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Understanding the fracture mechanics of materials under stress wave loading is essen-

tial for impact resistant design of structures. In this context, mixed-mode dynamic fracture

behavior of two-phase composites - a functionally graded material (FGM) and a syntactic

structural foam are investigated experimentally and numerically. FGMs are macroscopi-

cally nonhomogeneous engineered materials with spatially varying volume fraction of the

constituents. They are used as thermal barrier coatings in high temperature components, as

core materials in sandwich structures, as inter layers in micro-electronic packages, to name

a few. Syntactic foams are homogeneous buoyant materials used in naval/marine applica-

tions as well as for energy dissipation in military and industrial environments. Catastrophic

failure in these materials is often observed to occur in a mixed-mode fashion involving a

combination of tensile and shear fractures. Real-time and full-field measurement of crack

tip deformations in these circumstances is rather challenging because the events typically

last only a couple of hundred microseconds, and need optical tools coupled with ultra-high
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speed imaging devices to understand the associated failure mechanisms. To date very few

methods are available for performing direct measurements of crack tip fields. This dis-

sertation aims to address these by studying the dynamic fracture behavior of such novel

materials by developing suitable measurement and modeling tools.

The first part of this research extends the optical method of Coherent Gradient Sensing

(CGS) to the study of mixed-mode dynamic fracture behavior of functionally graded ma-

terials. FGMs studied are the ones with a continuously varying volume fraction of ceramic

filler particles in a polymer matrix having edge cracks initially along the property gradient

and subjected to impact loading. The mixed-mode loading is generated by loading samples

eccentrically relative to the initial crack plane. CGS and high-speed photography are used

to map transient crack tip deformations. Two configurations, one with a crack on the stiffer

side of a graded sheet and the second with a crack on the compliant side, are examined

experimentally. Differences in both pre- and post-crack initiation behaviors are observed in

terms of crack initiation time, crack path, crack speed and stress intensity factor histories.

A crack kinks by a much larger angle when it originates from the stiffer side of the FGM

compared to the compliant side. Crack speeds, however, are higher in the latter configura-

tion by nearly 100 m/sec. Prevailing crack tip field descriptions do successfully predict the

observed crack path differences.

In the second part of this work, the method of digital image correlation is developed to

study transient deformations associated with rapid mixed-mode crack growth in materials.

Edge cracked polymer beams and syntactic foam samples are studied under low-velocity

impact loading conditions. Decorated random speckle patterns in the crack tip vicinity

are recorded using an ultra high-speed CCD camera at framing rates of 200,000 frames

vi



per second. A three-step digital image correlation technique is developed and implemented

in a MATLAB environment for evaluating crack opening/sliding displacements and the

associated strains. Using this approach, the entire crack tip deformation history, from

the time of impact to complete fracture, is mapped successfully. Over-deterministic least-

squares analyses of crack tip displacements are performed to extract dynamic stress intensity

factor (SIF) histories. The current work being the first of its kind using a rotating mirror

type multi-channel high-speed digital camera system, calibration tests and procedures are

established by carrying out a series of benchmark experiments. The accuracy of measured

displacements is in the range 2 to 6% of a pixel (0.6 to 1.8 µm) and that of the dominant

strain is about 150-300 micro strains.

In the last part, finite element modeling of mixed-mode dynamic crack growth in FGM

using cohesive element formulations is performed. The formation of new surfaces is ac-

complished by using bilinear tensile and shear traction-separation laws. A user-defined

subroutine is developed and linked with ABAQUS implicit procedure. The spatial varia-

tions of material properties are incorporated into the continuum elements by performing a

thermal analysis first and then by applying temperature dependant material properties to

the model. Measured mode-I crack initiation toughness data from homogeneous samples

of various volume fractions of the filler are used to introduce spatial variation of cohesive

element properties to the model. The simulated crack paths are in agreement with the ex-

perimental ones. The computed results prior to crack initiation show the presence of larger

negative constraining stresses (T -stresses) near the crack tip when the crack is situated on

the compliant side of the FGM. The simulations reveal that more energy is dissipated when

the crack is situated on the compliant side of the sample compared to when it is on the
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stiffer side. This is in consistent with the higher crack speeds observed when the crack

initiates from the complaint side.

viii



Acknowledgments

I would like to thank my research supervisor, Dr. Hareesh V. Tippur for his valuable

guidance, constant encouragement and advice extended throughout the research work of

this thesis. I am grateful to him for providing excellent experimental and computational

facilities to work on and encouraging me to present the research work at various forums.

Special thanks to Dr. Thomas S. Denney for his valuable help and guidance with image

processing issues of this research work. Thanks to Dr. Jeffrey C. Suhling and Dr. Winfred

A. Foster for having kindly agreed to serve on my committee. My sincere thanks to thank

Dr. Michael J. Stallings for agreeing to become the external reader for my thesis. Thanks

are also due to Dr. Michael E. Miller of Auburn University Research Instrumentation

Facility (AURIF) department for allowing me to use his vacuum evaporator. I would like

to thank US Army Research Office (grants # W911NF-04-10257, DAAD19-02-1-0126 and

DAAD19-01-1-0745) and for extending financial and equipment support for this work.

I would like to acknowledge my colleagues and friends in Auburn for the memorable

and enjoyable time I spent with them. I had very good time in the lab with Rajesh, Mike,

Piyush, Taylor, Dong and Rahul. Espeicially the lively atmosphere of the lab in the presence

of Piyush, Rajesh and Taylor was really enjoyable.

Finally, the support, encouragement and love I had from my wife Asha Dixit is some-

thing invaluable. I dedicate this work to her.

ix



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

x



Table of Contents

List of Figures xiv

List of Tables xxi

1 Introduction 1
1.1 Motivation and Literature Review . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Review of failure characterization of FGM . . . . . . . . . . . . . . . 7
1.1.2 Review of optical methods to study fracture . . . . . . . . . . . . . . 8
1.1.3 Review of numerical methods to simulate fracture . . . . . . . . . . 10

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Experimental method of CGS to study dynamic fracture 17
2.1 Optical set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Working principle of CGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Extraction of stress intensity factors from interferograms . . . . . . . . . . . 24

2.4.1 Pre-crack initiation period . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Post-crack initiation period . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Computation of crack speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Crack tip fields in FGM with linear material property variation . . . . . . . 30

2.6.1 Crack along the direction of property gradation . . . . . . . . . . . . 30
2.6.2 Crack inclined to the direction of property gradation . . . . . . . . . 32

2.7 Extraction of SIFs with difference formulation . . . . . . . . . . . . . . . . . 33

3 Mixed-mode dynamic fracture of FGM using CGS 35
3.1 Material Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Material characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Specimen surface preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Crack growth and crack speed histories . . . . . . . . . . . . . . . . 43
3.4.3 Mixed-mode stress intensity factor histories . . . . . . . . . . . . . . 44
3.4.4 Initial crack path prediction . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Mixed-mode SIF history from FGM crack tip fields . . . . . . . . . . . . . . 52

xi



4 The method of Digital Image Correlation 56
4.1 The approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Initial estimation of displacements (Step-1 . . . . . . . . . . . . . . . 57
4.1.2 Refining displacements (Step-2) . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Smoothing of displacements and estimation of strains (Step-3) . . . 60

4.2 Static experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Dynamic experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 High-speed camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Benchmark experiments for high-speed camera . . . . . . . . . . . . . . . . 74

4.5.1 Intensity variability test . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Translation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.3 Rotation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Flash lamp light characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Dynamic fracture studies using DIC method 91
5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Finite element simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Mixed-mode fracture of syntactic foam . . . . . . . . . . . . . . . . . 94
5.3.2 Mode-I fracture of epoxy . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Results - Mixed-mode dynamic fracture of syntactic foam . . . . . . . . . . 97
5.4.1 Extraction of stress intensity factors . . . . . . . . . . . . . . . . . . 99
5.4.2 Estimation of strains . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Results - Mode-I dynamic fracture of epoxy . . . . . . . . . . . . . . . . . . 107
5.5.1 Extraction of stress intensity factors . . . . . . . . . . . . . . . . . . 109
5.5.2 Estimation of strains . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Numerical procedures for modeling dynamic fracture in FGM 116
6.1 Elastodynamic governing equations . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Implicit integration of dynamic equations in ABAQUS . . . . . . . . . . . . 119
6.3 Formulation of an element in ABAQUS . . . . . . . . . . . . . . . . . . . . 120
6.4 Cohesive element formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Exponential traction-separation law . . . . . . . . . . . . . . . . . . 123
6.4.2 Bilinear traction-separation law . . . . . . . . . . . . . . . . . . . . . 126

6.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6 Implicit dynamic scheme and time step control . . . . . . . . . . . . . . . . 130

7 Numerical simulation of mode-I and mixed-mode dynamic fracture in

FGM 133
7.1 Modeling aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Application graded material properties to continuum elements . . . . . . . . 136
7.3 Application of material properties to cohesive elements . . . . . . . . . . . . 137

xii



7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4.1 Energy computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4.2 Effect of the initial slope of traction-separation law . . . . . . . . . . 141
7.4.3 Crack path history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.4 T -stress history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions 150
8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography 156

Appendices 164

A A note on accuracy of strains and time resolved displacements 164
A.1 A note on accuracy of strains . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.2 Time resolved displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B Computation of stiffness coefficients in tration-separation laws 170
B.1 Exponential traction-separation law . . . . . . . . . . . . . . . . . . . . . . 170
B.2 Bilinear traction-separation law . . . . . . . . . . . . . . . . . . . . . . . . . 173

C Finite element simulation of Mode-I dynamic fracture of FGM 175
C.0.1 Material preparation and characterization . . . . . . . . . . . . . . . 175
C.0.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
C.0.3 Modeling details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.0.4 Finite element results . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xiii



List of Figures

1.1 Schematic of a functionally graded material showing variation in elastic, fail-
ure and fracture properties when constituent volume fraction is varied. . . . 2

1.2 Applications of syntactic foams, (a) deepwater insulated oil and gas pipelines
(Courtesy: Cuming corporation), (b) buoyancy foam for deep underwater
floatation (Courtesy: Syntech materials, Inc.) and (c) Impact resistant sand-
wich structures (Courtesy: Goodrich Corporation) . . . . . . . . . . . . . . 3

1.3 Schematic illustrating modes of fracture . . . . . . . . . . . . . . . . . . . . 4

1.4 Mixed-mode dynamic fracture evidences, (a) environmentally assisted crack
propagation from leading edge to the inside cooling surface of a gas tur-
bine blade (Courtesy: Gas Turbine technology) and (b) Concrete damage
after missile impact (Courtesy: Dept. of Civil and Structural Engineering,
University of Sheffield, UK.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Schematic for reflection-mode CGS set-up with a high-speed camera . . . . 18

2.2 Working principle of CGS, (a) Diffraction of a collimated beam though two
parallel Ronchi gratings, (b) undeformed object wave front and (c) deformed
object wave front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Global and local crack tip coordinate systems for (a) stationary crack and
(b) propagating crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 (a) Schematic of FGM sample with linear material property variation, (b)
elastic modulus variation in graded samples (broken line denotes the crack
tip location) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Schematic of FGM sample used in experiments . . . . . . . . . . . . . . . . 36

3.2 Variation of longitudinal and shear wave speeds along the width of the sample 37

3.3 Variation of elastic modulus and mass density along the width of the sample 39

3.4 Variation of dynamic initiation toughness (impact velocity = 5.4 m/sec) with
Elastic modulus. (Broken line is a trend line) . . . . . . . . . . . . . . . . . 40

xiv



3.5 Selected CGS interferograms representing contours of δw/δx in FGM and
homogeneous samples. (The vertical line is at 10 mm from the crack). (a)
crack on the compliant side and (b) crack on the stiffer side (c) homogeneous
(Plexiglas) sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Crack growth behavior in FGM samples under mixed-mode dynamic loading.
(a) Crack growth history, (b) normalized crack speed history. (VR: local
Rayleigh wave speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Mixed-mode dynamic stress intensity factor histories (impact velocity=5.2
m/sec). (Circles: E1 < E2, triangles: E1 > E2). (Time base is altered such
that t− ti = 0 corresponds to crack initiation) . . . . . . . . . . . . . . . . . 45

3.8 Photographs showing multiple fractured specimens (right half) demonstrat-
ing experimental repeatability (a) FGM with a crack on the compliant side
(E1 < E2), (b) FGM with a crack on the stiffer side (E1 > E2). . . . . . . . 47

3.9 Photographs showing fractured specimens for (a) FGM with a crack on the
compliant side (E1 < E2), (b) FGM with a crack on the stiffer side (E1 > E2)
and (c) a homogeneous specimen. Impact point is indicated by letter ‘I’ and
initial crack tip by letter ‘C’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Crack growth behavior in FGM samples under mixed-mode dynamic loading.
(a) Crack growth history, (b) normalized crack speed history. (VR: local
Rayleigh wave speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Stress intensity factors extracted from CGS interferograms by performing
over-deterministic least-squares analysis on difference formulation of CGS
governing equation formulated by using crack tip stress fields obtained for
FGM with linear elastic modulus variation. . . . . . . . . . . . . . . . . . . 54

3.12 The quality of least-squares fit (plots of synthetic contours generated from
Eq. 2.34 superimposed on collected data points) for (a) E1 < E2 (t− ti = 20
µs) and (b) E1 > E2 (t− ti = −20 µs). . . . . . . . . . . . . . . . . . . . . 55

4.1 (a)Undeformed and deformed sub-images chosen from images before and
after deformation, respectively and (b) typical plot of impulse response
Gαp(kx − u, ky − v) generated from cross-correlation between two sub-images. 58

4.2 (a) Schematic of the experimental set-up for static experiment, (b) specimen
and loading details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Photograph of the static experimental set-up . . . . . . . . . . . . . . . . . 64

xv



4.4 In-plane displacements obtained from Step-1, 2 and 3 of the image correlation
process. The interval between contours is 7 µm. . . . . . . . . . . . . . . . . 65

4.5 Static experimental results. (a) and (c) u-displacement (mm) from DIC
and FEA, (b) and (d) ǫxx (µ-strain) from DIC and FEA, (e) and (f) u-
displacement and ǫxx-strain at section AA and BB. Rigid body displace-
ments have been subtracted out both in (a) and (c) . . . . . . . . . . . . . 66

4.6 Schematic of the dynamic experimental set-up . . . . . . . . . . . . . . . . . 67

4.7 Photograph of the dynamic experimental set-up . . . . . . . . . . . . . . . . 68

4.8 Optical schematic of cordin-550 camera: M1,M2,M3,M4,M5 are mirrors; R1

and R2 are relay lenses; r1, r2, · · · r32 are relay lenses for CCDs; c1, c2, · · · c32
are CCD sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 (a) Image of the 5× 5 dot pattern template used for calibration experiment
and (b) Inverted binary image of the template in order to find the control
points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Mean and standard deviations of intensity values of images acquired in total
darkness (with lens cap on). Images were recorded at 50,000 frames per
second in experiment 1 and at 200,000 frames per second in experiment 2. . 77

4.11 Experimental set-up for conducting ranslation test for high-speed digital camera 79

4.12 Translation test results for D=400 mm and 200 mm (see Fig. 4.8. (a) mean
and (b) standard deviations of u- and v- displacement fields for X- and Y -
translations of ∼ 60 ±2µm (c) mean and (d) standard deviations of u- and
v-displacement fields for X- and Y - translations of 300 ±2µm. Magnification
= 35.6 µm/pixel for D=400 mm and 27 µm/pixel for D=200 mm. . . . . . 82

4.13 Translation test results for D = 400 mm (see Fig. 4.8) and out-of-plane
displacement (w) =30 µm. (a) mean and (b) standard deviation of u- and
v-displacement field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.14 Estimated full-field quantity ωxy from one pair of the images taken from
camera # 1 in a rotation experiment (Imposed rotation = 0.0056 ± 0.00035
radians). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.15 Results from rotation test (applied rotation = 0.0056 ± 0.00035 radians).
(a) mean and (c) standard deviation of rotation field estimated from image
correlation. (b) mean (d) standard deviations of in-plane strains estimated
(ideally these strains need to be zeros). . . . . . . . . . . . . . . . . . . . . . 88

xvi



4.16 Photo detector output proportional to flash lamp light intensity, A1, A2 and
B1, B2 are two repeated acquisitions when photodiode was placed one inch
away in the plane perpendicular to optical axis of the camera. . . . . . . . . 89

5.1 Specimen configuration for (a) mixed-mode test of syntactic foam and (b)
mode-I test of epoxy. Impactor force history and support reaction histories
recorded by Instron Dynatup 9250 HV drop tower for (c) mixed-mode exper-
iment and (d) mode-I experiment. The sample dimensions are a = 10 mm,
W = 50 mm, S = 25.4 mm, L = 200 mm, B = 8.75 mm, Impact velocities,
V1 = 4.5 m/sec and V2 = 4.0 m/sec. . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Finite element mesh used for elsto-dynamic finite element analysis of (a)
mixed-mode problem and (b) mode-I problem. . . . . . . . . . . . . . . . . 95

5.3 Acquired speckle images of 31 × 31 mm2 region at various times instants.
(Crack tip location is shown by an arrow.) . . . . . . . . . . . . . . . . . . . 98

5.4 Crack growth behavior in syntactic foam sample under mixed-mode dynamic
loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Crack opening and sliding displacements (in mm ) for pre- and post-crack
initiation instants. (a) v-displacement and (c) u-displacement before crack
initiation (at t=150 µs); (b) v-displacement and (d) u-displacement after
crack initiation (t=220 µs). Crack initiation time ∼ 175 µs. (A large rigid
body displacement can be seen in (c) an (d) due to movement of the sample. 100

5.6 Stress intensity factors extracted from displacement fields obtained from im-
age correlation. SIF history obtained from finite element simulation up to
crack initiation is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 The mode-mixity, ψ obtained from experiments and finite element simulation.
The broken line corresponds to crack initiation time. . . . . . . . . . . . . . 105

5.8 Crack tip normal strains (in micro strains) at t = 150 µs. (a) from experi-
ment and (b) From FEA. Crack initiation time = 175 µs. . . . . . . . . . . 107

5.9 Acquired speckle images of 31 × 31 mm2 region at various times instances.
Current crack tip location is shown by an arrow. . . . . . . . . . . . . . . . 108

5.10 Crack growth behavior in epoxy sample under mode-I dynamic loading.
Crack length history and crack speed history . . . . . . . . . . . . . . . . . 109

xvii



5.11 Crack opening and sliding displacements (in µm ) for pre- and post-crack
initiation instants. (a) v-displacement and (c) u-displacement before crack
initiation (at t = 120 µs); (b) v-displacement and (d) u-displacement after
crack initiation (t = 151 µs). Crack initiation time ∼ 133 µs. . . . . . . . . 110

5.12 Examples showing quality of least-squares fit of displacement data; Crack
opening displacement field (µm) obtained from DIC and synthetic contours
for (a) t = 124 µs (before crack initiation) and (b) t = 151 µs (after crack
initiation). Crack initiation time = 133 µs . . . . . . . . . . . . . . . . . . . 112

5.13 Stress intensity factors extracted from displacement field obtained from image
correlation. SIF history obtained from finite element simulation up to crack
initiation is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.14 Crack tip in-plane constraint, β obtained from experiments and finite element
simulation. The broken line corresponds to crack initiation time. . . . . . . 114

5.15 Crack tip normal strains (in micro strains) for pre- and post-crack initiation.
Normal strain ǫyy at (a) t = 120 µs and (b) at t = 151 µs and (c) ǫyy from
finite element analysis at t = 120 µs. Crack initiation time = 133 µs. . . . . 115

6.1 (a) Undeformed and (b) deformed finite element mesh near a notch tip, (c)
Schematic showing separation of nodes in a cohesive element and (d) local
and global coordinate system used for a cohesive element. . . . . . . . . . . 122

6.2 Exponential traction-separation law showing uncoupled loading: variations
of (a) pure normal traction with normal separation and (b) pure tangential
traction with tangential separation. . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Exponential traction-separation law showing coupled loading: variations of
(a) normal traction and (b) tangential traction. . . . . . . . . . . . . . . . 126

6.4 Prescribed bilinear traction-separation law for (a) pure normal traction ver-
sus normal separation and (b) pure tangential traction versus tangential
separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Steps involved in implementing a cohesive element as user-defined element in
ABAQUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 (a) Overall view of the finite element mesh used for the analysis (b) Mag-
nified view of mesh showing region 1 and region 2 (c) Enlarged view of the
mesh at the interface where the elements from region 1 and region 2 meet. . 134

xviii



7.2 (a) Nodal temperature results from thermal analysis, (b) magnified view of
the cohesive element region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3 Mixed mode dynamic fracture of plxiglas sample. (a) Crack path observed
in experiments and (b) initial crack path from finite element simulations . . 139

7.4 Evolution of different energy components in dynamic simulation for both
FGM configurations: (a) kinetic energy and strain energy and (b) energy
dissipated by cohesive elements . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Effect of initial slope of the traction-separation law on (a) displacement and
(b) on stress results in elastodynamic simulation . . . . . . . . . . . . . . . 144

7.6 Snapshots of σyy stress field at two different time instants, (a) 120 µs and
(b) 150 µs for E1 < E2 (crack initiation time = 129 µs), and (c) 120 µs and
(d) 168 µs for E1 > E2 (crack initiation time = 130 µs). . . . . . . . . . . . 146

7.7 Snapshots of uy displacement field at two different time instants, (a) 120 µs
and (b) 150 µs for E1 < E2 (crack initiation time = 129 µs), and (c) 120 µs
and (d) 168 µs for E1 > E2 (crack initiation time = 130 µs). . . . . . . . . 147

7.8 Crack growth behavior in FGM sample under mixed-mode loading. Absolute
crack length history from (a) experiments and (b) finite element simulations,
ti is crack initiation time (ti = 155 µs for E1 < E2 and 145 µs for E1 > E2

in experiments, ti ∼ 130 µs for both E1 < E2 and E1 > E2 in simulations). 148

7.9 (a) Variation of apparent T -stress with crack length at certain time instant
before crack initiation (b) T -stress history up to crack initiation for E1 < E2

and E1 > E2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1 Results of benchmark experiment conducted to estimate the accuracy of dis-
placements and strains. (a) full-field u-displacement between image 1 and
image 2 before deforming image 2 (ideally u-displacement shoud be zero).
(b) u-displacement after applying a constant strain to image 2 but before
smoothing, (c) u-displacement after smoothing and (d) normal strain after
stretching image 2 uniformly. . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.2 Time resolved crack opening displacements for image # 1 to 12. Time at
which each image was acquired after impact, is indicated above each figure.
The interval between each contour is 3.5 µm. . . . . . . . . . . . . . . . . . 167

A.3 Time resolved crack opening displacements for image # 13 to 24. Time at
which each image was acquired after impact, is indicated above each figure.
The interval between each contour is 3.5 µm. . . . . . . . . . . . . . . . . . 168

xix



A.4 Time resolved crack opening displacements for mixed-mode dynamic test,
image # 25 to 32. Time at which each image was acquired after the impact,
is indicated above each figure. The interval between each contour is 3.5 µm. 169

B.1 Reversible and irreversible unloading . . . . . . . . . . . . . . . . . . . . . . 171

C.1 (a) Schematic of the FGM specimen, (b) Material properties variation along
the width of the sample and (c) Variation of dynamic crack initiation tough-
ness along the width of the sample. . . . . . . . . . . . . . . . . . . . . . . . 178

C.2 Selected CGS interferograms representing contours of δw/δx in functionally
graded epoxy syntactic foam sheet impact loaded on the edge opposing the
crack tip. (The vertical line is at a distance of 10 mm from the crack.) (a)
Crack on the compliant side E1 < E2, (b) crack on the stiffer side E1 > E2.
Fringe sensitivity ∼ 0.015o /fringe. . . . . . . . . . . . . . . . . . . . . . . . 179

C.3 Finite element mesh used for the analysis . . . . . . . . . . . . . . . . . . . 181

C.4 Snapshots of σyy stress field at two different time instants, (a) 85 µs and (b)
125 µs for E1 < E2 (crack initiation time = 106 µs), and (c) 105 µs and (d)
145 µs for E1 > E2 (crack initiation time = 127 µs). . . . . . . . . . . . . . 182

C.5 Crack growth behavior in syntactic foam FGM samples under mode-I loading.
absolute crack length history from (a) experiments and (b) finite element
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.6 Evolution of various energies in mode-I dynamic simulation for both FGM
configurations: (a) kinetic energy and strain energy and (b) energy dissi-
pated by cohesive elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xx



List of Tables

3.1 Nominal bulk properties of the constituent materials . . . . . . . . . . . . . 35

3.2 Predicted crack kink angle based on estimated SIF data from CGS interfer-
ogrmas before crack initiation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Observed crack kink angle from three CGS interferograms just after crack
initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Alignment differences between individual optical channels of Cordin-550 cam-
era; Stretch, rotation and translations of different images with respect to the
image taken by camera # 09 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Gray scale values at a particular pixel in five repeated sets of images of
speckle pattern acquired at 200,000 frames second. Note the repeatability of
the gray scale values between different sets of images. . . . . . . . . . . . . 78

4.3 Details of translation tests: Six sets of 32 images were recorded in each
configuration. In Configuration-2, the camera was kept twice as close as in
Configuration-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Mean and standard deviations of in-plane strain fields estimated from mea-
sured displacements in translation test . . . . . . . . . . . . . . . . . . . . . 85

xxi



Chapter 1

Introduction

Over the last two decades, there has been an increasing demand for stiffer, stronger,

light-weight, energy absorbing materials. Aerospace applications have placed some of the

stringent requirements on the performance of the materials used in space planes and re-entry

vehicles. One of them is to withstand large stress and/or thermal gradients over a small

spatial dimension. For example, large temperature gradients in re-entry vehicles generate

enormous amount of thermal stresses. This is true with parts exposed to high temperatures

in gas turbines and IC engines as well. They are traditionally made by plasma spraying parts

[1] made of nickel based alloys using thermal barrier coatings (TBC). These conventional

TBCs suffer in terms of durability due to their poor bond strength, oxidation/corrosion

resistance, and delamination or spallation. Therefore a new class of materials called func-

tionally graded materials (FGM) having gradual compositional variation from heat resistant

ceramic to fracture resistant metals have emerged as potential replacements for discretely

layered conventional TBCs. They are manufactured by continuously varying the volume

fraction of constituent phases along a spatial direction. Other applications of FGM include

surface hardened tribological surfaces, impact resistant structures for armors and ballistics,

interlayers in microelectronic and optoelectronic components, heat shields in rockets, to cite

a few. Manufacturing methods for FGM have also been evolving over the recent years. The

processing techniques such as chemical and physical vapor deposition, powder processing,

infiltration techniques, buoyancy assisted casting, and diffusion are commonly used for pro-

ducing FGM. The study of dynamic failure of FGM becomes important because many of
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the aforementioned applications involve dynamic loading including mechanical shock and

impact. Figure 1.1 shows schematic of the FGM sample prepared using gravity assisted

casting.

Figure 1.1: Schematic of a functionally graded material showing variation in elastic, failure
and fracture properties when constituent volume fraction is varied.

