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The aim is to analyze two very different methods for solving the inverse kinematic

robotics problem. The first method, called the Engineering Approach, uses the Denavit-

Hartenberg Matrix, and the second method, called the Mathematician’s Approach, uses

Groebner Basis Theory and MAGMA, a mathematics computer software package. With

each approach, we will solve the inverse kinematics robotics problem for various robot

manipulators. By comparing each method, this paper will demonstrate that Groebner Basis

Theory is more advantageous, and furthermore, more beneficial to the field of mathematics

and robotics engineering.
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Chapter 1

Introduction

Robots have become an integral part of everyday life. Automobiles, household prod-

ucts, and canned or boxed foods, are all prepared by assembly line robots. In this paper, we

highlight the importance of studying robotic motion to perform these tasks. In particular,

we are concerned with finding all of the possible movements needed in order to move the

robot hand to a desired location where it may pick up, pull, or push an object. By deter-

mining a robot’s capabilities, we can better classify the robot for specific tasks improving

efficiency and productivity. We call the problem of finding all possible movements the in-

verse kinematics robotics problem.

The inverse kinematic robotics problem has proved to be of great significance because

the solutions found provide control over the position and orientation of the robot hand.

Studies have shown that the inverse kinematic robotics problem can be solved using matrix

algebra, iterative procedures, or geometric applications. Paul [18] used a matrix algebra

technique called the Denavit-Hartenberg Matrix, preferred by engineers because of its sim-

plicity and repetition, to obtain an inverse kinematic solution for a robot manipulator.

Huang [7], Manseur and Doty [15] have developed iterative procedures to obtain a solution.

These iterative methods require rigorous calculations that do not necessarily converge to

a correct solution. Lastly, Lee [14], Yih and Youm [23] applied a geometric approach to

solving the inverse kinematic robotics problem. The works of these authors are profound,

but it is unclear which method to use. Is one method more efficient in calculating real
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solutions in real-time than another? This is debatable, but what is overwhelmingly evident

is the popularity of the Denavit-Hartenberg Matrix.

Derived by authors J. Denavit and R. S. Hartenberg, the Denavit-Hartenberg Matrix

(The Engineering Approach) is the most widely used technique for solving the inverse kine-

matic robotics problem for several reasons. One, specific intervals can be formed describing

the angle of rotation or translation of each joint of a robot manipulator. These intervals

define the potential movement of each joint. Two, with these intervals of movement, certain

parameters can be used in a matrix to describe the movement of the i− 1th joint in terms

of the ith joint. Therefore, each joint can be described by a matrix. Three, the product

of all of these joint matrices describes the final position of the robot hand in space. In

summary, the Denavit-Hartenberg Matrix is easy to use and easy to understand. However,

when using this technique, we encounter the following difficulties: the need for additional

methods and algorithms to solve the problem, matrix computations may be too large or

too complex, some solutions cannot be found in real-time, and some solutions are not easily

found.

Given these difficulties, and those associated with other engineering approaches, we

look for an alternate method that can resolve them. Hence, Groebner Basis Theory (The

Mathematician’s Approach). Developed by Bruno Buchberger, an algebraic algorithm can

be applied to a given set of non-zero polynomials, producing a basis set, such that every

polynomial in the original set is a linear combination of those polynomials in the basis set.

By finding solutions to this basis set, we thereby find solutions to the entire set. With the

aid of MAGMA, an algebraic computer software package, we can calculate these solutions

in real-time, and consider cases not as easily solved using the Denavit-Hartenberg Matrix,

2



thereby finding all possible solutions.

To familiarize the reader with each approach, we begin by solving the inverse kinematic

robotics problem for the GMF Robotics A-510 Robot. By demonstrating each approach on

a robot with a simple construction, we are able to reveal where potential problems in the

Engineering Approach can arise. We then extend our knowledge and apply each approach

to a different class of robot manipulators. We will analyze each method and compare their

corresponding solutions. The aim is to present to engineers and mathematicians an appli-

cation of Groebner Basis Theory that can solve the inverse kinematics robotics problem

while resolving the difficulties engineers face using the Denavit-Hartenberg Matrix.

In the past, solving the inverse kinematic robotics problem for various robot manip-

ulators has advanced the field of robotics engineering, but this comparative study will

contribute to the advancement of the field of mathematics, as well, and more importantly,

continue to satisfy the needs of a growing industry dependent upon robots.

We begin by introducing the GMF Robotics A-510 Robot in Chapter 2, where we dis-

cuss the robot’s specifications, definitions, and important properties. Next is Chapter 3

which focuses on kinematics. Here, the inverse kinematic robotics problem is explained in

more detail. Chapter 4 is devoted to the Engineering Approach of the Denavit-Hartenberg

Matrix. A derivation of the Denavit-Hartenberg Matrix is given as well as a solution to

the inverse kinematics robotics problem. Chapter 5 is devoted to the Mathematicians’ Ap-

proach of Groebner Basis Theory. The algorithm for finding a Groebner basis is provided

as well as a solution to the inverse kinematic robotics problem. At the end of chapters four

and five, there is a small summary of the solutions found. It is in Chapter 6 where we

3



extend our knowledge and apply each approach to an entire class of robot manipulators. A

brief conclusion follows summarizing the findings in this paper.
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Chapter 2

The GMF Robotics A-510 Robot Manipulator

2.1 Introduction

The GMF Robotics A-510 Robot is manufactured by GMF FANUC Robotics and

is typically used to perform assembly line tasks. The GMF Robotics A-510 Robot that

is used in this study presently sits in the Electrical Engineering Robotics Laboratory at

Auburn University in Auburn, Alabama. This robot came from the General Motors Saturn

Automotive Plant in Tennessee. Various tools such as grippers, welders, and spray guns

can be attached to the robot to perform specific tasks. We explore other attributes of the

robot below.

2.2 Definitions

Definition 1: A robot manipulator consists of links which are connected to one another by

joints.

Definition 2: A link is a rigid body in a robot manipulator. A link is also called a segment.

Definition 3: There are two types of joints. A revolute joint which is a rotary joint that

allows the rotation of one link about the joint of the preceding link, and a prismatic

joint which is a linear joint that allows translation between joints.

Definition 4: A serial link manipulator is a robot manipulator in which links and joints

are arranged in an alternating fashion.

5



Segment

Revolute Joint 

Prismatic Joint 

Figure 2.1: Robot Manipulator identifying segments and joints.

Definition 5: An end effector is the last joint in a serial link manipulator. The end effector

is typically called the robot hand since various tools can be attached to the end effector

to have the robot perform different tasks.

Definition 6: A degree of freedom represents a joint-link pair.

2.3 Properties

The GMF Robotics A-510 robot has four degrees of freedom. The first joint is a

prismatic joint and the second, third, and fourth are revolute joints. The motion of each

joint axis is described in the table below.

• The Z axis has a vertical motion of 300mm.(Prismatic Joint)

• The Theta axis has a horizontal rotation of 300 degrees. (Revolute Joint)

• The U axis has a horizontal rotation of 300 degrees. (Revolute Joint)

• The α axis (end effector) has a rotation of 540 degrees. (We are only concerned with

where this joint will be placed in space, so we will not incorporate this axis in future

calculations.)
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Figure 2.2: GMF A-510 Robot, ref. Hung [8].

Figure 2.3: Axis Motion for GMF A-510 Robot, ref. Hung [8].
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Chapter 3

The Inverse Kinematic Robotics Problem

3.1 Definitions

Definition 1: Kinematics is the study of motion, ignoring such factors as mass, gravity,

and torques.

Definition 2: A Kinematic Chain is a robot manipulator in which each joint has at most

two links. Moreover, a Kinematic Chain is a serial link manipulator whose first link

is connected to the base and whose final joint is connected to just one link, leaving

the remaining end open. Thus, in a Kinematic Chain no closed loops can be formed.

There are two types of kinematic problems: The Forward Kinematics Robotics Problem

and The Inverse Kinematics Robotics Problem.

3.2 Forward Kinematic Robotics Problem

The Forward Kinematic Robotics Problem: Given a robot manipulator with specific

joint angles, we can find the exact position and orientation of the robot hand (end

effector).

Because of its simplicity, the Forward Kinematic Robotics Problem gains little interest.
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3.3 Inverse Kinematic Robotics Problem

The Inverse Kinematic Robotics Problem: Given an orientation and position for a

robotic arm, we want to show that by finding all possible combinations of joint set-

tings, we can place the hand of the robot at this exact point and orientation.

The inverse kinematic robotics problem has been the focus of kinematic analysis for

robot manipulators. In order to determine all possible formations to place the end effector

of a robot manipulator at a particular point in space, we must compute the movements

associated with each joint variable. In doing so, over the span of several decades, authors

have faced the following difficulties:

• The complexity of the inverse kinematic robotics problem is determined by the geom-

etry of the robot manipulator.

• Some calculations to solving the inverse kinematic problem cannot be computed in

real-time.

• There can be difficulty in finding all possible solutions.

• There can be difficulty in finding real solutions.

