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A class of finite groups which we call o-basis groups is generalized and explored. One

reason for interest in these groups lies with the concept’s origins. The notion of o-basis

group arose from the study of the existence, in the n-fold tensor product of a complex inner

product space, of an orthogonal basis consisting entirely of “standard symmetrized tensors”.

We call such a basis an o-basis. The term “symmetrized” refers to the action on the tensor

product of a subgroup of the symmetric group Sn. Given a subgroup of Sn, one may ask if

the corresponding symmetrized tensor space has an o-basis. The answer will depend in part

on the structure of the given group. Since any group can be homomorphically embedded

onto a subgroup of the symmetric group, arbitrary finite groups may be considered. It has

already been shown that if G is an o-basis group and ϕ : G → Sn is a homomorphism, then

the symmetrized space corresponding to ϕ(G) has an o-basis. The study of these groups

therefore may well be of interest to those working with o-bases of symmetrized spaces. Our

focus, however, is on the group structure and character theory of o-basis groups themselves

with a view toward using the o-basis property as a means of distinguishing between abstract
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finite groups. The tools come from finite group theory and the character theory of finite

groups. Field theory appears very briefly. In previous work, some interesting classes of

groups have been shown to be o-basis, and so far all groups identified as o-basis are nilpotent.

Particularly compelling are the dihedral groups. It has been shown that the o-basis dihedral

groups are precisely those that are 2-groups. These are also precisely the nilpotent dihedrals.

With this in mind, we ask whether or not all o-basis groups are nilpotent. We consider

this question for a restricted class of groups. Conversely, there are examples of nilpotent

groups that are not o-basis leading us to explore conditions on a nilpotent group which will

guarantee that the group is o-basis. The results obtained indicate a possible connection

between the o-basis property and the nilpotence class of a group.

The second main division of the present work is an exploration of a generalization of

o-basis groups. While the following definitions contain technicalities, the reader should be

able, without preliminary preparation, to understand the nature of the generalization. A

group is o-basis if for each subgroup H ≤ G and χ ∈ Irr(G) for which (χ, 1)H 6= 0, there are

a certain number of “orthogonal cosets” of H in G. We generalize by relaxing the subgroup

condition as follows. Let K ≤ G. We say G is K-o-basis if for each χ ∈ Irr(G) and each

subgroup H containing K where (χ, 1)H 6= 0, there are the required number of “orthogonal

cosets” of H. The o-basis groups, therefore, are the 〈e〉-o-basis groups, where 〈e〉 denotes

the identity subgroup. Note that to apply this notion to a given class of groups, K must

be defined for all groups in that class. Some results are obtained for the case when K is

a member of the lower central series and when it is a member of the upper central series.

Finally, the still open question of whether a direct product of o-basis groups is o-basis is

briefly discussed.
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Chapter 1

Preliminaries

1.1 Introduction

In this dissertation we study the notion of o-basis group. We also define and explore

generalizations of this notion. O-basis groups were defined by Holmes in [Hlms], but their

origins go back to an earlier paper by Holmes and Tam, [Hlms,Tam]. In that former

paper, the authors studied the problem of the existence, in the n-fold tensor product of

a complex inner product space, of a basis consisting entirely of “standard symmetrized

tensors”. Holmes would later call such a basis an o-basis. The term “symmetrized” refers

to the action of a subgroup G of the symmetric group Sn on the tensor product. The question

arises as to the extent to which the existence of an o-basis depends upon the structure of

the group G. In particular, one may seek conditions on G which will guarantee that the

corresponding symmetrized space has an o-basis. Since any group can be homomorphically

embedded into Sn, abstract finite groups can be considered. For example, the authors

proved in [Hlms,Tam] that if G is the dihedral group of order 2n (the group of symmetries

of the regular n-gon), then the corresponding symmetrized tensor space has an o-basis if and

only if n is a power of 2. Motivated by this, Holmes defined, in [Hlms], the o-basis groups

as a class of abstract finite groups satisfying certain, rather technical, conditions. He then

proved that, given an o-basis group G, for any quotient of G, regardless of how it is embedded

into Sn, the corresponding tensor space has an o-basis. Thus, o-basis groups may well be

of interest to those working with the existence of o-bases in tensor spaces. That problem

and its connection with o-basis groups are discussed in more detail in section 2.2 below.
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The focus in the present work is on o-basis groups themselves. In defining o-basis groups,

Holmes’ aim was to use the concept as a tool for distinguishing between abstract groups.

For example, we have noted that the o-basis property chooses, from among the dihedrals,

exactly those of prime-power order. Following the example of the dihedrals, Holmes was

able to produce a list of familiar groups that are o-basis according to the definition he gives

in [Hlms].

Theorem 1.1.1 ([Hlms], p. 142) The following groups are o-basis groups (p, prime,

n ≥ 1):

(i) any finite abelian group,

(ii) the dihedral group D2n,

(iii) the quaternion group Q2n,

(iv) the semidehedral group S2n,

(v) the group with presentation 〈x, a|xp = 1 = apn−1
, ax = a1+pn−2〉

(vi) any group of order p3,

(vii) any extra-special p-group.

Holmes also provides a list of groups that are not o-basis.

Theorem 1.1.2 ([Hlms], p. 138) The following groups are not o-basis groups:

(i) any dihedral group Dn (order 2n) with n not a power of 2.

(ii) any 2-transitive subgroup of Sn with n ≥ 3 (e.g., the alter-

nating group An, n ≥ 4 and the symmetric group Sn n ≥ 3),

(iii) any finite simple group of Lie type.

Let us state, for future reference, the dihedral group result noting that if follows from

Theorems 1.1.1 and 1.1.2 taken together.
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Theorem 1.1.3 A dihedral group of order 2n is o-basis if and only if n is a power of 2.

Noting that all of the above examples that are o-basis are also p-groups, Holmes asked

if all p-groups are o-basis. He answered this in the negative by constructing a group of order

34 that is not.

It is at this point that the present study begins. The new work presented here can

be divided into two parts. The first part deals with the relationship between the property

of being o-basis and that of being nilpotent. Since all prime power groups are nilpotent,

we see that, so far, every group that has been identified as o-basis is also nilpotent. Even

more compelling is the fact, already mentioned, that the dihedral groups that are o-basis are

precisely those that are 2-groups. These also happen to be precisely the nilpotent dihedrals.

In summary, two questions arise.

• Which nilpotent groups are o-basis?

(not all of them, as the example of order 34 shows)

• Are all o-basis groups nilpotent?

Concerning the first of these questions, we begin by proving that if G′ ⊆ Z(G) (a

condition implying nilpotentcy), then G is o-basis. We use this fact as a tool to obtain

some further results. It also raises an interesting question for possible future study. Any

group with G′ ⊆ Z(G) has nilpotence class less than or equal to 3 (see the definition of

γn(G) in the notation section). Noting that the example of order 34 has class 4, one might

ask whether or not an o-basis group must be of class 3. This question remains open.

The reader might recall that nilpotent groups are characterized as being direct products

of their Sylow subgroups. We use this fact to show that a nilpotent group is o-basis if and
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only if each of its Sylow subgroups is o-basis. The method of proof does not generalize

to direct products in general, and we briefly discuss the dilemma that arises after proving

the result. From this result on Sylow subgroups, we see that in some sense the question

of which nilpotent groups are o-basis would be answered if one knew which p-groups are

o-basis. In [Hlms], Holmes has given some sufficient conditions on a p-group for it to be

o-basis. In the present study, we take the approach of considering groups of increasingly

higher prime power order. As shall be seen, it follows quickly from the defintion of o-basis

that all abelian groups, and therefore all groups of order p2, are o-basis. Holmes has also

shown that all groups of order p3 are o-basis (Theorem 1.1.1). Arriving at p4, Holmes’

group of order 34 gives the first example of a prime power group this is not o-basis. In

hopes of better understanding groups of order p4, we derive some necessary conditions for

such a group to fail to be o-basis. The groups that arise from this investigation begin to

look very much like Holmes’ example.

After these considerations, we turn to the second of our questions. Are all o-basis

groups nilpotent? Again taking our cue from the dihedrals, we narrow the focus of the

question by considering a class of ”dihedral-like” groups. More precisely, let p be prime

and let A C G be abelian with |G : A| = pn for some positive integer n. Is it true that,

whenever G is o-basis, G is also nilpotent? We obtain some limited results for small values

of n.

The second major division of this work begins in section 3.1 where we define a gen-

eralized notion of o-basis group. The reader should be able to understand the nature of

the generalization without begin concerned with the technicalities of the definitions given
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below. O-basis groups could be defined as follows (although, our working definition will

include some additional conditions in order to eliminate trivialities).

A finite group G is called an o-basis group if for all H ≤ G, and all χ ∈ Irr(G),

there exist at least χ(e)(χ, 1)H cosets of H in G which are mutually orthogonal relative to

Bχ
H .

This definition gives conditions to be satisfied by all pairs (H, χ), with H ≤ G and χ

an irreducible character of G. To generalize this, we require these conditions to hold for

only certain subgroups. We also make an attempt at more convenient notation.

For H ≤ G and χ ∈ Irr(G), we say G is
(
H,χ

)
-o-basis if there are at least χ(e)

(
χ, 1

)
H

cosets of H in G which are mutually orthogonal relative to Bχ
H . Let K ≤ G. If G is

(
H, χ

)
-

o-basis for all subgroups H with K ⊆ H and all χ ∈ Irr(G), we say G is K-o-basis.

Let us note that the new definition encompasses the old since an o-basis group is one that is

〈e〉-o-basis, where e denotes identity element. One might try to use the notion of K-o-basis

to distinguish between groups in a given class. To do this, K must be chosen so that it

is defined for all groups in the class. For example, it makes sense to ask for any finite

group whether or not the group is Z(G)-o-basis, where Z(G) denotes the center of G. In

section 3.3, we explore the notion of K-o-basis, where K is an element of the lower central

series and also where K is an element of the upper central series. For example, we show

that all finite groups are γ3-o-basis, where γ3 is the third term of the lower central series

(see the notation section for the definition of these series).

Our tools come from finite group theory and from the character theory of finite groups.

Field theory also appears very briefly.
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The remainder of this preliminary chapter is devoted to material that will be needed in

the main body which the reader may need to be introduced to or at least reminded of. We

discuss some general concepts and facts from Group Theory in section 1.2 and Character

theory in sections 1.3.1 - 1.3.3. Sections 1.3.4 and 1.3.5 are devoted to the specialized topics

of Semi-Direct Products and Frobenius Groups respectively.

In section 2.1, we state our working definition of o-basis groups and look in some detail

at Holmes’ original development of the concept. We also state some results obtained by

Holmes in [Hlms] that we use directly in the main body of this work. In section 2.2, we take

a closer look at the tensor space problem that gave rise to the notion of o-basis groups.

1.2 Group Theory

This seems a convenient place to collect several facts and definitions from group theory

that we will need and that the reader may not immediately recall.

Theorem 1.2.1 ([Hun] p. 93) Let p be a prime and G be a group of order pn for some

integer n ≥ 0. Suppose G acts on a finite set S and let SG denote the set of fixed points

under the action. Then |S| ≡ |SG| (mod p).

Definition 1.2.2 ([Suz], p. 50) Let K be a subgroup of a group G. We say K charac-

teristic is in G, written K char G, if every automorphism of G maps K into itself. That

is, Kσ ⊆ K for all σ ∈ Aut(G).

Theorem 1.2.3 ([Suz], p. 51) Suppose K ⊆ N are subgroups of a group G and

that K char N . If N C G, then K C G.
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Theorem 1.2.4 ([Hun] p. 94) Let p be prime. The center of a non-trivial finite p-group

contains more than one element.

Theorem 1.2.5 ([Hun], p. 96) Let p be a prime. If G is a finite p-group, N C G and

N 6= 〈e〉, then N ∩ Z(G) 6= 〈e〉.

Theorem 1.2.6 ([Suz], p. 88) Let p be prime and suppose G is a p-group. Let M be a

maximal subgroup of G. Then M C G and G/M has order p.

Definition 1.2.7 ([Karp] p. 811) Let p be prime. A p-group is called an extra-special

p-group if G′ = Z(G), |G′| = p and G/G′ is elementary abelian.

All groups of order p3 are extra-special. To prove this, we can use the lemma below.

Lemma 1.2.8 Suppose that G/Z is cyclic. Then G is abelian.

Proof: Suppose for the sake of contradiction that G is non-abelian. Using the assumption

that G/Z is cyclic, let g ∈ G−Z such that G/Z = 〈gZ〉. Observe that CG(g) contains g and

Z(G). Thus Cg(G)/Z = G/Z so that Cg(G) = G. It follows that g ∈ Z(G), a contradiction.

Therefore, G is abelian as desired.

¤

Proposition 1.2.9 Let G be a non-abelian group of order p3. Then G is extra-special.

Proof: We verify the conditions of Definition 1.2.7. Since G is non-abelian, we have

|G′| > 1 and |Z| ≤ p2, where Z = Z(G). If |Z| = p2, then G/Z is cyclic so that, contrary

to our assumption, G is abelian by Lemma 1.2.8. Thus |Z| = p. By Theorem 1.2.5, Z is

contained in every normal subgroup of G. In particular, Z ⊆ G′. Also, G/Z is abelian,

7



being a p-group with order p2. If follows that G′ ⊆ Z so that G′ = Z. Finally, note that

if G/G′ = G/Z is cyclic then Lemma 1.2.8 again gives that G is abelian. It follows that

G/G′ ∼= Zp × Zp. That is, G/G′ is elementary abelian and the proof is complete.

¤

Definition 1.2.10 ([Suz], p.159) Let p be prime. An abelian group A is said to be

elementary abelian if ap = 1 for all a ∈ A.

If A is an elementary abelian p-group, then A is isomorphic to a direct sum of cyclic groups

of order p.

1.3 Character Theory

In this section, we introduce the basics of the character theory of finite groups and

present a number of definitions and results which we will call upon throughout this work.

It is hoped that this will be an informative and enjoyable introduction to character theory

for those readers not familiar with it. Secondly, we aim to make the subsequent discussion

of o-basis groups more accessible and meaningful.

1.3.1 Brief Introduction to Character Theory

Character Theory can be developed in two alternate contexts, that of linear represen-

tations and that of modules over the group algebra. The resulting theories are essentially

equivalent. We begin with representations. Let G be a finite group, let K be a field, and let

V be a finite-dimensional vector space over K. We denote by GL(V ) the group of invertible

linear transformations of V onto itself. A group homomorphism ρ : G → GL(V ) is called
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a linear K-representation (or simply a representation) of G in V . In the main body of

this work, we will always take K to be the field of complex numbers. This assumption, as

will be briefly explained below, simplifies the theory. We state what we can in the more

general context to make the reader aware of that theory.

We move from representations to characters as follows. Suppose dimC(V ) = n and let

B = {v1, . . . , vn} be an ordered basis of V . For v ∈ V , we have v =
∑

i βivi for uniquely

determined βi ∈ K. Put

[v]B =




β1

·
·
·

βn




(the coordinate vector of v relative to B). If f : V → V is a linear transformation, the

matrix of f relative to B is given by [f ]B = [αij ], where f(vj) =
∑

i αijvi(1 ≤ j ≤ n).

That is, the jth column of [f ]B is the coordinate vector of f(vj). The matrix of f satisfies

the equation [f(v)]B = [f ]B[v]B, for all v ∈ V . If a second basis, B′, is chosen for V , then

there is an invertible n×n matrix A such that [f ]B′ = A[f ]BA−1. Recall that the trace of a

matrix is the sum of the diagonal elements. Since the trace in invariant under conjugation,

we see that Tr[f ]B = Tr[f ]B′ . This fact will be called upon shortly.