There has been steady increase in the usage of sandwich composites in aerospace,

marine, transportation and packaging industries. The sandwich composites are made by

attaching two thin plates called skin or face sheets to a thick and light-weight material called

the core. Syntactic foams (polymers filled with thin walled hollow microballoons) have

gained popularity as core materials in sandwich structures due their high energy absorption

capability, compressive strength and low moisture absorption. Syntactic foams are also

used in a variety of other applications such as buoyancy modules in boat hulls, structural

components in helicopters and airplanes, antenna assemblies, thermal insulators in oil and

gas industries, to name a few (see Fig. 1.2). Syntactic foams are particulate composites

manufactured by dispersing prefabricated microballoons in a matrix material. The porosity

in these materials results in lower density and superior thermal, dielectric, fire resistant,

hygroscopic properties and sometimes radar or sonar transparency. Syntactic foams can

be tailored to suit a particular application by selecting a wide range of microballoons of
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different sizes (hollow glass micro spheres, carbon or polymer microballoons, cenoshepres,

etc.) along with any metallic, polymeric or ceramic matrix material. Since one of the main

functions of a syntactic foam is to absorb energy to withstand impact and shock loading, it

is important to study the dynamic failure behavior of these materials.

Figure 1.2: Applications of syntactic foams, (a) deepwater insulated oil and gas pipelines
(Courtesy: Cuming corporation), (b) buoyancy foam for deep underwater floatation (Cour-
tesy: Syntech materials, Inc.) and (c) Impact resistant sandwich structures (Courtesy:
Goodrich Corporation)

The crack initiation and propagation under transient dynamic loading occurs in many

engineering applications. Pressure induced shocks in reactor vessels, failure of metallic

armor by projectile impact, blast loading in an aircraft are few examples. Although quasi-

static fracture is fairly well understood theoretically as well as experimentally [2, 3], many

issues still remain unresolved in the area of dynamic fracture of materials in general and

heterogeneous materials in particular. A dynamic fracture event can be classified into

mode-I or mixed-mode type depending on whether a crack propagates in the direction of

initial crack orientation or not. Figure 1.3 shows a schematic of different modes of fracture.

Depending on the type of loading and the way in which crack flanks move with respect

to each other, three different fracture modes can be identified. They are mode-I (opening

mode), mode-II (sliding mode or in-plane shearing mode) and mode-III (tearing mode or
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out-of-plane shearing mode). A combination of any of these modes is referred to as a

mixed-mode problem. In the current work, the problems involve a combination of mode-I

Figure 1.3: Schematic illustrating modes of fracture

and mode-II loading of a crack. Therefore the word ‘mixed-mode’ henceforth refers to a

combination of mode-I and mode-II fractures.

As far as mode-I fracture is concerned, it is generally accepted that rapid crack initiation

and propagation are governed by an equality between the dynamically evaluated crack

driving force and the resistance of a material for crack extension [2, 4]. Consequently, the

mode-I dynamic fracture criterion is expresses as

Kd
I (a(t), t, P ) = KD(v), (1.1)

where a(t) is the time dependent crack length and v is the crack speed. The dynamic stress

intensity factor Kd
I measures the strength of the near tip fields which drive crack propaga-

tion. The right hand side of the equation, KD is the so-called dynamic fracture toughness

which is identified as a material property. This forms the basis for mode-I dynamic fracture
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mechanics. Extensive research has been conducted over the past two decades in order to

experimentally measure KD and to determine whether it indeed is a material property.

Practical problems, however, often belong to a mixed-mode type because advanced

materials often fail in a mixed-mode fashion. Physical mechanisms governing the dy-

namic mixed-mode fracture are not fully understood, especially regarding crack curving

and branching. Based on observations from quasi-static mixed-mode fracture in materials,

it is assumed that under mixed-mode loading, crack tends to grow according to the lo-

cal mode-I conditions (KII = 0 criterion or Maximum Tangential Stress (MTS) criterion).

Some common examples of mixed-mode dynamic fractures are shown in Fig. 1.4.

Figure 1.4: Mixed-mode dynamic fracture evidences, (a) environmentally assisted crack
propagation from leading edge to the inside cooling surface of a gas turbine blade (Courtesy:
Gas Turbine technology) and (b) Concrete damage after missile impact (Courtesy: Dept.
of Civil and Structural Engineering, University of Sheffield, UK.)

1.1 Motivation and Literature Review

A great deal of experimental and numerical research has been reported on mode-I

dynamic fracture of homogeneous and functionally graded materials. However, as mentioned

earlier, practical problems often belong to a mixed-mode type. Further, a mixed-mode
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dynamic crack propagation in FGM is more complex than in a homogeneous case because

mode-mixity in the former arises not only from geometric and loading conditions, but also

from mechanical property gradients. These introduce both normal and shear tractions

ahead of the crack tip. Therefore mixed-mode dynamic fracture behavior of FGM needs to

be studied. The full-field measurement of crack tip deformations for mixed-mode dynamic

fracture studies is rather demanding due to a combination of spatial and temporal resolution

challenges involved. Consequently, there is hardly any reported work in the literature about

mixed-mode dynamic failure of FGM and structural foams.

In the current work, mixed-mode dynamic crack propagation is studied using two dif-

ferent experimental techniques. An optical interferometer called Coherent Gradient Sensing

(CGS) is used to study mixed-mode dynamic failure of FGM. A digital image correlation

method with high-speed digital imaging technology is developed to study mixed-mode fail-

ure of syntactic foams. Experiments are complemented by finite element simulations of

mixed-mode dynamic failure in FGM. Here a cohesive element formulation is implemented

to study the formation of new surfaces in nonhomogeneous materials.

In the following, the literature review for the current research is provided in three parts.

In the first part, works on failure characterization of FGM is reviewed. In the second part,

development of various full-field optical methods particularly the digital image correlation

method to study fracture are reviewed. In the third part, numerical methods to simulate

mixed-mode crack propagation under dynamic loading are reviewed.
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1.1.1 Review of failure characterization of FGM

Delale and Erdogan [5] and Eischen [6] have shown that stress intensity factors in non-

homogeneous materials such as FGM are affected by compositional gradients even though

the inverse
√
r singularity near the crack tip is preserved as in homogeneous materials. Is-

sues pertaining to fracture mechanics of FGM under static loading have been addressed in

the recent literature. Jin and Batra [7], Gu and Asaro [8] provide quasi-static stress inten-

sity factors for cracks in FGM for different geometry and loading conditions. Konda and

Erdogan [9] have provided expressions for stress intensity factors (SIFs) of a mixed-mode

fracture problem in a FGM. Abanto-Bueno and Lambros [10] have conducted experiments to

study quasi-static mixed-mode crack initiation and growth in FGM. Shukla and coworkers

[11, 12, 13] have reported crack tip stress fields for dynamically growing cracks in function-

ally graded materials for mode-I and mixed-mode loading conditions. They have derived

asymptotic expansions for stresses and displacements in FGM with linear and exponential

variations of elastic modulus. Tippur and his coworkers [14, 15, 16, 17] have addressed

several issues related to mode-I dynamic fracture of FGM. Among the numerical studies re-

lated to FGM, Wang and Nakamura [18] have simulated crack propagation in elastic-plastic

functionally graded materials using cohesive elements. Kim and Paulino [19] have addressed

issues pertaining to crack path trajectories in FGM under mixed-mode and non-proportional

loading conditions.

Ramaswamy et al.[20] have successfully used Coherent Gradient Sensing (CGS) to

study mixed-mode crack tip deformations under static loading using a modified flexural

specimen geometry. The problem of a crack located in a homogeneous material but close

to an interface between two dissimilar linear elastic materials is examined by Lee and
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Krishnaswamy [21]. Mason et al.[22] have used CGS to map mode-I and mode-II stress

intensity factors in homogeneous polymer sheets under dynamic loading conditions. Prabhu

and Lambros [23] have studied mode-I and mixed-mode crack tip fields in homogeneous

materials by using the methods of CGS and caustics simultaneously.

Among the experimental investigations on mixed-mode fracture of FGM, works of

Butcher et al.[24], Rousseau and Tippur [25] and Marur and Tippur [26] are noteworthy. In

Ref. [24], feasibility of processing glass-filled epoxy beams for mixed-mode static fracture

studies using optical interferometry is demonstrated. The role of material gradation on

crack kinking under static loading conditions is presented in Ref. [25]. The possibility of

using optimally positioned strain-gages near a crack tip undergoing mixed-mode loading to

obtain SIF histories during impact loading is demonstrated in Ref. [26].

1.1.2 Review of optical methods to study fracture

Measuring surface deformations and stresses in real-time during a transient failure event

such as dynamic crack initiation and growth in opaque materials is quite challenging due to

a combination of spatial and temporal resolution demands involved. One of the very early

efforts in this regard dates back to the work of de Graaf [27]. In this work, photoelastic

measurement was attempted to witness stress waves around a dynamically growing crack in

steel. This method continues to be popular in the study of fast fracture events [28, 29]. In

recent years, a lateral shearing interferometer called Coherent Gradient Sensing (CGS) has

become a tool of choice for studying dynamic fracture problems of opaque solids because of

its robustness and insensitivity to rigid body motions and vibrations [16, 17, 30, 31]. Moiré

interferometry has also been used in the past to measure in-plane displacement fields in
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dynamic fracture experiments [32]. The electronic speckle pattern interferometry (ESPI)

and digital speckle photography [33, 34, 35] methods have been found suitable for measuring

both in-plane as well as out-of-plane deformations in opaque solids. The former uses speckle

intensity patterns formed by the illumination of an optically rough surface with coherent

light. An interferogram containing a fringe pattern is formed when speckle images, recorded

before and after deformation, are subtracted digitally or when a photographic film is exposed

twice is optically filtered. In the latter, the intensity of speckle images is compared digitally

to determine local translations of speckles. This method does not require any reference wave

and incoherent light is sufficient making it simple and easy to use. Using these methods,

vibration measurements have been attempted by employing a high-speed camera in Refs.

[36, 37]. Duffy’s double aperture imaging scheme [39] has been modified by Sirohi et al.[38]

to measure displacement-derivatives using ESPI. Chao, et al.[40] have studied deformations

around a propagating crack using digital image correlation method with the aid of a Cranz-

Schardin film camera. In this work, they have scanned film records obtained from the camera

to perform correlation operations between successive images to estimate displacements.

It should be noted here that photoelasticity and interferometric techniques can all

measure surface deformations in real time but they require somewhat elaborate surface

preparation (transferring of gratings in case of moiré interferometry and preparing a spec-

ularly reflective surface in case of CGS, birefringent coatings in reflection photoelasticity,

etc.). For cellular materials (syntactic foams, polymer metal foams, cellulosic materials,

etc.) such surface preparations are rather challenging and in some cases may not be feasible

at all. In those instances, digital image correlation method with white light illumination

is a very useful tool due to the relative simplicity in this regard. It involves decorating a

9



surface with alternate mists of black and white paints. Recent advances in image process-

ing methodologies and ubiquitous computational capabilities have made it possible to apply

this technique to a variety of applications - in bio-mechanics to measure displacements of

arterial tissues [41, 42], in metal forming to measure deformations during cold rolling [43],

to measure displacements and strains in C/C composites [44], - just to name a few. Early

contributors to the development of the method include Peters and Ranson, [45] and Sutton

and his coworkers [46, 47]. Chen and Chiang [48] have subsequently developed a spectral

domain approach to measure displacements of digitized speckle patterns. A stereo-vision

methodology for measuring 3D displacement fields has also been introduced in recent times

[49, 50].

With the advent of digital high-speed imaging technologies, imaging rates as high as

several millions frames per second can be achieved at a relatively high spatial resolution.

This has opened the possibility of extending digital image correlation (DIC) method to esti-

mate surface displacements and strains for extracting dynamic fracture/damage parameters.

In the current work, the DIC technique is extended to mode-I and mixed-mode dynamic

fracture studies under stress wave loading conditions.

1.1.3 Review of numerical methods to simulate fracture

Numerical modeling of crack growth in a mixed-mode dynamic fracture event is very

challenging. Material nonhomogeneity adds to the complexity in case of FGM. In order to

predict the crack kinking direction in a FGM sample, the numerical scheme should have

the following features built-in. The model should be able to represent continuous spatial
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variation of material properties and the evolution of crack path must be a natural out-

come of the analysis. There are mainly three types of approaches within the framework

of finite element method to simulate the current problem of mixed-mode crack growth in

nonhomogeneous medium. The first one is automatic moving finite element method with

local re-meshing along the crack path. This approach requires that a user defined crack

increment be provided and relies on one of the mixed-mode fracture criteria for determin-

ing crack growth direction. Ingraffea and co-workers [51] and Nishioka [52] have used this

approach to simulate mixed-mode crack propagation in homogeneous materials. Nishioka

et al.[53] were able to predict crack path of a mixed-mode dynamic fracture experiment us-

ing moving singular finite element method based on Delaunay automatic mesh generation.

Kim and Paulino [19] have used local re-meshing technique to predict the crack path of

the mixed-mode fracture tests conducted by Rousseau and Tippur [25] under static loading

conditions. Recently, Tilbrook et al.[54] have simulated crack propagation in functionally

graded materials under flexural loading. The limitations of this approach are that it requires

robust automatic re-meshing algorithm, elaborate book-keeping system of node numbering

to re-adjust the mesh pattern periodically and a mesh re-zoning procedure for mapping

of the solution fields in the previous mesh onto those in the current mesh. The second

approach is to use cohesive elements whose idea dates back to the work of Dugdale [55]

and Barenblatt [56]. There are two basic types of cohesive zone models in the literature -

intrinsic and extrinsic. The former is characterized by its increasing (hardening) and de-

creasing (softening) portions of a traction-separation law (TSL) whereas the latter has only

the decreasing portion. The intrinsic cohesive formulation was first proposed by Needleman
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[57]. Numerous other investigators have used this intrinsic type of formulation with differ-

ent shapes of TSL. They are exponential [57, 18, 58], bilinear [59, 60, 61], and trapezoidal

[62, 63] types. Xu and Needleman [58] have conducted mixed-mode dynamic crack growth

simulation in brittle solids using such formulations. Wang and Nakamura [18] have used

exponential TSL to simulate dynamic crack propagation in elastic-plastic graded materials.

Zhang and Paulino [61] have conducted mode-I and mixed-mode dynamic fracture simula-

tions in FGM samples. Madhusudhana and Narasimhan [63] have used trapezoidal TSL to

simulate mixed-mode crack growth in ductile adhesive joints. The extrinsic type of formu-

lation is also used by many researchers [64, 65, 66, 67]. Using extrinsic formulation, Ruiz

et al.[67] have simulated mixed-mode dynamic fracture experiments of Guo and Kobayashi

[32] and captured the experimentally observed crack path and displacement fields. Recently,

Belytschko and co-workers [68, 69] have proposed a new method called extended finite ele-

ment method (X-FEM) to model arbitrary discontinuities in finite element meshes. They

added discontinuous enrichment functions to the finite element approximation to account

for the presence of a crack while preserving the classical displacement variational setting.

This flexibility enables the method to simulate crack growth without re-meshing. Using

this method, Rabczuk et al.[70] have predicted crack path in a notched beam subjected to

asymmetric four-point bending.

Physical mechanisms governing dynamic crack propagation under mixed-mode loading

in FGM are not clearly understood. Observations based on mixed-mode quasi-static fracture

indicate that under mixed-mode loading, cracks tends to grow according to a local mode-I

condition (KII = 0 criterion or MTS criterion). Extension of these methods to mixed-

mode dynamic fracture of FGM requires evaluation of one of the fracture criterion and
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local re-meshing. However, cohesive elements allow crack initiation and kinking to occur

spontaneously without defining the crack path a priori. Therefore in the current work,

intrinsic cohesive element method with bilinear traction-separation law is used to model

the mixed-mode dynamic crack growth in FGM.

1.2 Objectives

The literature review suggests that there is a need for experimental and computational

techniques to study mixed-mode dynamic fracture of novel heterogeneous material systems.

Since most of the practical problems belong to the mixed-mode type, fracture of such

materials is studied experimentally and numerically in this work. The following are the

primary objectives of the present research:

• Investigate mixed-mode dynamic fracture behavior of FGM under impact loading

conditions using optical interferometry and high-speed photography.

• Extract mixed-mode dynamic stress intensity factor histories using CGS interfero-

grams.

• Study the effects of material gradation on crack path, crack speed and stress intensity

factor histories.

• Develop an experimental method based on digital image correlation (DIC) and high-

speed photography to measure transient surface deformations such as the one associ-

ated with a rapid growth of cracks in materials.
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• Study mixed-mode dynamic fracture of syntactic foam specimen under impact loading

conditions using the method of DIC with high-speed photography, map full-field in-

plane displacements, strain and extract mixed-mode SIF histories.

• Perform finite element simulations of mixed-mode dynamic crack growth in FGM

using cohesive element formulation.

• Compare the simulation results with experimental observations and explain the failure

process.

1.3 Organization of Dissertation

This dissertation is organized into eight chapters including Introduction. In Chapter

2, the optical interferometric method of CGS is explained. The CGS experimental set-up,

governing equations and experimental procedure are described. The asymptotic expres-

sions for stresses in FGM considering linear variation elastic modulus are presented. The

implementation of these equations into CGS governing equations to extract mixed-mode

SIF from CGS interferograms is described.

In Chapter 3, mixed-mode dynamic fracture of glass-filled epoxy beam samples is ex-

perimentally studied using CGS. Preparation and characterization of FGM samples are

described. The experimental results namely, crack length and crack speed histories and SIF

histories are presented. Using the MTS fracture criterion, the initial crack kink angles are

predicted and compared with the experimentally observed ones.

In Chapter 4, development of DIC method to measure surface deformations and strains

is explained. A three-step digital image correlation technique is formulated for evaluating

crack opening displacements and strains. The calibration and benchmark experiments and
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their results for a rotating mirror type ultra high-speed digital camera system are presented.

Using this method, surface deformations and strains of a specimen loaded in three-point

bend configuration under static loading conditions are evaluated and compared with the

corresponding finite element simulations.

In Chapter 5, mode-I dynamic fracture of a polymeric sample and mixed-mode dy-

namic fracture of syntactic foam samples are studied using digital image correlation and

high-speed photography. The sample preparation and the experimental procedure are ex-

plained in detail. The crack opening and sliding displacements and crack tip dominant

strain histories are computed from the speckle images. Dynamic stress intensity factors

are extracted by performing over-deterministic least-squares analysis on crack opening and

sliding displacements.

In Chapter 6, the details on finite element modeling of mixed-mode dynamic crack

propagation in FGM is explained. The cohesive element formulation and its implementation

in ABAQUSTM commercial finite element software package under the option of user defined

element (UEL) is described. Using this option, exponential and bilinear type of traction

separation laws are implemented.

Chapter 7 deals with the simulation of mixed-mode dynamic crack growth in function-

ally graded materials. Modeling aspects and application of graded material properties to

the finite element model are explained. Simulations are carried out for two configurations,

crack on the compliant side and crack on the stiffer side of a sample as explained in Chapter

2. The evolution of strain energy, kinetic energy as well as cohesive energies and the T -stress

histories up to crack initiation are also computed.
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Finally, the main conclusions of this dissertation are summarized in Chapter 8. Few

potential topics for future research are highlighted.
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Chapter 2

Experimental method of CGS to study dynamic fracture

In this chapter, the optical interferometric method of Coherent Gradient Sensing (CGS),

used to study mixed-mode dynamic fracture of functionally graded materials, is discussed.

The attractive features of this technique are realtive ease of implementation in conjunction

with high-speed camera and insensitivity to rigid body motions of the sample during a test.

The crack tip fields for a dynamically loaded stationary crack as well as for a propagating

crack are also explained in this chapter. The asymptotic expressions for crack tip stresses

in FGM considering linear variation of elastic modulus are presented. The implementation

of these equations into CGS governing equations to extract mixed-mode SIF from interfer-

ograms is described.

2.1 Optical set-up

CGS measures in-plane gradients of out-of-plane surface displacements (surface slopes)

when used to study opaque solids. A schematic of the optical set-up [30, 71] is shown in Fig.

2.1. The measurement system consisted of an impactor, pulse-laser, CGS interferometer

and a continuous access high-speed camera. The light beam was processed using a CGS

interferometer comprising of a pair of Ronchi gratings (chrome-on-glass gratings) and a

Fourier filtering/imaging lens. An argon-ion laser beam (wavelength λ = 514 nm) was

expanded and collimated into a 50 mm diameter beam and made to illuminate the opaque

specimen with a specularly reflective surface. The reflected object wave front propagates

through two Ronchi gratings separated by a distance ∆ and undergoes diffraction in several
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Figure 2.1: Schematic for reflection-mode CGS set-up with a high-speed camera

discrete directions as shown in Fig. 2.1. In this experiment, the principal direction of the

gratings is along X1 direction (in the direction of the crack). This causes the diffraction

to occur in X1-X3 plane resulting in surface slopes ∂u3/∂X1, where u3(X1,X2) denotes

the out-of-plane displacement component. The filtering lens L spatially filters the field

distribution emerging from the G2 plane and the associated spatial frequency content is

displayed on its back focal plane (filter plane in the schematic). By locating an aperture

around either the ±1-diffraction orders, the information corresponding to the displacement

gradient is obtained on the image plane of the lens.

2.2 Working principle of CGS

The working principle of CGS interferometer is shown schematically in Fig. 2.2. Con-

sider a plane wave reflected-off of the specimen surface. The incident wave is diffracted into
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Figure 2.2: Working principle of CGS, (a) Diffraction of a collimated beam though two
parallel Ronchi gratings, (b) undeformed object wave front and (c) deformed object wave
front.

several diffraction orders 0, ±1, ±2 ... by the first grating G1. The corresponding complex

amplitude distribution of the diffracted waves are denoted by Eo, E1, E−1 ... Consider only

three diffracted wave fronts E0 and E±1 for the simplicity analysis. That is the gratings are

assumed to have a sinusoidal transmission function. The magnitude of the angle between

the propagation direction of Eo and E±1 is given by grating equation θ = sin−1(λ/p), where

λ is the wave length of light used and p is the grating pitch. Upon incidence on the second

grating G2, the wave fronts are further diffracted into E0,0, E0,+1, E0,−1, E+1,0, E+1,−1
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etc. The second subscript in each of these represents the diffraction order after leaving the

grating G2. These wave fronts propagating in distinctly different directions are brought

into focus at spatially separated spots on the back focal plane of the filtering lens L. The

spacing between these diffraction spots is directly proportional to diffraction angle θ or

inversely proportional to grating pitch p. Note from the Fig. 2.2 that the diffracted waves

E0,±1 and E±1,0 are propagating in the same direction (parallel lines) but are displaced (or

sheared) laterally in the X1-direction. These two overlapping but laterally displaced light

beams produce ±1 diffraction spots. Using a filtering aperture placed at the focal plane

of the filtering lens, the diffraction order either +1 or −1 is allowed to pass through while

blocking all others.

Consider the complex amplitudes of two plane wave fronts E0 = A0e
ikl1 and E−1 =

A−1e
ikl2 for analysis. Here A0 and A−1 are amplitudes, l1 and l2 are optical path lengths

of E0 and E−1, respectively, and k = 2π/λ is the wave number. The light intensity I for

the undeformed object (see Fig. 2.2(b)) is proportional to,

I = (E0 + E−1)(E0 + E−1)
∗ = A+B cos {k(l1 − l2)}. (2.1)

The light intensity reaches its maximum value when the following condition for constructive

interference is satisfied:

k(l1 − l2) = 2Nπ (N = ±1,±2, ...). (2.2)
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It can be seen from Fig. 2.2(b) that

(l1 − l2) = ∆[1 − (cos θ)−1], (2.3)

where θ is the diffraction angle of the grating. For small angles, (sin θ ∼ θ = λ/p). Now

expanding the right hand side of Eq. 2.3 using the binomial expansion, we get

(l1 − l2) = ∆[1 − (cos θ)−1] = ∆
[

1 −
(

1 − θ2

2
+
θ4

8
− . . .

)]

≈ ∆
(θ2

2

)

. (2.4)

Combining Eqs. 2.2 and 2.4, and noting that k = 2π/λ, we get

∆
θ2

2
= Nλ. (2.5)

Equation 2.5 suggests that N is a constant since θ, p and ∆ are all constants for an un-

deformed object. Therefore, initially the interferometer produces a uniform fringe in the

entire field of observation.

When the specimen deforms, the collimation of the object wave is perturbed or light

rays are deflected relative to the optical axis. For simplicity, consider light ray deflections

only in the X1 −X3 plane and φ be the angular deflection of a generic ray. Let l′1 and l′2

be the optical paths of Eo and E+1 after deformation (see Fig. 2.2(c)). Now the intensity

of light is given by,

I ′ = A′ +B′ cos [k(l′1 − l′2)], (2.6)
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where,

(l′1 − l′2) = ∆
[

(cos φ)−1 − (cos(θ − φ))−1
]

= ∆

[{

1 − φ2

2
+ · · ·

}

−
{

1 − (θ − φ)2

2
+ · · ·

}]

≈ ∆

[

− θφ+
θ2

2

]

. (2.7)

Again, the intensity of light I attains a maximum value when condition for constructive

interference namely,

k(l′1 − l′2) = 2Mπ (M = ±1,±2, ...), (2.8)

is met. By combining Eqs. 2.2, 2.7 and 2.8, we can get

−θφ∆ = (M −N)λ (2.9)

or,

φ = (N −M)
λ

∆θ
= m

λ

∆λ/p
= m

p

∆
, m = 0,±1,±2, ... (2.10)

where m = (N −M). For reflection mode CGS, φ = ∂(δs)/∂X1, where δs = 2w is the

optical path change due to the applied stress with w being the out-of-plane displacement

component. For plane stress conditions, we have

w ≈ −νB
2E

(σx + σy). (2.11)
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Therefore, the governing equation for reflection-mode CGS with plane stress assumption

becomes

∂w

∂X1
≈ ∂

∂X1

[−νB
2E

(

σx + σy

)

]

= m
p

2∆
. (2.12)

2.3 Experimental procedure

The specimen was initially rested on two soft blocks of putty to preclude any interaction

from the supports (anvils) while the specimen undergoes stress wave loading. The top

edge of the specimen was taped with a thin adhesively backed copper strip. During the

experiment, a pneumatically operated cylindrical steel hammer with a hemispherical tip

was launched towards the specimen (velocity 5 m/sec). During its descent, a velocity flag

(of width ∼ 6.4 mm), attached to the impactor, first triggered a photo-detector to open a

capping shutter located in front of the high-speed camera allowing light to reach its internal

cavity. When the impactor-head contacted the adhesive backed copper tape affixed to the

top edge of the specimen, it closed an electrical circuit initiating a series of laser pulses for

a duration corresponding to a single sweep of the laser beam on a stationary photographic

film (Kodak TMAX-400) track. The light entering the camera was reflected-off of a spinning

three-facet mirror mounted on a turbine shaft driven using compressed air. The reflected

light beam was swept on the film held in the film track as discrete images. At the end

of that period, the capping shutter was closed to prevent over-writing on the film. In the

current experiments, the laser pulse was repeated every 5 µs (200,000 frames per second)

with a pulse width (exposure time) of 40 ns and a total recording duration of approximately

320 µs. With these settings, roughly 70 images were recorded on the photographic film.
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The light beam reflected off the specimen surface carries information about local surface

deformations. The resulting fringes represent surface slopes in the initial crack direction.

