=512………………
5.7: Source Term Using Legendre Polynomial Fits, Re=8…..……………………….
5.8: Source Term Using Legendre Polynomial Fits, Re=16.…………………………
5.9: Schematic of Spline Fitting System………………………………………………
5.10: Fitting Numerical Solution Using Cubic Splines, 9 points: Re=8………………
5.11: Fitting Numerical Solution Using Cubic Splines, 17points: Re=8……………..
5.12: Source Term Using 9 point Cubic Spline Polynomial Fits, Re=8………………
5.13: Source Term Using 17 point Cubic Spline Polynomial Fits, Re=8…………..…
5.14: Fitting Numerical Solution Using Hermite Splines, 17 points: Re=8…………..
5.15: Fitting Numerical Solution Using Hermite Splines, 65 points: Re=64…………
5.16: Fitting Numerical Solution Using Cubic Splines, 129 points: Re=512…………
5.17: Source Term Using 9 point Hermite Spline Polynomial Fits, Re=8……………
7.1: Numerical and Exact Solution of Burgers Equation, Re=8………………………
7.2: Numerical and Exact Solution of Burgers Equation, Re=64…………………..…
7.3: Discretization Error for Burgers Equation, Re=8…………………...……………
7.4: Observed Order of Accuracy: Burgers Equation, Re=8………………………….
7.5: Numerical Solution of Nearby Problem to Burgers Equation, Re=8…………….
7.6: Numerical Solution of Nearby Problem to Burgers Equation, Re=64……………
7.7: Observed Order of Accuracy: Nearby Problem to Burgers Equation, Re=8……..
7.8: Observed Order of Accuracy: Nearby Problem to Burgers Equation, Re=64……
7.9: Solution and Viscosity Variation for Modified Burgers Equation, Re=64……….
7.10: Numerical Solution to Nearby Problem of Modified Burgers Equation………..
7.11: Source Term Using 5 point Hermite Spline Polynomial Fits, Re=8…………….
7.12: Source Term Using 9 point Hermite Spline Polynomial Fits, Re=8…………….
7.13: Source Term Using 17 point Hermite Spline Polynomial Fits, Re=8…………...
7.14: Source Term Using 17 point Hermite Spline Polynomial Fits, Re=64………….
7.15: Source Term Using 33 point Hermite Spline Polynomial Fits, Re=64………….

 2
 12
 13
 15
 16
 16
 23
 23
 24
 26
 26
 27
 28
 28
 29
 30
 31
 32
 32
 34
 35
 35
 36
 41
 41
 42
 43
 44
 45
 46
 46
 47
 48
 49
 49
 50
 50
 51

 xi

7.16: Source Term Using 65 point Hermite Spline Polynomial Fits, Re=64………….
7.17: Source Term Using 129 point Hermite Spline Polynomial Fits, Re=512……….
7.18: Source Term Using 257 point Hermite Spline Polynomial Fits, Re=512……….
7.19: Source Term Using 1025 point Hermite Spline Polynomial Fits, Re=512……...
7.20: Source Term of Nearby Problem to Modified Burgers Equation Using 33 point

Hermite Spline Polynomial Fits, Re=64………………………………………...
7.21: Source Term of Nearby Problem to Modified Burgers Equation Using 65 point

Hermite Spline Polynomial Fits, Re=64………………………………...………
7.22: Source Term of Nearby Problem to Modified Burgers Equation Using 129

point Hermite Spline Polynomial Fits, Re=64…………………………..………
7.23: Discretization Error Estimators for Burgers Equation: Re=8, 1025 nodes……..
7.24: Discretization Error Estimators for Burgers Equation: Re=8, 257 nodes……....
7.25: Discretization Error Estimators for Burgers Equation: Re=8, 65 nodes..……..
7.26: Discretization Error Estimators for Burgers Equation: Re=8, 33 nodes………..
7:27: Discretization Error Estimators for Burgers Equation: Re=64, 1025 nodes……
7:28: Discretization Error Estimators for Burgers Equation: Re=64, 257 nodes……..
7:29: Discretization Error Estimators for Burgers Equation: Re=64, 65 nodes………
7:30: Discretization Error Estimators for Burgers Equation: Re=64, 33 nodes………
7.31: Discretization Error Estimators for Nearby Problem, Re=8, 1025 nodes……….
7.32: Discretization Error Estimators for Nearby Problem, Re=8, 257 nodes………..
7.33: Discretization Error estimators for nearby problem, Re=8, 129 nodes…………
7.34: Discretization Error Estimators for Nearby Problem, Re=8, 65 nodes………….
7.35: Discretization Error Estimators for Nearby Problem, Re=64, 1025 nodes……..
7.36: Discretization Error Estimators for Nearby Problem, Re=64, 257 nodes……….
7.37: Discretization Error Estimators for Nearby Problem, Re=64, 129 nodes……….
7.38: Discretization Error Estimators for Nearby Problem, Re=64, 65 nodes………..
7.39: Discretization Error Estimators for Nearby Problem to modified Burgers

equation, Re=64, 257 nodes……………………………………………………..
7.40: Discretization Error Estimators for Nearby Problem to modified Burgers

equation, Re=64, 129 nodes……………………………………………..………

 51
 52
 53
 53

 54

 55

 55
 57
 57
 58
 58
 59
 60
 60
 61
 62
 62
 63
 63
 64
 65
 65
 66

 67

 67

 xii

CHAPTER ONE

INTRODUCTION

1.1 Background on computational fluid dynamics

 Computational fluid dynamics (CFD) is a term given to a variety of numerical

techniques applied to solve the equations that govern fluid flow. Before computers,

theory and experiments were the only methods for gaining insight into physical

phenomena. Most of these physical phenomena can be modeled using differential

equations. The ideal approach would be to solve these equations via analytical techniques

and obtain exact solutions. But in most cases, these equations are complex and therefore

difficult to solve analytically. For such cases we have to resort to approximate solutions.

Using computer simulations is one method to obtain these approximate solutions.

The seventeenth century saw the growth of experimental fluid dynamics in

Europe. Experimental fluid dynamics is considered as the first approach [1] in the study

and development of fluid dynamics. The eighteenth and nineteenth centuries saw the

development of the second approach which is theoretical fluid dynamics. The latter part

of the twentieth century saw the development of CFD which is the third approach. The

growth of CFD can be attributed to the development of high-speed computers and

accurate numerical algorithms to solve various problems. CFD complements the other

two approaches of pure theory and pure experiment. There is still a need for theory and

 1

experiments, and the future of fluid dynamics depends on the balance of all three

approaches as shown in Fig 1.1.

 Pure Pure
 Experiment Theory

 CFD

Fig 1.1 Three approaches to fluid dynamics

CFD has established itself as a research tool. Moreover, CFD is now establishing

its use as a design tool as well. CFD can be used to predict the presence of vortices in the

flow over vehicles [1] and by studying the behavior of these vortices and their

interaction, one can come up with an optimal aerodynamic design for the vehicle. This is

just one of many uses of CFD as a design tool.

CFD is being used today in a wide variety of areas [1], for example, engine and

automobile applications. By assessing the flow over the body of the vehicle, an

aerodynamic shape can be determined. Today, automotive engineers use CFD to study

details of flow in engines. CFD can be applied in industrial manufacturing as well, for

example, to calculate the flow field in a mold filled by liquid metal or polymer. Civil

engineering uses CFD to tackle problems related to lakes, rivers, estuaries, etc. CFD is

 2

also used in other applications relating to heating, air conditioning, and general air

circulation in buildings.

1.2. Verification and validation in CFD

Verification is the process of determining whether the implementation of the

model, accurately represents the original problem of interest [2]. Validation is the process

of determining the extent to which the model accurately represents reality. In other

words, verification checks whether the model is solved correctly while validation ensures

that the correct model is solved. In yet another way, verification can be described as

dealing with the mathematical correctness of the solution, while validation deals with the

physical correctness of the model. Both verification and validation are compared with a

reference standard. In the case of verification the standard is exact solution of the partial

differential equation while in the case of validation, the standard is real world

observations.

Verification is a two step process [3]. The first step is code verification where the

computer code is verified and made free of unacknowledged errors, such as errors due to

mistakes in code or inconsistent numerical schemes. The second step, solution

verification, is the step in which the acknowledged errors such as round-off errors or

discretization errors are assessed.

Code verification [3] can be broadly classified into two areas: numerical

algorithm verification and software quality assurance practices. Some types of algorithm

testing are the method of manufactured solutions, benchmark solutions, iterative

convergence tests, conservation tests, symmetry tests, and so forth. Software quality

 3

assurance [4] involves the entire software development process: monitoring the process

and trying to improve it, making sure that all standards and procedures are followed, and

finally making sure that all the defects are found out and properly dealt with. Some of the

software quality analysis tools are static analysis, dynamic testing, and formal testing.

Solution verification has three main aspects [3]. The first aspect, verification of

input data, makes sure that the data that is provided is correct. The second aspect,

numerical error estimation, calculates the acknowledged errors in simulation. The third

aspect, verification of output data, makes sure that the correct post-processing steps are

used.

1.3. Sources of numerical error

In addition to the errors that can come in during the development of the solution

algorithm, there are some acknowledged errors that occur in every computational

simulation. These errors are called numerical errors.

The main types of numerical errors are round-off errors, iterative errors, and

discretization errors. Round-off errors [3] occur due to finite arithmetic in digital

computers. An example of round-off error is () 9999999.00.3/0.10.3 =× for single

precision. Here we see that the computation of in single precision

gives , which leads to the final result of 0.9999999 as opposed to 1.0. Round-

off error can be very important in the case of ill-conditioned problems or time accurate

simulations where a large number of time steps can result in error accumulation. The way

by which the round-off error can be reduced is by using more digits in the computation.

0.3/0.1

3333333.0

 4

For example, round-off error can be reduced by using double precision instead of single

precision.

Iterative error [5] is the difference between the current iterative solution and the

exact solution of the discretized equations. When the governing equations for fluid

dynamics are discretized, they often result in a set of non-linear equations. The usual

procedure that is followed to solve these equations is to first linearize them and then

solve them using an iterative method. To stop the iterative process, a convergence

criterion has to be introduced. The iteration goes on until the residual, which is calculated

by substituting the current iterative solution into the discrete equations, is less than this

convergence criterion. If the iterative process is run until the residual is as small as

possible (i.e. machine zero), then the iterative error will be minimized. In this research, a

small iterative error was desired and so a convergence criterion of was used. 1410−

Discretization error is defined as the solution of the algebraic system of equations

which is obtained by discretizing the conservation equation and the difference between

the exact solutions of the conservation equations. It is important to estimate the

discretization error before the CFD predictions can be compared with the experimental

data. The first step to solve a set of governing equations numerically is to discretize them.

Discretization is the process of converting the original partial differential equations to an

algebraic set of equations. This algebraic set of equations is then solved on a discrete

mesh to obtain numerical solutions. These solutions are approximate and are generally

different from the exact solution of the governing equations. This difference is the

discretization error. If the discretization approach is consistent, then the discretization

error will decrease as the mesh is refined.

 5

1.4. Discretization error estimators

There are a number of ways to estimate the discretization error. Richardson

extrapolation involves the computation of numerical solutions on two or more meshes.

Solutions on these different meshes are then used to compute a higher-order estimate of

the exact solution. This estimate of the exact solution can then be used to estimate the

discretization error. There are certain assumptions that are used in Richardson

extrapolation. The solution is assumed to be smooth, uniform meshes are assumed and

the higher order terms are neglected. The discretization error [3] can be written as

 (1.1) TermsOrderHigherhghghgffDE kkkexactkk +++=−= 3
3

2
21

where, is the discrete solution on mesh k, is the exact solution to the partial

differential equation, is the coefficient of the i

kf exactf

ig th order term, and h is the measure of the

element size. Consider a second order accurate scheme with solutions on two different

meshes and , with 1h 2h 12 2hh = . Neglecting the higher order terms, the discretization

error equation can be written as

 (1.2) 2
121 hgff exact +=

 (1.3) 2
122)2(hgff exact +=

Solving these two equations for and we get 2g exactf

3

21
1

ffffexact
−

+= (1.4)

In general, if we consider a pth order accurate scheme with solutions on a fine mesh ()

and a course mesh (), can be approximated as

1h

2h exactf

 6

1
21

1 −
−

+= pexact r
ffff (1.5)

where r is the grid refinement factor given by 12 / hhr = . Once is estimated, then the

relative discretization error (RDE) in the fine grid can be calculated as

exactf

exact

exact

f
ff

RDE
−

= 1
1 (1.6)

1.5. Objective

The current study concentrates on verification. In particular, we focus on solution

verification and use the method of nearby problems (MNP) as an error estimator. We

have also used MNP to come up with an exact solution for a problem that is very close to

(i.e. nearby) the original problem, and have evaluated various error estimators on those

nearby problems.