The GMF Robotics A510 Robot is formed by a set of interconnected rigid bodies called

links and these rigid bodies are connected by prismatic or revolute joints. We are interested

9



in how these bodies move in relation to one another in order to place the robot hand, or

end effector, at a desired point in space. Hence, our focus on the inverse kinematic robotics

problem.
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Chapter 4

The Engineering Approach

4.1 Introduction

The Engineering Approach uses the Denavit-Hartenberg Matrix to solve the inverse

kinematic robotics problem. With some examples, we derive the Denavit-Hartenberg Ma-

trix, then use the Denavit-Hartenberg Matrix to find a solution to the inverse kinematic

robotics problem for the GMF Robotics A-510 Robot.

4.2 Homogeneous Coordinates and Matrices

4.2.1 Definitions

Definition 1: Homogeneous Coordinates are an alternate way of representing a three di-

mensional vector, but have the addition of a fourth component called a scaling factor,

and all of the components are multiplied by this scaling factor.

Example: In matrix form, the homogeneous representation of a vector ~v is




x′

y′

z′

s




11



where s is the scaling factor and x′ = sx , y′ = sy and z′ = sz.

4.2.2 Remarks

1. Homogeneous representations are not unique.

2. The null vector is represented as




0

0

0

s




where s is a non-zero real number.

3. A vector is undefined if all the entries are zero.

4. Vector operations such as the Dot Product and Cross Product have homogeneous

representations.

4.3 Transformations

Transformations are a class of matrix operators that can perform vector operations

resulting in the translation or rotation of a vector. There are two types of transformations:

translational and rotational.
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4.3.1 Translational Transformations

A Translational Transformation denoted Trans(a,b,c) moves a point defined by a vector

~x, to a new point defined by a vector ~y. The location of ~y is given by the vector addition of

~x with a translation vector defined by (a,b,c), where a,b,c represent the components of the

vector that are added to the components of the vector ~x. In other words, we are moving

a point described by a vector ~x along the diagonal (a,b,c) to a new point described by the

vector ~y. Trans(a,b,c) is defined as

Trans(a, b, c) =




1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1




The vector components a,b,c are added to the vector ~x to get the point described by

the vector ~y.

Example: Let P = (2, 1) be a point in the xy-plane. We wish to move P along the diagonal

of 30◦ for a distance of 8 units to a new point P ′. What are the coordinates of the

final point P ′ = (x2, y2)?

Solution: The homogeneous representation of P is,

13



~P =




2

1

0

1




Since we are moving ~P along a 30◦ diagonal, the unit vector corresponding to this

direction is

~u =




√
3

2

1
2

0

1




The vector of length 8 along 30◦ is

~u′ =




4
√

3

4

0

1
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P

P’

2

1

8 units

30

x

y

2

Figure 4.1: Translational Transformation Example

In homogeneous representation, then,

~P ′ =




1 0 0 4
√

3

0 1 0 4

0 0 1 0

0 0 0 1







2

1

0

1




=




2 + 4
√

3

5

0

1




So,

P ′ = (2 + 4
√

3, 5)

Note: In the computation of ~P ′ the scaling factor is 1.

In summary, a translational transformation describes motion along a line.
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4.3.2 Rotational Transformations

A Rotational Transformation, denoted Rot(axis,θ), moves a point defined by a vector

to a new position in space by rotating the point by θ about an axis.

Using homogeneous representation, we have the following rotational transformations:

For rotation about the x-axis,

Rot(x, θ) =




1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1




For rotation about the y-axis,

Rot(y, θ) =




cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1




For rotation about the z-axis,
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Rot(z, θ) =




cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1




The angle of rotation can be positive or negative and is defined by using the right-hand

rule. Rotation is positive if the cross product of two axes is in the positive direction of the

third axis. That is, the cross product of the initial and final vectors is in the same direction

as the axis about which the rotation is to be performed. For example, the cross product of

~x× ~y = ~z, so positive rotation will occur about the z-axis.

Example:

Let

~P =




2

2

2

1




We wish to rotate ~P , 45◦ about the z-axis to the point described by the vector ~P ′.

What would the homogeneous coordinate for ~P ′ be?

Solution:

17



First, we wish to find

Rot(z, 45) =




cos 45 − sin 45 0 0

sin 45 cos 45 0 0

0 0 1 0

0 0 0 1




Then,

~P ′ = Rot(z, 45) ∗ ~P =




√
2

2
−√2

2 0 0
√

2
2

√
2

2 0 0

0 0 1 0

0 0 0 1







2

2

2

1




=




0

2
√

2

2

1




Thus,

~P ′ = (0, 2
√

2, 2, 1)

.

4.4 The Denavit-Hartenberg Matrix

4.4.1 Introduction

To understand the Denavit-Hartenberg Matrix, we must first understand how it is de-

rived. The Denavit-Hartenberg Matrix is a special form of a homogeneous transformation
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Figure 4.2: Homogeneous Transformation Matrix I, ref. Klafter [10].

matrix, a 4 × 4 matrix having the property of transforming a vector from one coordinate

frame to another by means of a translation or rotation. For a kinematic chain with n-joints

and n − 1-links, each joint is assigned a frame of reference. We can align each frame of

reference by performing a series of rotations and transformations. Thus, each joint can be

represented by a homogeneous transformation matrix describing the particular rotation or

translation needed to align the i− 1th joint with ith joint. The product of these matrices

gives the final position of the nth joint. In this case, the nth joint represents the robot hand

(end effector).

4.4.2 Derivation of the Denavit-Hartenberg Matrix

A homogeneous transformation matrix can be described in two different ways. One

way is

For the matrix above,

1. The upper left 3× 3 matrix is the Rotation Matrix

2. The 3× 1 vector describes the Position vector (or Translation)

3. The 1× 3 vector is called the Perspective Transform, and is {0, 0, 0}.

19



4. The 1× 1 vector is the Scaling Factor, and will always be represented as s = 1.

On the other hand, we can also describe the homogeneous transformation matrix as:




nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1




Figure 4.2 Homogeneous Transformation Matrix II.

The matrix above, also known as the T-Variable Matrix, describes the direction vectors

for the x, y, and z axes of frame 2 in terms of the direction vectors for the x, y, and z axes of

frame 1, where the normal vector ~n represents the x-axis, the orientation vector ~o represents

the y-axis, and the approach vector ~a represents the z-axis.

1. For the first column, nx, ny, nz are the components of the unit vector defining the

x-axis of frame 2 in terms of the three unit vectors of the axes from frame 1.

2. For the second column, ox, oy, oz are the components of the unit vector defining the

y-axis of frame 2 in terms of the three unit vectors of the axes from frame 1.

3. For the third column, ax, ay, az are the components of the unit vector defining the

z-axis of frame 2 in terms of the three unit vectors of the axes from frame 1.

4. The fourth column is position of frame 2 with respect to frame 1.

20



Figure 4.3: Displaced Reference Frames in the Same Space, ref. Klafter [10].

[Klafter]

In the above examples, we have looked at vectors in an orthogonal reference frame.

Now, we will consider a space consisting of two or more orthogonal reference frames whose

origins are displaced.

Note: We can use the previous transformation operators to align the displaced refer-

ence frames.

Notation: The symbol Amn represents homogeneous transformation matrices that relate

points in frame n in terms of frame m. In particular, A0n = A01 ×A12 ×A23 × · · · ×

A(n−1)n.

Consider the following figure.
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Figure 4.4: Alignment of Reference Frames Example,ref. Klafter [10].

Then,

A03 = A01 ×A12 ×A23 =




−1 0 0 0

0 0 1 0

0 1 0 z

0 0 0 1







0 0 −1 0

0 1 0 0

1 0 0 y1

0 0 0 1







0 1 0 y2

0 0 1 0

1 0 0 0

0 0 0 1




=




1 0 0 0

0 1 0 y1 + y2

0 0 1 z

0 0 0 1




Definition: The Inverse Homogeneous Transformation Matrix of Amn is Anm. Hence, the

inverse of a homogeneous transformation is defined by (Amn)−1 = Anm. Thus, it

follows that Amn ×Anm = I, the identity matrix.
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Figure 4.5: Establishing Link Coordinate Reference Frames, ref. Lee [14].

Looking at the above example, the inverse is simply taking the reverse. So, to find (A03)−1,

we simply walk backwards from the third reference frame and work our way towards the

zero reference frame.

Similarly, a cartesian coordinate system can be assigned to each joint of a robot manipulator

such that each connected link is assigned a particular coordinate axis. Each link coordinate

frame is determined using the following rules:

1. The zi−1 axis lies along the axis of motion of the ith joint.

2. The xi axis is normal to the zi−1 axis, with it’s positive direction towards the zi axis.

3. The yi axis is chosen so that the three axes form a right-handed system, ref. Lee [14].

There are four parameters associated with each link: ai, the length of the link, αi, the link

twist, di, the linear distance of a prismatic joint, and θi, the degree rotation of a revolute
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joint. Each of these parameters is defined with respect to two joint axes attached to a

particular link, such that

• θi is the joint angle from the xi−1 axis to the xi about the zi−1 axis (using the right-

hand rule)

• di is the distance from the origin of the (i− 1)th coordinate frame to the intersection

of the zi−1 axis with the xi axis along the zi−1 axis.