Now suppose ρ : G → GL(V ) is a representation of G. We define the character

afforded by ρ to be the function ϕ : G → K given by ϕ(g) = Tr[ρ(g)]B (g ∈ G), where

B is some chosen ordered basis. We have noted that the trace of the matrix of ρ(g) is

independent of the basis used when forming that matrix. Therefore, the character ϕ is also

independent of the choice of basis. Suppose W is a K-subspace of V such that ρ(g)(W ) ⊆ W

for all g ∈ G. Then the map ρW : G → GL(W ) given by ρW (g) = ρ(g)|W is a well-defined

representation of G. It is called the sub-representation of ρ afforded by W . If ρ has no
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proper, non-trivial sub-representations, then ρ is said to be irreducible and the character

it affords is called an irreducible character. We will see that the irreducible characters

play a critical role in character theory. First, however, let us develop these ideas in the

alternative context of KG-modules.

As mentioned, the notion of a group representation is interchangeable with a second

notion which we now introduce, that of a KG-module. Denote by KG the free K-module

with basis G (or more simply, the K-vector space having the elements of G as basis). That

is, KG consists of all formal sums of the form
∑

g∈G αgg, where αg ∈ K (Since G is finite,

the sums are finite). Note that, as a vector space over K, KG has dimension |G|. The

K-space KG can be made into a ring by defining multiplication as follows:

( ∑

x∈G

αxx
)( ∑

y∈G

βyy
)

=
∑

x∈G

[
αxx

∑

y∈G

βyy

]
=

∑

x,y∈G

(αxβy)xy.

As a ring, KG has a multiplicative identity: the formal sum 1e, where e denotes the identity

element of G. We may imbed G into KG via g 7→ 1g and identify G with its image. Note

that 1a · 1b = 1(ab), for a, b ∈ G.

The K-vector space structure on KG combines with the ring structure to make KG

a K-algebra. A K-algebra is a ring A with identity that is also a vector space over

K such that the “scalar multiplication” interacts with the ring multiplication as follows:

α(ab) = (αa)b = a(αb) for all α ∈ K and all a, b ∈ A. It is not hard to verify that

KG is indeed a K-algebra and we refer to KG with this structure as the group algebra.

We are now ready to discuss modules over the group algebra and their connections with

representations and characters.
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Let A be a K-algebra and let V be a K-vector space. Suppose for every v ∈ V and

x ∈ A that a unique xv ∈ V is defined. Also assume for all x, y ∈ A, v, w ∈ V , and k ∈ K

that

(i) x(v + w) = xv + xw

(ii) (x + y)v = xv + yv

(iii) x(yv) = (xy)v

(iv) x(kv) = k(xv) = (kx)v

(v) 1v = v

Then V is called an A-module. Some authors omit (v) and call an A-module with this

additional property a unitary A-module. Also, an A-module is usually not assumed to be

finite-dimensional as a K-space.

Suppose again that ρ : G → GL(V ) is a representation of a group G. One makes V

into a KG-module by defining gv = ρ(g)(v)(g ∈ G, v ∈ V ), and extending linearly to KG.

Conversely, let V be a KG-module. Then V can be viewed as a (finite-dimensional)

vector space over K. Here we use the fact that the map K → KG given by α 7→ α1, where

α ∈ K, is a ring monomorphism. We may therefore identify K with its image in KG under

this map. Define ρ : G → GL(V ) by ρ(g)(v) = gv. One uses the above properties of a

K-algebra to show that ρ is a well-defined homomorphism, and hence a representation of

G. We call ρ the representation of G afforded by V . If ϕ is the character afforded by

ρ, we say that ϕ is afforded by the KG-module V .

If W ⊆ V is a KG-submodule of V (meaning that sW ⊆ W for all s ∈ KG), then

W affords a representation of G and this representation is a sub-representation of ρ (see

our discussion of representations). A non-zero KG-module is simple if it has no non-zero,

proper submodules. If V is a simple KG-module, then the representation it affords is
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irreducible in the sense defined previously and the character it affords is an irreducible

character. We may, in this way, pass from representations to KG-modules and back

and develop the theory in either context. Let us take this opportunity to point out that

sums of characters are characters. Indeed, let V1 and V2 be KG-modules affording the

characters χ1 and χ2 respectively. The direct sum V1 ⊕ V2 becomes a KG-module by

defining s(v1, v2) = (sv1, sv2) (s ∈ KG, vi ∈ Vi). In this case, V1 ⊕ V2 affords the character

χ1 + χ2 defined as usual by (χ1 + χ2)(g) = χ1(g) + χ2(g). As will be seen, any character

can be written as a sum of irreducible characters.

If one assumes that K = C, the field of complex numbers, a simplified theory results.

This is due to the fact that the complex numbers form an algebraically closed field of

characteristic zero. In fact, the simplified theory continues to hold, with minor adjustments,

for any algebraically closed field whose characteristic does not divide |G|. The utility of

these properties for character theory lies in part with two results which we state below:

Maschke’s Theorem and Schur’s Lemma. This theory is covered in detail (and in more

generality) in Chapter 1 and in the beginning of Chapter 2 of [Is].

Definition 1.3.1 Let R be a ring. If there is a least positive integer n such that na = 0

for all a ∈ R, then R is said to have characteristic n. If no such n exists, R is said to

have characteristic zero.

Note that the field of complex numbers has characteristic zero and is algebraically closed.

Theorem 1.3.1.1 (Maschke’s Theorem) Let K be a field and let G be a finite group.

If char(K) does not divide |G|, then every KG-module is a direct sum of simple modules.
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Thus, given a group G, to know all simple KG-modules is to know all KG-modules. As

an interesting aside, we mention that it is pointed out in Isaacs’ book that a KG-module

is external to KG. Therefore, it is not clear how one might determine from KG all simple

KG-modules. One must produce a set of KG-modules large enough to contain copies of

all simple KG-modules. Let us note that KG can be considered a module over itself by

left multiplication. Denote this KG-module by KG◦. It can be shown that every simple

KG-module is a submodule of KG◦.

Theorem 1.3.1.2 (Schur’s Lemma) Let V and W be simple KG-modules and let

f : V → W be a KG-module homomorphism.

(i) If V �W , then f = 0.

(ii) Assume that K is algebraically closed. If V = W , then f = α1V for some α ∈ K.

We assume henceforth that K = C. As an illustration of how Maschke’s Theorem and

Schur’s Lemma are used, we include a sketch of their role in a portion of the theory that

will be of interest to us. We need to define the notion of a class function.

A function f : G → C is said to be a class function on G if for each g ∈ G,

f(xgx−1) = f(g) for all x ∈ G. That is, a class function is constant on conjugacy classes

of G. The class functions of G form a complex vector space, Cl(G). Let {Hi}k
i=1 be the

conjugacy classes of G and define, for each i, χi : G → C by χi(g) =





1 if g ∈ Hi

0 if g /∈ Hi

.

Then the set {χi : 1 ≤ i ≤ k} forms an obvious basis of Cl(G) so that the dimension of

Cl(G) over C is equal to the number of conjugacy classes of G.

Characters are class functions and this fact will be used directly at least once in this

work. We have already mentioned the fact that, if K is taken to be C, the irreducible

characters of G play a particularly important role in character theory. It turns out, in this
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case, that Irr(G) forms a basis for Cl(G) that is orthonormal relative to a certain “inner

product”. The proof involves both Maschke’s Theorem and Schur’s Lemma.

Definition 1.3.1.3 Let ϕ, ϑ be class functions on a finite group G. Define the inner

product of ϕ and ϑ by

(ϕ, ϑ) = (ϕ, ϑ)G =
1
|G|

∑

g∈G

ϕ(g)ϑ(g).

Our “inner product” has the following properties for all x, y, z ∈ V and every α, β ∈ C:

(i) (αx + βy, z) = α(x, z) + β(y, z)

(ii) (y, x) = (x, y)

(iii) (x, x) ≥ 0

(iv) (x, x) = 0 iff x = 0.
From this definition, it follows that the inner product is conjugate linear in the second

variable. That is (x, αy +βz) = α(x, y)+β(x, z), where the notation is as in the definition.

We have the following.

Theorem 1.3.1.4 Orthogonality Relation ([Is], p.20) Let χ, ϕ ∈ Irr(G).

Then (χ, ϕ)G =
1
|G|

∑

g∈G

χ(g)ϕ(g−1) = δχϕ, where δχϕ is the Kronecker delta.

The orthogonality relation says that the irreducible characters of G form an orthonormal

set with respect to the inner product defined above. We note that there is, in fact, a ”first”

and ”second” orthogonality relation. What we have stated is the ”first”. Let us now turn

to the proof that Irr(G) forms a basis for Cl(G). We need one further lemma.

Lemma 1.3.1.5 Let S be a simple CG-module affording the character χ. Let f ∈ Cl(G)

and define h =
∑

g∈G f(g)g : V → V . Then h =
|G|
n

(f, χ)1V , where n = dimC V .

14



Sketch of proof for Lemma 1.3.1.5: One shows that h is a CG-module homomorphism. By

Theorem 1.3.1.2, we have h = α1V for some α ∈ C. Thus,

αn = Tr(h) = Tr

( ∑

g∈G

f(g)g
)

=
∑

g∈G

Tr(f(g)g) =
∑

g∈G

f(g)Tr(g) =
∑

g∈G

f(g)χ(g) = |G|(f, χ),

where the last equality follows immediately from Definition 1.3.1.3. The result follows.

¤

Theorem 1.3.1.6 Let G be a finite group. Then Irr(G) is a basis for Cl(G).

Sketch of proof: We have seen that Irr(G) forms an orthonormal set in Cl(G). Thus it

suffices to show that Irr(G) spans Cl(G). For this, it is enough to show that the orthogonal

complement of the subspace generated by Irr(G) is zero (relative to the inner product

defined in 1.3.1.3). Let f ∈ Cl(G) such that (χ, f) = 0 for all χ ∈ Irr(G). Let V = CG

and set h =
∑

g∈G f(g)g : V → V . (That is, h(v) =
(∑

g∈G f(g)g
)

v for all v ∈ CG.) If

S is a simple submodule of V affording the character χ, then Lemma 1.3.1.5 gives that the

restriction of h to S equals
|G|
n

(f, χ)1S , where n = dimC S. Note that (f, χ) = (χ, f) (easily

verified from Definition 1.3.1.3). Since the quantity on the right is zero by assumption, we

see that hS is zero. By Theorem 1.3.1.1, V is a direct sum of simple modules. It follows

that h : V → V is the zero map. Hence
∑

g∈G f(g)g = h(e) = 0. This last quantity is a

linear combination in the vector space CG and the elements of G are a basis for that space.

Thus the elements of G form a linearly independent set. This implies that f(g) = 0 for all

g ∈ G. That is, f = 0. It follows that f = 0, as desired.

¤
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By Theorem 1.3.1.6, Irr(G) forms a basis over C for Cl(G). The first part of the

theorem below follows immediately.

Theorem 1.3.1.7 ([Is], p.16) Every class function ϕ of G can be uniquely expressed in

the form ϕ =
∑

χ∈Irr(G) aχχ, where aχ ∈ C. Furthermore, ϕ is a character if and only if

all of the aχ are nonnegative integers and ϕ 6= 0.

The module viewpoint can be used to give an easy proof of the second statement of the

theorem. Let V be a KG-module affording the character ϕ. According to Maschke’s

Theorem, V is a direct sum of simple modules. Therefore, ϕ is the sum of the irreducible

characters that these simple modules afford.

More can be said of the αχ. These quantities will play an important role in several of

our arguments. They can be described in terms of the inner product.

Proposition 1.3.1.8 ([Is], p.20) Let χ be a character of G. Then

(i) |χ(g)| ≤ χ(e), and

(ii) χ(g−1) = χ(g).

Proposition 1.3.1.9 Let ϕ ∈ Cl(G). Then ϕ =
∑

σ∈Irr(G)(ϕ, σ)σ.

Proof: By Theorem 1.3.1.7, ϕ =
∑

σ∈Irr(G) ασσ, for uniquely determined ασ ∈ C. Fix

χ ∈ Irr(G) and observe that

(ϕ, χ) =
( ∑

σ∈Irr(G)

ασσ, χ

)
=

∑

σ∈Irr(G)

ασ(σ, χ) = αχ,

where the last equality follows from Theorem 1.3.1.4. The result follows.

¤
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Suppose ϕ is a character of G. For any χ ∈ Irr(G) for which (ϕ, χ) 6= 0, we say that χ is

an irreducible constituent of ϕ. In this case, we see from Proposition 1.3.1.9 that (ϕ, χ)

is the multiplicity of χ as an irreducible constituent. Note also that ϕ(e) =
∑

(ϕ, χ)χ(e).

Proposition 1.3.1.10 ([Is], p.21) Let ϕ and ψ be (not necessarily irreducible) characters

of a group G. Then (ϕ, ψ) = (ψ, ϕ) is a non-negative integer. Also, χ ∈ Irr(G) if and only

if (χ, χ) = 1.

1.3.2 Basic Concepts and Related Theorems

In this section, we introduce some basic concepts in and collect a number of results

from character theory that we will need.

Definition 1.3.2.1 For a character χ of G, the positive integer χ(e) is called the degree

of χ. We say χ is linear if χ(e) = 1.

Let χ ∈ Irr(G) and let ρ : G → GL(V ) be the representation affording χ. Since ρ is

a homomorphism, the matrix of ρ(e) is the identity matrix. Thus χ(e), the trace of this

matrix, is the dimension over C of V . In particular, it is a positive integer. As noted in

the remarks before Proposition 1.3.1.10, the degree of χ is the sum of the degrees of its

irreducible constituents (counting multiplicities).

Note that the linear characters are precisely those that are afforded by representations

into 1-dimensional spaces. This means that linear characters are irreducible.
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Proposition 1.3.2.2 Let χ be a linear character of G. Then χ is irreducible.

Proof: Let ρ : G → GL(V ) be a representation affording χ. We have dimCV = χ(e) = 1.

Thus V has no proper, non-trivial subspaces so that ρ has no proper, non-trivial sub-

representations. That is ρ, and thus χ is irreducible.

¤

Theorem 1.3.2.3 ([Is], p.16) A group G is abelian if and only if every irreducible char-

acter of G is linear.

Definition 1.3.2.4 Let χ be a character of G. The kernel of χ is the subgroup of G defined

by: kerχ = {g ∈ G : χ(g) = χ(e)}. We say that χ is faithful if kerχ = {e}.

Suppose that N C G. There is a one-to-one correspondence between the irreducible

characters of G/N and those irreducible characters of G whose kernels contain N . More

precisely, we have the following result taken from Isaacs.

Proposition 1.3.2.5 ([Is], p.24) Let N C G.

(i) If χ is a character of G and N ⊆ kerχ, then χ is constant

on cosets of N in G and the function χ̂ on G/N defined by

χ̂(gN) = χ(g) is a character of G/N .

(ii) If χ̂ is a character of G/N , then the function χ defined by χ(g) =

χ̂(gN) is a character of G.

(iii) In both (a) and (b), χ ∈ Irr(G) iff χ̂ ∈ Irr(G/N).

Suppose χ ∈ Irr(G) and kerχ ⊇ G′. Then χ̂ ∈ Irr(G/G′). Since G/G′ is abelian, Proposi-

tion 1.3.2.3 gives that χ(e) = χ̂(e) = 1. That is, χ is linear. The converse is true in fact, as

the proposition below states.
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Propositon 1.3.2.6 G′ =
⋂{ker(λ) : λ ∈ Irr(G), λ(1) = 1}

Definition 1.3.2.7 Let χ be a character of G. The center of χ is the subgroup of G given

by: Z(χ) = {g ∈ G : |χ(g)| = χ(e)}.

Note that kerχ ⊆ Z(χ) for all characters χ.

Corollary 1.3.2.8 ([Is], p.27) Let χ ∈ Irr(G). Then Z(G) =
⋂{Z(χ) : χ ∈ Irr(G)}.

Lemma 1.3.2.9 ([Is], p.27) Let χ ∈ Irr(G). Then Z(χ)/ kerχ = Z(G/ kerχ).

This follows from Proposition 1.3.2.5 and Theorem 1.3.2.3.

Proposition 1.3.2.10 ([Is], p.28) Let χ ∈ Irr(G). Then χ2(e) ≤ |G : Z(χ)|. Equality

occurs if and only if χ ≡ 0 on G− Z(χ).

Theorem 1.3.2.11 ([Is], p.28) Suppose that χ ∈ Irr(G) and that G/Z(χ) is abelian.

