
Hierarchical Fault Collapsing for Logic Circuits

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee. This

thesis does not include proprietary or classified information.

Raja Kiran Kumar Reddy Sandireddy

Certificate of Approval:

Charles E. Stroud
Professor
Electrical and Computer Engineering

Vishwani D. Agrawal, Chair
Professor
Electrical and Computer Engineering

Victor P. Nelson
Professor
Electrical and Computer Engineering

Stephen L. McFarland
Dean
Graduate School

Hierarchical Fault Collapsing for Logic Circuits

Raja Kiran Kumar Reddy Sandireddy

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

13 May 2005

Hierarchical Fault Collapsing for Logic Circuits

Raja Kiran Kumar Reddy Sandireddy

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

Signature of Author

Date

Copy sent to:

Name Date

iii

Vita

Raja K. K. R. Sandireddy, son of S. Rami Reddy and B. Suseelamma, was born in

Kurnool, Andhra Pradesh, India. He graduated from St. Joseph Institutions, Kurnool

in 1998. He earned the degree Bachelor of Technology in Electronics and Commu-

nication Engineering from Regional Engineering College (now National Institute of

Technology), Warangal, India in 2002.

iv

Thesis Abstract

Hierarchical Fault Collapsing for Logic Circuits

Raja Kiran Kumar Reddy Sandireddy

Master of Science, 13 May 2005
(B.Tech., Regional Engineering College, Warangal, India, 2002)

93 Typed Pages

Directed by Vishwani D. Agrawal

The process of grouping stuck-at faults into equivalence or dominance classes and

then selecting one representative for each class is known as fault collapsing. There

have been several techniques to collapse the faults structurally and functionally. We

present a new method that determines all functional dominances between the faults

of a circuit using redundancy identification and then collapses faults. This procedure

produces the smallest possible equivalence and dominance collapsed sets. Our method

is more efficient than other functional collapsing algorithms, but is still expensive in

CPU time. Therefore, we recommend its application only to smaller sub-circuits that

may be embedded in larger circuits.

Another contribution of this research is a thorough examination of the fault

equivalence and dominance relations for multiple output circuits. The conventional

definition for equivalence says that “two faults are equivalent if and only if the corre-

sponding faulty circuits have identical output functions.” This definition is extended

for multiple output circuits as “two faults of a Boolean circuit are called diagnostically

equivalent if and only if the functions of the two faulty circuits are identical at each

v

output.” Alternatively, “if all tests that detect a fault also detect another fault, not

necessarily at the same output, then the two faults are called detection equivalent.”

The definitions for fault dominance follow on similar lines.

A program implements our novel algorithm based on redundancy identification

to find the complete equivalence and dominance collapsed sets using diagnostic and

detection collapsing definitions. When applied to a 4-bit ALU it collapses the total

fault set of 502 faults to 253 and 155, respectively, according to diagnostic equivalence

and dominance. The collapsed sets have 234 and 92 faults, respectively, for detection

equivalence and dominance. In comparison, the conventional structural equivalence

and dominance collapsing results in 301 and 248 faults, respectively.

Functional fault collapsing, using the proposed algorithm, is done for standard

cells and other logic blocks and the collapse data is saved as library information.

Using the redundancy-based fault collapsing for a full adder library cell, we hierarchi-

cally collapse faults in a 64-bit adder to sets of 1538 equivalence and 768 dominance

collapsed faults. In comparison, a flattened 64-bit adder circuit collapses into 2306

and 1794 equivalence and dominance collapsed sets, respectively. It is also shown that

hierarchical collapsing results in an order of magnitude reduction in the CPU time

for very large circuits. A flattened 1024-bit adder requires 39.9 seconds for structural

collapsing while the same circuit, if described hierarchically as an interconnect of 1024

full adders, takes only 3.60 seconds. The 1024-bit adder can also be hierarchically

built using four 256-bit adders, which are built using four 64-bit adder, and so on

and this circuit takes only 2.31 seconds to collapse faults. In conclusion, hierarchical

collapsing saves CPU time and potentially provides more collapsing.

vi

Acknowledgments

I would like to acknowledge the support and guidance from Dr. Vishwani D.

Agrawal, whose suggestions and directions have a major influence on all aspects of

this thesis. It was a great pleasure for me to undergo this learning experience. I

thank Dr. Charles E. Stroud and Dr. Victor P. Nelson for being on my committee and

providing me valuable inputs. I thank Dr. Fa Foster Dai and Dr. Richard C. Jaeger

who supported me during the first year of my study at Auburn. I am thankful to all

my friends at Auburn for being the surrogate family during my Masters. I cannot

end without thanking my parents and sister, on whose constant encouragement and

love I have relied throughout my life.

vii

Style manual or journal used LATEX: A Document Preparation System by Leslie

Lamport (together with the style known as “aums”).

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty. The plots and images

were generated using MATLAB r©and XFig.

viii

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contributions of Thesis . 2
1.3 Organization of Thesis . 2

2 Background 4
2.1 Stuck-at Faults . 5
2.2 Fault Collapsing . 6
2.3 Collapsing in Sequential Circuits . 10
2.4 Fault Sampling . 12
2.5 Graph Model . 12

3 Prior Work on Functional and Hierarchical Fault Collapsing 15
3.1 Prior Work on Functional Collapsing 15

3.1.1 Functional Equivalence . 17
3.1.2 Functional Dominance . 18
3.1.3 Level of Similarity . 20
3.1.4 Redundant and Aborted Faults 20

3.2 Prior Work on Hierarchical Fault Collapsing 21
3.2.1 Prasad et al.’s Method . 22
3.2.2 Hahn et al.’s Method . 24

3.3 Summary . 26

4 Functional Collapsing 27
4.1 Definitions . 27
4.2 Functional Dominance . 31

4.2.1 Algorithm . 32
4.2.2 Redundant and Aborted Faults 33

4.3 Results . 36
4.4 Summary . 40

ix

5 Hierarchical Fault Collapsing 41
5.1 Procedure to Hierarchically Collapse Faults 43

5.1.1 Algorithm to Find the Dominance Matrix and its Transitive
Closure . 45

5.2 Results . 47
5.2.1 Comparison of Collapse Ratios 48
5.2.2 Comparison of CPU Times of Fault Collapsing 49

5.3 Summary . 64

6 Conclusions 65
6.1 Future Work . 66

Bibliography 68

Appendices 74

A A Sample Library File used in Hierarchical Fault Collapsing 75

B Description of the Program used for Hierarchical Collapsing 78

x

List of Tables

2.1 Dominance collapsing results for ISCAS’89 circuits. 12

2.2 Dominance matrix of an OR gate. 13

3.1 Collapsing for a full adder circuit. 26

4.1 The dominance matrix entry. 35

4.2 Comparison of fault collapsing results. 37

4.3 Comparison of the test vectors. 40

5.1 Line fault collapsing. 44

5.2 Hierarchical fault collapsed sets. 48

5.3 Fault collapsing time for flattened circuits. 51

5.4 CPU time taken by different sections of our program for flattened circuits. 53

5.5 CPU time taken by different commands of Hitec for collapsing faults. 55

5.6 CPU time taken by different sections of our program for hierarchical
circuits. 57

5.7 CPU time improvement by hierarchy. 61

5.8 CPU time taken by our program for different levels of hierarchy. . . . 64

xi

List of Figures

2.1 Full adder circuit. 9

2.2 XOR function implementation. 10

2.3 A sequential circuit. 10

2.4 Dominance graph of an OR gate. 13

3.1 Two ways to view fault equivalence. 18

3.2 Viewing fault dominance. 20

4.1 A circuit with two outputs. 27

4.2 Full adder circuit. 30

4.3 Identifying functional dominance. 32

4.4 Schemes for collapsing faults with a) diagnostic and b) detection criteria. 36

5.1 A circuit demonstrating extrinsic equivalence. 42

5.2 A hierarchical circuit. 43

5.3 Circuit to demonstrate line collapsing technique. 44

5.4 Fault collapsing time for flattened circuits. 52

5.5 CPU time taken by different sections of our program for flattened circuits. 54

5.6 Comparison of CPU times taken by Hitec and our program. 56

5.7 Comparison of CPU time taken by our program for hierarchical and
flattened circuits. 59

5.8 CPU time improvement by hierarchy. 62

A.1 Circuit M. 75

xii

Chapter 1

Introduction

The number of faults to be tested in a circuit has a strong influence on the costs

incurred in the testing process. So, faults are collapsed based on equivalence and

dominance relations. The time required for fault simulation is directly proportional

to the number of faults. Also, with a smaller collapsed set, we can come up with

fewer test vectors and in case of diagnosis, better resolution may be possible. The

time taken for collapsing should not offset the savings achieved during test generation

and fault simulation.

The classical definitions of equivalence and dominance have been analyzed and

redefined as diagnostic equivalence and diagnostic dominance. The classical defini-

tions of equivalence and dominance, when interpreted in a different way, especially

for multiple output circuits, lead to the terms detection equivalence and detection

dominance in this thesis. It is observed that fault simulation inherently uses the

“detection” definitions, while engineers assume the “diagnostic” definitions. This

observation motivated the work presented in this thesis.

1.1 Problem Statement

The problem solved in this thesis is: Find an optimal collapsed fault set for a

large circuit using an acceptable amount of computer time.

1

1.2 Contributions of Thesis

We have analyzed the definitions of equivalence and dominance for circuits with

more than one output. Using these definitions, a novel redundancy identification

based algorithm is presented that finds all functional fault dominance relations in a

given circuit. Since redundancy identification takes time exponential in the circuit

size, the procedure is recommended only for small circuits.

In order to take advantage of the better collapse ratios obtained with functional

collapsing, while keeping the collapse time in check, a hierarchical fault collapsing

technique is used. This technique, which was proposed earlier [46, 75], is explained

in great detail in Chapter 5. The hierarchical fault collapsing technique, when used

for structural collapsing, takes less time than the flat level collapsing. In addition,

when functional collapsing is applied to small sub-circuits, the hierarchical procedure

results in smaller collapsed sets while retaining the CPU time advantage.

This work has been accepted at Design, Automation and Test in Europe (DATE)

2005 Conference [78].

1.3 Organization of Thesis

The outline of this thesis is as follows. In Chapter 2, we discuss the general

concepts of testing and background of faults and fault collapsing. In Chapter 3, the

previous work on functional collapsing is discussed. Also, hierarchical fault collapsing

is explained and the work of two previous papers on hierarchical fault collapsing is

detailed in Chapter 3. The original contributions of this work start from Chapter 4.

The conventional definitions of equivalence and dominance are analyzed and extended

2

to multiple output circuits in Chapter 4. A novel algorithm has been proposed to

find dominance and equivalence collapsed fault sets, based on the definitions for

multiple output circuits. The hierarchical fault collapsing technique is implemented

in Chapter 5 and results for sample circuits are presented. Finally, the conclusions

and future work are discussed in Chapter 6.

3

Chapter 2

Background

In engineering, models bridge the gap between the physical reality and mathe-

matical abstraction [24]. Models allow the development and application of analytical

tools and are therefore essential in design. Our focus in this work is on the models

used in the testing of digital circuits. Testing is the process of verifying that the

manufactured circuit has the intended structure. Testing has become a dominating

cost in the design process, amounting to 30% or more of the total cost [24]. The

most important models in testing are those of faults. Physical faults in an electronic

system can be modeled as either logic faults or delay faults depending on whether

the fault affects the logic function or the operating speed of the system. This thesis

concentrates on the logical fault models.

There are advantages of modeling logical faults [1, 24]. First, the problem of

fault analysis can be treated at the functional level. Its complexity is greatly reduced

because many physical faults can be represented by the same logical fault. Second,

few other fault models are technology-independent. The test and diagnosis methods

for such models remain valid with the changes in technology. Third, tests derived for

logical faults may be effective for detecting many physical faults whose effects on the

circuit behavior are not completely understood or are too complex to be analyzed [50].

4

2.1 Stuck-at Faults

Logical faults are modeled as stuck-at faults. A stuck-at fault forces a fixed (0

or 1) value to a signal line in the circuit, where a signal line can be an input or

an output of a logic gate or flip-flop [24]. The stuck-at fault can be stuck − at − 1

(s-a-1 or sa1) or stuck − at − 0 (s-a-0 or sa0). This model is simple and technology-

independent. In general, a circuit can have many stuck-at faults. Since a line can

be s-a-0, s-a-1, or fault-free, a circuit with n signal lines can have 3n − 1 possible

stuck line combinations [24]. All combinations except one, having all lines in fault-

free states, are counted as faults. So, even for circuits of moderate size, i.e., for a

moderate value of n, an enormously large number of multiple stuck-at faults have to

be considered. Therefore, it is a common practice to consider single stuck-at fault

model, which is the most widely used logical fault model [1, 24]. A circuit with n

lines can have at most 2n single stuck-at faults [24]. The number of faults that are

considered for testing is reduced by fault collapsing as explained in the next section.

It is believed that Eldred’s 1959 paper [35] laid the foundation for the stuck-at

fault model though that paper did not make any mention of the stuck-at fault. The

term “stuck-at fault” appeared in the paper by Galey, Norby, and Roth in 1961 [38].

A typical test generation process targeting a given fault set for a combinational

circuit is explained here. A random pattern generator is used to generate random

input patterns. The circuit after introducing a fault is simulated with those random

input patterns. This is done for all the faults in consideration and it is called fault

simulation. The faults that are found to be detectable are dropped and this procedure

is called fault dropping. These steps are repeated until a preset percentage, typically

5

60 − 80%, of faults is detected. This phase of the test generation process is called

random pattern generation [5]. After the random phase, from the remaining fault set,

a target fault is selected and a test that detects this fault is found using an algorithmic

test pattern generator. That test is then simulated to find the other faults it detects,

which are then removed from the remaining fault set. This procedure is continued

until all faults are targeted or detected. This second phase is called deterministic

pattern generation. The faults left undetected are either redundant faults for which

no test exists, or aborted faults that could not be detected due to CPU time limit.

A circuit is called redundant if and only if it contains some stuck-at fault that is

redundant [49].

For a given fault set, the problem of generating a minimum sized test set is

considered NP-hard [57]. But, the same problem reduces to polynomial complexity

in the size of the circuit for certain classes of combinational logic circuits [17, 25,

36, 51, 71]. As the complexity of the circuit under test increases, the number of

faults increases and thereby the effort to generate a test set increases at a greater

rate [41]. One way of reducing the time for test generation and fault simulation is

fault collapsing.