 7

CHAPTER TWO

BACKGROUND

2.1. Method of manufactured solutions (MMS)

 MMS [7] provides a general procedure for generating an analytical solution for

code verification. It is a general approach to find coding mistakes/bugs or inconsistent

algorithms. The goal of MMS is code verification. It involves manufacturing an exact

solution to a set of equations which are a modified form of the original partial differential

equations. The solution obtained to this set of modified equations is not physically

realistic. This method is used only to verify the mathematics involved in solving the

original equations, and does not verify the solution obtained by solving the original

equations. This procedure is used when the method of exact solutions cannot be used.

The method of exact solutions [3] is one in which the numerical solution is compared to

an exact solution to the partial differential equation. In the method of exact solution, the

discretization error is computed and then the observed order of accuracy is calculated.

This observed order of accuracy is compared with the formal order of accuracy. This

method [2] is usually not followed for complex cases (geometric complexity, physical

complexity, etc.) because of the limited number of exact solutions.

 Once the problem of interest is identified then MMS is conducted for code

verification. MMS is a five step process [3].

 8

1. The first step is to choose a manufactured solution. There are certain guidelines

[8] that should be followed in choosing a manufactured solution.

• The manufactured solution should be sufficiently smooth so that the

theoretical order of accuracy can be matched by the observed order of

accuracy on relatively coarse meshes.

• The solution should exercise all the terms of the governing equation. For

example, for the unsteady heat equation, the temperature cannot be chosen

as a function which is independent of time.

• The solution should be such that it has a number of nontrivial derivatives.

For example, in the heat equation which is a second-order equation in

space, picking temperature as a linear function of the spatial coordinate

will not provide a sufficient test.

• The chosen solution should consist of simple analytic functions like

polynomials, trigonometric functions, etc.

• It is better to avoid exponential growth of the solution in time to avoid

confusion with numerical instability.

2. The second step in MMS is to derive the modified governing equation. Here the

governing equations are applied to the chosen manufactured solution. This will

result in the generation of analytical source terms. These analytic source terms

are then added to the governing equations, resulting in a modified form of the

original equations.

3. Once the modified equations are obtained, then they are solved numerically on

different meshes.

 9

4. The next step is to evaluate the global discretization error, which can be

calculated as a global norm of the difference between the numerical solution

and the exact solution of the modified equation over the whole domain. The

exact solution of the modified equation is nothing but the manufactured solution

chosen in step 1.

5. The last step in MMS is to compute the observed order of accuracy. If the exact

solution is known, then the observed order of accuracy is calculated as

)ln(

)ln(
1

2

r
DE
DE

p = (2.1)

where, and are the discretization error on the coarse and fine meshes

respectively, and

2DE 1DE

r is the grid refinement factor. Once the observed order of

accuracy is calculated, it is compared to the formal order of accuracy. If they

match, then the code is considered to be free of bugs or mistakes in the

discretization. If they do not match, then it suggests that there is some problem

in the code.

2.2. Prior work in MNP

 Standard benchmark problems are often used for testing codes. True solutions of

these standard benchmark problems are often known, but it is hard to ascertain the

relationship between the behavior of an algorithm on a standard benchmark problem and

the behavior of the algorithm on the true problem of interest.

Lee and Junkins [9] described the use of a problem near an original ordinary

differential equation (ODE) to serve as a benchmark problem. They constructed a

 10

benchmark problem near the original ODE which exactly satisfied the original ODE with

a small, known forcing function. Their work can be summarized as follows:

• Compute a numerical solution on a very refined mesh.

• Generate a polynomial fit for the fine numerical solution by the least squares

approximation using Chebyshev polynomials. A global polynomial was used

instead of a local polynomial to avoid discontinuities.

• Generate the analytic solution from the global fit. This analytic solution

becomes the exact solution of the nearby benchmark problem.

• Use symbolic manipulation to plug the analytic solution into the original

problem and generate small source terms.

• Add these small source terms to the original ODE to form the benchmark

problem.

Since the exact solution of the benchmark problem was known, it was easy to compute

the global error and also to determine optimal integration parameters.

Junkins and Lee [10] later extended the previous methodology to construct exact

special-case solutions for hybrid ODE/PDE systems. This hybrid ODE/PDE system was

able to serve as a benchmark problem to test approximate solution methods. In their

work, they have described a method for coming up with a benchmark problem to

determine optimal time integration parameters, while in our work we use method of

nearby problems to come up with an exact solution to a nearby problem and also as an

error estimator.

Roy and Hopkins [11] examined the generation of exact solutions to problems

near the original problem of interest. They studied two examples: fully developed laminar

 11

flow in a channel and a lid-driven cavity. Two codes were used in their work. The

SACCARA code was used to establish a refined numerical solution to the original

problem while the Premo code was used for the implementation of source terms and

generalized boundary conditions. In the first example, the fully developed laminar flow in

a channel they employed a third-order polynomial for the polynomial fit and,

Mathematica was used to compute the analytic source terms. Once the source terms were

computed, they formulated the nearby problem and used the Premo code for the solution

of the nearby problem. Computed solutions on various meshes were compared to the

analytic solution. The L2 norms of the source term as a function of the underlying mesh

solution are shown in Fig 2.1. It is seen that as the mesh becomes finer (i.e. as h goes to

1), the magnitude of the source terms decrease. Since the magnitude of the source terms

is small, the nearby problem that is formulated will be close to the original problem of

interest. The method of nearby problems was successfully demonstrated for fully

developed laminar flow in a channel.

Fig 2.1. norm of the source term for the third-order polynomial fit (reproduced from

Roy and Hopkins [11])

2L

 12

In the second example, a lid-driven cavity, the analytic source terms were

generated using a fourth-order least square polynomial based on different underlying

mesh refinement levels. To minimize the errors that arise due to singularities at the

corners, a truncated domain was used. The norm of the source term did not get smaller

with mesh refinement as is seen in Fig 2.2. The magnitude of the source term was found

to be large near the boundaries. For this example, the global polynomial did not capture

the solution well.

2L

Fig 2.2. norm of the source term for the fourth-order polynomial fit (reproduced from

Roy and Hopkins [11])

2L

 13

CHAPTER THREE

BURGERS EQUATION

3.1. Introduction to Burgers equation

Burgers equation is a quasi-linear, one-dimensional, parabolic partial differential

equation of the form

 2

2

x
u

x
uu

t
u

∂
∂

=
∂
∂

+
∂
∂ ν (3.1)

where u(x,t) is a two-dimensional scalar field. As an example it can be assumed as

representing velocity as a function of position ‘x’ and time ‘t’, and ‘υ’ is the viscosity. A

quasi-linear equation is one in which the highest-order derivative occurs linearly. A

second-order partial differential equation of the form

 02 2

22

2

2

=+
∂
∂

+
∂
∂

+
∂
∂

+
∂∂

∂
+

∂
∂ F

y
uE

x
uD

y
uC

yx
uB

x
uA (3.2)

 is said to be parabolic if the matrix satisfies the determinant ⎥
⎦

⎤
⎢
⎣

⎡
≡

C
B

B
A

Z 0=Z

Burgers equation can be related to shock wave theory. The solutions of Burgers

equation can describe the formation and decay of shocks in a compressible fluid. Burgers

equation can also be used as a mathematical model for turbulence. The Navier-Stokes

equation and Burgers equation are quite similar since both contain a non-linear term and

a second-order term multiplied by a small parameter.

3.2. Solution to Burgers equation

 14

Benton and Platzmann [12] describe thirty five solutions to Burgers equation. Out

of the thirty five solutions we have chosen three that are smooth and real:

1. The steady state solution in dimensionless form (denoted by primes) is given by

. This is a solution of Burgers equation when)'tanh(2)','(' xtxu −= 0'
=

∂
∂

t
u . It

can model a steady shock, and it is smooth, non trivial, and in the real plane.

The plot for this solution is given in Fig. 3.1. for a Reynolds number of 8. The

abscissa is the spatial coordinate x, while the ordinate is the value of u.

Sol 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-5 -4 -3 -2 -1 0 1 2 3 4 5
Sol 1

Fig 3.1. Steady state solution of Burgers equation

2. An unsteady solution to Burgers equation is given as ')'cosh(
)'sinh(2)','(' tex

xtxu −+
−=

and this solution can model the coalescence of two equal, unsteady shocks and

is shown in Fig. 3.2 for different time levels.

 15

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-6 -4 -2 0 2 4 6

Sol 1.3' t=-6
Sol 1.3' t=-4
Sol 1.3' t=-2
Sol 1.3' t=0
Sol 1.3' t=2

Fig 3.2. Unsteady solution of Burgers equation for shock coalescnese

 3. Another unsteady solution to Burgers equation is given as

'4/'2/1 2

'1
'/')','('

txet
txtxu

+
= . This solution can model the decay of a solitary pair of

unsteady, equal compression and expansion pulses, as shown in Fig. 3.3.

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

Sol 2.1(+) t=.1
Sol 2.1(+) t=.2
Sol 2.1(+) t=.5
Sol 2.1(+) t=1
Sol 2.1(+) t=2

Fig 3.3. Unsteady solution of Burgers equation for pulse decay

 16

3.3. Conversion to dimensional quantities and scaling factors

The solution of Burgers equation can be converted to dimensional quantities via

transformations given by and . A scaling factor ,/' lxx = ,/ 2' ltt υ= υ/' ulu = α can also

be used to scale the solution. The scaling factor was used in the forms ,/αxx =

,/ 2αtt = and uu α= . The value of the scaling factor depends on the Reynolds number

used. For a Reynolds number of 8, the scaling factor used was 2. The value of the scaling

factor used for a Reynolds number of 64 was 16.

 17

CHAPTER FOUR

METHOD OF NEARBY PROBLEMS

The method of nearby problems (MNP) is used to generate exact solutions to

realistic problems, which in turn allows assessment of how discretization error estimators

will perform on the original problem of interest. MNP can also be used as an a posteriori

error estimation technique [13]. It is based on constructing a problem close to the original

problem called the nearby problem. This nearby problem has an exact solution, and also

is representative of the original problem if the source term is sufficiently small. The

nearby problem is numerically solved just like the original problem. Since the exact

solution of the nearby problem is known, the error in its numerical solution can be

evaluated exactly. This information can then be used to estimate the discretization error

in the original problem.

4.1 MNP as an evaluator of discretization error estimators

The method of nearby problems (MNP) involves five steps. These steps can be

summarized as given below:

• Establish an accurate numerical solution

• Generate an analytical curve fit for the above accurate numerical solution

• Generate analytic source terms

• Numerically solve the nearby problem (original problem plus analytical

source term)

 18

• Evaluate the discretization error in the nearby problem

An explanation to all of these five steps is given below.

Accurate numerical solution

Once the problem of interest is identified, the first step is to discretize the problem

and come up with an accurate numerical solution.

Analytic curve fit

Once an accurate numerical solution is computed, the second step involves

generating an analytic curve fit to this numerical solution. A curve fitting tool is used to

generate this curve fit. It should be kept in mind that the tool used for the curve fitting

should provide a particular level of continuity which is problem dependent. Once the

curve fit is generated, it should be examined to see how good the fit approximates the

numerical solution. This analytic curve fit will serve as the exact solution to the nearby

problem.

Generation of analytic source terms

The nearby problem differs from the original problem by a (hopefully) small

source term. This source term is obtained by operating the original equation on the

analytic curve fit obtained from the previous step. In the limit as the size of the source

terms approaches zero, the nearby problem approaches the original problem. The

nearness of the nearby problem to the original problem can be judged by calculating the

magnitude of the source term. A more rigorous assessment of the nearness of the nearby

problem is presented in [13] for ordinary differential equations. Such an assessment for

Burgers equation, a nonlinear PDE is beyond the scope of this work.