Then |G : Z(χ)| = χ2(e).

The following result follows from remarks accompanying exercise 2.12, [Is], p.31.

Proposition 1.3.2.12 Let ϕ be a character of G and let n = |G|. Let g ∈ G with ϕ(g) = 0.

Then χ(gm) = 0 for all m ∈ Z with (m,n) = 1.

Proof: Let ε be a primitive nth root of unity in C. Let m ∈ Z with (m,n) = 1. Referring

to exercise 2.12 ([Is], p. 31), there exists σ ∈ Gal(Q[ε],Q) such that ϕ(gm) = σ(ϕ(g)). By

assumption, we have σ(ϕ(g)) = σ(0) = 0, where the last equality follows since σ is a field

automorphism. The result is established.

¤
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Theorem 1.3.2.13 Ito’s Theorem ([Is], p.84) Let A C G be abelian. Then χ(e) divides

|G : A| for all χ ∈ Irr(G).

1.3.3 New Characters from Old: Products, Induction, Restriction

and Conjugation

Definition 1.3.3.1 Let ϕ and ψ be class functions on a group G. The product ϕψ of ϕ

and ψ is defined by ϕψ(g) = ϕ(g)ψ(g). If ϕ and ψ are characters, then ϕψ (see immediately

below).

Let V1 and V2 be CG-modules affording the characters ϕ1 and ϕ2 respectively. The

tensor product V1 ⊗ V2 becomes a CG-module by defining g(v1 ⊗ v2) = gv1 ⊗ gv2 (g ∈ G,

vi ∈ Vi) and extending linearly in both CG and in V1⊗V2. As a CG-module, V1⊗V2 affords

the product character ϕ1ϕ2.

Theorem 1.3.3.2 ([Is], p.59) Let G be the direct product of subgroups H and K. Let ϕ

be a character of H and ψ be a character of K. Extend ϕ,ψ to G by putting ϕ(h, k) = ϕ(h)

and ψ(h, k) = ψ(k). These functions are characters of G so that the product ϕψ is a

character of G. Moreover, the irreducible characters of G are exactly the products of the

extended irreducible characters of H and K: Irr(G) = {ϕψ : ϕ ∈ Irr(H), ψ ∈ Irr(K)}.

Theorem 1.3.3.2 generalizes in the natural way to a direct product with any finite number

of factors.

Theorem 1.3.3.3 Suppose H ≤ G and let χ ∈ Irr(G). The restriction, χH , of χ to H is

a character of H.

20



Keeping the above notation, we see that χH(e) = χ(e). Thus the restriction of a linear

character is linear and so irreducible by Proposition 1.3.2.2. Let χ ∈ Irr(G) and ϕ ∈

Irr(H). When referring to the inner product in H we will suppress the subscript on the

restricted character and write (χ, ϕ)H rather than (χH , ϕ)H (see Definition 1.3.1.3).

Theorem 1.3.3.4 ([Is], p.81) Let N C G and suppose that χ ∈ Irr(G)

with
(
χ, 1

)
N
6= 0. Then N ⊆ kerχ.

Definition 1.3.3.5 Let H ≤ G and let ϕ ∈ Cl(H). The induced class function ϕG on

G is defined by

ϕG(g) =
1
|H|

∑

x∈G

ϕ◦
(
xgx−1

)

where ϕ◦(y) = ϕ(y) if y ∈ H and ϕ◦(y) = 0 if y /∈ H.

It follows immediately from the definition that ϕG(e) = |G : H| · ϕ(e). Also, if N C G and

ϕ ∈ Cl(N), then ϕG ≡ 0 on G−N .

Lemma 1.3.3.6 ([Is], p.67) Let ϕ be a character of a subgroup of G. Then ker(ϕG) =
⋂

x∈G

(kerϕ)x.

Definition 1.3.3.7 Let H ≤ G, let χ be a character of H and let g ∈ G.

The conjugate character, gχ, of χ is the character of gH defined by

the equation gχ(gh) := χ(h).

Definition 1.3.3.8 Let H C G and let ϕ ∈ Irr(H). The set IG(ϕ) = {g ∈ G : gϕ = ϕ} is

called the inertial subgroup of ϕ.

Conjugate characters play a central role in two important theorems concerning char-

acters of subgroups: Clifford’s Theorem and Mackey’s Theorem. Clifford’s Theorem deals

with restriction to a normal subgroup.
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Theorem 1.3.3.9 (Clifford’s Theorem for Characters) Let H C G, let χ ∈ Irr(G),

let λ ∈ Irr(H) and assume (χ, λ)H 6= 0. Then χH = (χ, λ)H

∑

s∈Ω

sλ, where {sλ}s∈Ω is a

complete set of distinct conjugates of λ.

We will also be interested in inducing up to G a character of some subgroup H of G and

then restricting this induced character to a subgroup K of G to obtain a character of K.

Mackey’s Theorem provides a description of the restricted character. The theorem involves

the notion of conjugate characters and that of double cosets.

Definition 1.3.3.10 Let H, K be subgroups of a group G and let g ∈ G. The (H,K)-

double coset containing g is the set HgK := {hgk : h ∈ H, k ∈ K}.

Theorem 1.3.3.11 Mackey’s Theorem Let H,K be subgroups of a group G and let ϕ be

a character of H. Then (ϕG)K =
∑

s∈Ω

(
(sϕ)sH∩K

)K , where Ω is a complete set of (H, K)-

double coset representatives in G.

Theorem 1.3.3.12 Frobenius Reciprocity([Is], p.62) Let H be a subgroup of a group

G. Suppose ϕ ∈ Cl(H) and ψ ∈ Cl(G). Then
(
ϕ,ψH

)
H

=
(
ϕG, ψ

)
G
.

Definition 1.3.3.13 Let ϕ be a character of G. We say ϕ is mononial if ϕ = λG, where

λ is a linear character of some (not necessarily proper) subgroup of G. The group G is an

M-group if every irreducible character of G is monomial.

Let H ≤ G, let λ ∈ Irr(H) be linear, and let χ = λG. If χ is non-linear, then

|G : H| = |G : H|λ(e) = χ(e) > 1 (see the comments after Definition 1.3.3.5). That is, H is

a proper subgroup in this case.

Theorem 1.3.3.14 ([Is], p.83) Every nilpotent group is an M-group.
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1.3.4 Semi-Direct Products

In this section we discuss a generalization of the notion of direct product.

Definition 1.3.4.1 Let A, T be subgroups of G. We say G is the internal semi-direct

product of A and T (written Ao T ) if the following hold:

(i) G = AT ,

(ii) A ∩ T = 〈e〉.

Our interest in the semi-direct product structure stems in large part from the following

discussion taken from [Ser], p.62. We refer the reader to that passage for a full discussion

and proofs. Consider a semi-direct product, G = AoT , where A is abelian. The irreducible

characters of G shall be described in terms of those for A and T . The group T acts on

Irr(A) as follows: λt(a) = λ(t−1at), where λ ∈ Irr(A), t ∈ T , and a ∈ A. Choose a

representative λ of an orbit in Irr(A) under the action of T and let Tλ denote the stabilizer

of λ in T . Put H = ATλ. The character λ is extended to an irreducible character of H by

putting λ(at) = λ(a) for a ∈ A and t ∈ Tλ. Choose ρ ∈ Irr(Tλ). Putting ρ̃ = ρπ, where

π : H → H/A ∼= Tλ is the canonical map, one obtains a second irreducible character of

H. Now set θλ,ρ = (λρ̃)G to obtain an irreducible character of G. That θλ,ρ is indeed an

irreducible character of G and that the above construction gives all irreducible characters

of G is the substance of the next theorem.

Theorem 1.3.4.2 Suppose that G = A o T , where A is abelian. Referring to the above

discussion, let {λi} be a complete set of orbit representatives in Irr(A) under the action of

T and put θλi,ρ = (λiρ̃)G for each orbit representative λi and character ρ ∈ Irr(Tλi). Then

the following statements hold:
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(i) θλi,ρ ∈ Irr(G),

(ii) If θλi,ρ = θλ′i,ρ′, then i = i′ and ρ = ρ′,

(iii) For every χ ∈ Irr(G), χ = θλi,ρ for some i and ρ ∈ Irr(Tλi).

The following Theorem will be used to verify that certain groups of interest are semi-direct

products.

Theorem 1.3.4.3 (Schur-Zassenhaus) Let A C G. If |G : A| is relatively prime to |A|,

then G is the internal semi-direct product AoT , where T is a subgroup of G with T ∼= G/A.

1.3.5 Frobenius Groups

We will have occasion to work with a special class of groups known as Frobenius Groups.

We will, when there is need, refer the reader to this section for the definition of these groups

and pertinent results.

Definition 1.3.5.1 Let H ⊆ G, with 〈e〉 6= H 6= G. Assume that H ∩Hg = 〈e〉 whenever

g ∈ G−H. Then H is a Frobenius complement in G. A group that contains a Frobenius

complement is called a Frobenius group.

Theorem 1.3.5.2 (Frobenius, [Is], p.99-100) Let G be a Frobenius group with com-

plement H. Then there exists N C G with HN = G and H ∩ N = 〈e〉. In this case,

CG(x) ⊆ N for all 〈e〉 6= x ∈ N .

The normal subgroup N above is called the Frobenius kernel of G. It is uniquely deter-

mined by H. (see [Is], p.101).
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Theorem 1.3.5.3 ([Is], p.94) Let N C G and assume that CG(x) ⊆ N

for every e 6= x ∈ N . Then

(i) For ϕ ∈ Irr(N), with ϕ 6= 1N , we have IG(ϕ) = N and ϕG ∈ Irr(G).

(ii) For χ ∈ Irr(G) with N * kerχ, we have χ = ϕG for some ϕ ∈ Irr(N).

Lemma 1.3.5.4 ([Is], p.199) Let G be solvable and assume that G′ is the unique minimal

normal subgroup of G. Then all non-linear irreducible characters of G have equal degree f

and for some prime p one of the following holds:

(i) G is a p-group, Z(G) is cyclic and G/Z(G) is elementary abelian of order f2.

(ii) G is a Frobenius group with an abelian Frobenius complement of order f .

Also, G′ is the Frobenius kernel and is an elementary abelian p-group.
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Chapter 2

O-Basis Groups

In this chapter, we define o-basis groups, make some preliminary observations and

discuss connections to a problem in multi-linear algebra.

2.1 Construction and Definition

The o-basis groups were defined by Holmes in [Hlms]. We give here a brief account of

his construction which will serve to motivate our working definition. We also state some

results from [Hlms] which we will use later.

Let G be a finite group and let H be a subgroup of G. Denote by G/H the set of

left cosets of H in G. The natural left action of G on the set G/H extends linearly to the

complex vector space having this set as basis. Denote this vector space by C(G/H). Let

χ ∈ Irr(G). Define a form Bχ
H on C(G/H) by putting

Bχ
H(aH, bH) =

χ(e)
|H|

∑

h∈H

χ(a−1bh), (2.1)

and extending linearly in the first component and anti-linearly in the second component.

This can be shown to be a well-defined G-invariant Hermitian form. The term G-invariant

means that Bχ
H(gaH, gbH) = Bχ

H(aH, bH) for all g, a, b ∈ G. Put Cχ
H := C(G/H)/ kerBχ

H ,

where kerBχ
H := {x ∈ C(G/H) : Bχ

H(x, y) = 0 for all y ∈ C(G/H)}. Then Bχ
H induces
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a well-defined form B
χ
H on Cχ

H given by B
χ
H(x, y) = Bχ

H(x, y) (x, y ∈ C(G/H)), where x

denotes the coset x + kerBχ
H . We have the following.

Theorem 2.1.1 ([Hlms] p.135)

(i) dimCCχ
H = χ(e)(χ, 1)H , where (χ, 1)H =

1
|H|

∑

h∈H

χ(h).

(ii) The form B
χ
H is positive definite.

Holmes defines a group G to be an o-basis group if for every H ≤ G and χ ∈ Irr(G)

the vector space Cχ
H has a basis that is orthogonal relative to B

χ
H and consists entirely

of elements of the form aH. Such a basis he calls an o-basis of Cχ
H . He then gives a

characterization of o-basis groups entirely in terms of subgroups and characters without

reference to the linear algebra. This result is given below after one further definition.

Theorem 2.1.2 ([Hlms], p.139) The following are equivalent.

(i) G is an o-basis group.

(ii) For each H ≤ G and each χ ∈ Irr(G), there exists at least

χ(e)
(
χ, 1

)
H

cosets of H in G that are mutually orthogonal

relative to Bχ
H .

(iii) For each H ≤ G and each non-linear χ ∈ Irr(G) with
(
χ, 1

)
H
6= 0, there exist at least χ(e)

(
χ, 1

)
H

cosets of H in

G that are mutually orthogonal relative to Bχ
H .

We will take (iii) of Theorem 2.1.2 as our definition of o-basis group. It is obvious in the

theorem that (ii) implies (iii). It seems desirable to provide a brief sketch of the proof for

the remainder of the theorem since the reader will likely be curious about this and some of

the details are not difficult.

27



Sketch of proof of Theorem 2.1.2: Let H ≤ G, let χ ∈ Irr(G) and assume that (iii) holds.

We prove (i). By assumption, we may assume either (χ, 1)H = 0 or that χ is linear. Suppose

that (χ, 1)H = 0. Then by Theorem 2.1.1 part(i), dimCCχ
H = 0. In this case, the basis of

Cχ
H is empty and satisfies Holmes’ original definition vacuously. We assume therefore that

(χ, 1)H 6= 0. Let us suppose that χ is linear. Then the restriction of χH is linear (since

1 = χ(e) = χH(e)) and, by Proposition 1.3.2.2, χH ∈ Irr(H). By Proposition 1.3.1.9,

χH = 1H and (χ, 1)H = 1. Theorem 2.1.1 now gives that dimCCχ
H = 1. Thus, Cχ

H has

as basis the set {H}, where H := H + ker(Bχ
H). This single set serves as an o-basis, the

orthogonality condition again being satisfied vacuously. This shows that (iii) implies (i).

For (i) implies (ii), observe first that for every a, b ∈ G, B
χ
H(aH, bH) = Bχ

H(aH, bH)

so that aH and bH are orthogonal relative to B
χ
H if and only if aH and bH are orthogonal

relative to Bχ
H . Assume that G is an o-basis group, let H ≤ G and χ ∈ Irr(G). There

exists an o-basis {a1H, . . . , atH} of Cχ
H , (possibly empty with t = 0). By Theorem 2.1.1,

t = χ(e)(χ, 1)H and, by the above observations, a1H, . . . , atH are mutually orthogonal

relative to Bχ
H . This shows that (i) implies (ii) and the proof is complete.

¤

As we have said, we take Theorem 2.1.2 part (iii) for our definition of o-basis group.

Definition 2.1.3 A finite group G is called an o-basis group if for all H ≤ G and all

non-linear χ ∈ Irr(G) with (χ, 1)H 6= 0, there exist at least χ(e)(χ, 1)H cosets of H in G

which are mutually orthogonal relative to Bχ
H .

The next result follows almost immediately from the definition.
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Theorem 2.1.4 Let G be abelian. Then G is o-basis.

Proof: By Theorem 1.3.2.3, every irreducible character of G is linear. Therefore, G sat-

isfies Definition 2.1.3 vacuously and is o-basis.

¤

Throughout this work, we will often shift focus from a given group to a quotient of

the group. The success of this technique depends on the discussion below and the two

subsequent results. For the proofs, the reader is referred to [Hlms].

Let N C G, let χ ∈ Irr(G) and assume that N ⊆ kerχ. For a subgroup H ≤ G, denote

by Ĥ the image of H under the canonical map G → G/N . The function χ̂ : Ĝ → C given

by χ̂(gN) = χ(g) is a well-defined irreducible character of Ĝ (see Theorem 1.3.2.5, (i) and

(iii)). Let H ≤ G.

Proposition 2.1.5 ([Hlms], p.137) Let the notation be as in the above paragraph. The

linear map φ : Cχ
H → C bχbH given by φ(gH) = (gN)Ĥ is a well-defined linear isometry. In

particular, Cχ
H has an o-basis if and only if C bχbH has an o-basis.