2.2 Fault Collapsing

Fault collapsing can be classified into two types - equivalence collapsing and dom-

inance collapsing. Two faults are called equivalent if and only if the corresponding

faulty circuits have identical output functions [24]. Two faults are said to be distin-

guishable if the faulty circuits resulting from the two faults have different responses

6

for at least one set of input conditions [79]. Equivalent faults are indistinguishable

because they cannot be distinguished at the primary outputs by any input vector.

The set of all faults in a circuit can be partitioned into equivalence sets, such that

all faults in a set are equivalent to each other. Equivalence collapsing is the process

of fault partitioning and selecting one fault from each equivalence set. The fault set

thus obtained is called equivalence collapsed set. For an n-input OR gate, the total

number of stuck-at faults is 2n + 2. All single s-a-1 faults on the inputs and output

of the OR gate are equivalent. Thus, using equivalence collapsing, the number of

stuck-at faults is reduced to n + 2.

Another form of collapsing that can further reduce the fault set size is dominance

fault collapsing. If all tests of fault f1 detect another fault f2, then f2 is said to

dominate f1. The two faults are also called “conditionally” equivalent with respect to

the test set of f1 [24]. In dominance collapsing, all dominating faults in an equivalence

collapsed set are left out retaining their respective dominated faults. For the OR

gate, the output s-a-0 fault dominates a single s-a-0 fault on any input and hence

the output s-a-0 is left out of the dominance collapsed set. Thus, dominance fault

collapsing reduces the number of faults for an n-input OR gate to n + 1. Dominance

collapsing always results in a smaller set than the equivalence collapsed set.

Dominance is a more basic property than equivalence. When two faults dominate

each other, then they are equivalent. So, if we know all the dominance relations, then

we can find the equivalence relations too. In the equivalence collapsed set, when a

fault is not detected, the status of the entire set of faults that is equivalent to it is

7

known. Such is not the case in the dominance collapsed set. Still there are advantages

of using the latter for ATPG (Automatic Test Pattern Generation).

Fault collapsing can also be classified as structural collapsing and functional

collapsing. Structural collapsing depends on the effect of a fault on the circuit graph

or structure, while functional collapsing is based on the effect on the Boolean function

of the circuit. Any logic circuit can be represented by a directed graph, where the

gates, primary inputs and outputs are represented by vertices of the graph and the

lines between gates are represented by the arcs of the graph. Such a graph that

describes the structure of the circuit is called as logical model of the circuit [31].

The R structural equivalence and functional equivalence proposed by McCluskey and

Clegg [64] are summarized here [62].

R Structural Equivalence: Two faults f1 and f2 are said to be R structurally

equivalent (written f1
∼= f2) if they produce the same reduced circuit graph when

faulty values are implied and constant edges are removed.

Functional Equivalence: Two faults f1 and f2 are said to be functionally equivalent

(written f1 ≃ f2) if they modify the Boolean function of the circuit in the same way,

i.e., they yield the same output function.

It should be noted that structural equivalence implies functional equivalence.

Hence, using functional equivalence collapsing we get a smaller set than with struc-

tural equivalence collapsing. However, functionally equivalent faults, which are not

structurally equivalent, are caused by the presence of reconvergent fanout paths in

the network [64]. Functional collapsing is explained in greater detail in Chapter 3.

8

xor
xor

C

C

in

out

Sum
B

A

Figure 2.1: Full adder circuit.

Structural fault collapsing alone can reduce the fault set size to about 50% of

all faults [24]. Most ATPG programs use only structural equivalence fault collapsing.

The Fastest program [56], developed at the University of Wisconsin, can do both

equivalence and dominance collapsing, but it does only structural collapsing. The

relative size of the collapsed set with respect to the size of all faults is called the

collapse ratio [24]:

Collapse ratio =
|Set of collapsed faults|

|Set of all faults|
(2.1)

As an example, consider the full adder circuit shown in Figure 2.1 where the XOR

blocks are implemented as shown in Figure 2.2. The test generation package Hitec [68]

generates a structural equivalence collapsed set of 38 faults (collapse ratio = 0.63)

out of the total fault set of 60. The structural dominance collapsing obtained using

Fastest [56] results in 30 faults (collapse ratio = 0.5). Using functional collapsing, the

fault set can be further reduced as explained in Chapter 3.

9

Figure 2.2: XOR function implementation.

Q D

C
B

A I

ResetClk

DFF

E0

N

1
��

Figure 2.3: A sequential circuit.

2.3 Collapsing in Sequential Circuits

The preceding discussion deals with combinational circuits. The fault collapsing

within and across sequential elements is more complex [26, 29]. It has been shown [1,

20] that the dominance relations in a combinational circuit N may not remain valid

when N is embedded in a sequential circuit, while the equivalence relations of N stay

valid. Such a case has been demonstrated in Figure 2.3, which is taken from the

paper by Chen et al. [29].

Figure 2.3 shows a sequential circuit with the combinational part, N , enclosed

in a dashed box. Considering the combinational part, we would say the s-a-1 fault on

line B, say α, is dominated by the fault s-a-0 on line E, say β. The vector sequence

{000, 001, 111} on inputs A, B, C detects the fault α, but does not detect the fault

10

β. So, in the sequential circuit, β does not dominate α and this is because of a

phenomenon called self hiding as explained in [29].

The paper by Chang and Breuer [26] uses a multiple-fault checkpoint-labeling

procedure while the paper by Chen et al. [29] gives a single fault collapsing anal-

ysis. The latter introduces two phenomena, self hiding and delayed reconvergence,

which invalidate the dominance relations of the combinational part of the circuit. It

also explains the equivalence relationship between the faults at some specific fanout

branches and their corresponding fanout stems. New fault relationships in D flip-

flops are also identified to further collapse faults at feedback lines. The paper by

Boppana and Fuchs [18] does the dynamic fault collapsing using a test pattern gen-

erator, while Chen et al. [29] do the collapsing statistically, that is, before any test

pattern generation. Table 2.1 shows the dominance collapsed results obtained by

using the techniques explained in [29] for a few ISCAS’89 benchmark circuits [21].

These values are compared with the values under column Comb. which are obtained

by a dominance collapsing procedure typically used for combinational circuits [56]. In

Table 2.1, the collapsed set size under column Chen [29] is smaller for two circuits and

greater for the other two than the set size under column Comb. [56]. The increase in

the collapsed set size is because of the dominance relations that are invalidated due to

phenomena like self hiding and delayed reconvergence introduced by Chen et al. [29].

New fault relationships across D flip-flops and fanouts that Chen et al. described

in [29] cause a decrease in the collapsed set size.

11

Table 2.1: Dominance collapsing results for ISCAS’89 circuits.
Circuit All Faults Comb. [56] Chen [29]

s27 52 25 16
s344 670 265 316
s1196 2392 942 928
s9234 18468 5505 6522

2.4 Fault Sampling

In circuits with very large number of faults, fault set size reduction beyond

that obtained by fault equivalence or fault dominance collapsing may be needed for

producing a set of target faults of reasonable size. Fault sampling can be used in

this case to reduce the size of the set of target faults [4, 7, 13]. However, unlike

fault collapsing, fault sampling can not provide a single set of faults whose detection

guarantees the detection of all the detectable faults [73].

2.5 Graph Model

The graph model described here is the same as given in [11, 75]. The fault

equivalence and dominance relations are represented by a directed graph. In this

graph each fault is represented by a node. If fault f2 dominates fault f1, then this is

represented by a directed edge from the node representing f1 to the node representing

f2. This edge indicates that any test for f1 must detect f2. Clearly, the presence of

edges f1 → f2 and f2 → f1 indicates that the two faults f1 and f2 are equivalent.

A fault dominance graph, or simply a dominance graph, represents the dominance

relations among the faults of a circuit.

12

a

b
c

c1

a1

b1

c0

a0

b0

Figure 2.4: Dominance graph of an OR gate.

Table 2.2: Dominance matrix of an OR gate.
a0 a1 b0 b1 c0 c1

a0 1 0 0 0 1 0
a1 0 1 0 1 0 1
b0 0 0 1 0 1 0
b1 0 1 0 1 0 1
c0 0 0 0 0 1 0
c1 0 1 0 1 0 1

Figure 2.4 shows the dominance graph for all faults of an OR gate. The subscript

fault notation has been used, that is, a0 means that the fault is on line named ‘a’ and

is s-a-0 type. The dominance graph is conveniently represented by its connectivity

matrix, specifically called dominance matrix, as shown in Table 2.2. A 1 entry at

the intersection of a row and a column means that the fault corresponding to the

column dominates the fault corresponding to the row. For example, the 1 in the

second row and the last column indicates that c1 dominates a1. Equivalence of two

faults is expressed by two 1’s placed at the intersections of the rows and columns

corresponding to those faults. Since there is also a 1 in the last row and second

column, indicating that fault a1 dominates fault c1, it can be said that a1 and c1 are

13

equivalent. An equivalence is indicated by 1’s that are placed in diagonally symmetric

positions. Dominance alone is indicated by an asymmetric 1. This dominance matrix

is used in algorithms of Chapters 4 and 5 to represent all the dominance relations

between the faults.

14

Chapter 3

Prior Work on Functional and Hierarchical Fault Collapsing

In this chapter, the background work on functional and hierarchical fault col-

lapsing is presented.

3.1 Prior Work on Functional Collapsing

It has been mentioned in the previous chapter that functional collapsing results

in a smaller collapsed set than structural collapsing. But functional collapsing is more

expensive as it depends on the output function of the circuit. It can be shown [43, 53]

that identifying fault equivalence between two arbitrary faults in a combinational

circuit is an NP-complete problem because it requires proving the equivalence of the

two faulty functions. There are other methods [44, 63, 67, 83] which are not of ex-

ponential complexity but they can find only some, not all, functional equivalences.

Goundan and Hayes [44] propose a technique to determine equivalences, if any, be-

tween faults on primary input and outputs. A technique by Nadjarbashi et al. [67]

finds equivalence relationships between faults on reconvergent fanout stems and those

on reconverging lines. Vaaje [83] gives a mathematical approach to detect such equiv-

alences. The simplest of all fault collapsing methods is to use the checkpoints of the

circuit [24]:

Checkpoints: Primary inputs and fanout branches of a combinational circuit con-

sisting only of Boolean gates are called checkpoints.

15

Checkpoint Theorem: A test set that detects all single stuck-at faults of the

checkpoints of a combinational circuit detects all single stuck-at faults in that circuit.

It has been proven by Chen et al. [28] that the primary inputs that fanout need

not be checkpoints for the class of irredundant two-level combinational circuits. In

their earlier paper [27], they proved that for a general circuit, all primary inputs have

to be considered as checkpoints.

There is a problem with using checkpoint sets. If the test set has a less than 100%

fault coverage, that is, for circuits with redundant faults, the checkpoint theorem is

not guaranteed [2]. Thus, in general, the set of checkpoint faults does not provide

a sufficient set of target faults. The inadequacy of checkpoint faults stems from the

fact that checkpoint theorem is based on dominance collapsing. Abramovici et al. [2]

provide a procedure to select the additional target faults so as to ensure sufficiency.

Later, that procedure was critically reviewed and modified by Gopalakrishnan and

Bhattacharya [42].

The above discussion on checkpoints deals with single stuck-at faults for combi-

national circuits. For multiple stuck-at faults in combinational circuits, Bossen and

Hong [19] have derived the following checkpoint labeling procedure:

• All the primary inputs that do not fanout are checkpoints.

• All the fanout branches are checkpoints.

• NOT gates are considered as lines in this procedure.

16

A primary input that is also a fanout stem is considered as a checkpoint when dealing

with single stuck-at faults, but is not considered for multiple stuck-at faults. For dis-

cussion on checkpoint labeling procedure for sequential circuits, the reader is referred

to a paper by Chang and Breuer [26].

3.1.1 Functional Equivalence

For an input vector, V , to be a test for a fault, we have [8]

F0(V) ⊕ F1(V) = 1 (3.1)

where F0 is the fault-free function and F1 is the faulty function of the fault. Consider

a second fault that produces a faulty function F2. According to the definition of fault

equivalence, two equivalent faults have exactly the same tests. Therefore, for two

faults to be equivalent, we have

[F0(V) ⊕ F1(V)] ⊕ [F0(V) ⊕ F2(V)] = 0 (3.2)

Manipulation of Equation 3.2 results in the following equation:

F1(V) ⊕ F2(V) = 0 (3.3)

which means that the two faulty functions are identical for all input vectors. This

is considered as a general definition for functional equivalence. These equations are

functionally depicted in Figure 3.1. If the fault in block F1 is equivalent to the fault in

17

F

F
F

F

F
0

1

2

1

2

V V Always
0

Always
0

Figure 3.1: Two ways to view fault equivalence.

block F2, then the outputs of the circuits in Figure 3.1 are always zero. Considering

the full adder example shown in Figure 2.1, the functional equivalence collapsing

leads to 26 faults, a collapse ratio of 0.43. In comparison, the structural equivalence

collapsed set for this circuit has 38 faults and a collapse ratio of 0.63.

The papers by Lioy [61, 62] propose functional fault collapsing based on D-

frontiers used in the automatic test pattern generation (ATPG) procedures of Roth

et al. [77]. There are also other works to find fault equivalences using ATPG [45, 84]

and simulation [14]. Fault equivalence identification can be based on redundancy

information [15], and hence test generation can prove equivalence [47]. All these

techniques have high complexity and so they cannot be used for large circuits. Al-

Asaad and Lee [14] propose a simulation-based approach to find global equivalences in

large circuits. Since their method is approximate, it may fail to find some equivalences.

3.1.2 Functional Dominance

If a fault f1, with faulty function F1, dominates another fault f2, with faulty

function F2, then the two faults are functionally equivalent for the input vector set

that tests fault f2, i.e., all tests of f2 satisfy Equation 3.3 [1]. Let vector V detect f2,

18

so it must satisfy the following equation:

F0(V) ⊕ F2(V) = 1 (3.4)

Since f1 dominates f2, any vector that satisfies Equation 3.4 must satisfy Equation 3.1.

Also, by contrapositive law, any vector that does not satisfy Equation 3.1 must not

satisfy Equation 3.4. These conditions are combined in Equation 3.5 that must be

satisfied by all input vectors.

[F0(V) ⊕ F2(V)][F0(V) ⊕ F1(V)] = 0 (3.5)

This relation, as shown in Figure 3.2, was explained in the paper by Agrawal et al. [8].