 19

Numerical solution to the nearby problem

The next step involves discretization of the nearby problem and then computation

of the numerical solution on a series of meshes. For a consistent numerical scheme and

sufficiently refined meshes, the formal order of accuracy of the scheme should be

observed, even on the perturbed equations. In general, the discretization error should drop

as , where r is the grid refinement factor and p the formal order of accuracy. In order

to examine the global discretization error behavior, we define the discrete error function

as:

pr/1

1/ 2

2
, ,

1

1()
N

k k n exact n
n

E
N

φ φ φ
=

⎛
= −⎜⎜
⎝ ⎠
∑

⎞
⎟⎟ (4.1)

where k refers to the discrete mesh level and N is the number of mesh nodes in space

including both interior and boundary nodes with the exception of any Dirichlet boundary

nodes for which the discretization error is identically zero. Here, φexact,n refers to the exact

solution (i.e., the curve fit) evaluated at node n.

Evaluation of discretization error

Since the exact solution to the nearby problem is now known, the discretization

error in the numerical solution to the nearby problem no longer has to be estimated, but

can be evaluated exactly.

4.2. Example of MNP as an evaluator of discretization error estimators

The steps involved in MNP can be best explained by simple example. Consider

that

 0)(2

2

=
∂
∂

+
∂
∂

=
x
u

x
uuL (4.2)

 20

is the differential operator of interest. The first step in MNP involves obtaining a highly

refined numerical solution to this original problem. Any discretization scheme can be

used, and the numerical solution can be obtained. The second step involves fitting an

analytic curve fit to the refined numerical solution that we have from the first step. This

problem demands continuity as the highest order of the differential operator is two

and the source term that we develop should be slope continuous. So the tool that we use

for curve fitting should be able to provide this continuity criterion. Consider that the

resulting analytic curve fit is

3C

 (4.3) 432)(exdxcxbxaxu ++++=
−

Now the third step of MNP is to operate the original equation on the analytic curve fit

and come up with an analytic source term. By operating the original problem of interest

on the analytic curve fit, we get

 (4.4))3(4)2(3)1(2)(2 ++++++=
−

xexxdxxcbuL

 This is the source term, and it is not equal to zero. Now this becomes the

exact solution of a modified equation or the nearby equation,

)(xs)(
_

xu

)()(xsuL = or 0)()(=− xsuL (4.5)

It should be noted that as s(x) approaches zero, the nearby problem approaches the

original problem. The next step is to come up with a numerical solution to the nearby

problem. Since we have an exact solution to the nearby problem, we can evaluate the

discretization error exactly.

 21

CHAPTER FIVE

POLYNOMIAL FITTING PROCEDURES

5.1. Polynomial fitting in MNP

Obtaining a good polynomial fit is the most difficult task in MNP. Two conditions

have to be kept in mind while fitting the numerical solution. The first condition is the

continuity criterion which is problem specific. For our example case, Burgers equation,

continuity is needed in the solution to maintain slope continuity of the source term.

The second condition is that the fit should approximate the numerical solution fairly well

to obtain small source term. The magnitude of the source terms depends on the

approximation that is used. If the approximation that is used is not good, then the

magnitude of the source term will increase and the nearness of the nearby problem is

affected.

3C

5.2. Standard polynomial using MATLAB

MATLAB [14] uses the function polyfit to fit a polynomial to a given set of data.

Polyfit(X, Y, N) returns the coeffecients of a polynomial P(X) of degree N that fits the

data P(X(I))~=Y(I) in a least-squares sense. Y = Polyval(P,X) gives the value of the

polynomial evaluated at X.

These functions were used to fit a twentieth order polynomial to numerical

solutions of steady-state Burgers equation for various Reynolds numbers. As shown in

Fig 5.1 for the low Reynolds number case, the polynomial fits the data well. But for the

 22

high Reynolds number case (Re=64) as shown in Fig 5.2, the global polynomial does not

fit the data well. As a result, the source term will not be sufficiently small, thus this

approach is limited to low Reynolds number (i.e., smoothly varying) cases only.

x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Polynomial fit
Numerical solution

Fig 5.1. Fitting the numerical solution of steady state Burgers equation with a standard

20th order polynomial: Re=8

x

S
ol

ut
io

n

-4 -2 0 2 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Polynomial fit
Numerical solution

Fig 5.2. Fitting the numerical solution of steady state Burgers equation with a standard

20th order polynomial: Re=64

 23

5.3. Legendre polynomials

Legendre polynomials are an orthogonal set of polynomials which can be used to

represent a given function. The first few Legendre polynomials are given in equations 5.1

to 5.5:

 1)(0 =xp (5.1)

 xxp =)(1 (5.2)

)13(
2
1)(2

2 −= xxp (5.3)

)35(
2
1)(3

3 xxxp −= (5.4)

)33035(
8
1)(24

4 +−= xxxp
 (5.5)

These first five Legendre polynomials are shown graphically in Fig 5.3.

X

p i(x
)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Zero
p0(x)
p1(x)
p2(x)
p3(x)
p4(x)

Fig 5.3. First five Legendre polynomials

 24

The Legendre polynomials can be determined by using the following generating function:

() ()

() ()

2/ 2

0

1 2 2 !
()

2 ! ! 2 !

k n kn

n n
k

n k x
p x

k n k n k

−

=

− −
=

− −∑ (5.6)

We can approximate a function f(x) with a truncated Legendre expansion fn(x) by

0

() ()
n

n i
i

if x c p
=

=∑ x (5.7)

where the coefficients ci can be found by making use of the orthogonality of the Legendre

polynomials

1

1
1

1

() ()

() ()

i

i

i i

f x p x dx
c

p x p x dx

−

−

=
∫
∫

 (5.8)

The main reason for using Legendre polynomials instead of standard polynomials is that

the Legendre polynomial-based procedure is more stable and robust. That is, the

approximations are guaranteed not to get worse as more terms are included. In Fig 5.4,

the numerical solution of steady-state Burgers equation for Reynolds number of 8 is well

approximated by Legendre polynomials. But when we increase the Reynolds number,

this global polynomial fitting technique again fails to provide a good approximation as is

shown in Fig 5.5 and Fig 5.6. In the presence of a sharp gradient region, the global

polynomial approximation does not perform well.

 25

x

u

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical Solution
Legendre Fit
Least Square

Burgers Equation
Steady-State
Re = 8

Fig 5.4 Numerical solution and 10th order Legendre and standard polynomial fits for

steady-state Burgers equation at Re=8

x

u

-4 -2 0 2 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical Solution
Legendre Fit
Least Square

Burgers Equation
Steady-State
Re = 16

Fig 5.5 Numerical solution and 10th order Legendre and standard polynomial fits for

steady-state Burgers equation at Re=16

 26

x

u

-4 -2 0 2 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Numerical Solution
Legendre Fit
Least squares fit

Burgers Equation
Steady State
Re=512

Fig 5.6 Numerical solution and 10th order Legendre and standard polynomial fits for

steady-state Burgers equation at Re=512

Since the Legendre polynomial does not approximate the numerical solution properly, the

source term will not be small as shown in the Fig 5.7 for Re=8 and Fig 5.8 for Re=16. In

these cases, the magnitude of the source term is unacceptably large, thus we will not be

able to construct a problem which will be nearby the original problem. So global

polynomials are not good candidates for curve fitting in MNP.

 27

x

S
ou

rc
e

Te
rm

-4 -3 -2 -1 0 1 2 3 4

-8

-6

-4

-2

0

2

4

6

8

Numerical Solution
10th Order Legendre
8th Order Legendre
6th Order Legendre
4th Order Legendre

Burgers Equation
Steady-State
Re = 8

Fig 5.7 Size of source term using different order Legendre polynomial fits: Re=8

x

S
ou

rc
e

Te
rm

-4 -3 -2 -1 0 1 2 3 4

-20

-10

0

10

20

Numerical Solution
10th Order Legendre
8th Order Legendre
6th Order Legendre
4th Order Legendre

Burgers Equation
Steady-State
Re = 16

Fig 5.8 Size of source term using different order Legendre polynomial fits: Re=16

 28

5.4. Cubic splines

A cubic spline [15] is a spline polynomial constructed of piecewise third-order

polynomials. A cubic polynomial spline is twice continuously differentiable and depends

on four parameters. It can be written as:

 for 32)()()(:)(iiiiiiii xxdxxcxxbaxS −+−+−+= 1,...,0],,[1 −=∈ + nixxx ii (5.9)

and the setup of the system is given diagrammatically in Fig 5.9. This system has n+1

spline points ranging from 0 to n and n spline zones.

1−nS 0S 2−nS 1S

0=i ni =1=i 2=i 2−= ni 1−= ni

Fig 5.9. Schematic of the spline fitting system

The conditions that are used to construct the polynomials are

 1. niyxS iii ,...,0,)(==

 2. nixSxS iiii ,...,1),()(1 == −

 3. 1,...,1),()(1
'' −== − nixSxS iiii

 4. nixSxS iiii ,...,1),()(1

'''' == −

The first constraint sets the values at each node. The second constraint sets the continuity

of the values at each node. The third constraint takes care of the continuity of the first

derivative at each interior node and the fourth constraint takes care of the continuity of

 29

http://mathworld.wolfram.com/Spline.html
http://mathworld.wolfram.com/Polynomial.html

the second derivative at each interior node. Here we also set nnn axS =)(and

 for convenience. The first derivatives at end points are also specified

which gives two additional conditions. As we have already seen, global polynomials do

not do a good job approximating sharp gradients. The numerical solution was fit using

cubic splines and the results were encouraging as shown in Figs 5.10, and 5.11.

nnn cxS 2)('' =

Fig 5.10. Fitting the numerical solution with cubic spline fits using 257 nodes and 9

spline points, Re=8

 30

Fig 5.11. Fitting numerical solution with cubic spline fits using 257 nodes and 17 spline

points, Re=8

Since the cubic splines perform well in fitting the numerical solution, one can expect that

the source term that result will be small as desired. Plots of the source term using cubic

splines are given in Figs 5.12 and 5.13. Close examination of these figures indicates that

the source terms exhibit slope discontinuities at the spline points. Since cubic splines are

only continuous and Burgers equation contains a second derivative, the first criteria is

not satisfied and we cannot use cubic splines

2C

 31

Fig 5.12. Source term distribution using 9 spline points and 257 nodes

Fig 5.13. Source term distribution using 17 spline points and 257 nodes

 32

5.5. Fifth order Hermite spline

A fifth-degree Hermite spline [15] is a spline polynomial constructed of piecewise

fifth-order polynomials. This system also has n+1 spline points ranging from 0 to n and n

spline zones. This can be given by

 5432)()()()()(:)(iiiiiiiiiiii xxfxxexxdxxcxxbaxS −+−+−+−+−+=

 for 1,...,0],,[1 −=∈ + nixxx ii (5.10)

where the same spline system shown in Fig. 5.9 is used. The conditions used to construct

a fifth-degree Hermite spline are:

 1. niyxS iii ,...,0,)(==

 2. niyxS iii ,...,0,)('' ==

 3. nixSxS iiii ,...,1),()(1 == −

 4. 1,...,1),()(1

'' −== − nixSxS iiii

 5. 1,...,1),()(1

'''' −== − nixSxS iiii

 6. 1,...,1),()(1

'''''' −== − nixSxS iiii

and also set and as two extra constraints. The first constraint

sets the values at each node. The second constraint sets the first derivative at each node.

The third constraint sets the continuity of the solution at each node. The fourth constraint

takes care of the continuity of the first derivative at each interior node. The fifth

constraint takes care of the continuity of the second derivative at each interior node, and

the sixth constraint sets the third derivative continuity at each interior node.

nnn axS =)(nnn bxS =)('

As is seen in Figs 5.14, 5.15 and 5.16, fifth-order Hermite splines do a good job in

approximating the numerical solution for the various Reynolds number cases. Unlike

 33

http://mathworld.wolfram.com/Polynomial.html

global polynomial fitting techniques, fifth-order Hermite splines approximates even the

high Reynolds number cases well, including sharp gradient region. Fifth-order Hermite

splines were found to be the best fitting tool that can be used for this problem. The

chosen example of Burgers equation demanded continuity which is met by fifth-order

Hermite splines.

3C

Fig 5.14. Fifth order Hermite spline approximation for Re=8, using 17 spline points

 34

Fig 5.15. Fifth order Hermite spline approximation for Re=64, using 65 spline points

Fig 5.16. Fifth order Hermite spline approximation for Re=512, using 129 spline points

 35

The numerical solution was fit accurately enough to provide small source terms as

shown in Fig 5.17. for Re=8. In addition, the source term is slope continuous (

continuous) over the entire domain. The size of the source terms for the fifth-order

Hermite splines will be discussed in Chapter 7. A fortran program was developed to

compute the coefficients of the fifth-order Hermite splines (see Appendix D).