Theorem 2.1.6 ([Hlms], p.137) The class of o-basis groups is closed under taking ho-

momorphic images.

The following theorem, also found in [Hlms], has proven useful for inspiration and as a

direct tool in this study.

Theorem 2.1.7 ([Hlms], p.139) Let G be a finite p-group (p, prime) and assume that

G has an abelian normal subgroup A and a cyclic normal subgroup C with C ⊆ A satisfying

|G : A| ≤ p and |A : C| ≤ p. Then G is an o-basis group.
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2.2 Connections with Linear Algebra

O-basis groups arose in connection with a problem from multi-linear algebra. We give

a brief description below. For a more in-depth discussion including proofs see [Hlms] and

[Hlms,Tam].

Fix positive integers m and n and put Γm,n = {γ ∈ Zn : 1 ≤ γi ≤ m}. Let G be

a subgroup of the symmetric group Sn. There is a right action of G on Γm,n given by

γσ = (γσ(1) . . . , γσ(n)) (γ ∈ Γm,n, σ ∈ G).

Let V be a complex inner product space of dimension m and let {e1, . . . em} be an

orthonormal basis of V . To avoid trivialities, one assumes that m ≥ 2. Denote by V ⊗n

the n-fold tensor power of V . For γ ∈ Γm,n, put eγ := eγ1 ⊗ · · · ⊗ eγn ∈ V ⊗n. Then

{eγ : γ ∈ Γm,n} is a basis for V ⊗n.

Let χ ∈ Irr(G). The symmetrizer relative to χ is the element of the group algebra

CG of G (see the discussion on KG in section 1.3.1) given by sχ := (χ(e)/|G|) ∑
σ∈G χ(σ)σ.

For γ ∈ Γm,n, put eχ
γ := sχeγ , where we view V ⊗n as a left CG-module via σeγ = eγσ−1

(σ ∈ G). The quantity eχ
γ is referred to as a standard symmetrized tensor.

The inner product on V induces an inner product on V ⊗n. If W is a subspace of V ⊗n,

then we call an orthogonal basis of W consisting entirely of standard symmetrized tensors

an o-basis of W relative to G and χ. One may ask about conditions on G which will

guarantee the existence of an o-basis for V ⊗n relative to G and χ for all χ ∈ Irr(G). When

discussing this situation, we will suppress reference to χ and talk about the existence on

o-basis relative to G.

Now let G be an arbitrary group. One may ask if there are homomorphisms ϕ : G → Sn

such that V ⊗n has an o-basis relative to ϕ(G). Having fixed G, one might also wonder if
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some embeddings work while other do not. In [Hlms], Holmes has shown that, for G an

o-basis group, V ⊗n has an o-basis regardless of the homomorphism.

Theorem 2.2.1 ([Hlms], p.138) If G is an o-basis group and ϕ : G → Sn(n ∈ N) is a

homomorphism, then V ⊗n has an o-basis relative to ϕ(G).

The reader may recall Cayley’s Theorem which states that for any group G there is a

homomorphic injection of G onto a subgroup of Sn. For each g ∈ G, one defines ϕ(g) to

be the permutation of G given by ϕ(g)(h) = gh (h ∈ G). In this case, ϕ(G) can be viewed

as a subgroup of Sn where n = |G|. This map is called the Cayley embedding. With

the next result, Holmes provides, as he says, a characterization of o-basis groups in terms

of symmertized tensors.

Theorem 2.2.2 ([Hlms], p.139) Let G be a finite group, let n = |G|, and let ϕ : G → Sn

be the Cayley embedding. Then G is an o-basis group if and only if V ⊗n has an o-basis

relative to ϕ(G).

In this work, we are interested in studying the o-basis property as a tool for distinguish-

ing between abstract groups. However, as the above discussion indicates, those working with

symmetrized tensor spaces may find the class of o-basis groups interesting as well.
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Chapter 3

New Work

3.1 A Generalized Definition and Some Preliminary Results

In this section, we define a generalization of o-basis group and make some elementary

observations. We will begin to use the terminology immediately. Later, in section 3.3,

we will further explore the generalized notion. Also in this section, we obtain several

preliminary results that will be key to some of the techniques used in later sections. Let us

fix, for the remainder of this work, a finite group G.

Definition 3.1.1 For H ≤ G and χ ∈ Irr(G), say that G is
(
H, χ

)
-o-basis if there

are at least χ(e)
(
χ, 1

)
H

cosets of H in G which are mutually orthogonal relative to Bχ
H .

Fix K ≤ G. If G is
(
H,χ

)
-o-basis for all subgroups H with K ⊆ H and all non-linear

χ ∈ Irr(G) for which (χ, 1)H 6= 0, we say G is K-o-basis.

Note that G is o-basis (see Definition 2.1.3) precisely when G is 〈e〉-o-basis so that the

generalized definition includes the original. Also, for any two subgroups H, K of G with

H ⊆ K, whenever G is H-o-basis, G is also K-o-basis.

Since we do not want to refer to the linear algebra involved in Holmes’ original definition

of o-basis, we have introduced notation in the above definition which avoids reference to

that material. Let us restate, for use later, the last part of Theorem 2.1.5 with our new

notation.

Let N C G, let χ ∈ Irr(G) and assume that N ⊆ kerχ. For a subgroup H ≤ G, denote

by Ĥ the image of H under the canonical map G → G/N . The function χ̂ : Ĝ → C given
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by χ̂(gN) = χ(g) is a well-defined irreducible character of Ĝ (see Theorem 1.3.2.5, (i) and

(iii)).

Theorem 3.1.2 Keeping the above notation, let N C G and let χ ∈ Irr(G) such that

N ⊆ ker(χ). Let H ≤ G. Then G is (H, χ)-o-basis if and only if Ĝ is (Ĥ, χ̂)-o-basis.

In the following lemma and its corollary, we obtain an upper bound on the number of

orthogonal cosets. This will be critical in proving that certain groups are not o-basis.

Lemma 3.1.3 Let χ ∈ Irr(G). Suppose that H,K ≤ G with H ⊆ K. Assume that no

two cosets of H in K are orthogonal relative to Bχ
H . Then the number of cosets of H in G

which are mutually orthogonal relative to Bχ
H is no greater than |G : K|.

Proof: By assumtion, for a, b ∈ K we have 0 6= Bχ
H

(
aH, bH

)
=

χ(e)
|H|

∑

h∈H

χ
(
a−1bh

)
. Sup-

pose there are more than |G : K| cosets of H in G which are orthogonal relative to Bχ
H .

Then at least one coset of K in G contains two cosets of H which are orthogonal. More

precisely, there exists g ∈ G and a, b ∈ K such that

0 = Bχ
H

(
gaH, gbH

)
=

χ(e)
|H|

∑

h∈H

χ
(
a−1g−1gbh

)
=

χ(e)
|H|

∑

h∈H

χ
(
a−1bh

)
, a contradiction.

¤

Keeping the above notation, let aH and bH be two (not necessarily distinct) cosets of H in

K which are orthogonal relative to Bχ
H . Then 0 = Bχ

H(aH, bH) = χ(e)
|H|

∑
h∈H χ(a−1bh) so

that
∑

h∈H χ(kh) = 0 for some k ∈ K. Conversely, let k ∈ K such that
∑

h∈H χ(kh) = 0.

There exist a, b ∈ K (a, b not necessarily distinct) such that a−1b = k. Note that aH and

bH are orthogonal relative to Bχ
H . In short, there are two (not necessarily distinct) cosets

of H in K which are orthogonal relative to Bχ
H if and only if for some k ∈ K
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(possibly k = e),
∑

h∈H χ(kh) = 0. Now suppose H = 〈e〉. The cosets of H are the singleton

sets {g} (g ∈ G). In this case, the above statement becomes: there are two (not necessarily

distinct) “orthogonal elements” in K relative to Bχ
H if and only if χ(k) = 0 for some k ∈ K.

We restate the special case of Lemma 3.1.3 when H = 〈e〉 as a corollary.

Corollary 3.1.4 Let χ ∈ Irr(G) and K ≤ G. Suppose χ(k) 6= 0 for all k ∈ K. Then the

number of cosets of 〈e〉 which are mutually orthogonal relative to Bχ
〈e〉 is no greater than

|G : K|.

We will often find it helpful to deal with quotients of G. The utility of this derives from

the result below which follows from Proposition 1.3.2.5 and Theorem 3.1.2.

Theorem 3.1.5 Let N ¢ G. Then G is N -o-basis if and only if G/N is o-basis.

Proof: For L ≤ G, let L̂ denote the image of L under the canonical map G → G/N , and,

for χ ∈ Irr(G) define χ̂ : Ĝ → C by χ̂(gN) = χ(g).

Assume that G is N -o-basis. Let K ≤ G/N and ϕ ∈ Irr(G/N). By the Correspondance

Theorem, K = Ĥ for some H ≤ G with N ⊆ H. By Proposition 1.3.2.5 (ii) and (iii), ϕ = χ̂

for some χ ∈ Irr(G). As G is N -o-basis, G is (H, χ)-o-basis. By Theorem 3.1.2, G/N is

(K,ϕ)-o-basis. Since K,χ were chosen arbitrarily, this shows that G/N is o-basis.

Conversely, assume that G/N is o-basis. Let H ≤ G with N ⊆ H and let χ ∈ Irr(G)

such that (χ, 1)H 6= 0. Then (χ, 1)N 6= 0. Since N C G, Theorem 1.3.3.4 gives that

N ⊆ ker(χ). Since G/N is o-basis, G/N is (Ĥ, χ̂)-o-basis. By Theorem 3.1.2, G is (H, χ)-

o-basis and it follows that G is N -o-basis.

¤
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3.2 O-basis Groups and Nilpotency

In this section, we address two questions.

1) Which nilpotent groups are o-basis?

2) Are all o-basis groups nilpotent?
The possibility of a special connection between o-basis groups and nilpotentcy is im-

plied by two facts. First, every group that has been identified as o-basis is also nilpotent

(see Theorem 1.1.1). Second, the o-basis property picks out from the dihedrals exactly the

nilpotent groups (see Theorem 1.1.3). Not all nilpotent groups are o-basis however. In

[Hlms] (p.143), Holmes constructs an example of order 34 that is not o-basis. What condi-

tions, then, on a nilpotent group are sufficient for the group to be o-basis? Our first result

gives such a condition: that G′ ⊆ Z(G). Note that this condition implies nilpotentcy.

Theorem 3.2.1 Suppose that G′ ⊆ Z(G). Then G is o-basis.

Proof : Let H ≤ G and let χ ∈ Irr(G). For any subgroup K ≤ G, let K̂ denote the

image of K under the canonical map G → G/ kerχ. Define χ̂ : Ĝ → C by χ̂(g kerχ) = χ(g)

for all g ∈ G. By Lemma 1.3.2.5, χ̂ ∈ Irr(Ĝ) and, by Theorem 3.1.2, G is (H, χ)-o-basis if

and only if Ĝ is (Ĥ, χ̂)-o-basis. It suffices, therefore, to show that Ĝ is (Ĥ, χ̂)-o-basis. Note

that ker(χ̂) = {e}

We first show that Ĝ/Z(χ̂) is abelian. Note that (Ĝ)′ ⊆ Z(Ĝ). For since G′ ⊆ Z(G),

we have (Ĝ)′ = Ĝ′ ⊆ Ẑ(G) ⊆ Ẑ(χ) = Z(Ĝ), where the last containment and equality

follow respectively from Corollary 1.3.2.8 and Lemma 1.3.2.9. Also, Z(Ĝ) = Z(χ̂). Indeed,

Corollary 1.3.2.8 gives that Z(Ĝ) ⊆ Z(χ̂). Conversely, suppose that g kerχ ∈ Z(χ̂). Then

|χ(g)| = |χ̂(g kerχ)| = χ̂(e kerχ) = χ(e) so that g kerχ ∈ Ẑ(χ) = Z(Ĝ). This shows that

(Ĝ)′ ⊆ Z(χ̂) so that Ĝ/Z(χ̂) is abelian as claimed. By Theorem 1.3.2.11, χ̂(e)2 = |Ĝ : Z(χ̂)|

35



and so, by Proposition 1.3.2.10, χ̂ ≡ 0 on Ĝ−Z(χ̂). Since Z(χ̂) = Z(Ĝ), we have χ̂ ≡ 0 on

Ĝ− Z(Ĝ).

Assume that (χ̂, 1) bH 6= 0. In this case, (χ̂, 1) bH∩Z( bG)
6= 0. As Ĥ ∩ Z(Ĝ) ¢ Ĝ, Proposi-

tion 1.3.3.4 gives that Ĥ ∩ Z(Ĝ) ⊆ ker(χ̂) = {e}. Since χ̂ ≡ 0 on Ĝ− Z(Ĝ) we have

(χ̂, 1) bH =
1

|Ĥ|
∑

h∈ bH χ̂(h) =
χ̂(e)

|Ĥ|
.

Therefore, χ̂(e)(χ̂, 1) bH =
χ̂(e)2

|Ĥ|
=
|Ĝ : Z(Ĝ)|

|Ĥ|
=

|Ĝ|
|Z(Ĝ)| · |Ĥ|

= |Ĝ : ĤZ(Ĝ)|, where the last

equality holds since Ĥ ∩Z(Ĝ) = {e}. Let {aiĤZ(Ĝ) : 1 ≤ i ≤ t} be a complete set of coset

representatives of ĤZ(Ĝ) in Ĝ. Suppose i 6= j. Then, for all h ∈ Ĥ, a−1
i ajh /∈ Z(Ĝ). Since

χ̂ ≡ 0 on Ĝ− Z(Ĝ), χ̂(a−1
i ajh) = 0 for each h ∈ Ĥ. Therefore,

BbχbH(aiĤ, ajĤ) =
χ̂(e)

|Ĥ|
∑

h∈ bH χ̂(a−1
i ajh) = 0.

The χ̂(e)(χ̂, 1) bH cosets {aiĤ : 1 ≤ i ≤ t} form a mutually orthogonal collection of cosets of

Ĥ in Ĝ. This shows that G is (Ĥ, χ̂)-o-basis and the proof is complete.

¤

To obtain the following corollary to Theorem 3.2.1, we will use two lemmas.

Lemma 3.2.2 ([Is], p.75, ex. 5.14(a)) Let G be non-abelian and

let f = min{χ(e) : χ ∈ Irr(G), χ(e) > 1}. If |G′| ≤ f , then G′ ⊆ Z(G).

Lemma 3.2.3 ([Is], p.38) Let χ ∈ Irr(G). Then χ(e) divides |G|.
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Corollary 3.2.4 Suppose G is a p-group with |G′| = p. Then G is o-basis.

Proof : Since G′ 6= 〈e〉, G is non-abelian. By Theorem 1.3.2.3, G has non-linear ir-

reducible characters. Let χ be an arbitrary non-linear irreducible character of G. By

Theorem 3.2.3, χ(e) divides |G| so that χ(e) ≥ p. Since χ was chosen arbitrarily and

|G′| = p ≤ χ(e), Lemma 3.2.2 gives that G′ ⊆ Z(G). By Theorem 3.2.1, G is o-basis.

¤

We note that, in Corollary 3.2.4, one can easily show that G′ ⊆ Z(G) without using

characters. However, our approach has the advantage of giving the reader further exposure

to elementary character theory.

We will have occasion to call upon Theorem 3.2.1 in several results. We will also give a

slight generalization the theorem (Theorem 3.3.5). In addition to this, Theorem 3.2.1 raises

an interesting question for possible future study. Any group with G′ ⊆ Z(G) has nilpotence

class no greater than 3 (see the definition of the lower central series in the notation). Holmes’

example of order 34 that is not o-basis is easily seen to have nilpotence class 4. We ask if

nilpotence class less than or equal to 3 is a necessary condition for a nilpotent group to be

o-basis. This is an open question, and one the author looks forward to considering in the

future.

In studying nilpotent groups one might wish to narrow the focus by concentrating

on p-groups. In our next result, we find that there is some valid grounds for doing so.