2.4 Extraction of stress intensity factors from interferograms

In Eq. 2.12, σx and σy are the Cartesian stress components. By using chain rule of

differentiation, one can transform quantities from X1 −X2 coordinates to r − θ coordinate

system. The quantity σx + σy is an invariant under coordinate transformation. Hence,

∂w

∂X1
=
∂w

∂r

∂r

∂X1
+
∂w

∂θ

∂θ

∂X1
, (2.13)

where r2 = X2
1 +X2

2 , θ = tan−1(X2/X1), X1 = r cos θ,X2 = r sin θ. Further, ∂r/∂X1 =

X1/r = cos θ, ∂θ/∂X1 = −X2/r
2 = − sin θ/r. By expressing (σx + σy) in Eq. 2.12

using asymptotic expansion for crack tip stresses, in-plane gradients of the out-of-plane

displacement become [30, 72]

∂w(t)

∂X1
=

−νB
2E

[

∞
∑

N=1

CN (t)

(

N

2
− 1

)

r(
N
2
−2) cos

[(

N

2
− 2

)

θ

]

]

=
Mp

2∆
, (2.14)

∂w(t)

∂X2
=

−νB
2E

[

∞
∑

N=1

CN (t)

(

N

2
− 1

)

r(
N
2
−2) sin

[(

N

2
− 2

)

θ

]

]

=
Mp

2∆
, (2.15)

for the crack opening mode (mode-I) and

∂w(t)

∂X1
=

−νB
2E

[

∞
∑

N=1

DN (t)

(

N

2
− 1

)

r(
N
2
−2) sin

[(

N

2
− 2

)

θ

]

]

=
Mp

2∆
, (2.16)

∂w(t)

∂X2
=

−νB
2E

[

∞
∑

N=1

DN (t)

(

N

2
− 1

)

r(
N
2
−2) cos

[(

N

2
− 2

)

θ

]

]

=
Mp

2∆
, (2.17)
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for the in-plane shear mode (mode-II). In the above (r, θ) are the polar coordinates centered

at the crack tip. In Eqs. (2.14)-(2.17), CN and DN are coefficients for mode-I and mode-II,

respectively. The above equations can be used for a dynamically loaded stationary crack

by making an implicit assumption that inertial effects enter the coefficients while retaining

the functional form of the quasi-static counterpart. Accordingly, the coefficients CN and

DN are represented as functions of time t.

2.4.1 Pre-crack initiation period

Figure 2.3: Global and local crack tip coordinate systems for (a) stationary crack and (b)
propagating crack

Figures. 2.3(a) and (b) show the crack tip coordinate systems followed in this work for

digitizing CGS fringes and to extract mode-I and mode-II stress intensity factors. Consider

the situation prior to crack initiation as shown in Fig. 2.3(a). Here X1 −X2 is the global
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coordinate system which is aligned with the local (crack tip) coordinate system. Since the

crack is aligned with the principal direction of the gratings, CGS governing equation for

mixed-mode stress intensity factors is obtained by superposing mode-I and mode-II fields

from Eqs. 2.14 and 2.16:

∂w(t)

∂X1
=
νB

2E

[

{ ∞
∑

N=1

CN (t)

(

N

2
− 1

)

r(
N
2
−1) cos

[(

N

2
− 2

)

θ

]}

+

{ ∞
∑

N=1

DN (t)

(

N

2
− 1

)

r(
N
2
−1) sin

[(

N

2
− 2

)

θ

]}

]

=
Mp

2∆
. (2.18)

The coefficients of the terms (with N = 1) in the asymptotic series are related to mode-I

and mode-II stress intensity factors KID(t) and KIID(t), respectively, as

C1(t) = KID(t)

√

2

π
, D1(t) = KIID(t)

√

2

π
. (2.19)

2.4.2 Post-crack initiation period

Since the crack path during growth can be along an arbitrary direction, it is convenient

to define a local (variable) coordinate system (X ′
1,X

′
2) which is instantaneously aligned with

the current crack path as shown in Fig. 2.3(b). While digitizing fringes in the post-crack

initiation period, coordinates of the digitized points are transformed from the global system

(X1,X2) to the local rotated system (X ′
1,X

′
2). The CGS fringes represent surface slopes

as indicated by Eq. 2.12. Since the crack is at an arbitrary angle, surface slope has to be

resolved along the local coordinates as,

∂w

∂X1
=

∂w

∂X ′
1

cosα+
∂w

∂X ′
2

sinα, (2.20)
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where α is the crack kink angle as shown in Fig. 2.3(b). By using modified versions of Eqs.

2.14-2.17 and 2.20, for a steadily propagating crack, deformations can be related to optical

measurements as, [74, 12]

−νB
2E

[

− 1

2
r
−3/2
l

{

f(V ;CL, CS)C1(t) cos
(3θl

2
+ α

)

+

g(V ;CL, CS)D1(t) sin
(3θl

2
+ α

)

}

+

∞
∑

N=2

CN (t)
(N

2
− 1

)

r
(N

2
−2)

l cos
{

α+
(

2 − N

2

)

θl

}

+

∞
∑

N=2

DN (t)
(N

2
− 1

)

r
(N

2
−2)

l sin
{

α+
(

2 − N

2

)

θl

}

]

=
Mp

2∆
. (2.21)

Here f and g are functions associated with the instantaneous crack velocity and (rl, θl)

denote the crack tip polar coordinates associated with a growing crack,

rl =
{

(X ′
1)

2 + α2
L(X ′

2)
2
}1/2

, θl = tan−1 αLX
′
2

X ′
1

. (2.22)

For plane stress, the functions f and g are given by [12],

f(V ;CL, CS) =

(

1 + ν

1 − ν

)

(1 + α2
S)(1 − α2

L)

4αLαS − (1 + α2
S)2

, (2.23)

g(V ;CL, CS) =

(

1 + ν

1 − ν

)

2αS(1 − α2
L)

4αLαS − (1 + α2
S)2

, (2.24)

where,

αL =

[

1 − ρ(1 − ν)

2µ
V 2

]1/2

, αS =

[

1 − ρ

µ
V 2

]1/2

. (2.25)

Here V is the crack speed, µ and ρ are the local shear modulus and mass density, respectively.
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Analyzing fringes in FGM using Eqs. 2.18 and 2.21 implicitly assumes a locally ho-

mogeneous material behavior in the crack tip vicinity. This needs justification since crack

tip stress fields for steadily and transiently growing cracks for nonhomogeneous material

have been made available by Shukla and coworkers [11, 12] in recent years. For a relatively

shallow elastic gradients such as the ones used in the current study, it is shown in an earlier

work [15] that results would not be greatly affected (differences being less than 5 %) by

such an assumption. Further, there are also difficulties associated with utilizing existing

FGM crack tip fields [11] to analyze optical interferograms in the current work. Specifically,

theoretical derivations [11, 12] use spatial variation of elastic modulus and mass density

to have a single nonhomogeneity parameter for an exponential type description or assume

a constant mass density while varying the modulus. However, particulate composites in

general and glass-filled epoxy FGM prepared for this work in particular have significantly

different elastic modulus and mass density variations (2.5 fold (4.0 GPa to 10 GPa) over a

width of 43mm where as mass density variation was 1.5 fold (1175 kg/m3 to 1700 kg/m3)

over the same length) which limit the usage of those reported equations.

The role of crack tip transients namely the rate of change of stress intensity factors

and crack accelerations/decelerations are described in Ref. [12]. Based on the experimental

results (to be described later), these effects were found to be negligible for the current

work. For example, it is noted in Ref. [12] that the rate of change of SIF on out-of-plane

displacements becomes relatively insignificant if dKID(t)/dt is within 1.0×105 MPa m1/2/sec

and in the current work dKID(t)/dt values were an order of magnitude less than this value.

Also out-of-plane displacements are said to be minimally affected if accelerations are less

than 1.0 × 107 m/sec2. Again, maximum acceleration recorded during this work was an

28



order of magnitude lower. Thus extracting SIF from fringes using steady-state assumptions

is quite reasonable.

While digitizing interferograms, the current crack tip location was identified and the

crack kink angle was evaluated. Simultaneously, around the crack tip, the fringe location

r, θ and the fringe order M were also recorded. The collected data was used to perform an

over-deterministic least-squares analysis [73, 30] on Eq. 2.18 or 2.21 depending on whether

the interferogram belonged to pre-initiaiton or post-initiation period to extract KI and KII .

To maintain the accuracy of the digitized data points as well as to exclude the region where

3D-effects [30] dominate, data points in the range (0.3 < r/B < 1.3) behind the crack tip

were chosen for analysis.

2.5 Computation of crack speed

The crack speed history was also determined by differentiating crack length history

with respect to time. That is, for every 5 µs after crack initiation, horizontal and vertical

components of crack increment were identified and the resultant crack increment was calcu-

lated. These were sequentially added to get the instantaneous absolute crack length. The

crack speed history was estimated as

vi =

(

da

dt

)

=
ai+1 − ai−1

ti+1 − ti−1
, (2.26)

where ai = ai−1 +∆a and ∆a =
√

(∆ah)2 + (∆av)2. Here ∆ah and ∆av are horizontal and

verical components of the crack increment, respectively.
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2.6 Crack tip fields in FGM with linear material property variation

2.6.1 Crack along the direction of property gradation

In this section, an asymptotic expression for σx + σy (up to six terms) for a stationary

crack tip in a functionally graded material having linear variation of elastic modulus is

presented. By making use of these expressions, the methodology to extract mixed-mode

stress intensity factors from CGS fringes is explained. The elastic crack tip fields are

available for non-homogeneous materials having exponential variation of material properties.

The use of exponential variation simplifies the process of deriving the crack tip fields.

However, a material having an exponential variation of elastic modulus is difficult to prepare.

Recently, attempts were made to derive crack tip stress fields for a FGM with a linear

property variation [13, 75].

Consider an edge cracked beam having a linear material property variation as described

by the following equation:

E(X1) = Eo(1 + δfX1), −0.0085m ≤ X1 ≤ 0.0345m. (2.27)

The variable Eo is the elastic modulus (in GPa) at the crack tip as shown in Fig. 2.4(a)

and δf is the non-homogeneity parameter. The assumed variations of elastic modulus for

FGM samples prepared (to be discussed in Chapter 3) are shown in Fig. 2.4(b).

In the following, the expressions provided for σx + σy are deduced from Eqs. (11) and

(12) of Ref. [13].

σx + σy = 2

[

A0r
−1/2 cos

θ

2
+B0 +A1r

1/2 cos
θ

2
+B1r cos θ +A2r

3/2 cos
3θ

2
+B2r

2 cos 2θ

]

+
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Figure 2.4: (a) Schematic of FGM sample with linear material property variation, (b)
elastic modulus variation in graded samples (broken line denotes the crack tip location)

δf

[

A0r
1/2

{

− 2 sin θ sin
θ

2
− 2 cos

θ

2

}

−B0r cos θ +A1r
3/2

{

2 sin θ sin
θ

2
− 2

3
cos

3θ

2

}

+

B1r
2
{

− 2 cos2 θ + 2 − 1

2
cos 2θ

}

]

+

δ2f

[

A0r
3/2

{

(ν − 7 + 2 cos θ) sin θ sin
θ

2
+ (−2 sin2 θ +

ν

2
sin2 θ + 2cos θ) cos

θ

2
+

2

3
cos

3θ

2

}

+

B0r
2
{(

− 1

2
− ν

4

)

cos 2θ + (3 − 2ν) cos2 θ − 2 + 2ν
}

]

(2.28)
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for mode-I and

σx + σy = 2

[

− C0r
−1/2 sin

θ

2
+ C1r

1/2 sin
θ

2
+D1r sin θ + C2r

3/2 sin
3θ

2
+D2r

2 sin 2θ

]

+

δf

[

C0r
1/2

{

− 2 sin θ cos
θ

2
− 2 sin

θ

2

}

+D0r sin θ +C1r
3/2

{

− 2 sin θ cos
θ

2
− 2

3
sin

3θ

2

}

+

D1r
2
{

2 sin θ cos θ − 1

2
sin 2θ

}

]

+

δ2f

[

C0r
3/2

{

((5 − ν) sin θ + sin 2θ) cos
θ

2
+

(

− ν

2
sin2 θ − 3

2
cos2 θ + 2 sin θ + 2cos θ +

3

2

)

sin
θ

2
−

2

3
cos

3θ

2

}

+D0r
2
{(

− 1

2
− ν

4

)

cos 2θ +
(11

2
− ν

2

)

sin θ cos θ + (ν + 2) sin2 θ
}

]

(2.29)

for mode-II loading conditions. The expression for σx+σy for mixed-mode problem is readily

otained by superposing Eqs. 2.28 and 2.29. The mixed-mode stress intensity factors, KI

and KII , are related to the constant coefficients of singular terms of the asymptotic series

in Eqs. 2.28 and 2.29 by KI = A0

√
2π and KII = C0

√
2π.

2.6.2 Crack inclined to the direction of property gradation

Once the crack initiates, it can propagate at an angle to the direction of material

property gradation. Therefore the equations presented in the previous section are no longer

valid for post-crack initiation period and a new set of equations need to be used. Consider a

case where the crack has initiated and propagated at an angle φ with respect to the material

gradation as shown in Fig. 2.4(a). Now the elastic modulus variation given by Eq. 2.27

can be re-written as

E(x, y) = Eo(1 + αfX
′

1 + βfX
′

2), (2.30)
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where

αf = δf cosφ, βf = δf sinφ. (2.31)

In the above equation, Eo is the elastic modulus at the current crack tip (X
′

1 = X
′

2 = 0)

and δf is the non-homogeneity parameter having dimension (Length)−1. In the following,

a four-term expansion for σx + σy is deduced from Eqs. (31) and (32) of Ref. [13].

σx + σy = 2

[

A0r
−1/2 cos

θ

2
− C0r

−1/2 sin
θ

2
+B0 +A1r

1/2 cos
θ

2
+ C1r

1/2 sin
θ

2

+B1r cos θ +D1r sin θ

]

+αf

[
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{

− 2 sin θ sin
θ

2
− 2 cos

θ

2

}

+C0r
1/2

{

− 2 sin θ cos
θ

2
− 2 sin

θ

2

}

−B0r cos θ − 2D0r sin θ

]

+βf

[

A0r
1/2

{

2 sin θ cos
θ

2
+ 2 sin

θ

2

}

+ C0r
1/2

{

− 2 sin θ cos
θ

2
− 2 cos

θ

2

}

+3B0r sin θ −D0r cos θ

]

(2.32)

2.7 Extraction of SIFs with difference formulation

As already mentioned, the CGS fringes represent surface slopes in the principal direc-

tion of the grating. Therefore the expression for out-of-plane displacement w (Eq. 2.11)

was differentiated in Section 2.4 before arriving at the final equations (Eq. 2.18 or 2.21).

One could also adopt a difference formulation instead of a derivative formulation as shown

below,

∂w

∂X1
≈ δw

δX1
=
wi+1 − wi

δX1
=
Np

2∆
, (2.33)
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where δ represents the difference operator. By substituting for w from Eq. 2.11, we get

−νB
2δX1

[

(

σx + σy

Eo(1 + αfX
′

1 + βfX
′

2)

)

i+1
−

(

σx + σy

Eo(1 + αfX
′

1 + βfX
′

2)

)

i

]

=
Np

2∆
, (2.34)

where δX1 is the shearing distance (which is 1.05 mm for the current experimental set-up

having p = 25 mm and ∆ = 48 mm). In the above equation, the expression for σx +σy will

be taken from Eq. 2.32 with r and θ being evaluated at subscripts i+ 1 and i as

ri =
√

X2
1 +X2

2 , θi = tan−1 X2

X1

ri+1 =
√

(X1 − δX1)2 +X2
2 , θi+1 = tan−1 X2

X1 − δX1
. (2.35)

The over-deterministic least squares analysis [73, 30] was carried out and mixed-mode stress

intensity factors were extracted upto crack initiation.
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Chapter 3

Mixed-mode dynamic fracture of FGM using CGS

In this chapter, investigation on mixed-mode dynamic fracture of glass filled epoxy

beam samples (in two different configurations)using CGS is described. Preparation and

characterization of FGM samples is also elaborated. The experimental results namely,

the crack length and the crack speed histories and the stress intensity factor histories are

presented. Using the maximum tangential stress (MTS) fracture criterion, the initial crack

kink angles are predicted and compared with the observed kink angles.

3.1 Material Preparation

FGM samples were prepared by continuously varying the volume fraction of filler par-

ticles in the matrix. Solid soda-lime spherical glass particles (Spheriglass 3000, 35 µm

diameter, uncoated, from Potters Industries, Inc., USA) were used as the filler material.

A low-viscosity, room temperature curing epoxy prepared by mixing bisphenol-A resin and

amine based hardener in the ratio 100:36 was used as the matrix material. Bulk elas-

tic properties of the filler material and the matrix are listed in Table 3.1. The material

E (GPa) ν ρ kg/m3

Epoxy 3.2 0.34 1175

Soda-lime glass 1 70.0 0.23 2500

Table 3.1: Nominal bulk properties of the constituent materials

preparation consisted of mixing glass particles (40 % volume fraction) into the epoxy resin.

Sufficient care was exercised in order to avoid entrapment of air bubbles. The time period
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between mixing of particles and pouring into the mold was optimized to get a compositional

gradient over the desired height of the sample. The gravity assisted casting method used

here produced a monotonic variation of volume fraction of glass particles in the vertical

direction. The details are avoided here for brevity and can be found in Butcher et al.[24].

Once the specimens were cured, they were removed from the mold and rested for a week

before machining to the dimensions shown in Fig. 3.1. A grayscale is used to schematically

Figure 3.1: Schematic of FGM sample used in experiments

represent the compositional gradation (i.e., the mass density is maximum at the bottom of

the sample and decreases in the X-direction).

3.2 Material characterization

Ultrasonic pulse-echo technique was used to measure material properties. A longi-

tudinal wave transducer (Panametrics # V129RM 10MHz, dia=5 mm) and a shear wave

transducer (Panametrics # V156RM; 5MHz, dia=7 mm) were used to measure wave speeds

CL and CS , respectively, at discrete locations in the sample. The variations of CL and CS

along the width of the sample are shown in Fig. 3.2. A look-up chart of mass density ρ
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as a function of longitudinal wave speed CL is available for glass-filled epoxy in Ref. [24].

By using measured values of CL and CS and the value of ρ from the look-up charts, elastic

moduli and Poisson’s ratios were estimated along the width of the sample using,

CL =

√

E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, CS =

√

E

2ρ(1 + ν)
. (3.1)

Elastic modulus and mass density variations along the width of the sample are shown in

Figure 3.2: Variation of longitudinal and shear wave speeds along the width of the sample

Fig. 3.3. It can be seen from this figure that the elastic modulus varies in a sigmoidal fashion

from ∼10 GPa to ∼4 GPa over a width of 43 mm. The mass density varies from ∼1750

kg/m3 to ∼1200 kg/m3 over the same width. The corresponding Poisson’s ratio variation

was between 0.33 and 0.37. This variation in ν was not expected to play a significant role
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in the fracture behavior of FGM [6]. Therefore a constant value of ν=0.34 was chosen

throughout this work.

Mode-I crack initiation toughness tests were also conducted on homogeneous samples

of various volume fractions (0%, 7%, 14%, 21%, 28% and 35%) of the filler. Beam samples

of dimensions 152 mm × 43 mm and 7.5 mm thick were machined for fracture tests. An edge

crack of length 10 mm (a/W = 0.23) was cut along the mid-span in each of these samples.

The so-called Dally-Sanford single strain gage method [76] was used to obtain dynamic

stress intensity factor histories. A strain gage of gage length 0.8 mm (CEA-13-032WT-

120 from Vishay-Micromeasurements Group, Inc.) was located at a radial distance of 5.5

mm from the crack tip and at an angle of 60o to the crack orientation. These specimens

were impact loaded (impact velocity ∼4.5 m/sec) in 3-point bend configurations using an

Instron 9250-HV drop-tower. The strain history recorded was used to obtain crack initiation

toughness values as detailed in Ref. [77]. Figure 3.4 shows the variation of mode-I crack

initiation toughness (KICR) along the width of the sample. An approximately monotonic

increase in the crack initiation toughness values can be seen at lower volume fractions (and

lower values of E). Increase in crack initiation toughness by a factor of 1.5 is evident when

glass filler volume fraction increases from 0 to 40% with a corresponding change in elastic

modulus by a factor of 2.4.

3.3 Specimen surface preparation

Next, the specimens were prepared for optical tests. The cured sheets were removed

from the mold and machined into test samples of dimensions 152 mm × 42 mm × 7.5

mm. The specimen surface was roughened using a #200 grit sandpaper. An optically flat
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Figure 3.3: Variation of elastic modulus and mass density along the width of the sample

Borosilicate glass disk of 50 mm diameter was first coated with an aluminum film using

vapor deposition technique. The region around the crack tip was made optically flat and

specular by transferring the thin layer of aluminum film (∼ 100 nm thick) coated on the glass

disc using a layer of epoxy (5-10 µm thick). An edge crack (root radius ∼ 150 µm) of length

8.6 mm (a/W = 0.2) was cut into the sample using a high-speed diamond impregnated

circular saw.

3.4 Results

In this section, the role of material grading on fracture behavior of FGM is discussed by

comparing crack tip position, crack speed and mixed-mode stress intensity factor histories

between the two FGM configurations. The crack path history obtained from testing a

homogeneous sample of same dimension under similar conditions was also compared with

the FGM configurations.
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Figure 3.4: Variation of dynamic initiation toughness (impact velocity = 5.4 m/sec) with
Elastic modulus. (Broken line is a trend line)

3.4.1 Experimental details

Mixed-mode fracture experiments conducted on FGM samples were of two types: (a)

A crack on the compliant side of the sample with impact occurring on the stiffer side and

(b) A crack on the stiffer side of the sample with impact occurring on the compliant side. A

homogeneous sample having the same geometry and made out of Plexiglas was also tested

under similar experimental conditions for comparative purposes. The two configurations of

FGM and the homogeneous sample used in experiments are shown schematically in Figs.

3.5(a)−(c) as insets. Here, the elastic modulus at the edge of the cracked sheet behind the

crack tip is denoted as E1 and the one ahead of the crack tip as E2. With this notation, type-

(a) experiments correspond to E1 < E2 and type-(b) experiments correspond to E1 > E2.

Except for this change all other conditions are same for type-(a) and (b) experiments.

Specimens were subjected to mixed-mode loading by impacting at an offset distance (S
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= 25.4 mm) relative to the initial crack plane. Since specimen dimensions and all other

experimental conditions are same, any difference in stress intensity factor histories, crack

speed histories, and crack path are directly attributable to the compositional gradients.

A few representative fringes are shown in Fig. 3.5 for experiments conducted on two

types of FGM samples as well as a homogeneous sample. In all the Figs. 3.5(a)-(c), the

first two interferograms correspond to pre-initiation period, third image at a time instant

when the crack was about to initiate and the fourth one is in the post-initiation period. The

legends correspond to the time instant at which the image was recorded after impact. The

impact point was located outside the window of observation and hence cannot be seen in

these images. Once the impact occurs, the compressive stress waves originate at the impact

point and travel through the specimen. They reflect from the bottom edge and sides of

the sample as tensile waves and load the crack tip. At about 60 µs after impact, the crack

tip experiences stresses large enough to exhibit fringes after which a monotonic increase in

the number of fringes around the crack tip was seen. Two important observations can be

made from these images. Firstly, fringes are seen for the case E1 < E2 when compared to

E1 > E2 indicating more deformation around the crack tip when the crack is located on

the compliant side. On the other hand, fewer fringes around the crack tip are seen when

it is situated on the stiffer side. Secondly, the crack tip loading is essentially of the mixed-

mode type. That is, one can see clearly tilting of fringe lobes towards the left of the initial

crack indicating the presence of a negative shear component in the beginning. However,

just before crack initiation, fringes tend to become symmetric with respect to the crack

suggesting initiation under a predominantly mode-I condition accompanied by a vanishing

KII .
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Figure 3.5: Selected CGS interferograms representing contours of δw/δx in FGM and ho-
mogeneous samples. (The vertical line is at 10 mm from the crack). (a) crack on the
compliant side and (b) crack on the stiffer side (c) homogeneous (Plexiglas) sample.
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3.4.2 Crack growth and crack speed histories

A number of experiments (typically 3-4) were conducted for both configurations E1 <

E2 and E1 > E2 to ensure repeatability. In the following, results are presented for a

representative experiment of each configuration. Figure 3.6(a) shows crack growth histories

for both experiments. The crack initiates at about 145 µs when it is situated on the stiffer

side and at about 160 µs when on the compliant side. This is consistent with the fact that

more crack tip deformation occurs for the case E1 < E2 than E1 > E2 as evidenced by a

relatively large number of fringes in Fig. 3.6(a) than in Fig. 3.6(b). Also, the slope of the

crack growth history curve is steeper for E1 < E2 indicating an overall higher crack speed

in this case.

Figure 3.6: Crack growth behavior in FGM samples under mixed-mode dynamic loading.
(a) Crack growth history, (b) normalized crack speed history. (VR: local Rayleigh wave
speed)

The crack speed histories were computed from crack growth histories and are shown

in Fig. 3.6(b). Here, the crack speeds are normalized using the local Raleigh wave speed

(VR). The crack speed histories indicate that the crack accelerates following initiation to
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a maximum value with a subsequent oscillatory behavior it is driven forward by discrete

wave reflections from the boundaries of the specimen. Sudden acceleration after initiation is

attributed to the finite root radius (150 µm) of the initial crack. The data suggests that the

average crack speeds are approximately 310 m/sec (0.3 VR) for E1 < E2 and 250 m/sec (0.2

VR) for E1 > E2. This shows that crack speeds are generally higher when the crack is on the

compliant side of the sample. Once the crack initiates, the normalized crack speed remains

nearly constant until it propagates through the lower half of the specimen. Subsequently,

the crack speed history shows a decreasing trend for both the configurations as the crack

tip approaches the impact point.

3.4.3 Mixed-mode stress intensity factor histories

The stress intensity factors for both cases were extracted as explained previously and

are shown in Fig. 3.7. In this plot, the crack initiation time is identified as (t = 0 → ti) so

that the positive values correspond to the post-initiation period and the negative ones to

the pre-initiation period. The stress intensity factors were initially computed by considering

the K-dominant term (N = 1 in Eq. 2.18 or 2.21) and up to four higher order terms (N

= 6) sequentially. After analyzing a few experiments, it was found that the K-dominant

solution (N = 1) was inadequate to capture the mixed-mode stress intensity factor histories

throughout the experiment. A two-term (N = 3 in Eq. 2.18) or a three-term (N = 4)

solution was found to be stable and capture the overall fracture behavior. In Fig. 3.7(a)

the mode-I stress intensity factor monotonically increases up to crack initiation. The rate

of increase of in the stress intensity factor in the early stages of crack tip loading is about

3 × 104 MPa m1/2/s. Following crack initiation, a small dip in KI is seen suggesting a
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Figure 3.7: Mixed-mode dynamic stress intensity factor histories (impact velocity=5.2
m/sec). (Circles: E1 < E2, triangles: E1 > E2). (Time base is altered such that t− ti = 0
corresponds to crack initiation)
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sudden release of stored energy from the initial notch tip. After this drop, KI values show

a modest increase in case of E1 < E2 since the crack propagates into a gradually reinforced

region with increasing volume fractions of the filler. However, for the case of E1 > E2,

after initiation KI gradually decreases in the observation window. The mode-II SIFs (Fig.

3.7(b)) for both FGM are initially negative and once initiation occurs, KII continues to

be at a small but negative value for E1 < E2 whereas it attains a small positive value for

E1 > E2 within the observation window.