• ai is the distance from the intersection of the zi−1 axis with the xi axis to the origin

of the ith frame along the xi axis.

• αi is the angle from the zi−1 axis to the zi axis about the xi axis.[Lee]

Observe that ai and αi describe the structure of a link whereas di and θi describe the

position in regards to neighboring links.

Note: Assignment of reference frames is not unique.

Once the link coordinate frames are established, these four parameters are used in a

transformation matrix to define the relationship between consecutive frames. This matrix is

called the Denavit-Hartenberg Matrix (D-H Matrix), a homogeneous transformation matrix

solely defined by the four link parameters and can be found by a series of translations and

rotations.

Using the link parameters, let Rot(axis, θi) denote a rotational transformation about

the given axis θi degrees, and let Trans(a,b,c) denote a translational transformation that
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moves a point defined by a vector ~x, along the diagonal (a,b,c) to a new point defined by a

vector ~y. Then, the product of these transformations in this order gives the D-H Matrix:

A(i−1)i = Rot(xi, αi)Trans(ai, 0, 0)Trans(0, 0, di)Rot(zi−1, θi)

=




cos θi − cos αi sin θi sin αi sin θi ai cos θi

sin θi cos αi cos θi − sinαi cos θi ai sin θi

0 sin αi cos αi di

0 0 0 1




Note: When solving the inverse kinematic robotics problems, ai and αi are constants

and either di and θi are joint variables.

Thus, for an n-degree of freedom manipulator, let P be the matrix which is a function

of all of the joint variables, then,

P = A0n = A01 ×A12 ×A23 × · · · ×A(n−1)n

where each Aij matrix is of the D-H Matrix form.
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Figure 4.6: Establishing Link Coordinate Frames for the GMF A-510 Robot, ref. Hung [8].

4.5 A Kinematic Model for the GMF Robotics A510 Robot

The GMF Robotics A-510 robot has four degrees of freedom. However, the following

kinematic model focuses on the first three joints. The last joint refers to the robot hand

or end effector. Since we are solving the inverse kinematic robotics problem, we are only

interested in where this fourth joint, the robot hand (end effector) will be placed in space.

We establish the link coordinate frames in Figure 4.6.

Then describe each joint in terms of the four parameters ai, αi, θi, and di. Below is a table

describing the joint parameters of the GMF Robotics A510 Robot.

Table 4.1: Table of A-510 link parameters, ref. Hung [8].

Joint, i type GMF name location ai αi θi di

1 rotational Theta waist 0 0 θ1 980 mm
2 prismatic Z - 410 mm 0 0 d2

3 rotational U elbow 330 mm 0 θ3 0
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The information in the table allows us to form the following transformation matrices.

A01 =




cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 1 0

0 0 0 1




A12 =




1 0 0 410

0 1 0 0

0 0 1 d2

0 0 0 1




A23 =




cos θ3 − sin θ3 0 330 ∗ cos θ3

sin θ3 cos θ3 0 330 ∗ sin θ3

0 0 1 0

0 0 0 1
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4.6 Solving the Inverse Kinematic Robotics Problem

To solve the inverse kinematic robotics problem for the GMF Robotics A510 Robot,

let P = A01×A12×A23 . Using MAPLE, a mathematics computer package, we calculate P .

P=

2
666666664

cos θ1 cos θ3 − sin θ1 sin θ3 − cos θ1 sin θ3 − sin θ1 cos θ3 0 330 cos θ1 cos θ3 − 330 sin θ1 sin θ3 + 410 cos θ1

sin θ1 cos θ3 + cos θ1 sin θ3 cos θ1 cos θ3 − sin θ1 sin θ3 0 330 sin θ1 cos θ3 + 330 cos θ1 sin θ3 + 410 sin θ1

0 0 1 980 + d2

0 0 0 1

3
777777775

The fourth column represents the final position of the end effector. Using the Matrix Ma-

nipulation Method [8], we set the T-Variable Matrix equal to P , the final position matrix,

and get

T −VariableMatrix =




nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1




=




cos θ1 cos θ3 − sin θ1 sin θ3 − cos θ1 sin θ3 − sin θ1 cos θ3 0 330 cos θ1 cos θ3 − 330 sin θ1 sin θ3 + 410 cos θ1

sin θ1 cos θ3 + cos θ1 sin θ3 cos θ1 cos θ3 − sin θ1 sin θ3 0 330 sin θ1 cos θ3 + 330 cos θ1 sin θ3 + 410 sin θ1

0 0 1 980 + d2

0 0 0 1
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We want to find d2, θ1, and θ3 that satisfy those equations in the fourth column representing

px, py, and pz. That is, we want to find those joint angles, that will allow the end effector

to reach the points in space described by

=




330 cos θ1 cos θ3 − 330 sin θ1 sin θ3 + 410 cos θ1

330 sin θ1 cos θ3 + 330 cos θ1 sin θ3 + 410 sin θ1

980 + d2

1




We multiply each side by A−1
1 such that

A−1
1 × T −VariableMatrix = A2 ×A3

2
666666664

cos θ1 sin θ1 0 0

− sin θ1 cos θ1 0 0

0 0 1 −980

0 0 0 1

3
777777775

2
666666664

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

3
777777775

=

2
666666664

cos θ3 − sin θ3 0 330 cos θ3 + 410

sin θ3 cos θ3 0 330 sin θ3

0 0 1 d2

0 0 0 1

3
777777775
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Simplifying the left-hand side (LHS) further, we have

A−1
1 × T −VariableMatrix

=




nx cos θ1 + ny sin θ1 ox cos θ1 + oy sin θ1 ax cos θ1 + ay sin θ1 px cos θ1 + py sin θ1

−nx sin θ1 + ny cos θ1 −0x sin θ1 + oy cos θ1 −ax sin θ1 + ay cos θ1 −px sin θ1 + py cos θ1

nz oz az pz − 980

0 0 0 1




=




cos θ3 − sin θ3 0 330 cos θ3 + 410

sin θ3 cos θ3 0 330 sin θ3

0 0 1 d2

0 0 0 1




=

A2 ×A3

We then set the elements of each matrix equal to one another. In particular, we have

(4.1) px cos θ1 + py sin θ1 = 330 cos θ3 + 410
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(4.2) −px sin θ1 + py cos θ1 = 330 sin θ3

(4.3) d2 = pz − 980

Thus, we have found d2 = pz − 980. So we have found one of the three unknown variables.

However, we still need to find θ1 and θ3.

To find θ3 , we use (4.1) and (4.2). Observe by squaring both sides of (4.1),

(4.4) (px cos θ1 + py sin θ1)2 = (330 cos θ3 + 410)2

gives

(4.5) p2
x(cos θ1)

2 + 2pxpy cos θ1 sin θ1 + p2
y(sin θ1)

2 = 3302(cos θ3)
2 + 2 ∗ 410 ∗ 330 cos θ3 + 4102

And by squaring both sides of (4.2)

(−px sin θ1 + py cos θ1)2 = (330 sin θ3)2
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gives

(4.6) p2
x(sin θ1)2 − 2pxpy cos θ1 sin θ1 + p2

y(cos θ1)2 = 3302(sin θ3)2

Then, by adding (4.5) and (4.6), we get

(4.7) p2
x + p2

y = 3302 + 2 ∗ 410 ∗ 330 cos θ3 + 4102

Then,

(4.8)
p2

x + p2
y − 3302 − 4102

2 ∗ 410 ∗ 330
= cos θ3 = X3

Now, we shall find sin θ3. To do so, we substitute for cos θ3 in (4.1), and square both sides,

then add (4.6).

p2
x(cos θ1)

2 + 2pxpy cos θ1 sin θ1 + p2
y(sin θ1)

2 = {330(p2
x + p2

y − 3302 − 4102)

2 ∗ 410 ∗ 330
+ 410}2

+p2
x(sin θ1)

2 − 2pxpy cos θ1 sin θ1 + p2
y(cos θ1)

2 = 3302(sin θ3)
2
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Combining the left-hand sides and right-hand sides respectively, yields

p2
x + p2

y = {330 ∗ (p2
x + p2

y − 3302 − 4102)
2 ∗ 410 ∗ 330

+ 410}2 + 3302(sin θ3)2

Then,

(4.9) ±

√
p2

x + p2
y − {330 ∗ (p2

x+p2
y−3302−4102)

(2∗410∗330) + 4102}
330

= sin θ3 = Y3

Thus,

(4.10) θ3 = tan−1(
Y3

X3
), for

−π

2
≤ θ3 ≤ π

2

Now that we have found θ3, we look to find θ1. Using (4.1) and (4.2), we have two equations

in two unknowns

px cos θ1 + py sin θ1 = 330 cos θ3 + 410

−px sin θ1 + py cos θ1 = 330 sin θ3
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Using elimination, we solve the system of equations to get

(4.11) Y1 = sin θ1 =
−py(330X3 + 410) + px330Y3

−p2
x − p2

y

and

(4.12) X1 = cos θ1 =
(330X3 + 410)px + 330Y3py

p2
x + p2

y

Thus,

(4.13) θ1 = tan−1(
Y1

X1
), for

−π

2
≤ θ1 ≤ π

2

So, we have found the joint angles (d2, θ1, and θ3) that will allow the end effector to touch

the points (px, py, pz) in space. Hence, the inverse kinematic robotics problem for the GMF

Robotics A-510 Robot is solved.