More precisely, we show that a nilpotent group is o-basis precisely when each of its Sylow

subgroups is o-basis. Before proving this, we remind the reader of some basic information

about Sylow subgroups.
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Definition 3.2.5 Let p be a prime and let G be a group. A p-subgroup of G is a subgroup

whose order (cardinality as a set) is a power of p. A Sylow p-subgroup is a p-subgroup

that is not properly contained in any other p-subgroup.

Thus a Sylow p-subgroup is a maximal p-subgroup. The reader may recall that, given a

prime p, if a Sylow p-subgroup is normal in G, then it is the unique Sylow p-subgroup of G

for that prime. Our result for nilpotent groups depends heavily on Lemma 3.2.6 below.

Lemma 3.2.6 ([Rob], p.134 ex. 12) For 1 ≤ i ≤ n, let pi denote a prime such that

pi 6= pj whenever i 6= j and let Gi denote a pi-group . Let G =
∏n

i=1 Gi, the direct product

of the Gi. Let H ≤ G. Then H =
∏n

i=1 Hi, where Hi = H ∩Gi.

Theorem 3.2.7 ([Rob], p.126)Let G be a finite group. Then G is nilpotent if and only

if G is the direct product of its Sylow subgroups.

Theorem 3.2.8 Assume that G is nilpotent. Then G is o-basis if and only if every Sylow

subgroup of G is o-basis.

Proof: Let {Pi}m
i=1 be the distinct Sylow subgroups of G. By Theorem 3.2.7, G =

∏m
i=1 Pi.

Suppose that G is o-basis and fix 1 ≤ j ≤ m. Put D =
∏m

i=1,i6=j Pi. Note that D C G and

let π : G → G/D denote the canonical map. Then π(G) = Pj . Theorem 2.1.6 gives that Pj

is o-basis. As j was chosen arbitrarily, the forward direction is proved.

Suppose now that Pi is o-basis for each 1 ≤ i ≤ m. Let H ≤ G and let χ ∈ Irr(G)

be non-linear such that (χ, 1)H 6= 0 (see Definition 2.1.3). For each i, put pi = |Pi| (so

pi is a prime). Since Pi C G, Pi is the unique pi-subgroup of G. It follows that pi 6= pj

whenever i 6= j. Therefore, Lemma 3.2.6 gives that H =
∏m

i=1 Hi, where Hi = H∩Pi. Also,
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Theorem 1.3.3.2 gives that χ = χ1 · · ·χm, where χi ∈ Irr(Pi) is extended to G by putting

χi(
∏m

j=1 gj) = χi(gi).

For convenience, let g1 · · · gm denote the element (g1, . . . , gm) ∈ G. Let a = a1 · · · am

and b = b1 · · · bm be elements of G. We claim that

Bχ
H(aH, bH) = Bχ1

H1
(a1H1, b1H1) · · ·Bχm

Hm
(amHm, bmHm). (3.1)

Proceed by induction on m. The formula is obvious for the case m = 1. Therefore, fix m > 1.

Put Ĥ =
∏m−1

i=1 Hi, Ĝ =
∏m−1

i=1 Pi, χ̂ = χ1 · · ·χm−1, â = a1 · · · am−1, and b̂ = b1 · · · bm−1.

Note that χ̂ ∈ Irr(Ĝ) and assume

Bχ̂

Ĥ
(âĤ, b̂Ĥ) = Bχ1

H1
(a1H1, b1,H1) · · ·Bχm−1

Hm−1
(am−1Hm−1, bm−1Hm−1).

We have,

Bχ
H(aH, bH) =

χ(e)
|H|

∑

h∈H

χ(a−1bh)

=
χ1(e) · · ·χm(e)
|H1| · · · |Hm|

∑

h1···hm∈H

χ(a−1
1 b1h1 · · · a−1

m bmhm)

=
χ1(e) · · ·χm(e)
|H1| · · · |Hm|

∑

h1···hm∈H

χ1(a−1
1 b1h1) · · ·χm(a−1

m bmhm)

=
χm(e)
|Hm|

∑

hm∈Hm

[
χm(a−1

m bmhm)
χ̂(e)
|Ĥ|

∑

h∈Ĥ

χ̂(â−1b̂h)
]

=
χm(e)
|Hm|

∑

hm∈Hm

χm(a−1
m bmhm)Bχ1

H1
(a1H1, b1H1) · · ·Bχm−1

Hm−1
(am−1Hm−1, bm−1Hm−1)

= Bχ1

H1
(a1H1, b1H1) · · ·Bχm

Hm
(amHm, bmHm),

where the next to last equality follows from by the induction hypothesis. The claim follows.
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Also observe that

χ(e)(χ, 1)H =
χ(e)
|H|

∑

h∈H

χ(h) =
χ(e)
|H|

∑

h∈H

χ(a−1ah)

= Bχ
H(aH, aH)

= Bχ1

H1
(a1H1, a1H1) · · ·Bχm

Hm
(amHm, amHm)

= χ1(e)(χ1, 1)H1 · · ·χm(e)(χm, 1)Hm ,

where the next to last equality follows from equation 3.1. Thus, we have

χ(e)(χ, 1)H = χ1(e)(χ1, 1)H1 · · ·χm(e)(χm, 1)Hm . (3.2)

For each 1 ≤ i ≤ m, let Ai denote a set (non-empty, as will be shown) of distinct cosets

representatives of Hi in Pi such that Bχi

Hi
(aHi, bHi) = 0 whenever a, b ∈ Ai with a 6= b.

Since (χ, 1)H 6= 0, equation 3.2 gives that (χi, 1)Hi 6= 0 for all i. Since Pi is o-basis, we may

assume that Ai contains at least χi(e)(χi, 1)Hi elements.

Now let a = a1 · · · am and b = b1 · · · bm be elements of G with a 6= b such that ai, bi ∈ Ai

for each i. As a 6= b, there is at least one i such that ai 6= bi. Then, by definition of Ai,

Bχi

Hi
(aiH, biH) = 0. It follows from equation 3.1 that Bχ

H(aH, bH) = 0. We see that

the set cartesian product A1 × · · · × Am forms a collection of coset representatives of H

in G that are mutually orthogonal relative to Bχ
H . The cardinality of this collection is

χ1(e)(χ1, 1)H1 · · ·χm(e)(χm, 1)Hm , and we have already noted that this last quantity is

equal to χ(e)(χ, 1)H . Thus G has an (H, χ)-o-basis. It follows that G is o-basis as desired.

¤

Suppose G is a direct product of a finite number of groups. It follows immediately from

Theorem 2.1.6 that whenever G is o-basis, each of the direct factors is o-basis as well. The

truth or falsity of the converse however remains an open question. Critical to the converse
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in the above argument is the fact that the primes of the distinct Sylow subgroups are all

distinct. Lemma 3.2.6 then gives that any subgroup is the direct product of its intersection

with the factors. The absence of this property for subgroups of general direct products has

been the primary obstacle to the analogous result for that case. For example, it is suspected

(but not proven) that the ”diagonal” subgroup could fail for some non-linear character.

In light of the above result, we see that the question of which o-basis groups are

nilpotent can be ”reduced” in some sense to that of which prime power groups are o-basis.

Let us briefly consider this. Suppose p is a prime. Since any group of order p2 is abelian,

Theorem 2.1.4 gives that any such group is o-basis. Holmes’ has shown that any group

of order p3 is o-basis (see Theorem 1.1.1). However, in [Hlms], Holmes also provided an

example of order 34 that is not o-basis. We take a closer look at groups of order p4 beginning

with the fact that any such group G is Z(G)-o-basis (see Definition 3.1.1).

Theorem 3.2.9 Suppose that |G| = p4. Then G is Z(G)-o-basis. That is, every group of

order p4 is Z-o-basis.

Proof: Since G is a p-group, we have by Theorem 1.2.4 that Z(G) is non-trivial. Thus

|G/Z| ≤ p3. If |G/Z| ≤ p2, then G/Z is abelian and so o-basis by Theorem 1.1.1 (i).

Suppose that |G/Z| = p3. Then G/Z is o-basis by Theorem 1.1.1 (iv). By Theorem 3.1.5,

G is Z-o-basis if and only if G/Z is o-basis, and the result follows.

¤

Which groups of order p4 are o-basis? We explore this question as follows. Suppose G

is a group of p4 that is not o-basis. Then there exists a subgroup H ≤ G and χ ∈ Irr(G)

such that G is not (H, χ)-o-basis. We derive some necessary conditions on H, χ and G. We

will have need of the following two lemmas.
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Lemma 3.2.10 ([Is] p.204) Let A C G with A abelian and G/A cyclic. Then |A| =

|G′| · |A ∩ Z(G)|.

Theorem 3.2.11 ([Karp], p.803) Let χ be an irreducible character of a nilpotent group G.

Then χ(e)2 divides |G : Z(χ)|.

Theorem 3.2.12 Let p be prime and suppose |G| = p4 . Let χ ∈ Irr(G) and let H ≤ G

such that G is not (H, χ)-o-basis. Then the following hold.

(i) |Z(G)| = p,

(ii) χ is faithful and χ(e) = p,

(iii) There exist A C G with A abelian and |G : A| = p.

Also, χ ≡ 0 on G−A.

(iv) Z(G) ≤ G′ ≤ A and |A : G′| = |G′ : Z(G)| = p,

(v) If χ(a) = 0 for some a ∈ G′, then χ ≡ 0 on G′ − Z(G). In this case,

H 6 G.

Proof: Throughout, let Z denote the center of G and K the kernel of χ. Suppose first

that |Z| ≥ p2. Then G/Z is a p-group with order no greater than p2. It follows that G/Z is

abelian so that G′ ⊆ Z. By Theorem 3.2.1, G is o-basis, a contradiction. By Theorem 1.2.4,

|Z| > 1. Thus, |Z| = p and (i) is established.

For the first condition of (ii), suppose, in view of a contradiction, that K 6= {e}. As

K C G, we have by Theorem 1.2.5 that K ∩ Z 6= {e}. Since |Z| = p, it follows that

Z ⊆ K. Define χ̂ : G/Z → C by putting χ̂(gZ) = χ(g) for all g ∈ G. Since Z ⊆ K,

Proposition 1.3.2.5 gives that χ̂ ∈ Irr(G/Z). By Theorem 3.2.9, G is Z-o-basis. Thus G/Z

is o-basis by Theorem 3.1.5 so that G/Z has a (π(H), χ̂)-o-basis, where π : G → G/Z is
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the canonical map. It follows from Theorem 3.1.2 that G is (H, χ)-o-basis, contrary to our

assumption. This shows that χ is faithful.

Recalling that all p-groups are nilpotent, we see from Theorem 3.2.11 that χ(e)2 divides

|G : Z(χ)|. By Corollary 1.3.2.8, Z(χ) ⊇ Z(G) 6= {e} so that |G : Z(χ)| ≤ p3. Since χ

is non-linear, χ(e) = p, and (ii) is fully established. By Theorem 1.3.3.14, G is an M-

group. Choose a subgroup A of G and linear character ϕ ∈ Irr(A) such that χ = ϕG.

We have p = χ(e) = ϕG(e) = |G : A|ϕ(e) = |G : A| (see remark after Definition 1.3.3.5).

Note that A is a maximal subgroup of G. For suppose L ≤ G with A ≤ L ≤ G. Then

p = |G : A| = |G : L| · |L : A|. Either |G : L| = 1 so that L = G or |L : A| = 1 so that L = A.

By Theorem 1.2.6, A C G. Thus, χ ≡ 0 on G \ A. (see comments after Definition 1.3.3.5)

For (iii), it remains to show that A is abelian. Note that |χ(z)| = χ(e) 6= 0 for all z ∈ Z(χ).

Since χ ≡ 0 on G − A, Z(χ) ⊆ A so that, by Corollary 1.3.2.8, Z(G) ⊆ A. Suppose that

A is not abelian. As |A| = p3, A is extra-special (see Definition 1.2.7 and remarks). We

have that Z(A) = A′ and |Z(A)| = p. Since Z(G) ⊆ A, if follows that Z(G) ⊆ Z(A). Thus,

as |Z(G)| = p, we have that Z(A) = Z(G). Since ϕ is linear, Z(A) = A′ ⊆ kerϕ, the last

containment being given by Proposition 1.3.2.6. By Lemma 1.3.3.6, kerχ =
⋂

x∈G(kerϕ)x.

If follows that Z ⊆ kerχ, a contradiction since χ is faithful. As claimed therefore, A is

abelian and the proof of (iii) is complete.

By Lemma 3.2.10, p3 = |A| = |Z(G)| · |G′| = p|G′| so that |G′| = p2. By Theorem 1.2.5,

Z(G) ⊆ G′. Also, since A C G and G/A is abelian, we have that G′ ⊆ A. This establishes

(iv).

Suppose that G′ is cyclic. Then putting C = G′ in Theorem 2.1.2, we see that G is

o-basis, a contradiction. Thus G′ cannot be cyclic. It follows that G′ ∼= Zp × Zp. Thus,
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every proper, non-trivial subgroup of G′ has order p. Since no two of these subgroups can

intersect non-trivially, there are p + 1 such subgroups and G′ is their union. Since G is

a p-group, every non-trivial, normal subgroup must intersect the center non-trivially. If

follows that Z(G) is the only normal subgroup of G having order p. Therefore, Z(G) is the

only subgroup of G′ that is normal in G. Since G′ ⊆ A and A is abelian, G/A acts on the

subgroups of G′ by conjugation. For any given subgroup, the order of the orbit under this

action is either 1 or p. Moreover, any subgroup having orbit of size 1 is normal in G. It

follows that G/A acts transitively on the p non-central subgroups of G′.

For (v), suppose that χ(a) = 0 for some a ∈ G′. Then a /∈ Z(G) since Z(G) ⊆ Z(χ)

(Theorem 1.3.2.8). Put K = 〈a〉. Then χK is a character of K. Putting χK = ϕ in

Proposition 1.3.2.12, it follows, since |K| = p, that χ ≡ 0 on K − 〈e〉. Since G acts

transitively on the p non-central subgroups of G′, we see that G − Z(G) is the union of

the conjugates of K. Recalling that character values are invariant under conjugation (see

the discussion on class functions in section 1.3.1) we have that χ ≡ 0 on G′ − Z(G), as

claimed in (v). Since G is not (H, χ)-o-basis, it follows from the definition that (χ, 1)H 6= 0.

Suppose, to obtain a contradiction, that H C G. Then H ⊆ kerχ by Theorem 1.3.3.4

so that H = 〈e〉. Let {ai : 1 ≤ i ≤ p} and {gi : 1 ≤ i ≤ p} be complete sets of coset

representatives of Z in G′ and of A in G respectively. Put S = {gjai : 1 ≤ i, j ≤ p}. Choose

gj1aii , gj2ai2 ∈ S and put y = a−1
i1

g−1
j1

gj2ai2 . We have Bχ
H(gj1aiiH, gj2ai2H) = χ(e)χ(y). If

j1 6= j2, then y ∈ G− A and χ(y) = 0. If j1 = j2, then y = a−1
i1

ai2 ∈ G′ − Z and χ(y) = 0.

This gives |S| = p2 cosets of H which are mutually orthogonal relative to Bχ
H . Finally, note

that χ(e)(χ, 1)H = χ(e)2 = p2. This shows that G is (H, χ)-o-basis, a contradiction. It

follows that H 6 G and the proof is complete.
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¤

All of the results so far in this section have dealt with the first of two questions posed

at its beginning. Namely, which nilpotent groups are o-basis. Let us now turn to the second

question. Are all o-basis groups nilpotent? With the dihedrals in mind, we will consider

our second question for a particular class of “dihedral-like” groups. Every dihedral group

has a cyclic normal subgroup of index 2. We consider those groups G having an abelian

normal subgroup A of index pn, where p is a prime and n ≥ 1. Let us state our question as

a conjecture.

Conjecture 3.2.13 Let p be prime and A C G be abelian such that |G : A| = pn for some

positive integer n. Suppose that G is o-basis. Then G is nilpotent.

We are able to prove the conjecture in the case that G/A is abelian (Theorem 3.2.17). When

G/A is non-abelian, we show the answer is still affirmative when n = 3 in Theorem 3.2.20.

