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(B.S.M.E., Christian Brothers University, 2005)

144 Typed Pages

Directed by David M. Bevly

The research presented in this thesis seeks to quantify the error growth of navigation

frame attitude, velocity, and position as solely derived from acceleration and rotation-

rate measurements from a strapdown Inertial Measurement Unit (IMU). The wide-spread

availability of the Global Positioning System (GPS) and increased technological advances

in Inertial Navigation Systems (INS) technology has made possible the use of increasingly

affordable and compact GPS/INS navigation systems. While the fusion of GPS and

inertial sensing technology offers exceptional performance under nominal conditions, the

accuracy of the provided solution degrades rapidly when traveling under bridges, dense

foliage, or in urban canyons due to loss of communication with GPS satellites. The

degradation of the navigation solution in this inertial dead-reckoning mode is a direct

result of the numerical integration of stochastic errors exhibited by the inertial sensors

themselves. As the accuracy of the GPS/INS combined system depends heavily on the

standalone performance of the INS, firm quantification of the performance of inertial

dead-reckoning is imperative for system selection and design.
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To provide quantification of the accuracy of inertial dead-reckoning, stochastic mod-

els are selected which approximate the noise and bias drift present on a wide variety of

both accelerometers and rate-gyroscopes. The stochastic identification techniques of Al-

lan variance and experimental autocorrelation are presented to illustrate the extraction

of process parameters from experimental data using the assumed model forms. The

selected models are then used to develop analytical expressions for the variance of subse-

quent integrations of the stochastic error processes. The resulting analytical expressions

are validated using Monte Carlo simulations. The analytical analysis is extended to a

simple navigation scenario in which a vehicle is constrained to travel on a planar surface

with no lateral velocity. Monte Carlo simulation techniques are employed to exemplify

and compare the expected results of inertial navigation in higher dynamic scenarios.
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Chapter 1

Introduction

1.1 Overview

With the wide-spread availability of the Global Positioning System (GPS) and con-

tinued technological advances in Inertial Navigation Systems (INS), the field of navi-

gation continues to exploit these ever expanding resources. One of the most popular

methods of current-day navigation involves the synergy of these two systems and is

commonly known as GPS/INS integration. The basic idea of the GPS/INS navigation

approach is to utilize the complementary strengths and weaknesses of each system in

order to navigate with accuracy superior to that of either component system’s stand

alone performance. GPS provides precise global position, velocity, and heading infor-

mation, but updates at a relatively slow rate, is subject to interference, and requires

a clear view of the sky. The INS most commonly consists of an inertial measurement

unit (IMU) which is typically attached rigidly to the frame of the navigating body. The

IMU is a device in which three accelerometers and three rate-gyroscopes (referred hence-

forth simply as rate-gyros) are orthogonally mounted in a sealed unit. Its purpose is

to measure the body accelerations and rotation rates in the corresponding component

directions and about the corresponding axes as defined by its alignment on the vehicle.

The inertial sensors which make up an IMU are available in a wide-variety of grades

determined by the basic principle of operation, quality of materials, and integrity of

methods/design. The accelerometers and rate-gyros, as with many electronic sensors,

are corrupted by stochastic-type disturbances (noise) which manifest themselves on the
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sampled output of the device as random variables. The characteristics of these random

variables depend upon the principle of operation and integrity of materials/methods used

to produce the device. To achieve navigation information from such an INS, the outputs

must be numerically integrated and transformed to attain the desired attitude, velocity,

and position information. Due to the stochastic errors on the sensors, the integral values

exhibit an ever increasing variance. Therefore, in contrast to GPS, Inertial Navigation

Systems provide high update information, but will digress with time without corrections.

In summary, the GPS/INS combined system uses the high update inertial measurements

of the INS to boost the slow rate of the position information from GPS.

The most common GPS/INS approach employs an optimal estimation technique

known as the Kalman Filter [1]. This Navigation Kalman Filter numerically blends the

high-rate, short term accuracy of the INS with the long term accuracy of the GPS in an

optimal way. Many variations and approaches of the GPS/INS Kalman Filtering method

have been researched with the intent of providing the best possible navigation solution.

The loosely-coupled GPS/INS uses the common measurements from a standard receiver

and requires at least four satellites for normal operation. More advanced approaches

such as tightly-coupled and deeply-integrated GPS/INS probe deeper within the GPS

receiver and blend the INS with more of the available GPS information. Both of these

methods intend to improve some of the weaknesses of the common GPS/INS system for

more robust navigation performance [2]. In addition to the GPS/INS only approach, re-

searchers have also developed and implemented navigation systems which include other

aiding measurements such as vision [3, 4], odometry [5], and laser-scanners [6]. These ad-

ditional measurements supplement the existing GPS/INS system to improve the overall

navigation performance, especially during GPS outages.
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For the case when GPS is unavailable, the INS and other sensors become the sole

means of navigation, and the accuracy of the attitude, velocity and position informa-

tion as derived from body-frame-only measurements degrades with time. This GPS-less

navigation mode is known as dead-reckoning whereby the body in motion navigates only

with information on board itself. The characteristic error growth in the dead-reckoning

mode depends upon the amount of time since the GPS signal outage, the equations used

in providing the navigation solution (kinematics of vehicle motion), and the integrity of

the sensors used to dead-reckon.

The particular focus of the research presented in this text is to perform an analysis of

inertial-only navigation in which both GPS and other sensors are not used. This analysis

provides a quantification of the dead-reckoning accuracy of the GPS/INS system when

GPS is unavailable. As there are many different types and grades of inertial measure-

ment units, the navigation system designer is charged with the tasks of selecting an IMU

appropriate for the environment in which it will be employed, the budget of the project,

and specific objectives of the final system. The typical manufacturer specifications of

the raw inertial measurement errors do not fully depict its performance as a navigation

means. That is, they fail to provide the information necessary to firmly quantify the nav-

igation performance of an IMU within the common scenarios encountered. The common

specifications from the sensor manufacturer provide only a rough quantification of the

raw output of the sensors; no information of the propagated error is available. There-

fore, to accurately compare and distinguish the dead-reckoning performance of the many

varieties of IMUs, an analysis of the integrated inertial measurements is imperative.

3



1.2 Prior Art

GPS/INS integration is a very widely implemented and studied scheme as it provides

high rate (100 Hz) and high accuracy positioning (1-10 meters) information to a navigat-

ing vehicle at a reasonable cost [2]. As GPS is susceptible to signal loss, the performance

of the GPS/INS system is often quantified by its INS-only (i.e. dead-reckoning) perfor-

mance. Approaches to the quantification of the INS-only navigation performance have

been based heavily on experimental results. Techniques such as parametric modeling of

IMU-derived positioning data [7] and comparisons based on the use of vehicle dynamics

in mechanization algorithms [8] all intend to quantify the performance of the GPS/INS

system during GPS outages. These post-processing analyses, while giving precise infor-

mation about the INS-only system performance for particular experimental cases, fail

to provide information in support of the general performance of inertial dead-reckoning.

In support of the more general approach to the quantification of performance of iner-

tial dead-reckoning, research has been conducted in which the analysis commences with

initial investigation of the inertial sensor errors themselves. Such approaches have inves-

tigated the characteristics of the stochastic behavior of the raw inertial sensor outputs

by using experimental identification techniques of Allan variance [9, 10, 11, 12, 13], and

autocorrelation [11, 14]. Based on stochastic error models selected using the identifi-

cation techniques, the research has been extended to provide the exact error growth of

the integral values of the stochastic process [11]. Other researchers following the same

path, have investigated the analytical propagation of error into the navigation solution

when mechanized in simple scenarios [14, 15]. These propagation analyses, however,

have restricted their analytical study to the the effect of white (wide-band) noise on

4



the navigation solution thereby neglecting significant effects due to sensor bias-drift [14].

The research presented in this thesis has expanded the previous analytical work to in-

clude analytical results of the influence of both wide-band noise and sensor drift on the

integral sensor outputs. Additional studies of the sensor errors in more complex vehicle

motion and mechanization methods are presented as well.

1.3 Contributions

To accomplish the goals of this research, this thesis presents a study of the stochastic

inertial sensor error characteristics to provide a practical quantification of the uncertainty

growth when dead-reckoning with inertial measurements. This quantification provides

the a priori information on the performance of GPS/INS/AuxSensor navigation in sup-

port of the system designer’s goal of achieving the best navigation performance within

the criteria of given objectives. The research presented provides quantification of inertial

navigation through:

• Proposing a candidate sensor model sufficient to capture the stochastic behavior of

inertial sensor outputs and detailing the means by which the model parameters may

be identified.

• Development of expressions for the variance of the integrated values of the inertial

sensor error sources.

• An analysis on the relative influence of sensor error model parameters on the variance

of integrated outputs.

• A study of the propagation of inertial sensor errors into the navigation equations for

a vehicle kinematically constrained in a two-dimensional scenario.
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• A comparison of the influence of the navigation equations on the performance of

inertial navigation under various vehicle motion assumptions.

1.4 Thesis Organization

Chapter 2 introduces a simple inertial error model consisting of the sum of two

stationary Gaussian random processes. The processes model the stochastic behavior of

white noise and sensor bias drift observed on both accelerometers and rate-gyros. The

means of experimental identification of the specific error process parameters with the

use of Allan variance and Autocorrelation techniques are presented.

Chapter 3, the heart of this research, utilizes the stochastic models presented in

Chapter 2 to derive analytical expressions for the variance of numerically integrated and

double-integrated error processes. The derived expressions are validated using Monte

Carlo computer simulations with fixed parameters. A simple example is used to illustrate

the applicability of the integrated error variance expressions for a simple single-axis

navigation scenario. This chapter concludes its contribution with a study of the effects

of the stochastic error process parameters on the integrated sensor error growth.

Chapter 4 applies the information from Chapter 3 to study a simple navigation

scenario in which a vehicle travels on a flat plane with no lateral velocity (i.e no side-

slip). Expressions for the variance of 2-D velocity error are derived in closed-form and

the framework for 2-D position error is shown. The analysis is then extended to the

more general 2-D case where a vehicle experiences side-slip and exhibits lateral velocity.

A Monte Carlo computer simulation is used to show the additional error when no-slip

trajectory is processed with the assumed-slip equations.

6



Chapter 5 introduces the six degrees-of-freedom (6-DOF) navigation equations as

required for the inertial navigation of a body experiencing motion in the most general

sense. The characteristics of the error for the 6-DOF inertial navigation scenario are

exemplified with the use a computer simulation. In the simulation, the inertial navigation

error from the 6-DOF method is compared to the planar navigation method for a planar

vehicle trajectory. The purpose of this chapter is to show the effect of additional sensors

and transformations when they are not required.

Chapter 6 concludes the work of this thesis with a summary of the results, discus-

sion of the various assumptions and approximations employed in the text, and suggestions

for future research.
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Chapter 2

Inertial Sensor Modeling

2.1 Introduction

A preliminary step in describing the behavior of inertial navigation error is to deter-

mine appropriate error models of the inertial sensors themselves. This chapter presents

a simple inertial sensor model sufficient to describe the approximate stochastic nature of

the outputs of both accelerometers and rate-gyros across the range of available devices.

The identification of the models of two random processes presented in this chapter, have

been well researched by many authors including [9, 11, 16] and the applicable techniques

and limitations of these methods are presented proceeding the models in the following

sections.

2.2 Simple Sensor Models

Simple stochastic sensor models are selected to provide approximate representations

to the behavior of that observed on a wide range of inertial measurement sensors. These

simple models apply to both accelerometers and rate-gyros and lend themselves well

for deriving analytical results which quantify the propagation of sensor errors into their

processed states. Although more advanced stochastic models could be developed, the

simpler models provide approximations in support of the goals of this thesis: closed-form

expressions for the error growth when dead-reckoning with inertial measurements.

The general inertial measurement model used in this study has the form of Equation

(2.1) and is suitable for either an accelerometer or rate-gyro.
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ymeas = (SF ) y + ε + c (2.1)

y is the true sensor value

ε are stochastic ’static’ terms

c is the constant bias

SF is the scale factor

The scale factor, though shown in [17] to exhibit some stochastic behavior through-

out the range of sensor motion and temperature, is assumed to have fixed relationship

between the sensor’s input and output. The bias, c is also a fixed quantity, exhibits a de-

terministic behavior with respect to the motion the sensor is sensing. Simple calibration

techniques can easily ascertain the scale-factor and constant bias and are thus removable

prior to implementation. The stochastic terms however, are not predictable and remain

even on a calibrated sensor output. Therefore, a fully calibrated static sensor output as

measured can be described by Equation (2.2).

ymeas = ε (2.2)

The stochastic terms, ε, are, at this point in the heuristic approach, unknown.

The following section introduces simple stochastic processes which intend to capture the

unpredictable stochastic behavior of the calibrated sensor output.
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2.3 Stochastic Sensor Models

2.3.1 Gaussian White Noise

Inspection of a short-duration static sensor output reveals that the value of the signal

jumps from one value to the next in an unpredictable, or random, manner. Successive

samples in time of such a signal are described as uncorrelated from one time-step to the

next. A random process whose successive values in time are uncorrelated is known as a

white noise process. While the conceptual abstraction of white noise implies that there

is infinite frequency content in the process, the sensor output is better described by wide-

band noise. As as the frequency content of a signal is limited by sampling equipment,

materials, and other phenomena, wide-band noise is, like white-noise, uncorrelated, but

for all measurable or applicable frequencies.

Closer observations of the short-duration static output indicate that the values of

the static output at any given time are scattered in higher density about some mean

value and becoming scarcer with increasing value from the mean. A good statistical

model for this scattering of the data is the Gaussian or Normal Distribution, whose

probability density function is given by Equation (2.3).

fX(x) =
1√

2πσx

exp

[
−1

2

(
x−mx

σx

)2
]

(2.3)

mx is the mean of random variable x

σx is the standard deviation of random variable x
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Complete probabilistic characterization of a random variable, x, with a Gaussian

distribution requires knowledge only of the mean value, mx, and variance σ2
x. Therefore,

for the uncorrelated wide-band Gaussian noise process, the sensor output value at any

time is described by a Gaussian distribution with the same mean and variance. Therefore,

each successive time sample of the process is independent (i.e. no relationship exists

between the values from one step to the next). An example of a zero mean, unit-variance

Gaussian wide-band noise process is shown in Figure 2.1.
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Figure 2.1: Sample Plot of Wide Band Noise, σ2 = 1

For high grade sensors, the static output for short time durations (order of minutes)

can solely be described by a wide-band noise process. However as the cost of sensor

decreases, the integrity of the its output also decreases and other stochastic phenomena

can be observed on the measurement. The output of lower-grade sensors exhibit both

uncorrelated (wide-band) noise and additional stochastic noises which exhibit varying

levels of time correlation, discontinuity, and other irregularities. The discontinuities and

irregularities pose a problem in stochastic characterization as their presence dominates in
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less-expensive sensor outputs. As a result, a significant amount of study has been dedi-

cated to the development of sophisticated models that accurately capture such low-grade

sensor behaviors. However, for the purpose of this research, a simple stochastic model is

selected to provide a conservative approximation to the bias drift in accordance with the

practical utility of the modeling approach of this thesis. The dominant phenomena on

the low grade sensors often materialize as a slowly wandering error in the output and are

often referred to as a sensor’s drifting bias, or bias drift. The following section presents

an approximate model for this stochastic drifting behavior.