As mentioned earlier, a number of experiments (typically 3-4) were conducted for both

configurations E1 < E2 and E1 > E2 to ensure repeatability. Four fractured samples

from each configuration are shown in Fig. 3.8. A distinctly different crack path can be

seen for these two configurations from Figs. 3.8(a) and (b). Also the repeatability of

crack paths in each configuration for all four specimens can be readily noted. Figure 3.9

shows photographs of the fractured specimens for one representative experiment in each

configuration. The impact point is located on the top edge of each image and the initial

crack tip is at the bottom edge as indicated. The reflective area on each specimen surface is

the region of interest where surface deformations are monitored during experimentation. A

vertical line (on the right side of the crack for FGM samples and on the left side of the crack

for homogeneous sample) seen in these figures is located 10 mm away from the crack tip to

help establish the scale. In Fig. 3.9(a), the crack is on the compliant side (E1 < E2). Figure

3.9(b) corresponds to the opposite configuration (E1 > E2) and in Fig. 3.9(c), fractured

Plexiglas specimen is shown. The striking feature in these images is the differences in crack

paths in the lower half of the specimen. For the case E1 < E2, the crack initiation occurs

almost like a mode-I crack with an initial kink angle of α ∼ 4o with respect to the X1-axis
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Figure 3.8: Photographs showing multiple fractured specimens (right half) demonstrating
experimental repeatability (a) FGM with a crack on the compliant side (E1 < E2), (b)
FGM with a crack on the stiffer side (E1 > E2).

whereas for the case E1 > E2, the crack growth occurs at an initial kink angle of α ∼ 16o,

(see Fig. 3.9(b)). Subsequent crack growth (say, ∼ 4 mm beyond the initial growth) in

E1 < E2 case shows a tendency for the crack to grow nearly along the X1-direction. On the

other hand, in case of E1 > E2 the crack growth is essentially self-similar following initiation

with a continued growth at an angle of ∼ 16o with respect to the X1-axis. In the upper half

of the sample, the crack growth is affected by a combination of free-edge and impact point

effects. All the parameters (specimen dimensions, impact velocity, etc.) are same for these

two experiments except for the reversal of compositional grading. Hence, the differences

in the two crack paths are attributable directly to the respective compositional gradations

(elastic as well as fracture toughness gradients). Having seen distinctly different crack paths

for the above two configurations, homogeneous specimens made of Plexiglas were also tested

under similar conditions and the resulting crack path is shown in Fig. 3.9(c). The crack

shows an initial kink angle α ∼ 10o which is bounded by the ones observed in case of the

two FGM configurations.
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Figure 3.9: Photographs showing fractured specimens for (a) FGM with a crack on the
compliant side (E1 < E2), (b) FGM with a crack on the stiffer side (E1 > E2) and (c)
a homogeneous specimen. Impact point is indicated by letter ‘I’ and initial crack tip by
letter ‘C’
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Figure 3.10: Crack growth behavior in FGM samples under mixed-mode dynamic loading.
(a) Crack growth history, (b) normalized crack speed history. (VR: local Rayleigh wave
speed)

The ratio of in-plane shear stress to normal stress near a crack tip can be quantified

by the mode mixity ψ = tan−1(KII/KI). The mode mixity histories for all the three cases

are plotted in Fig. 3.10. A large negative value of ψ can be seen at the initial stages after

impact indicating the presence of significant negative in-plane shear component at the crack

tip. But just before crack initiation, ψ approaches zero. This suggests that crack initiated

under dominant mode-I conditions in all the three cases. Once the crack initiates, ψ remains

slightly negative for the case E1 < E2 and is slightly positive for E1 > E2 as shown in Fig.

3.10. Interestingly, for the case of a homogeneous sample, mode mixity is essentially zero

(oscillaions about zero) during propagation suggesting the possibility of crack growth in

FGM occurring under conditions of nonzero KII .
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3.4.4 Initial crack path prediction

The maximum tangential stress (MTS) criteria introduced by Erdogan and Sih [78] is

found to predict crack kink angles in FGM reasonably well under static loading conditions

for glass-filled epoxy [25] and hence its validity in the current dynamic experiments is

considered next. The MTS criteria states that the crack kinks in the direction of maximum

tangential stress. Thus the crack kink angle α can be computed uniquely by solving the

equation

KI sinα+KII(3 cosα− 1) = 0. (3.2)

Here KI and KII are mode-I and mode-II stress intensity factors and the kink angle α is

positive in the counter-clockwise direction in the usual crack tip coordinate system (see

Fig. 2.3(b)). In this work, the crack kink angle at initiation was predicted based on SIF

histories 10 µs (2 frames) prior to initiation. Thus predicted kink angle was verified by

the observed angle near the initial crack tip. The crack kink angle in experiments was

determined from interferograms using MATLABTM as follows. The images corresponding

to post-crack initiation regime were loaded into the software environment. First, a point

corresponding to the current crack tip was located. Then, a second point was located on the

crack establishing a tangent to the current crack path. By using these two points, horizontal

and vertical components of crack extension were identified and α was calculated. A third

point was marked on the initial crack tip to continuously track the current crack tip with

respect to the initial crack tip. The crack kink angle thus calculated was also verified by

post-mortem examination of the fractured specimens.

Table 3.2 lists crack kink angles predicted by the MTS criteria using estimated SIFs

from the two interferograms just before crack initiation. The crack initiation time is ∼ 160µs
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E1 < E2 E1 > E2

Time (µs) α Time (µs) α

150 7.9o 135 17.6o

155 5.8o 140 18.3o

Average 6.8o 17.9o

Table 3.2: Predicted crack kink angle based on estimated SIF data from CGS interferogrmas
before crack initiation

E1 < E2 E1 > E2

Time (µs) α Time (µs) α

165 4.3o 150 16.8o

170 5.0o 155 16.4o

Average 4.6o 16.6o

Table 3.3: Observed crack kink angle from three CGS interferograms just after crack initi-
ation

for E1 < E2 and ∼ 145µs for E1 > E2. It can be seen from Table 3.2 that the average kink

angle is greater for E1 > E2 compared to E1 < E2. This indicates that the crack would

kink more when it is situated on the stiffer side compared to the compliant side of the FGM.

This can be readily verified from Fig. 3.9. The crack propagation in fractured specimens

showing an initial crack growth (∼ 10 mm) are shown as insets in Figs. 3.9(a) and (b) for

E1 < E2 and E1 > E2, respectively. The observed kink angles are listed in Table 3.4.4 for 5

and 10 µs after crack initiation. It can be seen that the average crack kink angles predicted

by the MTS criteria agrees reasonably well with the observed ones at the early stages of

crack growth.
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3.5 Mixed-mode SIF history from FGM crack tip fields

The SIF histories presented in Fig. 3.7 were computed using crack tip stress fields

derived for homogeneous materials. However, in this section, SIFs computed by considering

a 4-term expansion (terms associated with r−1/2, r0, r1/2, r1) of the asymptotic series for

stresses which incorporates the variation of elastic modulus in the sample. The stress

intensity factors, extracted as explained in Section 2.7 for both configurations, are shown

in Fig. 3.11. In this plot, the crack initiation time (ti) is identified as t = 0 so that positive

values correspond to the post-initiation period and negative ones to the pre-initiation period.

It should be noted here that SIF trends are somewhat different compared to the ones in

Fig. 3.7 since they are affected by the non-homogeneity terms αf and βf (see Eq. 2.32).

In Fig. 3.11(a), KI increases monotonically up to crack initiation for both configurations.

The value of KI at crack initiation is roughly 1.5 MPa m1/2 for both configurations. After

crack initiation, KI values show an increase in the case of E1 < E2 since the crack grows

into a region with an increasingly higher volume fraction of the filler. However, for the case

of E1 > E2 FGM after initiation, KI gradually decreases in the observation window. This

difference in KI history in the post-initiation region is also confirmed by the finite element

simulations (to be discussed in Chapter 7) where higher energy is absorbed when the crack

is situated on the compliant side than on the stiffer side. The KII (see Fig. 3.11(b)) values

for both FGM configurations are initially negative and once initiation occurs, KII continue

to be a small but negative value for E1 < E2 whereas it attains a small but positive value

for E1 > E2 similar to the results reported in Fig. 3.7.

The faithfulness of Eq. 2.34 to represent surface slopes observed in experiments is

also tested. Thus, the synthetic contours generated from Eq. 2.34 are superimposed on
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CGS interferograms obtained from experiments and are shown in Fig. 3.12. One image

from the pre-initiation and one from the post-initiation time period is considered for both

FGM configurations. It should be noted here that only the lobes behind the crack tip

were digitized while performing over-deterministic analyses. Accordingly, the synthetic

contours (order N = −1,−1.5 and −2) are superimposed on the back lobes of the respective

interferograms. The least-square fit considering a 4-term FGM solution for the crack tip

field shows a reasonably good fit with the optical data.
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Figure 3.11: Stress intensity factors extracted from CGS interferograms by performing over-
deterministic least-squares analysis on difference formulation of CGS governing equation
formulated by using crack tip stress fields obtained for FGM with linear elastic modulus
variation.
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Figure 3.12: The quality of least-squares fit (plots of synthetic contours generated from
Eq. 2.34 superimposed on collected data points) for (a) E1 < E2 (t− ti = 20 µs) and (b)
E1 > E2 (t− ti = −20 µs).
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Chapter 4

The method of Digital Image Correlation

In this chapter, measurement of surface deformations and strains using the method

of digital image correlation (DIC) is explained. A three-step approach is developed during

this research for evaluating crack-tip displacements and strains from random speckle images.

In the first step, a 2D cross-correlation coefficient is computed to obtain initial estimates

of full-field in-plane displacements. In the second step, an iterative technique based on

nonlinear least-squares minimization is implemented to refine the estimated displacements

from the first step. In the third step, displacements are smoothed and strains are computed.

Next, the experimental set-up and test procedures for measuring transient surface de-

formations near a rapidly growing crack using a rotating mirror type ultra high-speed digital

camera is detailed. Since the current work is the first of its kind using a newly introduced

multi-channel high-speed digital camera system, calibration tests are conducted to estimate

and correct misalignments between different optical channels. A series of benchmark ex-

periments including intensity variability test, translation test and rotation tests are also

conducted and the accuracy of measured displacements and strains are reported.

4.1 The approach

In the digital image correlation technique, random speckle patterns on specimen surface

are monitored during a fracture event. These patterns, one before and one after the defor-

mation, are acquired, digitized, and stored. Then a sub-image in the undeformed image is

chosen and its location in the deformed image is sought. Once the location of a sub-image
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in the deformed image is found, the local displacements can be readily quantified. In the

current work, a three-step approach is developed in a MATLABTM [79] environment to

estimate planar displacements and hence strains.

4.1.1 Initial estimation of displacements (Step-1

In the first step, 2D cross-correlation is performed between two selected sub-images.

The peak of the correlation function was detected to a sub-pixel accuracy (1/16th of a

pixel) by bicubic interpolation. This process is repeated for the entire image to get full-field

in-plane displacements. The method is briefly explained in the following. Consider two sub-

images, f(x, y) from undeformed image and g(x, y) from the deformed image (Fig. 4.1(a)).

Note that g(x, y) can be approximated as a shifted copy of f(x, y) with some random noise

η(x, y). That is, g(x, y) = f(x − u, y − v) + η(x, y), where u and v denote displacements.

The cross-correlation can now be performed in the frequency domain as [48],

P (ωx, ωy) =
F (ωx, ωy)G

∗(ωx, ωy)

|F (ωx, ωy)G(ωx, ωy)|1−αp
≈ |F (ωx, ωy)|2αpe{j2π(uωx+vωy)} (4.1)

where F and G are Fourier transforms of f(x, y) and g(x, y), respectively, (ωx, ωy) denote

the frequency domain variables and αp is a constant which can be varied from 0 to 1.

By performing Fourier transform of the function P (ωx, ωy), a distinct peak in the second

Fourier domain can be obtained as

G(kx, ky) =

∫∫

P (ωx, ωy)e
[−j2π(ωxkx+ωyky)]dωxdωy

=

∫∫

|F (ωx, ωy)|2αpe[−j2π{ωx(kx−u)+ωy(ky−v)}]dωxdωy

= Gαp(kx − u, ky − v), (4.2)
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where (kx, ky) are frequency domain coordinates of the second Fourier domain. Determining

u and v displacements of a sub-image then reduces to detecting the spatial location of the

peak of the impulse function Gαp accurately (Fig. 4.1(b)). The quality of the signal peak

(impulse function) depends on the chosen value of the exponent αp. If αp = 0 is chosen, it

represents an ideal case (existence of zero noise in the images), and the spectrum relation

of Eq. (4.1) becomes a pure phase field and the response will degenerate into a Dirac-delta

function located at (u, v). But in reality, due to the presence of noise, the signal peak is often

suppressed. Therefore, it is necessary to make P (ωx, ωy) a halo-weighted complex spectrum

rather than a pure phase field by choosing αp to be greater than zero. A systematic study

about the selection of αp and its effects on measured displacements can be found in [48]. In

the current work, αp = 0.25 is adopted. This choice ensures good signal-to-noise-ratio and

the probability of a distinct peak appearing at (u, v) is maximized.

Figure 4.1: (a)Undeformed and deformed sub-images chosen from images before and after
deformation, respectively and (b) typical plot of impulse response Gαp(kx − u, ky − v)
generated from cross-correlation between two sub-images.
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4.1.2 Refining displacements (Step-2)

In this step, an iterative approach is used to minimize the 2D correlation coefficient by

using a nonlinear optimization technique. The u and v displacements obtained in step-1 are

used as initial guess values for the iterative scheme. The correlation coefficient is defined as

[47],

s

(

u, v,
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

)

= 1 −

∑

i,j

[

F (xi, yi) − F̄
][

G(x∗i , y
∗
i ) − Ḡ

]

∑

i,j

[

(F (xi, yi) − F̄ )2
]

∑

i,j

[

(G(x∗i , y
∗
i ) − Ḡ)2

] . (4.3)

Here F (xi, yi) is the pixel intensity or the gray scale value at a point (xi, yi) in the unde-

formed image and G(x∗i , y
∗
i ) is the gray scale value at a point (x∗i , y

∗
i ) in the deformed image.

The symbols F̄ and Ḡ are the mean values of intensity matrices F and G, respectively (Fig.

4.1). The coordinates or grid points (xi, yi) and (x∗i , y
∗
i ) are related by deformation between

the two images. If the motion occurs in a plane perpendicular to the optical axis of the

camera, then the relation between (xi, yi) and (x∗i , y
∗
i ) can be approximated by a 2D affine

transformation,

x∗ = x+ u+
∂u

∂x
∆x+

∂u

∂y
∆y,

y∗ = y + v +
∂v

∂x
∆x+

∂v

∂y
∆y. (4.4)

Here u and v are translations of the center of the sub-image in X- and Y - directions,

respectively. The distances from the center of the sub-image to a generic point (x, y) are

denoted by ∆x and ∆y. Thus, the correlation coefficient s is a function of displacement

components (u, v) and displacement gradients (∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y). Therefore,
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a search has to be performed for optimum values of displacements and their gradients

such that s is minimized. In the current work, the Newton-Raphson method which uses

line search and BFGS (Broyden, Fletcher, Goldfarb and Shanno) algorithm to update an

inverse Hessian matrix is employed [80]. This method is applied in two phases. In the

first phase, minimization is done in only a two variable (u, v) space by using the initial

estimates from Step-1. In the second phase, minimization is carried out in a six variable

space (displacements and displacement gradients) by using values for (u, v) from Step-1

and zeros for all the gradients. It should be noted here that estimation of displacements is

accurate if the minimization is done in a six variable space rather than in a two variable

space. However, the gradients obtained are quite noisy (especially when gradients are small

as in the present work).

4.1.3 Smoothing of displacements and estimation of strains (Step-3)

The displacement gradients obtained during the correlation process represent average

values for each subset and they tend to be noisy. Therefore it is necessary to apply smoothing

algorithms to (u, v) fields in order to extract strains. There are a number of methods

available in the literature to smooth the data [81, 82]. The one employed here uses an

unbiased optimum smoothing parameter based on the noise level present in the displacement

field. It should be noted here that displacements are discontinuous across the crack. A

generic smoothing method tends to smooth displacements across the crack faces and hence

strain concentration effects near the crack tip will be interpreted inaccurately. Therefore a

smoothing method which allows discontinuity of displacements across the crack faces was

introduced. A regularized restoration filter [83] with a second order fit was employed for

60



this purpose. This method minimizes the functional,

φ(f) = ‖g −Hf‖2 + αs‖Lf‖2, (4.5)

where f is the displacement field to be restored and g is the noisy displacement field obtained

from DIC method, both arranged in a single column format. In Eq. (4.5), H is a Point

Spread Function (PSF) of a degradation model. The objective in the current work was to

remove the random noise in order to restore/smooth displacement fields. Therefore, H was

assumed as an identity matrix. The Laplacian operator (∂2/∂x2 + ∂2/∂y2) is denoted by L

in Eq. (4.5). Here αs is a smoothing parameter selected on the basis of the noise present

in the displacement filed. The operation ‖.‖ denotes l2-norm of a vector. Now, Eq. (4.5)

can be written as,

φ(f) = (g −Hf)T (g −Hf) + αsf
TLTLf. (4.6)

The above functional is minimized by differentiating φ(f) with respect to f and equating

the result to zero. Upon simplification we get,

f = (HTH + αsL
TSL)−1Hg, (4.7)

where S is a diagonal matrix needed if a different amount of smoothing is desired in different

parts of the image. In the current work, however, an identity matrix was used for S with

appropriate diagonal elements set to zero to turn off smoothing across the crack. The

Laplacian (∂2/∂x2 +∂2/∂y2) = ∇2f was found by defining a 3 x 3 discrete Laplacian kernel
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as,

L(m,n) =

















0 1 0

1 −4 1

0 1 0

















. (4.8)

The data points corresponding to the crack faces were excluded from this operation so that

displacement discontinuity was preserved along the crack faces. The smoothing parameter

αs was so chosen that data infidelity satisfies the condition [81, 82],

1

n

n
∑

j=1

[f(j) − g(j)]2 = σ2, (4.9)

with n being the total number of data points. The quantity σ2 is the variance of the

noise present in the displacement data to be estimated by a calibration process. Once the

displacements are smoothed, strains are obtained by numerical differentiation.

4.2 Static experiments

Before applying DIC technique to study dynamic fracture, a static experiment was con-

ducted so that 2D in-plane displacements and strains evaluated from DIC can be compared

with the ones obtained from finite element simulations. Figure 4.2(a) shows the experimen-

tal set-up used. The specimen coated with a random speckle pattern was illuminated by two

light sources. A Nikon D100 digital camera with an objective lens (Nikkor 28-300 mm) was

used to image the specimen surface. A bellows extension with sliding arrangement was used

in between the camera and the lens in order to control the optical zoom. The specimen was

loaded in three point-bend configuration (Fig. 4.2(b)) in a INSTRON 4465 loading frame.

The actual photograph of the set-up is shown in Fig. 4.3. A central region of 45×30 mm of
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Figure 4.2: (a) Schematic of the experimental set-up for static experiment, (b) specimen
and loading details

the specimen surface was imaged. The images recorded at load levels of 50 lbs and 300 lbs

were correlated. The selection of the image at 50 lbs as reference image helped to preclude

some of the initial rigid body displacements close to zero loads entering the analysis. The

resolution of the image was 3000 × 2000 pixels. The sub-image size chosen for correlation

was 32 × 32 pixels. The magnification used was such that one pixel represented 15 µm on

the specimen surface.

The in-plane displacement results obtained from step-1, 2 and 3 are shown in Fig. 4.4.

The sub-image size chosen was 50×50 pixels. The displacements obtained from step-1 look

quite noisy in the figure, nevertheless, they serve as good guess values for step-2. Figure

4.5 shows few representative results from the static test. The full-filed u-displacement and
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Figure 4.3: Photograph of the static experimental set-up

ǫxx-strain from DIC are shown in Figs. 4.5(a) and (b), whereas same results from FEA

are shown in Figs. 4.5(c) and (d). The qualitative similarity between experimental and

finite element results can be noted from these figures. The u-displacement and ǫxx-strain

values along the section AA and BBwere collected and plotted in Figs. 4.5(e) and (f). A

close agreement (within ∼ 7.2%) between DIC and finite element results can be seen for

u-displacement in Fig. 4.5(e). The ǫxx values obtained from experiments also agree with

the ones from FEA but with a greater uncertainty (within 15%). This is expected since

generally strains computed from DIC are less accurate when compared to displacements

as a result of numerical differentiation. In these static experiments, displacements were

resolved to an accuracy of 3 % of a pixel (0.45 µm) and the strain accuracy was about 108

µǫ.
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Figure 4.4: In-plane displacements obtained from Step-1, 2 and 3 of the image correlation
process. The interval between contours is 7 µm.
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Figure 4.5: Static experimental results. (a) and (c) u-displacement (mm) from DIC and
FEA, (b) and (d) ǫxx (µ-strain) from DIC and FEA, (e) and (f) u-displacement and ǫxx-
strain at section AA and BB. Rigid body displacements have been subtracted out both in
(a) and (c)
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4.3 Dynamic experimental set-up

A schematic of the experimental set-up used in this study is shown in Fig. 4.6. It

Figure 4.6: Schematic of the dynamic experimental set-up

consisted of a Instron-Dynatup 9250-HV drop-tower for impact loading the specimen and

a Cordin 550 ultra-high-speed digital camera (with a 28-300 mm macro lens) for capturing

the images in real-time. The drop-tower had an instrumented tup for recording the impact

force history and a pair of anvils for recording support reaction histories. The set-up also

consisted of a delay/pulse generator to generate a trigger pulse when the tup contacts the

specimen. Since all the images were recorded during the event lasting over a hundred micro

seconds, the set-up used two high-energy flash lamps, triggered by the camera, to illuminate

the specimen. The set-up also utilized two computers, one to record the tup force and anvil
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reaction histories (5 MHz acquisition rate) and the other to record the images. The actual

photograph of the dynamic set-up is shown in Fig. 4.7.

Figure 4.7: Photograph of the dynamic experimental set-up

The high-speed camera uses a combination of CCD based imaging technology and

high-speed rotating mirror optical system. It can capture images up to 2 million frames

per second at a resolution of 1K x 1K pixels per image. It has 32 independent CCD image

sensors positioned radially around a rotating mirror which sweeps light over these sensors

(Fig. 4.8). Each sensor is illuminated by a separate optical relay. Thus small misalignments

between images are to be expected. (The effect of these parameters on displacement results

are discussed in Sections 4.4 and 4.5). These misalignments preclude the possibility of

image correlation between two images recorded by different CCD sensors. However, the

above artifacts are absent between two images if they are captured by the same CCD

sensor at two different time instants close to one another.
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Therefore, the following approach was adopted. Prior to impacting the specimen, a set

of 32 images of the specimen were recorded at a desired framing rate (200,000 frames per

second in this work). While keeping all the camera settings (CCD gain, flash lamp duration,

framing rate, trigger delay, etc.) same, next set of images, this time triggered by the impact

event, were captured. For every image in the deformed set, there is a corresponding image

in the undeformed set. That is, if an image in the deformed set was recorded by say sensor

#10, then the image recorded by the same sensor #10 in the undeformed set was chosen

for image correlation. By doing this, the optical path could be maintained same for the two

images under consideration and the only source of error now becomes the CCD noise which

is in the range of 4 to 6 gray levels in an 8-bit intensity image (Section 4.5.1). In order

to get meaningful results, it is essential that no extraneous camera movements occur while

recording a set of images and during the time-interval between the two sets of images. This

was achieved by triggering the camera electronically.

4.4 High-speed camera calibration

As noted earlier, in the high-speed digital camera, different geometrical distortions are

present in the images. This is because light travels through different optical paths (relays)

before reaching individual CCD sensors, as shown in Fig. 4.8. In this work, the specimen

was located at approximately 270 mm away from the objective lens. The field lens was

about 620 mm away from the specimen. The image at the field lens was then relayed

through various optical elements before being recorded by a sensor. For the camera system,

four main types of misalignments in the images can be identified.
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Figure 4.8: Optical schematic of cordin-550 camera: M1,M2,M3,M4,M5 are mirrors; R1

and R2 are relay lenses; r1, r2, · · · r32 are relay lenses for CCDs; c1, c2, · · · c32 are CCD sensors
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• Focusing errors between frames: This aberration can be minimized by careful align-

ment of each optical path but cannot be entirely eliminated. However, since two

images one before deformation and one after deformation, recorded from the same

camera were correlated in the current work, this error does not affect measurements.

• Translation between two images: The images could have an in-plane (X- and Y - di-

rections) relative translation of 5-7 pixels (out of 1000 × 1000 pixel image). Since the

evaluation of fracture parameters depends primarily on locating the crack tip, trans-

lation of the whole image is not detrimental to the accuracy of results. However, these

translations between frames were estimated accurately by calibration. Subsequently,

the images were aligned to get good registration of one frame relative to the next.

• In-plane rotation between two images: The individual camera images could also have

relative rotation (a maximum of 0.18o between the frames). This rotation was esti-

mated accurately in the calibration experiment and then the frames were aligned with

respect to each other.

• Perspective effect: In order to minimize errors due to perspective effects, camera needs

to be located sufficiently far away from the specimen and the images must be recorded

using higher F# numbers. In the current experiment, the field lens was situated 620

mm away from the specimen and with an F# of 5.6.

A calibration experiment was performed to quantify the above imperfections. The objective

here was to estimate the correction parameters to be used later on for aligning each optical

channel relative to a reference. A template with 5 x 5 array of targets (dark circles) was

printed on a white glossy background and affixed to a flat surface. The camera was focused
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on the template and flash lamps were adjusted to illuminate the targets uniformly. A set

of 32 pictures of the template were recorded at 200,000 frames per second. Figure 4.9

shows a corresponding image recorded by one of the sensors. It should be noted here that

calibration of the camera is needed only once before the actual fracture experiments. The

various recording parameters (distance between the lens and the specimen, framing rate,

magnification, etc) subsequently need to be maintained same between the calibration and

real experiments.

Figure 4.9: (a) Image of the 5 × 5 dot pattern template used for calibration experiment
and (b) Inverted binary image of the template in order to find the control points

In the calibration experiment, distortions were corrected using a two-step process. In

the first step, various correction factors were estimated between the images. To do this, one

image was chosen as the base image and the distortions of all other 31 images (called input

images) with respect to the base image were estimated. The base image and one of the

input images were considered and histogram equalization was carried out on them. Then

these images were converted into binary images by performing a thresholding operation
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followed by an intensity inversion operation to get white circles with a black background

(see Fig. 4.9(b)). The location of the center of each circle was estimated for both the base

and input images. These center locations (also called control points) were further fine-tuned

for the input image by performing normalized cross-correlation operation locally [84]. This

operation matches the template in the neighborhood of a control point in the base image

with that of an input image and fine-tunes the location of the control point of the input

image. This process is repeated for all other 31 images and the control points for every base

image-input image pair were stored.

In the second step, correction was applied to the real images recorded in an experiment

based on the transform inferred from the control points. Here it should be emphasized that

no histogram equalization and thresholding operations were performed on real images. The

input image was transformed with respect to the base image by a linear conformal mapping

transformation. In this transformation, shape of the input image was unchanged, but the

image was deformed by some combination of translation, rotation, and scaling. That is,

by doing this, straight lines remained straight and parallel lines remained parallel. The

transformation used is given by,
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, (4.10)

where (xi, yi) and (xb, yb) are coordinates of the input image and the base image, respec-

tively. Also, (ao, bo) represent translations in the X- and Y - directions, respectively. The

stretch and rotation are denoted by a1 and b1. Since there are four unknowns in Eq. (4.10),

two pairs of control points are sufficient to find these unknowns. Since there are 25 pairs
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of control points (5 × 5 array of circles), the unknowns were determined in this work in an

over-deterministic least-squares sense. The transformation structure generated from each

pair of control points is listed in Table 4.1. Here the image from camera # 09 was chosen as

the base image and misalignments of all other images with respect to this image are listed.

It can be noted from this table that there is horizontal and vertical misalignment between

the successive images. The horizontal movement is in the range of 0 to 9 pixels where as the

vertical movement is in the range of 0 to 4 pixels. Rotation between the frames is within

0.003 radians. As noted earlier, for every experiment, two sets of images were recorded,

one set before impact loading and another set after. The above transformation was applied

for both the sets. That is, if a control points pair came from analyzing images of sensors

1 and 10 (1 being the base image and 10 being the input image) of the reference image

set, then the transformation was also applied to the images captured by sensors 1 and 10

in the undeformed set as well as the deformed set. The two images from the same camera

were then correlated (that is, between the images captured by sensor 10 of the undeformed

set and the deformed set). Again it should be noted here that since the same transforma-

tions are applied to both the undeformed and deformed images, they would not influence

measured deformations but improve the quality of sequential displaying (or animation) of

images helpful in visualizing the failure process.