In Theorem 3.2.21, we obtain the conjecture for the case n = 4, but only after adding

some additional conditions. Finally, we show that nilpotency is a necessary and sufficient

condition for o-basisness when A is cyclic and n = 1. The following three lemmas set the

stage.

Lemma 3.2.14 Let p be prime and A C G be abelian with |G : A| = pn for some n ≥ 1.

Assume that G is not nilpotent. Then there is an integer m ≥ 1 such that the following

hold:

(i) G/Zm is not abelian,

(ii) AZm/Zm C G/Zm is abelian,

(iii) |G/Zm : AZm/Zm| = pk for some k ≥ 1,

(iv)
(|G/Zm : AZm/Zm|, |AZm/Zm|

)
= 1.
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Proof: Assume G is not nilpotent. Then there is an integer m ≥ 1 such that Zm = Zm+i,

for all i ≥ 0 and G 6= Zm. Fix such an m and note that G/Zm 6= 〈e〉 and Z(G/Zm) =

〈e〉. Since AZm C G, the Correspondance Theorem gives that AZm/Zm C G/Zm. Also,

AZm/Zm
∼= A/(A∩Zm). The latter is abelian, being the homomorphic image of an abelian

group. This verifies (i). Observe that Zm + A. Indeed, suppose that Zm ⊇ A. Then

G/Zm
∼= (G/A)/(Zm/A). The latter is a p-group since we have assumed G/A is a p-

group. Therefore, Z(G/Zm) 6= 〈e〉, a contradiction. It follows that AZm/Zm is a non-trivial

subgroup of G/Zm with |G/Zm : AZm/Zm| = |G : AZm|. Now note that this last quantity

divides |G : A| and is therefore equal to pk for some k ≥ 0. If k = 0, then G/Zm = AZm/Zm.

In this case, G/Zm is abelian by (i). This again contradicts the fact that Z(G/Zm) = 〈e〉.

Therefore, k > 0 and (ii) is established.

Let T denote the quotient group G/AZm. There is a well-defined action of T on

(AZm)/Zm given by conjugation and Z(G/Zm) is precisely the set, (AZm/Zm)T , of fixed

points of AZm/Zm under this action. Theorem 1.2.1 gives that

1 = |Z(G/Zm)| = |(AZm/Zm)T | ≡ |AZm/Zm| (mod p).

Thus (|AZm|, |G/Zm : AZm/Zm|) = 1 and (iii) is established.

¤
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Lemma 3.2.15 Let p be prime and A C G be abelian such that |G : A| = pn for some

integer n ≥ 1. Assume that G is not nilpotent. Then there exists K C G such that the

following hold:

(i) G/K is a non-abelian internal semidirect product of AK/K o T ,

where T ∼= (G/K)
/(

AK/K
)
,

(ii) |G/K : AK/K| = pn for some n ≥ 1, and

(iii) AK/K is a non-trivial elementary abelian q-group for some

prime q distinct from p.

Proof: Since G is not nilpotent, Lemma 3.2.14 applies. Choose an integer m satisfying

the conclusions of Lemma 3.2.14. Suppose we are able to construct a normal subgroup K

of G/Zm with K ⊆ AZm/Zm such that K satisfies (i) - (iii) above for G/Zm. Then the

Correspondance Theorem gives a normal subgroup K of G which also satisfies properties

(i) - (iii). If, in addition, G/Zm possessed the properties assumed of G, there would be

no loss of generality in working with G/Zm rather G. Since G/Zm also possesses property

(iii) of Lemma 3.2.14, this would be to our advantage. Let us note that, by (i) and (ii) of

Lemma 3.2.14, G/Zm does indeed possess the properties assumed here of G. Thus, we may,

with loss generality, identify G with G/Zm, A with AZm/Zm and assume, by 3.2.14 (iii),

that (|A|, p) = 1.

Denote by Q the set of prime divisors of |A|. Since A is abelian, every subgroup of

A is normal in A. In particular, any Sylow subgroup of A is normal in A and is therefore

unique. For q ∈ Q, denote by Aq the unique Sq subgroup of A and put Dq =
∏

r∈Q
r 6=q

Ar if

|Q| > 1. If |Q| = 1, put Dq = 〈e〉. Note that Aq C G for all q ∈ Q. Indeed, choose g ∈ G.

Since A C G, (Aq)g ⊆ A. Also, |(Aq)g| = |Aq| so that (Aq)g is also a Sylow q-subgroup of A.

By uniqueness, (Aq)g = Aq. Now fix q ∈ Q. Since A is nilpotent, it is the direct product of
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its Sylow subgroups so that Dq ≤ A. It follows from the above discussion that each direct

summand of Dq C G so that Dq C G. Note that, since (|A|, p) = 1, q 6= p.

For each subset S ⊆ G, denote by Ŝ the image of S under the canonical map G →

G/Dq. Note that Â is a non-trivial abelian q-group. We are ready to establish (iii). The

Fundamental Theorem of Finitely Generated Abelian Groups gives that Â =
∏k

i=1 Ai, where

Ai
∼= Zqmi and mi ≥ 1 for all i. Put m = max{mi}1≤i≤k. Define subgroups Bi of Â as

follows: let Bi = Ai whenever mi < m, let Bi be the unique subgroup of Ai of order qmi−1

whenever mi = m. Put B =
∏k

i=1 Bi. Observe that B char Â. To see this, fix 1 ≤ i ≤ k

and choose bi such that Bi =
〈
bi

〉
. Let σ ∈ Aut(Â). It suffices to show that bσ

i ∈ B. We

write bσ
i =

∏k
i=1 ai, where ai ∈ Ai and calculate

qm > |bi| = |bσ
i | =

∣∣∣∣
k∏

i=1

ai

∣∣∣∣ = lcm{|ai| : 1 ≤ i ≤ k}.

Therefore, |ai| < qm so that ai ∈ Bi and bσ
i ∈ B, as desired. By Theorem 1.2.3, B C G. It

follows that there is a subgroup K C G, such that G/K ∼=
(
G/Dq

)
/B. Since B ( Â, we

have |G/K : A/K| = |G : A| so that (ii) holds. Also A/K ∼= Â/B and Â/B is an elementary

abelian q-group so that (iii) holds. Finally, since (|A/K|, p) = 1, conclusion (i) follows from

Theorem 1.3.4.3. The proof is complete.

¤

Theorem 3.2.16 Let p, q be distinct primes. Let A C G be an elementary abelian q-group

with |G : A| = pn for some integer n ≥ 1. Suppose χ ∈ Irr(G) is non-linear. Then χ(a) 6= 0

for all a ∈ A.

48



Proof: Let a ∈ A and assume that χ(a) = 0. Put L =
〈
a
〉
. Note that χL is a character

of L (see Definition 1.3.3.3). Since A is elementary abelian, L ∼= Zq (see Defintion 1.2.10).

Therefore, for each b ∈ L with b 6= e, we have that b = ai, where (i, q) = 1. Putting χL = ϕ

in Proposition 1.3.2.12, gives that χ vanishes on L− {e}.

We have (χL, χL)L =
1
|L|

∑

l∈L

|χ(l)|2 =
χ(e)2

|L| =
χ(e)2

q
. By Proposition 1.3.1.10, this

last quantity should be an integer. However, by Theorem 1.3.2.13, χ(e) divides |G : A|, a

power of p. This is a contradiction. It follows that χ(a) 6= 0 for all a ∈ A.

¤

Case 1: G/A is abelian.

Theorem 3.2.17 Let p be prime and A C G be abelian such that |G : A| = pn for some

integer n ≥ 1. Assume also that G/A is abelian. If G is o-basis then G is nilpotent.

Proof: We prove the contrapositive. Assume that G is not nilpotent. We show that G

is not o-basis. Note that Theorem 3.2.14 applies and choose an integer m such that the

conclusions of that theorem hold. By Theorem 2.1.6, it suffices to show that G/Zm is not

o-basis. By the Third Isomorphism Theorem, (G/Zm)/(AZm/Zm) ∼= G/(AZm). The latter

is a quotient of G/A and so abelian. It follows that G′ ⊆ AZm so that (G/Zm)′ ⊆ AZm/Zm.

Note that
(
G/Zm

)′ ⊆ AZm/Zm. This, along with 3.2.14 (ii) and (iii), shows that G/Zm

has all the properties we have assumed of G. Without loss of generality, we replace G with

G/Zm, A with AZm/Zm and assume, citing 3.2.14 (iii), that (|A|, p) = 1.

Because G is non-abelian (see 3.2.14 (i)), there are normal subgroups of G with non-

abelian quotient, the identity comprising one such subgroup. Since G is finite, we may

choose from among the set of such subgroups one that is maximal with respect to contain-

ment. Let us make such a choice and call the subgroup K. Observe that every non-trivial,
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normal subgroup of G/K contains
(
G/K

)′. For suppose H is a non-trivial, normal sub-

group of G/K that does not contain (G/K)′. Then H = H/K for some normal subgroup

H of G, where H % K. Recalling that (G/K)′ = G′K/K, we have H + G′. It follows

that G/H is non-abelian, contradicting the maximality of K. Therefore, (G/K)′ is the

unique minimal (non-trivial) normal subgroup of G/K. In addition, since G′ ⊆ A, G′ is

abelian. It follows that G is solvable so that G/K is solvable. These arguments show that

G/K satisfies the hypotheses of Lemma 1.3.5.4. Since G/K is non-abelian and G′ ⊆ A,

we have that K + A. Thus AK/K is a nontrivial subgroup of G/K. Since (|A|, p) = 1,

G/K is not a p-group. Conclusion (b) of Lemma 1.3.5.4 therefore applies. We have that

G/K is a Frobenius group having Frobenius kernel (G/K)′ ⊆ AK/K and that (G/K)′ is

an elementary abelian q-group for some prime q. Since (|A|, p) = 1, q 6= p.

By Theorem 2.1.6, it is enough to show that G/K is not o-basis. Recalling that G/K

is non-abelian, fix a non-linear χ ∈ Irr(G/K).

Note that kerχ + (G/K)′ (see remarks after Proposition 1.3.2.5). Theorem 1.3.5.3 (b) gives

that χ = φG/K for some φ ∈ Irr((G/K)′). Now χ(e) = φG/K(e) = |G/K : (G/K)′| · φ(e) =

|G/K : (G/K)′|, where the last equality holds since φ is linear ((G/K)′ being abelian).

By Theorem 1.3.2.13, |G/K : (G/K)′| divides |G/K : AK/K|. But |G/K : AK/K| divides

|G/K : (G/K)′| since (G/K)′ ⊆ AK/K. Thus the indices are equal, AK/K = (G/K)′ and

χ(e) = |G/K : AK/K|. Since AK/K is proper and elementary abelian, Theorem 3.2.16

gives that χ never vanishes on AK/K. Put H = 〈e〉. For G/K to be (H,χ)-o-basis, there

must be as least χ(e)2 = |G/K : AK/K|2 orthogonal cosets of H in G/K relative to Bχ
H .

However, since χ never vanishes on AK/K, Corollary 3.1.4 gives that there are at most

|G/K : AK/K| such cosets. This shows that G/K is not o-basis and completes the proof.
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¤

Case II: G/A is not abelian.

We now turn to the situation where G/A is not abelian. Note that, in this case,

|G : A| ≥ p3. In Lemma 3.2.18 and Theorem 3.2.19 below, we will assume that G is a

semi-direct product. We refer the reader to section 1.3.4 for a discussion of semi-direct

products and we adopt here the notation of that section.

Lemma 3.2.18 Let p, q be distinct primes. Let G = A o T be an internal semi-direct

product. Assume that A is an elementary abelian q-group and that |T | = pn for some

n ≥ 1. Suppose that, for some λ ∈ Irr(A), |Tλ| = pk, where 0 ≤ k < n
2 . Then G is not

o-basis.

Proof: Let ρ ∈ Irr(Tλ), put H = ATλ and χ = θλ,ρ. We show that G is not
(〈e〉, χ)

-o-

basis. We have χ(e) = |G : H| · θλ,ρ(e) ≥ |G : H| = pn−k. Since n > k, χ is non-linear. By

Theorem 3.2.16, χ never vanishes on A. Applying Corollary 3.1.4 with K = A gives that

the number of cosets of 〈e〉 which are orthogonal relative to Bχ
〈e〉 is no greater than |G : A|.

However, the required number of cosets is χ(e)(χ, 1)〈e〉 = χ(e)2 ≥ p2n−2k > pn = |G : A|.

¤

Theorem 3.2.19 Let p, q be distinct primes. Let G = A o T be an internal semi-direct

product. Assume that A is an elementary abelian q-group and that |T | = pn for some n ≥ 1.

Suppose there exists λ ∈ Irr(A) such that Tλ is a proper, normal subgroup of T . Then G is

not o-basis.

Proof: Choose λ ∈ Irr(A) satisfying the hypotheses. Let ρ = 1Tλ
, put H = ATλ and

χ = θλ,ρ := (λρ̃)G (for convenience, we will suppress the subscript and write simply θ).
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Note that χ(e) = |G : H| · (λρ̃)(e) ≥ |G : H|. We show that χ(h) 6= 0 for all h ∈ H.

Since Tλ C T , the Correspondance Theorem gives that H C G. We may therefore apply

Clifford’s Theorem (Theorem 1.3.3.9) to χH . By Frobenius Reciprocity (Theorem 1.3.3.12),

(χH , λρ̃)H = (χ, θ)G = (χ, χ)G = 1. Let at ∈ H, where a ∈ A and t ∈ Tλ. Observe that

χH(at) = (χ, θ)H

∑

s∈Ω

sθ(at) =
∑

s∈Ω

θ(sats−1) =
∑

s∈Ω

θ((sas−1)(sts−1))

where Ω is a complete set of coset representatives of H in G. Since we are free to choose any

such set, we choose Ω to be a complete set of representatives for Tλ in T . Since s ∈ T , we

have sts−1 ∈ T so that θ((sas−1)(sts−1)) = λ(sas−1)ρ̃(sts−1). Now recalling that Tλ C T ,

we have sts−1 ∈ Tλ for each s ∈ Ω so that ρ̃(sts−1) = ρ(sts−1) = 1, where the last equality

holds since ρ = 1Tλ
. The above sum then becomes

∑

s∈Ω

λs(a). Putting t = e in the above

computation shows that this last sum is actually χ(a). By Theorem 3.2.16, χ(a) 6= 0. We

have, therefore, shown that χ never vanishes on H. By Theorem 3.1.4, there are at most

|G : H| cosets of 〈e〉 which are orthogonal relative to Bχ
〈e〉. But the required number of

orthogonal cosets is χ(e)(χ, 1)〈e〉 = χ2(e) ≥ |G : H|2. Therefore, G is not o-basis.

¤

Theorem 3.2.20 Let A C G be abelian with |G : A| = p3. If G is o-basis, then G is

nilpotent.

Proof: We prove the contrapositive. Assume that G is not nilpotent. Then Lemma 3.2.15

applies. Choose a normal subgroup K of G satisfying the conclusions of that lemma. By

Theorem 2.1.6, it suffices to show that G/K is not o-basis.

By 3.2.15 (i) and (ii), G/K is a non-abelian semi-direct product of AK/K o T ,where

52



|T | = pn for some n ≥ 1. Therefore, Theorem 1.3.4.2 (concerning semi-direct products) ap-

plies to G/K and we adopt the notation established there. Observe that if λ ∈ Irr(AK/K)

and Tλ = T , then (AK/K)Tλ = (AK/K)T = G/K so that θλ,ρ(e) = (λρ̃)G(e) = 1. As

we shall show, it follows that, for some character λ ∈ Irr(AK/K), Tλ 6= T . For suppose

that Tλ = T for all λ ∈ Irr(AK/K). Since, by Theorem 1.3.4.2 (iii), every character of G

has the form θλ,ρ for some λ ∈ Irr(AK/K) and ρ ∈ Irr(Tλ), we have that χ(e) = 1 for

all χ ∈ Irr(G/K). Theorem 1.3.2.3 then gives that G/K is abelian, contrary to 3.2.15 (i).