Equation 3.5 reduces to:

F1(V)F2(V)F0(V) + F1(V)F2(V)F0(V) = 0 (3.6)

Although it is not obvious, this condition is consistent with the D-frontier represen-

tation of functional fault dominance given by Lioy [61, 62]. If the fault present in

block F1 dominates the fault present in block F2, then the output of the circuit in

Figure 3.2 is always zero.

For the full adder shown in Figure 2.1, the functional dominance collapsed set

size is 12, giving a collapse ratio of 0.2.

19

F

FV

F

Always

2

1

0 0

Figure 3.2: Viewing fault dominance.

3.1.3 Level of Similarity

Pomeranz and Reddy [73] recently described another approach to fault collapsing

based on a metric called level of similarity between faults. A fault fj is said to be

similar to a fault fi with a level of similarity SLi,j ≤ 1 if a fraction, SLi,j, of the

tests for fi also detect fj. If SLi,j is high enough, one may exclude fj from the set

of target faults and rely on the test for fi to detect fj as well. When fault fj is

equivalent to fi or when fj dominates fi, then level of similarity SLi,j = 1. They

obtained collapsed sets of faults that are around 30% of the conventional collapsed

sets, without compromising on the fault coverage, for the combinational parts of the

benchmark circuits.

3.1.4 Redundant and Aborted Faults

A redundant fault, as explained in Section 2.1, is a fault that does not have any

test vector. According to the definition of dominance, a redundant fault is dominated

by any other fault in the circuit. This is confirmed by the scheme of Figure 3.2 as a

redundant fault introduced in block F2 will cause a 0 at the output of the bottom XOR

gate and will always lead to a 0 at the output. Any two redundant faults dominate

20

each other and are functionally equivalent; neither fault modifies the functionality of

the circuit.

A deterministic test generator, as explained in Section 2.1, tries to find a test

vector for a given target fault. Since the search process is NP-complete [37, 53], a

limit is generally imposed on the CPU time or the number of backtracks in the search.

When the limit is reached and the test generator is not able to decide whether the

fault is detectable or redundant, the fault is called an aborted fault [55]. An aborted

fault has an unknown status, but in reality, it can be either redundant or detectable.

If a fault is aborted in a circuit, then the detectability of this fault when introduced

in either of the blocks F1 or F2 in Figures 3.1 and 3.2 is also unknown. So, aborted

faults have to be considered separately. This will be discussed in Section 4.2.2.

3.2 Prior Work on Hierarchical Fault Collapsing

As explained earlier, functional collapsing is not recommended for large circuits.

So, most ATPG programs [30, 56, 59, 68] use only structural collapsing. Hierarchical

fault collapsing seems to be an alternative that allows some functional collapsing. In

this section, we present a detailed overview of two earlier techniques [46, 75] used for

hierarchical fault collapsing. Both techniques result in a collapse ratio lower than that

obtained by structural collapsing alone, but not as low as obtainable if a complete

functional collapsing could be used.

The increasing complexity of the circuits can be efficiently handled using a hier-

archical design process. The hierarchical description of a circuit at the highest level

consists of an interconnection of few blocks, which are described at a lower level of

21

hierarchy consisting of other blocks and gates [86]. A block or a sub-circuit Cj in a

circuit Ci is called an instance of Cj. The circuit defined by hierarchical description

can be obtained by an expansion process referred to as flattening.

The hierarchy of a circuit description can be used in test generation [60, 85, 87]

and fault simulation [58, 66, 76]. To the best of the author’s knowledge, there have

been few papers [8, 9, 46, 75] that have used hierarchy of the circuit to collapse faults.

There are advantages of using hierarchy to collapse faults. A reduced fault set, that is

computed once for a sub-circuit, can be reused for all instances of the sub-circuit. For

smaller circuits, functional fault collapsing techniques can be used so as to achieve

better collapse ratios.

3.2.1 Prasad et al.’s Method

The paper by Prasad et al. [75] presents a graph-theoretic algorithm for col-

lapsing faults. Functional equivalences for logic cells in a library-based design are

pre-computed using the construction of Figure 3.1 and saved for use in the hierar-

chical collapsing procedure. The transitive nature of the dominance relationship is

used, i.e., if a fault f1 dominates fault f2, which in turn dominates fault f3, then

fault f1 also dominates f3. These relations can be obtained by representing the fault

dominances in a graph, called a dominance graph, and then computing the transitive

closure of the dominance graph to get the dominance matrix. There are efficient algo-

rithms of computing transitive closure [10, 34], but this paper uses the Floyd-Warshall

22

algorithm, which is of complexity O(n3) [32]. Then algorithm equivalence and algo-

rithm dominance are executed to obtain the equivalence and dominance collapsed set.

These algorithms, as repeated here, will be used later in Chapter 4.

Algorithm Equivalence:

Begin with F (set of all faults) and E (equivalent set, initially empty). Execute

the following steps until F becomes empty:

1. Arbitrarily select a fault from F .

2. Intersect (bit-by-bit logical AND) the row and column vectors of the dominance

matrix corresponding to the selected fault.

3. The set of faults corresponding to 1’s in the intersected vector is the equivalent

set. Add any one fault from this set to E and delete all faults of this set from

F .

Algorithm Dominance:

Begin with E (equivalent collapsed set obtained from algorithm equivalence).

Execute the following steps:

1. Reduce the dominance matrix by deleting the rows and columns corresponding

to all faults that are not in E.

2. Remove from E the faults whose columns in the reduced dominance matrix

have any off-diagonal 1’s. The remaining set E is the dominance collapsed fault

set.

23

For the full adder, implemented as shown in Figure 2.1, the dominance matrix is

obtained using all the functional equivalences present in the XOR block of Figure 2.2.

When algorithm equivalence and algorithm dominance were used on this matrix, it

resulted in hierarchical equivalence and dominance collapsed sets of 30 and 24, respec-

tively. These numbers were later corrected in their subsequent paper [8] as 26 and

20. These values are better than the structural equivalence and dominance collapsed

sets of 38 and 30. Prasad et al. [75] use functional equivalences for the sub-circuits,

while Agrawal et al. [8] use functional dominance along with hierarchy. The latter

method gives a dominance collapsed set of 14 (collapse ratio of 0.23) for the full adder

circuit. It was demonstrated by Agrawal et al. [9] that in general, using hierarchy,

the dominance collapsing may result in a collapse ratio lower than 25%.

3.2.2 Hahn et al.’s Method

The paper by Hahn et al. [46] also does equivalence collapsing using the hierar-

chy of the circuit. This paper does an exact equivalence analysis based on reduced

ordered binary decision diagrams [23], which allows the construction of canonical

representations of Boolean functions.

The subscript fault notation explained in Section 2.5 is inadequate, because the

lines which exist in the hierarchical description of the circuit may no longer exist in

the non-hierarchical (flattened) description. The input and output lines of the sub-

circuit are deleted in the expanded version. Therefore, it is necessary to identify a

fault in terms of the ‘real gates’. One such fault notation is used by the test generation

program Gentest [30], which can handle hierarchical designs. A fault is specified as

24

GateA(GateB, b), where b can be a 0 or 1 and defines the type of fault. It means

that the fault is on the input line of the gate GateA coming from gate GateB. GateA

can be the name of a gate or a primary input of the circuit. GateB is the name of

a gate. GateB is optional and a fault GateA(b) means a stuck-at-b on the output of

gate or on a primary input named GateA. For a 2-level deep hierarchical circuit, a

fault in the sub-circuit is specified as GateC.GateA(GateB, b), where GateC is the

instance name of the sub-circuit at the top level and GateA and GateB are the names

in the sub-circuit. This way, faults at any level can be represented using a “period”

to distinguish the levels.

The collapsed fault set of a sub-circuit can be reused for all instances of the sub-

circuit. However, problems arise when different embeddings of the sub-circuit are

considered. For faults located on the inputs and outputs of sub-circuit, it depends

on the embedding whether or not the fault has to be considered. This problem has

been solved in this paper using two different sets of faults for each sub-circuit. One

set contains all faults that have to be considered independently of the embedding,

and the other set depends on the embedding of the sub-circuit. Algorithms HFSG

(Hierarchical Fault Set Generation) and HFSGI (Improved HFSG) are presented in

the paper which collapse the faults in a hierarchical circuit. It has been shown that,

on an average, the reduction in the collapsed set size is 23%.

This technique can be used even for sequential circuits, though they do not

incorporate any of the techniques proposed in [29]. The work by Hahn et al. deals only

with equivalence collapsing, while Prasad et al. find both equivalence and dominance

collapsed sets.

25

Table 3.1: Collapsing for a full adder circuit.
Structural Hierarchical Functional*

[56, 68] [8, 9, 75]
Equivalence 38 (0.63) 26 (0.43) 26 (0.43)
Dominance 30 (0.50) 14 (0.23) 12 (0.20)

3.3 Summary

In this chapter, we have explained the various techniques used for functional

and hierarchical fault collapsing. The circuit of full adder, where the XOR block is

implemented using four NAND gates, as shown in Figures 2.1 and 2.2, is used as an

example circuit in all cases. The summary of the collapsed set sizes using different

collapsing techniques is tabulated in Table 3.1. The collapse ratios, as given by Equa-

tion 2.1, are shown by the accompanying fraction in parenthesis. The values under the

column Functional* are obtained when functional collapsing techniques described in

this chapter are used. It can be seen from Table 3.1 that the collapse ratios obtained

with functional collapsing are better than hierarchical collapsing, which in turn, are

better than structural collapsing.

26

Chapter 4

Functional Collapsing

In this chapter, the definitions of equivalence and dominance are clarified, es-

pecially for the case of multiple output circuits. Consider the circuit in Figure 4.1,

which has two outputs. As explained in Section 2.1, a typical test generation process

does fault simulation after a test is derived for some fault. Consider the fault Y (0),

which is detected by the test vector 11 on the inputs A and B. On performing fault

simulation, the fault Z(B, 0), detectable by the same vector, is dropped. Had we

started with fault Z(B, 0), then the fault simulation would have dropped Y (0). Both

faults have the same test vector, so whenever one is detected, the other is dropped

through fault simulation. But these faults are not considered equivalent according to

the conventional definition of equivalence. This happens only for circuits with more

than one output. This observation motivated the work presented in this chapter.

4.1 Definitions

In this section, we first quote the conventional definitions of equivalence and

dominance and then extend them for multiple output circuits.

Z
0

Y 0
G1A

B ����
��
��
��
��

Figure 4.1: A circuit with two outputs.

27

Definition 1: Fault Equivalence [1, 24] - Two faults are equivalent if and only

if the corresponding faulty circuits have identical output functions.

Definition 2: Fault Dominance [55, 69] - A fault fi is said to dominate fault

fj if (a) the set of all vectors that detects fault fj is a subset of all vectors that

detects fault fi and (b) each vector that detects fj implies identical values at the

corresponding outputs of faulty versions of the circuit.

These definitions are extended for possible interpretations for multiple output circuits.

Definition 3: Diagnostic equivalence - Two faults of a Boolean circuit are called

diagnostically equivalent if and only if the functions of the two faulty circuits are

identical at each output.

This definition of equivalence implies indistinguishability of two faults, i.e., the effects

of the two faults can not be distinguished at primary outputs of the circuit.

Definition 4: Detection equivalence - Two faults are called detection equivalent

if and only if all tests that detect one fault also detect the other fault, not necessarily

at the same output.

Two detectable faults that are diagnostic equivalent are also detection equivalent,

but the reverse implication is not true. Faults that are detection equivalent need not

be indistinguishable. The faults shown in Figure 4.1 are detection equivalent. These

faults are distinguishable as they produce distinguishing patterns at primary outputs.

Inherently, the fault simulation uses detection relations, while it is often incorrectly

believed to be functional (diagnostic) relations.

28

Definition 5: Diagnostic dominance - If all tests of a fault f1 detect another fault

f2 on the exact same outputs where f1 was detected, then f2 is said to diagnostically

dominate f1.

Definition 6: Detection dominance - If all tests of a fault f1 detect another

fault f2, irrespective of the output where f1 was detected, then f2 is said to detection

dominate f1.

The detection dominance is same as the test covering relation proposed by Abramovici

et al. [3] or test implication proposed by To [81]. The detection equivalence is referred

to as test equivalence by Lioy [63] and To [81]. Like equivalence, diagnostic dominance

between two detectable faults also implies detection dominance.

We note that Definitions 3 and 5 (diagnostic type) are identical to Definitions 1

and 2 that are discussed in the literature. Definition 2 has been referred to as column

dominance by Poage [69]. This definition was later modified as, “a fault fi is said

to dominate fault fj if the faults are equivalent with respect to the test set of fault

fj” [1, 24]. This definition means exactly the same as Definition 2, if equivalence is

interpreted as diagnostic equivalence. Sometimes, the same definition is modified as

“if all tests of fault f1 detect another fault f2, then f2 is said to dominate f1” [24].

This definition is referred to as column dominance by Schertz and Metze [79]. It is

the same as part (a) of Definition 2 without part (b). This variation of Definition 2

implies detection dominance, whereas Definition 2 means diagnostic dominance.

A definition of dominance for sequential circuits appears in the paper by Poage

and McCluskey [70]. Goel [40] has studied fault dominance among single and multiple

stuck-at faults in sequential circuits.

29

0

1

1

1

1

0

G1

Sum

Cout

G9

G8

G7

G6

G4

G5

G3

inC

A

B
G2

Figure 4.2: Full adder circuit.

Two faults that dominate each other are equivalent. The same conclusion is

applicable for diagnostic and detection relations too. Any two faults that detection

dominate each other are detection equivalent. For circuits with only one output,

diagnostic definitions are the same as detection definitions. It should be noted that

two redundant faults (implying redundancy at all primary outputs) are equivalent

according to any of the equivalence definitions (Definitions 1, 3 and 4).

The example of the full adder that was considered in earlier chapters is shown

here in Figure 4.2, but with the XOR blocks replaced with four NAND gate imple-

mentations. For this circuit, diagnostic collapsing results in collapsed set sizes of

26 and 12 for equivalence and dominance, respectively. Using detection collapsing,

the fault set sizes are 23 and 6 for equivalence and dominance, respectively. A col-

lapsed set of 6 faults for detection dominance is the least of all the reported results.

There are three faults that are found to be detection equivalent with other faults in

the diagnostic equivalent fault set. These faults, in Gentest fault notation detailed

in Section 3.2.2, are G1(0) and G2(1), G6(Cin, 1) and G7(Cin, 1), and G6(0) and

G7(1), as shown in Figure 4.2.