2.3.2 The Gauss-Markov Process

The 1st-order Gauss-Markov process has been used extensively in the navigation

and estimation community to model the various stochastic drift characteristics present

on many types of navigation system outputs [11, 18]. For the purpose of the research

goals of this thesis, this process provides a conservative approximation to the observed

bias drift on many inertial measurements.

A random process is said to be Markovian if its probability density function (PDF)

at any point in future time can be completely specified with the knowledge of the pro-

cess PDF at the current time. The Markovian property is analogous to the concept in

linear state-space systems whereby the future states can be ascertained by current states

and inputs. A Gauss-Markov process is a stochastic process whose underlying random

phenomenon that drives the process is as a Gaussian sequence of random variables [19].

A commonly used 1st-order Gauss-Markov process model is simply the output of

a low-pass filter with a zero-mean white noise input. The governing stochastic linear

differential equation for such a process is expressed as

12



ḃ = − b

τ
+ ωb (2.4)

τ is the time constant

ωb is a zero mean Gaussian random variable with variance, σ2
ωb

The process given by Equation (2.4), in continuous time, is somewhat of an abstrac-

tion of the more applicable discrete version of the Gauss-Markov process (or sequence).

This stochastic sequence is given by the linear stochastic difference Equation (2.5).

bk = Φkbk−1 + wbk

Φk = e−
∆tk

τ (2.5)

Φ is the state-transition matrix for the process

wb is a zero mean Gaussian random variable with variance, σ2
wb

As seen by Equation (2.5) the process output is the sum of the Gaussian driving

noise, ω, and past values of itself. The output of the process therefore can also be de-

scribed by a Gaussian distribution and can be completely probabilistically characterized

by its mean and variance functions. In contrast to wide-band noise, however, the Markov

process exhibits a non-zero time correlation for any given realization of the process be-

cause of its dependence on its past values. This correlation characteristic is what causes
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the process to appear as a slowly drifting bias, which is the desired model. One such

example of the Gauss-Markov process is shown in Figure 2.2.
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Figure 2.2: Sample Plot of Gauss-Markov process, σ2
b = 1 , τ = 100

Since the driving process is zero mean and Gaussian, the output of the process is

zero mean and Gaussian with a transformed variance. Since the time constant is a value

greater than the sampling frequency (generally much larger), the characteristic root of

the 1st-order Markov dynamics is inside the unit circle, and thus the process is stable.

The stability of the process indicates that the variance of its output will reach a steady

state value after some initial settling time at which point the process is considered to

be stationary. Once steady state has reached, the process autocorrelation function takes

the form of Equation (2.6).

Rbb(T ) = σb
2e−T/τ (2.6)
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τ is the time constant or correlation time

σb is the variance of the process σ2
ωk

The simple autocorrelation expression lends itself well to experimental identification

as it is straightforward to extract the magnitude and time constant of the process from

a given plot of (2.6). Due to the form of Equation (2.6), the Gauss-Markov process is

also referred to as exponentially correlated noise [16].

2.3.3 A Simple Stochastic Model

For short time intervals an inertial sensor’s output appears as uncorrelated noise

(white noise); however for longer time intervals the sensor exhibits a correlated noise

(drifting bias). An approximate model of this behavior is simply the sum of the two

random processes introduced in the previous sections. The error due to the stochastic

behavior of an inertial sensor at time step, k, can thus be described by Equation (2.7).

εk = ωk + bk (2.7)

ωk is uncorrelated wide-band noise with zero mean and variance σ2
ω

bk is a 1st-order Gauss-Markov process with time constant, τ and variance σ2
b

The model above assumes that both processes are zero-mean and no correlation

exists between the white noise process and the Gauss-Markov process; they are indepen-

dent. The model consists of three parameters which allow for three degrees of freedom
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in describing the sensor behavior of any given accelerometer or rate-gyro. The following

section introduces methodologies used in determining the best set of parameters from

experimental data of a given inertial sensor.

2.4 Stochastic Identification Techniques

Several techniques exist to process experimental sensor data and determine the

various types of error sources present. Given that the raw sensor output is modeled

by Equation (2.7), such identification techniques allow the extraction of the stochastic

model parameters σω, σ2
b , and τ . Of the array of stochastic modeling techniques, the

Allan variance technique has become widely popular in the inertial navigation community

due to its intuitive implementation, straightforward interpretation, and in most cases

unique indication of various stochastic disturbances [20]. This section shows its use as a

comprehensive means to determine approximate parameters to describe a given inertial

sensor. Following the Allan variance technique, the experimental autocorrelation method

is presented. Supplemental to the Allan variance, the autocorrelation method is used for

specific identification of the parameters associated with the Gauss-Markov process, σ2
b ,

and τ .

2.4.1 The Allan Variance

The Allan variance technique was introduced by David Allan in the 1960s to char-

acterize the frequency stability of high-precision atomic clocks [21]. The Allan variance

technique is sometimes analogized to the time domain version of the Fourier transform

as it provides a measure of the dominance of a stochastic process over various ranges of

time. The technique computes the variance of arrangements of successive averages of a
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time set of data which indicates the contribution or dominance of various error sources

as a function of averaging time. Inspection of plots of the Allan variance versus averag-

ing time indicate the presence of specific stochastic processes present on a measurement.

The square root of the Allan variance (root Allan variance) for many common stochastic

processes appear as straight lines on a log-log scale. As a result, simple visual inspec-

tion of the root Allan variance provides immediate information about a sensor’s overall

stochastic behavior.

The precise definition of the Allan variance is repeated below as adapted from [9].

Given a set of N inertial measurements, Ω, sampled at a rate of fs Hz, define a vector

of averaging times, T , ranging from T0 seconds to up to half the total time length of the

data set ( N
2fs

) as shown in Equation (2.8).

T =
[
T0 T0 + fs T0 + 2fs . . . N

2fs

]
(2.8)

For each averaging time, T, define K = N/M clusters where M is the number of

samples per cluster (M = Tfs). Compute cluster averages with Equation (2.9) where k

is the time index of the raw data.

Ω̄(T ) =
1
M

M∑

i=1

Ω(k−1)M+i, k = 1, ...,K (2.9)

The Allan variance is then computed using Equation (2.10), with an approximation to

the true ensemble average [22].

σ2
AV (T ) =

1
2(K − 1)

K−1∑

k=1

[
Ω̄k+1(M)− Ω̄k(M)

]2 (2.10)
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The Allan variance can be expressed as a simple sum of the Allan variance contri-

butions of each of the dominant processes. For example, the Allan variance as a function

the contribution of process 1, 2, 3 and so on is expressed as

σ2
AV = σ2

p1 + σ2
p2 + σ2

p3 + ... (2.11)

Well-known analytical expressions of the power spectral density (PSD) of common

stochastic processes have been related to analytical expressions for the Allan variance

[9, 22]. The result of this relationship has yielded Allan variance equations for each noise

process in terms of its processes parameters and the averaging time, T . The component

Allan variances can be summed using Equation (2.11) to yield the total Allan variance

curve as a function of averaging time. A full description of the method used to compute

the Allan variance from experimental data can be found in [20].

The inertial sensor model introduced in Section 1.3 is the sum of the two stochas-

tic processes: wide-band noise and exponentially correlated noise (Gauss-Markov). The

wide-band noise is quantified by the “random walk” parameter, σrw, which is the standard-

deviation of the process normalized to the square-root of the sampling frequency, fs in

Hertz. The Allan variance expression for wide-band noise is thus given by Equation

(2.12).

σ2
rw(T ) =

(
σw√
fs

)2

(2.12)
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The Allan variance expression for a first-order Markov process is given in terms of

its time constant, τ , and driving noise variance, σ2
ωb

, as shown in Equation (2.13).

σ2
bias(T ) =

(σωb
τ)2

T

[
1− τ

2T

(
3− 4 exp

−T
τ +exp

−2T
τ

)]
(2.13)

The resulting analytical expression for the Allan variance of a static sensor sensor

output with a stochastic model as in Equation (2.7) is given as the sum of equations

(2.12) and (2.13) as shown in equation (2.14).

σ2
AV (T ) = σ2

rwT +
(σωb

τ)2

T

[
1− τ

2T

(
3− 4 exp

−T
τ + exp

−2T
τ

)]
(2.14)

The root Allan variance as is most commonly plotted is simply the square root of the

summed quantities in Equation (2.11). Figure 2.3 shows a sample root Allan variance

plot as computed from a simulated sensor output with specifications as labeled.
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Figure 2.3: Allan Variance of Simulated Data 5 Hz σ2
rw = 1.2, σ2

b = 4, τ = 300

The analytical expressions shown above have been used by others to curve-fit ex-

perimental Allan variance data for the purpose of extracting the underlying stochastic

process parameters and thus characterizing the process. [9, 22, 13]. For example, the

random walk parameter is straightforward to extract as it is simply the value of the Allan

variance at the averaging time equal to one second. However, since the expression for the

Markov process in Equation (2.13) is a non-linear function of the process parameters,

estimation becomes difficult and employment of manual methods may be necessary to

provide an estimate of the process magnitude and time constant.

One such problem in practical utilization of the Allan variance for sensor character-

ization is that its accuracy is limited by the time-length of the experimental data set.

The range of averaging time is computed for half the range of experimental data. Ad-

ditionally, the number of segments of averaged data for which the variance is computed
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become smaller as the averaging time increases and thus yields statistically less signifi-

cant values. As a result, the bounds on the accuracy of the Allan variance increase with

averaging time at rates dependent upon the total length of the experimental data set.

This behavior can been seen in the sample Allan variance in Figure 2.3. Such bounds are

discussed further in [9]. Due to this requirement, accurate Allan variance identification

of an inertial sensor exhibiting slow drift characteristics requires a sample data set of

length many times greater the time constant of the particular drift of interest. For many

inertial measurements, the times required for reasonable accuracy can be on the order

of several days. Additionally, the time constant for the sensor is simply unknown since

it is to be identified. Some rules of thumb are suggested for the length and required

sample frequency of the sensor data set to ensure accurate Allan variance identification

for time-varying processes in [20].

2.4.2 Experimental Autocorrelation

The Allan variance technique, while sufficient to extract the parameter associated

with the white noise process, remains a difficult method for the bias drift characteriza-

tion. As the Gauss-Markov process in steady-state has an autocorrelation in the form of

Equation (2.6), the bias time constant, τ , and magnitude of drift, σb, can be extracted

from the experimental autocorrelation. However, since the sensor is modeled as the sum

of the two processes, successful identification of the Markov process requires its isolation.

Approximate isolation can be performed by low-pass filtering the raw sensor output. The

filtering removes the higher-frequencies for which the output is uncorrelated while leav-

ing the correlated low-frequency data of interest. However, despite the attenuation of the
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higher frequencies of the wide-band noise process, its lower-frequencies still exist as ad-

ditive noise on the drifting bias, increasing the difficulty of identification. Furthermore,

appropriate selection of the isolating filter cut-off frequency requires some knowledge of

the approximate time constant of the drift process. As it is the time constant that is to

be identified, the autocorrelation technique is an approximate and iterative process.

Equation (2.6) gives the characteristic autocorrelation function of the Gauss-Markov

process, which is a simple exponential decay with an initial magnitude of σ2
b and time

constant, τ . Figure 2.4 shows a sample autocorrelation plot of a simulated Markov

process and its analytical curve. As is shown by the dotted lines on the plot, the time

constant is found by reading the time-shift for which the autocorrelation value decays to

1
e of its initial magnitude. The initial magnitude of the Gauss-Markov process is simply

the y-intercept, or variance of the filtered process.
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Figure 2.4: Sample Autocorrelation: 1.7x105 time units, fs = 5 Hz, σ2
b = 4, τ = 200sec
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Unfortunately, the experimental autocorrelation shares the same practical drawback

with the Allan variance: the accuracy of the autocorrelation is dependent upon the length

of the dataset. In general, the data set must be a length sufficiently longer than the time

constant of interest. Experiments performed by the author in an attempt to extract

reasonable parameters from raw gyro and accelerometer data proved very difficult as long

data sets often carried un-modeled disturbances (such as temperature effects, long initial

settling time). For a stochastic model with an autocorrelation in the form of Equation

2.6, the upper bound of the variance of the empirically-derived autocorrelation, Rbbexp

at any lag-value can be expressed by Equation (2.15) [23].

VAR[Rbbexp] <=
2σ4

bτ

Td
(2.15)

Where, σ2
b is the variance, τ is the time-constant, and Td is the time-length of the

experimental data set.

The bounds plotted in Figure 2.4 show the large uncertainty in the Gauss-Markov

process experimental autocorrelation for a data set of length much longer than its time

constant. For the specific sample of data generated in the figure, the time length of data

set was more than 150 times the time constant.

2.4.3 Implementation Issues

As discussed for both methods, accurate identification of the process for the slowly-

varying stochastic behavior of inertial sensors requires a data set many times longer than

the time constant of the process. For many inertial sensors the bias drift is a slow process
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(large time constant) yet still contributes significantly to the output. Effective identifi-

cation for such a process requires a very long data set, sometimes outside the range of

logging capabilities or a feasible window of time. Additionally, since the sensor parame-

ters are unknown, the required length of the data set is therefore unknown and several

iterations may be necessary. Additionally, the approximate Gaussian models presented

may not provide a sufficient characterization of their observed behavior, especially for

lower grade sensors. The identifier of these irregular sensors must then resort to highly

conservative parameter estimates which simply give rough values comparable to that

supplied by the sensor’s manufacturer. Discussion on the supplied sensor specifications

and the need for accurate identification follows in the next section.

2.5 Experimental Quantification and Identification

2.5.1 Manufacturer Sensor Specifications

Sensor specification sheets give a simple overview of a sensor’s operating charac-

teristics including measurement range, input power consumption, data format, as well

as expected accuracy. The accuracy of the sensor, as it is limited by the magnitude of

the stochastic processes on the output, is quantified in varying detail across the broad

spectrum of sensors and their listed specifications. The specifications often indicate pa-

rameters which coarsely bound the expected accuracy based on two assumed stochastic

characteristics: noise and bias. The noise is quantified by the random walk parameter as

introduced in the Allan variance identification section. The random walk parameter,σrw

is defined by Equation (2.12). Its units are usually given in two forms shown in Equation
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(2.16).

σrw =
[output units]√

Hz

σrw =
∫

[output units]dt√
Hr

(2.16)

The random walk parameter is easily extracted from experimental Allan variance

data as shown in the previous section.

A wider array of specifications are listed to quantify the bias drift. As a minimum,

sensor manufacturers publish a conservative maximum value or maximum standard devi-

ation within which the properly calibrated sensor is expected to output. Others give bias

drift quantification in terms of a value ascertained from the Allan variance chart. Ref-

erence [24] indicates that the bias variation or bias instability parameter listed in some

sheets is the lowest point on the Allan variance chart. In addition to the magnitude of

the bias drift, some manufacturers of higher grade devices include some indication of the

speed at which this bias drifts from the mean value by a correlation time. In any case,

inertial sensor manufacturers provide very little information in support of full stochastic

characterization of the outputs.