4.6.1 Case Examples

We verify these results in the following examples:

Note: Since pz determines the height of (px, py), we restrict our focus to (px, py), with the
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L3 = 330L1=410

(Px,Py)

Figure 4.7: Case 1: L1 and L3 are Collinear

understanding that (px, py) can occur at any height pz.

Case 1: When L1 and L3 are Collinear

If L1 = 410 and L3 = 330 are collinear, then θ3 = 0◦. Thus, for θ1 from −150◦ ≤ θ1 ≤ 150◦,

we have the following

px = 330 cos(θ1 + 0) + 410 cos θ1 = 740 cos θ1

py = 330 sin(θ1 + 0) + 410 sin θ1 = 740 sin θ1
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Thus, there is one formation to reach the point (px, py).

Case 2: A Point Inside a Circle of Radius r = 740 Centered at the Origin

We wish to find (px, py) where θ1 = 30◦ and θ3 = 30◦ by using the Forward Kinematic

Robotics Problem

px = 330 cos(60) + 410 cos(30) = 165 + 205
√

3

py = 330 sin(60) + 410 sin(30) = 165
√

3 + 205

Using the Inverse Kinematic Robotics Problem, we check these results. Given the final

position described by px and py, we wish to find θ1 and θ3. We substitute into the equations

derived in the previous section,

X3 = cos θ3 =
(165 + 205

√
3)2 + (165

√
3 + 205)2 − 3302 − 4102

2 ∗ 410 ∗ 330
=
√

3
2
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Y3 = sin θ3 = ±

√
(165 + 205

√
3)2 + (165

√
3 + 205)2 − (330

√
3

2 + 410)2

330
= ±1

2

Thus,

θ3 = tan−1(
1
2√
3

2

) = 30◦ for
−π

2
≤ θ3 ≤ π

2

and,

θ3 = tan−1(
−1
2√
3

2

) = −30◦ for
−π

2
≤ θ3 ≤ π

2

To find θ1, using Y3 = 1
2 , we substitute these values into the equations above to get

Y1 = sin θ1 =
−(165

√
3 + 205)(330

√
3

2 + 410) + (165 + 205
√

3)3301
2

−(165 + 205
√

3)2 − (165
√

3 + 205)2
=

1
2

X1 = cos θ1 =
(330

√
3

2 + 410)(165 + 205
√

3) + 3301
2(165

√
3 + 205)

(165 + 205
√

3)2 + (165
√

3 + 205)2
=
√

3
2
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Thus,

θ1 = tan−1(
1
2√
3

2

) = 30◦

Also, we need to find θ1 when Y3 = −1
2

Y1 = sin θ1 =
−(165

√
3 + 205)(330

√
3

2 + 410) + (165 + 205
√

3)330−1
2

−(165 + 205
√

3)2 − (165
√

3 + 205)2
= 0.84

X1 = cos θ1 =
(330

√
3

2 + 410)(165 + 205
√

3) + 330−1
2 (165

√
3 + 205)

(165 + 205
√

3)2 + (165
√

3 + 205)2
= 0.55

Thus,

θ1 = tan−1(
0.84
0.55

) ≈ 56.83◦
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L3 = 330L1=410

(Px, Py)

Figure 4.8: Case 2: A Point Inside a Circle Centered at the Origin of radius r = 740

Since we solved a quadratic equation for Y3, we found two solutions for θ3 and two

corresponding solutions for θ1. Hence, there are two joint settings that will place the robot

hand at (px, py) = (165 + 205
√

3, 165
√

3 + 205). They are

θ3 = 30◦ θ1 = 30◦

and

θ3 = −30◦ θ1 = 56.83◦

Thus, we have found all joint settings that will place the robot hand at (px, py) =

(165 + 205
√

3, 165
√

3 + 205).
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L3 = 330

L1=410 

(Px ,Py)

Figure 4.9: Case 3: A Point Outside a Circle Centered at the Origin of radius r = 740

Case 3: A Point Outside a Circle of Radius r = 740 Centered at the Origin

Let (px, py) = (760, 760). We need to calculate θ1 and θ3.

For θ3,

X3 = cos θ3 =
7602 + 7602 − 3302 − 4102

2 ∗ 410 ∗ 330
=

878200
270600

= 3.24538

But this is a contradiction since cos θ3 must lie between −1 and 1.

It is clear that a solution for θ3 will not be found. Thus, a solution for θ1 will not be

found. Hence, this example supports the fact that only those values that lie in the specified

domain for each joint variable have the potential to exist as possible solutions.
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Two Solutions

No Solutions 

One Solution 

Figure 4.10: Summary of Solutions

4.7 Summary: Engineering Approach

4.7.1 Results for the GMF Robotics A510 Robot

We have found d2, θ1, and θ3. In particular, we found θ1 and θ3 in terms of (px, py).

From this representation, however, we are not able to gain enough information about each

(px, py). In fact, we don’t know if (px, py) is a reachable point in space unless we substitute it

into the equations derived for θ1 and θ3. This could become tedious. From our calculations

of a quadratic equation, the most we can conclude is that there are two angle configurations

for each joint, to reach (px, py). It is desired to find all (px, py) that are reachable points

within our workspace.

By picking three different points in space, we discovered for θ1 and θ3, such that

−π
2 ≤ θ1 ≤ π

2 and −π
2 ≤ θ3 ≤ π

2 , that there are at most none, one, or two formations that

can place the robot hand at a particular point in space. We wish to determine the unique

set of points that will produce no solutions, the unique set of points that will produce one

solution, and the unique set of points that will produce two solutions.
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Two Solutions

One Solution 

One Solution 

One Solution 

Two Solutions 

-150 

150

Figure 4.11: Summary of Solutions found with Manipulation

Observe further that since θ1 and θ3 range from −150◦ to 150◦, and the equations we

derived for them satisfy −π
2 ≤ θ1 ≤ π

2 and −π
2 ≤ θ3 ≤ π

2 , we have not found all possible solu-

tions. We manipulate the equations in our kinematic model to find any remaining solutions.

Using (4.1), if we let

θ3 = cos−1

[
p2

x + p2
y − 3302 − 4102

2 ∗ 410 ∗ 330

]

where 0 ≤ θ3 ≤ π, and let θ1 range from −150◦ to 150◦, we discover more solutions. In

fact, by choosing three more test points in this new domain, there are none, one, or two

formations that can place the robot hand at a particular point inside this domain. Since

the geometry of our robot arm corresponds to the symmetry of the unit axis, we have also

found those solutions where −π ≤ θ3 ≤ 0

By analyzing the geometry of the robot, and manipulating our kinematic model, we

discovered more solutions that determined new formations. But we were only able to do

so because of the simple geometry of the GMF Robotics A-510 Robot. However, if the
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geometry of the robot is more complex, solutions are not easily found, and in some cases,

solutions are not found at all. Facing this challenge, we acknowledge other difficulties to

the Engineering Approach.

4.7.2 Difficulties

1. There are instances when no solution can be found due to limitations on the robot

manipulator,

2. Multiple solutions are possible since the robot manipulator can use different forma-

tions to place the robot hand at a particular point in space,

3. Careful analysis of the geometry of the robot manipulator forces a close examination

and, in some cases, manipulation of the equations found to solve the inverse kinematic

robotics problem in order to find all possible solutions.

4. Some calculations cannot be computed as easily by hand. Hence, the use of MAPLE,

a mathematics computer software.

To resolve these difficulties and other challenges mentioned, we search for an alternate

method–The Mathematician’s Approach.
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Chapter 5

The Mathematician’s Approach

5.1 Introduction

The Mathematician’s Approach uses Groebner Basis Theory to solve the inverse kine-

matic robotics problem. We begin with background on Groebner Basis Theory. Then, with

an example, show how to develop a Groebner basis. Lastly, we use a Groebner basis to

solve the inverse kinematic robotics problem for the GMF Robotics A-510 Robot.

5.2 Groebner Basis Theory

Groebner Basis Theory allows mathematicians to use a particular algorithm to solve

systems of polynomial equations. More formally, this algorithm, named Buchberger’s algo-

rithm [2], after mathematician Bruno Buchberger, applies computational algebra techniques

to specific polynomial ideals, producing a Groebner basis that can be used to find solutions

to a set of non-zero polynomials for a given ideal.