4.5 Benchmark experiments for high-speed camera

In view of the presence of distortions/misalignments in the camera system, it becomes

important to assess the camera performance to measure transient deformations in a dynamic
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a1 b1 (radians) ao (pixels) bo (pixels)

Camera 00 0.9966 0.0003 1.3468 1.9695

Camera 01 0.9997 0.0004 -0.4052 -1.0066

Camera 02 0.9986 0.0003 0.7136 0.8484

Camera 03 1.0006 0.0002 -1.7187 0.0524

Camera 04 0.9986 -0.0009 0.5622 -0.1669

Camera 05 1.0001 -0.0003 -1.1137 -0.3886

Camera 06 1.0002 0.0007 -2.2279 -0.3266

Camera 07 1.004 0.0029 -6.5381 2.656

Camera 08 1.007 0.0056 -3.7658 -1.05

Camera 09 1.0000 0.0000 0.0000 0.0000

Camera 10 0.9983 -0.0019 0.0058 -0.9471

Camera 11 0.9995 -0.0012 1.6056 -1.9433

Camera 12 0.9946 -0.0003 8.1177 -0.6218

Camera 13 1.0003 0.0002 0.318 -0.2026

Camera 14 0.998 -0.0015 2.2551 -0.7557

Camera 15 0.9961 0.0005 2.6524 3.1431

Camera 16 0.9939 -0.0017 9.4083 1.9072

Camera 17 0.9977 -0.0005 4.6258 -0.7484

Camera 18 0.9984 -0.0003 5.4465 -1.8866

Camera 19 0.9969 -0.0013 4.5083 -1.7703

Camera 20 0.999 -0.0008 3.8725 -1.873

Camera 21 1.0000 -0.0009 3.2238 -3.2697

Camera 22 0.9993 -0.0011 4.8201 -2.9866

Camera 23 1.0018 -0.0008 3.2343 -3.8285

Camera 24 0.9998 0.0006 3.7571 -1.9882

Camera 25 1.0017 -0.0012 1.4998 -4.764

Camera 26 0.999 0.0001 1.7903 -1.4227

Camera 27 0.9976 -0.0012 4.97 -0.3825

Camera 28 0.9999 -0.0007 4.1851 -2.8842

Camera 29 0.9984 -0.0014 4.5328 -2.8868

Camera 30 1.0002 -0.0019 4.1973 -3.5948

Camera 31 0.9995 -0.0016 3.2673 -2.8311

Table 4.1: Alignment differences between individual optical channels of Cordin-550 camera;
Stretch, rotation and translations of different images with respect to the image taken by
camera # 09
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test. Therefore certain benchmark tests - image intensity variability test, translation text

and rotation tests were conducted.

4.5.1 Intensity variability test

In the current work, 8-bit (0 to 255 gray levels) images were captured and analyzed.

The CCD noise in these images was first estimated. The CCD noise in an acquired image

depends on the value of CCD gain that can be pre-set in the camera on a scale of 0 to 1000

before conducting an experiment. For all the experiments reported in this work, this value

was set in the range of 500 to 550. A value of 700 becomes an upper limit since it results

in saturation of a few pixels in the acquired images and hence was avoided. Thus, two

sets of 32 images were acquired at framing rates of 200,000 and 50,000 frames per second

in total darkness (with the lens cap on). All the images in these two sets had their pixels

representing the gray scale values in the range of 0 to 8. Thus, it can be said that lower 3

bits in an 8-bit image represents CCD noise and the intensity represented by the remaining

5 bits can be faithfully measured. Figure 4.10 shows the mean and standard deviations of

intensity values of all pixels (1 million pixels in a 1000x1000 pixel image) in various images

captured in darkness. It can be seen from this figure that all the images have their mean

intensity values in the range 6 to 8 with a relatively narrow spread (standard deviation in

the range 2 to 4).

As already mentioned, in the current work, transient deformations are estimated by

performing image correlation between two images acquired from the same CCD sensor,

one before the impact and another after the impact. Therefore it is important to know

the intensity variations between two images recorded by the same CCD sensor at different
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Figure 4.10: Mean and standard deviations of intensity values of images acquired in total
darkness (with lens cap on). Images were recorded at 50,000 frames per second in experiment
1 and at 200,000 frames per second in experiment 2.

times. To this end, five sets of 32 images of a stationary sample, decorated with random

speckle pattern, were acquired at 200,000 frames per second. The gray scale values at a

few randomly chosen pixels were stored (same set of random pixels were chosen from all

the images). The intensity values at a particular pixel from all the five images acquired

by the same CCD sensor was examined. This variation is shown in Table 4.2 for all the

32 CCD sensors. Significant difference in intensity value at a pixel is observed between

images acquired by different CCD sensors. More importantly, a very small variation in

gray scale value at a pixel from images acquired by the same CCD sensor can be seen.

Thus, the standard deviation values are in the range 2 to 6 gray levels for most of the CCD

sensors (apparently this is in the same range as the standard deviation values observed

for the images recorded in total darkness, see Fig. 4.10). This demonstrates that between

an undeformed and deformed image registered during an actual experiment, there are no
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Camera # Set 1 Set 2 Set 3 Set 4 Set 5 Mean St. dev

00 121 116 123 120 122 120.4 2.7

01 106 102 104 108 102 104.4 2.61

02 119 120 125 116 120 120 3.24

03 93 95 111 109 102 102 8.06

04 122 125 126 116 120 121.8 4.02

05 97 102 106 105 105 103 3.67

06 106 97 108 112 103 105.2 5.63

07 79 80 74 82 74 77.8 3.63

08 84 81 84 89 84 84.4 2.88

09 123 118 128 129 129 125.4 4.83

10 111 105 110 114 116 111.2 4.21

11 118 112 111 110 117 113.6 3.65

12 82 88 76 82 82 82 4.24

13 117 115 115 114 117 115.6 1.34

14 88 98 93 87 93 91.8 4.44

15 94 96 93 92 91 93.2 1.92

16 77 73 73 77 72 74.4 2.41

17 63 60 59 65 63 62 2.45

18 97 93 92 93 98 94.6 2.7

19 76 66 71 72 72 71.4 3.58

20 69 70 60 71 67 67.4 4.39

21 87 86 93 95 85 89.2 4.49

22 114 109 113 115 110 112.2 2.59

23 82 80 79 82 76 79.8 2.49

24 92 89 93 96 84 90.8 4.55

25 124 119 120 130 122 123 4.36

26 122 120 126 117 123 121.6 3.36

27 78 83 86 79 78 80.8 3.56

28 76 74 73 77 70 74 2.74

29 95 93 92 91 96 93.4 2.07

30 73 71 70 71 69 70.8 1.48

31 95 91 95 96 88 93 3.39

Table 4.2: Gray scale values at a particular pixel in five repeated sets of images of speckle
pattern acquired at 200,000 frames second. Note the repeatability of the gray scale values
between different sets of images.
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abrupt light intensity variations apart from the random CCD noise. This is a rather subtle

but important point to note. Also it is unique to this type of high-speed camera system

where one can perform image correlation between two images acquired from the same CCD

sensor to obtain highly accurate displacements.

4.5.2 Translation test

In this experiment, a specimen (decorated with random b/w speckles) was mounted

on a 3D-translation stage, as shown in Fig. 4.11. A series of known displacements were

Figure 4.11: Experimental set-up for conducting ranslation test for high-speed digital cam-
era

imposed in the X- and Y - directions separately and the images were captured. The mean

and standard deviations of the displacement fields were computed and compared with the

applied displacements. Also, a small out-of-plane (Z-direction) displacement of 30 ±2µm
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1 was applied to the sample and a set of images were captured. The objectives of these

translation tests were as follows:

• To estimate noise levels in the measured in-plane displacement fields (or, to determine

the smallest in-plane displacement that can be measured reliably from the camera

system).

• To compare displacement fields obtained by the 32 individual cameras when they are

used to measure the same applied displacement.

• To determine the effect of out-of-plane displacement on the accuracy of measured

in-plane displacements (or, to address the issue of whether the accuracy of in-plane

displacements is affected if the sample undergoes a small out-of-plane deformation

during an experiment).

• To determine the effect of variation in the working distance (D) distance between the

sample and the objective lens (see Fig. 4.11), on the quality of the measured in-plane

displacements.

The details of translation tests are given in Table 4.3. Totally six sets of 32 images were

recorded in each configuration. In Configuration-1, the objective lens of the camera was

400 mm away from the sample. The first set of 32 images of the undeformed sample makes

Set-1. In Set-2 and Set-3, images were recorded after applying 60 ±2µm of translation in

the X-direction and 60 ±2µm translation in the Y -direction, respectively. This is typically

1This is typically the amount of out-of-plane displacement that occurs in the vicinity of a crack tip in
an experiment conducted in this work. For example, in Ref. [17] one can see roughly 7-9 interferometric
(CGS) fringes near the crack tip over a distance of ∼10 mm. Since these fringes represent surface slopes and
the resolution of the set-up was ∼ 0.015o/fringe, one can estimate the out-of-plane displacement around the
crack tip to be ∼23 µm.
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the deformation level observed in the current tests. In Set-4 and Set-5, specimen was

translated by 300 ±2µm in the X- and 300 ±2µm the Y -direction, respectively. These

represent the amount of rigid body displacements expected in the dynamic tests. In Set-

6, images were recorded after applying 30 µm translation in the Z-direction. The same

exercise was repeated for Configuration-2 where the camera was kept twice as close as in

Configuration-1. It should be noted here that all these translations were applied manually

by micrometers in a xyz-translation stage.

Configuration 1 Configuration 2

Working distance (D) = 400 mm Working distance (D) = 200 mm

Magnification = 35.6 µm/pixel Magnification = 27 µm/pixel

Set 1 Undeformed Set 1 Deformed

Set 2 X-translation = 60±2µm Set 2 X-translation = 60±2µm

Set 3 Y -translation = 60±2µm Set 3 Y -translation = 60±2µm

Set 4 X-translation = 300±2µm Set 4 X-translation = 300±2µm

Set 5 Y -translation = 300±2µm Set 5 Y -translation = 300±2µm

Set 6 Z-translation = 30±2µm Set 6 Z-translation = 30±2µm

Table 4.3: Details of translation tests: Six sets of 32 images were recorded in each configu-
ration. In Configuration-2, the camera was kept twice as close as in Configuration-1.

The full-field displacements were computed for all these tests. The sub-image size

chosen was 30 × 30 pixels which gave 32 × 32 = 1024 data points for a 1K × 1K image.

The results shown in Figs. 4.12(a) and (b) are: (i) the mean and standard deviations of

u-displacement (between images of Set-1 and Set-2 of Configuration-1, ‘solid circle’), (ii)

the mean and standard deviations of v-displacement (between images of Set-2 and Set-3

of Configuration-1, ‘solid square’), (iii) mean and standard deviations of u-displacement

(between images of Set-1 and Set-2 of Configuration-2, ‘solid triangle’) and (iv) mean and
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standard deviations of v-displacement (between images of Set-2 and Set-3 of Configuration-

2, ‘solid diamond‘). Tests were conducted in Configuration-2 to examine the effect of the

Figure 4.12: Translation test results for D=400 mm and 200 mm (see Fig. 4.8. (a) mean
and (b) standard deviations of u- and v- displacement fields for X- and Y - translations of
∼ 60 ±2µm (c) mean and (d) standard deviations of u- and v-displacement fields for X-
and Y - translations of 300 ±2µm. Magnification = 35.6 µm/pixel for D=400 mm and 27
µm/pixel for D=200 mm.

working distance ‘D ’on the accuracy of the measured displacements. It should be noted

that magnification in Configuration-1 was 35.6 µm/pixel and in Configuration-2 it was 27

µm/pixel on the image plane. In view of this, a constant value of ∼60 µm (1.6 pixels)

was expected for ‘solid circles ’and ‘solid squares ’of Figs. 4.12(a). Similarly a value of
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∼2.2 pixels was expected for ‘solid triangles’and ‘solid diamonds’of Fig. 4.12(a). It can be

seen from Fig. 4.12(a), that a constant displacement is being measured in all 32 cameras

within a scatter band of 0.2 pixels. Also the error levels in the displacements measured by

each of the cameras fall within the range of 2 to 6% of a pixel (see Fig. 4.12(b)). Similar

results for X- and Y - translations of 300 µm (between images of Sets-1 and -4 and Sets-4

and -5 of Configurations-1 and 2) are presented in Figs. 4.12(c) and (d). By comparing

the results in Figs. 4.12(b) and (d), it is evident that there is no significant difference in

standard deviations of the measured displacement fields. This implies that displacements

of 8 to 10 pixels can be measured rather easily to an accuracy of less than 6% of a pixel.

By comparing the values of ‘solid triangles’and ‘solid circles’in Fig. 4.12(b) or (d), it is

clear that the quality of measured displacements is not affected significantly if the working

distance D is reduced by a factor of 2. Finally, Fig. 4.13 shows the effect of the imposed

uniform out-of-plane displacement on the measured in-plane displacements. The mean and

standard deviations of u- and v-displacements that occurred between the images of Set-5

and Set-6 (Z-translation of 30 µm) are shown in Figs. 4.13(a) and (b). Again, both u- and

v-displacements are within 0.1 pixels in Fig. 4.13(a). The standard deviation of u- and v-

displacements is in the range 1 to 6% of a pixel as evident from Fig. 4.13(b).

It is instructive to study in-plane strain fields estimated from measured displacements

in these translation tests. To this end, the displacements were smoothed by the restoration

method explained in Section 4.1.3 and strains were obtained by performing numerical dif-

ferentiation. The mean and standard deviations of ǫxx and ǫyy strains are presented for two

tests in Table 4.4. These tests correspond to X- and Y -translations of 60 ± 2µm (between

images of Set-1 and Set-3 of configuration 1) and of 300±2µm (between images of Set-1 and
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Figure 4.13: Translation test results for D = 400 mm (see Fig. 4.8) and out-of-plane
displacement (w) =30 µm. (a) mean and (b) standard deviation of u- and v-displacement
field.

Set-5 of configuration 1). Since the applied displacement was a rigid translation, ideally,

zero strains for all the images are expected. However, numerical differentiation amplifies the

noise in the displacements which manifests itself in the estimated strains. The mean values

of strains were in the range 0 to 150 µǫ in both the experiments. The standard deviations

of strains were in the range 0 to 300 µǫ for various individual cameras. Interestingly, the

mean and standard deviations were not affected by the amount of translation imposed. The

implication of this on an actual experiment is that a relatively large rigid body motion can

be accommodated without sacrificing accuracy in the measured displacements and strains.
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Xtrans, Ytrans = 60 ± 2µm Xtrans, Ytrans = 60 ± 2µm

ǫxx (µǫ) ǫyy (µǫ) ǫxx (µǫ) ǫyy (µǫ)

Camera # Mean Std Mean Std Mean std Mean Std

00 -20.7 203.1 259.7 217.1 0.9 209 2.2 229.1

01 -65 88.8 190.6 258.6 -35.3 240.6 15.4 244.6

02 -200.4 92.6 124.7 200.3 0.8 248.7 78.8 253.7

03 -210.1 139.9 30.2 209.4 13.8 341 106.4 230.6

04 -119.2 69.9 153.6 184.8 1.6 250 -9.7 241.2

05 -83.8 102.9 53.9 101.8 -52.1 167.8 10.6 335.6

06 -68.3 147 68.5 125.2 -178.7 159.5 51.6 254

07 -129.6 186 27.4 134.3 -65.5 196.4 85 277.9

08 0.4 94.6 100.3 157.4 -19.7 211.4 79.1 195.7

09 -44.1 118.4 71.8 153.8 11.2 219.7 117.1 206.1

10 -27.8 112.3 106.7 159.3 -0.7 215.2 45.4 237.1

11 -2.4 121.5 52.2 204.2 -1.5 219.5 83.5 214.2

12 -14.6 128.3 125.2 203 -42.3 201.2 -5.2 215.4

13 -7.5 140.6 36.8 284.6 -13.8 193.2 79.4 195.7

14 11.4 135.3 73.5 211.2 -50.5 235.9 3.8 202.2

15 11.5 84.6 14.9 315.3 -16.7 216.6 102.1 58.5

16 -6.5 103 168.8 308.1 -75.7 247 50.7 92.3

17 -15 113.3 3.7 319.3 -8 239.4 16.8 168.6

18 55.8 164.8 60.4 258.6 7.2 222.4 88.5 243.9

19 -7.7 126.4 192 215.1 -2.5 242.2 -33.5 242.8

20 32.4 117.1 88.8 242.2 -69.5 214.9 22.3 248.6

21 15.2 104.8 188.7 148.3 -17.3 288.1 55.5 234.6

22 28 150.3 195.5 167.1 -39.9 246.3 -34.1 247.7

23 4.5 161.9 175.8 142.5 -25.1 210.8 62.4 253.9

24 -171.4 107.7 42 217.1 15.3 224 137.2 311.6

25 -153.3 99.8 42.5 167.1 43.4 231.5 -4.9 287.1

26 -93.7 133.1 25.8 218.2 -59.5 230.3 4.1 187.9

27 -161.2 123.7 -24.1 197 -18.7 218.9 22.5 320.9

28 -133.6 92.5 162.1 126.6 10.8 237 93.1 248.6

29 -174.7 84 133.2 210.5 -16.4 203.2 -69.3 167.4

30 -93.2 149.4 -17.3 191.9 -15.5 194.5 72.2 219.8

31 -10.1 123.7 255.4 214 -3.2 200.9 53.7 221.6

Table 4.4: Mean and standard deviations of in-plane strain fields estimated from measured
displacements in translation test
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4.5.3 Rotation test

The objectives of the rotation test were (a) to estimate the accuracy with which a

pure rotation can be measured using the high-speed camera system, (b) to compare the

performance of different individual cameras when they are used to measure same applied

rotation and (c) to examine whether the applied rotation produces any spurious strain. In

the rotation test, a specimen decorated with random b/w speckle pattern was mounted on

a rotation stage. Two sets of 32 images were recorded at 200,000 frames per second, one set

before, and another set after imposing a rotation of 0.32o (0.0056 radians). The full-field

displacements were computed between these two sets of images. The sub-image size chosen

was 30×30 pixels so that the displacements were available on a grid of 32×32 = 1024 points.

These displacements were smoothed by the restoration method explained in Section 4.1.3.

The cross derivative terms ∂u/∂y and ∂v/∂x were computed by numerical differentiation.

The rotation ωxy was then evaluated as,

ωxy =
1

2

(

∂u

∂y
− ∂v

∂x

)

. (4.11)

Figure 4.14 shows a representative full-field plot of ωxy from one pair of the images.

The estimated values are close to the applied value of rotation everywhere in the image

except near the boundaries. This is expected because the errors displacement derivatives

(strains and rotations) get magnified near the boundaries due to the so-called edge effects.

Next, mean and standard deviations of ωxy were computed for each image (while computing

these quantities for a 32 × 32 matrix, three rows and three columns of data points were

excluded near the border of the image in view of the presence of larger errors at these

86



Figure 4.14: Estimated full-field quantity ωxy from one pair of the images taken from camera
# 1 in a rotation experiment (Imposed rotation = 0.0056 ± 0.00035 radians).

locations). Figure 4.15 shows the mean and standard deviation of estimated rotations and

strains from this test. It can be seen from Fig. 4.15(a) and (c) that an applied rotation of

0.0056 ± 0.00035 radians is measured by all the individual cameras with in an error band

of ∼5×10−4 radians (10 % error). A rigid rotation imposed to the sample will not produce

any strains. Consequently, zero strains are expected from this test. However, the mean

values of strain fields obtained were within 100 µǫ and standard deviations were up to 300

µǫ. Thus, it can be said that in an actual experiment involving some rigid rotation of the

sample, spurious values of in-plane strains in the range to 100 to 300 µǫ can be expected.

4.6 Flash lamp light characteristics

One of the main assumptions while performing image correlation between two images

recorded by a high-speed digital camera system is that illumination of the specimen is
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Figure 4.15: Results from rotation test (applied rotation = 0.0056 ± 0.00035 radians). (a)
mean and (c) standard deviation of rotation field estimated from image correlation. (b)
mean (d) standard deviations of in-plane strains estimated (ideally these strains need to
be zeros).

uniform and stable (spatially as well as temporally) and also repeatable. Spatial stability

means the light intensity needs to be uniform in the region of interest (in the current work

31x31 mm2 area). By temporal stability, we expect the light intensity to remain constant

during the event of interest (∼ 150 µs in this work during which all the 32 images were

acquired). The repeatability is also important since the light intensity need to remain same

between any two successive experiments. To be more specific, undeformed set of 32 images

and the deformed set of 32 images need to be exposed by the same light intensity.
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The light intensity from the flash lamps ramps up initially, dwells for a while and then

decreases. In the current work, dwell time was set to 9 ms. In order to test flash lamp

characteristics, a photo detector having 1 mm2 sensing area was placed at a location where

the sample was placed in the real experiment. The voltage signal proportional to the light

intensity was recorded with time using a high-speed data acquisition system at a sampling

rate of 1 MHz. This exercise was repeated twice in order to check for the repeatability of the

flash lamp characteristics. Subsequently, the photo detector was moved to a new location

in the plane perpendicular to the optical axis of the camera by 25 mm inch and the output

was again recorded twice. The voltage signal registered by the photo detector is plotted in

Fig. 4(b). An excellent repeatability in the light intensity can be seen. A dwell time of 9

Figure 4.16: Photo detector output proportional to flash lamp light intensity, A1, A2 and
B1, B2 are two repeated acquisitions when photodiode was placed one inch away in the
plane perpendicular to optical axis of the camera.

ms can be seen from all these plots. While conducting the real experiment, all the images
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were captured during this dwell time by appropriately triggering the event. Thus, the flash

lamps were found to be stable and no hot spots were found in the captured images.

90



Chapter 5

Dynamic fracture studies using DIC method

In this chapter, the method of DIC to study dynamic fracture in polymeric materi-

als is discussed. Mode-I and mixed-mode dynamic fracture of epoxy and syntactic foam

samples are examined using this method. The sample preparation and the experimental

procedure are explained in detail. The crack opening and sliding displacements and domi-

nant strain histories are computed from speckle images. The dynamic stress intensity factor

histories are extracted by performing over-deterministic least-squares analysis on estimated

displacements.

5.1 Sample preparation

Edge cracked epoxy and syntactic foam samples were prepared for conducting mode-I

and mixed-mode dynamic fracture experiments, respectively, using DIC method. Epoxy

samples were made from bisphenol-A resin and an amine based hardener in the ratio 100:38

for mode-I experiments. For mixed-mode tests, samples were made by mixing 25% (by

volume) of hollow microballoons in the epoxy matrix. The microballoons used in this study

were commercially available hollow glass spheres of mean diameter of ∼ 60 µm and wall

thickness ∼ 600 nm. The microballoons were carefully stirred into the epoxy resin while

avoiding air bubbles and agglomeration. Stirring was continued until the mixture showed a

tendency to gel and then poured into molds. This helped to eliminate any buoyancy induced

floatation of microballoons during the cure cycle. The elastic modulus and Poisson’s ratio,

measured ultrasonically, were 4.1 GPa and 0.34 for epoxy samples and 3.02 GPa and 0.34
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for syntactic foam samples, respectively [24]. While casting the mixture, a sharp razor

blade was inserted into the mold. After the sample was cured, a sharp ‘edge notch ’was left

behind in the specimen. Further details about this method of introducing a sharp crack

into specimens can be found in Ref. [77]. Finally, the specimen was machined into beams

of height 50 mm with a crack of 10 mm length (a/W = 0.2) as shown in Fig. 5.1(a) and

(b). A random speckle pattern was created on the specimen surface by spray-painting with

black and white paints alternatively.

Figure 5.1: Specimen configuration for (a) mixed-mode test of syntactic foam and (b)
mode-I test of epoxy. Impactor force history and support reaction histories recorded by
Instron Dynatup 9250 HV drop tower for (c) mixed-mode experiment and (d) mode-I
experiment. The sample dimensions are a = 10 mm, W = 50 mm, S = 25.4 mm, L = 200
mm, B = 8.75 mm, Impact velocities, V1 = 4.5 m/sec and V2 = 4.0 m/sec.
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5.2 Experimental procedure

Since the event to be captured is highly transient in nature, the total recording time

is rather small and hence the high-speed camera was synchronized with the event. The

sequence of events in a typical experiment was as follows: The specimen was initially rested

on two instrumented supports/anvils of the drop tower. The camera, anchored firmly to the

ground, was focused on 31× 31 mm2 region of the sample in the crack tip vicinity (see Fig.

5.1 (a) and (b)). A set of 32 pictures of the stationary sample were recorded at the desired

framing rate (225,000 frames per second in mode-I and 200,000 frames per second in mixed-

mode experiment). Next, an impactor was launched at a desired velocity (∼4.5 m/sec for

mode-I ∼4.0 m/sec for mixed-mode) towards the sample. As soon as the tup contacted

an adhesive backed copper tape affixed to the top of the specimen, a signal was generated

by a pulse/delay generator to trigger the camera. The camera also sent a separate trigger

signal to the high intensity flash lamps. A trigger delay was pre-set in the camera system to

capture images ∼ 75 µs after the initial impact. This time delay provides sufficient time for

the high intensity flash lamps to ramp up to their full intensity level and provide uniform

illumination during recording. Since the measurable deformations around the crack tip for

the first 85 µs are relatively small, there was no significant loss of information during this

period. A total of 32 images were recorded with 4.44 µs (5 µs in mixed-mode tests) interval

between images for a total duration of 142 µs (160 µs in mixed-mode tests). Once the

experiment was complete, the captured images were stored in the computer. Just before

the impact occurs, the velocity of the tup was recorded by the drop-tower system. Also

recorded were the tup force and support reaction histories.
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The tup force and support reaction histories are shown in Fig. 5.1(c) and (d) for

asymmetric impact of syntactic foam specimen and symmetric impact of epoxy specimen,

respectively. In these plots, multiple contacts between the specimen and the tup can be

evidenced by the occurance of more than one peaks. Since complete fracture of the specimen

had taken place before 240 µs in both the experiments, only the first peak of the impact

force history is of relevance here. From Fig. 5.1(d) it can be seen that supports feel the

impact force only after ∼ 400 µs for the mode-I test. In case of the mixed-mode test, since

left support is closer to the impact point, the impact force records start earlier than the

one for the right support (see Fig. 5.1(c)). Also, it should be noted that anvils register a

noticeable impact force after 220 µs by which time the crack had propagated through half

the sample width (see Fig. 5.4). Thus, the reactions from the anvils do not play any role

in the crack initiation and initial growth. Accordingly, for both the tests, the samples were

subsequently modeled as a free-free beam in finite element simulations with impact resisted

by the specimen inertia.

5.3 Finite element simulations

5.3.1 Mixed-mode fracture of syntactic foam

Elasto-dynamic finite element simulations were conducted up to crack initiation under

plane stress conditions. The finite element mesh used is shown in Fig. 5.2(a) along with

the force boundary conditions at the impact point. Experimentally determined material

properties (elastic modulus = 3.1 GPa, Poisson’s ratio 0.34 and mass density = 870 kg/m3)

were used as inputs for the finite element analysis. The numerical model was loaded using

the force history recorded by the instrumented tup (only the first peak of the tup force
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Figure 5.2: Finite element mesh used for elsto-dynamic finite element analysis of (a) mixed-
mode problem and (b) mode-I problem.

from Fig. 5.1(c) was used). (Before applying, the force history data was interpolated and

smoothed for the following two reasons: (a) The time step of the force history measurement

was larger than the one used in the simulations and (b) The force history recorded by

the tup had experimental noise. Therefore smoothed cubic splines were fitted to the force

history data before applying to the model.) The implicit time integration scheme of the

Newmark β method with parameters β = 0.25 and γ = 0.5 and 0.5% damping was adopted

in the simulations.