2.5.2 Experimental Approach

Upon review of the available literature, manufacturers provide only conservative

bounds on a sensor’s stochastic characteristics. This information gives only a rough

starting point for the accurate characterization of this research. This section presents

the basic methodology by which sufficient identification can be performed. A general

methodology can be roughly outlined by the following steps:
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1. Examine available specifications by manufacture

2. Determine required sampling frequency and duration of data set based on specs

3. Acquire completely static data set (on level surface)

4. Remove constant bias (subtract the mean)

5. Run the Allan variance of the data set, extract the wide-band noise magnitude

6. Filter(zero-phase filter) the data to reveal the underlying moving bias

7. Process the filtered data in the autocorrelation and extract time constant

The success of experimental identification is often difficult in practice due to many

of the reasons discussed in the preceding sections. The main difficulties are that the

sensor drift model is only an approximation, the approximate model parameters are

unknown, and the bias can not be fully isolated. As a result, the general methodology

remains a long and highly iterative process. The general process of stochastic sensor

error parameter identification is demonstrated in Appendix A following the chapters of

this thesis. The appendix presents the use of the techniques of this chapter to identify

the stochastic model parameters with experimental data from an automotive-grade IMU.

2.6 Conclusion

In this chapter, a simple inertial sensor error model that provides an approximation

to the stochastic behavior observed on a a wide-range of inertial sensors grades and types

has been presented. The model consists of the sum of two stationary, Gaussian random

processes which describe the short-term and long-term stochastic behavior of static iner-

tial sensor outputs. The techniques of Allan variance and autocorrelation were presented
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as means to identify the three parameters required to describe the assumed model form

from experimental sensor data. The experimental procedure was then outlined and dif-

ficulties of the method presented. In the following chapters, each of the error processes

as detailed in this chapter are used for the purpose of quantifying the error in position,

velocity, and attitude when dead-reckoning with an IMU in various kinematic scenarios.

27



Chapter 3

Covariance Propagation of Stochastic Errors

3.1 Introduction

Bounded accuracy in inertial navigation depends upon regular position, velocity,

and attitude measurements to compensate for the error growth of the integrated IMU

signals. Many navigation methods employ regular measurements from GPS sensors,

vision, odometry, and other sources of velocity, position, and attitude data. These

measurements are often fused together in a navigation Kalman filter resulting in an

optimal estimate of the vehicle’s state. As GPS requires an unobstructed line-of-sight

to at least four satellites, it fails to provide accurate data when traveling under bridges,

heavily wooded areas, and in downtown city streets where tall buildings bound the path

of the receiver. Under such conditions when the GPS data becomes unavailable, the

Kalman filter reduces to a simple algorithm in which the navigation states are derived

solely from the integrated outputs of the inertial sensors initialized to the last “best

estimate”. As all inertial sensors are inherently corrupted with stochastic type errors (as

introduced in Chapter 2), the integration of these signals cause the uncertainty in the

resulting navigation states to increase with each step in time. As a result, the error in

the estimated position, velocity, and attitude states grow with time. It is the goal of this

chapter to quantify the the error growth due to the integrated stochastic errors present

on the inertial measurements.

By using the stochastic models from Chapter 2, this quantification is achieved by

deriving expressions for the variance of the integrated sensor errors using a technique
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modeled after [11]. The variance expressions are then validated using a Monte Carlo

simulation. For a single-axis sensor, the variance describes the error expected when

dead-reckoning in one degree of freedom motion. The chapter concludes with a sensitivity

analysis illustrating the influence of the stochastic model parameters on the variance of

the integrated sensor.

3.2 Simplified Navigation Scenario: Single Axis

The motion of a navigating body in the inertial or navigation frame can be derived

from body-fixed inertial measurements of acceleration, a, and rotation rate, g. To attain

the vehicle states of velocity, orientation, and position in the navigation frame in the

general sense, the body-frame measurements are transformed using nonlinear differen-

tial equation relationships (shown later in Chapter 5). As a building block in providing

an analysis of the general navigation scenario, preliminary attention is first turned to

a simple one degree-of-freedom (1-DOF) motion scenario in which a single axis gyro or

single axis accelerometer is integrated to provide the navigation frame states in its com-

ponent direction. Equations (3.1-3.3) show the single-axis vehicle states of orientation,

velocity, and position (ψ, V , P ) as derived from the integrations of the corresponding

inertial measurements.

ψ =
∫

g dt (3.1)

V =
∫

a dt (3.2)

P =
∫

V dt (3.3)
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It is the task of the following sections to quantify the error resulting from the use

of Equations (3.1-3.3) with inertial sensors modeled as shown in Chapter 2.

3.3 General Characterization of Raw Sensor Measurement

Recall the simple sensor model from Chapter 2 as described by Equation (2.1)

ymeas = (SF ) y + ε + b

As stochastic terms are assumed zero-mean, the mean value of the sensor output is

simply the deterministic terms.

E[ymeas(t)] = E[(SF ) y(t)] + E[ε(t)] + E[b]

= (SF ) y(t) + b (3.4)

The variance of the sensor output is equal to the variance of the stochastic error.

VAR[ymeas] = E[y2
meas(t)]− E[ymeas(t)]

2

= E[((SF ) y + ε(t) + b) ((SF ) y(t) + ε(t) + b)]− ((SF ) y(t) + ε(t) + b)2

σymeas
2(t) = σε

2(t) (3.5)

Since the error sources are Gaussian and uncorrelated, the variance in the sensor output

can be expressed as the sum of the variances of the two contributing error sources: wide

band noise, ω, and Gauss-Markov process, b, as introduced in Chapter 2.

σε
2(t) = σω

2(t) + σb
2(t) (3.6)
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3.4 Characterization of Integrated Sensor Measurement

Given a sensor modeled with Equation (2.1) and whose stochastic errors are charac-

terized as the sum of the independent noise sources introduced in Chapter 2, the purely

integrated sensor is characterized as follows. The mean of the integrated sensor is simply

the value of the integrated deterministic terms.

E[
∫

ymeas(t) dt] = E
[∫

[(SF ) y(t) + b] dt

]
+ E

[∫
ε(t) dt

]

=
∫

[(SF ) y(t) + b] dt + 0

= SF

∫
y(t) dt + bt (3.7)

The variance of the integrated sensor output is the variance of the integrated independent

stochastic error sources.

E[
∫

y2
meas(t) dt] = E[

(∫
(SF ) y + ε(t) + bdt

) (∫
(SF ) y(t) + ε(t) + bdt

)
]

−
(∫

(SF ) y(t) + ε(t) + bdt

)2

=
∫

E[ε2(t)] dt (3.8)

The variance of the integrated sensor output is equal to the sum of the variances of the

independent integrated error sources.

σR ymeas

2(k) = σR ω
2(k) + σR b

2(k) (3.9)
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Applying the same methods to the double integrated case yields.

E[
∫∫

ymeas(t) dt] = E
[∫∫

[(SF ) y(t) + b] dt2
]

+ E
[∫∫

ε(t) dt2
]

=
∫∫

[(SF ) y(t) + b] dt2 + 0

= SF

∫∫
y(t) dt2 + bt2 (3.10)

Performing analogous operations yields the resulting variance for the double-integrated

sensor output.

σRR ymeas

2(k) = σRR ω
2(k) + σRR b

2(k) (3.11)

As shown in Equations (3.9) and (3.11), the variance in the integrated sensor output

is equal to the sum of the variances of the integrated stochastic error sources. In the

following sections the expressions of the individual variance functions of the random

error processes and their integrals are derived.

3.5 Single Axis Stochastic Error Contributions

Assuming that the numerical integration of the sensor is performed using an Euler

approximation, the resulting integral values are simply scaled sums of the inertial values.

As the scaled sum is a linear operation and the stochastic processes are Gaussian, the

integrated stochastic processes are also Gaussian with transformed mean and variance

functions. The following sections in this chapter derive the variance functions of the

integrated and double-integrated wide-band noise and Gauss-Markov processes for nu-

merical integration using the Euler method. The straightforward time-domain technique
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modeled after [11] is employed here for derivations with the error models presented in

Chapter 2.

3.5.1 Variance of Integrated Wide Band noise

A derivation of the variance of integrated wide-band noise using the technique as

follows has been shown in [11]. It is repeated here as an instructive example of the

methodology by which the proceeding expressions are derived.

Let ÿ represent a wide-band noise process with variance σ2
ω.

ÿ = ω (3.12)

Integrating the ÿ yields its integral value.

ẏ =
∫

ω dt (3.13)

The above integration can be approximated by Euler’s method (left hand sum) with the

initial condition ẏ0 = 0.

ẏk = ẏk−1 + ∆tωk−1

= ẏ0 + ∆t
k−1∑

i=0

ωi (3.14)
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Square both sides to obtain

ẏkẏk =

(
∆t

k−1∑

i=0

ωi

)(
∆t

k−1∑

i=0

ωi

)

(3.15)

ẏkẏk = ∆t2

(
k−1∑

i=0

ωi

)(
k−1∑

i=0

ωi

)

Take the expected value of the squared expression.

E [ẏkẏk] = E

[
∆t2

(
k−1∑

i=0

ωi

)(
k−1∑

i=0

ωi

)]
(3.16)

The expectation of all of cross-terms of ωi are equal to zero, as successive ω values in

time are completely uncorrelated. The expression therefore reduces to

E [ẏkẏk] = ∆t2E

[
k−1∑

i=0

ω2
i

]

= ∆t2
k−1∑

i=0

E [ωiωi] (3.17)

The final result is an expression for the variance of integrated wide-band noise as a

function of the variance of the wide-band noise, time index, and sampling interval.

σ2
ẏ = σ2

ω∆t2k (3.18)
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3.5.2 Variance of Double Integrated Wide Band noise

Double integrating the wide-band noise process, ÿ, to yield its double-integral value is

shown below

y =
∫

ẏ dt =
∫∫

ω dt2 (3.19)

Approximating the double-integration by Euler’s method (left hand sum), the following

substitution is made

yk = yk−1 + ∆tẏk−1

= y0 + ∆t2
k−1∑

j=0

(
j−1∑

i=0

ωi

)
(3.20)

Simplification of the double summation yields a single summation with an indexed coef-

ficient.

yk = ∆t2
k−1∑

j=0

(k − j − 1)ωj (3.21)

Squaring both sides gives

ykyk = ∆t4




k−1∑

j=0

(k − j − 1)ωj







k−1∑

j=0

(k − j − 1) ωj


 (3.22)

Taking the expected value of both sides with knowledge that successive values of ωj are

uncorrelated results in

E [ykyk] = ∆t4
k−1∑

j=0

(k − j − 1)2E [ωjωj ] (3.23)
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Expansion of the summation leads to

E [ykyk] = ∆t4


(k − 1)2

k−1∑

j=0

(1)− 2(k − 1)
k−1∑

j=0

j +
k−1∑

j=0

j2


E [ωjωj ] (3.24)

Using the analytic solutions for power series summations the expression reduces to

E [ykyk] = ∆t4
(

k(k − 1)2 − 2(k − 1)
1
2
k(k + 1) +

1
6
k(k + 1)(2k + 1)

)
E [ωjωj ] (3.25)

Further simplification yields an expression for the variance of double integrated wide-

band noise as a function of its variance, time index, and sampling interval.

σy
2 = ∆t4σω

2

(
1
3
k3 +

1
2
k2 +

1
6
k

)
(3.26)

3.5.3 Variance of 1st order Gauss-Markov process

The differential equation for the 1st order Gauss-Markov process as given in Equation

(2.4) can be realized using an Euler approximation

bk = bk−1 + ∆tḃk−1

= bk−1 + ∆t
−bk−1

τ
+ ∆tωbk−1

=
(

1− ∆t

τ

)
bk−1 + ∆tωbk−1

(3.27)

For clarity in derivation, define A =
(

1− ∆t

τ

)
to get

bk = Abk−1 + ∆tωk−1 (3.28)
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The expression can be written as the following summation where the initial condition

of the process is assumed to be zero, b0 = 0.

bk = Ak−1b0 + ∆t
k−1∑

i=0

Ak−i−1ωbi

bk = ∆t
k−1∑

i=0

Ak−i−1ωbi
(3.29)

While this zero initial condition assumption simplifies the analysis below, the result-

ing process may take time to settle into steady state depending on the size of the time

constant. As this stochastic process is only an approximation to the observed sensor

phenomenon, the significance of the initial condition is uncertain.

Squaring both sides obtains

bkbk =

(
∆t

k−1∑

i=0

Ak−i−1ωbi

)(
∆t

k−1∑

i=0

Ak−i−1ωbi

)
(3.30)

Applying the expectation operator to both sides with the knowledge that successive ωbi

values in time are completely uncorrelated and exhibit an identical variance results in

E [bkbk] = ∆t2
k−1∑

i=0

A2(k−i−1)E [ωbiωbi ]

= ∆t2A2k−2
k−1∑

i=0

A−2iE [ωbiωbi ]

= ∆t2A2k−2
k−1∑

i=0

A−2iσ2
ωb

(3.31)
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Using the solution to the geometric series yields the following analytical expression

E [bkbk] = ∆t2A2k−2

(
1−A−2k

1−A−2

)
σ2

ωb
(3.32)

Further simplification results in the following expression for the variance of a 1st order

Gauss-Markov process as a function of the variance of the driving noise, σ2
ωb

, time index,

k, and sampling interval, ∆t.

σ2
b = ∆t2σ2

ωb

(
A2k − 1
A2 − 1

)
(3.33)

Note that for positive values of τ , A is less than one and therefore σ2
b will reach a

steady-state value.

3.5.4 Variance of Integrated 1st order Gauss-Markov process

Let ẍ represent the bias drift as modeled by the Gauss-Markov process. Assume

the process is realized by an Euler integration with zero initial condition as in Equation

(3.27).

ẍk = bk = Abk−1 + ∆tωbk−1
(3.34)
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Next, approximate the integral using Euler’s method with initial condition ẋ0 = 0

ẋ =
∫

ẍ dt =
∫

b dt

= ẋk−1 + ∆tẍk−1

= ẋ0 + ∆t
(
Aẍk−2 + ∆tωbk−2

)

= ∆t2
k−1∑

j=0

(
j−1∑

i=0

Aj−i−1ωbi

)
(3.35)

The summation can be rewritten as

ẋk = ∆t2
k−2∑

j=0

(
j∑

i=0

AjA−iωbi

)
(3.36)

Expand the summation for k = 5 and collect the ωbi terms

ẋ5 = ∆t2
4∑

j=0

(
j−1∑

i=0

Aj−i−1ωbi

)
(3.37)

= ∆t2
(
ωb0 + Aωb0 + ωb1 + A2ωb0 + Aωb1 + ωb2 + A3ωb0 + A2ωb1 + Aωb2 + ωb3

)

= ∆t2
[
ωb0

(
A0 + A1 + A2 + A3

)
+ ωb1

(
A0 + A1 + A2

)
+ ωb2

(
A0 + A1

)
+ ωb3

(
A0

)]

Investigation of the expansion and rearrangement of Equation (3.36) results in simplifi-

cation to the double summation

ẋk = ∆t2
k−2∑

i=0

ωbi




k−1−i∑

j=0

Aj


 (3.38)
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Using the solution of the geometric series, the expression is further reduced to a single

summation

ẋk = ∆t2
k−2∑

i=0

(
1−Ak−1−i

1−A

)
ωbi

=
∆t2

1−A

k−2∑

i=0

(
1−Ak−1−i

)
ωbi

(3.39)

Then both sides are squared to obtain

ẋk =
∆t4

(1−A)2

(
k−2∑

i=0

(
1−Ak−1−i

)
ωbi

)(
k−2∑

i=0

(
1−Ak−1−i

)
ωbi

)
(3.40)

Taking the expected value of both sides with knowledge that successive ωbi values in

time are completely uncorrelated results in

E [ẋkẋk] =
∆t4

(1−A)2

k−2∑

i=0

(
1−Ak−1−i

)2
E [ωbiωbi ]

=
∆t4

(1−A)2

k−2∑

i=0

(
1− 2Ak

AAi
+

A2k

A2A2i

)
σ2

ωb

=
∆t4

(1−A)2

(
k−2∑

i=0

(1)− 2Ak

A

k−2∑

i=0

A−i +
A2k

A2

k−2∑

i=0

A−2i

)
σ2

ωb
(3.41)

Using the solutions to the geometric series to simplify the summations gives

E [ẋkẋk] =
∆t4

(1−A)2

(
(k − 1)− 2Ak

A

1−A1−k

1−A−1
+

A2k

A2

1−A2−2k

1−A−2

)
σω

2 (3.42)
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This results in an expression for the variance of single integrated 1st order Gauss-Markov

process in terms of the variance of the driving noise, σ2
ωb

, time index, k, and sampling

interval, ∆t.