For multivariant polynomials, the complexity of computing a Groebner basis does not

depend on the number of polynomials in the set, but rather on the term order. By ordering

a set of polynomials with respect to lexigraphical order, at least one element in the Groebner

basis will be in terms of one variable in the set. This makes calculating a Groebner basis

‘nice’, because through back substitution, we can find a solution to the rest of the variables

in the set. We illustrate this in the following sections.
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Groebner Basis Theory is a very popular field of study, but mathematicians appreciate

it most for its applications in other areas of mathematics. For example, Robbiano [20] uses

Groebner bases to solve problems in Design Experiments in Statistics. Wang [22] shows

how Groebner bases can be used to prove Geometric problems. Cox, Little, and O’Shea [3]

have devoted a text to Groebner Basis Theory and its applications in Geometry and Graph

Theory. Below, we illustrate an application in robotics.

5.2.1 Terminology and Notation

Terminology:

1. For a field k, a Monomial Ordering on k[x1, . . . , xn] is any relation on the set of monomials

xα, α ∈ Zn
≥0 such that this relation is a linear ordering, and if α, β, γ ∈ Zn

≥0 such that

α > β, then α + γ > β + γ. Moreover, this relation is also a well ordering.

2. Lexigraphical order (lex order): Given a monomial ordering, let α = (α1, . . . , αn) and

β = (β1, . . . , βn) ∈ Nn
≥0. We say xα > xβ if α > β.

Example: Let f = 7x2yx + 5z2y + 12xz + 3y2z + 8 ∈ k[x, y, z]. Then,

With respect to lex order x > y > z, f = 7x2yz + 12xz + 3y2z + 5yz2 + 8
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Notation:

Let k be any field and let k ∈ [x1, . . . , xn] be ordered with respect to lex order, then

for all f ∈ k[x1, . . . , xn], with f 6= 0,

f = a1x
α1 + a2x

α2 + . . . + arx
αr ,

where 0 6= ai ∈ k[x1, . . . , xn] and xα
i is ordered such that xα1 > xα2 > . . . > xαr .

• The leading power product of f is defined as lp(f) = xα1

• The leading coefficient of f is defined as lc(f) = a1

• The leading term of f is defined as lt(f) = a1x
α1

5.3 Algorithm for Computing a Groebner Basis

Introduced in 1965 by Bruno Buchberger, an algorithm can be applied to a non-zero

set of polynomials for a given ideal to produce a Groebner basis for that given ideal. More

formally, we have the following definition,

Definition: A set of non-zero polynomials G = {g1, . . . , gt} contained in an ideal I, is

called a Groebner Basis for I if and only if for all f ∈ I such that f 6= 0, there exists

i ∈ 1, . . . , t such that lp(gi) divides the lp(f).
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5.3.1 S-Polynomials and Buchberger’s Algorithm

To develop Buchberger’s Algorithm, we must first understand the nature of S-polynomials.

In the following examples, let k be any field, and let Q denote the Rational Field.

Definition: Let 0 6= f , g ∈ k[x1, . . . , xn]. Let L = lcm(lp(f), lp(g)). The polynomial

S(f, g) =
L

lt(f)
∗ f − L

lt(g)
∗ g

is called the S-polynomial of f and g.

Example: Let f = 2yx− y, g = 3y2 − x ∈ Q[x, y], with lex order y > x. Find S(f, g).

Solution: First, we need to find L = lcm(lp(f), lp(g)) = lcm(yx, y2) = y2x. Then,

S(f, g) =
y2x

2yx
f − y2x

3y2
g =

y

2
f − x

3
g

=
y

2
(2yx− y)− x

3
(3y2 − x) = −y2

2
+

x2

3

Ref. Adams [1]

Thus, an S-polynomial allows for the cancelation of leading terms.

Definition: Let G = {g1, . . . , gt} be a set of non-zero polynomials in k[x1, . . . , xn]. Then

G is a Groebner basis for the ideal I = 〈g1, . . . , gt〉 if and only if for all i 6= j,

S(gi, gj)−→G
+0
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. That is, S(gi, gt) is divided by those {g1, . . . , gt} ∈ G, such that the remainder is

zero.

Example: Let f1 = yx− x, f2 = −y + x2 ∈ Q[x, y]. Using lex order with y > x, compute

a Groebner basis for the ideal.

Solution: First, let F = {f1, f2} we calculate the S-polynomial, S(f1, f2). Then, L =

lcm(lp(f1), lp(f2)) = lcm(xy, y) = xy and

S(f1, f2) =
xy

xy
f1 − xy

−y
f2 =

xy

xy
(xy − x)− xy

−y
(−y + x2)

xy − x + x(−y + x2) = xy − x− xy + x3 = −x + x3,

with respect to lex order S(f1, f2) = x3−x. Using the above definition, to have a Groebner

basis, S(f1, f2) −→F
+= 0, but since S(f1, f2) −→F

+ 6= 0, we take f3 = x3 − x and form F ′.

That is, F ′ = {f1, f2, f3}.So we compute a Groebner basis for F ′ by calculating S(f1, f2),

S(f2, f3) and S(f1, f3).

For S(f2, f3),

L = lcm(lp(f2), lp(f3)) = lcm(y, x3) = yx3.
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S(f2, f3) =
yx3

−y
f2 − yx3

x3
f3 =

yx3

−y
(−y + x2)− yx3

x3
(x3 − x)

yx3 − x5 − yx3 + yx = yx− x5

For S(f1, f3),

L = lcm(lp(f1), lp(f3)) = lcm(xy, x3) = yx3.

S(f1, f3) =
yx3

xy
f1 − yx3

x3
f3 =

yx3

xy
(xy − x)− yx3

x3
(x3 − x)

yx3 − x3 − yx3 + yx = yx− x3 = −x ∗ f2
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But,

(5.1) S(f2, f3) = yx− x5 = −(yx− x) + (x3 − x) = −yx + x3 = x ∗ f2

and

(5.2) S(f1, f3) = −x3 + yx = −x(−y + x2) = −x ∗ f2

By adding (5.1) and (5.2) we get zero. Thus, S(f2, f3) −→F ′
+ = 0 and S(f1, f3) −→F ′

+ =

0.

Hence, F ′ = {f1, f2, f3} is a Groebner basis for F = {f1, f2}, ref. Adams [1].

With the aid of MAGMA, a mathematical computer software package, we are able to

compute a Groebner basis faster and for larger sets of non-zero polynomials.

5.4 MAGMA: Algebraic Computer Software

MAGMA is an algebraic computer system created to solve problems in Algebra, Ge-

ometry, and Number theory. It operates on Linux based systems, but has recently been

adapted for Windows. Developed in 1993 by the Computational Algebra Group in the

School of Mathematics and Statistics at the University of Sydney, MAGMA has received
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much praise for its advanced algorithms. Devoted to efficiency, the developers release new

versions of the software every year.

With the assistance of MAGMA, we are able to calculate Groebner bases faster and,

more importantly, are able to compare various alternatives yielding more accurate results

that could not necessarily be calculated as easily by hand.

5.5 Solving the Inverse Kinematics Robotics Problem

5.5.1 Introduction

The inverse kinematic robotics problem is simply determining all combinations of joint

settings that will place the robot arm at a given point in space. To solve this, we must do

the following:

1. Derive polynomial equations modeling the motion of the robot arm at each joint

setting such that the robot arm can be placed at a given point in space.

2. Determine the proper intervals which allow movement at each joint.

3. Then with these equations, find a ‘nice’ set of solutions that will provide us with

possible movements of each joint.

Hence the use of a Groebner basis!!

5.5.2 Algebraic Model for the GMF Robotics A-510 Robot

We look to model the behavior of the GMF Robotics A-510 Robot using simple poly-

nomial equations. By taking a top-down view of the robot, we can project the movements
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L3 = 330

L1=410

( a-e b-f )

(0, 0)
(e, f)

Figure 5.1: Algebraic Model: Top View of GMF A-510 Robot

of each joint variable onto the xy-plane. Let the point (a, b) represent where the robot hand

(end effector) will be placed in space. To solve the inverse kinematic robotics problem,

these polynomial equations need to describe the behavior of θ1 and θ3 in terms of the point

(a, b).
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L1=410

(0, 0)
(e, f)

Figure 5.2: Algebraic Model: Top View of GMF A-510 Robot L1 = 410

Thus,

(a− e, b− f) = (330 cos(θ1 + θ3), 330 sin(θ1 + θ3))

for

−150◦ ≤ θ1 ≤ 150◦

and

−150◦ ≤ θ3 ≤ 150◦

(e, f) = (410 cos θ1, 410 sin θ1) for − 150◦ ≤ θ1 ≤ 150◦
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.

From the figures above,

• e = 410 cos θ1

• f = 410 sin θ1

• a− e = 330 cos(θ3 + θ1)

• b− f = 330 sin(θ3 + θ1)

By substituting, we get

a = 330 cos(θ3 + θ1) + 410 cos θ1

b = 330 sin(θ3 + θ1) + 410 sin θ1

By using the addition identities of trigonometric functions,
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a = 330(cos θ1 cos θ3 − sin θ1 sin θ3) + 410 cos θ1

and

b = 330(cos θ1 sin θ3 + cos θ3 sin θ1) + 410 sin θ1

Recall the trigonometric identities:

cos2 θ3 + sin2 θ3 = 1

and

cos2 θ1 + sin2 θ1 = 1

Together, we have a system of four equations in four unknowns.