1C

Fig 5.17 Source term distribution using fifth-order Hermite splines with 9 spline

points and 257 nodes, Re=8

 36

CHAPTER SIX

DISCRETIZATION ERROR ESTIMATORS

Discretization error arises due to the fact that the original partial differential

equations must be discretized to numerically solve them. There are various methods to

compute this discretization error and in this chapter we discuss those methods.

6.1. Discretization error estimator using local order of accuracy

The discretization error on the fine grid is given as:

 exactffDE −= 1 (6.1)

where fexact is the exact solution to the partial differential equation and is the

numerical solution. We can estimate f

1f

exact using Richardson extrapolation [3] which is

given by:

1
21

1 −
−

+= pexact r
ffff (6.2)

where r is the grid refinement factor, p is the order of accuracy, and 2f and 1f are the

solutions on the coarse and fine meshes, respectively. Here the order of accuracy can be

computed using solutions on three meshes as

)ln(

ln
12

23

r
ff
ff

p
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= (6.3)

 37

where , and are the solutions on fine, medium and coarse meshes, respectively.

To use Richardson extrapolation with the local order of accuracy as an error estimator,

we need numerical solution on three different meshes.

1f 2f 3f

6.2. Discretization error estimator using global order of accuracy

This technique is different from Richardson extrapolation with local order of

accuracy in the sense that we use the formal order of accuracy instead of computing the

local order of accuracy. As a result, this technique uses numerical solutions on just two

meshes.

6.3. Mixed order error estimator

The mixed order error estimator [16] involves approximation of an exact solution

using three different meshes. In this technique, instead of assuming a single dominant

error term, both first and second order error terms are considered.

 (6.4) HOThghgff kkexactk +++= 2
21

Three discrete solutions are used to solve a linear set of equations (see [2] for details) and

finally arrive at an approximation for the exact solution given by

 2
12

2
23

)1)(1(
))(1()(

−+
−−+−−

=
rr

ffrrff
f exact (6.5)

Once the exact solution is approximated, the discretization error relation is used to

compute the error, which is given as:

 exactffErrorOrderMixed −= 1 (6.6)

 38

6.4. Method of nearby problems

The Method of nearby problems (MNP) itself can be used as an error estimator.

The discretization error on any given mesh can be evaluated exactly for the nearby

problem as the MNP approach involves the generation of an exact solution to the nearby

problem. If the nearby problem is “close enough” to the original problem of interest, then

the error on a given mesh for the nearby problem is expected to be very close to the error

in the original problem on the same mesh. The expression for using MNP as an error

estimator is given as:

 MNPexactMNP ffMNP ,,11 −= (6.7)

where is the numerical solution of the nearby problem on a mesh and is

the exact solution of the nearby problem. Here we see that for using this technique, we

use numerical solutions on only one mesh unlike other schemes which use multiple

meshes. MNP thus requires two solutions on the same mesh, one for the original problem

and the second one for the nearby problem.

MNPf ,1 MNPexactf ,

 39

CHAPTER SEVEN

RESULTS

We have applied MNP to three different one-dimensional test problems:

1. Original Burgers equation (steady state): The exact solution to the steady

state Burgers equation was given by Benton & Platzman [12].

2. “Nearby” problem to Burgers equation: The exact solution to the nearby

problem to Burgers equation is the fifth order Hermite spline fit to the

numerical solution of the original Burgers equation.

3. Modified form of Burgers equation: A modified form of Burgers

equation was generated which includes a nonlinear viscosity which

varies as a function of both u and x thus giving a nominal Reynolds

number of 64.

7.1. Steady-state Burgers equation

An implicit scheme was used to obtain the numerical solution to Burgers equation

(see Appendix A). Two different Reynolds number cases were run for the original

Burgers equation: Re=8 and Re=64. Both numerical solutions and exact solutions for

these two cases are shown in Figs. 7.1, and 7.2. The numerical solution is right on top of

exact solution which suggests that the implicit scheme used to obtain the numerical

solution is performing well.

 40

x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical solution
Exact solution

Fig 7.1 Comparison of the numerical solution with exact solution, Re=8

x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical solution
Exact solution

Fig 7.2 Comparison of the numerical solution with exact solution, Re=64

 41

Since the exact solution of the steady Burgers equation is known, we can evaluate

the discretization error exactly. The discretization error for two different mesh spacing

(and) is shown in Fig. 7.3. As expected, the discretization error

increases when the mesh spacing increases.

25.0=∆x 0625.0=∆x

Fig 7.3 Discretization error for the steady state Burgers equation, Re=8

The observed order of accuracy was computed for the various mesh solutions. Since the

exact solution is known, the observed order of accuracy can be computed by the relation

)ln(

)ln(
1

2

r
DE
DE

p = (7.2)

where r is the grid refinement factor and DE2 and DE1 are the L2 norms of the

discretization errors for the coarse and fine mesh, respectively. The plot for the observed

order of accuracy is given in Fig. 7.4. The observed order of accuracy is seen to be

 42

approaching two, which is the formal order of accuracy. This suggests that the numerical

solution that was computed is good.

h

O
rd

er
of

A
cc

ur
ac

y

100 101 1020

0.5

1

1.5

2

2.5

3

Fig 7.4 Observed order of accuracy for different meshes, Re=8

7.2 Nearby problem to Burgers equation

The nearby problem to Burgers equation is constructed by using fifth-order

Hermite spline to fit the original numerical solution, then operating Burgers equation on

the spline fit to generate analytical source terms. The source terms are then added to the

original problem of interest to give the nearby problem (see Appendix B). When the

source term approaches zero, the nearby problem approaches the original problem. The

same implicit scheme is used to solve the nearby problem. Two different Reynolds

number cases were run for the problem nearby Burgers equation: Re=8 and Re=64. In

both cases an underlying numerical solution from a 1025 node mesh is used. A

 43

description of process of choosing the number of spline points is given in detail in

chapter 7.4. The numerical solutions of the nearby problem for Re=8 and Re=64 are

shown in Figs. 7.5 and 7.6. For Re=8 case, 17 spline points were used and for the Re= 64

case, 65 spline points were used. The numerical solution to the nearby problem is

compared with the exact solution to the nearby problem. The figures show that the

numerical solution obtained is good.

x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical Solution of nearby problem
Exact solution of nearby problem

Fig 7.5 Numerical solution of the nearby problem to Burgers equation, Re=8

 44

x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Numericalsolutio of nearby problem
Exact solution of nearby problem

Fig 7.6 Numerical solution of the nearby problem to Burgers equation, Re=64

The order of accuracy of the nearby problem was also computed by comparing

numerical solutions on different meshes. The plot of the order of accuracy of the nearby

problem and the original Burger equation is shown in Fig. 7.7 for the Re = 8 case and

Fig. 7.8 for the Re = 64 case. In both the cases, as the mesh becomes fine, the order of

accuracy approaches two which is the formal order of accuracy. This suggests that the

solution that we have obtained is good.

 45

x

O
rd

er
of

A
cc

ur
ac

y

100 101 1021.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Original Burgers
Nearby Problem

Fig 7.7 Observed order of accuracy for Burgers equation and the nearby problem, Re=8

x

O
rd

er
of

A
cc

ur
ac

y

100 101 1021.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Original Burgers
Nearby Problem

Fig 7.8 Observed order of accuracy for Burgers equation and the nearby problem, Re=64

 46

7.3 Modified form of Burgers equation

A modified form of Burgers equation was generated which includes a nonlinear

viscosity which varies as a function of both u and x:

4

12

00 4
1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

LR

L

xx
xx

u
u

υ
υ (7.3)

The constants were chosen as υ0 = 0.25 m2/s, u0 = 2 m/s, xL = - 4 m, and xR = 4 m, thus

giving a nominal Reynolds number of 64. This modified form of Burgers equation was

solved numerically using a mesh with 1025 spatial points. The numerical solution and the

viscosity distribution for this modified form of Burgers equation are given in Fig 7.9.

Implicit scheme was used to obtain the numerical solution to the modified form of

Burgers equation (see Appendix C).

x (m)

u
(m

/s
),
ν

(m
2 /s

)

-4 -2 0 2 4

-2

-1

0

1

2

u
ν

Modified Burgers Equation
Re = 64, Nonlinear Viscosity

Fig 7.9 Solution and viscosity variation for the modified form of Burgers equation

The source terms were computed and added to the modified form of Burgers

equation, which then resulted in a nearby problem the modified form of Burgers

equation. The numerical solution is given in Fig 7.10. The plots shows the numerical

 47

solution of modified Burgers equation with the numerical solution of the nearby problem

to modified Burgers equation. The two solutions are very close to each other.

x

S
ol

ut
io

n

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerical Solution to Nearby Problem of Modfied Burgers
NUmerical Solution to Modified Burgers

Fig 7.10 Numerical solution of the nearby problem to modified form of Burgers equation

7.4. Nearness of the nearby problem

 The nearness of the nearby problem can be measured using the source terms.

The source terms are computed by operating the governing equations on the analytical

curve fit. The source term should be small for the nearby problem to be close to the

original problem. As the source term approaches zero, the nearby problem approaches the

original problem of interest. Source terms were calculated for the nearby problem to the

Burgers equation for three different cases: Re=8, Re=64, and Re=512 as shown in Figs.

7.11, 7.12, and 7.13, respectively. In these figures we see that as the number of spline

points increases, the magnitude of the source term decreases. We require that the source

 48

term be small. Examining the Figs. 7.11, 7.12, and 7.13, the source term is the smallest

for 17 spline point case and so this case will be the best option.

Fig 7.11 Magnitude of the source term for the nearby problem with 5 spline points, Re=8

Fig 7.12 Magnitude of the source term for the nearby problem with 9 spline points, Re=8

 49

Fig 7.13 Magnitude of the source term for the nearby problem with 17 spline points,

Re=8

For the Reynolds number 64 case, the distribution of the source term over the

domain is given in Figs. 7.14, 7.15, and 7.16. Here again as the number of spline points

increases the magnitude of the source term decreases. The smallest source term is

obtained for 65 spline points and so we choose 65 spline points for Re= 64.

Fig 7.14 Magnitude of the source term for the nearby problem with 17 spline points,

Re=64

 50

Fig 7.15 Magnitude of the source term for the nearby problem with 33 spline points,

Re=64

Fig 7.16 Magnitude of the source term for the nearby problem with 65 spline points,

Re=64

 51

For Re=512, since there is a very sharp gradient region, the number of spline

points to capture the solution should be large. The distribution of the source term for

Re=512 is presented in Figs. 7.17, 7.18, and 7.19. Here we see that for 129 and 257

spline points, the source term is still relatively large and is not going to result in a

problem close to the original problem. But using 1025 spline points, the size of the source

term is decreased. This does not necessarily mean that for higher Reynolds number cases

we have to use a large number of spline points. The number of spline points could be

reduced by the use of spline points with variable spacing. That is, if we can recognize the

areas of large variation, and include a large number of spline points to capture that

variation and fewer points elsewhere, then the number of spline points can be

significantly reduced.

Fig 7.17 Magnitude of the source term for the nearby problem with 129 spline

points, Re=512

 52

Fig 7.18 Magnitude of the source term for the nearby problem with 257 spline points,

Re=512

Fig 7.19 Magnitude of the source term for the nearby problem with 1025 spline points,

Re=512

 53

Source terms were also computed for the nearby problem to the modified form of

Burgers equation for a Reynolds number of 64. The magnitude of the source terms is

given in Figs. 7.20, 7.21, and 7.22. Here it is found that the magnitude of the source term

decreases when we go from 33 spline point to 65, and then increases slightly when we go

from 65 to 129 spline points. So in this case we should use 65 spline points to formulate

the nearby problem.

Fig 7.20 Magnitude of the source term for the nearby problem to modified Burgers

equation with 33 spline points, Re=64

 54

Fig 7.21 Magnitude of the source term for the nearby problem to modified Burgers

equation with 65 spline points, Re=64

Fig 7.22 Magnitude of the source term for the nearby problem to modified Burgers

equation with 129 spline points, Re=64

 55

7.5. Evaluation of discretization error estimators

Now that the nearness of the nearby problem has been established, we are in a

position to evaluate the various discretization error estimators. We now examine

discretization error estimates on various grid levels using four different methods: 1)

Richardson extrapolation with global p, i.e. assuming the formal order of accuracy

(requiring two grids), 2) Richardson extrapolation with local p, i.e. Richardson

extrapolation employing the locally calculated order of accuracy (requiring three grids),

3) a mixed-order error estimator (requiring three grids), and 4) the Method of Nearby

Problems (MNP) (requiring only one grid). Numerical solutions are computed on a wide

range of grid levels. In cases where multiple mesh levels are required to obtain the error

estimate, the error is reported for the finest grid only. Grid refinement is performed by

doubling the node spacing (i.e., grid doubling) in all cases.