Instantaneous crack opening and sliding displacements along the crack flanks were used

for extracting mode-I and mode-II stress intensity factors (SIF). Using Williams’ asymptotic

expansion for crack opening and sliding displacements, apparent stress intensity factors can
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be expressed as

[KI(t)]app =

√
2πEuy(t)|θ=±π

8
√
r

≈ KI(t) + C1r,

[KII(t)]app =

√
2πEux(t)|θ=±π

8
√
r

≈ KII(t) + C2r. (5.1)

Here uy and ux are the crack opening and sliding displacements, respectively, KI and KII

are mode-I and mode-II stress intensity factors, E is the elastic modulus of the material,

C1 and C2 are higher order coefficients. For each time instant, the values of [KI(t)]app and

[KII(t)]app are plotted as a function of r and the extrapolated values KI = limr→0[KI ]app

and KII = limr→0[KII ]app were identified as the mode-I and mode-II instantaneous stress

intensity factors.

5.3.2 Mode-I fracture of epoxy

The finite element simulation procedures for the mode-I test are same as the mixed-

mode test except the numerical model was loaded using one-half of the force history recorded

by the instrumented tup due to symmetry of the model. Finite element mesh of the half-

model used is shown in Fig. 5.2(b) along with the boundary conditions. Experimentally

determined material properties for this case are (elastic modulus = 4.1 GPa, Poisson’s ratio

0.34 and mass density = 1175 kg/m3). As explained in the previous section, the mode-I

SIF was calculated by regression of crack opening displacements by the formula

[KI(t)]app =

√
2πEuy(t)|θ=±π

4
√
r

≈ KI(t) + Cr. (5.2)
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The T -stress was also determined using a modified stress difference method [77]. Instanta-

neous normal stress difference (σx − σy) ahead of the crack tip along X1-axis was used to

calculate the non-singular T -stress as

(σx − σy)|r,θ=0o ≈ T +Dr, (5.3)

where D is a higher order coefficient of the asymptotic expansion of crack tip stresses.

5.4 Results - Mixed-mode dynamic fracture of syntactic foam

From each experiment 64 images were available, 32 each from the undeformed and the

deformed sets, each having a resolution of 1000×1000 pixels. Figure 5.3 shows four selected

speckle pattern images from the deformed set of 32 images. The time instant at which the

images were recorded after impact is shown below each image and the current crack tip

location is indicated by an arrow. The position of the crack tip is plotted against time in

Fig. 5.4. It can be seen from this figure that crack initiates at about 175 µs. Upon initiation,

the crack rapidly accelerates and subsequently attains at a relatively steady velocity of ∼

270 m/s. The magnification used in this experiment was such that the size of a pixel was

equal to 31 µm on the specimen. A sub-image size of 26 × 26 pixels was chosen for image

correlation. The 2D in-plane displacements were estimated for all the 32 image-pairs. The

crack opening displacement, uy, and sliding displacement, ux, for the sample images (one

before crack initiation and one after) are shown in Fig. 5.5.

Figures 5.5(a) and (c) show uy- and ux-displacements at 150 µs after impact and

Figs.5.5(b) and (d) show the corresponding displacement components at t = 220 µs after

impact. These are smoothed values of displacements (aspects of smoothing were discussed
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Figure 5.3: Acquired speckle images of 31×31 mm2 region at various times instants. (Crack
tip location is shown by an arrow.)
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Figure 5.4: Crack growth behavior in syntactic foam sample under mixed-mode dynamic
loading.

in Chapter 4). A significant amount of rigid body displacement component can be seen in

the ux-field (Figs. 5.5(c) and (d)). In the current work, the displacements were resolved to

an accuracy of 2 to 6% of a pixel or 0.6 to 1.8 µm.

5.4.1 Extraction of stress intensity factors

Both crack opening and sliding displacement fields were used to extract dynamic stress

intensity factors in the current work. The asymptotic expressions for crack tip displacement

fields for a dynamically loaded stationary crack are given by [72],

ux =
N

∑

n=1
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√
2π

{

κ cos
n

2
θ − n

2
cos

(n

2
− 2

)

θ +
{n

2
+ (−1)n

}

cos
n

2
θ

}

+
N

∑

n=1

(KII)n
2µ

rn/2

√
2π

{

κ sin
n

2
θ − n

2
sin

(n

2
− 2

)

θ +
{n

2
− (−1)n

}

sin
n

2
θ

}

, (5.4)
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Figure 5.5: Crack opening and sliding displacements (in mm ) for pre- and post-crack
initiation instants. (a) v-displacement and (c) u-displacement before crack initiation (at
t=150 µs); (b) v-displacement and (d) u-displacement after crack initiation (t=220 µs).
Crack initiation time ∼ 175 µs. (A large rigid body displacement can be seen in (c) an (d)
due to movement of the sample.
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In the above equations, ux and uy are crack sliding and opening displacements, (r, θ)

are crack tip polar coordinates, κ is (3 − ν)/(1 + ν) for plane stress where µ and ν are

shear modulus and Poisson’s ratio, respectively. The coefficients (KI)n and (KII)n of the

leading terms (n = 1) are the mode-I and mode-II dynamic stress intensity factors (SIF),

respectively. Equations (5.4-5.5) implicitly assume that inertial effects enter the coefficients

while retaining the functional form of the quasi-static crack tip equation. However, once

the crack initiates, asymptotic expressions for crack sliding and opening displacement fields

for a steadily propagating crack are used [85]:
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, (5.6)

uy =
N

∑

n=1

(KI)nBI(C)

2µ

√

2

π
(n+ 1)

{

− β1r
n/2
1 sin

n

2
θ1 +

h(n)

β2
r
n/2
2 sin

n

2
θ2

}

+
N

∑

n=1

(KII)nBII(C)

2µ

√

2

π
(n+ 1)

{

β1r
n/2
1 cos

n

2
θ1 +

h(n̄)

β2
r
n/2
2 cos

n

2
θ2

}

, (5.7)

where

rm =
√

X2 + β2
mY

2, θm = tan−1
(

βmY

X

)

m = 1, 2
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β1 =

√

1 −
(

c

CL

)2

, β2 =

√

1 −
(

c

CS

)2

CL =

√

(κ+ 1)µ

(κ− 1)ρ
, CS =

√

µ

ρ
, κ =

3 − ν

1 + ν
for plane stress

h(n) =















2β1β2

1+β2

2

for odd n

1+β2

2

2 for even n

h(n̄) = h(n + 1)

BI(C) =
1 + β2

2

D
, BII(C) =

2β2

D
, D = 4β1β2 −

(

1 + β2
2

)2
. (5.8)

Here (X, Y ) and (r, θ) are crack the tip Cartesian and polar coordinates instantaneously

aligned with the current crack tip (see, Fig. 5.5(b)) and c is the speed of the propagating

crack tip, CL and CS are dilatational and shear wave speeds in the material, µ and ν are

shear modulus and Poisson’s ratio, respectively. Again, coefficients (KI)n and (KII)n of

the leading terms are the mode-I and mode-II dynamic stress intensity factors, respectively.

For a mode-I problem uy is the dominant in-plane displacement and hence used for

extracting mode-I SIF history. However, in a mixed-mode problem, both ux and uy dis-

placements can be equally important. It can be thought that crack opening displacement

uy as having mode-I rich information whereas sliding displacement ux as having mode-II

rich information. Therefore, one can use uy to extract KI and ux to extract KII accurately.

On the other hand, one can use either radial (ur) or tangential (uθ) displacements (com-

puted by transforming ux and uy) to extract both KI and KII together more accurately

compared to using ux and uy alone. Following Yoneyama et al.[86] who have demonstrated

this recently, in the current work the radial displacement component ur was used to extract

both KI and KII histories.
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For extracting SIF from displacement data, the current crack tip location was identified

and the Cartesian and polar coordinate systems (X − Y and r− θ) were established at the

crack tip. A number of data points (usually 100 to 120) were collected in the region around

the crack tip (0.3 < r/B < 1.6) and (−145o < θ < 145o) where B is the sample thickness

and ux and uy displacement values as well the location of these points were stored. Next

ux and uy were transformed into ur and uθ as,









ur

uθ









=









cos θ sin θ

− sin θ cos θ

















ux

uy









. (5.9)

The asymptotic expression for ur also transformed from ux and uy as follows:

urk =

{ N
∑

n=1

(KI)n fIn (rk, θk) +
N

∑

n=1

(KII)n fIIn (rk, θk)

}

cos θk

+

{ N
∑

n=1

(KI)n gIn (rk, θk) +
N

∑

n=1

(KII)n gIIn (rk, θk)

}

sin θk

+Tx cos θk + Ty sin θk, (5.10)

where fIn, fIIn, gIn and gIIn are angular functions from Eqs. 5.4 and 5.5 or 5.6 and 5.7. In

Eq. 5.10 the subscripts ‘n ’and ‘k ’are indices used to represent the number of terms in the

expansion (usually 4 to 5 were found sufficient in this work) and the number of data points

where the displacements were collected. Further, Tx and Ty denote rigid body translations

in the X- and Y -directions, respectively. An over-deterministic least-squares analysis [87]

of the data was carried out for finding KI and KII . This was repeated for all the 32 image

pairs and the stress intensity factor histories were generated.

Figure 5.6 shows SIF histories extracted from displacements. The crack initiation time
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Figure 5.6: Stress intensity factors extracted from displacement fields obtained from image
correlation. SIF history obtained from finite element simulation up to crack initiation is
also shown.

is indicated by a vertical dotted line. Three different plots are presented for both KI

and KII by varying the number of terms in the asymptotic series. A good convergence

can be seen from Fig. 5.6 when the number of terms (N = 1, 2, 3) was used in the

expansion. Both mode-I and mode-II SIFs increase monotonically up to crack initiation at

175 µs. At crack initiation there is a noticeable drop in the magnitudes of both KI and

KII due to elastic unloading near the crack tip. Following initiation at ∼1.0 MPa m1/2, KI

continues to increase until it reaches a value of ∼ 1.8 MPa m1/2 beyond which it shows a

decreasing trend whereas the mode-II SIF, KII , remains close to zero after initiation. The

SIF histories evaluated from experiments are in good agreement with the ones from finite

element computations up to crack initiation. The relative amount of in-plane shear stress

to normal stress near the crack can be quantified by mode mixity ψ = tan−1(KII/KI). The

mode mixity history is plotted in Fig. 5.7. A large negative value for ψ can be seen at initial
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stages after impact indicating the presence of significant negative in-plane shear component

at the crack tip. Just before crack initiation, however, ψ approaches zero suggesting that

crack initiation occurs under dominant mode-I conditions.

Figure 5.7: The mode-mixity, ψ obtained from experiments and finite element simulation.
The broken line corresponds to crack initiation time.

5.4.2 Estimation of strains

Displacements were smoothed by the methodology explained in Section 4.1.3. In order

to smooth the displacement fields, the noise level in the displacement data needs to be

quantified. The following approach was adopted to estimate the same. A random speckle

pattern was imaged twice with the high-speed camera system at the same framing rate as

the used in an actual experiment without deforming the specimen. The full-field u- and v-

displacements were estimated between these two images. Figure A.1 (in Appendix A) shows

u-displacement extracted from such an experiment. Ideally one would expect both u- and
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u- displacements to be zero in the entire field. The displacements, however, oscillates about

zero with some experimental noise. The displacement shown in Fig. A.1 has a standard

deviation of σ = 0.039 pixels and a variance of 0.0019. This value was accepted as the noise

and was used in Eq. 4.9 to estimate the optimum value of the smoothing parameter αs.

Once displacements were smoothed, Lagrangian strains,

ǫxx =
∂u

∂x
+

1

2

{(

∂u

∂x

)2

+

(

∂v

∂x

)2}

(5.11)

ǫyy =
∂v

∂y
+

1

2

{(

∂u

∂y

)2

+

(

∂u

∂y

)2}

(5.12)

ǫxy =
1

2

{

∂u

∂y
+
∂v

∂x

}

+
1

2

{

∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

}

, (5.13)

were obtained by differentiating displacements. (The use of higher order terms did not

affect the results significantly in this work.) The crack tip normal strains obtained using

this methodology are shown in Fig. 5.8(a) at time t = 150 µs after impact. Normal strain

contours from finite element results at t = 150 µs is also shown in Fig. 5.8(b). To facilitate

direct comparison, an increment of roughly 132 µǫ was chosen between each contour level

in both these plots. Since the accuracy of measured strains range between 150 to 300 µǫ,

lower strain levels are relatively inaccurate. Typical mixed-mode normal strain contours,

concentrated around the crack tip can be seen in these figures. A severe concentration of

strain contours around the crack tip is seen in Fig. 5.8(a). Further, a qualitative similarity

between the strain contours obtained from the experiments and finite element simulations

exist in Figs. 5.8(a) and (b).
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Figure 5.8: Crack tip normal strains (in micro strains) at t = 150 µs. (a) from experiment
and (b) From FEA. Crack initiation time = 175 µs.

5.5 Results - Mode-I dynamic fracture of epoxy

Figure 5.9 shows four selected speckle pattern images from the deformed set of 32

images. The time instant at which the images were recorded after impact is indicated below

each image and the current crack tip is denoted by an arrow. The position of the crack tip is

plotted against time in Fig. 5.10. It can be seen from this figure that the crack initiates at

about 133 µs. Also plotted is the crack speed history obtained by numerically differentiating

crack length history using a central difference scheme. It can be noted from this figure that

upon initiation, crack rapidly accelerates to ∼ 350 m/s and subsequently propagates at a

relatively steady velocity of 250 m/s. The magnification used in this experiment was such

that the size of a pixel was 31 µm on the specimen. A sub-image size of 30 × 30 pixels

was chosen for image correlation. The 2D in-plane displacements were estimated for all the

32 image-pairs. The crack opening displacement, v, and sliding displacement, u, for two

sample images (one before crack initiation and one after) are shown in Fig. 5.11. Figures
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Figure 5.9: Acquired speckle images of 31 × 31 mm2 region at various times instances.
Current crack tip location is shown by an arrow.

5.11(a) and (c) show v- and u-displacements at 120 µs after impact and Figs. 5.11(b) and

(d) show the corresponding displacement components at t = 151 µs after impact. These are

smoothed values of displacements (aspects of smoothing were discussed in section 4.1.3).

A dominant mode-I crack opening displacement field can be noticed from Figs. 5.11(a)

and (b). A significant amount of rigid body displacement component can be seen from the

u-field (Figs. 5.11(c) and (d)). In the current work, the displacements were resolved to an

accuracy of 2 to 6% of a pixel. Therefore the accuracy of the displacement components in
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Fig. 5.11 is in the range 0.6 to 1.8 µm. The entire history of crack opening displacement

(uy) is given in Appendix A.

Figure 5.10: Crack growth behavior in epoxy sample under mode-I dynamic loading. Crack
length history and crack speed history

5.5.1 Extraction of stress intensity factors

Since crack opening displacement, uy being the dominant displacement component for

a mode-I test, only Eq. 5.5 or 5.7 is sufficient to extact the SIFs. However, for mode-I tests,

T -stress was also extracted from displacements. Therefore Eq. 5.5 is written in a different

form as

uy = A0(t)
r1/2

µ
sin

θ

2

(

2

1 + ν
− cos2 θ

2

)

− νB0(t)

µ(1 + ν)
r sin θ

−C0(t)
r1/2

µ
cos

θ

2

(

1 − ν

1 + ν
− sin2 θ

2

)

− D0(t)

µ(1 + ν)
r cos θ

+Pr cos θ +Qr sin θ + Cr0 +O(r3/2). (5.14)

In the above equation, (r, θ) are crack tip polar coordinates and µ, ν are shear modulus

and Poisson’s ratio of the material. Also, A0, B0, C0, D0 P, Q, C are constant coefficients
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Figure 5.11: Crack opening and sliding displacements (in µm ) for pre- and post-crack
initiation instants. (a) v-displacement and (c) u-displacement before crack initiation (at
t = 120 µs); (b) v-displacement and (d) u-displacement after crack initiation (t = 151 µs).
Crack initiation time ∼ 133 µs.
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of the asymptotic expansion. The mode-I and mode-II dynamic stress intensity factors

KI(t) and KII(t) are related respectively to the constants A0 and C0 as KI(t) = A0

√
2π

and KII(t) = C0

√
2π. The quantity 2B0 is the so-called T -stress. In Eq. 5.14, the first two

terms represent symmetric deformations (mode-I), third and the fourth terms represent anti-

symmetric deformation (mode-II), fifth, sixth and seventh terms are to account for rotation

and rigid body translations. Equation 5.14 implicitly assumes that inertial effects enter

the coefficients while retaining the functional form of the quasi-static crack tip equation.

However, once the crack initiates, Eq. 5.7, which is valid for a steadily propagating crack,

is used.

The stress intensity factors were extracted by performing over-deterministic least-

squares analysis as explained in the section 5.4.1. The crack opening displacement field

obtained from DIC superposed with the ones obtained from least-squares fit of SIF solution

is shown for two time instants (one before crack initiation and one after) in Fig. 5.12. The

synthetic contours are plots of Eq. (5.14) in Fig. 5.12(a) and Eq. (5.7) in Fig. 5.12(b) with

only K-dominant terms. The least-squares fit considering K-dominant solution shows a

good agreement with the experimental data. Figure 5.13 shows SIF history extracted from

displacements. The crack initiation time is indicated by a vertical dotted line. The mode-I

SIF, KI , increases monotonically up to crack initiation at 133 µs. Following initiation at

KI ∼ 1.1 MPa m1/2, SIF continues to increase until it reaches a value of ∼ 1.7 MPa m1/2

beyond which it remains constant. The mode-II SIF, KII remains close to zero within an

acceptable experimental error, as expected for a mode-I experiment. This oscillation of

KII about zero represents errors associated with the evaluation of stress intensity factors

using least-squares method as well as loading asymmetries of the sample. The KI history
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Figure 5.12: Examples showing quality of least-squares fit of displacement data; Crack
opening displacement field (µm) obtained from DIC and synthetic contours for (a) t = 124
µs (before crack initiation) and (b) t = 151 µs (after crack initiation). Crack initiation
time = 133 µs

evaluated from experiments is in good agreement with the ones from finite element compu-

tation up to crack initiation. Once KI and T -stress histories were extracted, the in-plane

constraint β = T
√
πa/KI was also computed and is plotted in Fig. 5.14 along with the one

from finite element method up to crack initiation. A large negative β can be observed at

initial stages which is typical of TPB samples under dynamic loading conditions [77, 88].

Just before crack initiation, β value is about -0.35 which in agreement with authors previ-

ous work [77]. A reasonably good agreement of experimental β with that of finite element

values can also be seen from this figure.
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Figure 5.13: Stress intensity factors extracted from displacement field obtained from image
correlation. SIF history obtained from finite element simulation up to crack initiation is
also shown.

5.5.2 Estimation of strains

The crack tip normal strains obtained using the methodology described earlier are

shown in Fig. 5.15 for the two images, one before and one after crack initiation. Figures

5.15(a) and (b) show ǫyy strain at 120 µs and 151 µs after impact, respectively. Normal

strain contours from finite element results at t = 120 µs is also shown in Fig. 5.15(c). To

facilitate direct comparison, an increment of 140 µǫ was chosen between each contour level

in all these plots. Symmetric mode-I normal strain contours, concentrated around the crack

tip can be seen in these figures. A severe concentration of strain contours around the crack

tip can be seen in Fig. 5.15(a). However, in Fig. 5.15(b), the density of strain contours

moderate around the propagating crack tip. The strain value of a contour at a certain

distance from the crack tip is large in Fig. 5.15(b) compared to the one in Fig. 5.15(a).

This is in agreement with SIF history where KI increases from ∼0.9 MPa m1/2 at t = 120 µs

to ∼1.3 MPa m1/2 at t = 151 µs (Fig. 5.13(a)). In Fig. 5.15(a), tilting of the near-tip strain
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Figure 5.14: Crack tip in-plane constraint, β obtained from experiments and finite element
simulation. The broken line corresponds to crack initiation time.

contours away from the crack tip indicates the presence of negative T -stress component.

However, once the crack initiates and propagates, the T -stress tends to approach zero and

later on become positive in a TPB geometry. Accordingly, strain contours show a smaller

tilt in Fig. 5.15(b). Further, the qualitative similarity between the strain contours obtained

from the experiments and finite element simulation can be readily noted from Figs. 5.15(a)

and (c).
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Figure 5.15: Crack tip normal strains (in micro strains) for pre- and post-crack initiation.
Normal strain ǫyy at (a) t = 120 µs and (b) at t = 151 µs and (c) ǫyy from finite element
analysis at t = 120 µs. Crack initiation time = 133 µs.
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Chapter 6

Numerical procedures for modeling dynamic fracture in FGM

In this chapter, finite element procedures for modeling mixed-mode dynamic crack

propagation in FGM are detailed. Cohesive element formulation and its implementation

in ABAQUS/Standard commercial finite element software under the option of user-defined

element (UEL) is described. Using this option, exponential and bilinear types of traction

separation laws are implemented. The governing equations for elastodynamic simulation

and the associated numerical procedure in ABAQUS/Standard using implicit time integra-

tion are also briefly discussed. Most of the studies reported in the literature use explicit time

integration. But the attractive and easy to implement feature of UEL in ABAQUS/Standard

prompted adopting an implicit time integration scheme in the current work. Generally for

large problems with material nonlinearities, explicit methods are preferred over implicit

methods in view of minimizing the solution cost. However, in the current problem, the only

nonlinearity is from the traction-separation law. For such a mildly nonlinear problem, using

implicit schemes can be justified considering superior convergence rate of Newtons method

in ABAQUS/Standard. Also, developing a user-defined element over using the cohesive

elements provided in ABAQUS 6.5, gives flexibility in terms of applying spatially varying

cohesive element properties to FGM.

6.1 Elastodynamic governing equations

The governing equations for dynamic response of a structure can be derived by requiring

the work of external forces to be absorbed by the work of internal, inertial and viscous forces
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for a small kinematically admissible motion (any small displacement field that satisfies

compatibility conditions as well as essential (kinematic) boundary conditions). Therefore

the governing equation in its weak form (after carrying out variational formulation) can be

written as [89]

{δa}T
[

{

∫

Ve

ρ[N ]T [N ]dV
}

{ü} +
{

∫

Ve

cd[N ]T [N ]dV
}

{u̇} +
{

∫

Ve

[B]T {σ}dV
}

−
{

∫

Ve

[N ]T {F}dV
}

−
{

∫

Se

[N ]T {Φ}dS
}

−
n

∑

i=1

Pi

]

= 0. (6.1)

In this equation, {δa} are small arbitrary displacements, [F ] are body forces, [Φ] are pre-

scribed surface tractions, Pi are concentrated loads. Further, dV and dS are elemental

volume and elemental surface area, respectively, ρ is mass density and cd is material damp-

ing parameter. The integration is carried out over the element volume Ve and surface area

Se. The displacement (which is a function of space and time), velocity and acceleration

fields are given by,

{u} = [N ]{a}, {u̇} = [N ]{ȧ}, {ü} = [N ]{ä}, (6.2)

where [N ] are shape functions and [u] are nodal degrees of freedom. Since {δa} are arbitrary,

by combining Eqs. 6.1 and 6.2, finite element approximation to the equilibrium equation

6.1 can be written as

[m]{ü} + [c]{u̇} + [k]{u} = {rext}. (6.3)

Here [m] and [c] are consistent mass matrix and consistent damping matrix, respectively,

and [k] =
∫

Ve
[B]T [E][B]dV is stiffness the matrix. Further, {rext} is the external force
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vector which is the summation of body forces, surface tractions and concentrated loads.

For an assembled structure, global finite element equations are writen as

[M ]{Ü}n + [C]{U̇}n + [K]{U}n = [Rext]. (6.4)

Here the subscript n denotes n∆t where ∆t is the time step size. The absence of time step

subscripts for matrices [M ], [C] and [K] implies linearity. But for problems with material

nonlinearity, [K] is a function of displacement and therefore of time also. In the current

work, the damping matrix C is not used. The algorithmic damping (Section 6.2) available

from the implicit scheme provides just enough damping for the program to run smoothly.

Direct integration of Eq. 6.4 can be performed by two methods, explicit and implicit.

Explicit methods have the form [89]

{U}n+1 = f({U}n, {U̇}n, {Ü}n, {U}n−1, . . .) (6.5)

and therefore allow {D}n+1 to be determined completely in terms of historical information

of displacements and their time derivatives at time n∆t and before. Whereas implicit

methods have the form

{U}n+1 = f({U̇}n+1, {Ü}n+1, {U}n, {U̇}n . . .). (6.6)

The computation of {U}n+1 requires the information of time derivatives of {U}n+1, which

are unknowns. Therefore iterations need to be performed for achieving convergence to an

acceptable solution for {U}n+1.
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6.2 Implicit integration of dynamic equations in ABAQUS

ABAQUS uses Hilber, Hughes and Taylor (HHT) implicit operator [90] for time inte-

gration in dynamic problems. This operator replaces the actual equilibrium Eq. (6.4) with

a balance of inertial forces at the end of a time step and a weighted average of the static

forces at the beginning and at the end of a time step [91].

[M ](Ü )t+∆t + (1 + αd)
{

(Rint)t+∆t − (Rext)t+∆t

}

− αd

{

(Rint)t − (Rext)t
}

= 0. (6.7)

Here Ü is the acceleration field and αd is a parameter that controls algorithmic damping.

Further, M , Rint and Rext are consistent mass matrix, internal force vector and external

force vectors. The HHT operator uses Newmark formulae for displacement and velocity

integration:

Ut+∆t = Ut + ∆tU̇t + ∆t2
[

(1

2
− β

)

Üt + βÜt+∆t

]

(6.8)

and

U̇t+∆t = U̇t + ∆t

[

(1 − γ)Üt + γÜt+∆t

]

(6.9)

where

β =
1

4
(1 − αd)

2, γ =
1

2
− αd and − 1

3
≤ αd ≤ 0. (6.10)

In this equation, αd is the parameter that controls algorithmic damping. When αd = 0, β

and γ take the vales of 1/4 and 1/2 respectively, which is the requirement for an uncon-

ditional stability of an implicit time integration scheme. With these values, the operator

reduces to a trapezoidal rule without any damping. In the current work, a value of -0.05
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is chosen for αd. This ensures that numerical dissipation is less than 1% of the total en-

ergy which helps to remove the participation of high frequency modal components and yet

maintain good accuracy in the important lower modes.