(5.3) 330(cos θ1 cos θ3 − sin θ1 sin θ3) + 410 cos θ1 − a = 0

(5.4) 330(cos θ1 sin θ3 + cos θ3 sin θ1) + 410 sin θ1 − b = 0
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(5.5) cos2 θ3 + sin2 θ3 − 1 = 0

(5.6) cos2 θ1 + sin2 θ1 − 1 = 0

We use MAGMA to find a solution to the system.

5.5.3 Calculating A Groebner Basis With MAGMA

Let ci = cos θi and si = sin θi.

We have the following MAGMA code:

Q:=RationalField ();

FF < L1, L3, a, b > :=FunctionField(Q,4, ’lex’);

P < c3, s3, c1, s1 > :=PolynomialRing(FF,4);

f1 := L3 ∗ (c1 ∗ c3 − s1 ∗ s3) + L1 ∗ c1 − a;

f2 := L3 ∗ (c1 ∗ s3 + c3 ∗ s1) + L1 ∗ s1 − b;

f3 := c2
1 + s2

1 − 1;

f4 := c2
3 + s2

3 − 1;

I:=ideal < P |f1, f2, f3, f4 >;

G:=GroebnerBasis(I);

Note: A Function Field allows some variables to act as coefficients and also allows for

division. Above, c3, s3, c1, s1 act as variables and L1, L3, a, b act as coefficients.
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Using lex order c3 > s3 > c1 > s1, MAGMA produces the following basis:

c3 − a2+b2−L12−L32

2∗L1∗L3

s3 + a2+b2

a∗L3 − a2b + b3 + b(L12+L32)
2a∗L1∗L3

c1 + b
as1 − a2+b2+L12−L32

2a∗L3

s2
1 + a2b+b3+b(L12+L32)

L1(a2+b2) s1 + (a2+b2)2+(L12+L32)2−a2(L12+L32)+2b2(L12−L32)
4∗L12(a2+b2)

So, we have a Groebner basis when L1, L3, a 6= 0 and (a2 + b2) 6= 0. If we substitute

L1 = 410 and L3 = 330, we have the following basis:

c3 − a2+b2−4102−3302

2∗410∗330

s3 + a2+b2

a∗330 − a2b + b3 + b(4102+3302)
2a∗410∗330

c1 + b
as1 − a2+b2+4102−3302

2a∗330

s2
1 + a2b+b3+b(4102+3302)

410(a2+b2) s1 + (a2+b2)2+(4102+3302)2−a2(4102+3302)+2b2(4102−3302)
4∗4102(a2+b2)

Looking at the last element in our basis, we see that it is a quadratic polynomial in

terms of s1. So, we can solve for s1 and determine the values of a and b that will provide

us with solutions for the GMF Robotics A-510 robot.

Notation: Let sij denote solution number j for si or ci, for i = 1, 3, j = 1, 2.

By examining the discriminant, there will be two real solutions for s1, and for each of s11,

and s12, there will be one corresponding value for c1, s2, c2, found by using back substitu-

tion. Furthermore, we conclude that there are two unique joint settings when

0 ≤ 4
(a2 + b2)2 + 3504640000− 2a2 ∗ 27700 + 2b2 ∗ 59200

1640(a2 + b2)
≤ a2b + b3 + 592000

242720002

Now we can consider two remaining cases:
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1. Case 1: a = 0 and b = 0

2. Case 2: a = 0 and b 6= 0

5.5.4 Case Examples

Case 1: a = 0 and b = 0

We have the following MAGMA code:

Q:=RationalField ();

FF < L1, L3 > :=FunctionField(Q,2);

P < c3, s3, c1, s1 > :=PolynomialRing(FF,4, ’lex’);

f1 := L3 ∗ (c1 ∗ c3 − s1 ∗ s3) + L1 ∗ c1;

f2 := L3 ∗ (c1 ∗ s3 + c3 ∗ s1) + L1 ∗ s1;

f3 := c2
1 + s2

1 − 1;

f4 := c2
3 + s2

3 − 1;

I:=ideal < P |f1, f2, f3, f4 >;

G:=GroebnerBasis(I);

The Groebner basis for this case is 1.

Thus, there are no joint settings to place the robot arm at the point (a, b). It is obvious

to see by looking at the geometry of the robot arm.
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Case 2: a = 0 and b 6= 0

Q:=RationalField ();

FF < L1, L3b > :=FunctionField(Q,2);

P < c3, s3, c1, s1 > :=PolynomialRing(FF,4, ’lex’);

f1 := L3 ∗ (c1 ∗ c3 − s1 ∗ s3) + L1 ∗ c1;

f2 := L3 ∗ (c1 ∗ s3 + c3 ∗ s1) + L1 ∗ s1 − b;

f3 := c2
1 + s2

1 − 1;

f4 := c2
3 + s2

3 − 1;

I:=ideal < P |f1, f2, f3, f4 >;

G:=GroebnerBasis(I);

The Groebner basis for this case is

c3 + L2
3+L2

1−b2

2L3L1

s3 − b
L3

c1

c2
1 + (L4

3+L4
1+b4)−2(L2

3+L2
1+b2(L2

3+L2
1))

4L2
1b2

s1 + L2
3−L2

1−b2

2L1b

So, we have a Groebner basis when L1, L3, b 6= 0. By substituting L1 = 410 and

L3 = 330, we have the following basis:

c3 + 3302+4102−b2

2∗410∗330

s3 − b
330c1

c2
1 + (3304+4104+b4)−2(3302+4102+b2(3302+4102))

4∗4102b2

s1 + 3302−4102−b2

2∗410b
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We can immediately solve for s1 and c3. Solving for these aligns each joint link pair.

Note that the third element in the basis is a quadratic polynomial in terms of c1. By solving

for c1, we find two solutions c11 and c12, and for each, there is a corresponding value for s3.

This means that we can rotate about θ1, given those values of s3 that will keep each joint

link pair aligned. Thus, there is only one unique joint setting to place the robot arm at the

point (a, b) when a = 0 and b 6= 0.

5.6 Summary: Mathematician’s Approach

By analyzing the above, we find the following results:

1. There are at most two real solutions (joint configurations) when (a, b) satisfies

0 ≤ 4(a2 + b2)2 + 3504640000− 554000a2 + 118400b2

1640(a2 + b2)
≤ (

a2b + b3 + 59200
24272000

)2.

2. From Case 1, no solutions when a = b = 0.

3. From Case 2, one real solution (joint configuration) when (0, b) satisfies

0 ≤ b
√

554000− b2 ≤ 3504640000.

4. Those points (a,b) that do not satisfy any of the above are outside of the robot’s

reachable workspace. These points represent no solutions.

By using Groebner Basis Theory and MAGMA, we have found real solutions (see

above) to the inverse kinematic robotics problem. In fact, we have found all of the possible

formations to place the robot hand at the point (a, b). These solutions are more precise

because we determine the set of points that determine two solutions, the set of points that
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determine one solution, and the set of points that determines no solution. Thus, the inverse

kinematic robotics problem is solved. We explain our results further in the next chapter.
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Chapter 6

Method Analysis

6.1 GMF Robotics A-510 Robot

From the Engineering Approach, we have learned that there is the possibility of none,

one, or two solutions. However, when using the Denavit-Hartenberg Matrix, we were only

able to develop an equation that could find two solutions for θ1 and θ3 within the given

domain: −π
2 ≤ θ1 ≤ π

2 and −π
2 ≤ θ3 ≤ π

2 . Since θ1 and θ3 rotated beyond −π
2 to π

2 , there

was the possibility that more solutions existed. By manipulating the equations found using

the Denavit-Hartenberg Matrix, we expanded our domain for θ3 from 0 to π, allowing θ1

to rotate freely. Within this new domain, we found that there are none, one, or two solu-

tions. Since the geometry of the robot corresponds to the symmetry of the unit circle, we

found similar solutions for θ3 when −π ≤ θ3 ≤ 0. Finding these solutions required a close

examination of the geometry of the robot arm, and manipulation of our kinematic model.

The GMF Robotics A-510 Robot is a ’simple’ robot manipulator formed by four de-

grees of freedom. By focusing on the first three degrees of freedom, we were able to analyze

the geometry of the robot more easily and manipulate less complicated equations. But

what if we were to attempt the Engineering Approach on a robot arm with six or seven

degrees of freedom? Then, finding all of the possible solutions can become quite difficult.