In Figure 4.2, the fault G1(0), which is detected at the output line Cout with

the vector 11x on the inputs A, B, Cin, is considered as detection equivalent with

30

G2(1), according to Definition 4. But the same vector 11x does not detect the fault

G2(1) at either of the outputs Cout and Sum, while the individual vectors 110 and 111

detect the fault at the output Sum. Such relations, based on incompletely specified

input vectors, are addressed by Pomeranz and Reddy [74]. According to them, the

detection equivalent faults G1(0) and G2(1) are not considered as 0, 1, x−equivalent,

but are treated as 0, 1−equivalent. The equivalence of two faults over an incompletely

specified test set is referred to as 0, 1, x − equivalence. The functional equivalence

according to Definitions 1 and 3 can be seen as 0, 1, x− equivalence, while Definition

4 can be seen as 0, 1 − equivalence. The dominance definitions (Definitions 5 and 6)

quoted above are over the test set of {0,1} and, not over {0,1,x}.

4.2 Functional Dominance

Finding functional dominances using the construction of Figure 3.2 is a com-

putationally expensive procedure. This is because we need to implement it for all

permutations of faults taken two at a time. A modified and less expensive scheme is

shown in Figure 4.3 where, initially all three blocks are fault free copies of the circuit

with function F0. Consider a fault, say f1, and introduce it in the bottom block whose

function is now designated as F1. Consider another fault, say f2, which is dominated

by f1 in the given circuit. Whenever f2 in the top block is activated and propagated

to the AND gate, it is blocked by the output of the XOR gate (a logic 1), because

fault f1 is also detectable when f2 is detected. So, all faults that are dominated by f1

in the given circuit are redundant in the top block. In a single iteration of the ATPG,

we will find all faults that are dominated by the fault introduced in block F1.

31

F

F

F

0

0

1

V

Fault introduced in this circuit

Faults in this circuit
checked for redundancy

Figure 4.3: Identifying functional dominance.

4.2.1 Algorithm

1. Select an unprocessed fault of the given circuit and build a circuit as shown in

Figure 4.3 with the fault introduced in the bottom block whose function is F1.

2. Check for redundant faults in the top block F0.

3. For each redundant fault found in step 2, a 1 is placed in the dominance matrix

at the intersection of the row corresponding to the redundant fault and the

column corresponding to the fault in the bottom block. Thus, we obtain all

values of a column of the dominance matrix in a single iteration.

4. Go to step 1 until there is no fault left.

5. Now, we will have the dominance matrix with all functional dominance relations

included.

6. Transitive closure of the dominance matrix is computed, which is then reduced

using the algorithm equivalence of Prasad et al. [75]. This reduced matrix con-

sists of the dominance relations within an equivalence collapsed set of faults.

32

7. If dominance collapsing is required, then the reduced matrix of the previous

step is further reduced according to algorithm dominance of Prasad et al. [75].

As pointed out in Section 3.1.4, the redundant and aborted faults of the given

circuit (stand-alone F0) have to processed differently, which is explained in the next

section.

4.2.2 Redundant and Aborted Faults

A redundant fault of the given circuit will be redundant in the top block, F0, of

Figure 4.3 for any fault introduced in the bottom block F1. This will cause a row of all

1’s corresponding to all redundant faults of the given circuit in the dominance matrix.

After algorithm equivalence, all redundant faults are collapsed into one fault. This

row should be removed before algorithm dominance. Otherwise, algorithm dominance

will remove all detectable faults leaving just the redundant fault, because a redundant

fault is considered to be dominated by any other fault.

There can be some aborted faults while checking for redundancies in step 3 of

the algorithm in Section 4.2.1. Aborted faults, as discussed in Section 3.1.4, have

unknown status and can be redundant or detectable. Had these aborted faults been

treated as redundant we would have inserted additional 1’s in the dominance matrix

resulting in a smaller, though possibly erroneous, collapsed set. This is the very

reason why the transitive closure is computed in step 6 of the algorithm so that some

relations that were missed because of aborted faults are retained. Though this helps,

it can not guarantee to find all the escaped dominance relations. However, for the

cases where no fault is aborted, transitive closure is not needed.

33

When the given circuit is subjected to test generation, any fault can be detected,

aborted or declared as redundant. For each of these cases, Table 4.1 gives the value

that should be entered in the dominance matrix in step 3 of the algorithm in Sec-

tion 4.2.1. The first column corresponds to the three cases of detectability of the fault

in stand-alone F0. The cases corresponding to the detectability of the same fault in

the top block, F0, of Figure 4.3 are shown in the second column. When a detectable

fault of the given circuit is shown as aborted in the top block of Figure 4.3, we place

a 0 in the dominance matrix, which means that the aborted fault is considered as de-

tectable for reasons as explained in the previous paragraph. When a redundant fault

of the given circuit is shown as aborted in Figure 4.3, then we introduce a 1 in the

dominance matrix. In this case, we are considering the aborted fault as redundant.

This is a correct decision, because a redundant fault in the given circuit will also be

redundant in the top block of Figure 4.3. If an aborted fault in the given circuit is

seen as aborted in the top block of Figure 4.3, we introduce an x in the dominance

matrix. At the end of step 5 of the algorithm of Section 4.2.1, we examine the rows

with x’s in the dominance matrix. If there is at least one 0 in the row, then all the x’s

of that row are replaced with 0’s. In this case, the aborted fault in the given circuit

is detectable at least once in the top block, F0, of Figure 4.3. Hence, the aborted

fault is not a redundant fault in the given circuit. So, we treat the aborted fault as

a detectable fault and replace the x’s of its row by 0’s. If the row with x’s had only

1’s other than x’s, then the x’s are replaced with 1’s. If the aborted fault was never

detected in the top block of Figure 4.3 and shown as redundant at least once, then

we consider the aborted fault as redundant fault by replacing the x’s by 1’s. Such a

34

Table 4.1: The dominance matrix entry.
Detectability of fault Detectability of fault in Value in

in stand-alone F0 top block, F0 of Figure 4.3 dominance matrix
Detectable Detectable 0

Redundant 1
Aborted 0

Redundant Redundant 1
Aborted 1

Aborted Detectable 0
Redundant 1
Aborted x

row with all 1’s is removed before algorithm dominance. If the row had only x’s, then

all the x’s are replaced with 0’s. Then, this fault will be considered in the dominance

collapsed set.

Since, a redundant fault of the given circuit has only 1’s in the corresponding row

of the dominance matrix, which is anyway removed before algorithm dominance, we

can consider only non-redundant faults with the algorithm. In the implementation of

Figure 3.2, the ATPG is run n(n − 1) times, n being the number of non-redundant

faults in the circuit, and in each run of ATPG, we test the redundancy of one fault.

Using the scheme in Figure 4.3, the ATPG is run n times and in each run, we carry

out the redundancy test for n − 1 faults. In the implementation of Figure 4.3, the

circuit is built and prepared n times, which is less than the n(n− 1) times needed for

the implementation of Figure 3.2.

The scheme of Figure 4.3 is for a single-output circuit. For a circuit with multiple

outputs, the schemes of Figure 4.4 are used. It illustrates a case of two outputs and

the generalization for more than two outputs is straightforward. The scheme of

Figure 4.4(a) conforms to the diagnostic collapsing as given by Definitions 3 and 5 of

35

(a)

0

0

1

0

0

1

V

V

F

F

F

F

F

F

(b)

Figure 4.4: Schemes for collapsing faults with a) diagnostic and b) detection criteria.

Section 4.1, while that of Figure 4.4(b) does detection collapsing. It should be noted

that the scheme of Figure 4.4(b) ensures that a test vector which detects the fault

introduced in the block F1 on an output line blocks all output AND gates because of

the additional OR gate, unlike in Figure 4.4(a). This causes more redundancies and

therefore more dominance relations between faults, that is, more 1’s in the dominance

matrix. Hence, the fault set obtained using detection dominance will be smaller than

that obtained for diagnostic dominance for multiple output circuits.

4.3 Results

We present four example circuits for illustration. The smallest is a simple XOR

function implemented with four NAND gates as shown in Figure 2.2 and the largest

is the 4-bit ALU circuit (74181). The 8-bit adder is a ripple carry adder as shown

36

Table 4.2: Comparison of fault collapsing results.
Number of collapsed faults (Collapse Ratio)

Circuit All Structural Functional Functional collapsing - New results
name faults [56, 68] [8] Diagnostic Detection

Equiv. Dom. Equiv. Dom. Equiv. Dom. Equiv. Dom.

XOR 24 16 13 10 4 10 4 10 4
(0.67) (0.54) (0.42) (0.17) (0.42) (0.17) (0.42) (0.17)

Full 60 38 30 26 14 26 12 23 6
adder (0.63) (0.50) (0.43) (0.23) (0.43) (0.20) (0.38) (0.10)

8-bit 466 290 226 194 112 194 96 191 48
adder (0.62) (0.49) (0.42) (0.24) (0.42) (0.21) (0.41) (0.10)

ALU 502 301 248 – – 253 155 234 92
(74181) (0.60) (0.49) (0.50) (0.31) (0.47) (0.18)

in [75]. The results according to the definitions of diagnostic and detection collaps-

ing of Section 4.1 are tabulated in Table 4.2. These results are compared with the

structural equivalence collapsed set obtained using either Hitec [68] or Fastest [56]

programs, and the structural dominance collapsed set obtained using the Fastest [56]

program. The column “Functional [8]” has the values obtained using a hierarchical

fault collapsing technique [8]. The XOR gates of the ALU circuit are replaced with

the four NAND gate implementation as shown in Figure 2.2. The collapse ratio, as

defined by Equation 2.1, of each collapsed set is shown by the accompanying fraction

in parenthesis.

The functional equivalence set for the XOR gate results in 10 faults. It is proved

by Goundan and Hayes [44] that every irredundant realization of a two-variable

Exclusive-OR function has a unique set of ten fault classes. For the 8-bit adder,

the previous best result is reported by Agrawal et al. [8]. Their hierarchical collaps-

ing technique resulted in the dominance collapsed set of 112 faults (collapse ratio

0.24) while the implementation described in this chapter leads to a set of 48 faults

37

(collapse ratio 0.10), a reduction of over 50%. This result is for detection dominance.

The diagnostic dominance results in a collapse ratio of 0.21, which still is smaller than

that previously reported [8]. The dominances that are missed by the hierarchical col-

lapsing technique of [8] are the functional dominances between faults of different full

adder cells that cannot be found using the transitive closure of the dominance graph.

Based on our experience, the collapsing using the detection dominance leads to col-

lapse ratios in the range of 0.10 − 0.20. The paper by Agrawal et al. [9] achieves a

collapse ratio of about 25%, which is based on diagnostic dominance.

The ATPG used for collapsing algorithms is Hitec/Proofs [68]. There were some

aborted faults while checking for redundancies in step 4 of the algorithm in Sec-

tion 4.2.1. The transitive closure in step 6 of the algorithm is computed so that some

relations that were missed because of the aborted faults are retained, as discussed in

Section 4.2.2. The number of collapsed faults obtained with detection equivalence for

the 8-bit adder using the algorithm was 193. If the computation of transitive closure

was not included, the number of faults would have been 194. It has been found that

the right value, theoretically using Definition 4 of Section 4.1, is 191. The value re-

ported in our paper [78] should be corrected from 194 to 191. Similarly the detection

dominance collapsed set size according to the algorithm was 56. This was later de-

termined as wrong because of the aborted faults and corrected to 48 after manually

examining the collapsed set. It is observed that the detection dominance collapsing

of a one-bit full adder results in 6 faults and for an n-bit ripple carry adder, it is 6n

collapsed faults. Similar generalizations for an n-bit ripple carry adder are possible

for diagnostic and detection equivalence collapsed sets. The program, when used for

38

the ALU circuit, also resulted in few aborted faults, so the detection collapsed sets

shown against ALU circuit in Table 4.2 need not be the minimum. When no fault is

aborted, using a better ATPG, the algorithm would result in the smallest collapsed

fault set. But this should not be considered a problem since the use of this algorithm

is recommended only for smaller circuits, where we would not expect any aborted

faults.

To verify the correctness of the collapsed sets, a test generator was run to derive

test vectors for the fault sets obtained from our algorithm. Then a fault simulator

is used to determine whether the test vectors detect all faults of the circuit except

the redundant and aborted faults. The Gentest ATPG [30] is used for this purpose

and the number of test vectors is tabulated in Table 4.3. Gentest is used without any

options and this fills the unused inputs of a test vector with previous test vector’s

steady value on the same input. The test vectors are compared with the test vectors

required for the structural equivalence collapsed [68] and dominance collapsed [56]

sets. Accompanying each entry of the test vectors, the value in parenthesis is the

number of target faults provided to the test generator. The target faults are different

from those in Table 4.2 in the case of ALU, because there were 8 redundant faults

which are not considered here. Though there is a reduction in the number of test

vectors for the ALU, we still have a long way to go because the minimum number

of test vectors to detect all the faults is only 12 [12, 48]. It is sometimes observed

through experiments that the number of test vectors is dependent on the fault order.

We should, however, point out that perhaps a more important factor is the selection

of a test vector from among many vectors that detect a target fault.

39

Table 4.3: Comparison of the test vectors.
Number of test vectors (number of target faults)

Circuit Structural Functional
name Equivalence Dominance Diagnostic Detection

Dominance Dominance
Full adder 6 (38) 6 (30) 7 (12) 6 (6)
8-bit adder 33 (290) 28 (226) 32 (96) 28 (48)

ALU 44 (293) 44 (240) 39 (147) 38 (84)

4.4 Summary

In this chapter, the fault equivalence and dominance relations for multiple out-

put combinational circuits are discussed. A novel algorithm based on redundancy

identification has been proposed to find the equivalence and dominance collapsed sets

corresponding to diagnostic and detection collapsing. The collapse ratios presented

are much better (lower) than the earlier known results. The techniques presented to

collapse the faults in this chapter use ATPG and their CPU time increases exponen-

tially with the circuit size. These techniques should be used only with smaller circuits

and the collapsing results for ALU and 8-bit adder circuits have been included just

for demonstration. The collapsing techniques described in this chapter can be used

in hierarchical fault collapsing as explained in the next chapter.

The algorithm presented in Section 4.2.1 uses an ATPG to find the dominance of

a fault over another fault. The same results can be obtained using a fault simulator

instead. The fault simulator is run for all possible input combinations at the primary

inputs and correspondingly the relations between faults are obtained according to the

definitions in Section 4.1. The time taken with this technique is also exponential in

circuit size and so it too can be used only for smaller circuits.

40

Chapter 5

Hierarchical Fault Collapsing

Typically, faults in a hierarchically described circuit are collapsed after flattening

the hierarchy [30]. In our method, we do not flatten the circuit to collapse the faults.