Fig 7.23 gives the discretization error estimates of all the error estimators

described earlier for meshes using 1025, 513 and 257 points for Re=8 case. For these fine

meshes we see that all the error estimators do a good job in estimating the error. Fig. 7.24

gives the discretization error estimates for meshes using 257, 129 and 65 points. All the

estimators again match the true error. Fig. 7.25 gives the discretization error estimates for

the relatively coarse meshes using 65, 33 and 17 points. The mixed-order error estimator

and Richardson extrapolation using the local order of accuracy underestimates the error,

while MNP and Richardson extrapolation using the global order of accuracy match the

true error. Fig. 7.26 gives the discretization error estimates for very coarse meshes using

33, 17 and 9 points. The mixed-order error estimator and Richardson extrapolation using

local order of accuracy do not provide good estimates, while MNP and Richardson

 56

extrapolation using the global order of accuracy are in good agreement with the true

error.

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4

-3E-06

-2E-06

-1E-06

0

1E-06

2E-06

3E-06

True Error
MNP
Mixed Order
RDE with local p
RDE with global p

Fig 7.23 Discretization error estimators for Burgers equation, Re=8, finest mesh =1025

points

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4
-5E-05

-4E-05

-3E-05

-2E-05

-1E-05

0

1E-05

2E-05

3E-05

4E-05

5E-05

True Error
MNP
Mixed Order
RDE with local p
RDE with global p

Fig 7.24 Discretization error estimators for Burgers equation, Re=8, finest mesh = 257

points

 57

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008
True Error
MNP
Mixed Order
RDE with local p
RDE with global p

Fig 7.25 Discretization error estimators for Burgers equation, Re=8, finest mesh = 65

points

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

True Error
MNP
Mixed Order
RDE with local p
RDE with global p

Fig 7.26 Discretization error estimators for Burgers equation, Re=8, finest mesh = 33

points

 58

Next we examine the higher Reynolds number case with Re=64. Here also we

expect that all the error estimators will perform well on the finer meshes, while on

coarser meshes, some of the error estimators will break down. The plots of the

discretization error estimators for the Reynolds number of 64 are given in Figs. 7.27,

7.28, 7.29, and 7.30. In Fig 7.27, where the finest mesh used is 1025 points, all the error

estimators perform well. In Fig 7.28, where the finest mesh is 257 points, the mixed-order

error estimator and Richardson extrapolation with the global order of accuracy begin to

deviate from true error. In Fig. 7.29, only the error estimators using two or fewer mesh

levels can be used, as the coarsest mesh that could be computed was 33, below which the

solution was found to be numerically unstable. Here both MNP and Richardson

extrapolation using the global order of accuracy gives a slightly higher estimate (but in

reasonable limit). Due to the same reason, in Fig 7.30, only MNP could be used as all

other estimators needed additional coarse meshes. MNP gives a slightly higher estimate

of the error.

x

D
is

cr
et

iz
at

io
n

E
rr

or

-2 -1 0 1 2
-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

True Error
MNP
Mixed Order
RDE with local p
RDE with global p

Fig 7.27 Discretization error estimators for Burgers equation, Re=64, finest mesh =1025

 59

x

D
is

cr
et

iz
at

io
n

E
rr

or

-2 -1 0 1 2
-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

True Error
MNP
Mixed Order
RDE with local p
RDE with global p

Fig 7.28 Discretization error estimators for Burgers equation, Re=64, finest mesh =257

x

D
is

cr
et

iz
at

io
n

E
rr

or

-2 -1 0 1 2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

True Error
MNP
RDE with global p

Fig 7.29 Discretization error estimators for Burgers equation, Re=64, finest mesh =65

 60

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

True Error
MNP

Fig 7.30 Discretization error estimators for Burgers equation, Re=64, finest mesh =33

We now turn our attention to the discretization error in the nearby problem. Again

different meshes are used for each Reynolds number case. For a Reynolds number of 8,

we used 17 spline fit points. Fig 7.31 shows discretization error estimates with the finest

mesh being 1025 points. In this case, we see that all the error estimators perform well. In

Fig. 7.32, the finest mesh used was 257 points. Again all the estimators give a good

estimate of the discretization error. In Fig. 7.33, the finest mesh that was used was 129

points. Here we see that the mixed-order error estimator begins to under estimate the

error. In Fig. 7.34, both the mixed-order error estimator and Richardson extrapolation

using the local order of accuracy underestimate the error.

 61

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4

-3E-06

-2E-06

-1E-06

0

1E-06

2E-06

3E-06

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.31 Discretization error estimators for the nearby problem, Re=8, finest mesh=1025

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4
-5E-05

-4E-05

-3E-05

-2E-05

-1E-05

0

1E-05

2E-05

3E-05

4E-05

5E-05

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.32 Discretization error estimators for the nearby problem, Re=8, finest mesh=257

 62

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4
-0.0002

-0.00015

-0.0001

-5E-05

0

5E-05

0.0001

0.00015

0.0002

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.33 Discretization error estimators for the nearby problem, Re=8, finest mesh=129

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.34 Discretization error estimators for the nearby problem, Re=8, finest mesh=65

 63

For the Reynolds number of 64 case, we used 33 spline points. Fig. 7.35 shows

the behavior of the error estimators with the finest mesh being 1025 points. In this case,

we see that all the error estimators perform well. In Fig. 7.36, the finest mesh used was

257 points. The mixed-order error estimator and Richardson extrapolation with the local

order of accuracy underestimate the error. In Fig. 7.37, the finest mesh that was used was

129 points. Here the mixed-order error estimator gives very poor estimates and

Richardson extrapolation with the local order of accuracy also begins to fail. In Fig. 7.38,

only Richardson extrapolation using the global order is used, because the other methods

need three mesh solutions, but we cannot go coarser as the numerical solutions become

unstable.

x

D
is

cr
et

iz
at

io
n

E
rr

or

-2 -1 0 1 2
-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.35 Discretization error estimators for the nearby problem, Re=64, finest

mesh=1025

 64

x

D
is

cr
et

iz
at

io
n

E
rr

or

-2 -1 0 1 2
-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.36 Discretization error estimators for the nearby problem, Re=64, finest mesh=257

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4
-0.04

-0.035
-0.03

-0.025
-0.02

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.37 Discretization error estimators for the nearby problem, Re=64, finest mesh=129

 65

x

D
is

cr
et

iz
at

io
n

E
rr

or

-2 -1 0 1 2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

True Error
RDE with global p

Fig 7.38 Discretization error estimators for the nearby problem, Re=64, finest mesh=65

If we compare the performance of different error estimators on original Burgers

equation and the nearby problem to Burgers equation, we see that they are very similar.

For example, for Re=8 with finest mesh being 65 points, the error estimator on the

original Burgers equation (Fig. 7.25) are quite similar to the estimates on the nearby

problem (Fig. 7.34). This is also true for the Re=64 case for original Burgers equation

(Fig. 7.28) and the nearby problem (Fig. 7.36). This similarity justifies evaluating error

estimators on the nearby problem.

The nearby problem to the modified form of the Burgers equation was solved and

different error estimators were used to estimate the discretization error. In the modified

form of Burgers equation, we ran only the Re = 64 case. Examining at Figs. 7.39 and

7.40, we see that as we reduce the number of nodes, Richardson extrapolation using local

order of accuracy and the mixed order error estimator breaks down, while Richardson

extrapolation using the global order of accuracy gives the best estimate. In Fig. 7.40,

 66

mixed-order error estimator fails while Richardson extrapolation using the local order

also gives bad estimates.

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4
-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.39 Discretization error estimators for nearby problem to modified Burgers equation,

Re=64, nodes=257

x

D
is

cr
et

iz
at

io
n

E
rr

or

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

True Error
Mixed Order
RDE with local p
RDE with global p

Fig 7.40 Discretization error estimators for nearby problem to modified Burgers equation,

Re=64, nodes=129

 67

CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS

8.1. Conclusions

 The current work on MNP has focused on two major goals. Using MNP to

generate exact solutions to a problem nearby the steady-state Burgers equation in order to

evaluate error estimators was the first goal. The second goal was to use MNP itself as an

error estimator. To fulfill the first goal, a fifth-order Hermite spline was shown to be the

best available curve fitting tool for Burgers equation. The polynomials fits were

demonstrated to be accurate, and we were thus able to generate very small source terms.

MNP was then used to evaluate various discretization error estimators and we found that

Richardson extrapolation using the global order of accuracy provided the best estimates.

MNP itself was used as an error estimator. It was shown that MNP provided error

estimates that were at least as good as Richardson extrapolation with the global order of

accuracy, and often better. The use of MNP as an error estimator requires numerical

solutions on only one mesh. This is an advantage of using MNP, as other error estimators

required multiple meshes. The cost of MNP alone will be approximately the same as the

cost of solving the original problem, with some additional overhead involved in the curve

fitting procedure. So the total cost of using MNP as an error estimator will be

approximately twice the cost of numerically solving the original problem of interest

alone.

 68

8.2. Future work

This research was focused on one-dimensional problems. The next step is to

extend the MNP methodology to two-dimensions, three-dimensions, and four-dimensions

(three spatial dimensions plus time). The biggest challenge is to develop a two-

dimensional or higher-dimensional fit which has continuity. Rouff [17] has developed

an approach for generating n-dimensional, continuous splines. Implementation of

Rouff’s approach will allow the extension of MNP to more realistic two-dimensional and

three-dimensional applications.

3C

kC

 69

REFERENCES

1. Anderson, J. D., “Computational Fluid Dynamics: The Basics With Applications,”

McGraw-Hill, New York, 1995

2. Oberkampf, W. L., Roy, C. J., short course for Moldflow corporation on “Verification

and Validation in Computational Simulation,” Jul 22-23, 2004, Ithaca, New York

3. Roy, C. J., “Review of Code and Solution Verification Procedures for Computational

Simulation” Journal of Computational Physics, Vol. 205, 2005, pp. 131-156

4. www.softwareqatest.com, access date: June 29, 2005

5. Ferziger, J. H., Peric, M., “Computational Methods of Fluid Dynamics,” Springer-

Verlag, Berlin, 1999

6. Raju, A., Roy, C. J., Hopkins, M. M., “Evaluation of Discretization Error Estimators

using the Method of Nearby Problems,” AIAA 2005-0684, 35th AIAA Fluid

Dynamics Conference & Exhibit, Toronto, Canada

7. Roache, P. J., “Code Verification by the Method of Manufactured Solutions,” Journal

of Fluids Engineering. 124(1) (2002) 4-10

8. Knupp, P., Salari, K., “Verification of Computer Codes in Computational Science and

Engineering,” Chapman & Hall/CRC, New York, 2002

9. Lee, S., Junkins, J. L., “Construction of Benchmark Problems for Solution of ordinary

Differential Equations,” Journal of Shock and Vibration, Vol. 1, No. 5, 1994, pp.

403-414

 70

10. Junkins, J. L, Lee, S., “Validation of Finite-Dimensional Approximate Solutions for

Dynamics of Distributed-Parameter Systems,” Journal of Guidance, Control, and

Dynamics, Vol. 18, No. 1, 1995, pp. 87-95

11. Roy, C. J., and Hopkins, M. M., “Discretization Error Estimates using Exact

Solutions to Nearby Problems,” AIAA Paper 2003-0629, January 2003

12. Benton, E. R., and Platzman, G. W., “A Table of Solutions of the One-Dimensional

Burger’s Equation,” Q. Appl Math, Vol. 30. pp. 195-212, 1972

13. Hopkins, M. M., Roy, C. J., “Introducing The Method of Nearby Problems,”

European Congress on Computational Methods in Applied Sciences and Engineering,

ECCOMAS 2004, P. Neittaanmaki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and D.