The geometry of the robot arm can be challenging, and manipulating the kinematic model

to find more solutions can be very complicated.
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From the Mathematician’s Approach, we learned that there are at most two real so-

lutions for (px, py). Recall, pz determines the height of (px, py). What makes the Mathe-

matician’s Approach most appealing is that we used one algorithm to determine the set of

points that would produce two solutions, the set of points that would produce one solution,

and the set of points that would produce no solution. This was achieved by incorporat-

ing the geometry of the robot arm in our algebraic model. By doing so, we immediately

acknowledged the proper intervals of movement between each joint. Moreover, by using

simple polynomial equations, no further manipulation of our algebraic model was needed

to achieve our solutions. The difference in how these solutions are represented is profound,

and the amount of work that is required for each method speaks just as loudly.

What accounts for this difference is how each approach solves the inverse kinematic

robotics problem. The Engineering Approach finds θ1, θ3, and d2 in terms of the point

(x, y), but this approach does not identify which (x, y) will guarantee a solution without

plugging the point (x, y) into each equation as shown in the three case examples, where

as the Mathematician’s Approach finds only those points (a, b) that are reachable points

within our workspace. (Note that (x, y) and (a, b) are arbitrary points.)

Because the Denavit-Hartenberg Matrix uses trigonometric functions, the solutions are

bounded by certain domains corresponding to each trigonometric function. This is why we

only found none, one, or two solutions when −150◦ ≤ θ1 ≤ 150◦ and −π ≤ θ3 ≤ 0. After

manipulating our kinematic model and analyzing the geometry of the robot arm, more so-

lutions existed when 0 ≤ θ1 ≤ π and −π
2 ≤ θ3 ≤ π

2 . The Mathematician’s Approach avoids

the trouble of finding solutions within a limiting domain. By developing an algebraic model

using simple polynomial equations we incorporate the entire unit circle with the assistance
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of trigonometric identities. There is no need to manipulate the equations in our model to

find more solutions. Calculating a Groebner basis with MAGMA finds all possible solu-

tions. In particular, by using the Algebraic Approach, given (a, b) we can easily discover

the maximum number of formations to place the robot hand at the point (a, b), and more

importantly, we discover all real solutions that produce these formations. Because of these

precise results, it is clear why the Mathematician’s Approach is the more efficient method.

In the following sections, we introduce the Jacobian Matrix and Singularities, a supple-

mental method to the Denavit-Hartenberg Matrix that determines singular configurations

(i.e, one solution). This section is presented to demonstrate the great lengths required by

the Engineering Approach to better determine and classify all solutions.

6.2 The Jacobian Matrix and Singularities

For a robot manipulator, there are two joint configurations that require further cal-

culations in order to solve the inverse kinematic problem. These particular configurations

occur when:

• joint axes are intersecting

• joint axes are parallel (collinear)

In fact, when establishing link coordinate frames, these particular configurations are

exceptions to the rules outlined by Lee (See Section 4.4). We call the points in space associ-

ated with these configurations singularities and use the Jacobian Matrix to find these points.
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6.2.1 The Jacobian for a Robot Manipulator

The Jacobian discusses joint velocities and accelerations, but in this comparison study,

we are not interested in either of these, but are concerned with how the Jacobian can be

used to determine when there is one solution.

Definition: A Jacobian for a robot manipulator is a matrix of differentials. This matrix

describes the differential changes in the location of the end effector caused by the

differential changes in joint variables.

Using Cartesian coordinates, the displacement of the end effector can be described by

a differential motion vector ~D = [dxdydzδxδyδz]. Similar to our derivation of the Denavit-

Hartenberg matrix, we arrive at ~D by performing certain translational and rotational trans-

formations that describe the change in motion from the n− 1thjoint to the nth joint. Also,

recall that the Denavit-Hartenberg matrix is a special homogeneous matrix composed of only

four parameters. Now let ~Dq be a special differential motion vector that describes the dis-

placement of the end effector in terms of the joint coordinates. Then, ~Dq = [dq1dq2 . . . dqn],

for an n-joint manipulator, where dqn is a differential rotation and ddn is a differential

translation at joint n.

Consider a robot manipulator with four joints, then ~D and ~Dq are related by the

following equation:

~D = ~J × ~Dq.

Using this, we find the Jacobian.
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dx

dy

δx

δy




=




J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44







dq1

dq2

dq3

dq4




Thus,

J =




J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44




is the Jacobian.

So, the Jacobian establishes the relationship between the Cartesian velocities ~D and

the joint velocities ~Dq. Furthermore, McKerrow,[16] highlights the following:

• dx = J11dq1 + J12dq2 + J13dq3 + J14dq4. But, dx represents the x component of the

differential motion of the end effector, so from this equation, we conclude that dx is

also a function of the differential motion of the joints of the manipulator.

• dy = J21dq1 + J22dq2 + J23dq3 + J24dq4. But, dy represents the y component of the

differential motion of the end effector, so from this equation, we conclude that dy is

also a function of the differential motion of the joints of the manipulator.

• δx = J31dq1 + J32dq2 + J33dq3 + J34dq4. But δx is the x component of the angular

motion of the end effector, so from this equation, we conclude that δx is a function of
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the differential motion of the joints of the manipulator. Similarly, for δy, we conclude

that δy is a function of the differential motion of the joints of the manipulator.

• Jij is the partial derivative with respect to joint j of the xi component of the position

of the end effector. In this case, x1 = x and x2 = y. So, Jij is the partial derivative

with respect to joint j, where j = 1, 2, 3, 4.

The inverse Jacobian establishes the relationship between the Cartesian velocities of the

end effector and the joint velocities, and is given by,

~Dq = J−1 ~D

Properties of the Jacobian

For the Jacobian Matrix,

1. The number of rows is determined by the number of degrees of freedom.(The joint

representing the end effector is not counted.)

2. The number of columns is determined by the number of joints in the manipulator

3. In some instances, the Jacobian is not a square matrix.

6.2.2 Finding the Jacobian for the GMF Robotics A-510 Robot

We begin by calculating the Forward Kinematic solution by taking P calculated in

Chapter 3, and setting P = T − V ariableMatrix. Then, the final position of the end

effector is described by (px, py, pz). In particular,
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px

py

pz




=




330 cos(θ1 + θ3) + 410 cos θ1

330 sin(θ1 + θ3) + 410 sin θ1

980 + d2




Observe that pz represents the height of the final position of the end effector. But px

and py are determined by θ1 and θ3. If we examine the robot from a top view, by looking

down on the robot, we can project each joint configuration onto the xy- plane. With this

perspective, we restrict our focus to θ1 and θ3. So, from the matrix above, we now have the

following representation.




px

py


 =




330 cos(θ1 + θ3) + 410 cos θ1

330 sin(θ1 + θ3) + 410 sin θ1




To calculate the Jacobian, we differentiate, such that




dpx

dpy


 = J




dθ1

dθ2




To find the matrix J , we need to find the partial derivatives,

2
64

dpx

dpy

3
75 =

2
64
−330 sin θ1 cos θ3 − 330 cos θ1 sin θ3 − 410 sin θ1 −330 cos θ1 sin θ3 − 330 sin θ1 cos θ3

330 cos θ1 cos θ3 − 330 sin θ1 sin θ3 + 410 cos θ1 −330 sin θ1 sin θ3 + 330 cos θ1 cos θ3

3
75

2
64

dθ1

dθ2

3
75

Next, we calculate the inverse Jacobian.

68



J−1 =




J22 −J12

−J21 J11




|J |

where

J11 = −330 sin θ1 cos θ3 − 330 cos θ1 sin θ3 − 410 sin θ1

J12 = −330 cos θ1 sin θ3 − 330 sin θ1 cos θ3

J21 = 330 cos θ1 cos θ3 − 330 sin θ1 sin θ3 + 410 cos θ1

J22 = −330 sin θ1 sin θ3 + 330 cos θ1 cos θ3

Then,

|J | = J11J22 − J12J21

= (−330 sin θ1 cos θ3 − 330 cos θ1 sin θ3 − 410 sin θ1)(−330 sin θ1 sin θ3 + 330 cos θ1 cos θ3)

−(−330 cos θ1 sin θ3 − 330 sin θ1 cos θ3)(330 cos θ1 cos θ3 − 330 sin θ1 sin θ3 + 410 cos θ1)

After several cancelations,

|J | = 330 ∗ 410 sin2 θ1 sin θ3 + 330 ∗ 410 cos2 θ1 sin θ3 = 135300 sin θ3
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So the inverse Jacobian is defined when sin θ3 6= 0.

In particular,




dθ1

dθ2


 =

1
135300 sin θ3




J22 −J12

−J21 J11







dpx

dpy




And the Jacobian for the GMF Robotics A-510 Robot has been found. In the next

section, we explain the significance of the Jacobian in more detail.

6.2.3 Singularities

Definition: A singularity is simply a point in space where a singular configuration results.

There are two types of singularities: a workspace internal singularity and a workspace

boundary singularity.

Definition: A workspace internal singularity occurs within the workspace,

Definition: A workspace boundary singularity occurs when the manipulator is fully ex-

tended to the outer boundary or fully retracted to the inner boundary of its workspace.

Ref Mckerrow, [16].