σẋ
2 = ∆t4σ2

ωb

(
1 + 2A− 2Ak − 2A1+k + A2k − k + kA2

−1 + 2A− 2A3 + A4

)
(3.43)

The above equation can be expressed in a condensed form

σẋ
2 = ∆t4σ2

ωb

(
−a1 + a2A

k − a3A
2k + a4k

)
(3.44)

Where the constants of Equation (3.44) are

a1 =
1 + 2A

−1 + 2A− 2A3 + A4

a2 =
−2− 2A

−1 + 2A− 2A3 + A4

a3 =
1

−1 + 2A− 2A3 + A4

a4 =
A2 − 1

−1 + 2A− 2A3 + A4
(3.45)

3.5.5 Variance of Double Integrated 1st order Gauss-Markov process

Let x represent the double integration of the bias drift, b

x =
∫

ẋ dt =
∫∫

b dt2

As before, Euler integration is used to realize the Markov process, ẋ, using the initial

condition x0 = 0. The double integration the process is represented below as a series of
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nested summations

xk = ∆t3
k−1∑

m=0

m−1∑

j=0

j−1∑

i=0

Aj−i−1ωbi (3.46)

Expanding the summations for k = 5 and collect the ω terms results in

x5 = ∆t3
4∑

m=0

m−1∑

j=0

j−1∑

i=0

Aj−i−1ωbi

= ∆t3
(
A2ωb0 + (ωb1 + 2ωb0)A + ωb2 + 2ωb1 + 3ωb0

)

= ∆t3
(
ωb0(A2 + 2A1 + 3A0) + ωb1(A1 + 2A0) + ωb2(A0)

)
(3.47)

Investigation of the preceding expansion leads to the simplification of the triple summa-

tion expression into two nested summations in which ωi is removed from the innermost

summation

xk = ∆t3
k−3∑

i=0

ωbi

k−3−i∑

j=0

(j + 1)Ak−3−i−j

= ∆t3
k−3∑

i=0

ωbiA
k−3−i

k−3−i∑

j=0

(jA−j + A−j) (3.48)

By substituting the following derivatives into Equation (3.48), the following expression

is obtained

d

dA

(
A−j

)
= − 1

A

(
jA−j

)

jA−j = −A
d

dA

(
A−j

)
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where, the iA−i term can be decoupled as shown below

xk = ∆t3
k−3∑

i=0

ωbiA
k−3−i




k−3−i∑

j=0

A−j −A
d

dA

k−3−i∑

j=0

A−j


 (3.49)

Using the solution to the geometric series of A−i, the expression becomes

xk = ∆t3
k−3∑

i=0

ωbiA
k−3−i

((
1−A−k+2+i

1−A−1

)
−A

d

dA

(
1−A−k+2+i

1−A−1

))
(3.50)

Evaluation of the derivative allows further simplification, yielding

xk = ∆t3
k−3∑

i=0

ωbi
Ak−3−i

[(
1−A−k+2+i

1−A−1

)
−A

(
(−k + 2 + i)A−k+2+i

A(1−A−1)
− 1−A−k+2+i

A2(1−A−1)2

)]

= ∆t3
k−3∑

i=0

ωbi

(Ak−1−i + A− 2− kA + k + iA− i)
(A− 1)2

(3.51)

With the knowledge that successive ωbi values in time are completely uncorrelated, squar-

ing and applying the expectation operator gives

E[xkxk] = ∆t6
k−3∑

i=0

E[ωbiωbi ]
(Ak−1−i + A− 2− kA + k + iA− i)2

(A− 1)4

= ∆t3
E[ωbi

ωbi
]

(A− 1)4

k−3∑

i=0

(
A2k−2A−i + (A− 2− kA + k)2 + (A− 1)i2)+

2Ak−1(A− 2− kA + k)A−i + 2Ak−1(A− 1)Aii +

2(A− 2− kA + k)(A− 1)i
)

(3.52)
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A distribution of the above summation yields

E[xkxk] = ∆t6
E[ωbiωbi ]
(A− 1)4

(
A2k−2

k−3∑

i=0

A−i + (A− 2− kA + k)2 + (A− 1)2
k−3∑

i=0

i2 +

2Ak−1(A− 2− kA + k)
k−3∑

i=0

A−i + 2Ak−1(A− 1)
k−3∑

i=0

iAi +

2(A− 2− kA + k)(A− 1)
k−3∑

i=0

i

)
(3.53)

Using the solutions to the geometric and power series allows the summations to be

simplified further

E[xkxk] = ∆t3
E[ωbiωbi ]
(A− 1)4

(
A2k−2 1−A−2k+4

1−A−2
+ (A− 2− kA + k)2(k − 2) +

(A− 1)2
1
6
(k − 3)(k − 2)(2k − 5) +

2Ak−1(A− 2− kA + k)
1−A−k+2

1−A−1
+

2Ak−1(A− 1)(−A)
d

dA

1−A−k+2

1−A−1
+

(A− 2− kA + k)(A− 1)(k − 3)(k − 2)

)
(3.54)

The final result is an expression for the variance of a double integrated Gauss-Markov

process in terms of the in terms of the variance of the driving noise, σ2
ωb

, time index, k,
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and sampling interval, ∆t.

σx
2 = ∆t6σωb

2
(
(−2− 4A + 2A4 + 4A3 + 2)k3 +

(9− 12A− 6A2 + 12A3 − 3A4)k2 +

(−13 + 8A− 8A3 + A4 + 12Ak − 12A2+k)k +

(6− 12A2 − 12Ak + 12A2+k + 6A2k)
)

(3.55)

The above equation can also be expressed as

σx
2 = ∆t6σωb

2
(
c1k

3 + c2k
2 + (3.56)

(c3 + 12Ak − 12A2+k)k +

(c4 − 12Ak + 12A2+k + 6A2k)
)

where,

c1 = −2− 4A + 2A4 + 4A3 + 2

c2 = 9− 12A− 6A2 + 12A3 − 3A4

c3 = −13 + 8A− 8A3 + A4

c4 = 6− 12A2

3.5.6 Summary of Results

The preceding sections derived the variance expressions for the raw, integrated,

and double integrated stochastic error processes of wide-band noise and exponentially-

correlated noise. Tables 3.1 and 3.2 show the resulting expressions in summary. The
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left-most column represents the level of integration and the right column indicates the

corresponding variance functions. Recall that k is the time index and ∆t is the sample

interval.

Table 3.1: Variance Contributions of Wide-Band Noise Integrals

State Variance, σ2(k)

ω σ2
ω∫

ω dt σ2
ω∆t2k∫∫

ω dt2 ∆t4σω
2
(

1
3k3 + 1

2k2 + 1
6k

)

Table 3.2: Variance Contributions of 1st-Order Gauss-Markov Process Integrals

State Variance, σ2(k)

b ∆t2σωb
2
(

A2k−1
A2−1

)
∫

b dt ∆t4σ2
ωb

(−a1 + a2A
k − a3A

2k + a4k
)

∫∫
b dt2 ∆t6σωb

2
(
c1k

3 + c2k
2 + (c3 + 12Ak − 12A2+k)k + (c4 − 12Ak + 12A2+k + 6A2k)

)

3.6 Validation of the Error Propagation

In order to validate the derived expressions for the variance functions of the inte-

grated stochastic processes, a Monte Carlo simulation was employed. The basic idea of

the simulation is to generate a large number of independent stochastic processes using

fixed parameters for a given window of time and then integrate (and double integrate)

each simulated process over the duration. The variance over all the simulated runs is
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computed for each time step. The computed variance functions represent the variance

versus time of the integral processes. The empirically deduced variances are then com-

pared to the derived expressions in Tables 3.1 and 3.2.

The following plots show the analytical variance functions compared against the

Monte Carlo results for each of the stochastic processes. In each example figure, the

simulated variance matches well to the analytic expression thus validating the expressions

derived in the preceding sections.

3.6.1 Propagation of Wide-Band Noise Process

Figures 3.1, 3.2, and 3.3 show the validation of standard deviation functions for

a wide-band noise process, its integral, and its double integral, respectively. The plots

show that the equations as derived and listed in the Tables match the variance generated

in the Monte Carlo simulation.
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Figure 3.1: Standard Deviation of Wide-Band Noise Process: 10Hz, σω = 1, 2000 Monte
Carlo iterations
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Figure 3.2: Standard Deviation of Integrated Wide-Band Noise Process: 10Hz, σω = 1,
2000 Monte Carlo iterations
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Figure 3.3: Standard Deviation of Double Integrated Wide-Band Noise Process: 10Hz,
σω = 1, 2000 Monte Carlo iterations

3.6.2 Propagation of Gauss-Markov Process

Figures 3.4, 3.5, and 3.6 show the validation of standard deviation functions for a

Gauss-Markov process, its integral, and its double integral. The plots show that the

equations as derived and listed in the Tables match the variance achieved through the

Monte Carlo simulation. Note that for the non-integrated Gauss-Markov process shown

in Figure 3.4, the process variance reaches steady state as determined by Equation (3.33).
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Figure 3.4: Standard Deviation of Gauss-Markov Process: 10Hz, σb = 2, τ = 30, 2000
Monte Carlo iterations
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Figure 3.5: Standard Deviation of Integrated Gauss-Markov Process: 10Hz, σb = 2, τ =
200, 2000 Monte Carlo iterations
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Figure 3.6: Standard Deviation of Double Integrated Gauss-Markov Process: 10Hz, σb

= 2, τ = 200, 2000 Monte Carlo iterations

3.7 Application Example

While the results obtained in this chapter are in direct support of the more general

navigation scenarios presented in later chapters, the expressions for the propagation of

the errors in this chapter can be directly applied to a single-axis navigation scenario.

It is the purpose of this section to illustrate the use of such expressions with such an

example.

Suppose a body is constrained to move in a straight line trajectory as depicted by

Figure 3.7. Suppose additionally that the sensitive axis of an accelerometer is coincident

with the traveling direction of the body. The accelerometer specifications of random

walk, bias drift variance, time constant, and sample frequency are known and the sensor

has been fully calibrated to remove any constant bias or effects due to temperature. The
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output of the calibrated measurement is integrated to obtain the velocity and position

for a given acceleration profile along a straight line position trajectory. For each time

step, in addition to the values of velocity and position, the results of this chapter can

provide the expected accuracy of the acceleration, velocity, and position.

Figure 3.7: Body Constrained to Travel in One Direction

Assume the sensor specifications for the accelerometer are given in Table 3.3. These

specifications represent a low grade accelerometer with an exaggerated bias magnitude.

Table 3.3: Sample Accelerometer Specifications

Specification Value

fs 10 Hz
σ2

ω 0.5 m
s2

σ2
b 0.25 m

s2

τ 200 s

For any acceleration profile, a, in a single direction, the mean value of the veloc-

ity, V and position P in the same direction are simply the integral values of the true
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acceleration. The mean values represent the Euler integration of true sensor outputs.

E[V (k)] = ∆t
k∑

i=0

ai meters per second (3.57)

E[P (k)] = ∆t2
k∑

j=0

j∑

i=0

ai meters (3.58)

The variance of the the velocity, V , is the sum of the variances of the error con-

tributions from integrated wide-band noise and integrated Markov process as listed in

Tables 3.1 and 3.2.

σ2
V (k) = σ2R

ε(k) (3.59)

= σ2R
ω(k) + σ2R

b(k) (3.60)

The variance of the the position, P , is the sum of the variances of the error contri-

butions from double integrated wide-band noise and double integrated Markov process

as listed in Tables 3.1 and 3.2.

σ2
P (k) = σ2R R

ε(k) (3.61)

= σ2R R
ω(k) + σ2R R

b(k) (3.62)

To demonstrate these results, consider the sinusoidal acceleration profile as shown

in Figure 3.8. This noisy accelerometer when integrated gives the velocity is shown in

Figure 3.9. Another step of integration gives the position shown in Figure 3.9. As is

evident by the plots, the 1-σ bounds show that the error growth becomes larger in time

and with each level of integration. The bounds shown in the plots can be thought of
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as a time-dependent corridor in which the integral values of velocity and position are

expected to reside. As all error processes are Gaussian, the 1-σ bounds plotted in Figures

3.9 and 3.10 specify the region where approximately 66.7 percent of all trajectories are

expected to travel.
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Figure 3.8: Simulated Acceleration Profile: 10Hz, σω = 0.5, σb = 0.25, τ = 200
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Figure 3.9: Velocity with Bounds from Accel Profile
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Figure 3.10: Position with Bounds from Accel Profile
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3.8 Illustration of Results

Inertial sensors exhibit varying magnitudes of each of their component error pro-

cesses as well as the characteristic time constant of the drifting component. The follow-

ing sections illustrate the effect of the component stochastic process parameters on the

growth of the variance of the total integrated sensor values.

3.8.1 Relative Magnitudes

The two stochastic error processes, when integrated, each uniquely contribute to

variance function of the integrated sensor output. A sensor’s wide-band noise component

will dominate the error for short integration intervals while the drifting bias dominates

for longer durations. This relative effect of each can be investigated by observing the

effect of adjusting the ratio of the process magnitudes, σb
σw

, on the variance function of

the integrated output for a fixed time constant. Setting the wide-band noise standard

deviation to 1, Figures 3.11, 3.12, and 3.13 and show the 1-σ bounds of the integrated

sensor output for various ranges of the bias drift standard deviation.

Since the rate of increase of the integrated bias drift variance is higher than that of

the integrated wide-band noise for any relative ratio, even small relative bias magnitudes

will cause the bias to eventually dominate the variance growth. The general effect of

the relative ratio is that an increase Gauss-Markov process magnitude, σb, causes it

to dominate sooner, resulting in a larger rate of error growth in the integrated sensor

output.
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Figure 3.11: Integrated Sensor 1-σ Bounds for Ratio from 0.1 to 1
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Figure 3.12: Integrated Sensor 1-σ Bounds for Ratio from 0.01 to 0.1
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Figure 3.13: Integrated Sensor 1-σ Bounds for Ratio from 0.001 to 0.1

3.8.2 Effect of Time Constant

For a fixed relative magnitude of 0.1, Figure 3.14 illustrates the shape of the bounds

for various values of the Markov model time constant, τ . For the range of time constants

shown, larger values of τ cause a slower increase in the rate of error propagation, while

lower values indicate a faster increase.