Hierarchical fault collapsing is based on the following theorem [44, 46].

Theorem: If two faults are functionally equivalent in a combinational sub-circuit M

that is embedded in a circuit N , then they are also functionally equivalent in N .

Functional equivalence here means diagnostic equivalence, as defined in Sec-

tion 4.1. Such faults are called as intrinsically equivalent in M by Goundan and

Hayes [44]. This is demonstrated using the circuit in Figure 5.1 [44], where the s-a-1

faults on lines x and y are intrinsically equivalent in M . There is another kind of

equivalence, called extrinsic equivalence [44]. If two faults fi and fj located in a sub-

circuit, M , are equivalent in the circuit N , but are not equivalent in the sub-circuit,

then they are called extrinsically equivalent in M . In Figure 5.1, the s-a-1 faults on

lines p and s are not equivalent in sub-circuit M . But these faults become equivalent

in the circuit of Figure 5.1 and the relationship between the two faults is called extrin-

sic equivalence, which is a subset of functional equivalence. Such relationships are not

detected by the hierarchical fault collapsing algorithm described in this chapter. A

similar theorem can also be stated for diagnostic dominance as defined in Section 4.1.

In hierarchical fault collapsing, the collapsing information of sub-circuits is saved

in a library. The information consists of a fault set, which includes equivalence

collapsed set and faults on inputs and outputs of the sub-circuit, and their dominance

41

A

B

C

q

s

r

M
1

p

1

1
x

y

z Z

1

����

Figure 5.1: A circuit demonstrating extrinsic equivalence.

relations. The stuck-at faults on the input and output lines are added because these

faults merge with the lines at higher levels of hierarchy as explained in Section 3.2.2

and help in further collapsing of faults. This also resolves the issue of embedding of

sub-circuits as detailed in Section 3.2.2. So, in the collapsing procedure described

later, all the instances of a sub-circuit are treated in the same way irrespective of the

way it is embedded.

When collapsing faults hierarchically, there is a case that needs special attention.

Let circuit N have an instance of circuit M . The line in N that is an input to the

instance of M will be removed during expansion if this input in the circuit M is a

fanout stem and the line in N is a fanout branch. Such an example is shown in

Figure 5.2. The block named G1 in circuit N is an instance of the circuit M . On

expansion, the fanout branch of B going into gate G1 is removed, so faults G1(B, 0)

and G1(B, 1) are removed. Therefore, while saving the library information, if a fault

on an input line is equivalent to another fault which is not on any input of the circuit,

the latter fault is considered in equivalence collapsing. In Figure 5.2, the fault b(1) in

circuit M is functionally equivalent to fault g1(1). In this case, the representative of

this equivalent class should not be b(1). If the fault on the input line is selected as the

representative, b(1) in this case, then on expansion, the fault b(1) is removed leaving

42

b

a

g2

g1

g3

Circuit M

A
B

C

M

G2 G3
G4

Circuit NG1

1
1

�
�
�
�

�
�
�
�

Figure 5.2: A hierarchical circuit.

no representative for the equivalence class consisting of fault g1(1). This will lead to

smaller, but erroneous, collapsed set. As explained earlier, the faults on the input

and output lines are saved in the library file after equivalence collapsing is done. So,

there will be two representatives of the same equivalence class in the library file, but

one of them will be removed when the instance of the sub-circuit is considered for

collapsing or when algorithm equivalence is applied at the top level.

5.1 Procedure to Hierarchically Collapse Faults

The collapsing starts at the topmost level of hierarchy. Only structural equiv-

alence collapsing is done at this level. This is based on the line oriented structural

fault collapsing technique as explained by Nadjarbashi et al. [67] with a few additions

to suit the hierarchical collapsing. The criterion used in placing a specific stuck-at

fault on a line is based on the gate driven by that line. Table 5.1 shows the faults to

be placed, based on the gate the line is driving. Here fanout is treated as an actual

component. Using this line collapsing technique, we obtain a structural equivalence

43

Table 5.1: Line fault collapsing.
Type of gate Put this (these)

the line feeds into fault(s) on the line
INV, BUF none
OR, NOR s-a-0

AND, NAND s-a-1
Sub-circuit, Fanout s-a-0, s-a-1
Primary Output s-a-0, s-a-1

����

100
G4

C

A
B

G1

G3G2

M10

10

0
1

1

10

Figure 5.3: Circuit to demonstrate line collapsing technique.

collapsed set. This technique, when applied to the hierarchical circuit N of Figure 5.2,

will result in 12 faults, which are shown in Figure 5.3.

A dominance matrix, as explained in Section 2.5, is created for the equivalence

collapsed set. This matrix will now only have 1’s on its diagonal and all the other

entries of the matrix will be 0’s. Next, the dominance relations between the faults

in the equivalence collapsed set are found using the algorithm in the next section.

For every s-a-0 on any input of an OR or NOR gate, the fault among the equivalent

set that dominates it is found by setting b as 0 in the algorithm. For example, fault

C(0) in Figure 5.3 is dominated by the fault G3(1). Then a 1 is introduced in the

dominance matrix to indicate this dominance using the update algorithm [33, 34],

which computes the transitive closure of the dominance matrix. A similar procedure

is followed for s-a-1 faults on the inputs of AND and NAND gates.

44

5.1.1 Algorithm to Find the Dominance Matrix and its Transitive Closure

1. Consider a stuck-at-b fault (f1) in the equivalence collapsed set at the input of

a Boolean gate.

2. If the gate is of inverting type (NOT, NOR, NAND), then invert b.

3. If the equivalent set has s-a-b on this gate output, say f2, then place a 1 at

the intersection of the row corresponding to f1 and column corresponding to f2

and use update [33, 34] for computing transitive closure. Go to step 1 until all

faults in the equivalence collapsed set that are on the inputs of Boolean gates

are considered.

4. Move one gate forward towards the primary output and go to step 2.

For hierarchical fault collapsing, we need to have both stuck-at faults on inputs

and outputs of all the instances of sub-circuits for reasons explained earlier in this

chapter. By following Table 5.1, both stuck-at faults on the inputs of all instances

are included. For outputs, the faults that are not present in the equivalence collapsed

set are added. For these newly included faults, there will be an equivalent fault in the

collapsed set. In Figure 5.3, fault G1(0) is added and this fault is equivalent to fault

G4(1). This equivalent fault is also found using the algorithm in Section 5.1.1 by

setting b as the stuck-at value of the added fault, 0 in this case, in step 2. There will

be two diagonally symmetrical 1’s introduced in step 3 of the algorithm to indicate

this equivalence.

Next, the processing of instances of the sub-circuits is done. If the sub-circuit

has a library file containing its collapsed information, the file is used to introduce

45

new faults and relations into the dominance matrix. If there is no such library file,

a library file is created dynamically as follows. If the sub-circuit does not have any

user-defined gates, that is instances of other sub-circuits, in its description and has

less than a pre-specified number of gates, say 15, we can use the functional collapsing

algorithm of Section 4.2.1. Otherwise, the sub-circuit is processed recursively in the

same way as the top level description is processed. This is continued until all sub-

circuits are processed. Then the collapsed fault set description is written to a file of

the library for future use.

To obtain the equivalence collapsed set, the fault set is processed by algorithm

equivalence which is quoted earlier in Section 3.2.1. This step removes all extra faults

that were added to assist the hierarchical fault collapsing. If dominance collapsing is

required, then algorithm dominance, as described in Section 3.2.1, is used. The basic

idea of this procedure is same as that implemented by Prasad et al. [75].

The above procedure is applied to the hierarchical circuit in Figure 5.3. The

sub-circuit M , being a smaller circuit, is subjected to functional collapsing. The

collapsed information of sub-circuit M as saved in the library is detailed in Appendix

A. The hierarchical collapsing results in sets of 11 faults for equivalence collapsing

and 8 faults for dominance collapsing (includes one redundant fault G1.g1(b, 0)).

These values can be compared with 12 and 8 when structural collapsing is used for

the flattened circuit. The reduction is less because the circuit in Figure 5.3 has only

one instance of a sub-circuit.

46

It should be noted that hierarchical collapsing results in much better collapse

ratios if there are many instances of sub-circuits that have fewer than some pre-

specified number of gates. The reduction is caused by the functional collapsing done

in those smaller sub-circuits. Also, hierarchical collapsing takes less time, if there are

multiple instances of the same sub-circuits or if the sub-circuit’s collapsed information

is already available in the library. If only structurally collapsed library information is

used for all instances of sub-circuits, we get collapsing results that are exactly same

as those of structural collapsing of the flattened circuit. But, it will take less CPU

time than the structural collapsing.

While using the functional collapsing technique for smaller sub-circuits, the

scheme of Figure 4.4(b), which corresponds to detection criterion, can only be used if

the outputs of the instance of the sub-circuit are all primary outputs at the top level

of the hierarchy. This is because, detection equivalence or dominance does not satisfy

the theorem quoted at the beginning of this chapter, only the diagnostic relations

do. If detection relations are used for at least one instance of any sub-circuit, then

the collapsing should be called detection collapsing, else it can be called as diagnostic

collapsing.

5.2 Results

In this section, we present the results of hierarchical fault collapsing, comparing

the collapse ratios and collapsing time. The library consists of files containing the

collapsed information of frequently used circuits like multiplexer, XOR, half adder,

full adder, etc. Since the dominance matrix has very few 1’s, it is implemented using

47

Table 5.2: Hierarchical fault collapsed sets.
No. of collapsed faults

Circuit name All Flattened (structural) Hierarchical (functional)
faults Equiv. Dom. Equiv. Dom.

Full adder 60 38 (0.63) 30 (0.50) 26 (0.43) 12 (0.20)
4-bit adder 234 146 (0.62) 114 (0,49) 98 (0.42) 48 (0.21)
16-bit adder 930 578 (0.62) 450 (0.48) 386 (0.42) 192 (0.21)
64-bit adder 3714 2306 (0.62) 1794 (0.48) 1538 (0.41) 768 (0.21)
256-bit adder 14850 9218 (0.62) 7170 (0.48) 6146 (0.41) 3072 (0.21)
1024-bit adder 59394 36866 (0.62) 28674 (0.48) 24578 (0.41) 12288 (0.21)

c432 1116 632 (0.56) 503 (0.45) 524 (0.47) 413 (0.37)
c499 2646 1574 (0.59) 1210 (0.46) 950 (0.36) 690 (0.26)

a sparse matrix representation [52]. The algorithm equivalence and algorithm domi-

nance of Section 3.2.1 are slightly modified to suit the sparse matrix representation.

The transitive closure is implemented using the update algorithm as described by

Dave et al. [33, 34]. This algorithm takes time which grows linearly with the circuit

size for sparse matrices, but in the worst case its complexity will be O(n3), where n

is the number of gates in the circuit.

5.2.1 Comparison of Collapse Ratios

The collapsed fault set sizes obtained with hierarchical fault collapsing for differ-

ent circuits are shown in Table 5.2. Those are compared with structural collapsing re-

sults for the corresponding flattened circuits obtained using Hitec [68] and Fastest [56]

programs. The 4-bit adder consists of four full adders, the 16-bit adder has four 4-bit

adders, and so on. The full adder circuit shown in the table is not a hierarchical

circuit and the collapsing results of this circuit shown under the column Hierarchical

are functional (diagnostic) collapsing results. The ISCAS’85 circuits [22] c432 and

c499 have XOR gates which are considered as user-defined gates.

48

The collapse ratio of each collapsed set is shown by the accompanying fraction

in parenthesis. There is considerable improvement in the collapse ratios when hierar-

chical collapsing is used. The reduction achieved for XOR and full adder sub-circuits

using functional collapsing is passed onto other levels because of hierarchical collaps-

ing. Even if all hierarchical adder circuits are described using only full adders, for

example, a 1024-bit hierarchical adder is built using 1024 full adder sub-circuits, the

collapse ratios would be the same. This is because, the reduction in these hierarchical

adders is solely due to the functional collapsing done up to the full adder level. If the

library files used for XOR and full adder circuits had structural, instead of functional,

collapsed set information, the hierarchical fault collapsed sets would have the same

collapse ratios as obtained for flattened circuits. Functional collapsing here refers

to diagnostic collapsing. If detection collapsing were to be used, in any hierarchical

adder, we could have used it on only one sub-circuit, the one which has all its outputs

as primary outputs. This causes a reduction of 3 and 6 faults in any of the equiv-

alence and dominance collapsed sets, respectively, under the column Hierarchical in

Table 5.2. As explained in Chapter 4, these are the differences between diagnostic

and detection collapsed sets for equivalence and dominance, respectively, of a full

adder.

5.2.2 Comparison of CPU Times of Fault Collapsing

We have shown that hierarchical collapsing results in better (lower) collapse

ratios. Now, we show that the CPU time taken by hierarchical collapsing is also lower

than that required for flattened (structural) collapsing. A C program implementing

49

the procedure described in Section 5.1 is used to collapse the faults in both flattened

and hierarchical circuits. The time reported in seconds in all the tables in this section

is clocked on a 360MHz Sun UltraSparc 5 10 machine with 128MB memory. The

description of the C program appears in Appendix B.

First, the implementation efficiency of our program is checked. We used differ-

ently sized flattened adder circuits (logic gate level circuits without any sub-circuits).

The CPU time taken by our program for collapsing the faults is either similar to

or better than that taken by other available programs [56, 68, 80]. In Table 5.3,

we compare with the time taken by AUSIM [80] and Hitec [68]. Hitec and AUSIM

do only equivalence collapsing while our program also provides dominance collapsed

set. It should be noted that Hitec, in addition, calculates the controllabilities and

observabilities for each line, which are later used in test generation. All the programs

resulted in the same equivalence collapsed set sizes for all circuits. We do not have

the CPU time taken by Hitec for the flattened circuit of 8192-bit adder because Hitec

could not complete the collapsing operation for this circuit, probably because of some

internal limit on size of the circuit. It can be seen from the table that our program

takes considerably less CPU time than the other two programs.

The CPU times shown in Table 5.3 are plotted on the graph in Figure 5.4.