Therefore, choose λ ∈ Irr(AK/K) such that Tλ 6= T . By Lemma 3.2.15 (iii), AK/K is

an elementary abelian q-group for prime q 6= p. Applying Lemma 3.2.18 to G/K, we may

assume that |Tλ| = p2. Since |T : Tλ| = p, it follows that Tλ C T . By Theorem 3.2.19, G is

not o-basis.

¤

In the next result, we will again take of advantage of semi-direct product structure. As

before, we refer the reader to section 1.3.4 for a discussion of semi-direct products and the

associated notation.

Theorem 3.2.21 Let p be prime and let A C G be abelian with |G : A| = p4. Suppose that

G is o-basis. Then exactly one of the following holds:

(i) G is nilpotent.

(ii) There exists K C G with K ⊆ A such that G/K is the in-

ternal semidirect product of A/K and T , where T ∼= G/A.

Moreover, there exists λ ∈ Irr(A/K) such that Tλ 6= G/A.

Finally, Tλ ∩ Z(G/A) = 〈e〉 for all such characters λ.
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Proof: As in previous results, we prove the contrapositive. Suppose that G is not nilpo-

tent. By Lemma 3.2.15 (i), there is a normal subgroup K of G with K ⊆ A such that

G/K is a non-abelian semidirect product (A/K)o T for some subgroup T ≤ G/K, where

T ∼= (G/K)/(A/K) ∼= G/A, where the last isomorphism is given by the Third Isomorphism

Theorem. Let us choose such a K. By Lemma 3.2.15 (ii), |G/K : A/K| = p4, and, by

3.2.15 (iii), A/K is a non-trivial elementary abelian q-group for some prime q 6= p (see

Definition 1.2.10). If we can show that G/K is not o-basis, it will follow by Theorem 3.1.5

that G is not o-basis. By Theorem 3.2.17, G/K is not o-basis if T is abelian. We may

assume, therefore, that T is non-abelian.

Let us suppose, to obtain a contradiction, that Tλ = T for all λ ∈ Irr(A/K). Then

(A/K)Tλ = (A/K)T = G/K and θλ,ρ(e) = 1 for all pairs λ, ρ, where λ ∈ Irr(A/K) and ρ ∈

Irr(Tλ). In this case, every irreducible character of G/K is linear by Theorem 1.3.4.2 (iii).

By Theorem 1.3.2.3, G/K is abelian. But we have noted that G/K is non-abelian. Assume

that (ii) does not hold, and choose λ ∈ Irr(A/K) with Tλ 6= T such that Tλ ∩ Z(T ) 6= 〈e〉.

Note that |Tλ| > 1. By Lemma 3.2.18, we may assume that |Tλ| ≥ p2. Suppose that

|Tλ| = p3. Then Tλ C T by Theorem 1.2.6. It follows from Lemma 3.2.19 that G is not

o-basis. Assume, therefore, that |Tλ| = p2.

Fix ρ ∈ Irr(Tλ). Note that Tλ is abelian by reason of order and therefore ρ is linear

by Theorem 1.3.2.3. Put H = ATλ, H = A(Tλ ∩ Z(T )), and χ = θλ,ρ. Note that χ(a) 6= 0

for all a ∈ A/K by Theorem 3.2.16. We show that χ(h) 6= 0 for all h ∈ H.

Since H/(A/K) ⊆ Z(T ), H C G by the Correspondance Theorem. Let az ∈ H, where

a ∈ A and z ∈ Tλ ∩ Z(T ). Applying Mackey’s Theorem, Theorem 1.3.3.11, we have
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χH(az) =
(
(λρ̃)G

)
H

(az) =
∑

s∈Ω

[
s(λρ̃)sH∩H

]H

(az),

where Ω is a complete set of H −H double coset representatives in G/K.

As H C G and H ⊆ H, we have sH ∩H = H so that the sum becomes

∑

s∈Ω

[
s(λρ̃)H

]H

(az) =
∑

s∈Ω

s(λρ̃)(az) =
∑

s∈Ω

(λρ̃)(s−1azs) =
∑

s∈Ω

λ(s−1as)ρ̃(s−1zs).

For g ∈ G, HgH = gHH = gH, where the next to last and last equalities hold

since H C G/K and H ⊆ H respectively. The elements of Ω can thus be chosen to be

coset representatives of H in G and therefore we may assume these elements to be coset

representatives of Tλ in T . Recall that ρ̃ = ρπ, where π : H → H/(A/K) ∼= Tλ is the

canonical map. Since z ∈ Tλ ∩ Z(T ), we have s−1zs = z for all s ∈ Ω and π(s−1zs) =

π(z) = z. Thus ρ̃(s−1zs) = ρ(z). We have

∑

s∈Ω

λ(s−1as)ρ(z) = ρ(z)
∑

s∈Ω

λs(a) = ρ(t)χ(a),

where the last equality is obtained by carrying out the above computation with t = e. Since

χ(a) 6= 0, this shows that χ never vanishes on H.

By Corollary 3.1.4 with N = H, there are at most p3 cosets of 〈e〉 in G/K which are

orthogonal with respect to Bχ
〈e〉.

But χ(e) = |G : H|(λρ̃)(1) = |G : H| = p2. Thus, in order for G/K to be (〈e〉, χ)-o-basis, it

is required that there be at least χ(e)(χ, 1)〈e〉 = χ(e)2 = p4 mutually orthogonal cosets. It

follows that G/K, and so G, is not o-basis and the proof is complete.
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Lemma 3.2.22 Let K ≤ G and let N C G with K ⊆ N . Let χ ∈ Irr(G) and assume that

G is (K,χ)-o-basis. Then G is (N, χ)-o-basis.

Proof: Let H ≤ G with N ⊆ H. Assume that (χ, 1)H 6= 0. Then (χ, 1)N 6= 0 and

N ⊆ kerχ by Lemma 1.3.3.4. Define χ̂ : G/kerχ → C by χ̂(gkerχ) = χ(g) for all g ∈ G.

Since G is (K,χ)-o-basis, Theorem 3.1.2 gives that G/kerχ is (〈e〉, χ̂)-o-basis. A second

application of Theorem 3.1.2, gives that G is (N,χ)-o-basis, as desired.

¤

Theorem 3.2.23 Suppose A C G, that A is cylic and |G : A| = p. Then G is o-basis if

and only if G is nilpotent.

Proof: If G is o-basis, it follows immediately from Theorem 3.2.17 that G is nilpotent.

Turning, therefore, to the other direction, let us assume that G is nilpotent. We may also

assume that G is non-abelian (see Proposition 1.3.2.3). Note that A is a maximal subgroup.

For suppose K ≤ G with A ⊆ K. We have K/A ≤ G/A ∼= Zp so that either K/A = A or

K/A = G/A. Since A ⊆ K, it follows that either K = A or K = G. Let χ ∈ Irr(G) be non-

linear. Define χ̂ : G/ kerχ → C by χ̂(g·kerχ) = χ(g). By Lemma 1.3.2.5, χ̂ ∈ Irr(G/ kerχ).

Let us note that ker(χ̂) = {e}. Moreover, since |χ̂(g · kerχ)| = |χ(g)|, we have Z(χ̂) =

Z(χ)/ kerχ = Z(G/ kerχ), where the last equality is given by Lemma 1.3.2.9. Next observe

that kerχ is a proper subgroup of A. For suppose first, to obtain a contradiction, that

A ⊆ kerχ. Then G′ ⊆ kerχ so that G/ kerχ is abelian. It follows from Lemma 1.3.2.3 that

χ is linear, a contradiction. Assume then that neither of the groups A and kerχ is contained

in the other. In this case, A · kerχ properly contains A. Since A is maximal, A · kerχ = G.
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Thus G/ kerχ = (A ·kerχ)/ kerχ ∼= A/(A∩kerχ). This last group is abelian, and we again

have G′ ⊆ kerχ, a contradiction. It follows then that kerχ is properly contained in A. From

this we deduce that {e} 6= A/ kerχ C G/ kerχ, that |G/ kerχ : A/ kerχ| = |G : A| = p

and that A/ kerχ is cyclic since A is. Note also that G/ kerχ is nilpotent since G is. We

have verified therefore that G/ kerχ has all of the properties assumed of G. Finally, by

Proposition 2.1.5, G is χ-o-basis if and only if G/ kerχ is χ̂-o-basis. We lose no generality,

then, in identifying G with G/ kerχ, and χ with χ̂. With this identification, we may assume

that χ is faithful, χ is non-linear and that Z(χ) = Z(G).

By Theorem 1.3.2.13, χ(e) divides |G : A|. Thus, χ(e) = p. Let λ ∈ Irr(A) such that

(χ, λ)A 6= 0 (that this is possible follows from Proposition 1.3.1.9). Then 1 ≤ (χ, λ)A =

(χ, λG), where the last equality is by Theorem 1.3.3.12. Now λG(e) = |G : A|λ(e). Since

λ(e) = 1 by Lemma 1.3.2.3, we have λG(e) = p so that (χ, λG) ≤ 1. This shows that

(χ, λG) = 1 so that χ = λG. Thus χ ≡ 0 on G − A (see note after Definition 1.3.3.5)and

it follows that kerχ ⊆ Z(χ) ⊆ A. We note here, for later use, that λ is faithful. Indeed,

since A is cyclic, every subgroup of A is characteristic in A. Characteristic subgroups of

normal subgroups are themselves normal. Therefore, every subgroup of A is normal in G.

In particular, ker(λ) C G. Therefore, ker(λ) = ∩x∈G[ker(λ)]x = kerχ = {e}, where the next

to last equality is given by Lemma 1.3.3.6 since χ = λG.

Let H ≤ G and assume that (χ, 1)H 6= 0. Note that G′ ⊆ A. If A ⊆ H, then G′ ⊆ H

and G is H-o-basis by Theorem 3.3.1. Let us now assume that A * H and H * A. We will

show that if G is (H ∩ A,χ)-o-basis, then G is (H, χ)-o-basis. From this, we will conclude

that it suffices to assume H ⊆ A. Since A is maximal, we have |G| = |AH| = |A| · |H|
|H ∩A| .

Dividing by |H|, we have |G : H| = |A : H ∩ A|. Also, dividing by |A|, we have that
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|H : H ∩ A| = |G : A| = p. Let S denote a complete set of coset representatives for H ∩ A

in A. Let a, b ∈ S with a 6= b so that a(A ∩ H) 6= b(A ∩ H). Suppose aH = bH. Then

a−1b ∈ H. However, a−1b ∈ A so that a(H ∩A) = b(H ∩A), a contradiction. If follows that

the set {aH : a ∈ S} consists of distinct cosets of H in G. Since |S| = |A : H∩A| = |G : H|,

we see that S comprises a complete set of coset representatives for H in G. Now let a ∈ S.

We claim that a(H ∩ A) = (aH) ∩ A. Indeed, let g ∈ a(H ∩ A). Then g = ah, h ∈ H ∩ A.

Since h ∈ H, g ∈ aH. Since h ∈ A, g ∈ A. Thus g ∈ (aH) ∩ A. Conversely, suppose

g ∈ (aH) ∩ A. Then g = ah and g = a for some h ∈ H and a ∈ A. We have ah = a

so that h = a−1a ∈ A. Thus g ∈ a(H ∩ A) and the claim follows. Let a, b ∈ S. Then

Bχ
H∩A

[
a(H ∩A), b(H ∩A)

]
=

χ(e)
|H ∩A|

∑

h∈H∩A

χ
(
a−1bh

)

= |H : H ∩A| · χ(e)
|H ∩A| · |H : H ∩A|

∑

h∈H∩A

χ
(
a−1bh

)

= |H : H ∩A| · χ(e)
|H|

∑

h∈H

χ
(
a−1bh

)

= |H : H ∩A| ·Bχ
H

(
aH, bH

)

where, in obtaining the next to last equality, we have used the facts that a−1b(H ∩ A) =

(a−1b)H ∩A and that χ ≡ 0 on G−A. Thus, whenever a, b ∈ S and a(H ∩A) and b(H ∩A)

are orthogonal relative to Bχ
H∩A, aH and bH are orthogonal relative to Bχ

H .

Assume that G is (χ,H ∩ A)-o-basis. Then there are χ(e)(χ, 1)H∩A cosets of H ∩ A

which are mutually orthogonal relative to Bχ
H∩A. Since |G : A| = χ(e), some coset of

A must contain (χ, 1)H∩A of these cosets. By G-invariance of Bχ
H∩A, every coset of A,

and in particular A itself, must contain (χ, 1)H∩A such cosets. Choose S = {ai : 1 ≤

i ≤ (χ, 1)H∩A} ⊆ S such that ai(A ∩ H) and aj(A ∩ H) are orthogonal relative to Bχ
H∩A

whenever i 6= j. Then {aiH : ai ∈ S} consists of (χ, 1)H∩A mutually orthogonal cosets of

H in G. We recall that χ ≡ 0 on G−A and calculate
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(χ, 1)H∩A =
1

|H ∩A|
∑

h∈H∩A

χ(h) = |H : H ∩A| 1
|H ∩A| · |H : H ∩A|

∑

h∈H

χ(h)

= |H : H ∩A| 1
|H|

∑

h∈H

χ(h)

= p · (χ, 1)H

= χ(e)(χ, 1)H

It follows that G is (H,χ)-o-basis whenever G is (H ∩A,χ)-o-basis. Therefore, we assume,

without loss of generality, that H ⊆ A. Since A is cyclic, every subgroup of A is character-

istic in A. Since A C G, Lemma 1.2.3 gives that H C G. By Lemma 3.2.22, it suffices to

show that G is (E, χ)-o-basis, where E denotes the identity subgroup.

Recall that Z(χ) ⊆ A. Since G is nilpotent, Theorem 3.2.11 gives that χ(e)2 divides

|G : Z(χ)|. It follows that p divides |A : Z(χ)|. There is, therefore, a subgroup of A/Z(χ)

of order p.This subgroup is of the form D/Z(χ), where Z(χ) ⊆ D ⊆ A and |D : Z(χ)| =

p. We claim that χD =
∑p−1

i=0 ηi, where the ηi are distinct, irreducible characters of D.

By Theorem 1.3.3.11, χD = (λG)D =
∑

σ∈Ω

[
σλσA∩D

]D, where Ω is a complete set of

(D, A)-double coset representatives in G. We remind the reader that σλ ∈ Irr(σA), where

σA = σAσ−1. Since A C G and D ⊆ A, we have that σA = A and σA ∩ D = D. Thus

χD =
∑

σ∈Ω

[
(σλ)D

]D =
∑

σ∈Ω(σλ)D. For each σ ∈ Ω, we have DσA = σDA = σA since

D C G and D ⊆ A. It follows that Ω may be taken to be the set {xi : 0 ≤ i ≤ p− 1}, where

x ∈ G − A is chosen so that G/A = 〈xA〉. That is, χD =
∑p−1

i=0 (xi
λ)D. Fix 0 ≤ i ≤ p − 1

and let ϕ ∈ Irr(D) such that
(
xi

λ, ϕ
)
D
≥ 1. Since λ is linear, we have

(
xi

λ, ϕ
)
D
≤ 1 so

that xi
λD = ϕ. That is, xi

λD is irreducible. It remains to show that the xi
λ are all distinct.

Suppose that xi
λ = xj

λ for some i 6= j. Choose d ∈ D−Z(G) such that D/Z(G) = 〈d·Z(G)〉.

Then λ(xi
d) = xi

λ(d) = xj
λ(d) = λ(xj

d). Recalling that λ is a faithful homomorphism, we
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have that xi
d = xj

d so that xj−i
d = d. Since i 6= j, G = 〈xj−i, A〉. If follows that d ∈ Z(G),

a contradiction. We put ηi = xi
λ and the claim is established.

Put Z = Z(G). We now show that χ ≡ 0 on D − Z. By Theorem 1.3.3.9, χZ =

(χ, µ)Z
∑

g
gµ for some µ ∈ Irr(Z), where (χ, µ)Z 6= 0 and the gµ are the distinct conjugates

of µ under G. For all g ∈ G and z ∈ Z, we have that gµ ∈ Irr(Z) and gµ(z) = µ(gz) = µ(z)

so that gµ = µ. Thus, χZ = (χ, µ)Z · µ so that p = χZ(e) = (χ, µ)Z · µ(e) = (χ, µ)Z and we

have χZ = pµ. Now observe that p = (χ, µ)Z = (χD, µ)Z =
( ∑p−1

i=0 ηi, µ
)
Z

=
∑p−1

i=0 (ηi, µ)Z .