For a fixed relative magnitude of 0.1, Figure 3.15 illustrates the effect of a larger

range of τ on the value of the integrated sensor error bounds at a particular time of 120

units. For very small values of τ , the initial conditions of the Markov model dominate

over the input noise. As the time constant increases, the maximum error value peaks

and then levels off in a nonlinear fashion. For most inertial sensors, the time constant

is usually much longer than values corresponding to the peak. The result of Figure 3.14

best describes the effect of time constant within its expected range.
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3.9 Conclusion

In this chapter, analytical variance expressions have been derived which quantify

the error growth of subsequent integrations of inertial sensors exhibiting the assumed

stochastic model forms of Chapter 2. A Monte Carlo simulation of the stochastic pro-

cesses was used to validate the analytical results and further simulations illustrated the

use of the expressions in the quantification of accuracy for the single-axis case. The final

sections of this chapter showed the relative and total effects of the three stochastic model

parameters on the resulting variance functions of the integrated sensor. The results of

this chapter are used in direct support of derived expressions and analysis for the planar

navigation scenario studied in Chapter 4.
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Chapter 4

Two Dimensional Error Propagation

4.1 Introduction

In order to describe the most general motion of a navigating vehicle, six degrees of

freedom are required. An inertial measurement unit (IMU) attached to the navigating

body takes measurements of these six degrees of freedom which include three orthogo-

nal accelerations (ax,ay,az) and three orthogonal rotation rates (gx,gy,gz). In order to

navigate within a suitable frame of reference such as on the surface of the earth, these

measurements must be transformed and integrated to values of orientation, velocity, and

position in that frame. For vehicles traveling within short ranges on the earth, a suit-

able frame of reference is a simple cartesian coordinate system in which North, East,

Down (NED) axes are aligned according to the right-hand rule. The orientation of the

vehicle in this navigation frame can be described by roll (φ), pitch (θ), and yaw (ψ)

angles as defined about the North, East, and Down axes, respectively. Figure 4.1 is a

three-dimensional diagram depicting the body frame and navigation frame coordinate

systems.

It the task of the inertial navigator to perform the necessary operations on the body

frame measurements to achieve the desired navigation frame values. This process of

operating on the inertial measurements is referred to as inertial mechanization. For the 6-

DOF scenario the mechanization equations are non-linear and require several calculations

involving multiple measurements (see Chapter 5). If, however, the vehicle operates under

some kinematic constraints, the resulting governing equations may be greatly simplified.
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Figure 4.1: Simplified Coordinate Frame

This chapter focuses its attention on the planar navigation scenario in which a vehicle is

constrained to move on a North-East plane. Figure (4.2) depicts the simplified motion

of the constrained body. The body can translate in the north and east directions and

rotate only about the direction orthogonal to the plane. The rotation rate sensed by a

gyro about the z-axis on the constrained body is the same as the rotation rate about the

down axis in the navigation frame. The yaw angle, ψ, as measured positive from north

about the down axis in the navigation frame requires no transformation to the navigation

frame and is directly related to the sensed yaw rate, gz, by simple integration.

The vehicle in this planar navigation scenario, depending upon its capability and

trajectory, can operate under additional kinematic constraints. For general motion,

the vehicle experiences side-slip, in which the body experiences velocity in both the

direction it is pointing, body frame x known as heading (longitudinal direction), and

the body frame y direction (lateral direction). This is the case on many vehicles in

which high dynamic maneuvers force the body to point in a direction incoincident with

its path of motion. Figure 4.3 shows the dynamic equations for use in navigating a
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Figure 4.2: Simplified Coordinate Frame 2D

side-slipping vehicle with inertial measurements. As is evident by the diagram, the gyro

is first integrated and then used in transforming the acceleration measurements to the

navigation frame. The transformed accelerations are then integrated once for velocity,

and twice for position.

Figure 4.3: Navigation Relationships for Side-Slip Vehicle

For many four-wheeled vehicles performing more moderate maneuvers, the velocity

of the body can be assumed to be strictly coincident with its heading (body frame x). In

this scenario, the body moves only in the direction it is pointing and is considered to be

operating under the no-slip condition. For the no-slip case described above, the dynamic
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relationships between the inertial measurements and navigation frame vehicle states of

velocity and position simplify even further. These simplified relationships for the no-slip

case are shown in Figure 4.4. Similar to the case with side-slip, the navigation frame

values of velocity and position are ascertained from the subsequent integrations. How-

ever, in this no-slip case, the velocity is solely derived from integrating the longitudinal

accelerometer, ax. Consequently, the acceleration, requires no transformation with the

integrated gyro and the lateral accelerometer, ay, is not necessary for navigation. As a

result, inertial navigation for the no-slip case requires one less integration and one less

measurement. This observation is shown later in this chapter to offer some potential

dead-reckoning improvement when such kinematic assumptions are valid.

Figure 4.4: Navigation Relationships for Vehicle with No-Slip

Using results from and a similar approach to Chapter 3, this chapter presents a

derivation of the propagation of navigation-frame velocity errors for the planar no-slip

case as shown in Figure 4.4. For bodies that operate under such kinematic constraints,

the resulting variance expressions provide the accuracy expected when dead-reckoning

with the applicable dynamic equations and choice of inertial sensors. The resulting

velocity expressions are validated with the same type of Monte Carlo simulations as used
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in Chapter 3. Following the no-slip case is a discussion of the additional requirements for

the case where a vehicle is expected to slip. Variance expressions for the transformation of

accelerations for the no-slip case are presented. This chapter concludes by demonstrating

the additional error induced when employing the slip equations for a non-slip trajectory.

4.2 Velocity Error in Navigation Frame Under No-Slip Planar Motion

This section derives expressions for the variance of the 2-D velocity as derived from

the minimum amount of inertial measurements necessary. The basic method used below

defines the simplest governing inertial navigation relationships, substitutes the inertial

measurement errors, and applies the expectation operator to the squared expressions.

Using small angle approximations, the expressions can be simplified to show a linear

propagation of sensor errors from the IMU to the vehicle states.

For the navigating body in the planar scenario, the yaw angle of the vehicle is derived

by direct integration of the rotation rate sensed about the axis aligned orthogonal to the

plane, gz.

ψ =
∫

gz dt (4.1)

The velocity, V , of the body is always tangential to its path under the no-slip

condition, and therefore can be derived from the acceleration sensed along the its x axis

(ax accelerometer) by the integral relationship

V =
∫

ax dt (4.2)
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Assuming Euler integration of the above quantities, the preceding integrals are re-

duced to summations

Vk = ∆t
k−1∑

i=0

ax + V0 (4.3)

ψk = ∆t
k−1∑

i=0

gz + ψ0 (4.4)

The rate gyro and accelerometer inertial measurements are corrupted by stochastic

error sources, εg, and εa as introduced and quantified in earlier chapters. The total

velocity and yaw angle can therefore be expressed as

Vk = ∆t
k−1∑

i=0

(a + εa) + V0

= ∆t
k−1∑

i=0

a + ∆t
k−1∑

i=0

εa + V0 (4.5)

ψk = ∆t
k−1∑

i=0

(g + εg) + ψ0

= ∆t

k−1∑

i=0

g + ∆t

k−1∑

i=0

εg + ψ0 (4.6)

For the clarity in the derivations following it is helpful to redefine the above equations

with simpler notation. Note that despite the removal of subscript, k, the values are still
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functions of time.

A = ∆t
k−1∑

i=0

a + V0 (4.7)

B = ∆t
k−1∑

i=0

εa (4.8)

α = ∆t

k−1∑

i=0

g + ψ0 (4.9)

β = ∆t
k−1∑

i=0

εg (4.10)

In summary, A and α represent the velocity and yaw angle as derived from Euler

integration of the mean sensor outputs and B and β represent the error due to the

integrated accelerometer and rate gyro, respectively.

4.2.1 Mean and Variance of East Velocity

The velocity in the east direction under this scenario is computed by taking the

resultant velocity from the accelerometer and transforming it into the east component

direction using the resultant yaw angle from the rate gyro.

VEAST k = V sin(ψ)

=

(
∆t

k−1∑

i=0

a + V0 + ∆t
k−1∑

i=0

εa

)
sin(∆t

k−1∑

i=0

g + ψ0 + ∆t
k−1∑

i=0

εg)

= (A + B) sin(α + β) (4.11)

Using a trigonometric identity, the sine factor is expanded as shown below

VEAST k = (A + B) (sin(α) cos(β) + cos(α) sin(β)) (4.12)
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Provided that the integrated gyro error, β, is sufficiently small, small-angle approx-

imations of Equations (4.13) and (4.14) can be made.

cosβ ≈ 1 (4.13)

sinβ ≈ β (4.14)

In general, this small-angle approximation is valid within the typical range of inter-

est. As the integrated sensor error grows outside the region for which the assumption is

valid (|β| < 10 degrees), the resulting velocity and position errors exceed the range of

accuracy in which this research seeks to quantify.

The small angle approximation results in the simplified expression for the east ve-

locity

VEAST k = (A + B) (sin(α) + cos(α)β) (4.15)

The mean function of velocity in the east direction is found by taking the expected

value.

E [VEAST k] = E [(A + B) (sin(α) + cos(α)β)]

= A sinα + sin αE[B] + A cosαE[β] + cosαE[Bβ] (4.16)

Since the stochastic errors are zero mean, the mean of the east velocity is simply

the true value ascertained from the true part of the inertial measurements.

E [VEAST k] = A cosα (4.17)
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To derive the variance of the east velocity, it is first squared as shown below

(VEAST k)
2 =

(
A sinα + sin αB + A cosαβ + cosαBβ

)2

= A2 sin2(α) + A2 cos2 αβ2 + sin2 αB2 + cosα2B2β2

+ 2A2 sinα cosαβ + 2AB sin2 α + 4AB sinα cosαβ

+ 2AB cos2 αβ2 + 2B2 sinα cosαβ (4.18)

Next, the expected value of the squared expression is taken as follows

E
[
(VEAST k)

2
]

= A2 sin2(α) + A2 cos2 αE
[
β2

]
+ sin2 αE

[
B2

]
+ cosα2E

[
B2β2

]

+ 2A2 sinα cosαE
[
β
]
+ 2A sin2 αE

[
B

]
+ 4A sinα cosαE

[
Bβ

]

+ 2A cos2 αE
[
Bβ2

]
+ 2 sin α cosαE

[
B2β

]
(4.19)

Assuming the two stochastic sources are independent, the expression reduces to

E
[
(VEAST k)

2
]

= A2 sin2(α) + A2 cos2 αE
[
β2

]

+sin2 αE
[
B2

]
+ cos2 αE

[
B2

]
E

[
β2

]
(4.20)

Computing the variance of the expression gives the following result

VAR
[
(VEAST k)

2
]

= E
[
(VEAST k)

2
]− E

[
(VEAST k)

]2

= A2 cos2 αE
[
β2

]
+ sin2 αE

[
B2

]
+ cos2 αE

[
B2

]
E

[
β2

]
(4.21)
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Recall from Equations (4.8) and (4.10), that B is the integrated accelerometer error

and B is the integrated gyro error. The variances of the integrated inertial sensors were

derived in Chapter 3 and shown again here

E
[
B2

]
= σ2R

εa
(4.22)

E
[
β2

]
= σ2R

εg
(4.23)

Where, σ2R
εa

is the variance of the integrated accelerometer errors and σ2R
εg

is the

variance of the integrated gyro errors.

The expressions are substituted below to yield the variance function of east velocity

σ2
VEAST

(k) = V 2 cos2 ψσ2R
εg

+ sin2 ψσ2R
εa

+ cos2 ψσ2R
εa

σ2R
εg

(4.24)

Equation (4.24) shows that the variance is a three-termed expression consisting of

the trajectory (velocity and heading) and the variances of the integrate accelerometer

and integrated gyro. The last term includes the product of the two latter variances

indicating that the variance of east velocity is not Gaussian distributed. However, for

sufficiently large values of velocity, V , the first term dominates and the east velocity is

approximately Gaussian.

4.2.2 Mean and Variance of North Velocity

The velocity in the North direction under this scenario is computed by taking the

resultant velocity from the accelerometer and transforming it into the North component
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velocity using the resultant yaw angle from the rate gyro.

VNORTHk = V cos(ψ)

=

(
∆t

k−1∑

i=0

a + V0 + ∆t
k−1∑

i=0

εa

)
cos(∆t

k−1∑

i=0

g + ψ0 + ∆t
k−1∑

i=0

εg)

= (A + B) cos(α + β) (4.25)

Using a trigonometric identity, the cosine factor is expanded as shown below

VNORTHk = (A + B) (cos(α) cos(β)− sin(α) sin(β)) (4.26)

Using the same small angle approximations shown before in Equations (4.13) and

(4.14), the expression reduces to

VNORTHk = (A + B) (cos(α) + sin(α)β) (4.27)

The mean function of velocity in the north direction is found by taking the expected

value

E [VNORTHk] = E [(A + B) (cos(α) + sin(α)β)]

= A cosα + cosαE[B] + A sinαE[β] + sinαE[Bβ] (4.28)

Since the stochastic errors are zero mean, the mean of the north velocity is simply

the true value ascertained from the true part of the inertial measurements

E [VNORTHk] = A cosα (4.29)
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To derive the variance of the north velocity, it is first squared as shown below

(VNORTHk)
2 =

(
A cosα + cos αB + A sinαβ + sinαBβ

)2

= A2 cos2(α) + A2 sin2 αβ2 + cos2 αB2 + sin α2B2β2

+ 2A2 cosα sinαβ + 2AB cos2 α + 4AB cosα sinαβ

+ 2AB sin2 αβ2 + 2B2 cosα sinαβ (4.30)

Next, taking the expected value of the squared expression gives

E
[
(VNORTHk)

2
]

= A2 cos2(α) + A2 sin2 αE
[
β2

]
+ cos2 αE

[
B2

]
+ sin α2E

[
B2β2

]

+ 2A2 cosα sinαE
[
β
]
+ 2A cos2 αE

[
B

]
+ 4A cosα sinαE

[
Bβ

]

+ 2A sin2 αE
[
Bβ2

]
+ 2 cos α sinαE

[
B2β

]
(4.31)

Assuming the two stochastic sources are independent and zero mean, the expression

reduces to

E
[
(VNORTHk)

2
]

= A2 cos2(α) + A2 sin2 αE
[
β2

]

+ cos2 αE
[
B2

]
+ sin2 αE

[
B2

]
E

[
β2

]
(4.32)

Computing the variance of the expression gives the terms

VAR
[
(VNORTHk)

2
]

= E
[
(VNORTHk)

2
]− E

[
(VNORTHk)

]2

= A2 sin2 αE
[
β2

]
+ cos2 αE

[
B2

]
+ sin2 αE

[
B2

]
E

[
β2

]
(4.33)
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Where, α is the integrated accelerometer error and B is the integrated gyro error.

The variances of these integrated inertial sensors are derived in Chapter 3 and shown

again here

E
[
B2

]
= σ2R

εa
(4.34)

E
[
β2

]
= σ2R

εg
(4.35)

Where, σ2R
εa

is the variance of the integrated accelerometer errors and σ2R
εg

is the

variance of the integrated gyro errors.

Substituting the known integrated error variances gives the variance function for

the north velocity.

σ2
VNORTH

(k) = V 2 sin2 ψσ2R
εg

+ cos2 ψσ2R
εa

+ sin2 ψσ2R
εa

σ2R
εg

(4.36)

As shown above for the east velocity in Equation (4.24) it is evident that for rela-

tively large velocities, the north velocity is approximately Gaussian due to the dominance

of the first term of Equation (4.36) over the third term.

4.2.3 Cross Covariance of North and East Velocity

To supplement the characterization of the velocity error for this planar no-slip sce-

nario, the cross-covariance between the north and east components is derived as follows.