Both axes of the plot have logarithmic scales with base 2. The portion of the plot

corresponding to adders smaller than the 64-bit adder is included here only for com-

pleteness and can be neglected because of the coarse resolution problems associated

50

Table 5.3: Fault collapsing time for flattened circuits.
Circuit CPU time (seconds)
name AUSIM Hitec Our Program

4-bit adder 0.08 0.23 0.02
8-bit adder 0.11 0.24 0.03
16-bit adder 0.20 0.30 0.04
32-bit adder 0.43 0.36 0.10
64-bit adder 1.10 0.57 0.24
128-bit adder 2.65 1.47 0.75
256-bit adder 9.60 5.09 2.49
512-bit adder 39.5 19.5 9.38
1024-bit adder 165 77.7 39.9
2048-bit adder 650 326 166.4
4096-bit adder 2623 1258 674.1
8192-bit adder 10681 – 2676

with the time commands used to clock the time. Since all the curves have a slope ap-

proximately equal to 2, it shows that the CPU time in all these cases is proportional

to the square of the circuit size. This can be seen in Table 5.3.

To understand the complexity of our program, we measured the time taken for

different functions involved in collapsing. The time taken by different sections of our

program for flattened circuits is tabulated in Table 5.4. The column Flat Structure

Processing gives the time required for building the structure of circuit. The columns

Equivalence and Dominance Collapsing show the time taken for collapsing faults

based on structural equivalence and dominance collapsing, respectively. The total

time taken for collapsing is shown in the last column of Table 5.4 and is same as the

last column of Table 5.3.

When the structure of the circuit is built, any node representing a gate or primary

input has links to all nodes in its fanin and fanout lists. The time taken to build such

a structure is proportional to the square of the circuit size. This is confirmed by

51

4 8 16 32 64 128 256 512 1024 2048 4096 8192
0.016

0.062

0.25

1

4

16

64

256

1024

4096

16384

Size of adders in bits

C
P

U
 ti

m
e

in
 s

ec
on

ds

AUSIM

Hitec

Our Program

Slope ~ 2

Figure 5.4: Fault collapsing time for flattened circuits.

52

Table 5.4: CPU time taken by different sections of our program for flattened circuits.
Circuit CPU time (seconds)
name Flat Structure Equivalence Dominance Total

Processing Collapsing Collapsing
4-bit adder 0.0 0.0 0.01 0.02
8-bit adder 0.0 0.0 0.01 0.03
16-bit adder 0.02 0.0 0.01 0.04
32-bit adder 0.05 0.01 0.01 0.10
64-bit adder 0.13 0.02 0.03 0.24
128-bit adder 0.54 0.05 0.05 0.75
256-bit adder 2.05 0.09 0.09 2.49
512-bit adder 8.60 0.17 0.20 9.38
1024-bit adder 38.3 0.36 0.41 39.9
2048-bit adder 163.1 0.74 0.84 166.4
4096-bit adder 667.4 1.49 1.63 674.1
8192-bit adder 2662 3.43 3.72 2676

the time taken by our program to build the structure of the flattened circuits, as

shown in the column Flat Structure Processing in Table 5.4. The time taken for

equivalence and dominance collapsing grows linearly with the circuit size. This is

also verified using Figure 5.5, which is a plot of the data in Table 5.4 for 64-bit and

larger adders. The slope of the curves corresponding to Equivalence Collapsing and

Dominance Collapsing is 1, while that of Flat Structure Processing and Total is 2.

The plot also shows that, for large circuits, the total CPU time is dominated by the

time needed to build the circuit structure. Hence, for large circuits, the total time

required for collapsing grows as the square of the circuit size. Similar conclusions are

drawn for the time taken for collapsing using Hitec.

The times taken by different commands used for collapsing in Hitec are shown

in Table 5.5. The structure of the circuit is built using the internal routine level

and the time taken by this command for different circuits is shown under the column

53

64 128 256 512 1024 2048 4096 8192
0.016

0.062

0.25

1

4

16

64

256

1024

4096

Size of adders in bits

C
P

U
 ti

m
e

in
 s

ec
on

ds

Flat Structure Processing
Equivalence Collapsing
Dominance Collapsing
Total

Slope ~ 2

Slope ~ 1

Figure 5.5: CPU time taken by different sections of our program for flattened circuits.

54

Table 5.5: CPU time taken by different commands of Hitec for collapsing faults.
Circuit CPU time (seconds)
name Structure Equivalence Total

Processing (level) Collapsing (equiv)
4-bit adder 0.10 0.06 0.23
8-bit adder 0.12 0.06 0.24
16-bit adder 0.14 0.09 0.30
32-bit adder 0.17 0.13 0.36
64-bit adder 0.32 0.16 0.57
128-bit adder 1.03 0.34 1.47
256-bit adder 4.0 0.88 5.09
512-bit adder 16.0 3.15 19.52
1024-bit adder 64.9 12.2 77.7
2048-bit adder 275.1 50.4 326
4096-bit adder 1045.4 210 1258

Structure Processing (level). The column Equivalence Collapsing gives the time taken

for equivalence collapsing using the routine equiv. Total gives the total time taken

for collapsing. A comparison of the CPU times in Tables 5.4 and 5.5 is shown in

Figure 5.6. The times taken by different commands of Hitec are shown in solid line

curves, while the times taken by our program are shown in dashed line curves. We

note the difference in the slopes of the plots corresponding to equivalence collapsing.

Our program does it in time proportional to the circuit size (slope ≈ 1), while Hitec

time grows at a rate proportional to the square of the circuit size (slope ≈ 2). The

time taken by our program for equivalence collapsing grows linearly because we use

the line oriented collapsing technique explained in Section 5.1, which is of linear

complexity in the size of the circuit. Our program just needs one pass from primary

inputs to outputs to determine the equivalence collapsed set. We are not able to

explain why Hitec takes time which is proportional to the square of the circuit size

55

64 128 256 512 1024 2048 4096
0.016

0.062

0.25

1

4

16

64

256

1024

4096

Size of adders in bits

C
P

U
 ti

m
e

in
 s

ec
on

ds

Hitec Structure Processing (level)
Our Program Structure Processing
Hitec Equivalence Collapsing (equiv)
Our Program Equivalence Collapsing
Hitec Total Collapse time
Our Program Collapse Time

Figure 5.6: Comparison of CPU times taken by Hitec and our program.

for equivalence collapsing. The times taken by AUSIM [80] and Gentest [30] for

equivalence collapsing are also linearly proportional to the circuit size.

Next, our program is used to collapse faults in the circuits described hierarchically

with many levels just like the hierarchical adder circuits in Table 5.2, i.e., a 1024-bit

adder is built using four 256-bit adders, which are built using four 64-bit adders, and

so on. The times clocked by different functions involved in the program are shown

in Table 5.6. The column Hierarchical Structure Processing gives the time taken to

build the structure of the hierarchical circuit. The time required for both equivalence

56

Table 5.6: CPU time taken by different sections of our program for hierarchical
circuits.

Circuit CPU time (seconds)
name Hierarchical Structure Equiv.+Dom. Library Total

Processing Collapsing
4-bit adder 0.0 0.0 0.0 0.01
8-bit adder 0.0 0.0 0.01 0.02
16-bit adder 0.01 0.01 0.02 0.05
32-bit adder 0.01 0.01 0.03 0.07
64-bit adder 0.01 0.01 0.07 0.10
128-bit adder 0.03 0.02 0.13 0.24
256-bit adder 0.05 0.02 0.19 0.49
512-bit adder 0.17 0.04 0.36 1.05
1024-bit adder 0.55 0.08 0.73 2.31
2048-bit adder 2.10 0.20 1.52 4.80
4096-bit adder 9.25 0.37 3.1 16.6
8192-bit adder 40.1 0.79 6.0 55.0

and dominance collapsing is shown under the column Equiv.+Dom. Collapsing, of

which the time required for equivalence collapsing is the major component. The time

taken to introduce new faults of the sub-circuits from library files and their relations

is shown under the column Library. This time was negligible in Table 5.4, since there

were no sub-circuits involved. The column Total gives the total time taken by the

program which includes the time taken to dynamically collapse all the sub-circuits

used in the hierarchical circuit. However, the one-bit full adder block which has been

earlier collapsed using the functional technique is assumed to be available from a

stored library. For example, the time shown against the 1024-bit adder includes the

time of building the library files for 1024-bit, 256-bit, 64-bit, 16-bit and 4-bit adders,

but not that of the 1-bit adder library element. It can be seen that, even here the

time required to build the circuit dominates as the size of the circuit grows.

57

We compare the times taken by our program for hierarchical circuits and flattened

circuits in Figure 5.7. Here we compare the times taken for building the structure

and collapsing the faults, though the collapse ratios obtained for hierarchical circuits

are better (lower) than those for flattened circuits. The times taken by our program

for flattened circuits are shown in solid line curves, while the times taken for hier-

archical circuits are shown in dashed line curves. The collapsing time for flattened

circuits is the sum of Equivalence and Dominance Collapsing columns of Table 5.4.

The collapsing time for hierarchical circuits is the sum of Equiv.+Dom. Collapsing

and Library columns of Table 5.6. It can be seen from Figure 5.7 that the time

taken for collapsing in both cases grows linearly with the circuit size. But there is

considerable improvement in the CPU time used to build the circuit. When we build

the hierarchical structure, the internal nodes of sub-circuits are considered only once

and at a lower level of hierarchy. But, in flattened circuits, the internal nodes of all

the sub-circuits have to be considered at the same level. So, the number of nodes

in the hierarchical structure is much lower than that in the flat structure. This is

the reason why the hierarchical structure is built much faster than the flat structure.

This improvement shows up in the comparison of total times (curves drawn through

triangles) for the two cases in Figure 5.7.

In Figure 5.7, the time taken to build the structure of a hierarchical circuit

grows at a rate proportional to the square of the circuit size. It is expected that

this complexity could be less than the square. This is because, in the circuits that

we considered, different sized ripple carry adders, the number of inputs and outputs

grow at the same rate as the circuit size. But, according to Rent’s rule [24, 82], the

58

64 128 256 512 1024 2048 4096 8192
0.004

0.016

0.062

0.25

1

4

16

64

256

1024

4096

Size of adders in bits

C
P

U
 ti

m
e

in
 s

ec
on

ds

Flat Structure Processing
Hiearchical Structure Processing
Collapsing (flattened)
Collapsing (hierarchical)
Total (flattened)
Total (hierarchical)

Figure 5.7: Comparison of CPU time taken by our program for hierarchical and
flattened circuits.

59

number of input and output terminals for a typical block containing G logic gates is

given by Equation 5.1:

T = K × Gα (5.1)

where K is a constant between 1 and 5, and the exponent α lies in the range 0.5 to

0.67. For the ripple carry adders, the exponent α is close to 1.

The time taken to build the structure of the circuit is proportional to square

of the number of gates and primary inputs in the circuit, as shown by the curves

drawn through +’s in Figure 5.6. For a hierarchical circuit, the number of nodes

that represent the structure of the circuit is dominated by the number of inputs and

outputs, as the internal nodes of all sub-circuits are considered at a lower level of

hierarchy. For a general hierarchical circuit, which obeys Rent’s rule, the time taken

to build the circuit should grow at a rate twice of α. If we assume α = 0.5, then the

time taken to build the circuit grows linearly with the circuit size. So, for a typical

hierarchical circuit, the total time required for collapsing should be near to linear

complexity in the circuit size.

We now compare the CPU time required for collapsing circuits with different

levels of hierarchy. The Table 5.7 shows three hierarchical versions of the adders.

The values in the last column correspond to the circuits described hierarchically with

many levels, just like the hierarchical circuits in Table 5.6, i.e., a 1024-bit adder is

built using four 256-bit adders, and so on. The two-level circuits are the circuits with

a hierarchical depth of 2. These circuits are built using a full adder as the sub-circuit,

i.e., a 1024-bit adder is built using 1024 full adders. The flattened circuits have a

hierarchical depth of 1, i.e., they are described completely at the gate level.

60

Table 5.7: CPU time improvement by hierarchy.
Circuit Flattened Circuit Hierarchical Circuit
name Hitec Our Program Two-level Multi-level

4-bit adder 0.23 0.02 0.01 0.01
8-bit adder 0.24 0.03 0.02 0.02
16-bit adder 0.30 0.04 0.05 0.05
32-bit adder 0.36 0.10 0.08 0.07
64-bit adder 0.57 0.24 0.16 0.10
128-bit adder 1.47 0.75 0.32 0.24
256-bit adder 5.09 2.49 0.69 0.49
512-bit adder 19.5 9.38 1.52 1.05
1024-bit adder 77.7 39.9 3.60 2.31
2048-bit adder 326 166.4 10.3 4.80
4096-bit adder 1258 674.1 35.1 16.6
8192-bit adder – 2676 127.2 55.0

It has been pointed out in Section 5.2.1 that the collapse ratios obtained for

the hierarchical circuits (i.e., two-level and multi-level) in Table 5.7 are the same.

The data shown in Table 5.7 corresponding to 64-bit and larger adders is plotted in

Figure 5.8. The time values in the last (multi-level) column include the time required

to build the library file of collapsed sub-circuits at all levels. It can be observed from

the figure that the circuits described using greater depth of hierarchy require less

time for collapsing. When a different hierarchy was used, say a 1024-bit adder was

built using eight 128-bit adders and the 128-bit adder used eight 16-bit adders, and so

on, it resulted in similar times as reported in the last column. However, for another

hierarchy when the 1024-bit adder was built using sixteen 64-bit adders, the 64-bit

adder used sixteen 4-bit adders, and the 4-bit adder used four full adders, it required

less time than the two-level circuit, but more than the multi-level circuit of Table 5.7.

If we assume that the library has the collapsing information for all sub-circuits

used in the circuit, then the time required for collapsing monotonically decreases

61

64 128 256 512 1024 2048 4096 8192
0.062

0.25

1

4

16

64

256

1024

4096

Size of adders in bits

C
P

U
 ti

m
e

in
 s

ec
on

ds

Flattened (Hitec)
Flattened (our program)
Hierarchical (two−level)
Hierarchical (multi−level)

Figure 5.8: CPU time improvement by hierarchy.

62

as the number of levels of hierarchy increases. But, when we have to build the

collapsing information of the sub-circuits dynamically, we should take care that the

time savings achieved by increasing the number of levels is not offset by the time

required to collapse the sub-circuits. For example, when the library contains the

collapsing information on 4096-bit and 2048-bit adders, a 8192-bit adder built using

four 2048-bit adders is collapsed in 50.2 seconds, while a 8192-bit adder using two

4096-bit adders takes 50.0 seconds. The savings of 0.2 seconds is easily offset by the

difference (11.8 seconds) between the times taken to build the library files for the sub-

circuits, 4096-bit adder (16.6 seconds) and 2048-bit adder (4.8 seconds). So, when we

have to dynamically build the library information of the sub-circuits, the time may

monotonically decrease up to certain number of levels of hierarchy, depending upon

the specific circuits.