Knorzer (eds.), July 24-28, 2004

14. Matlab user manual

15. Mullges, G. E., Uhlig, F., “Numerical Algorithms with Fortran,” Springer-Verlag,

Berlin, 1996

16. Roy, C. J., “Grid Convergence Error Analysis for Mixed-Order Numerical Schemes,”

AIAA journal, Vol. 41, No. 4, April 2003

17. Rouff, M., “The Computation of Ck Spline Functions,” Computers in Mathematical

Applications, Vol 23, No. 1, 1992, pp. 103-110

 71

APPENDICES

A. Fortran program for solving original Burgers equation

Program Steady_implicit
 implicit doubleprecision(a-h,o-z)

 Parameter(imax=81,lmax=imax-2)
 Dimension uold(imax),up(imax),unew(imax),x(imax)
 Dimension
uexact(imax),Disc_error(imax),AA(imax),BB(imax),CC(imax)
 Dimension G(imax),y(imax),ub(imax),unew1(imax),unew2(imax)

!xxx!
xxxxxxxxxxxxxxxxx Initialization of constants xxxxxxxxxxxxxxxxxx

!xxx!
 rLen = 4.0d0
 a=-4.0d0
 b=4.0d0
 rNu=2.0d0
 rH=rLen*2.0d0/dfloat(imax-1)
 cfl=200.0d0
 rK=cfl*((rH*rH)/(rH + 2.0d0*rNu))
 n=imax-1
 th=1.0d0
 t=0.0d0
 Tol = 2.7e-12
 jmax = 400000000
 al=2.0d0
 alp=rK/(2.0d0*rH)
 bet=rNu*rK/rH**2

!xxx!
xxxxxxxxxxxxxx Setting up of Initial Conditions xxxxxxxxxxxxxx

!xxx!

 Do i = 1,imax
 x(i) = a + (b-a)*dfloat(i-1)/dfloat(n)
! uold(i)=0.0
 uold(i) = (-2.0d0*rNu*al/rLen)*(dsinh(x(i)*al/rLen))/
 & (dcosh(x(i)*al/rLen)+dexp(-(t*rNu*al**2/rLen**2)))
! Write(*,*) x(i)
 End Do

 72

!xxx!
xxxxxxxxxxxxxx Setting up of Boundary Conditions xxxxxxxxxxxx

!xxx!

 uold(1) = -2.0d0*al*rNu/rLen*dtanh(a*al/rLen)
 uold(n+1)=-2.0d0*al*rNu/rLen*dtanh(b*al/rLen)

 Do i=1,imax
 uexact(i)=-2.0d0*rNu*al/rLen*dtanh(x(i)*al/rLen)
 End Do

!xxx!
xxxxxxxxxxxxxxxxxxxxxxxxxx Main Loop xxxxxxxxxxxxxxxxxxxxxxxx

!xxx!

 Do j=1,jmax
 Do i=1,imax
 ub(i)=uold(i)
 End do

!xxx!
xxxxxxxxxxxxxxxx Setting up of Tridiagonal Matrix xxxxxxxxxxxxxx
!xxx!

 Do i=3,imax-2
 k=i-1
 AA(k)=-1.0d0*th*(alp*ub(i)+bet)
 BB(k)=(1.0d0+2.0d0*th*bet)
 CC(k)=th*(alp*ub(i)-bet)
 G(k)=uold(i)-((1.0d0-th)*alp*ub(i)*(uold(i+1)-uold(i-1)))+
 & ((1.0d0-th)*bet*(uold(i+1)-2.0d0*uold(i)+uold(i-1)))
 End Do

 BB(1)=(1.0d0+2.0d0*th*bet)
 CC(1)= (th*alp*ub(2)-th*bet)
 AA(imax-2)=-1.0d0*(th*alp*ub(imax-1)+th*bet)
 BB(imax-2)=(1.0d0+2.0d0*th*bet)
 G(1)=uold(2)-((1.0d0-th)*alp*ub(2)*(uold(3)-uold(1)))+
 & ((1.0d0-th)*bet*(uold(3)-2.0d0*uold(2)+uold(1)))+(th*alp*
 & ub(2)+th*bet)*uold(1)
 G(imax-2)=uold(imax-1)-((1.0d0-th)*alp*ub(imax-1)*(uold(imax)-
 & uold(imax-2)))+((1.0d0-th)*bet*(uold(imax)-2.0d0*uold(imax-
1)+
 & uold(imax-2)))-(th*alp*ub(imax-1)-th*bet)*uold(imax)

!xxx!
 xxxxxxxxxxxxxxxx Calling the Tridiagonal Solver xxxxxxxxxxxxxxx
!xxx!

 CALL TRDIAG (lmax,AA,BB,CC,y,G)

 73

 Do i=1,imax-2
 unew(i+1)=y(i)
 End do

 unew(1)=uold(1)
 unew(n+1)=uold(n+1)
 Residue = 0.0d0

!xxx!
 xxxxxxxxxxxxxxxxxx Computation of Residual xxxxxxxxxxxxxxxxxxxx
!xxx!

 Do i=2,imax-1
 Res = unew(i)/(2.0d0*rH)*(unew(i+1)-unew(i-1))-rNu/(rH**2)*
 & (unew(i+1)-2.0d0*unew(i)+unew(i-1))
 Residue = Residue + Res**2
 End Do
 rNorm=Residue
 rL2Norm =dsqrt(rNorm/dfloat(imax-2))
 if (j.eq.1) r1 = rL2Norm
 rL2Norm=rL2Norm/r1
 write(11,*) j,rK*dfloat(j),rK,rL2Norm
 if(mod(j,10).eq.0.0d0) then
 Write(19,*) j,rL2Norm
 End if

!xxx!
 xxxxxxxxxxxxxxxxxxxxxx Checking Convergence xxxxxxxxxxxxxxxxxxx
!xxx!

 If (rL2Norm.LT.Tol) Goto 100

 200 Do i =1,imax
 uold(i) = unew(i)
 End Do
 End Do

!xxx!
 xxxxxxxxxxxxxxxxxxxxxxxx End of Main Loop xxxxxxxxxxxxxxxxxxxxx
!xxx!

 100 Write(*,*) j

 do i=2,imax-1
 unew1(i)=(unew(i+1)-unew(i-1))/(2.0d0*rH)
 End do
 unew1(1)=(-3.0d0*unew(1)+4.0d0*unew(2)-unew(3))/(2.0d0*rH)
 unew1(imax)=(3.0d0*unew(imax)-4.0d0*unew(imax-1)+unew(imax-2))/
 & (2.0d0*rH)
 unew2(1)=(-unew(4)+4.0d0*unew(3)-5.0d0*unew(2)+2.0d0*unew(1))/
 & rH**2
 unew2(imax)=(2.0d0*unew(imax)-5.0d0*unew(imax-1)+4.0d0*

 74

 & unew(imax-2)-unew(imax-3))/rH**2
!xxx!
 xxxxxxxxxxxxxxxxxxxxx Writing out Solution xxxxxxxxxxxxxxxxxxxxxx
!xxx!

 open(30,file='velocity_der_new_17.dat',status='unknown')
 open(40,file='distance_new_17.dat',status='unknown')
 open(50,file='velocity_new_17.dat',status='unknown')
 Do i=1, imax,5
 write(30,6) unew1(i)
 write(40,6) x(i)
 write(50,6) unew(i)
6 Format (e30.20)
 end do

 open(15,file='velocity.dat',status='unknown')
 open(10,file='distance1.dat',status='unknown')

!xxx!
 xxxxxxxxxxxxx Computation of Discretization Error xxxxxxxxxxxxx
!xxx!

 Do i=1,imax
 Write (10,500) x(i)
 Write (15,500) unew(i)
500 Format(e30.20)
 Write (16,501) x(i),unew(i),uexact(i)
 Disc_error(i)=(unew(i)-uexact(i))
 Write(14,*) x(i),Disc_error(i)
 501 Format(3(e30.20))
 Write(99,500) uexact(i)
 End Do

 rl2 = 0.0d0
 rl1 = 0.0d0

 Do i=1,imax
 error = dabs(uexact(i) - unew(i))
 error2 = error*error
 rl1 = rl1 + error
 rl2 = rl2 + error2
 End Do

 rl1 = rl1/dfloat(n+1)
 rl2 = dsqrt(rl2/dfloat(n+1))

 Write(*,*) 'L2Norm=',rl2
 Write(*,*) 'L1Norm=',rl1
 Write(*,8) unew2(1)
 Write(*,8) unew2(imax)
 8 Format(e30.20)
 close(30)
 close(40)
 close(50)
 End

 75

!xxx!
 xxxxxxxxxxxxxx Tridiagonal Solver Subroutine xxxxxxxxxxxxxxxxxx
!xxx!

 SUBROUTINE TRDIAG (N,A,B,C,X,G)
 implicit doubleprecision(a-h,o-z)
 DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000)
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS
C!.....BY GAUSS ELIMINATION
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C)
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING
C!.....THE MATRIX
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000)
C!.....FORWARD ELIMINATION
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY
 DO 1 I=1,N
 BB(I) = B(I)
 1 CONTINUE
 DO 2 I=2,N
 T = A(I)/BB(I-1)
 BB(I) = BB(I) - C(I-1)*T
 G(I) = G(I) - G(I-1)*T
 2 CONTINUE
C!.....BACK SUBSTITUTION
 X(N) = G(N)/BB(N)
 DO 3 I=1,N-1
 J = N-I
 X(J) = (G(J)-C(J)*X(J+1))/BB(J)
 3 CONTINUE
 RETURN
 END

B. Fortran program for solving the nearby problem to Burgers equation

 Program Steady_implicit
 implicit doubleprecision(a-h,o-z)

 Parameter(imax=81)
 Dimension uold(imax),unew(imax),x(imax),u(imax)
 Dimension
source(imax),Disc_error(imax),AA(imax),BB(imax),CC(imax)
 Dimension G(imax),ub(imax),y(imax)

 rLen = 4.0d0

 10 Format (e25.14)

 76

!xxx!
xxxxxxxxxxxxxxxxx Initialization of constants xxxxxxxxxxxxxxxxxx

!xxx!
 a=-4.0d0
 b=4.0d0
 rNu=2.0d0
 rH=rLen*2.0d0/dfloat(imax-1)
 cfl=100.0d0
 rK=cfl*((rH*rH)/(rH + 2.0d0*rNu))
 n=imax-1
 th=1.0d0
! write(*,*) 'n = ',n
 t=0.0d0
 Tol = 1e-12
 jmax = 400000000
 al=2.0d0!255.828300733!7.99463621669!4.0!255.828300733
 alp=rK/(2.0d0*rH)
 bet=rNu*rK/rH**2

 open(60,file='distance1.dat',status='unknown')
 open(70,FILE='velocityterm.dat',status='unknown')
 open(66,file='source_17.dat',status='unknown')

 Do i=1,imax
 Read(60,*) x(i)
 Read(70,*) u(i)
 Read(66,*) source(i)
 End do

 close(60)
 close(70)
 close(66)

!xxx!
xxxxxxxxxxxxxx Setting up of Initial Conditions xxxxxxxxxxxxxx

!xxx!

 Do i = 1,imax
 x(i) = a + (b-a)*dfloat(i-1)/dfloat(n)
 uold(i) = (-2.0d0*rNu*al/rLen)*(dsinh(x(i)*al/rLen))/
 & (dcosh(x(i)*al/rLen)+dexp(-(t*rNu*al**2/rLen**2)))
 End Do

!xxx!
xxxxxxxxxxxxxx Setting up of Boundary Conditions xxxxxxxxxxxx

!xxx!

 uold(1) = u(1)!-2.0d0*al*rNu/rLen*dtanh(a*al/rLen)
 uold(n+1)=u(imax)!-2.0d0*al*rNu/rLen*dtanh(b*al/rLen)

!xxx!
xxxxxxxxxxxxxxxxxxxxxxxxxx Main Loop xxxxxxxxxxxxxxxxxxxxxxxx

!xxx!

 77

 Do j=1,jmax

 Do i=1,imax
 ub(i)=uold(i)
 End do

!xxx!
xxxxxxxxxxxxxxxx Setting up of Tridiagonal Matrix xxxxxxxxxxxxxx
!xxx!

 Do i=2,imax-1
 AA(i)=-1.0d0*th*(alp*ub(i)+bet)
 BB(i)=(1.0d0+2.0d0*th*bet)
 CC(i)=th*(alp*ub(i)-bet)
 G(i)=source(i)*rK+uold(i)-((1.0d0-
th)*alp*ub(i)*(uold(i+1)-
 & uold(i-1)))+((1.0d0-th)*bet*(uold(i+1)-2.0d0*uold(i)+
 & uold(i-1)))
 End Do

 BB(1)=1.0d0
 CC(1)= 0.0d0
 AA(imax)=0.0d0
 BB(imax)=1.0d0
 G(1)=u(1)
 G(imax)=u(imax)

!xxx!
 xxxxxxxxxxxxxxxx Calling the Tridiagonal Solver xxxxxxxxxxxxxxx
!xxx!