The cross covariance is defined as

COV
[
VNORTHkVEAST k

]
=

E
[
(VNORTHk − E[VNORTH ])(VEAST k − E[VEAST ])

]
(4.37)
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Using the linear approximation from Equations (4.13) and (4.14) results in

COV
[
VNORTHkVEAST k

]
=

E
[
(B cosα−A sinαβ −B sinαβ)(B sinα + A cosαβ + B cosαβ)

]
(4.38)

Next, the expectation operator is expanded and shown below

COV
[
VNORTHkVEAST k

]
= E

[
B2 cosα sinα + A cos2 αβ + cos2 αB2β −A sin2 αBβ

−A2 sinα cosαβ2 − 2A sinα cosαBβ2 − sin2 αB2β −

sinα cosαB2β2
]

= cosα sinαE
[
B2

]
+ A cos2 αE

[
β
]
+ cos2 αE

[
B2β

]

−A sin2 αE
[
Bβ

]−A2 sinα cosαE
[
β2

]
(4.39)

−2A sinα cosαE
[
Bβ2

]− sin2 αE
[
B2β

]−

sinα cosαE
[
B2β2

]
(4.40)

Since the integrated accelerometer error, B, and integrated gyro error, β, are zero

mean and uncorrelated, the expression reduces to

COV
[
VNORTHkVEAST k

]
= cosα sinαE

[
B2

]−A2 sinα cosαE
[
β2

]−

sinα cosαE
[
B2β2

]
(4.41)
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The final result is an expression for the cross-covariance of the velocity in the north

and east component directions as shown below

COV
[
VNORTHkVEAST k

]
= sinα cosα

(
σ2R

εa
−A2σ2R

εg
− σ2R

εa
σ2R

εg

)
(4.42)

4.2.4 Probabilistic Characterization of Velocity Errors

As discussed above, if the velocity is relative large, the north and east velocities

ascertained from the no-slip mechanization are approximately Gaussian. Under this

condition, the mean, variance, and cross covariance functions derived above completely

characterize the propagation of the stochastic sensor errors into the velocity errors for

this planar no-slip scenario. The resulting probabilistic characterization is captured for

each step in time by a two-dimensional Gaussian surface as described by Equation (4.43).

fV (VN , VE) =
1

2πσVN
σVE

√
1− ρ2

exp
[ 1
2(1− ρ2)

(
VN

σ2
VN

+
VE

σ2
VE

− 2ρVNVE

σVN
σVE

)]
(4.43)

Where, ρ, the correlation coefficient is computed by

ρ =
COV

[
VNORTHkVEAST k

]

σVN
σVE

(4.44)

and σ2
VN

and σ2
VE

are the variances of velocity in the north and east component

directions as derived in the previous sections. Note that the Gaussian surface of Equation

(4.43) is centered about zero and thus represents only the deviation from the mean

values, which are known from the analysis of the preceding sections in Equations (4.17)

and (4.29).
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The expressions derived for the variance of the velocity error in the planar no-slip

scenario indicate that the shape of the Gaussian surface described by Equation (4.43)

is completely characterized at any given time by the instantaneous velocity and yaw

angle. The width of its spread is dependent upon both the parameters of the stochastic

processes present on the measurements and the time since integration. The stochastic

characterization of the two-dimensional no-slip velocity error is therefore, at any given

time, independent of the trajectory history. In other words, the variance in the velocity

error is a function only of (in terms of vehicle trajectory) the instantaneous velocity

and yaw angle of the navigating body. This implies that the velocity error for a vehicle

that is inertially navigating under the no-slip assumption with the same initial and final

conditions can be fully characterized by the variance expressions of Chapter 3.

4.2.5 Validation of the Velocity Error Characterization

The same Monte Carlo validation methodology as for the single axis case in Chapter

3 was used to validate the velocity variance expressions of the preceding sections. The

basic idea of the simulation is to first define a North/East Position trajectory in time and

numerically differentiate the trajectory to obtain the North/East Velocities. From the

velocity, derive a yaw angle assuming the body points tangential to the path and then

differentiate to obtain the body frame longitudinal acceleration and yaw rate (under

a no-slip assumption). The stochastic errors are then added to the inertial values to

simulate the body-frame sensor measurements. Next, the simulated measurements are

transformed and integrated to attain the now-corrupted attitude and 2-D velocity. After

collecting a sufficient number of simulated integrations, the mean, covariance, and cross-

covariance values of the outputs are computed for each step in time. These resulting
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variance functions are compared to the analytical expressions using the known simulation

parameters.

Since the mean of the resulting velocity components is simply the processed value

of the true measurements, only the errors about the mean need be considered. To both

illustrate and validate the expressions derived for the velocity accuracy, a candidate

position trajectory is chosen as shown in Figure 4.5.
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Figure 4.5: Simulated Position Trajectory

Sensor specifications for the accelerometer and gyro chosen relative to trajectory

and are listed in Table 4.1. These specifications are taken from a rough identification of

a 6-DOF Crossbow IMU-400CD, a medium grade ($3K-$4K) inertial measurement unit.

Appendix A demonstrates sensor parameter identification on this particular device.
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Table 4.1: Simulated Sensor Specifications

Gyro Spec Value Accel Spec Value

fs 10 Hz fs 10 Hz
σ2

rw 0.14948 deg/s/sqrt(Hz) σ2
rw 0.000412 g/sqrt(Hz)

σ2
b 0.0061183 deg/s σ2

b 0.000100 g
τ 1300 seconds τ 500 seconds

The defined position trajectory is processed as described above, and the standard

deviation of the velocity errors are computed. Figure 4.6 and 4.7 show comparisons of

the computed velocity standard deviation to derived expression for the defined trajectory

for the east and north component velocities, respectively. The y-axis is the 3−σ value of

the component velocity representing the corridor of near perfect certainty (greater than

99% probability) within where the velocities are expected to reside.

As can be seen in the plots, the derived variance functions match well with the

simulated data. The velocity variance expressions can be observed in Figures 4.6 and 4.7

to exhibit an oscillating type behavior. As can be seen in the derived Equations (4.24)

and (4.36), the variance of the component velocities depends upon the instantaneous

value of the Velocity, V , as well as the heading, ψ. As ψ is oscillating according to the

sinusoidal position trajectory, the variance of the component velocities thus exhibits the

effect above.
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Figure 4.6: Standard Deviation of East Velocity, 2000 Monte Carlo iterations
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Figure 4.7: Standard Deviation of North Velocity, 2000 Monte Carlo iterations
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4.3 Position Error in No-Slip Planar Motion

Due to the added analytical complexity in computing the variance of the planar

position for the no-slip scenario, this analysis has not been not completed in closed-

form. Instead, this section will show by example of the derivation of east position, the

limitations of the current analysis approach and lack of necessary information. The

end results of the example derivation make clear the need for more complete statistical

characterization of the integrated sensor errors, and is an avenue of future work as

described in Chapter 6.

Equation (4.45) below gives the velocity in the east direction using the small angle

approximation from the earlier Equation (4.16).

VEAST k = (A + B) (sin(α) + cos(α)β)

= A sinα + sin αB + A cosαβ + cos αBβ (4.45)

The east position can be derived using the Euler method of numerical integration.

The result is expressed below in summation form with the initial condition PEAST 0 = 0.

PEAST k = ∆t
k−1∑

j=0

(A sinα + sin αB + A cosαβ + cosαBβ) (4.46)

The mean value of the east position is straightforward since the stochastic processes,

B and β are zero-mean and independent. The mean value is simply the numerical
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integration of the deterministic terms in the summation.

E [PEAST k] = ∆t
k−1∑

j=0

(A sinα + sin αE[B] + A cosαE[β] + cosαE[Bβ])

= ∆t
k−1∑

j=0

A sinα (4.47)

Using the same approach from the previous sections, in order to derive the east

position variance the expression is first squared.

PEAST k
2 =


∆t

k−1∑

j=0

(A sinα + sinαB + A cosαβ + cosαBβ)




2

= ∆t2

(
k−1∑

j=0

A cosα

k−1∑

j=0

A cosα +
k−1∑

j=0

sinαB

k−1∑

j=0

sinαB +

k−1∑

j=0

A cosαβ
k−1∑

j=0

A cosαβ +
k−1∑

j=0

cosαBβ
k−1∑

j=0

cosαBβ +

2
k−1∑

j=0

A sinα

k−1∑

j=0

sinαB + 2
k−1∑

j=0

A sinα

k−1∑

j=0

A cosαβ +

2
k−1∑

j=0

A sinα
k−1∑

j=0

cosαBβ + 2
k−1∑

j=0

sinαB
k−1∑

j=0

A cosαβ +

2
k−1∑

j=0

sinαB
k−1∑

j=0

cosαBβ +

2
k−1∑

j=0

A cosαB

k−1∑

j=0

cosαBβ

)
(4.48)
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Since the processes are independent and zero mean taking the expected value of the

squared expression cancels out all the “cross-terms” leaving the following expression

E
[
PEAST k

2
]

= ∆t2

(
E




k−1∑

j=0

A cosα
k−1∑

j=0

A cosα


 + E




k−1∑

j=0

sinαB
k−1∑

j=0

sinαB


 +

E




k−1∑

j=0

A cosαβ
k−1∑

j=0

A cosαβ


 +

E




k−1∑

j=0

cosαBβ
k−1∑

j=0

cosαBβ




)
(4.49)

Taking the variance of the above expression reduces to the following three terms

VAR
[
PEAST k

2
]

= ∆t2

(
E




k−1∑

j=0

sinαB
k−1∑

j=0

sinαB


 +

E




k−1∑

j=0

A cosαβ
k−1∑

j=0

A cosαβ


 +

E




k−1∑

j=0

cosαBβ

k−1∑

j=0

cosαBβ




)
(4.50)
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Observing that each of the three terms in Equation (4.50) have the same basic form,

a single expansion is illustrated with an expansion of the first term for k = 5.

∆t2

(
E




k−1∑

j=0

sinαβ
k−1∑

j=0

sinαβ




)
=

∆t2
(

sin2 α1B1
2 + sin2 α2B2

2 + sin2 α3B3
2 + sin2 α4B4

2 +

2 sin α1 sinα2B1B2 + 2 sinα1 sinα2B1B3 + 2 sinα1 sinα3B1B4 +

2 sin α1 sinα2B2B3 + 2 sinα1 sinα2B2B4 +

2 sin α1 sinα2B3B4

)
(4.51)

Recognizing the pattern of expansion, this first term can be generalized to the

following expression

∆t2

(
E




k−1∑

j=0

sinαβ
k−1∑

j=0

sinαβ




)
=

∆t2E




k−1∑

l=0

sin2 αlBl
2 +

k−1∑

j=0

2 sin αj

k−1∑

i=j+1

sinαiBjBi


 (4.52)

Distributing the expectation operator yields the following expression for the expan-

sion of the first term of Equation (4.50)

∆t2

(
E




k−1∑

j=0

sinαβ

k−1∑

j=0

sinαβ




)
=

∆t2

(
k−1∑

l=0

sin2 αlE
[
Bl

2
]
+ 2

k−1∑

j=0

sinαj

k−1∑

i=j+1

sinαiE [BjBi]

)
(4.53)
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The variables within the argument of the expectation operators are the integrated

accelerometer error, B. While Chapter 3 provides the integrated sensor error variance,

E
[
Bl

2
]
in the first summation, no analysis has been done to ascertain the autocorrelation,

E [BjBi] expression in the second double-summation term. While further simplification

may be possible by substituting the original integrated stochastic model form of B into

the second term summation, the indexed coefficients still remain. Provided that the

expectations of Equation (4.53) can be ascertained, the simplification of the expression

still remains a difficult task due to the fact that that summations of the coefficients sinα

and sin2 α may not be able to be simplified or represented by a closed-form expression. As

the goal of this thesis is to provide closed-form expressions which bound the propagation

of error in terms of ascertainable vehicle states (whether computed or measured), the

above analysis remains to be explored in future work.

By example, the sample expansion of the first term of the variance expression of

Equation (4.50) has shown difficulty in achieving a solid closed-form expression for the

planar position for the no-slip case. In future work, other approaches of analysis may

provide a more complete and successful characterization of the errors as propagated

in the dynamic equations. However, with the use of Monte Carlo simulations, much

insight can be gained regarding the behavior of inertial navigation in various scenarios.

The remainder of this thesis will use simulation to exemplify claims resulting from the

analysis of inertial navigation in more complex kinematic scenarios. The next section

extends the current planar motion error analysis to a vehicle experiencing side-slip.
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4.4 Propagation of Error in Planar Motion with Slip

The above sections have derived variance functions that quantify the propagation

of inertial sensor errors when the no-slip assumption is valid and corresponding dynamic

relationships employed. Under the simplified motion, the dynamic relationships between

the body frame and navigation frame vehicle states are such that only one accelerometer

and one gyro are required to describe the motion of the vehicle. However, a vehicle expe-

riencing side-slip requires an additional measurement to describe all states of its motion.

For the planar case with side-slip, two accelerometers mounted in the body frame x

and y directions and a single gyro mounted orthogonal to the plane in the z direction

can be used to derive the values of 2-D velocity and position (see Figure 4.2). Due to

the kinematics of the slipping motion, the navigation frame states require a coordinate

transformation of the two accelerometer measurements (see Figure 4.3). As this coor-

dinate transformation is achieved with the use of the integrated gyro measurement, the

resulting navigation frame acceleration components exhibit an unbounded error growth

in time. As the states of velocity and position require additional integrations of the

transformed accelerations, their accuracy will grow at even faster rates than that of the

transformed accelerations. As a result, the slip-case navigation-frame acceleration, ve-

locity, and position will exhibit much higher error growth rates than under the no-slip

assumption.

4.4.1 Acceleration Error in Navigation Frame for Slip-Case

In order to illustrate the error growth when the no-slip assumption can not be

made, the following characterization of the transformed accelerations is shown. The
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acceleration in the planar North and East directions when the vehicle experiences side-

slip can be derived from body frame inertial measurements ax
′ and ay

′. The navigation

frame accelerations are related to the measurements by the following relationships.

aNORTH = ax
′ cosψ − ay

′ sinψ (4.54)

aEAST = ax
′ sinψ + ay

′ cosψ (4.55)

Where, as in the no-slip case, the the yaw angle of the vehicle can be derived by

Euler integration of the gz measurement.

ψk = ∆t
k−1∑

i=0

gz + ψ0 (4.56)

As the inertial measurements include a true acceleration, a, and a stochastic error

component, εa, the expressions are expanded as

aNORTH = (ax + εax) cos ψ − (
ay + εay

)
sinψ (4.57)

aEAST = (ax + εax) sin ψ +
(
ay + εay

)
cosψ (4.58)

Using the definition for the Euler-integrated yaw rate (Equation (4.9)) and Euler-

integrated gyro error (Equation (4.10)) the expression becomes

aNORTH = (ax + εax) cos (α + β)− (
ay + εay

)
sin (α + β) (4.59)

aEAST = (ax + εax) sin (α + β) +
(
ay + εay

)
cos (α + β) (4.60)
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As in the no-slip velocity derivation, the trigonometric factors can be expanded by

using the same identities and small-angle approximation. These operations give

aNORTH = a′x cos (α)− a′x sin (α)β − a′y sin (α)− a′y cos (α)β (4.61)

aEAST = a′x sin (α)− a′x cos (α)β + a′y cos (α)− a′y sin (α)β (4.62)

In order to calculate the variance of the north velocity, the simplified expression is

first squared

aNORTH
2 =

(
a′x cos (α)− a′x sin (α)β − a′y sin (α)− a′y cos (α)β

)2

= a′x
2 cos2 (α) + a′x

2 sin2 (α)β2 + a′y
2 sin2 (α) + a′y

2 cos2 (α)β2 −

2a′x
2 cos (α) sin (α)β + 2a′xa′y cos (α) sin (α) +

2a′xa′y cos2 (α)β + 2a′xa′y sin2 (α)β +

2a′xa′y cos (α) sin (α)β2 + 2a′y
2 cos (α) sin (α)β (4.63)

Anticipating the expectation operator, the cross terms are removed from the ex-

pression as the error sources are independent and zero-mean. The accelerometer errors,

εa are substituted and the expectation is applied to the resulting expression.