In the case where joint axes are parallel, a robot manipulator has lost one or more

degrees of freedom, reducing the robot’s mobility in some directions. The point in space

where this occurs is called a workspace internal singularity or a workspace boundary singu-

larity. The Jacobian helps us determine these singular configurations.
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6.2.4 Finding Singularities for the GMF A-510 Robot

When the determinant of the Jacobian is zero, the robot manipulator has a workspace

singularity. We determine the singularities for the GMF Robotics A-510 Robot.

From the previous section, sin θ3 = 0 when θ3 is either 0 or π. But θ3 ranges from

−150◦ ≤ θ3 ≤ 150◦, so π is not a point within the workspace. However, when θ3 = 0, we

get a workspace boundary singularity. We substitute θ3 = 0 into J , and get,




dpx

dpy


 =



−330 sin θ1 − 410 sin θ1 −330 sin θ1

330 cos θ1 + 410 cos θ1 330 cos θ1







dθ1

dθ2




which reduces to,




dpx

dpy


 =



−740 sin θ1 −330 sin θ1

740 cos θ1 330 cos θ1







dθ1

dθ2




Observe that the two column vectors in the above Jacobian matrix are parallel. Thus,

only those points on the boundary, that is, those points on the circle of radius r = 740 cen-

tered at the origin, where θ1 can rotate from −150◦ ≤ θ1 ≤ 150◦, are workspace boundary

singularities. Moreover, it is at these points where the inverse Jacobian is undefined. So,

there is one solution (i.e., one configuration) that can reach these points.
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6.3 A Procedure for an Algebraic Model for Robot Manipulators

In this section, we look to extend our results to an entire class of robot manipulators

that satisfy the following conditions:

• The robot manipulator has n-degrees of freedom,

• The robot manipulator is a kinematic chain consisting of revolute or prismatic joints,

• The joints of the robot manipulator may be collinear or intersecting, but neither is

required.

Each robot manipulator is different. Thus, a different algebraic model must be formed.

The challenge of the Mathematician’s Approach is deriving an algebraic model. The al-

gebraic model must describe the behavior of the robot such that the relationship between

neighboring joints is respected. The easiest way to achieve this is to map the movements

of each joint onto a 2D-coordinate plane, then use trigonometric functions and identities to

imitate each joint movement, as well as, the resulting movements that occur from related

joints.

Recall the algebraic model used for the GMF Robotics A-510 Robot. Observe that the

there are three joints, a prismatic joint, and two revolute joints. This prismatic joint simply

moves the other two joints in an up and down motion. Because these two revolute joints

are consecutive, they move up and down together. See the figure 6.1.

This picture is a side view of the GMF Robotics A-510 robot. Now consider a top/down

view of the robot. With this view, we restrict our focus to each revolute joint. If we project

this perspective onto the xy-plane, we can identify the movements of each joint. The point

(e, f) = (410 cos θ1, 410 sin θ1) describes the movement of revolute joint 1. The second revo-

lute joint, however, not only describes the movement of joint 2, but also acknowledges those
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Figure 6.1: GMF A-510 Robot, ref. Hung [8]

movements of joint 2 that are influenced by the movements of joint 1. The end effector is

represented by the point (a, b) = (330 cos(θ1 + θ3) + 410 cos θ1, 330 sin(θ1 + θ3) + 410 sin θ1),

which encompasses the movements at both joints. Using trigonometry, we are able to rep-

resent the position of the end effector with simple polynomial equations.

In order to proceed with the Mathematician’s Approach, the equations in the algebraic

model must be polynomial equations. Once these equations have been established, we use

MAGMA to find a Groebner basis for these equations. By analyzing the Groebner basis,

we are able to determine each unknown variable, as well as those points that can be reached

by the end effector.

Given a robot manipulator that satisfies the conditions above, we outline the following

procedure to derive an algebraic model:
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1. Analyze the geometry of the robot manipulator

2. Isolate particular joint behavior and project the joint movements onto a coordinate

system

3. Represent the joint movements using polynomial equations.

4. Verify that these polynomial equations preserve the movement of each joint and the

relationship between neighboring joints.

By following these steps, we arrive at a system of equations, Hence, for a particular

class of robot manipulators, we have provided a systematic procedure for deriving an al-

gebraic model, and with MAGMA are able to apply Groebner Basis Theory to solve the

inverse kinematic robotics problem.
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Chapter 7

Conclusion

In this final chapter, we discuss the difficulties and challenges associated with the

Engineering Approach, and with each difficulty, illustrate how Groebner Basis Theory solves

the inverse kinematic robotics problem without these difficulties. Guez and Ahmad [5]

summarize the following difficulties for an inverse kinematic solution:

1. To form the Aij matrices, we need to know the forward kinematics of the manipulator.

2. There are situations where the Denavit-Hartenberg matrix will not produce equations

that will find all possible solutions. Thus, an alternate method must be used to find

all solutions.

3. Every robot manipulator has solutions specific to that manipulator. Thus, new algo-

rithms and procedures have to be developed to accommodate each manipulator.

In order to use Groebner Basis Theory, we must create an algebraic model describing

the behavior of the robot manipulator. There is no need to form the Aij matrices. So, we

address how Groebner Basis Theory can resolve the last two difficulties. However, if the

previous conditions for deriving an algebraic model (in Section 6.3) are satisfied, we suggest

using the Mathematician’s Approach when such Aij matrices are not easily formed.

Beginning with the second difficulty, there are several situations when the Denavit-

Hartenberg matrix will not produce equations that will find all possible solutions. We

revealed one situation in our calculations for the GMF Robotics A-510 robot. By using the
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Denavit-Hartenberg matrix, we solved a quadratic equation finding two solutions(configurations)

for θ1 and θ3 within a given domain. However, we did not find all solutions. By manipu-

lating the kinematic model, we found more solutions. In addition, by testing three random

points within the robot’s workspace, we saw the possibility of no solutions or one solution.

But we were uncertain of when these particular solutions would occur? Hence, the need

for an alternate method called the Jacobian that could accurately determine when there

would be one solution. Using this supplementary method, we found that when L1 = 410

and L3 = 330 are collinear, there would be one solution for the GMF Robotics A-510 robot.

In addition, we also wish to determine when there are no solutions. Clearly, there are no

solutions for those points that are outside of the reachable workspace.

The Mathematician’s Approach finds all of those points that can be reached within

the workspace. In fact, by calculating a Groebner basis, we are able to determine which

points within the workspace have two solutions (two configurations), which points have one

solution (one configuration), and which points have no solution. Through the Mathemati-

cian’s Approach, we used one method that uses one algorithm. There is no need to use

a supplementary method or second algorithm. Also, as a result, the number of calcula-

tions required to solve the inverse kinematic robotics problem is greatly reduced. Horn, [6],

acknowledges those difficulties associated with finding all possible solutions by use of the

Denavit-Hartenberg matrix, arguing that the solutions to the inverse kinematic robotics

problem should be ”simple to determine and easy to use.” Because the Mathematician’s

Approach accomplishes both desires, we conclude that the Mathematician’s Approach is a

better method for producing equations that will find all possible solutions.
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Lastly, in other situations, the Denavit-Hartenberg matrix must be coupled with other

methods or algorithms to find all possible solutions. These methods and algorithms include,

but are not limited to neural networking techniques, iterative algorithms, visual servoing,

euler parameters, etc. In the past, each robot manipulator required its own particular

method given the above mentioned difficulties associated with the Denavit-Hartenberg ma-

trix. With the introduction of the Groebner Basis Theory, we provide an alternate method

that may be used on an entire class of robot manipulators satisfying the conditions in Sec-

tion 6.3. For this flexibility, we see that the Mathematician’s Approach is an improved

alternate. With further research we look to show that the Mathematician’s Approach can

be used for other classes of manipulators.

With the conclusions found in this paper, we have demonstrated how the Mathemati-

cian’s Approach of Groebner Basis Theory is an alternate method to solving the inverse

kinematic robotics problem. Moreover, by using Groebner Basis Theory, we used one pro-

cedure, performed less calculations, found real solutions, and established when certain so-

lutions (none, one, two, etc.) would occur. Because of these advantages, we see how

Groebner Basis Theory is more beneficial than the Denavit-Hartenberg Matrix. Also, be-

cause of these advantages, I wish to expand the applications of Groebner Basis Theory to

many other classes of robot manipulators, solving the inverse kinematic robotics problem

for larger classes of robot manipulators.
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Appendix

Matrix Calculations:

A12 ×A23 =




1 0 0 410

0 1 0 0

0 0 1 d2

0 0 0 1







cos θ3 − sin θ3 0 330 cos θ3

sin θ3 cos θ3 0 330 sin θ3

0 0 1 0

0 0 0 1




=




cos θ3 − sin θ3 0 330 cos θ3 + 410

sin θ3 cos θ3 0 330 sin θ3

0 0 1 0

0 0 0 1




A01 ×A−1
01 =




cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 1 980

0 0 0 1







cos θ1 sin θ1 0 0

− sin θ1 cos θ1 0 0

0 0 1 −980

0 0 0 1
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=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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