 CALL TRDIAG (imax,AA,BB,CC,y,G)

 Do i=1,imax
 unew(i)=y(i)
 End do

 Residue = 0.0d0

!xxx!
 xxxxxxxxxxxxxxxxxx Computation of Residual xxxxxxxxxxxxxxxxxxxx
!xxx!

 Do i=2,imax-1
 Res =unew(i)-uold(i)! unew(i)/(2.0d0*rH)*(unew(i+1)-unew(i-
1))-rNu/(rH**2)*
 Residue = Residue + Res**2
 End Do

 rNorm=Residue
 rL2Norm =dsqrt(rNorm/dfloat(imax-2))

 78

 if (j.eq.1) r1 = rL2Norm

 rL2Norm=rL2Norm/r1
 write(11,*) j,rK*dfloat(j),rK,rL2Norm

 if(mod(j,10).eq.0.0d0) then
 Write(19,*) j,rL2Norm
 End if

!xxx!
 xxxxxxxxxxxxxxxxxxxxxx Checking Convergence xxxxxxxxxxxxxxxxxxx
!xxx!

 If (rL2Norm.LT.Tol) Goto 100

 Do i =1,imax
 uold(i) = unew(i)
 End Do

 End Do

!xxx!
 xxxxxxxxxxxxxxxxxxxxxxxx End of Main Loop xxxxxxxxxxxxxxxxxxxxx
!xxx!

 100 Write(*,*) j
 open(14,file='MNP.dat',status='unknown')

!xxx!
 xxxxxxxxxxxxx Computation of Discretization Error xxxxxxxxxxxxx
!xxx!

 Do i=1,imax
 Disc_error(i)=(unew(i)-u(i))/u(i)
 Write(14,8) x(i),Disc_error(i)
 Write (16,9) x(i),unew(i),u(i)
 End Do

 8 Format(2(e30.20))
 9 Format(3(e30.20))

 rl2 = 0.0d0
 rl1 = 0.0d0

 Do i=1,imax
 error = dabs(u(i) - unew(i))
 error2 = error*error
 rl1 = rl1 + error
 rl2 = rl2 + error2
 End Do

 rl1 = rl1/dfloat(imax)
 rl2 = dsqrt(rl2/dfloat(imax))
 Write(*,99) rl1

 79

 Write(*,99) rl2
99 Format(e30.20)
 End

!xxx!
 xxxxxxxxxxxxxx Tridiagonal Solver Subroutine xxxxxxxxxxxxxxxxxx
!xxx!

 SUBROUTINE TRDIAG (N,A,B,C,X,G)
 implicit doubleprecision(a-h,o-z)
 DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000)
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS
C!.....BY GAUSS ELIMINATION
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C)
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING
C!.....THE MATRIX
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000)
C!.....FORWARD ELIMINATION
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY
 DO 1 I=1,N
 BB(I) = B(I)
 1 CONTINUE
 DO 2 I=2,N
 T = A(I)/BB(I-1)
 BB(I) = BB(I) - C(I-1)*T
 G(I) = G(I) - G(I-1)*T
 2 CONTINUE
C!.....BACK SUBSTITUTION
 X(N) = G(N)/BB(N)
 DO 3 I=1,N-1
 J = N-I
 X(J) = (G(J)-C(J)*X(J+1))/BB(J)
 3 CONTINUE
 RETURN
 END

C. Fortran program to numerically solve the modified form of Burgers equation

 Program Steady_implicit
 implicit doubleprecision(a-h,o-z)

 Parameter(imax=1025,lmax=imax-2)
 Dimension uold(imax),up(imax),unew(imax),x(imax)
 Dimension
uexact(imax),Disc_error(imax),AA(imax),BB(imax),CC(imax)
 Dimension G(imax),y(imax),ub(imax),unew1(imax),unew2(imax)

 80

!xxx!
xxxxxxxxxxxxxxxxx Initialization of constants xxxxxxxxxxxxxxxxxx

!xxx!

 rLen = 4.0d0
 a=-4.0d0
 b=4.0d0
 rNu=0.25d0 !2.0d0, 0.25d0, 0.03125d0
 rH=rLen*2.0d0/dfloat(imax-1)
 cfl=1000.0d0
 rK=cfl*((rH*rH)/(rH + 2.0d0*rNu))
 n=imax-1
 th=1.0d0
 t=0.0d0
 Tol = 3e-12
 jmax = 400000000
 al=16.0d0
 alp=rK/(2.0d0*rH)
 bet=rNu*rK/rH**2
 xxp = 0.25

!xxx!
xxxxxxxxxxxxxx Setting up of Boundary Conditions xxxxxxxxxxxxxx
!xxx!

 x(1) = a
 x(imax) = b

 uold(1) = 2.
 uold(n+1) = -2.

!xxx!
xxxxxxxxxxxxxx Setting up of Initial Conditions xxxxxxxxxxxxxx

!xxx!

 Do i = 2,imax-1

 x(i) = a + (b-a)*dfloat(i-1)/dfloat(n)
 uold(i) = uold(1)+(uold(n+1)-uold(1))*dfloat(i-1)/dfloat(n)
 End Do

 Write(11,*) 'TITLE = "Solution Profiles"'
 Write(11,*) 'variables="Iterations""rk*float(j)""rK""L2Norm"'

 Do i=1,imax
 uexact(i)=-2.0d0*rNu*al/rLen*dtanh(x(i)*al/rLen)
 End Do

 81

!xxx!
xxxxxxxxxxxxxxxxxxxxxxxxxx Main Loop xxxxxxxxxxxxxxxxxxxxxxxx

!xxx!

 Do j=1,jmax
 Do i=1,imax
 ub(i)=uold(i)
 End do

!xxx!
xxxxxxxxxxxxxxxx Setting up of Tridiagonal Matrix xxxxxxxxxxxxxx
!xxx!

 Do i=3,imax-2
 k=i-1
 betvar=bet*((ub(i)/2.)**2 + ((x(i)-a)/(b-a)+0.25)**xxp)
 AA(k)=-1.0d0*th*(alp*ub(i)+betvar)
 BB(k)=(1.0d0+2.0d0*th*betvar)
 CC(k)=th*(alp*ub(i)-betvar)
 G(k)=uold(i)-((1.0d0-th)*alp*ub(i)*(uold(i+1)-uold(i-1)))+
 & ((1.0d0-th)*betvar*(uold(i+1)-2.0d0*uold(i)+uold(i-1)))
 End Do

 betvar=bet*((ub(2)/2.)**2 + ((x(2)-a)/(b-a) + 0.25)**xxp)
 BB(1)=(1.0d0+2.0d0*th*betvar)
 CC(1)= (th*alp*ub(2)-th*betvar)
 G(1)=uold(2)-((1.0d0-th)*alp*ub(2)*(uold(3)-uold(1)))+
 & ((1.0d0-th)*betvar*(uold(3)-2.0d0*uold(2)+uold(1)))+(th*alp*
 & ub(2)+th*betvar)*uold(1)
 betvar=bet*((ub(imax-1)/2.)**2 +
 & ((x(imax-1)-a)/(b-a) + 0.25)**xxp)
 AA(imax-2)=-1.0d0*(th*alp*ub(imax-1)+th*betvar)
 BB(imax-2)=(1.0d0+2.0d0*th*betvar)
 G(imax-2)=uold(imax-1)-
 & ((1.0d0-th)*alp*ub(imax-1)*(uold(imax)-
 & uold(imax-2)))+((1.0d0-th)*betvar*(uold(imax)
 & -2.0d0*uold(imax-1)+
 & uold(imax-2)))-(th*alp*ub(imax-1)-th*betvar)*uold(imax)

!xxx!
 xxxxxxxxxxxxxxxx Calling the Tridiagonal Solver xxxxxxxxxxxxxxx
!xxx!

 CALL TRDIAG (lmax,AA,BB,CC,y,G)

 Do i=1,imax-2
 unew(i+1)=y(i)
 End do

 unew(1)=uold(1)
 unew(n+1)=uold(n+1)
 Residue = 0.0d0

 82

!xxx!
 xxxxxxxxxxxxxxxxxx Computation of Residual xxxxxxxxxxxxxxxxxxxx
!xxx!

 Do i=2,imax-1
 rnuvar=rNu*((unew(i)/2.)**2 + ((x(i)-a)/(b-a)+0.25)**xxp)
 Res = unew(i)/(2.0d0*rH)*(unew(i+1)-unew(i-1))-
 & rnuvar/(rH**2)*(unew(i+1)-2.0d0*unew(i)+unew(i-1))
 Residue = Residue + Res**2
 End Do
 rNorm=Residue
 rL2Norm =dsqrt(rNorm/dfloat(imax-2))
 if (j.eq.1) r1 = rL2Norm
 rL2Norm=rL2Norm/r1
 write(11,*) j,rK*dfloat(j),rK,rL2Norm
 if(mod(j,100).eq.0.0d0) then
 Write(19,*) j,rL2Norm
 write(*,*) j,rL2Norm
 End if

!xxx!
 xxxxxxxxxxxxxxxxxxxxxx Checking Convergence xxxxxxxxxxxxxxxxxxx
!xxx!

 If (rL2Norm.LT.Tol) Goto 100

 200 Do i =1,imax
 uold(i) = unew(i)
 End Do
 End Do

!xxx!
 xxxxxxxxxxxxxxxxxxxxxxxx End of Main Loop xxxxxxxxxxxxxxxxxxxxx
!xxx!

 100 Write(*,*) j

!xxx!
 xxxxxxxxxxxxxxxxxxxxx Writing out Solution xxxxxxxxxxxxxxxxxxxxxx
!xxx!

 do i=2,imax-1
 unew1(i)=(unew(i+1)-unew(i-1))/(2.0d0*rH)
 End do
 unew1(1)=(-3.0d0*unew(1)+4.0d0*unew(2)-unew(3))/(2.0d0*rH)
 unew1(imax)=(3.0d0*unew(imax)-4.0d0*unew(imax-1)+unew(imax-2))/
 & (2.0d0*rH)
 unew2(1)=(-unew(4)+4.0d0*unew(3)-5.0d0*unew(2)+2.0d0*unew(1))/
 & rH**2
 unew2(imax)=(2.0d0*unew(imax)-5.0d0*unew(imax-1)+4.0d0*
 & unew(imax-2)-unew(imax-3))/rH**2
 open(30,file='velocity_der_new_33_F.dat',status='unknown')
 open(40,file='distance_new_33_F.dat',status='unknown')

 83

 open(50,file='velocity_new_33_F.dat',status='unknown')

 Do i=1, imax,32
 write(30,6) unew1(i)
 write(40,6) x(i)
 write(50,6) unew(i)
6 Format (e30.20)
 end do

 open(15,file='velocity_F.dat',status='unknown')
 open(10,file='distance1_F.dat',status='unknown')
 open(51,file='distance1_M.dat',status='unknown')
 open(52,file='distance1_C.dat',status='unknown')
 open(11,file='ubar_F.dat',status='unknown')

!xxx!
 xxxxxxxxxxxxx Computation of Discretization Error xxxxxxxxxxxxx
!xxx!

 Do i=1,imax
 Write (10,500) x(i)
 Write (15,500) unew(i)
 write(11,500) ub(i)
500 Format(e30.20)
 Disc_error(i)=(unew(i)-uexact(i))
 Write(14,*) x(i),Disc_error(i)
 End Do

 Do i=1,imax,2
 Write (51,501) x(i)
501 Format(e30.20)
 Enddo

 Do i=1,imax,4
 Write (52,502) x(i)
502 Format(e30.20)
 Enddo

 rl2 = 0.0d0
 rl1 = 0.0d0

 Do i=1,imax
 error = dabs(uexact(i) - unew(i))
 error2 = error*error
 rl1 = rl1 + error
 rl2 = rl2 + error2
 End Do

 rl1 = rl1/dfloat(n+1)
 rl2 = dsqrt(rl2/dfloat(n+1))
 write(*,*) rl1,rl2

 84

 Write(*,8) rl2
! Write(*,*) 'L1Norm=',rl1
 Write(*,8) unew2(1)
 Write(*,8) unew2(imax)
 8 Format(e30.20)
 close(30)
 close(40)
 close(50)
 End

!xxx!
 xxxxxxxxxxxxxx Tridiagonal Solver Subroutine xxxxxxxxxxxxxxxxxx
!xxx!