E
[
aNORTH

2
]

= ax
2 cos2 (α) + ax

2 sin2 (α)E
[
β2

]
+ ay

2 sin2 (α) + ay
2 cos2 (α)E

[
β2

]
+

E
[
εax

2
]
cos2 (α) + E

[
εax

2
]
sin2 (α)E

[
β2

]
+

E
[
εay

2
]
sin2 (α) + E

[
εay

2
]
cos2 (α)E

[
β2

]
+ (4.64)

87



Subtracting the mean squared value yields the variance of the acceleration in the

North direction.

E
[
aNORTH

2
]

= ax
2 sin2 (α)E

[
β2

]
+ ay

2 cos2 (α)E
[
β2

]
+

cos2 (α)E
[
εax

2
]
+ sin2 (α)E

[
εax

2
]
E

[
β2

]
+

sin2 (α)E
[
εay

2
]
+ cos2 (α)E

[
εay

2
]
E

[
β2

]
+ (4.65)

The results from Chapter 3 can be substituted to yield the final variance of the North

acceleration as resulting from the transformation of the acceleration measurements.

VAR
[
aNORTH

2
]

=
(
ax

2 sin2 (ψ̂) + ay
2 cos2 (ψ̂)

)
σR εgz

2 +

cos2 (ψ̂)σεax

2 + sin2 (ψ̂)σεax

2σR εgz

2 +

sin2 (ψ̂)σεay

2 + cos2 (ψ̂)σεay

2σR εgz

2 (4.66)

Using the same procedure as above, the variance of the east acceleration reduces to

the following expression

VAR
[
aEAST

2
]

=
(
ax

2 cos2 (ψ̂) + ay
2 sin2 (ψ̂)

)
σR εgz

2 +

sin2 (ψ̂)σεax

2 + cos2 (ψ̂)σεax

2σR εgz

2 +

cos2 (ψ̂)σεay

2 + sin2 (ψ̂)σεay

2σR εgz

2 (4.67)

Where ψ̂ is the integrated gyro measurement.

In the resulting variance expressions for the slip case accelerations, σεax

2 and σεay

2

are simply the output variances of the accelerometers. While these values are bounded
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in time, the integrated gyro variance σR εgz

2 is not. This unbounded acceleration er-

ror causes an even faster error growth in the integrated velocity and double-integrated

position values. For the no-slip case, no such acceleration transformation is necessary.

Consequently, the no-slip velocity and position error will grow at a slower rate than

that for the slip case. This suggests that when such vehicle constraints are valid, better

dead-reckoning performance is achieved when using the fewest possible measurements

with the fewest possible integrations. The following sections seeks to support this claim

with a simulation example.

4.5 Comparison of Slip and No-Slip Mechanizations

Since for the no-slip case, only a single accelerometer is required and no transfor-

mation is necessary, the velocity and position values derived with the simpler dynamic

equations and therefore exhibit a slower error growth. The conclusion then is that if and

only if the no-slip condition exists, better dead-reckoning performance can be achieved

by using as few measurements as possible and few sensor integrations as possible. By

using computer simulation tools, these claims are demonstrated as follows.

A comparison of the two methods can be realized with the use of a Monte Carlo

simulation as used for the validation of the variance expressions earlier in this chapter.

Within this particular simulation, a position trajectory is defined and the resultant vehi-

cle orientation, velocities, and accelerations are computed under the no slip assumption.

A Monte Carlo simulation is performed (3000 iterations) in which simulated inertial

errors with assumed sensor error parameters are added to the inertial values of accelera-

tions and rotation rates. The simulated inertial measurements are sent to two calculation

routines: one in which the no-slip condition is assumed, the other in which the side-slip
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assumption is assumed. For 3000 iterations, the variance of the velocity, position, and

attitude for each time step is calculated and stored for comparison.

Figure 4.8 shows a sample North vs. East position trajectory defined in the navi-

gation frame. Under the no-slip assumption, the 2-D velocity is computed and shown

in Figure 4.9; the corresponding no-slip yaw angle is shown in Figure 4.10. Using the

same sensor specifications as listed in Table 3.1 (with a faster sample rate of 100Hz), the

inertial measurements are simulated and processed for both the no-slip case in Figure

4.4 and the slip case in Figure 4.3 for 2000 iterations. The variance functions of the

yaw angle, 2-D velocity, and 2-D position are then computed for each case over the 3000

iterations.
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Figure 4.8: Defined Position Trajectory
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Figure 4.11 shows the 3-σ bounds for the yaw angle under each kinematic assump-

tion. Since the processing is identical, the attitude of the body under each assumption

exhibits identical variance growth curves. However, Figures 4.12 (Velocity) and 4.13 (Po-

sition) show a different result. Here, the growth in the integral states derived using the

no-slip mechanization is slower than that using the slip mechanization thus exemplifying

the effect claimed.
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Figure 4.11: 3-σ Bounds on Simulated Yaw Angle
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This example shows that when the no-slip assumption is valid, use of the no-slip

dynamic equations results in more accurate dead-reckoning performance. In contrast, use

of the side-slip equations result in a higher rate of error growth due to the unnecessary

acceleration measurement and additional step of integration in the governing equations.

It is emphasized again that the no-slip equations only provide a valid result when such

a no-slip assumption can be made.

4.6 Conclusion

This chapter has presented an analysis of the propagation of the stochastic inertial

sensor errors into the position, velocity, and attitude vehicle states for a body restricted

to planar motion. For this planar case, it is shown that the vehicle’s z axis is always

aligned to the navigation frame ψ axis and therefore its errors are simply the integrated

gyro errors. These integrated sensor errors can be quantified by direct application of the

variance expressions derived in Chapter 3. Within this planar navigation scenario, two

kinematic cases are studied: side-slip and no side-slip. For the no side-slip case, a vehicle’s

velocity vector is coincident with its heading, and velocity is ascertained from a single

accelerometer integration. However, in the side-slip case the vehicle points away from

its direction of travel and the velocity must be derived from an additional measurement

and additional integration step. This chapter shows through analytical results and a

simulation example that when a vehicle has no side-slip, better dead-reckoning accuracy

is achieved by employing the simpler equations with fewer measurements for the no-slip

mechanization, as compared to the added measurements of the side-slip mechanization.

This chapter has also shown through the position derivation for the no-slip case, the

difficulty in the current analysis approach. It is suggested that further analytical analysis
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be performed using techniques which provide more comprehensive statistical information

on the propagated inertial errors to analytically quantify the position errors in planar

mechanization.
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Chapter 5

Six DOF Analysis

5.1 Introduction

As mentioned in Chapter 4, six degrees of freedom (6-DOF) are required to kine-

matically describe the most general motion of a body in space. In modern-day inertial

navigation these six degrees of freedom are typically measured with an inertial measure-

ment unit (IMU) rigidly attached to the body. The IMU measures three orthogonal

accelerations (ax,ay,az) and three orthogonal rotation rates (gx,gy,gz) for a total of 6

degrees of freedom. For the purpose of navigation, such measurements need to be trans-

formed into a coordinate system suitable for navigating. Figure 5.1 shows a common

navigation-frame cartestian coordinate system as commonly employed on many inertial

navigation systems, especially ground vehicles [25]. In one such cartesian frame, the

navigating vehicle’s state is described by its velocity, and position in terms of coordi-

nates North, East, and Down (NED) and by its roll (φ), pitch (θ), and yaw (ψ) angles

about the NED axes, respectively. The diagram from Chapter 4 is shown again in here

in Figure 5.1 to illustrate the body and navigation frame axes.

This chapter presents the equations necessary to use body frame measurements from

a 6-DOF IMU to describe a vehicle’s state in the navigation frame. This 6-DOF navi-

gation scheme is applicable to all of the scenarios introduced in the previous chapters as

it captures the most general vehicle motion. As Chapters 3 and 4 have illustrated, the

accuracy of any inertial navigation system degrades with time, sensor integrity, trajec-

tory, and dynamic relationships employed without aid from external measurements. In
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Figure 5.1: Simplified Coordinate Frame

specific regards to the effect of dynamic relationships, Chapter 4 showed a comparative

example showing the relative decline in inertial navigation performance when unneces-

sary measurements and integrations are used in deriving the navigation-frame states.

This chapter will extend this point with a similar example in which inertial navigation of

a planar trajectory is compared using the planar equations of Chapter 4 and the general

6-DOF method presented in this chapter.

5.2 Equations of Motion

5.2.1 Orientation

Two common conventions are used to describe a body’s orientation in the NED

navigation frame: Euler angles and Quaternions. The Euler angle representation, while

intuitive and straightforward to implement, exhibits a matrix singularity for pitch angles

at 90 degrees. As this particular orientation is rarely encountered on many vehicles which

use the NED frame, Euler angles remain as popular choice for ground vehicles. The
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Quaternion approach involves a set of four linear differential equations which describe

orientation in three dimensional space. The method has the advantage of being immune

to any particular singularities and therefore is numerically stable for all orientations.

However, as the quaternion values themselves lack strong physical meaning, they are

commonly transformed from and to Euler angles using a nonlinear relationship. The

advantage of the quaternion approach for ground vehicle applications therefore is mainly

in numerical computation and the relative accuracy compared to the Eulerian angle

method is negligible. A more complete comparison and discussion of the two methods

can be found in [26]. For the simple study in this thesis, the Euler angle representation

is presented as follows.

The Eulerian angular velocities are described in terms of the body frame rotation

rates by the following set of first order differential equations




φ̇

θ̇

ψ̇




=
1

cos θ




cos θ sinφ sin θ cosφ sin θ

0 cosφ cos θ − sinφ cos θ

0 sinφ cosφ







gx

gy

gz




(5.1)

where gx, gy, and gz are the rotation rates as aligned to orthogonal axes on the

body and (φ), (θ), and (ψ) are the rotation rates about the navigation frame axes. The

nonlinear relationships of orientation given by Equations (5.1) are numerically integrated

to obtain the resulting Euler angles describing the attitude of the navigating body in

space.

It is instructive to note that when two angles are zero, the angular rate correspond-

ing to the remaining angle holds a one-to-one relationship from the body frame to the

navigation frame. Additionally, if the body frame rotation rates gx and gy are zero then

98



the relationship between the navigation-frame yaw rate, ψ, and body-frame rate gz ex-

hibit a one-to-one relationship. The latter situation is precisely the planar case studied

in Chapter 3 in which the orientation of the body was constrained to rotate only about

its z-axis.

5.2.2 Translation

The accelerations as measured in the body-frame, must be transformed into the

navigation frame using the Euler angles obtained from the orientation calculations. The

Euler angles are used to construct the direction-cosine rotation matrix [26], which simply

re-orients the three accelerations as measured in the body frame, to the navigation frame

North, East, Down directions. The relationships between body frame and navigation

frame accelerations are shown by Equation (5.2).




aN

aE

aD




=




cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sin φ sin θ sinψ sinφ cosψ + cos φ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ







ax

ay

az



(5.2)

Once the accelerations are transformed, the gravity component is subtracted from

the down acceleration to yield the kinematic acceleration of the body in the navigation

frame. The resulting velocity and positions as described by the North, East, Down

coordinate system are then derived by direct integration of the transformed accelerations.

This process in which the IMU outputs are transformed and integrated into usable

navigational quantities is known as mechanization. The mechanized IMU rigidly at-

tached to the navigating body is considered the Inertial Navigation System (INS). The

6-DOF IMU mechanization algorithm as introduced above is summarized by Figure 5.2.
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The simple mechanization shown here neglects the coriolis, centripetal accelerations,

and other effects experienced by an IMU moving on the rotating earth. For the short

range (short time) for which many ground vehicles travel, these effects are small and the

mechanization discussed here is sufficient to support the typical requirements.

Figure 5.2: Mechanization of IMU Measurements

See Appendix B for a demonstration of the mechanization equations as presented.

This appendix presents the mechanization of a medium grade IMU 6-DOF and compares

its performance to position and velocity from a high-accuracy differential GPS receiver.

5.3 Comparison to Planar Mechanization

In Chapter 4 it was shown that for a planar vehicle trajectory where the body

experiences no side-slip, the position and velocity error growth using the assumed-slip

planar mechanization exhibited a faster variance growth than results from the no-slip

planar method. The faster error growth observed with the slip equations was due to two

contributing factors. The slip case required both an acceleration measurement and an

additional step of numerical integration in the computation of its velocity and position
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values. The 6-DOF navigation equations presented above are a natural extension of the

2-D slip case to the 6-DOF system. When the planar assumption can be made, using

the 6-DOF equations will add unnecessary error into the system. As a result, the error

growth for the 6-DOF case will be much worse. In the following, an example is shown

using the same trajectory of Chapter 4 to show the amount of additional error induced

when the 6-DOF method is employed.

Figures 5.3 5.4 and 5.5 show a sample position, velocity, and yaw angle trajectory.

Like the identical trajectory of the chapter 4 slip/no-slip comparison, the velocity, and

yaw angle are derived from the defined position trajectory.
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Figure 5.3: Defined Position Trajectory
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Using the sensor specifications as shown in Table 5.1, a Monte Carlo simulation

was performed by computing 6-DOF position, velocity, and attitude with simulated

acceleration measurements, ax, ay, az and rotation rates gx, gy, gz. Another Monte

Carlo simulation was then performed with the planar side-slip equations of Chapter 4

using simulated ax, ay and gz with the same sensor specifications. Both simulations in

this example were performed with 1200 iterations. The resulting standard deviations of

the two dimensional rms velocity, rms position and the attitude angle are then plotted

for comparison.

Table 5.1: Simulated Sensor Specifications (Comperable to Crossbow IMU-400C)

Gyro Spec Value Accel Spec Value

fs 100 Hz fs 100 Hz
σ2

rw 0.14948 deg/s/sqrt(Hz) σ2
rw 0.000412 g/sqrt(Hz)

σ2
b 0.61183 deg/s σ2

b 0.000100 g
τ 1300 seconds τ 500 seconds

Figure 5.6 compares the standard deviation results for the yaw angle computed with

the planar equations and then with the 6-DOF equations. It is evident that the error in

the yaw angle for this trajectory is approximately the same. As the 6-DOF equations

“take out” the effect of the roll and pitch angles on the yaw angle, the yaw orientation

is the same.