6.3 Formulation of an element in ABAQUS

Formulation of a user-defined defined element (UEL) in ABAQUS/Standard involves

providing the contribution of the element to the Jacobian matrix and the residual force

vector in a generic nonlinear solution step. Before presenting the details of the UEL im-

plementation, the solution of nonlinear equations in ABAQUS/Standard using Newton’s

method is briefly discussed. Consider the equilibrium equations from the principle of virtual

work. Let, UM
i be the approximate solution after iteration i, and ∆UM

i+1 be the difference

between this solution and the exact solution to the discrete equilibrium equation 6.7 which

can be written as [91],

FN (UM
i + (∆U)Mi+1) = 0. (6.11)

Expanding this equation about the approximate solution uM
i using the Taylor’s series gives

FN (UM
i ) +

∂FN

∂UP
(UM

i )(∆UP
i+1) +

∂2FN

∂UP∂UQ
(UM

i )(∆UP
i+1)(∆U

Q
i+1) + . . . = 0. (6.12)

If the approximation UM
i is close to the actual solution, then the magnitude of ∆UP

i+1 will

be small and hence the third and higher order terms can be neglected to get a linear system

of equations

KNP
i (∆U)Pi+1 = −FN

i (6.13)
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where

KNP
i =

∂FN

∂UP
(UM

i ) (6.14)

is the Jacobian matrix and

FN
i = FN (UM

i ) (6.15)

is the residual vector. The next approximation to the solution is then

UM
i+1 = UM

i + (∆U)Mi+1. (6.16)

In general, for implicit dynamic analysis, the contribution of UEL to the Jacobian matrix

is given by,

KNP
i =

∂FN

∂UP
+
∂FN

∂U̇P

(

dU̇

dU

)

t+∆t
+
∂FN

∂ÜP

(

dÜ

dU

)

t+∆t
(6.17)

where
(

dU̇

dU

)

t+∆t
=

γ

β∆t
,

(

dÜ

dU

)

t+∆t
=

1

β∆t2
, (6.18)

for HHT implicit operator. The term ∂FN/∂U̇M is the user-element’s damping matrix

and ∂FN/∂ÜM is the mass matrix. Since there is no mass and damping associated with

a cohesive element, the last two terms in Eq. 6.17 vanish and only the first term (stiffness

matrix) needs to be provided to the overall system of equations.

6.4 Cohesive element formulation

Figure 6.1(a) shows finite element mesh with embedded cohesive elements along a

potential failure path. The deformed mesh is shown in Fig. 6.1(b). Let A and B be two

coincident material points on a potential crack path in the undeformed configuration. (see
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Figure 6.1: (a) Undeformed and (b) deformed finite element mesh near a notch tip, (c)
Schematic showing separation of nodes in a cohesive element and (d) local and global
coordinate system used for a cohesive element.

Figs. 6.1(a) and (c)). As deformation occurs, the new positions of these points be A
′

and

B
′

as shown in Fig. 6.1(c). Let ∆n and ∆t be the normal and tangential components of

separation between points A
′

and B
′

. Let a cohesive element shown in Fig. 6.1(b) and (c)

be present on this potential crack path. Then the separation in the X- and Y -directions at
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a Gauss point can be computed from nodal displacements [U ] available from ABAQUS









UX

UY









= [N ][U ], (6.19)

where

[N ] =









N1 0 N2 0 −N2 0 −N1 0

0 N1 0 N2 0 −N2 0 −N1









(6.20)

and

[U ] = [U1 V1 U2 V2 U3 V3 U4 V4]
T . (6.21)

HereN1 = (1−ξ)/2 andN2 = (1+ξ)/2 are linear shape functions and ξ = ±1/
√

3 is the sam-

pling location. The length of a cohesive element is given by le =
√

(X2 −X1)2 + (Y2 − Y1)2.

The tangential and normal separations are given by,
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, where [Q] =









cos θ sin θ

− sin θ cos θ









. (6.22)

6.4.1 Exponential traction-separation law

Once separations are computed in a cohesive element, the next step is to evaluate trac-

tions arising due to these separations. This needs a constitutive law for the cohesive surface.

In this section, a phenomenological mechanical relation between traction and displacement

jumps across the cohesive surface is considered to be in the form of an exponential relation

[58]. The traction vector T = (Tn, Tt) at the cohesive surface is derived from an interfacial
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potential given by Xu and Needleman [58]

T =
∂φ

∂∆
(6.23)

with ∆ = (∆n,∆t), and

φ(∆n,∆t) = φn + φne
−∆n

δn

[

{

1 − r +
∆n

δn

}{1 − q

r − 1

}

−
{

q +
(r − q

r − 1

)∆n

δn

}

e
−

∆
2
t

δ2
t

]

, (6.24)

where δn and δt represent characteristic separations (maximum values of ∆n and ∆t) in such

a way that Tn(δn) = σmax and Tt(δt/
√

2) = τmax. Further, q = φt/φn and r = ∆∗
n/δn, where

∆∗
n is the value of ∆n when complete shear separation has taken place without resulting

in normal tension (Tn = 0). In the current work, q is assumed as one and r as zero. The

expressions for normal and shear tractions can be obtained by differentiating φ with respect

to ∆n and ∆t,

Tn =
φn

δn
e(−

∆n
δn

)
[

∆n

δn
e
(−∆

2
t

δ2
t

)
+

1 − q

r − 1

{

1 − e
(−∆

2
t

δ2
t

)}{

r − ∆n

δn

}]

, (6.25)

Tt = 2

(

φn∆t

δ2t

){

q +

(

r − q

r − 1

)

∆n

δn

}

e(−
∆n
δn

)e
(−∆

2
t

δ2
t

)
. (6.26)

In the above equation, φn is the work of normal separation, φt is the work of tangential

separation. They represent the amount of work needed for complete separation. This can

be seen for q = 1, r = 0, and assuming that Tn = Tn(∆n,∆t = 0), Tt = Tt(∆n = 0,∆t), for

which case uncoupled tractions are obtained. Using Tn(δn) = σmax and Tt(δt/
√

2) = τmax,

the following relations

φn = e σmax δn, φt =

√

e

2
τmax δt, (6.27)
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are obtained for φn and φt. Here σmax and τmax are cohesive surface normal strength and

shear strength, respectively. The normalized traction curves for uncoupled separations are

shown in Fig. 6.2. The variation of pure normal traction (in the absence of tangential

separation, ∆t = 0) with normal separation is shown in Fig. 6.2(a). Similarly, the variation

of tangential traction with tangential separation (in the absence of normal separation, ∆n =

0) is shown in Fig. 6.2(b). In these figures, the tractions are normalized with respect

to their maximum values (σmax and τmax). The normal traction monotonically increases

with normal separation until a maximum value is reached at δn. After that cohesive force

decreases until the cohesive zone no longer has any stiffness in the normal direction. When

the normal separation becomes negative (interpenetration), the traction rapidly becomes

more negative to discourage inter-penetration. The shear tractions do not show such a

variation. The tangential separation in the negative direction results in shear traction in

the negative direction.

Figure 6.2: Exponential traction-separation law showing uncoupled loading: variations of
(a) pure normal traction with normal separation and (b) pure tangential traction with
tangential separation.
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In Figs. 6.2, uncoupled relations are illustrated. But in reality, the Eqs. 6.25 and 6.26

are indeed surfaces which are illustrated in Figs. 6.3(a) and (b). In Fig. 6.3(a), it can be

seen that a non-zero value of ∆t causes lower values for the curve Tn(∆n) relation. Similarly

a non-zero value of ∆n results in lower values for the curve Tt(∆t). The expressions for

stiffness coefficients are obtained by differentiating tractions with respect to separations.

The details for the same are provided in Appendix B.

Figure 6.3: Exponential traction-separation law showing coupled loading: variations of (a)
normal traction and (b) tangential traction.

6.4.2 Bilinear traction-separation law

The exponential traction-separation law (TSL) has continuous normal to the traction

surface and hence easy to implement. However, the initial slope of the traction-separation

surface can not be changed for a given set of values of cohesive properties. This introduces an

artificial compliance into the finite element model and results in overall structure becoming

softer than what it actually is. In case of bilinear TSL, the initial slope can be adjusted (to

be discussed in section 7.4.2). Thereore in this work, bilinear TSL is chosen and its initial

slope is set to a very high value so that the artificial compliance effects are minimized.
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After evaluating normal and tangential separations (as explained in section 6.4), a

non-dimensional effective separation parameter λ is computed by,

λ =

√

(

∆n

δn

)2

+ β2
c

(

∆t

δt

)2

. (6.28)

Here δt and δn are critical values of tangential and normal separations respectively. The

parameter β2
c = GIIC/GIC is the ratio between mode-I and mode-II fracture energies. At

time t = 0, λ takes the value of zero. As the cohesive element separates, λ increases in

magnitude and attains a value of unity when the separation complete.

The variation of pure normal traction (in the absence of tangential separation, ∆t = 0)

with normal separation is shown in Fig. 6.4(a). Similarly, the variation of tangential traction

with tangential separation (in the absence of normal separation, ∆n = 0) is shown in Fig.

6.4(b). The critical values of normal and tangential separations are computed by equating

the area under T − ∆ curves to mode-I and mode-II fracture energies,

GIC =
1

2
δnTmax, GIIC = αc

1

2
δtTmax (6.29)

where (αc = β2
c δn/δt) is a parameter coupling normal and shear tractions. Traction-

separation relations for various portions of the triangle are given as follows: For load-

ing/unloading in the range 0 ≤ λ ≤ λcr,

Tt = αc
Tmax∆t

λcrδt
, Tn =

Tmax∆n

λcrδn
. (6.30)
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Figure 6.4: Prescribed bilinear traction-separation law for (a) pure normal traction versus
normal separation and (b) pure tangential traction versus tangential separation.

For loading in the range λcr < λ ≤ 1,

Tt = αc
Tmax(1 − λ)∆t

λ(1 − λcr)δt
, Tt =

Tmax(1 − λ)∆n

λ(1 − λcr)δn
. (6.31)

For unloading/reloading in the range 0 < λ ≤ λ∗ where λ∗ is the maximum value of λ after

which unloading starts,

Tt = αc
Tmax∆t

λ∗δt
, Tn =

Tmax∆n

λ∗δn
. (6.32)

For loading in the range λ∗ < λ ≤ 1,

Tt = αc
Tmax(1 − λ)∆t

λ(1 − λ∗)δt
, Tt =

Tmax(1 − λ)∆n

λ(1 − λ∗)δn
. (6.33)
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The stiffness coefficients are determined by differentiating tractions with respect to separa-

tions as follows. The details can be found in Appendix B.

[SS] =









SS(1, 1) SS(1, 2)

SS(2, 1) SS(2, 2)









=









∂Tt/∂∆t ∂Tt/∂∆n

∂Tn/∂∆t ∂Tn/∂∆n









. (6.34)

6.5 Implementation details

The element stiffness matrix and internal force vector are computed by performing the

usual Gauss-quadrature numerical integration as follows,

[S]e8×8 =

∫ 1

−1
[NT ]8×2 [QT ]2×2 [SS]2×2 [Q]2×2 [N ]2×8

le
2
dξ, (6.35)

and

[P ]e8×1 =

∫ 1

−1
[NT ]8×2 [Q]2×2 [T ]2×1

le
2
dξ. (6.36)

The effect of introducing a user-defined element to the finite element model during a non-

linear analysis step is that the element should provide its contribution to the residual force

vector and the Jacobian matrix to the overall system of equations (see Ref. [91]). In the

current model, since there are no external forces applied to the cohesive elements, the inter-

nal force vector (traction forces developed due to separation) as given by Eq. 6.36 becomes

the residual force vector. Also, since there is no mass associated with cohesive elements, the

stiffness matrix given by Eq. 6.35 becomes the Jacobian matrix. Once these two quantities

are computed and passed as arguments in to ABAQUS, the software internally assembles

these to formulate the global system of equations and solution proceeds with automatic

time stepping.
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The flowchart shown in Fig. 6.5 explains all the steps involved in implementing cohesive

element as user-defined element (UEL) in ABAQUS/Standard. Using the nodal coordinates

available from ABAQUS, length and orientation of an element are computed, transformation

matrix from local element coordinate system to global Cartesian system is established. From

nodal coordinates, shape functions and Gauss point sampling locations are established.

Using nodal displacements, tangential and normal separations are computed. Then damage

λ is computed from Eq. 6.28. If λ ≥ 1, then the element is said to have failed and subroutine

is exited. Otherwise, tractions are evaluated as explained in section 6.4 and internal force

vector is computed. The stiffness coefficients are computed as explained in Appendix B and

numerical integration is carried out to compute element stiffness matrix.

6.6 Implicit dynamic scheme and time step control

To integrate the equations of motion, implicit time integration is adopted which uses

Hilber, Hughes and Taylor implicit operator [90]. It should be noted that implicit time

integration adopted here is unconditionally stable and does not have a stable step size.

However, the time step size has to be small enough to capture the transient effects of the

problem. The corresponding stable time step size in an explicit dynamic analysis is the time

taken by the dilatational wave to travel through the smallest element in the mesh, which is

∆t ≤ Lc

CL
, (6.37)
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Figure 6.5: Steps involved in implementing a cohesive element as user-defined element in
ABAQUS

where Lc is the smallest continuum element length in the mesh (∼ 230 µm in the current

work) and CL, the dilatational wave speed in FGM,

CL(x) =

√

E(x)

(1 + ν(x))(1 − ν(x))ρ(x)
, (6.38)

for plane stress. Here E(x), ν(x) and ρ(x) denote elastic modulus, Poisson’s ratio and mass

density of the material at a location x. The maximum value of CL for the FGM under
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consideration is 2580 m/sec at the stiffer side of the sample. Therefore, the minimum value

for ∆t is ∼ 90 ns. However, it should be noted that implicit solutions are accurate even

if the time step size is several orders of magnitude larger than the corresponding stable

time step size of the explicit method. In view of this, the upper limit for the time step

was set to 200 ns but once the crack initiation occurred, the program internally chose time

increments as low as 40 ns. Following values were used for convergence control parameters

in ABAQUS/Standard (see Ref. [91] for details). The half step residual tolerance =20, the

ratio of largest residual to the corresponding average force norm (Rα
n) = 0.005 and the ratio

of the largest solution correction to the largest corresponding incremental solution value

(Cα
n ) = 0.01.
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Chapter 7

Numerical simulation of mode-I and mixed-mode dynamic fracture in FGM

In this chapter, details mixed-mode dynamic crack growth simulations in function-

ally graded materials are provided. Modeling aspects and application of graded material

properties to the finite element model are explained. Simulations are carried out for two

configurations, a crack on the compliant side and a crack on the stiffer side of the sample,

as explained in Chapter 2. The crack opening displacement and crack tip normal stress

histories are presented. Crack path histories are compared with those observed from exper-

iments presented in Chapter 2. The finite element simulations of mode-I dynamic fracture

of FGM samples made out of syntactic foam material are discussed in Appendix C.

7.1 Modeling aspects

The finite element mesh used in the analysis is shown in Fig. 7.1(a). In mixed mode

dynamic crack growth simulations, the crack path is not known a priori. Therefore cohesive

elements were dispersed in a region where crack propagation is anticipated to occur. There-

fore, based on experimental observations, the domain to be discretized was divided into

two parts, region 1 in which crack propagation was not anticipated to occur and region 2

where crack propagation was likely to occur (see Fig. 7.1(b)). The region 1 was discretized

with three node 2D plane stress continuum elements in ANSYSTM commercial finite ele-

ment software. The region 2 was discretized using three node plane stress elements with

four node cohesive elements dispersed along their boundaries. A computer program was

written in MATLABTM environment to generate the necessary mesh. Thus, the boundary
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Figure 7.1: (a) Overall view of the finite element mesh used for the analysis (b) Magnified
view of mesh showing region 1 and region 2 (c) Enlarged view of the mesh at the interface
where the elements from region 1 and region 2 meet.
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of every triangular element is a potential crack path. These two mesh patterns were joined

by merging the nodes selectively along their boundaries in ANSYS. Dispersion of cohesive

elements increases node count dramatically. The model contained roughly 117,000 nodes

and 125,000 elements.

It is necessary to ensure that the smallest element used in the mesh is less than the

characteristic cohesive length δ so that mesh sensitive results are not obtained. The size

of the cohesive zone can be determined from Dugdale and Barrenblatt model [55, 56] for

a mode-I crack according to which cohesive stress takes a constant value of Tave up to a

critical opening displacement of δn and vanishes thereafter. The size of the cohesive zone

is given by [93, 94]

δ =
π

8

E

1 − ν2

GIC

T 2
ave

. (7.1)

Here E is the elastic modulus, GIC is the mode-I fracture energy and Tave = Tmax/2, with

Tmax being the peak stress in a bilinear traction-separation law. A lower bound estimate was

made by substituting 4 GPa, 0.49 N/mm and 60 MPa for E, GIC and Tmax, respectively.

The value for δ so obtained is ∼ 900 µm. The smallest cohesive element size in this work

was ∼ 230 µm, roughly one-fourth of the characteristic cohesive length.

While conducting experiments, the FGM samples were initially rested on soft putty

blocks (∼7 mm thick) placed on supports when impact occurred. This was to preclude

support reactions affecting the fracture behavior of the sample. Accordingly the sample

was modeled as a free-free bean. The mass of the impactor was large compared that of

the sample. Therefore a constant velocity of 5 m/s was imposed on a node located at the

impact point.
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7.2 Application graded material properties to continuum elements

One of the important aspects in finite element modeling of FGM is the implementation

of spatially varying material properties. Anlas et al.[95] and Kim and Paulino [96] have

developed graded finite elements in order to apply smoothly varying material properties.

Rousseau and Tippur [15] used an alternative method to introduce the required spatial

variation of material properties using the readily available elements in commercial finite

element softwares. Since simulations in the current work were conducted using ABAQUS,

it is natural to think of using a user-defined element (UMAT) to apply spatial variations

of material properties as done previously by Giannakopoulos and Suresh [93] under static

conditions. However, it should be noted that for a dynamic simulation, imposing spatial

variation of mass density is also necessary. To authors’ knowledge, this is not possible in

ABAQUS by using the UMAT option. Therefore in this work, the method suggested by

Rousseau and Tippur [15] was extended to mixed-mode crack growth simulation.

Consider the finite element model shown in Fig. 7.2(a). Here it is required to apply the

variation of material properties (elastic modulus, mass density and Poisson’s ratio) along the

height of the sample W . These variations were assumed to be linear as an approximation.

In the first step, an uncoupled thermal analysis was conducted with temperature boundary

conditions, T = Ta at the bottom edge and T = Tb at the top edge. No convective

boundary conditions were imposed so that temperature variation from Ta to Tb across the

width W occurred only through conduction. It should be noted here that as for as thermal

analysis is concerned, the elements in region 2 (where the cohesive elements are present)

are disconnected and no heat flow occurs in this region. In order to overcome this difficulty,

first all the cohesive elements were converted into thermally conductive elements (DGAP
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in ABAQUS). That is, each four-noded cohesive element was converted into two two-noded

DGAP elements. (To be more specific, in Fig. 7.2(b), nodes 1 and 2 are tied to make the first

DGAP element and nodes 3 and 4 are tied to make the next element and so on). Next, for

DGAP elements, a high value of thermal conductance was assigned. This was to ensure that

these elements act as good conductors of heat and both nodes attain the same temperature

values. The resulting linearly varying nodal temperature variation following the thermal

analysis is shown in Fig. 7.2(a). In the second step, for performing structural analysis using

implicit dynamic procedure in ABAQUS/Standard, nodal temperatures from the thermal

analysis were imported as initial conditions to the model. When nodal temperatures are

applied as boundary conditions, ABAQUS applies them in a ramped fashion over the entire

time step and is undesirable. (For a static analysis, however, it does not matter whether

temperature field is applied as boundary condition or as an initial condition but for a

dynamic analysis, one has to ensure that nodal temperature values remain same throughout

the time step.) Now by applying the temperature dependant material properties to the

model, a linear variation of elastic modulus and mass density across the sample width W

was achieved. Any spurious thermal stresses resulting from the temperature field were

avoided by setting thermal expansion coefficient to zero throughout the analysis.

7.3 Application of material properties to cohesive elements

There are five independent properties to be specified for cohesive elements. They

are mode-I fracture energy (GIC), the peak cohesive stress (Tmax), the damage parameter

corresponding to the peak stress (λcr), the ratio between mode-II and mode-I fracture

energies (related to β2
c ) and the parameter coupling the normal and shear tractions (αc).
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Figure 7.2: (a) Nodal temperature results from thermal analysis, (b) magnified view of the
cohesive element region.

In order to model cohesive elements in FGM realistically, spatial variations of GIC and

Tmax have to be incorporated into the model. The spatial variation of KICR(X) is available

from Fig. 3.4(c) from which GIC(X) = [KICR(X)]2/E(X) for plane stress conditions was

computed. The peak value of the cohesive stress is assumed to be E(X)/100. There is no

established experimental rationale for selecting this value. For example, Xu and Needleman

[58] have used E/10 in case of PMMA whereas Camacho and Ortiz [65] have used E/200 for

ceramics. Accordingly, several simulations were carried out in the current work by varying

the peak stress in the range E(X)/50 to E(X)/100 and the results did not show any

significant difference in terms of crack path. The choice of Tmax is relatively unimportant

as long as the artificial compliance is minimum in the model. This can be ensured by

specifying a high initial stiffness to the cohesive elements (λcr = 0.01). The parameter βc

and αc were chosen as follows. A mixed-mode dynamic fracture experiment, carried out
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by the authors [31] on a homogeneous sample under similar experimental conditions (same

impact velocity, specimen dimensions, etc.) was used to benchmark the current model. The

crack position history was available for this experiment. Therefore simulations were carried

out by changing αc and βc values until a close agreement was achieved between the crack

path histories obtained from simulations and experiments. The resulting parameters αc and

βc thus chosen were 1.0 and 1.5, respectively. The crack paths observed in experiments as

well as in simulations are shown in Fig. 7.3. Evidently, the initial kink angle observed is ∼

8.5o in the simulations which compares well with the one (∼ 10o) observed in experiments.

Figure 7.3: Mixed mode dynamic fracture of plxiglas sample. (a) Crack path observed in
experiments and (b) initial crack path from finite element simulations

In this work, the variation of KICR and E over the sample width was approximated

by linear functions. Thus, cohesive element properties for the specimen in Fig. 3.1(a) were
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applied in a linearly decreasing fashion as,

K1CR = 2.2 − 2.2 − 1.4

43
X, 0 ≤ X ≤ 43mm (7.2)

and

E(X) = 10.0 − 10.0 − 4.0

43
X, 0 ≤ X ≤ 43mm. (7.3)

The fracture energy and peak cohesive stress were applied as,

GIC(X) =
K2

ICR(X)

E(X)
, Tmax(X) =

E(X)

100
. (7.4)

The centroidal location of each cohesive element was calculated and the graded cohesive

properties were applied according to Eq. 7.4. Similarly, for the other configuration (E1 <

E2) where the crack is situated on the compliant side of the sample, properties were applied

using linearly increasing functions.

7.4 Results

The simulations were carried out with material properties applied to continuum and

cohesive elements as explained in the previous section. An impact velocity of 5 m/sec was

specified to the node located at the impact point.

7.4.1 Energy computations

Additional insight can be gained about the difference in fracture behaviors of the two

FGM configurations by studying the evolution of energy during dynamic simulations. At

any time instant during the simulation, the total energy needs to be balanced. That is the
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sum of all the internal energies need to be equal to the external work done on the system.

Mainly three types of energies can be identified here, kinetic energy (UKE), strain energy

(USE) and the energy absorbed by cohesive elements (UCE) which in turn consists of two

parts, the energy stored in the cohesive elements and the fracture energy. The external work

was computed by multiplying impact load with the load point displacement throughout the

history (in the current work, since displacement at the impact point was specified, the

resulting nodal force was multiplied by the displacement). Evolution of UKE and USE are

shown in Fig. 7.4(a). A rapid increase in kinetic energy for the case of E1 < E2 is attributed

to the motion of denser material at the upper part of the sample. On a similar note, strain

energy is stored rapidly for this case compared to the E1 > E2 case since stiffer material is

located near the impact point. After about 90 µs, for E1 < E2 (120 µs for E1 > E2), the

stored strain energy is gradually converted into fracture energy. The energy absorbed by

the cohesive elements is shown in Fig. 7.4(b). Initially a small portion of the total energy

gets stored in the cohesive elements which cause a slow increase of UCE up to 120 µs. A

sudden change in the slope of UCE curves at about 125 µs indicates the crack initiation

event after which the fracture energy becomes a major portion of UCE . More importantly, it

can be observed from this plot that more energy is absorbed throughout the loading history

by the cohesive elements for the case of E1 < E2. This can be directly linked to the higher

crack speeds observed in experiments as well as in simulations for this configuration.

7.4.2 Effect of the initial slope of traction-separation law

The cohesive elements are known to introduce artificial compliance [18, 61] into the

finite element models and often results in undesirable numerical artifacts. This is especially
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Figure 7.4: Evolution of different energy components in dynamic simulation for both FGM
configurations: (a) kinetic energy and strain energy and (b) energy dissipated by cohesive
elements
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true when a large number of cohesive elements are dispersed in the model as in the current

work. In order to realistically simulate the problem on hand, these artifacts have to be

minimized. Therefore, a cohesive law having a stiff response initially was required. The

initial slope of the traction-separation law can be changed in the bilinear model rather easily

and hence it is used in the current work. Simulations were conducted to study the effects of

introducing cohesive elements into the model. The geometry considered for this study was

same as the one shown in Fig. 7.1(a) except that it did not have a crack. Two beam models

were created without a crack, first one with cohesive elements (in region 2) and continuum

elements (in region 1), as shown in Fig. 7.1(b). The second model had only continuum

elements and no cohesive elements. The material properties in each case were E = 4.2

GPa, ν = 0.34, ρ = 1175 kg/m3 and loaded with an impact velocity of 5 m/sec. Several

simulations were conducted (up to 100 µs after impact) by changing the initial slope of the

traction separation law (λcr in the range 0.05 to 0.005). The crack opening displacement,

uy and stress, σy histories (with respect to the coordinate system shown in Fig. 7.1(b))

were collected at a node located at the middle of the bottom edge of the sample from both

the models.

The uy-displacement history is shown in Fig. 7.5(a). For an initial duration of 25 µs,

there are no noticeable displacements because stress waves have not reached the bottom edge

of the beam yet. Upon the arrival of stress waves at the bottom edge, uy monotonically

increases up to 100 µs. From Fig. 7.5(a), it can be seen that the effect of introducing

cohesive elements on displacements is relatively small. By comparing uy values at 100 µs,

a maximum of 4 % difference between models without and with cohesive elements having

λcr = 0.005 can be noted. The σy history is compared between models with and without
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cohesive elements in Fig. 7.5(b). The artificial compliance effect, however, can be seen here

for larger values of λcr. For example, when λcr = 0.05, the difference in σy between the two

models is about 16 %. This difference decreases as λcr is decreased and stress histories for

λcr = 0.005 are quite close to the model without any cohesive elements. Also it should be

noted that there seems to be no significant gain in reducing λcr beyond 0.01 (the difference

in σy between the two models is 5.8 % when λcr = 0.01 and 4.5 % when λcr = 0.005).

Therefore a value of λcr = 0.01 was selected throughout this work.

Figure 7.5: Effect of initial slope of the traction-separation law on (a) displacement and
(b) on stress results in elastodynamic simulation
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7.4.3 Crack path history

Figures 7.6(a) and (c) show snapshots of crack tip normal stress before and after crack

initiation, respectively, for the case of a crack on the compliant side (E1 < E2) of the beam.

Similar results for the opposite configuration (E1 > E2) are shown in Figs. 7.6(b) and (d).

The crack initiation times in simulations are nearly same for both the configurations (129 µs

for E1 < E2 and 130 µs for E1 > E2). The similarity in crack paths between the experiments

and simulations can be seen for the initial ∼ 9 mm of crack growth by comparing figures

7.6(b) with 3.9(a) and 7.6(d) with 3.9(b). When the crack is situated on the compliant side

(E1 < E2) it grows almost like a mode-I crack (crack kink angle α is ∼ 2.4o in simulations

against 4o in experiments). For the opposite configuration (E1 < E2), the kink angle α is

∼ 17o in simulations and 16o in experiments. It should be noted here that only qualitative

comparison of crack path can be made between experiments and simulations because the

crack can grow only along element interfaces (in zigzag fashion) in the model. The stress

levels are higher at the beginning for E1 > E2 and they tend to decrease after initiation

since crack grows into a progressively compliant region. The opposite trend is observed

for the other configuration where lower stresses are seen before crack initiation and they

increase after the initiation. Figure 7.7 shows snapshots of crack opening displacements

at two time instants, one before and one after the crack initiation. Typical crack opening

displacement fields for a mixed-mode problem can be seen from Figs. 7.7(a) and (c). As

expected, prior to crack initiation, larger displacements are seen for the case of E1 < E2

compared to the one with E1 > E2. Upon comparing Figs 7.7(b) and (d), it can be said that

displacements rapidly increase for E1 > E2 configuration when compared to the E1 < E2

configuration since the crack grows into a progressively compliant material in the former.
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Figure 7.6: Snapshots of σyy stress field at two different time instants, (a) 120 µs and (b)
150 µs for E1 < E2 (crack initiation time = 129 µs), and (c) 120 µs and (d) 168 µs for
E1 > E2 (crack initiation time = 130 µs).