As we increase the number of levels in the hierarchy, the number of nodes in the

structure is decreased. But, the percentage reduction in the number of nodes decreases

with increasing number of levels. So, the percentage saving in time decreases as the

number of levels increase. This can be seen from the data in Table 5.8. In this

table, we consider the collapse times of three circuits, 2048-bit, 4096-bit and 8192-bit

adders. Each adder is built using only one type of sub-circuit, namely 1-bit, 4-bit, 16-

bit, 64-bit, 256-bit or 1024-bit adder. The time required for collapsing faults in each

case is shown in Table 5.8. The columns in the table correspond to the sub-circuits

used to build the circuit. For example, the 2048-bit adder takes 5.93 seconds when

built using only 4-bit adders. It is assumed that the collapsing information of 1-bit,

4-bit, 16-bit, 64-bit, 256-bit and 1024-bit adders is present in the library. It is clearly

63

Table 5.8: CPU time taken by our program for different levels of hierarchy.
Circuit CPU time (seconds)
name 1-bit 4-bit 16-bit 64-bit 256-bit 1024-bit

2048-bit adder 10.3 5.93 4.90 4.80 4.75 4.72
4096-bit adder 35.1 18.7 15.4 14.6 14.4 14.3
8192-bit adder 127.2 66.4 57.1 53.6 51.4 50.5

seen that the reduction in time levels off as we move from left to right through the

table.

5.3 Summary

In this chapter, we have explained the hierarchical fault collapsing technique

and the results obtained with this technique. We have shown that the advantage

of smaller collapse ratios achieved using functional collapsing techniques for smaller

sub-circuits is passed on to the larger hierarchical circuits. The time required for

collapsing a hierarchical circuit is less than that for the corresponding flat circuit.

The time taken for flat circuits is proportional to the square of the circuit size, while

for hierarchical circuits, it is shown that the time for collapsing could be reduced to

lower complexities, near to linear complexity. As the number of levels of hierarchy in

the circuit increases, the time required for collapsing decreases.

64

Chapter 6

Conclusions

Several functional collapsing techniques are presented in Chapters 3 and 4.

Though functional collapsing produces low collapse ratios, it takes more CPU time, as

functional collapsing is an NP-hard task. Hierarchical collapsing, which is explained

in Chapter 5, is faster but does not allow functional collapsing through all levels of

hierarchy. So, hierarchical collapsing combined with functional collapsing at lower

levels gives the best result in terms of both CPU time and collapse ratio.

The conventional structural collapsing techniques generally yield a collapse ratio

of about 50%. When functional (detection) dominance collapsing is used, the col-

lapse ratio is reduced to the range of 10 to 20%. The fault set sizes obtained using

the algorithms in Chapter 4 are considerably smaller than the previously reported

results. The advantage of such a small collapse ratio may be in the reduction of fault

simulation effort and in the number of test vectors, though the latter conclusion is

not clearly reflected in the results of Table 4.3. Also, fault diagnosis is easier with

smaller fault sets. There are methods [16, 72] that aim at obtaining, though with no

guarantee of, the smallest vector set to detect a given fault set. The number of test

vectors when compared to the lower bound given by a method due to Akers and Kr-

ishnamurthy [12] indicates that further reduction is possible. Berger and Kohavi [17]

establish the lower bound on the necessary number of fault-detecting tests in fanout

free combinational circuits, which is rarely applicable to real circuits.

65

Hierarchical fault collapsing, which is described in Chapter 5, is shown to take

less time than structural fault collapsing for the corresponding flat circuits. When

functional techniques are used for collapsing the sub-circuits, then hierarchical fault

collapsing also results in lower collapse ratios than those of structural collapsing. A

significant result of this work is that the time for hierarchical fault collapsing decreases

as the depth of hierarchy increases.

Care is needed in using dominance collapsed set since there can be instances

where the dominated fault is redundant and the dominating fault (not included in

the collapsed set) is testable. One such case is presented in [2] to point out that

checkpoint faults, which are based on dominance, are not sufficient target faults

for test generation. For fault diagnosis, we can only use the diagnostic equivalence

collapsed set.

6.1 Future Work

Any Boolean circuit can be partitioned based on the library cells using Mentor

Graphics tools. The fault collapsing library of these standard cells can be generated

and hierarchical fault collapsing can be used for the partitioned circuit. We can

incorporate VHDL or Verilog input for hierarchical netlist.

We have used an ATPG to find redundancies. There are recent methods [6,

34, 39, 54, 65] of redundancy identification, not based on ATPG but using non-

exhaustive search, that are less time consuming. Their use may provide trade offs

between the CPU time and efficiency for the detection of redundancies used in our

66

functional dominance algorithm. However, these techniques may not result in the

smallest possible collapsed set.

There are existing programs that attempt to find small test sets [72]. However,

no known program has produced the 12-vector test set for the 4-bit ALU circuit [48].

So, there is scope for future work.

A customized ATPG can be written to find a minimal test vector set required

to detect the collapsed fault set obtained using the algorithms and thereby detect all

the faults in a given circuit. A possible strategy might be to run ATPG for the faults

ordered with the hardest to detect fault placed first. Selecting the right vector from

the set of all vectors that detect the target fault may be the key to finding the minimal

set of vectors. While this problem has not been solved, we may suggest a probable

heuristic. After a fault is detected, among all the test vectors that detect that fault,

the one which has higher probability of detecting other faults may be selected. Then

a fault simulator would be run with this test vector for fault dropping. This would

probably lead to the least number of test vectors required to detect all the faults in

the circuit.

The fault collapsing techniques presented here are only for combinational cir-

cuits. They can be extended to sequential circuits, using the techniques described in

Section 2.3. The application of the presented fault collapsing techniques is only for

stuck-at faults. The development of similar techniques for other fault models can be

further investigated.

67

Bibliography

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design. Piscataway, New Jersey: IEEE Press, 1990.

[2] M. Abramovici, P. R. Menon, and D. T. Miller, “Checkpoint Faults are not Sufficient
Target Faults for Test Generation,” IEEE Trans. Computers, vol. C-35, no. 8, pp.
769–771, Aug. 1986.

[3] M. Abramovici, D. T. Miller, and R. K. Roy, “Dynamic Redundancy Identification in
Automatic Test Generation,” IEEE Trans. Computer-Aided Design, vol. 11, no. 3, pp.
404–407, Mar. 1992.

[4] V. D. Agrawal, “Sampling Techniques for Determining Fault Coverage in LSI Circuits,”
Journal of Digital Systems, vol. 5, no. 3, pp. 189–202, 1981.

[5] V. D. Agrawal and P. Agrawal, “An Automatic Test Generation System for Illiac IV
Logic Boards,” IEEE Trans. Computers, vol. C-21, no. 9, pp. 1015–1017, Sept. 1972.

[6] V. D. Agrawal, M. L. Bushnell, and Q. Lin, “Redundancy Identification Using Tran-
sitive Closure,” Proc. IEEE 5th Asian Test Symposium, Nov. 1996, pp. 4–9.

[7] V. D. Agrawal and H. Kato, “Fault Sampling Revisited,” IEEE Design & Test of
Computers, vol. 7, pp. 32–35, Aug. 1990.

[8] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre, “Fault Collapsing via Functional
Dominance,” Proc. International Test Conf., 2003, pp. 274–280.

[9] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre, “It is Sufficient to Test 25-Percent
of Faults,” Proc. IEEE 7th VLSI Design & Test Workshops, Aug. 2003, pp. 368–374.

[10] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms. Reading,
Massachusetts: Addison-Wesley, 1987.

[11] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the Role of Independent Fault
Sets in the Generation of Minimal Test Sets,” Proc. International Test Conf., 1987,
pp. 1100–1107.

[12] S. B. Akers and B. Krishnamurthy, “Test Counting: A Tool for VLSI Testing,” IEEE
Design & Test of Computers, vol. 6, no. 5, pp. 58–77, Oct. 1989.

[13] S. A. Al-Arian and M. A. Al-Kharji, “Fault Simulation and Test Generation by Fault
Sampling Techniques,” Proc. International Conf. on Computer Design, Oct. 1992, pp.
365–368.

[14] H. Al-Asaad and R. Lee, “Simulation-Based Approximate Global Fault Collapsing,”
Proc. International Conf. on VLSI, 2002, pp. 72–77.

68

[15] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana, “Fault Equivalence Iden-
tification using Redundancy Information and Static and Dynamic Extraction,” Proc.
19th IEEE VLSI Test Symp., 2001, pp. 124–130.

[16] C. Benmehrez and J. F. McDonald, “Measured Performance of a Programmed Im-
plementation of the Subscripted D-Algorithm,” Proc. 20th Design Automation Conf.,
June 1983, pp. 308–315.

[17] I. Berger and Z. Kohavi, “Fault Detection in Fanout Free combinational Networks,”
IEEE Trans. Computers, vol. C-22, no. 10, pp. 908–914, Oct. 1973.

[18] V. Boppana and W. K. Fuchs, “Dynamic Fault Collapsing and Diagnostic Test Pattern
Generation for Sequential Circuits,” IEEE/ACM International Conference on CAD
(ICCAD), Nov. 1998, pp. 147–154.

[19] D. C. Bossen and S. J. Hong, “Cause-Effect Analysis for Multiple Fault Detection in
Combinational Networks,” IEEE Trans. Computers, vol. 11, no. C-20, pp. 1252–1257,
Nov. 1971.

[20] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems.
Woodland Hills, CA: Computer Science Press, 1976.

[21] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of Sequential Bench-
mark Circuits,” Proc. IEEE International Symposium on Circuits and Systems, May
1989, pp. 1929–1934.

[22] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark cir-
cuit and a target translation in FORTRAN,” distributed on a tape to partici-
pants of the Special Session on ATPG and Fault Simulation, International Sym-
posium on Circuits and Systems, June 1985; partially characterized in F. Brglez,
P. Pownall, R. Hum, “Accelerated ATPG and Fault Grading via Testability Anal-
ysis,” Proc. IEEE International Symposium on Circuits and Systems, June 1985,
pp. 695-698, reprint of the article is available with the tape from MCNC. Website:
http://www.cbl.ncsu.edu/CBL Docs/Bench.html.

[23] R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE
Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[24] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Boston, MA: Kluwer Academic Publishers, 2000.

[25] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, “Polynomial Time Solvable
Fault Detection Problems,” Proc. 20th Fault-Tolerant Computing Symposium (FTCS-
20), (Newcastle-upon-Tyne, UK), June 1990, pp. 56–63.

[26] S.-J. Chang and M. A. Breuer, “A Fault-collapsing Analysis in Sequential Logic Net-
works,” Bell Systems Technical Journal, vol. 60, no. 9, pp. 2259–2271, Nov. 1981.

[27] J. E. Chen, C. L. Lee, and W. Z. Shen, “Circuit Example to Demonstrate that Fanout
Stems of Primary Inputs must be Checkpoints,” IEEE Trans. Computers, vol. 25,
no. 25, pp. 1726–1728, Dec. 1989.

69

[28] J. E. Chen, C. L. Lee, and W. Z. Shen, “Checkpoints in Irredundant Two-Level Com-
binational Circuits,” Journal of Electronic Testing: Theory and Application, vol. 2,
no. 4, pp. 395–397, Nov. 1991.

[29] J. E. Chen, C. L. Lee, and W. Z. Shen, “Single-Fault Fault-Collapsing Analysis in
Sequential Logic Circuits,” IEEE Trans. Computer-Aided Design, vol. 10, no. 12, pp.
1559–1568, Dec. 1991.

[30] W. T. Cheng and T. J. Chakraborty, “Gentest: An Automatic Test Generation System
for Sequential Circuits,” Computer, vol. 22, no. 4, pp. 43–49, April 1989.

[31] F. W. Clegg, “Use of SPOOF’s in the Analysis of Faulty Logic Networks,” IEEE Trans.
Computers, vol. 22, no. 3, pp. 229–234, Mar. 1973.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
Cambridge, Massachusetts: MIT Press, 2 edition, 2001.

[33] K. K. Dave, “Using Contrapositive Rule to Enhance the Implication Graphs of Logic
Circuits,” Master’s thesis, Rutgers University, New Brunswick, May 2004.

[34] K. K. Dave, V. D. Agrawal, and M. L. Bushnell, “Using Contrapositive Law in an
Implication Graph to Identify Logic Redundancies,” Proc. 18th International Conf.
VLSI Design, Jan. 2005, pp. 723–729.

[35] R. D. Eldred, “Test Routines Based on Symbolic Logical Statements,” Journal of the
ACM, vol. 6, no. 1, pp. 33–36, Jan. 1959.

[36] H. Fujiwara, “Computational Complexity of Controllability/Observability Problems
for Combinational Circuits,” IEEE Trans. Computers, vol. 39, no. 6, pp. 762–767,
June 1990.

[37] H. Fujiwara and S. Toida, “The Complexity of Fault Detection Problem for Combina-
tional Logic Circuits,” IEEE Trans. Computers, vol. C-31, no. 6, pp. 555–560, June
1982.

[38] J. M. Galey, R. E. Noby, and J. P. Roth, “Techniques for the Diagnosis of Switching
Circuit Failures,” in R. S. Ledley, editor, Proc. of the Second Annual Symposium on
Switching Circuit Theory and Logical Design, (Detroit), AIEE, Oct. 1961, pp. 152–160.

[39] V. Gaur, V. D. Agrawal, and M. L. Bushnell, “A New Transitive Closure Algorithm
with Application to Redundancy Identification,” Proc. 1st Int. Workshop on Electronic
Design, Test and Applications (DELTA’02), (Christ Church, New Zealand), Jan. 2002,
pp. 496–500.

[40] P. Goel, The Feedforward Logic Model in the Testing of Large Scale Integrated Logic
Circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, Sept. 1973.

[41] P. Goel, “Test Generation Costs Analysis and Projections,” Proc. 17th IEEE/ACM
Design Automation Conf., June 1980, pp. 77–84.

[42] K. Gopalakrishnan and B. Bhattacharya, “Noncheckpoint Target Faults How to Order
Them?,” Proc. 34th Midwest Circuits and Systems Symposium, May 1991, pp. 619–622.

70

[43] A. Goundan, Fault Equivalence in Logic Networks. PhD thesis, University of Southern
California, Los Angeles, Feb. 1978.

[44] A. Goundan and J. P. Hayes, “Identification of Equivalent Faults in Logic Networks,”
IEEE Trans. Computers, vol. C-29, no. 11, pp. 978–985, Nov. 1980.