Figures 5.7 and 5.8 compare the standard deviation results for the 2-D rms velocity

and 2-D rms position, respectively. It is clear from these two plots that the additional

measurements in the 6-DOF scheme cause a much more severe error growth as contrasted

to the 3-DOF case.
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Figure 5.9 and 5.10 show the standard deviation results for pitch and roll angles,

respectively. These plots show precisely why the position and velocity growth is so

large: the integrated stochastic errors on the additional roll and pitch measurements

cause the accelerations to be rotated to an incorrect orientation. As a result, the mis-

oriented accelerations are integrated along their incorrect directions to give a much more

inaccurate North/East velocity and position.
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Figure 5.9: 3-σ Bounds on Pitch Angle DOF Comparison
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In the example above, it is clear that the body constrained to travel on the flat

plane not only lacked the benefit of the extra gyro measurements - they greatly increased

the overall error in the desired states. While this sample simulation has demonstrated

the effect of unnecessary inertial measurements in dead-reckoning navigation, it should

be re-iterated that if the body was indeed traveling in motion that required a 6-DOF

characterization, no less than six inertial measurements can be employed to correctly

compute the vehicle’s trajectory. In other words, better navigation performance will

most likely not be achieved by employing kinematic relationships which are simpler than

the motion of the navigating body. In conclusion, when a vehicle in motion is under

kinematic constraints, few measurements and integrations as required to completely

describe the vehicle will yield the smallest amount of error.
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Chapter 6

Conclusions

6.1 Overall Contributions

This thesis has presented an analysis of the expected accuracy of inertial dead-

reckoning in a variety of navigation scenarios. First, stochastic models were proposed

as approximations to the observed behavior of many common types and grades of ac-

celerometers and rate gyros. The selected inertial sensor error model included the sum of

two independent Gaussian processes characterized by three parameters. Parameter iden-

tification methods of Allan variance and experimental autocorrelation were presented as

the means of extracting the model parameters from experimental data. Derivations of

the variance of subsequent integrations of each sensor error component process were per-

formed and validated using Monte Carlo simulations. An application of the integrated

error source variance expressions were demonstrated for the single-axis navigation sce-

nario in which a single accelerometer or single gyro is used to ascertain integral navigation

states in its fixed direction. The single-axis results were then expanded to derive expres-

sions for the propagation of the inertial sensor error into the mechanization equations

used for planar navigation in which a traveling body experiences no side-slip. The re-

sults of the no-slip position were discussed and shown to have limitations due to the

analysis techniques used. The planar no-slip inertial navigation mechanization was then

compared to the planar mechanization with slip for the purpose of showing the errors

induced by additional integrations and measurements required of the slip mechanization.

The final chapter concluded the quantification of inertial navigation by presenting the
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6-DOF kinematic relationships as applied in the navigation of a body unconstrained in

three dimensional space. The concluding point of Chapter 4 was reiterated again with a

simulation example illustrating the additional dead-reckoning error induced by employ-

ing unnecessary additional integrations and measurements in the 6-DOF equations for a

simple planar trajectory.

In summary, this research has provided

1. Approximate stochastic models which capture the necessary behavior of accelerom-

eter and rate-gyroscope outputs as measured from various grade inertial measure-

ment units.

2. Derivations of the variance of the numerically integrated values of the inertial sensor

error sources of wide-band noise and exponentially correlated noise (Gauss-Markov

process) from the error models.

3. Derivations of the variance of the 2-D (North/East) velocity error for a planar nav-

igation scenario in which a vehicle experiences no side-slip. The position derivation

is performed to show the need for methods of analysis superior to that of this thesis.

4. Comparison of the no-slip and slip and general 6-DOF inertial navigation equations

for the planar case.

5. The six degree of freedom equations used for the most general navigation scenario.

In addition to the derivations, this thesis has demonstrated the claim that the

fewest number of integrations and measurements required to provide valid vehicle states

in an inertial navigation system yields the minimal amount of error. It was shown

through a simulation comparison of the planar no-slip, planar slip, and 6-DOF general
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motion methods, that the inertial navigation with the simplest system had the best dead-

reckoning performance (when the real vehicle trajectory was described by the simplest

set of equations).

6.2 Difficulties

The quantity and nature of approximations presented in this thesis warrant a dis-

cussion of the limitations of the contributing results. It should first be noted that the

variance expressions for the integrated sensor errors in Chapter 3 are derived based on

the assumption that inertial sensors can be modeled with the approximations in Chapter

2. The experimental identification and validation of of simple models with real experi-

mental data is a difficult process due to the extremely large amount of data required and

the inadequacy of the assumed model forms. Based on these difficulties, the accuracy of

the variance expressions based on the assumed model form should only reflect the accu-

racy of the experimental identification techniques by employing conservative parameter

estimates.

The techniques used to ascertain the variance of the integrated inertial sensor errors

in Chapter 3 proved useful in its straightforward and intuitive approach. However, as

shown for the planar no-slip position variance derivation in Chapter 4, the autocorrela-

tion information was needed to simplify the expression to closed-form. The straightfor-

ward method of derivation in Chapter 3, while yielding the desired variance expressions,

did not allow for simple identification of higher order measures of statistics. Additional

information such as the cross-correlation and autocorrelation are difficult to attain with

the techniques employed in this thesis. In conclusion, other techniques are suggested for
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use in quantifying the propagation of stochastic errors through various transformations

and integration.

In Chapter 3, the variance of the integral values of the Gauss-Markov process as-

sumes that the process is realized with a zero-initial condition at the onset of integration.

This zero initial condition for some values of the Markov model parameters may not ac-

curately reflect the desired nature of the process as it may exhibit some initial transients

in reaching its stationary status.

The developed expressions in Chapter 4 for the variance of the planar case errors

were based on small angle linear approximations for trigonometric operations on the

integrated gyro error. For errors outside the range for which the approximations are

valid, the error will propagate non-linearly and the resulting value will no longer be a

Gaussian variable. The variance expression will then be inadequate to fully characterize

the error of the nonlinearly processed inertial errors. However, the size of integrated gyro

errors necessary to break the linear approximation is well outside the range for which a

system designer is interested. Therefore the approximation is rarely an issue for the use

of the variance expressions as practical analysis tools.

6.3 Future Work

In order to more fully and successfully characterize the stochastic outputs of ac-

celeration and rotation rate outputs of many grade IMUs, it is suggested that much

experimental data be taken and studied to ensure the feasibility of the approximations

introduced in this thesis. As the stochastic models introduced in Chapter 2 do not in-

clude terms for temperature or range of motion, a study of such effects should be done to

ensure that their influence is negligible. Given that the stochastic models from Chapter 2
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are sufficient to match the behavior of the sensor errors, their corresponding parameters

should be identified with higher confidence using appropriately the techniques of Allan

variance and autocorrelation. Once the models are validated and parameters identified,

the resulting variance expressions in Chapters 3 and 4 should be tested with experimental

data to verify their use in real inertial navigation scenarios.

As discussed above, the methodology used to propagate the sensor errors has room

for improvement. Other more comprehensive statistical analysis techniques may provide

a better and more complete characterization of the inertial system errors and perfor-

mance in dead-reckoning. Since the inertial navigation performance using the 6-DOF

mechanization scheme depends highly on non-linear relationships, the Gaussian sensor

errors do not propagate linearly into the velocity, position, and orientation states and

thus exhibit non-Normal distributions. More complete probabilistic characterizations

of the propagation of sensor errors into the applicable nonlinear equations may provide

broader results to the navigation systems mechanized for general motion.

Using validated stochastic models and improved methods of error propagation anal-

ysis, future research may expand its scope to include analyses of dead-reckoning with

inertial measurements in a larger range of scenarios. As other sensors such as odome-

try, laser scanners, and vision, are continually being fused into the navigation system,

knowledge of the dead-reckoning performance of these systems becomes increasingly de-

sirable. In addition, more sophisticated GPS/INS algorithms such as Tightly-Coupled

GPS/INS allow for dead-reckoning aid from any available satellites when the number

visible are less than that required for a position fix. Firm quantification of the increased

performance from any type of vehicle constraint, GPS, or auxiliary sensors in the large
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range of applicable mechanizations provides much valuable information to the navigation

community at large.
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Appendix A

Stochastic Parameter Identification with an Automotive-Grade IMU

This appendix serves to demonstrate the parameter identification techniques of Al-

lan variance and autocorrelation on automotive-grade inertial measurements. The tech-

niques are used to identify parameters of the assumed stochastic model from accelerom-

eters and rate-gyros from a Crossbow IMU-400C logged using a PC with Windows XP

via an RS-232 serial connection.

The accelerometers and gyros were logged at a sample frequency of fs = 5 Hz for

approximately 48 hours in a climate controlled office while resting on a level desk. The

mean is removed from each sensor log and the outputs are filtered to reveal any underlying

drifting bias. Figure A.1 shows the three Crossbow accelerometers zero-phase filtered

(Matlab filtfilt() function) with a second-order low-pass Butterworth filter with cutoff

frequency of 0.001 Hz. Figure A.2 shows the zero-phase filtered rate-gyros (second-order

Butterworth with 0.001 Hz cutoff frequency).
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Figure A.1: Filtered Accelerometer Outputs
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Figure A.2: Filtered Gyro Outputs
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As can be seen in both sets of filtered outputs, the sensors exhibit a very slow drifting

behavior over the 48 hour logging period. While this slow drift may effect navigation

system performance for long spans of time, it is of primary interest to understand the

drifting behavior within short time intervals (the intervals for which the sensors will be

used to dead-reckon). In order to employ the identification techniques using the assumed

Gauss-Markov model, focus is turned to the most steady of the outputs: the z-axis gyro,

gz, within its most constant interval from hour 20 to 45.

Figure A.3 shows the raw and filtered data for the gz gyro within the interval

selected. The data within this interval is filtered to remove the high frequency content of

the wide-band noise, leaving the drifing bias for identification with the autocorrelation

method. The filtered data shown in the plot was processed with the same low-pass

filter as before with a cutoff frequency of 0.0005 Hz, a value determined after multiple

iterations to yield the best identification results with the data used.
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Figure A.3: Raw and Filtered Data Within Selected Section
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Figure A.3 shows the filtered data by itself. This plot indicates the relatively long

term stability of the selected data, while revealing the characteristic bias drift of interest.
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Figure A.4: Filtered Data Within Selected Section
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The sectioned and filtered data is then processed with an autocorrelation function.

The result is shown in Figure A.5. The run reveals an exponential function such as that

exhibited by the Gauss-Markov model. From this data, the time constant is extracted by

selecting the intersection on the 1
e horizontal line and the variance from the y-intercept.

Note that these parameters are extracted only with the confidence reflected by the bound

as shown which is referenced around the best-fit line.
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Figure A.5: Autocorrelation of Filtered Gyro Data

Now that rough Gauss-Markov parameters are identified, an Allan variance calcula-

tion is performed on the raw experimental data within the section selected. Figure A.6

shows the results of the Allan variance.
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Figure A.6: Allan Variance of Gyro Data

Simple inspection of the Allan variance allows extraction of the random walk pa-

rameter (y-intercept of the graph); this parameter quantifies the wide-band noise. Using

the identified parameters from the autocorrelation and the extracted random walk pa-

rameter, a best fit line is constructed and plotted to represent the Allan variance of

the experimental gyro data with the assumed model form. The 3-σ bounds, based on

the averaging time and total length of the data set (25 hours @ 5Hz) are plotted along

with the fit and experimental data. The fit, while showing a fair agreement with the

experimental data, is only a conservative representation as reflected by the large and

spreading bounds.
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Using the techniques above with the gyro data set, the parameters used to represent

the rate-gyro of the Crossbow IMU-400C are shown in Table A.1.

Table A.1: Results of Crossbow Gyro Identification

Gyro Spec Value

fs 5 Hz
σ2

rw 0.14963 deg/s/sqrt(Hz)
σ2

b 0.0061 deg/s
τ 1100 seconds

As shown on the plots of Allan variance and autocorrelation, the bounds on the

accuracy of each are very large. These bounds need to be smaller to reflect high con-

fidence in the parameter estimation. Higher levels of confidence require longer sets of

data. However, as shown by the long-term behavior of the filtered IMU outputs, it is

difficult to ascertain a long set of static data stable enough to employ the techniques

with the assumed model forms.
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Appendix B

Demonstration of 6-DOF Mechanization of Experimental Inertial

Measurements Taken at Talledega Superspeedway

This appendix serves to demonstrate the 6-DOF mechanization of an automotive

grade 6-DOF IMU in a medium-sized vehicle traveling around a track at high speeds.

The experimental setup is as follows. An Infiniti G-35 sedan was equipped with a single

antenna Novatel StarfireTM DGPS ( < 10cm accuracy) receiver mounted on a roof rack

roughly in the planar center of gravity (CG) of the car. An automotive-grade Crossbow

IMU-400C 6-DOF IMU was attached rigidly to the console of the vehicle, which is

roughly located at the vehicle’s CG. GPS position, velocity, and course was logged at

5 Hz from the GPS, and inertial measurements were logged at 133Hz from the IMU

via RS-232 serial connections to a PC in the trunk running Windows XP. For a more

complete description of the vehicle test-bed and data acquisition system see [27]. The

data used in this appendix was logged with the experimental vehicle and sensors while

driving 3 laps around the 2.66 mile track at Talledega superspeedway (Talledega, AL)

for approximately 6.5 minutes. The track has bank angles of about 33 degrees in the

turns, 16.5 degrees in the tri-oval, and 3 degrees in the straights. The inertial data logged

during the laps was post-processed using the 6-DOF mechanization equations presented

in Chapter 5 to provide position, velocity, and attitude in the North, East, Down (NED)

coordinate system. The inertially-derived values are compared to the high-accuracy GPS

information to show its performance in dead-reckoning.
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Figure B.1 shows the North and East position from the 6-DOF mechanization of

the IMU as compared to the GPS position. It is immediately evident that the dead-

reckoning position from the IMU quickly drifts away from the true position of the track

(represented by the sub-10cm GPS position). As time elapses for each lap around the

track, the IMU-derived position, while coarsely resembling the ovular shape of the true

trajectory, drifts with increasing variance from the actual position.
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Figure B.1: Position of Track from Starfire GPS
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Figure B.2 shows the velocity of the runs around the track as reported by the GPS

receiver. As is shown, the large track allowed for velocities higher than are generally

allowed on public highways.
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Figure B.2: Velocity from GPS
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Figure B.3 shows a comparison of the yaw angles from the IMU and GPS as the

vehicle travels around the track. For the high speed and moderate banked turns around

the track, the true heading and course are expected to be the same (no vehicle side-slip).

As time progresses however, the heading derived IMU drifts from the GPS-reported

orientation due to the integration of the stochastic errors present on the three gyros

used to compute the yaw angle.
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Figure B.3: Yaw Angle (Heading) from IMU
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Figure B.4 shows the roll and pitch angles as purely derived from the IMU. As only

a single antenna GPS was logged during the test, no un-biased estimate of these angles

was available and so only the IMU-derived angles are shown. With knowledge of bank

angles of the track, however, it is evident that the values of roll match fairly well to the

slope of the track in the turns and straights.
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Figure B.4: Roll and Pitch Angles from IMU
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Figure B.5 shows of comparison of the North and East component velocities from

the IMU and GPS. As shown, the IMU component velocities resemble the shape of the

trajectory but drift with increasing distance from the GPS values.
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Figure B.5: North and East Component Velocities
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Figure B.6 shows of comparison of the North and East component positions from

the IMU and GPS. As shown, the IMU component positions resemble the shape of the

trajectory but drift with increasing distance from the GPS values. It is evident that

when compared to the velocity subplots of Figure B.5, the position error grows at a

faster rate. Due to the additional level of integration (once more than velocity) of the

stochastic sensor errors, this accelerated rate in position error growth is expected.
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Figure B.6: North and East Component Positions
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