 SUBROUTINE TRDIAG (N,A,B,C,X,G)
 implicit doubleprecision(a-h,o-z)
 DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000)
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS
C!.....BY GAUSS ELIMINATION
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C)
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING
C!.....THE MATRIX
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000)
C!.....FORWARD ELIMINATION
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY
 DO 1 I=1,N
 BB(I) = B(I)
 1 CONTINUE
 DO 2 I=2,N
 T = A(I)/BB(I-1)
 BB(I) = BB(I) - C(I-1)*T
 G(I) = G(I) - G(I-1)*T
 2 CONTINUE
C!.....BACK SUBSTITUTION
 X(N) = G(N)/BB(N)
 DO 3 I=1,N-1
 J = N-I
 X(J) = (G(J)-C(J)*X(J+1))/BB(J)
 3 CONTINUE
 RETURN
 END

 85

D. Fortran program to compute the coefficients of the Hermite spline polynomial

 Program Spline
 implicit doubleprecision(a-h,o-z)
 Parameter (imax=257,kmax=2000,nmax=33,lmax=nmax-2)
 Dimension x(kmax),u(kmax),a(kmax),b(kmax),c(kmax),d(kmax),h(kmax)
 Dimension
g(kmax),aa(kmax),bb(kmax),cc(kmax),u_num(kmax),u_1(kmax)
 Dimension e(kmax),f(kmax),y(kmax),z(kmax),p(kmax),q(kmax)
 Dimension term(kmax),de2(imax)

!xxx!
 xxxxxxxxxxxxxxxxxxxxx Reading Input Files xxxxxxxxxxxxxxxxxxxxxxx
!xxx!

 open(60,file='distance_new_33.dat',status='unknown')
 open(70,FILE='velocity_new_33.dat',status='unknown')
 open(80,FILE='velocity_der_new_33.dat',status='unknown')
 open(66,FILE='distance1.dat',status='unknown')
 open(55,FILE='velocity.dat',status='unknown')

 Do i=1,nmax
 Read(60,*) x(i)
 Read(70,*) u(i)
 Read(80,*) u_1(i)
!100 Format (F7.4)
 End do
 Do i=1,imax
 Read(55,*) u_num(i)
 Read(66,*) y(i)
 Enddo

 close(60)
 close(70)
 close(80)
 close(66)
 close(55)

!xxx!
 xxxxxxxxxxxxxxxxxxxx Initializing Constants xxxxxxxxxxxxxxxxxxxxxx
!xxx!

 toler=0.25d0
 rh=0.25d0
 rnu=0.250d0
 alp=1.0d0
 bet1=-0.5d0*0.90949470177292824000E-12/rh
 bet2=-0.5d0*0.20463630789890885000E-11/rh

 86

!xxx!
 xxxxxxxxxxxxx Initializing ‘a’ and ‘b’ Coefficients xxxxxxxxxxx
!xxx!
do i = 1,nmax
 a(i)=u(i)
 b(i)=u_1(i)
 end do

!xxx!
 xxxx Setting up Tridiagonal Matrix for the Coefficient ‘c’ xxxx
!xxx!

 c(1)=-0.5d0*0.90949470177292824000E-12!0.5/h(1)*(3.0/h(1)*(a(2)-
a(1))-3.0*ral1-ral1/2.0
 c(nmax)=-0.5d0*0.20463630789890885000E-11!0.5*0.0101!ral2/2.0

 i=2
 k=i-1

 g(k)=10.0d0/rh**3*(a(3)-2.0d0*a(2)+a(1))+4.0d0/rh**2*(b(1)-b(3))+
 & 1.0d0/rh*c(1)

 i=nmax-1
 k=i-1

 g(k)= 10.0d0/rh**3*(a(nmax)-2.0d0*a(nmax-1)+a(nmax-2))+
 & 4.0d0/rh**2*(b(nmax-2)-b(nmax))+1.0d0/rh*c(nmax)

 do i=3,nmax-2
 k=i-1
 g(k)=10.0d0/rh**3*(a(i+1)-2.0d0*a(i)+a(i-1))+4.0d0/rh**2*
 & (b(i-1)-b(i+1))
 aa(k)= -1.0d0/rh
 bb(k)= 6.0d0/rh
 cc(k)= -1.0d0/rh
 end do

 bb(1)=6.0d0/rh
 cc(1)=-1.0d0/rh
 aa(lmax)=-1.0d0/rh
 bb(lmax)=6.0d0/rh

!xxx!
 xxxxxxxxxxxxxxxxxx Calling Tridiagonal Solver xxxxxxxxxxxxxxxxxxx
!xxx!

 CALL TRDIAG (lmax,aa,bb,cc,z,g)

 Do i=1,nmax-2

 87

 c(i+1)=z(i)
 End do

!xxx!
 xxxxxxxxxxx Computing’d’, ‘e’, and ‘f’ Coefficients xxxxxxxxxxx
!xxx!

 Do i=1,nmax-1
 d(i)=10.0d0/rh**3*(a(i+1)-a(i))-2.0d0/rh**2*(2.0d0*b(i+1)+
 & 3.0d0*b(i))+1.0d0/rh*(c(i+1)-3.0d0*c(i))
 e(i)=5.0d0/rh**4*(a(i+1)-a(i))-
1.0d0/rh**3*(b(i+1)+4.0d0*b(i))
 & -3.0d0/rh**2*c(i)-2.0d0/rh*d(i)
 f(i)=1.0d0/(10.0d0*rh**3)*(c(i+1)-c(i)-3.0d0*d(i)*rh-6.0d0*
 & e(i)* rh**2)
 End do

!xxx!
 xxxxxxxxxxxxxxxxxxxx Writing out Coefficients xxxxxxxxxxxxxxxxxxxxxx
!xxx!

 open(20,file='OUTPUT_hermite_new_33.dat',status='unknown')

 Do i=1,nmax-1
 write(20,200) a(i), b(i), c(i), d(i), e(i), f(i)
200 Format(6(e30.20))
 End do

 close(20)

 open(77,file='G.dat',status='unknown')
 open(88,file='H.dat',status='unknown')

 Do i=1,imax-1
 Read(77,*) p(i)
 Read(88,*) q(i)
 Write(*,*) p(i),q(i)
 End do

 close(77)
 close(88)

!xxx!
 xxxxxxxxxxxxxxxx Computing Value of the Polynomial xxxxxxxxxxxxxxxx
!xxx!

 Do i=1,imax
 Do j=1,nmax-1
 if((y(i)-x(j)).le.toler) goto 300
 enddo

300 term(i)=a(j)+b(j)*(y(i)-x(j))+c(j)*(y(i)-x(j))**2+d(j)*
 & (y(i)-x(j))**3+e(j)*(y(i)-x(j))**4+f(j)*(y(i)-x(j))**5
 enddo

 88

 rl1norm=0.0d0

 Do i=1,imax-1
 Do j=1,nmax
 if ((y(i)-x(j)).le.toler) goto 400
 enddo

!xxx!
 xxxxxxxxxxxxxxxxxxxxx Computing the Norm xxxxxxxxxxxxxxxxxxxxxxxx
!xxx!

400 rl1norm = rl1norm + dabs(((p(i)*y(i+1)+q(i)/2.0d0*y(i+1)**2)-
 & (a(j)*y(i+1)+b(j)/2.0d0*(y(i+1)-x(j))**2+c(j)/3.0d0*(y(i+1)-
 & x(j))**3+d(j)/4.0d0*(y(i+1)-x(j))**4+e(j)/5.0d0*(y(i+1)-
 & x(j))**5+f(j)/6.0d0*(y(i+1)-x(j))**6))-((p(i)*y(i)+q(i)/
 & 2.0d0*y(i)**2)-(a(j)*y(i)+b(j)/2.0d0*(y(i)-x(j))**2+c(j)/
 & 3.0d0*(y(i)-x(j))**3+d(j)/4.0d0*(y(i)-x(j))**4+e(j)/5.0d0*
 & (y(i)-x(j))**5+f(j)/6.0d0*(y(i)-x(j))**6)))

 end do

 rl1norm=rl1norm/8
 Write(*,145) rl1norm
145 Format(e30.20)
 open(22,file='term_33.dat',status='unknown')
 open(44,file='velocityterm.dat',status='unknown')
 Do i=1,imax
 Write(44,141) term(i)
141 format(e30.20)
 Write(22,140) y(i),term(i),u_num(i)
140 Format (3(e30.20))
 End do
 Do i=1,imax
 de2(i)=u_num(i)-term(i)
 End do
 open(23,file='de2.dat',status='unknown')
 Do i=1,imax
 Write(23,333) y(i),term(i),u_num(i),de2(i)
333 Format (4(e30.20))
 End do

 close(22)

 end

!xxx!
 xxxxxxxxxxxxxxxxx Tridiagonal Solver Subroutine xxxxxxxxxxxxxxxxxxx
!xxx!

 SUBROUTINE TRDIAG (N,A,B,C,X,G)
 implicit doubleprecision(a-h,o-z)
 DIMENSION A(2000),B(2000),C(2000),X(2000),G(2000),BB(2000)
C!.....THIS SUBROUTINE SOLVES TRIDIAGONAL SYSTEMS OF EQUATIONS

 89

C!.....BY GAUSS ELIMINATION
C!.....THE PROBLEM SOLVED IS MX=G WHERE M=TRI(A,B,C)
C!.....THIS ROUTINE DOES NOT DESTROY THE ORIGINAL MATRIX
C!.....AND MAY BE CALLED A NUMBER OF TIMES WITHOUT REDEFINING
C!.....THE MATRIX
C!.....N = NUMBER OF EQUATIONS SOLVED (UP TO 1000)
C!.....FORWARD ELIMINATION
C!.....BB IS A SCRATCH ARRAY NEEDED TO AVOID DESTROYING B ARRAY
 DO 1 I=1,N
 BB(I) = B(I)
 1 CONTINUE
 DO 2 I=2,N
 T = A(I)/BB(I-1)
 BB(I) = BB(I) - C(I-1)*T
 G(I) = G(I) - G(I-1)*T
 2 CONTINUE
C!.....BACK SUBSTITUTION
 X(N) = G(N)/BB(N)
 DO 3 I=1,N-1
 J = N-I
 X(J) = (G(J)-C(J)*X(J+1))/BB(J)
 3 CONTINUE
 RETURN
 END

E. Matlab program to calculate the source terms

clc
clear all

!xxx!
 xxxxxxxxxxxxxxxxxxxxx Reading in Coefficients xxxxxxxxxxxxxxxxxxxxxx
!xxx!

op=load('OUTPUT_hermite_new_17.dat');
y=load('distance1.dat');
x=load('distance_new_17.dat');
a=op(:,1);
b=op(:,2);
c=op(:,3);
d=op(:,4);
e=op(:,5);
f=op(:,6);
tol=0.50;
nu=2.0;

!xxx!
 xxxxxxxxxxxxxxxxxx Computation of Source Term xxxxxxxxxxxxxxxxxxxx
!xxx!

for i=1:81
 for j=1:16
 if y(i)-x(j)<=tol ,break,end
 end

 90

 source(i)=(a(j)+b(j)*(y(i)-x(j))+c(j)*(y(i)-x(j))^2+d(j)*(y(i)-
x(j))^3+e(j)*(y(i)-x(j))^4+f(j)*(y(i)-x(j))^5)*(b(j)+2*c(j)*(y(i)-
x(j))+3*d(j)*(y(i)-x(j))^2+4*e(j)*(y(i)-x(j))^3+5*f(j)*(y(i)-x(j))^4)-
nu*(2*c(j)+6*d(j)*(y(i)-x(j))+12*e(j)*(y(i)-x(j))^2+20*f(j)*(y(i)-
x(j))^3);
end

!xxx!
 xxxxxxxxxxxxxxxxxxxxx Plotting Source Term xxxxxxxxxxxxxxxxxxxxxx
!xxx!

source=source';
plot(y,source);
l1=0;
l2=0;
for i=1:81
 res2=source(i)^2;
 res1=abs(source(i));
 l1=l1+res1;
 l2=l2+res2;
end
l1=l1/81;
l2=(l2/81)^0.5;

 91

	DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY P
	DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY P
	DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY P
	VITA
	THESIS ABSTRACT

	DISCRETIZATION ERROR ESTIMATION USING THE METHOD OF NEARBY P
	91 TYPED PAGES