[45] T. Grüning, U. Mahlsdedt, and H. Koopmeiners, “DIATEST: A Fast Diagnostic Test
Pattern Generator for Combinational Circuits,” Proc. International Conf. Computer-
Aided Design, Nov. 1991, pp. 194–197.

[46] R. Hahn, R. Krieger, and B. Becker, “A Hierarchical Approach to Fault Collapsing,”
Proc. European Design & Test Conf., 1994, pp. 171–176.

[47] I. Hartanto, V. Boppana, and W. K. Fuchs, “Diagnostic Fault Equivalence Identifica-
tion Using Redundancy Information & Structural Analysis,” Proc. International Test
Conf., Oct. 1996, pp. 294–302.

[48] J. P. Hayes. website: http://www.eecs.umich.edu/˜jhayes/iscas/74181.html.

[49] J. P. Hayes, “A Study of Digital Network Structure and its Relation to Fault Diagno-
sis,” Technical Report R-467, CFSTI AD 707 691, Coordinated Science Laboratory,
Univ. Illinois, Urbana-Champaign, May 1970.

[50] J. P. Hayes, “Modeling Faults in Digital Logic Circuits,” in R. Saeks and S. R. Liberty,
editors, Rational Fault Analysis, (NY), Marcel Dekker, 1977, pp. 78–95.

[51] J. P. Hayes and A. D. Friedman, “Test Point Placement to Simplify Fault Detection,”
IEEE Trans. Computers, vol. C-23, no. 7, pp. 727–735, July. 1974.

[52] E. Horowitz and S. Sahni, Fundamentals of Data Structures in PASCAL. New York,
USA: Computer Science Press, Inc, 1984.

[53] O. H. Ibarra and S. K. Sahni, “Polynomially Complete Fault Detection Problems,”
IEEE Trans. Computers, vol. C-24, pp. 242–247, Mar. 1975.

[54] M. A. Iyer and M. Abramovici, “FIRE: A Fault-Independent Combinational Redun-
dancy Identification Algorithm,” IEEE Trans. VLSI Systems, vol. 4, no. 2, pp. 295–301,
June 1996.

[55] N. K. Jha and S. Gupta, Testing of Digital Systems. Cambridge University Press,
2003.

[56] T. P. Kelsey, K. K. Saluja, and S. Y. Lee, “An Efficient Algorithm for Sequential
Circuit Test Generation,” IEEE Trans. Computers, vol. 42, no. 11, pp. 1361–1371,
Nov. 1993.

[57] B. Krishnamurthy and S. B. Akers, “On the Complexity of Estimating the Size of a
Test Set,” IEEE Trans. Computers, vol. C-33, no. 8, pp. 750–753, Aug. 1984.

[58] S. Kundu, “Pitfalls of Hierarchical Fault Simulation,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, no. 2, pp. 312–314, Feb. 2004.

71

[59] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for Combinational Cir-
cuits,” Technical Report 12 93, Dept. of Electrical Eng., Virginia Polytechnic Institute
and State University, 1993.

[60] J. Lee and J. H. Patel, “Hierarchical Test Generation under Architectural Level Func-
tional Constraints,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 1144–1151, Sept. 1996.

[61] A. Lioy, “Looking for Functional Fault Equivalence,” Proc. International Test Conf.,
Oct. 1991, pp. 858–863.

[62] A. Lioy, “Advanced Fault Collapsing,” IEEE Design & Test of Computers, vol. 9,
no. 1, pp. 64–71, Mar. 1992.

[63] A. Lioy, “On the Equivalence of Fanout-Point Faults,” IEEE Trans. Computers, vol. 42,
no. 3, pp. 268–271, Mar. 1993.

[64] E. J. McCluskey and F. W. Clegg, “Fault Equivalence in Combinational Logic Net-
works,” IEEE Trans. Computers, vol. C-20, no. 11, pp. 1286–1293, Nov. 1971.

[65] V. J. Mehta, K. K. Dave, V. D. Agrawal, and M. L. Bushnell, “A Fault-Independent
Transitive Closure Algorithm for Redundancy Identification,” Proc. 16th International
Conf. VLSI Design, Jan. 2003, pp. 149–154.

[66] A. Motohara, M. Murakami, M. Urano, Y. Masuda, and M. Sugano, “An approach
to fast hierarchical fault simulation,” Proc. 25th Design Automation Conference, 1988,
pp. 698–703.

[67] M. Nadjarbashi, Z. Navabi, and M. R. Movahedin, “Line Oriented Structural Equiva-
lence Fault Collapsing,” IEEE Workshop on Model and Test, 2000.

[68] T. M. Niermann and J. H. Patel, “HITEC: A Test Generation Package for Sequential
Circuits,” Proc. European Design Automation Conference, Feb. 1991, pp. 214–218.

[69] J. F. Poage, “Derivation of Optimum Tests to Detect Faults in Combinational Cir-
cuits,” Proc. Symposium on Mathematical Theory of Automata, April 1962, pp. 483–
528.

[70] J. F. Poage and E. J. McCluskey, “Derivation of Optimum Test Sequences for Sequen-
tial Machines,” Proc. 5th Symposium on Switching Theory and Logic Design, 1964, pp.
121–132.

[71] I. Pomeranz and Z. Kohavi, “The Minimum Test Set Problem for Circuits with Non-
reconvergent Fanout,” Journal of Electronic Testing: Theory and Application, vol. 2,
no. 4, pp. 339–349, Nov. 1991.

[72] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: A Method to Generate
Compact Test Sets for Combinational Circuits,” IEEE Trans. Computer-Aided Design,
vol. 12, no. 7, pp. 1040–1049, July 1993.

[73] I. Pomeranz and S. M. Reddy, “Level of Similarity: A Metric for Fault Collapsing,”
Proc. Design, Automation and Test in Europe Conf., volume 1, Feb. 2004, pp. 56–61.

72

[74] I. Pomeranz and S. M. Reddy, “On Fault Equivalence, Fault Dominance and Incom-
pletely Specified Test Sets,” IEEE Trans. Computer-Aided Design, 2005.

[75] A. V. S. S. Prasad, V. D. Agrawal, and M. V. Atre, “A New Algorithm for Global Fault
Collapsing into Equivalence and Dominance Sets,” Proc. International Test Conf., Oct.
2002, pp. 391–397.

[76] W. A. Rogers and J. A. Abraham, “CHIEFS: A Concurrent, Hierarchical and Exten-
sible Fault Simulator,” Proc. International Test Conf., March 2005.

[77] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed Algorithms to Com-
pute Tests to Detect and Distinguish Between Failures in Logic Circuits,” IEEE Trans.
Electronic Computers, vol. EC-16, no. 5, pp. 567–580, Oct. 1967.

[78] R. K. K. R. Sandireddy and V. D. Agrawal, “Diagnostic and Detection Fault Collapsing
for Multiple Output Circuits,” Proc. Design, Automation and Test in Europe Conf.,
March 2005.

[79] D. R. Schertz and G. Metze, “A New Representation for Faults in Combinational
Digital Circuits,” IEEE Trans. Computers, vol. C-21, no. 8, pp. 858–866, Aug. 1972.

[80] C. E. Stroud, “AUSIM: Auburn University SIMulator - Version 2.1,” Technical report,
Dept. of Electrical & Computer Engineering, Auburn University, March 12, 2004.

[81] K. To, “Fault Folding for Irredundant and Redundant Combinational Circuits,” IEEE
Trans. Computers, vol. C-22, no. 11, pp. 1008–1015, Nov. 1973.

[82] R. R. Tummala and E. J. Rymaszewski, editors, Microelectronics Packaging Handbook.
New York: Van Nostrand Reinhold, 1989. Page 677.

[83] A. Vaaje, “Theorems for Fault Collapsing in Combinational Circuits,” Journal of Elec-
tronic Testing: Theory and Application. To be published.

[84] A. Veneris, R. Chang, M. S. Abadir, and M. Amiri, “Fault Equivalence and Diagnostic
Test Generation Using ATPG,” Proc. IEEE International Symposium on Circuits and
Systems, May 2004, pp. 221–224.

[85] E. C. Weening and H. G. Kerkhoff, “A New Hierarchical Approach to Test-Pattern
Generation,” Proc. 4th IEEE International ASIC Conference and Exhibit, Sept. 1991,
pp. P6–1/1–4.

[86] H. C. Wittmann, B. H. Seiss, and K. J. Antreich, “Using Circuit Hierarchy for Fault
Simulation in Combinational and Sequential Circuits,” Proc. 4th European Conference
on Design Automation, Feb. 1993, pp. 432–436.

[87] P. Zhongliang, “Hierarchical Test Generation using Neural Networks for Digital Cir-
cuits,” Proc. International Conference on Neural Networks and Signal Processing, Dec.
2003, pp. 245–248.

73

Appendices

74

Appendix A

A Sample Library File used in Hierarchical Fault Collapsing

This appendix describes a sample file containing collapsed set information as

saved in the library of hierarchical collapsing technique. Such library files are used

with the hierarchical fault collapsing program described in Appendix B.

The circuit M in Figure 5.2, whose collapsed set file is shown in this appendix,

is repeated here as Figure A.1. Since this circuit has fewer gates than a pre-specified

number, say 15, functional collapsing technique of the algorithm in Section 4.2.1 is

used. The collapsed set file is as follows:

$INPUTs:

a 1 2

b* 3 4

$OUTPUTs:

g3 12 13

$TOTAL: 14

$FAULTs:

g1(0) 5

g1(1) 6

g3

g1

g2

a

b
�
�
�
�

Figure A.1: Circuit M.

75

g2(1) 9

$RELATIONs:

1: 4 5 12 0

2: 6 13 0

3: 9 13 0

4: 1 5 12 0

5: 1 4 12 0

6: 2 13 0

9: 13 0

12: 1 4 5 0

13: 0

$REDUNDANT:

g1(b,0) 14

The entries under $INPUTs: and $OUTPUTs: correspond to the primary inputs

and outputs of the circuit, respectively. The * on the input b indicates that b is a

fanout stem in the circuit. This helps in deciding whether the line corresponding to

this input has any significance at the level of hierarchy, where an instance of this

circuit is used.

All faults are addressed by numbers. The two numbers against each input and

output are the numbers representing stuck-at-0 and stuck-at-1 faults in that order.

For example, line a stuck-at-0 is a fault numbered 1 and a stuck-at-1 is numbered

2. $TOTAL: gives the total number of faults in the circuit. The entries listed under

$FAULTs: are the faults of the collapsed set file that are neither on the input nor

on the output line with the corresponding fault number. These faults are added to

76

the dominance matrix of any circuit, which uses an instance of the library circuit

described in this appendix, irrespective of the way the library file is embed. Each line

under $RELATIONs: lists the faults, ending with 0, that dominate the fault before

colon (:). The redundant faults, if any, of the circuit are listed under $REDUNDANT:.

For a circuit in which faults are structurally collapsed, the library file will not have

any redundant faults.

77

Appendix B

Description of the Program used for Hierarchical Collapsing

This appendix explains the program used for collapsing the faults hierarchically.

The program is written in the C language.

To start with, the input file (ISCAS’89 netlist format, often referred to as the

bench format [21]) is read and the circuit structure is built. Corresponding to every

primary input and gate in the circuit, there is a node in the linked list representing

the circuit structure. The variables associated with every node are identified using

the following data type:

struct list1

{ char name[20];

int type;

int fanouts;

struct list5 *faults;

struct list7 *fans;

struct list7 *inputs;

char visited;

}

The functionality of each variable in the structure is as follows:

name: name of the gate or primary input, which is assumed to be fewer than 20

characters.

78

type: type of the gate - an integer 1 indicates a primary input, 2 indicates a sub-

circuit, 3 indicates an AND gate, and so on.

fanouts: number of fanouts to the gate.

faults: a pointer to the linked list which contains all stuck-at faults associated with

the gate.

fans: a pointer to the linked list which contains pointers to the nodes representing

its fanout gates.

inputs: a pointer to the linked list which contains pointers to the nodes representing

its fanin gates.

visited: a flag used while performing equivalence collapsing.

First, the primary inputs are read through the INPUT(name) statements and

a node is created. For every gate description in the netlist, a node is created and

correspondingly a linked list pointed to by its inputs variable is created. For each

node representing this gate’s inputs, the linked list pointed to by fans is updated with

a pointer to the gate node. This is done for all the gates in the circuit description. A

separate list of pointers is created to the nodes representing instances of sub-circuits.

Once the circuit structure is built, equivalence collapsed set is obtained using

the function findeq. The function findeq adds faults to the collapsed set, which is

initially empty, based on the line collapsing technique described in Section 5.1. The

function calls itself for each fanout node of the gate. This is a recursive function and

terminates only when it reaches a primary output or a node that has already been

visited. The variable visited is used for this purpose. The function is called once for

each primary input ensuring that we visit all nodes in the circuit structure. Then the

79

dominance relations between the faults in the equivalence collapsed set are found as

described in Section 5.1.1. The dominance matrix which represents the dominance

relationships between faults, as described in Section 2.5, is implemented using a sparse

matrix representation. Every fault is given a unique number to represent it in the

sparse matrix.

Before dealing with sub-circuits, it is checked whether the outputs of all the

instances of sub-circuits have both s-a-0 and s-a-1 faults in the collapsed set. If not,

they are added so that there will be an equivalent fault already in the collapsed set.

After inserting these fault relations, the transitive closure of the dominance matrix is

computed using the update algorithm [33, 34]. Now, the library file corresponding to

each sub-circuit used is read. If the library file is not found, it is created dynamically.

If the number of gates in the sub-circuit is less than a pre-specified number, say 15,

we use the ATPG-based functional collapsing technique as described in the algorithm

of Section 4.2.1. Otherwise, the C program (that is, the one being described in this

appendix) is called with the sub-circuit description as its input. Faults in the library

file that are not on either input or output lines are added. The faults on the input

and output lines are either merged with the corresponding lines at the higher level of

hierarchy or neglected as described in Chapter 5. A sample library file is shown in

Appendix A.

The algorithm equivalence and algorithm dominance, as explained in Section 3.2.1,

are modified to suit the sparse matrix representation. Algorithm Equivalence removes

all the extra faults that are added on the output lines of the instances of sub-circuits.

Now, the library file containing the equivalent faults in the circuit is created for future

80

use in hierarchical collapsing. Just for the sake of library file, both s-a-0 and s-a-1

faults on the primary inputs are added, if not already present, and the corresponding

dominance relationships with these faults are updated. Then the modified algorithm

dominance is applied to obtain dominance collapsed set. Finally, the equivalence and

dominance collapsing results are written onto an output file.

81