For each i, ηi is linear so that (ηi, µ) is either 1 or 0. It follows that (ηi, µ)Z = 1 for all i.

By Theorem 1.3.3.12, (ηi, µ
D)D = (ηi, µ)Z = 1 for each i. Also, µD(e) = |D : Z|µ(e) = p.

It follows that µD =
∑p−1

i=0 ηi = χD. Since Z C D, it follows that χD ≡ 0 on D − Z.

Note that Bχ
E(aE, bE) = χ(e)χ(a−1b) for all a, b ∈ G. If aA 6= bA, then a−1b /∈ A

and the above quantity is zero since χ ≡ 0 on G − A. That is, any two elements of G in

distinct cosets of A are orthogonal relative to Bχ
E . By the same reasoning, a is orthogonal

to b relative to Bχ
E whenever a, b ∈ D and aZ 6= bZ. Let {ai : 1 ≤ i ≤ p} be a complete set

of distinct cosets of Z in D. Then the set
⋃p−1

j=0{xjai : 1 ≤ i ≤ p}, where x0 is chosen to be

the identity of G, comprises a set of p2 cosets of E which are mutually orthogonal relative

to Bχ
E . Since χ(e)(χ, 1)E = p2, we have shown that G is (E, χ)-o-basis. As noted, it follows

from this that G is (H,χ)-o-basis. As H and χ were chosen arbitrarily, G is o-basis and the

proof is complete.

¤
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3.3 The Upper and Lower Central Series

In section 3.1, we defined the notion of K-o-basis. One reason for doing so is to use

the generalized notion as a kind of filter for distinguishing between groups that is finer than

that provided by the original notion of o-basis. To apply the generalized notion to all groups

in a given class, the subgroup K must be chosen so that it is defined for all groups in that

class. For example, the notion of Z-o-basis makes sense for all finite groups. In this section,

we consider two series of “universal subgroups”, the upper and lower central series. These

series are defined in the notation section at the end of this work. It is expected that fewer

groups G will be γn(G)-o-basis than γn−1-o-basis. One discovers quickly that every group

is γ2-o-basis (Theorem 3.3.1). Our main result in this section, Theorem 3.3.4, is that every

group is in fact γ3-o-basis. Finally, in Theorem 3.3.5, we also present a slight generalization

of Theorem 3.2.1.

Theorem 3.3.1 The group G is G′-o-basis. That is, every group is G′-o-basis.

proof : By Theorem 3.1.5, G is G′-o-basis if and only if G/G′ is o-basis. The latter holds

by Theorem 2.1.4 since G/G′ is abelian.

¤

Lemma 3.3.2 Let N ¢G and for H ≤ G let Ĥ denote the image of H under the canonical

map G → G/N . Let M ≤ G with N ⊆ M . Then Ĥ ⊆ M̂ ⇒ H ⊆ M for all H ≤ G.

Proof: Let H ≤ G, assume that Ĥ ⊆ M̂ and let x ∈ H. Then xN = yN for some y ∈ M

so that y−1x = n for some n ∈ N . Thus x = yn ∈ M by closure since N ⊆ M . It follows

that H ⊆ M .
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¤

Lemma 3.3.3 Let m ≥ 1, n ≥ 0 and put γm = γm(G) and Zn = Zn(G).

Then γm ⊆ Zn ⇔ γm+1 ⊆ Zn−1.

Proof: For a subset S ⊆ G, let Ŝ denote the image of S under the canonical map G →

G/Zn−1. Assume first that γm ⊆ Zn. We recall that γm+1 =
〈{[a, b] : a ∈ γm, b ∈ G}〉.

Therefore, let a ∈ γm and b ∈ G, and note that it is enough to show that [a, b] ∈ Zn−1.

We show [a, b]Zn−1 = Zn−1. Indeed, a ∈ Zn by assumption and Ẑn = Z(Ĝ). Thus

[a, b]Zn−1 = [aZn−1, bZn−1] = Zn−1. It follows that [a, b] ∈ Zn−1, and thus γm+1 ⊆ Zn−1,

as desired.

Assume now that γm+1 ⊆ Zn−1. Applying Lemma 3.3.2 with N = Zn−1, we see that

it suffices to show γ̂m ⊆ Ẑn. Now γ̂m =
〈{[a, b]Zn−1 : a ∈ γm−1, b ∈ G}〉. Therefore, let

a ∈ γm−1 and let b, g ∈ G. Then [a, b] ∈ γm so that
[
[a, b], g

] ∈ γm+1 ⊆ Zn−1, where this

last containment is by assumption. We have

[
[a, b]Zn−1, gZn−1

]
=

[
[a, b], g

]
Zn−1 = Zn−1.

It follows that γ̂m ⊆ Z(Ĝ). Since Z(Ĝ) = Ẑn, the desired containment is established.

¤

Theorem 3.3.4 The group G is γ3-o-basis. That is, every group is γ3-o-basis.

Proof : For a subset S ⊆ G, let Ŝ denote the image of S under the canonical map

G → G/γ2. By Theorem 3.1.5, it suffices to show that Ĝ is o-basis. Note that γ3(Ĝ) =

γ̂3(G) = 〈e〉 = Z0(Ĝ). By Lemma 3.3.3, (Ĝ)′ = γ2(Ĝ) ⊆ Z1(Ĝ) = Z(Ĝ). Theorem 3.2.1

gives that Ĝ is o-basis, as desired.
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Our last result is a slight generalization of Theorem 3.2.1.

Theorem 3.3.5 Let m ≥ 1, n ≥ 0 and assume that γm ⊆ Zn. Then G is Zm+n−2-o-basis.

Proof: By Theorem 3.3.4, it suffices to show that γ3 ⊆ Zm+n−2. We proceed by induction

on m. Assume first that m = 0. Then G = γ1 ⊆ Zn so that G = Zn. If n = 0, then

G = Z0 = 〈e〉 so that G is abelian and o-basis. The result holds since Zm+n−2 = Z−1 = 〈e〉.

Assume that n > 0. Since G = Zn, we have G/Zn−1 = Zn/Zn−1 = Z(G/Zn−1), where the

last equality holds by definition of Zn for n > 0. Thus G/Zn−1 is abelian and γ2 ⊆ Zn−1.

It follows from Lemma 3.3.3 that γ3 ⊆ Zn−2, establishing the case m = 0.

Now let m ≥ 0 and assume that γm ⊆ Zl ⇒ γ3 ⊆ Zm+l−2 for all non-negative integers

l. Suppose that γm+1 ⊆ Zn. We wish to show that γ3 ⊆ Zm+n−1. Applying the induction

hypothesis with l = n + 1, it suffices to show that γm ⊆ Zjn+1. We obtain this by applying

the backwards implication in the conclusion of Lemma 3.3.3 to our assumption

that γm+1 ⊆ Zn.

¤
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Chapter 4

Conclusions

Our work may be divided into main subdivisions. First, we have attempted to explore

the connections between the o-basis property and nilpotency. We have posed two questions.

First, which nilpotent groups are o-basis? In [Hlms], Holmes has given an example of

a group of order 34 that is not o-basis. Thus, it is known that not all nilpotent groups are

o-basis. We have shown that whenever G′ ⊆ Z(G) (a condition implying nilpotency), G is

o-basis. This result has been used in several subsequent arguments. In addition, it raises

a question for possible future study. If G′ ⊆ Z(G), then G has nilpotence class no greater

than 3 (see the notation section). Also, Holmes’ example of order 34 has class 4. We ask,

therefore, if nilpotence class 3 is a necessary condition for a (nilpotent) group to be o-basis,

leaving this question, for the moment, open.

We have also shown that a nilpotent group is o-basis if and only if each of its Sylow

subgroups are. Therefore, the question can be ”reduced” in some sense to which p-groups

are o-basis. Suppose G is a group of order pn, where p is prime. We have taken the approach

of considering the question for increasing values of n. Since all abelian groups are o-basis,

we immediately find that G is o-basis if n ≤ 2. That G is o-basis for n = 3 was established

by Holmes in [Hlms] (see Theorem 1.1.1). We have attempted to better understand groups

of order p4 by working from the assumption that such a group is not o-basis. In this case,

there exists a subgroup H ≤ G and χ ∈ Irr(G) such that G is not (H, χ)-o-basis. We derive

from these assumptions some conditions on H, χ and G. We note that G begins to look

very much like Holmes’ example of order 34.
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Our second question concerning the o-basis property and nilpotentcy is, ”Are all o-

basis groups nilpotent?”. In this, there are two motivating facts. First, all examples so

far of o-basis groups have been nilpotent. Second, the dihedral groups that are o-basis

are precisely those that are nilpotent. With the dihedrals in mind, we have narrowed the

question to those groups G having an abelian, normal subgroup A with non-trivial prime

power index pn. We have asked if nilpotentcy is a necessary condition for these groups to

be o-basis. We have shown that if G/A is abelian, the answer is affirmative. When G/A is

non-abelian, in which case n ≥ 3, we have some limited results. In this case, nilpotentcy is

necessary for o-basisness if n = 3. In the case n = 4, we obtain the result only after adding

certain technical conditions. Finally, we have shown that nilpotentcy is a necessary and

sufficient condition for o-basisness if A is cyclic and n = 1.

Our second major objective has been to explore the idea of generalizing the o-basis

property. To this end, we defined the notion of a K-o-basis group, where K is a subgroup

of G. In order for this notion to be used to distinguish between groups in a given class,

the subgroup K must be chosen so that it makes sense for all of the groups in that class.

For example, we may choose K to be the central subgroup. Since the center is defined for

all groups, it makes sense to ask which groups are Z-o-basis. The upper and lower central

series are two series of subgroups defined for all groups. In section 3.3, we have obtained

some results with K coming from these series. One obtains quickly that every finite group

is γ2-o-basis. Our main result along these lines is that every group is in fact γ3-o-basis.

Theorem 3.2.1, mentioned above, was important to obtaining this result. In this same

section, we also extend Theorem 3.2.1 somewhat.
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Having summarized what has been done, we are positioned to look ahead. There seems

to be quite a bit of room for further study with o-basis groups. Neither of our two questions

concerning the o-basis property and nilpotentcy have been answered fully. The question of

whether or not all o-basis groups are nilpotent is still open. As a more manageable goal, on

may attempt to prove Conjecture 3.2.13. In our attempts at this conjecture, we only made it

to n = 4. Even here, we were obliged in Theorem 3.2.21 to add certain technical conditions

to make the argument work. It is not known whether these conditions are actually needed.

One may therefore attempt to remove them. We have already mentioned the possibility

that all o-basis groups are in fact not only nilpotent but of nilpotence class 3.

There are also open questions about how the o-basis property behaves with regard to

basic group-theoretic operations. For example, it is unknown if a subgroup of an o-basis

group o-basis. It is also unknown whether or not the direct product of a number of o-basis

groups is o-basis (see the discussion following Theorem 3.2.8). Along these lines, it may

be worth noting that, since the definition of o-basis involves characters, it may be that

“o-basis” is not a purely group-theoretic property.

Room for further study also exists in experimenting with alternative means of general-

izing the notion of o-basis group. There are at least two alternative generalizations. First,

we have chosen, in the character theory, the complex numbers for the base field (or at least

a field that is algebraically closed and whose characteristic does not divide |G|). However,

theory exists for the case in which the field has prime characteristic (see [Is], Ch. 15). This

involves the notion of Brauer characters. One might attempt to derive a notion of o-basis

that in terms of Brauer characters rather than ordinary C-characters.
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Another possible generalization is to allow the group G to be infinite. In this case, one

deals with arbitrary compact groups as opposed to finite groups. In this case, the group G is

endowed with a certain topology, and a linear representation of G in V is a homomorphism

ρ : G → GL(V ) which is continuous with respect to this topology. A portion of the theory

of the C-characters of finite groups has an analog in the setting of compact groups, and one

might try to define the notion of o-basis in this setting.

Future researchers may do well to familiarize themselves with current research on p-

groups, zeros of characters and number theory. The study of o-basis groups may well hold

the potential for furthering progress in these on-going fields of research. Also, considering

their connection with tensor spaces, the author feels he has reason to believe that the study

of o-basis groups holds promise as a challenging and significant endeavor.
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Notation

Let G denote a finite group. We use the following notational conventions. Entries are

arranged according to category and, after that, roughly in the order that they appear in

the text. References to relevant sections of the text are at the far right. Also, the reader

will want to take note of comments that accompany some of the entries.

|A|, the cardinality of the set A

e, the identity element of G

G− S, {g ∈ G : g /∈ S}

H ≤ G, H is a subgroup of G

〈S〉, the subgroup generated by the subset S ⊆ G

G/N , the quotient group of left cosets of the normal subgroup N

of G

gx, gx = x−1gx, where x, g ∈ G

xg, xg = xgx−1, where x, g ∈ G

Hg, Hg = {hg : h ∈ H}, where g ∈ G and H ≤ G

gH, gH = {gh : h ∈ H}, where g ∈ G and H ≤ G

CG(x), CG(x) := {g ∈ G : g−1xg = x}, where x ∈ G. This is called

the centralizer of x in G. It is a subgroup of G.

Aut(G), the automorphism group of G

K char G, K is a characteristic subgroup of G Def. 1.2.2

Th. 1.2.3

lcm(S), the least common multiple of a finite set, S, of integers
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Y X , the set of fixed points of a set Y under the action of a set

X. That is Y X = {y ∈ Y : yx = y for all x ∈ X}, where

y 7→ yx is the image of y ∈ Y under the action of x ∈ X.

[a, b], the commutator aba−1b−1, where a, b ∈ G

G′, the commutator subgroup of G

γn(G), the nth term of the lower central series of G (see below)

The lower central series of G is the series of subgroups

defined recursively as follows: γ1(G) = G and, for n > 1,

γn(G) :=
〈{[a, b] : a ∈ γn−1(G), b ∈ G}〉.

Note that γn(G) C G for all n ≥ 1 and that G′ = γ2(G).

A group G is nilpotent ⇔ γn(G) = 〈e〉 for some n.

In this case, the smallest such n is called the nilpotence

class of G. This can also be shown to be the smallest n such

that Zn(G) = G (see below).

Z(G), the center of the group G

Zn(G), the nth term of the upper central series of G

The upper central series is the series of subgroups of G

defined recursively as follows. For n ≤ 0, put Zn(G) = 〈e〉

and let Z1(G), or simply Z(G), denote the center of G.

For n > 1, Zn(G) is the unique subgroup of G containing

Zn−1 such that Zn(G)/Zn−1(G) = Z(G/Zn−1).

z, the conjugate of the complex number z

|z|, the modulus of the complex number z
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1G, the principal character of G, 1G(g) = 1 for all g ∈ G.

Note that 1G is linear and so irreducible. (see Def 1.3.2.1 and

Propostion 1.3.2.2.)

kerχ, the kernel of the character χ, kerχ := {g ∈ G : χ(g) = χ(e)}

Z(χ), the center of the character χ, Z(χ) := {g ∈ G : |χ(g)| = χ(e)}

For all characters χ, kerχ ⊆ Z(χ) and both subgroups are

normal in G

χK , the restriction of the character χ to the subgroup K sec. 1.3.3

ϕG, the character of G induced from ϕ, where ϕ is a character

of some subgroup of G

sec. 1.3.3

IG(ϕ), the inertial subgroup of ϕ, where ϕ is a character of some

subgroup of G

Def. 1.3.3.8

Cl(G), the set of class functions on G Sec. 1.3.1
(
χ, ψ

)
G

(
χ, ψ

)
G

=
1
|G|

∑

g∈G

χ(g)ψ(g), where χ, ψ are class functions on

G.

sec. 1.3.1

Tλ, the stabilizer of λ in T sec 1.3.4

Gal(Q, ε), the galois group of Q[ε] over Q

Bχ
H , eqn. 2.1

∏n
i=1 Gi, the direct product of the groups Gi
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