The crack length history from experiments and simulations are plotted in Fig. 7.8(a)

and (b) against time t − ti, where ti is the time at crack initiation. In simulations, the

crack initiation takes place at approximately 130 µs for both configurations. This is in

contrast to the experimental results shown in Fig. 7.8(a) where crack initiation time is in

the range 145 µs to 155 µs. This difference is attributed to the fact that in experiments, the

initial crack had a finite root radius of ∼ 150 µm whereas in finite element simulations, it

was modeled as a sharp crack with zero thickness. Therefore, in experiments considerable

amount of energy had to accumulate at the notch tip before the crack initiated. Further, the
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Figure 7.7: Snapshots of uy displacement field at two different time instants, (a) 120 µs
and (b) 150 µs for E1 < E2 (crack initiation time = 129 µs), and (c) 120 µs and (d) 168
µs for E1 > E2 (crack initiation time = 130 µs).

crack propagates at higher speed when it initiates from the compliant side of the sample.

This agrees well with the experiments (higher slope for E1 < E2 in Figs. 7.8(a) and Fig.

7.8(b)). The higher crack speeds lead to greater roughness of the fracture surfaces due to

the formation of micro cracks at the main crack tip and hence greater energy dissipation.
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Figure 7.8: Crack growth behavior in FGM sample under mixed-mode loading. Absolute
crack length history from (a) experiments and (b) finite element simulations, ti is crack
initiation time (ti = 155 µs for E1 < E2 and 145 µs for E1 > E2 in experiments, ti ∼ 130
µs for both E1 < E2 and E1 > E2 in simulations).

7.4.4 T -stress history

In order to understand the marked difference in crack paths for the two configurations,

a measure of in-plane crack tip constraint, T -stress was computed up to crack initiation.

A modified stress difference method [77] was employed where regression of normal stress

difference (σx − σy) ahead of the crack tip was used to find the instantaneous T -stress as

(σx − σy)θ=0 = T +Dr, (7.5)

where D is the higher order coefficient associated with r1 term in the asymptotic expansion

of (σx − σy). It can be seen from Fig. 7.9(a) that (σx − σy) has an excellent linearity in

the range where straight line is fit to the computed data. This process was repeated for all

the time steps to get T -stress history of each FGM configurations. The computed T -stress

history is plotted in Fig. 7.9(b) up to crack initiation for both configurations. A larger
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negative T -stress is observed for the case of E1 < E2. This indicates that crack is likely

to grow in this case in its original direction and has less tendency to kink compared to the

other configuration.

Figure 7.9: (a) Variation of apparent T -stress with crack length at certain time instant
before crack initiation (b) T -stress history up to crack initiation for E1 < E2 and E1 > E2.
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Chapter 8

Conclusions

Mixed-mode dynamic crack propagation in particle filled composites is investigated ex-

perimentally and numerically. A Coherent Gradient Sensing (CGS) optical interferometer

was used to study mixed-mode dynamic failure of functionally graded materials (FGM).

In this technique, the surface slopes (in-plane gradients of out-of-plane displacement) were

measured in real-time and fracture parameters were extracted subsequently. A digital image

correlation method with high-speed digital imaging technology was also developed to study

mixed-mode dynamic failure of syntactic foams. Here, in-plane displacements were mea-

sured and strains and fracture parameters were estimated from the measured displacements.

Experiments were complemented with finite element simulations of mixed-mode dynamic

failure in FGM. Here, a cohesive element formulation was implemented to study formation

of new surfaces in nonhomogeneous materials.

In the first part, the optical method of Coherent Gradient Sensing (CGS) was used to

investigate the mixed-mode fracture behavior of functionally graded materials. The FGM

samples studied were the ones with a continuously varying volume fraction of ceramic filler

particles in a polymer matrix having edge cracks initially oriented along the gradient and

subjected to impact loading. Mixed-mode loading of the crack was generated by impacting

the samples eccentrically relative to the crack plane. The optical method of CGS and

high-speed photography were used to map transient crack tip deformations before and

after crack initiation. Two configurations, one with a crack on the compliant side of a

graded sheet (E1 < E2) and the second with a crack on the stiff side (E1 > E2), were
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examined experimentally. The differences in both pre- and post-crack initiation behaviors

were observed in terms of crack path, crack speed and stress intensity factor histories.

Following conclusions were drawn from the study:

• The crack initiates earlier for the case of a crack on the compliant side of the beam

(E1 < E2) compared to the one with a crack on the stiffer side (E1 > E2). Higher

crack speeds were observed in the latter case compared to the former.

• The crack initiation in both the FGM configurations occurred when KII approached

values close to zero. Yet, during crack growth KII remained at a small negative value

when the crack was on the compliant side but maintained a small positive value when

it was on the stiffer side of the FGM sheet. This raises the possibility of a non-zero

KII during mixed-mode dynamic crack growth in FGM.

• The crack paths differed significantly for the two FGM configurations studied. That

is, the crack kinked less when situated on the compliant side compared to the stiffer

side of the FGM sample.

• The initial crack kink angle was predicted for both the configurations using MTS

criteria based on the SIF values just prior to crack initiation. Thus predicted crack

kink angles agree reasonably well with the observed ones during the early stages of

crack growth.

In the second part of this work, the method of digital image correlation was developed to

the study of transient deformations such as the one associated with a rapid growth of cracks

in materials. Edge cracked polymer beams and syntactic foam samples were studied under

low-velocity impact loading conditions. Decorated random speckle patterns in the crack tip
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vicinity were recorded using an ultra high-speed digital camera at framing rates of 200,000

frames per second. Two sets of images were recorded, one set before impact and another

set after impact. A three-step digital image correlation technique was developed and imple-

mented in a MATLABTM environment for evaluating crack opening/sliding displacements

and the associated strains. In the first step, a 2D cross-correlation coefficient was com-

puted to obtain initial estimates of full-field in-plane displacements. In the second step, an

iterative technique based on nonlinear least-squares minimization was carried out to refine

the estimated displacements from the first step. In the third-step, a regularized restoration

smoothing technique, which smoothes the displacements while allowing for discontinuity of

displacements across the crack faces was developed and strains were computred.

The current work being the first of its kind using a rotating mirror type multi-channel

high-speed digital camera system, calibration tests and procedures were established. A

series of benchmark experiments such as intensity variability test, rigid translation and

rotation tests were conducted and the accuracy of measured displacements and strains are

reported. The accuracy of the measured displacements is in the range 2 to 6 % of a pixel

(0.6 to 1.8 µm) and that of dominant strain is about 150 to 300 micro strain.

Using the developed methodology, mode-I dynamic fracture of epoxy and mixed-mode

dynamic fracture of syntactic foam samples were studied. The crack opening and sliding

displacements and crack tip dominant strain histories from the time of impact upto com-

plete fracture were computed from the speckle images. The crack length and crack speed

histories were evaluated. The dynamic stress intensity factors were extracted by performing

over-deterministic least-squares analyses on crack opening displacements (in case of mode-I

dynamic test) and radial displacement component (in case of mixed-mode dynmaic test).
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The accuracy of estimated displacements and strains are reported. The mode-mixity his-

tory in case of mixed-mode dynamic fracture test and the crack tip T -stress history in

case of mode-I dynamic fracture test are also evaluated. The measurements were in very

good agreement with companion finite element results. The current approach seems to be

a powerful method to investigate dynamic failure events in real time.

In order to understand the marked crack path and other observed differences in fracture

parameters between the two FGM configurations from the first part of this research, finite

element simulations were undertaken in the last part of this dissertation. An intrinsic cohe-

sive element method with bilinear traction-separation laws were used to model mixed-mode

dynamic crack growth. A user subroutine was developed and augmented with ABAQUSTM

(Version 6.5) under the ‘user-defined element ’ (UEL) option to implement the cohesive

elements. The spatial variation of material properties in continuum elements were incor-

porated by conducting a thermal analysis and then applying material properties (elastic

properties, density and crack initiation toughness) as temperature dependant quantities.

The pre-initiation T -stresses were also computed by a modified stress difference method.

The finite element simulations have successfully captured the dominant characteristics

of crack kinking under mixed-mode impact loading conditions. The simulated crack paths

show a greater kink angle when the crack is on the stiffer side of the FGM. The computed

T -stress values prior to crack initiation are more negative when the crack is situated on the

compliant side of the sample indicating a greater likelihood of a crack to grow in its original

direction and has a lower tendency to kink. Also, as in the experiments, higher crack

speeds occur when the crack initiates from the compliant side of the FGM. The computed

energy histories reveal greater energy dissipation throughout the observation window by the
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cohesive elements for the case of a crack on the compliant side of the FGM. Since higher

crack speeds are accompanied by greater fracture surface roughness due to micro-cracking

in dynamic fracture events, this observation supports experimental observation of higher

crack speed when a crack initiates from the compliant side of the sample.

8.1 Future Directions

The FGM samples used in this research have a shallow gradient (variation in elastic

modulus was ∼2.5 fold 43 mm). The specimens with large material gradients need to be

tested experimentally. They are likely to absorb more energy and may delay crack initiation

if the initial crack is oriented appropriately with respect to the property gradients). In this

work, fracture parameters were extracted for mixed-mode dynamic fracture experiments by

measuring transient surface deformations using CGS interferometer. This approach can be

extended to a bimaterial systems where the crack is situated close to an interface or the

crack running into an interface at an arbitrary angle.

The digital image correlation technique combined with ultra high-speed imaging tech-

nology developed in this work promises to be a powerful tool for measuring transient de-

formations. With the rotating miror type high-speed digital camera system, displacements

as small as 2 to 6% of a pixel have been measured. This can be applied to a number

of applications. For example, to understand the dynamic failure characteristics of fiber

reinforced composites, cellular materials subjected to stress wave loading, for developing

fundamental understanding of nonlinear deformation in rubber like materials subjected to

transient loading, to study the damage casued by blast, detonation and shock wave loading

in military applications, to name a few.
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As a first step, the cohesive element modeling implemented with ABAQUS can be

modified to simulate some interesting problems such as interaction of crack with a cylindri-

cal/spherical inclusions. This has great practical applications in understanding toughening

mechanisms in particle reinforced composites. As a next step, the cohesive element model

can be incorporated with representative volume elements (RVE) for multi-scale modeling of

the failure of novel materials such as syntactic foams. The simulation of crack propagation

using the current implementation of cohesive element model is computationally intensive.

In order to overcome this, an extended finite element method (X-FEM) (which enriches

the regular elements selectively with discontinuous shape functions) can be implemented in

ABAQUS environment.
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Appendix A

A note on accuracy of strains and time resolved displacements

A.1 A note on accuracy of strains

Since the materials tested using DIC in the current work are epoxy and syntactic foam

made from glass microballoons with epoxy matrix, strains observed in the crack tip vicinity

were relatively small and elastic. The strains presented here were obtained by differentiating

displacements estimated from DIC. Therefore greater errors in the strains when compared

to displacements are to be expected. It has been shown in Section 4.5.2 that the accuracy of

displacements is in the range of 2 to 6% of a pixel. The accuracy of strains can be estimated

by conducting benchmark tests at different stages/levels, as discussed below. The central

requirement of these tests is to generate a known constant strain for the entire image and

then try to estimate it using the computational methodology:

• Generate a synthetic image mathematically (speckle image can be generated by adding

random noise of zero mean and a constant variance to a uniform image). Then apply

a known strain to this image mathematically and measure the same using the image

correlation program.

• Acquire an image of a speckle pattern, then deform it mathematically by applying

uniform strain and estimate the same.

• Acquire two images back to back without any deformation between them and then

deform one of the images mathematically and estimate the strains between them.
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• Acquire an image, subject the sample to a uniform mechanical load to impart a

constant strain and then estimate that strain.

Out of these four possible approaches, the results of (a) will be highly accurate but may

not be realistic as it cannot be achieved in practice. Even the accuracy of results in (b)

is seldom achieved because the random errors associated while acquiring an image, twice

by a CCD camera, are not modeled in such an exercise. The exercise of type (d) takes

all experimental errors into account but the results will depend on the characteristics of

the mechanical device used as well as inherent experimental complexities due to rotation of

the sample, slip in the grips, etc. Considering all the above, benchmark test of type (c) is

proposed to assess the accuracy of strains in the current work.

Two images of a random speckle pattern were recorded back to back without any

deformation. The full-field (horizontal) displacement data between these two images is

presented in Fig. A.1(a) which has a mean of 0.039 pixels and a standard deviation of 0.0015

pixels (Ideally, these values should be all zeros). One of these images is mathematically

stretched by imposing a strain of 2500 µǫ in the horizontal direction and the displacements

were extracted. The resulting linearly varying u-displacement field can be seen from Fig.

A.1(b). This displacement was smoothed using the restoration method explained in Section

4.1.3 and normal strain ǫxx was computed. The smoothed displacement field is shown in

Fig. A.1(c) and the strain plot is shown in Fig. A.1(d). It can be seen from Fig. A.1(d)

that ǫxx oscillates about 2500 µǫ and has a standard deviation of about 142 µǫ. Thus it can

be said that the strains estimated in this work have errors approximately equal to 142 µǫ.

A.2 Time resolved displacements
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Figure A.1: Results of benchmark experiment conducted to estimate the accuracy of dis-
placements and strains. (a) full-field u-displacement between image 1 and image 2 before
deforming image 2 (ideally u-displacement shoud be zero). (b) u-displacement after apply-
ing a constant strain to image 2 but before smoothing, (c) u-displacement after smoothing
and (d) normal strain after stretching image 2 uniformly.
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t = 85 µs t = 90 µs t = 95 µs

t = 100 µs t = 105 µs t = 110 µs

t = 115 µs t = 120 µs t = 125 µs

t = 130 µs t = 135 µs t = 140 µs

Figure A.2: Time resolved crack opening displacements for image # 1 to 12. Time at which
each image was acquired after impact, is indicated above each figure. The interval between
each contour is 3.5 µm.
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t = 145 µs t = 150 µs t = 155 µs

t = 160 µs t = 165 µs t = 170 µs

t = 175 µs t = 180 µs t = 185 µs

t = 190 µs t = 195 µs t = 200 µs

Figure A.3: Time resolved crack opening displacements for image # 13 to 24. Time at
which each image was acquired after impact, is indicated above each figure. The interval
between each contour is 3.5 µm.
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t = 205 µs t = 210 µs

t = 215 µs t = 220 µs

t = 225 µs t = 230 µs

t = 235 µs t = 240 µs

Figure A.4: Time resolved crack opening displacements for mixed-mode dynamic test, image
# 25 to 32. Time at which each image was acquired after the impact, is indicated above
each figure. The interval between each contour is 3.5 µm.
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Appendix B

Computation of stiffness coefficients in tration-separation laws

B.1 Exponential traction-separation law

While deriving expressions for stiffness coefficients, the history dependency needs to

be taken into account. Refering to Fig. B.1, if the history dependancy is not taken into

account and if there is an unloading at point ’C’, then the same traction curve is followed

as during the loading. This implies that to achieve unloading, traction need to be increased

which is not realistic. Thefore unloading path should be linear leading to the origin as

shown in broken line in Fig. B.1. This means that the stiffness matrix need to be different

for loading and unloading part of the traction-separation curve. Thus defining the effective

separation parameter, λ as,

λ =

√

(

∆n

δn

)2

+ β2
c

(

∆t

δt

)2

(B.1)

with βc = (0,∞). In the current work, history dependency is taken care by defining a single

history dependent damage parameter λmax as,

λmax = max{λ(τ) | 0 ≤ τ ≤ t} (B.2)

Loading is said to occur when λ = λmax and λ̇ ≥ 0, and unloading/reloading when

λ ≤ λmax. Stiffness coefficients for loading are obtained by diferentiating Eqs. 6.25 and

6.26 with respect to ∆n and ∆t

SS11 =
∂Tt

∂∆t
= 2

φn

δ2t
e(−

∆n
δn

)
[

q +

{

r − q

r − 1

}

∆n

δn

][

1 − 2∆2
t

δ2t

]

e
(−∆

2
t

δ2
t

)
, (B.3)
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Figure B.1: Reversible and irreversible unloading
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(B.6)

The unloading stiffness matrix is calculated as follows. The separations ∆n and ∆t are

first scaled by a factor λmax/λ, the tractions associated with these scaled separations are

computed, and these tractions are scaled back by multiplying them by λ/λmax [92]. Thus,

T u
n =

λ

λmax
Tn

(

λmax

λ
∆n,

λmax

λ
∆t

)

=
λ

λmax
Tn(∆∗

n,∆
∗
t ), (B.7)

T u
t =

λ

λmax
Tt

(

λmax

λ
∆n,

λmax

λ
∆t

)

=
λ

λmax
Tt(∆

∗
n,∆

∗
t ). (B.8)
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where

∆∗
n =

λmax

λ
∆n, ∆∗

t =
λmax

λ
∆t. (B.9)

In the above, T u
n and T u

t are unloading tractions in normal and tangential directions re-

spectively. The variation of λ is required in order to differentiate T u
n and T u

t which is given

as,
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δn
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c
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The variation of traction in normal direction is given by,
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Substituting for δλ and simplifying we get,
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Similarly the variation of traction in tangential direction can be simplified to,
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Finally the stiffness coefficients for unloading are given by [92],
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B.2 Bilinear traction-separation law

Stiffness coefficients can be calculated by differentiating the tractions with respect to

separations from Eq. 6.30 through 6.33. For loading/unloading in the range 0 ≤ λ ≤ λcr,

S11 =
∂Tt

∂ut
=
αc

δt

Tmax

λcr
, S22 =

∂Tn

∂un
=

1

δn
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λcr
, S12 = S21 = 0. (B.18)

for loading in the range λcr < λ ≤ 1,
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for unloading/reloading in the range 0 < λ ≤ λ∗ where λ∗ is the maximum value of λ after

which unloading started,
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For loading in the range λ∗ < λ ≤ 1,
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Appendix C

Finite element simulation of Mode-I dynamic fracture of FGM

In this section, finite element simulations of mode-I dynamic fracture of FGM samples

are discussed. The numerical model is validated against experiments [17] on mode-I dynamic

fracture of monotonically graded FGM made of a syntactic foam. In the following, a few

experimental details are provided. Additional details can be found in [17].

C.0.1 Material preparation and characterization

Syntactic epoxy foams of various volume fractions of microballoons were used to make

FGM samples. Homogeneous syntactic epoxy foam sheets with randomly distributed mi-

croballoons were first prepared. The microballoons used in this investigation were commer-

cially available hollow glass spheres (Untreated type K − 1 hollow microballoons from 3M

Inc., USA) of mean diameter ∼ 60 µm and wall thickness ∼ 600 nm. Low-viscosity epoxy

resin (Reformulated (2003) Epo-ThinTM from Beuhler Inc., resin to hardner ratio of 100:36

by weight) was used as the matrix material.

The material preparation consisted of mixing a predetermined amount of microballoon

volume fraction into the epoxy material. Several different homogeneous epoxy-microballoon

mixtures were prepared for processing graded foams. Nine different mixtures with volume

fraction of microballoons VF ranging from 5 % to 45 % in steps of 5 % were prepared sep-

arately. The microballoons were carefully stirred into the epoxy resin while avoiding air

bubbles and agglomeration. Stirring the mixture was continued until the mixture showed

a tendency to gel and then poured into molds. This helped to eliminate any buoyancy
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induced floatation of microballoons during subsequent curing. The mixture with the low-

est volume fraction of microballoons was poured first into the mold followed by the next

higher volume fraction, and so on. Each layer was nominally 5 mm thick. A complex in-

terplay of buoyancy and viscous forces on the microballoons along with thermal convection

during polymerization resulted in a nearly linear volume fraction gradient. The gradient

extended over approximately 45 mm, between a region of nearly pure epoxy at one end and

microballoon-rich epoxy on the other. The overall specimen dimensions were 152 mm x 45

mm x 8 mm.

The schematic of the sample is shown in Fig. C.1(a). The longitudinal (CL) and shear

(CS) wave speeds of these sheets were determined using ultrasonic pulse-echo method, (see

Ref. [24] for details). The values of elastic moduli (E) and Poisson ratio (ν) were then

determined using measured wave speeds and mass density. The resulting elastic modulus

and mass density variations with volume fraction of microballoons are shown in Fig. C.1(b).

Both quantities reduce monotonically with microballoon volume fraction over the entire

range. The values of Poisson’s ratio in these compositions were found to be nearly constant

(ν = 0.35 ± 0.02).

Mode-I crack initiation toughness tests were also conducted on homogeneous compo-

sitions. Beam samples (152 mm × 27 mm and 7.5 mm thickness) were prepared from

homogeneous syntactic foam sheets with different microballoon volume fractions (0, 5 %,

15 %, 25 %, 35 % and 45 %). Edge crack of length 5.4 mm (a/W=0.2) was cut along the

mid-span in each of these samples. The Dally-Sanford single strain gage method [76] was

used to obtain dynamic stress intensity factor for each homogeneous syntactic foam sample.

A strain gage of gage length 0.8 mm (CEA-13-032WT-120 from Vishay-Micromeasurements
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Group, Inc.) was located radially at a distance of 4 mm from the crack tip and at an angle

of 60o to the crack orientation. These specimens were impact loaded (impact velocity =

2 m/s) in 3-point bend configuration. The strain history recorded by the strain gage is

used to obtain the crack initiation toughness value of each sample. Details are avoided

here for brevity and can be found elsewhere [77]. Figure C.1(c) shows the variation of

mode-I dynamic initiation toughness (KICR) with microballoon volume fraction. A mono-

tonic reduction in the crack initiation toughness values with volume fraction can be seen

from this figure. Approximately a 50% reduction in fracture toughness can be noted when

microballoon volume fraction increases from 0 to 45%.

C.0.2 Experimental results

Experiments on graded foam FGM samples included two types, (a) a crack on the

compliant side of the sample with impact occurring on the stiffer side and (b) a crack on

the stiffer side of the sample with impact occurring on the compliant side. Denoting the

elastic modulus of the edge of the cracked sheet behind the crack tip as E1, and the one

ahead of the crack as E2, the former corresponds to E1 < E2 and the latter to E2 > E1.

The Coherent Gradient Sensing (CGS) method was used in conjunction with high-speed

photography [30] in this study to perform real-time measurements of instantaneous surface

deformations around the crack tip. The details about the method are explained in Chapter

2.

The resulting interference fringes for the two cases are shown in Fig. C.2(a) and (b).

For each case, the representative interferograms corresponding to pre- and post-initiation

time instants are included. The crack initiation occured at t = 115 µs after impact for
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Figure C.1: (a) Schematic of the FGM specimen, (b) Material properties variation along
the width of the sample and (c) Variation of dynamic crack initiation toughness along the
width of the sample. 178



E1 < E2 and t = 135 µs after impact for E1 > E2. The legends correspond to the time

instant at which the image was recorded after impact. At earlier times severe concentration

of interference fringes are seen at the impact location (near the top edge) while only a few

fringes are seen at the crack tip (near the bottom edge). With the passage of time crack

tip deformations increase, as evidenced by an increasing number of fringes at the crack tip,

followed by crack initiation and growth. The fringe pattern in each case is symmetric on

either side of the crack, indicating mode-I crack tip deformations.

Figure C.2: Selected CGS interferograms representing contours of δw/δx in functionally
graded epoxy syntactic foam sheet impact loaded on the edge opposing the crack tip. (The
vertical line is at a distance of 10 mm from the crack.) (a) Crack on the compliant side
E1 < E2, (b) crack on the stiffer side E1 > E2. Fringe sensitivity ∼ 0.015o /fringe.
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C.0.3 Modeling details

The overall view of the finite element mesh is shown in Fig. C.3(a). The dimensions

of the notch (150 µm root radius) was also modeled in the simulations as can be seen from

Fig. C.3(b). The cohesive elements were inserted along a line in which the crack is allowed

to propagate can be seen from this figure. The smallest element size used in the mesh was

less than the characteristic cohesive length scale (see Section 7.1). The sample was modeled

as a free-free beam and a velocity of 5 m/sec was imposed on the node located at the

impact point. The variations of elastic modulus, E (4.2 GPa to 2.1 GPa) and mass density

ρ (1175 kg/m3 to 690 kg/m3) were approximated by linear functions and applied to the

model as explained in Section 7.2. The variation of mode-I fracture energy GI computed

from experimentally obtained variation of crack initiation toughness was applied to cohesive

elements as detailed in Section 7.3. The peak stress Tmax was assumed as E(X)/100, and

the values for αc and βc are chosen as 1.0.

C.0.4 Finite element results

Snapshots of crack tip normal stresses before and after crack-initiation are shown in

Figs. C.4(a) and (c) for the case of a crack on the compliant side (E1 < E2). Similar results

for the opposite configuration are shown in Figs. C.4(b) and (d). The stress contours are

symmetric on either side of the crack indicating mode-I deformation in both cases. The

stress levels seem to decreses once the crack initiates in case of E1 > E2 since the crack is

growing into a microballoon-rich region in this case. The opposite trend is observed in the

other configuration. Instantaneous crack length histories for both cases of monotonically

graded foam sheets are shown in Figs. C.5(a) and (b). The crack initiation occurs earlier
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Figure C.3: Finite element mesh used for the analysis

in case of the specimen with a crack on the compliant side (E1 < E2) when compared to

the one with a crack on the stiffer side (E1 > E2). The crack initiation times in simulations

are 106 µs and 127 µs for E1 < E2 and E1 > E2, respectively against 115 µs and 135 µs

observed experimentally. Higher crack speeds were observed for the case of E1 < E2 both in

experiments as well as in simulations. The crack speeds observed in experiments (calculated

from the central difference method) are 357 m/s and 273 m/s for the case of E1 < E2 and

E1 > E2, respectively. The corresponding values in simulations are 385 m/s and 278 m/s.

Thus, the trends observed in crack speeds are preserved in simulations.
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Figure C.4: Snapshots of σyy stress field at two different time instants, (a) 85 µs and (b)
125 µs for E1 < E2 (crack initiation time = 106 µs), and (c) 105 µs and (d) 145 µs for
E1 > E2 (crack initiation time = 127 µs).

The evolutions of various energy components was also studied. The evolution of strain

energy (USE) and kinetic energy (UKE) are shown in Fig. C.6(a). Similar to the results

presented in Section 7.4.1, both USE and UKE increase rapidly for the case of E1 < E2.

The energy dissipated by the cohesive elements (UCE) is shown in Fig. C.6(b). A rapid

change in the slope of UCE curve at t ∼ 106 µs for E1 < E2 (t ∼ 127 µs for E1 > E2)
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Figure C.5: Crack growth behavior in syntactic foam FGM samples under mode-I loading.
absolute crack length history from (a) experiments and (b) finite element simulations.

signifies crack initiation. Also as noted earlier in the Section 7.4.1, the higher crack speed

for the case of E1 < E2 is associated with a rapid accumulation of energies USE and UKE.

Figure C.6: Evolution of various energies in mode-I dynamic simulation for both FGM
configurations: (a) kinetic energy and strain energy and (b) energy dissipated by cohesive
elements
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