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Embedded computer systems are widely used in modern life and their use is ex-

panding. One of the typical constraints in embedded systems, particularly in stand-

alone devices, is their low power capacity. One way to expand the lifetime of battery is

to reduce its power consumption; because of the quadratic relationship between power

consumption in CMOS circuits and CPU voltage, researchers now can achieve power

reduction by scaling down its supply voltage by applying Dynamic Voltage Scaling

(DVS). However, reducing supply voltage also slows down CPU speed since supply

voltage has a proportional relationship with clock frequency of processor, namely,

CPU speed. As a result, DVS succeeds at the cost of system performance. However,

in a Real-Time embedded environment, especially in Hard Real-Time embedded Sys-

tems, timing constraint is a critical element that cannot be ignored. Therefore, it is

difficult to balance the power savings and system throughput so that all tasks will

still complete before their deadlines.
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In this thesis, we focus on tasks scheduled by Rate Monotonic (RM) algorithm in

a Hard Real-Time embedded environment. We derive an equation for scaling worst

case execution time (WCET) of each task and expanding each WCET with differ-

ent factors according to corresponding task computation time until slack times are

fully occupied. Different from other approaches, we combine the power consumption

equation with the constraint of Rate Monotonic schedulability test (RM test). From

the result of this solution, we find the minimum power consumption, at which the

RM task set can still pass the RM test and guarantee all tasks will meet deadlines.

Our approach can be categorized as an off-line Intra-Task Dynamic Voltage Scaling

(IntraDVS).
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Chapter 1

Introduction

1.1 Current Problem

Maturity of wireless technology and mobile markets have dramatically changed

lifestyles of people. More and more consumers depend on wireless or portable devices,

such as cellular phone, personal digital assistant (PDA), digital camera or global

positioning system (GPS). With the greatly growing popularity of handheld devices,

power supply or battery lifetime has always been one of the major determinants in the

purchase decision. For decades, scientific researchers have sought to find the optimal

solution to save power in handhelds and produce more energy efficient power supplies.

As far as Real-Time embedded systems are concerned, power consumption be-

comes an even bigger issue. One of the well-known characteristics of a Real-Time

Operating System is its time constraint. In a Soft Real-Time system, missed dead-

lines may not affect the whole system’s functionality. However, a missed deadline in

a Hard Real-Time system could lead to a non-recoverable system failure. Reducing

power dissipation often means sacrificing system performance. That is, tasks have

the potentials of late completions, which cannot be tolerated in a Hard Real-Time

system [12].
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1.2 Motivation

This thesis focuses on Rate Monotonic (RM) schedulable tasks for Hard Real-

Time embedded systems. The task model is preemptive and static priority driven.

The approach is to expand computation time of each task until its combined CPU

utilization approximately reaches the upper bound of Rate Monotonic schedulability

test (RM test) [9]; thus, lowering CPU speed and supplied voltage, yet guaranteeing

none of the tasks misses its deadline. With the method of Lagrange Multiplier, the

approach deduces a specific formula and iteration yielding the exact scaling factor for

each task. Then, the computation time of each corresponding task is increased by

applying this scaling factor. Consequently, the minimum power consumption can be

achieved and all the tasks will be processed within their time constraints.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews recent

studies. Specifically, different kinds of DVS approaches and their challenges will be

introduced and analyzed. Chapter 3 gives a detailed explanation for the formulation

and deduction of the problem. In Chapter 4, we discuss mathematical part and

explain the solution to the problem described in Chapter 3. We provide a complete

proof and present the algorithm inferred from this study. Chapter 5 includes some

experiments and observations during this research and discusses issues regarding the

result and suggestions for future work. Chapter 6 concludes this study.
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Chapter 2

Dynamic Voltage Scaling

A large number of research activities have been conducted in the past decades

to achieve power reduction. In this chapter, we introduce Dynamic Voltage Scaling

(DVS) techniques and present some of its strategies.

Before we start, we explain some terms in scheduling Hard Real-Time tasks.

Worst Case Execution Times (WCETs)

As implied by the name, worst case execution time (WCET) is the estimated

maximum possible run-time for a request to complete its task without missing its

deadline. Just as W. Kim et al.[7] explained, “In scheduling Hard Real-Time tasks,

in order to guarantee the timing constraint of each task, the execution times of tasks

are usually assumed to be the worst case execution times (WCETs).” WCET is often

used as a standard design scheme to schedule Hard Real-Time tasks.

Slack Time

Slack times can be classified as static slack times and dynamic slack times [7].

Static slack time is defined as a time frame between the moment a task finishes its

execution and its next invocation. Off-line (or static) approaches, e.g. static voltage

scaling, path-based method, stochastic method and maximum constant speed should
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fully utilize these static slack times known in advance by reducing CPU frequency

and consequently reducing supply voltage.

Dynamic slack time is the difference between actual execution time and WCET1.

The actual task execution time is unpredictable because of processor speed at run-

time. In fact, a large number of tasks finish earlier than their WCETs [5]. Due to

this reason, static approaches cannot significantly save power consumption. On-line

approaches such as stretching to NTA, priority-based slack stealing and utilization

updating exploit this characteristic by reclaiming dynamic slack times and recompute

CPU frequency at task release time to lower power consumption.

Dynamic Voltage Scaling (DVS) is one way to reduce power consumption and it

basically tries to change power supply voltage dynamically to slow down CPU speed

in order to save energy. DVS is based on two concepts and has been a mainstream in

the area of power reduction. One concept is the quadratic relationship between power

dissipation and supply voltage (p ∝ V 2). Another concept of developing DVS is that

even if in Hard Real-Time environment, as long as tasks can complete on time, there

is no reason to require higher system throughput.

2.1 CMOS Circuit Design

Since the hardware makers make ‘limitless’ number of transistors possible, A. P.

Chandrakasan et al. [2] came up with an idea of redesigning system architecture by

1In this case, actual execution time is less than WCET
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delaying CMOS circuit behaviors as much as possible while using the lowest poten-

tial supply voltage resulting in dynamic power dissipation. This architecture-driven

voltage scaling technique is capable of achieving the goal of power savings without

regard to its complexity.

2.2 DVS Algorithm with DVS Processor

With the help of CMOS circuit technique improvement, more and more variable-

voltage microprocessors based on CMOS logic have been brought to the market.

Researchers then exploited this trend to develop all kinds of DVS algorithms so as to

make use of these available DVS processors.

DVS algorithms can be further classified into intra-task DVS (IntraDVS) and

inter-task DVS (InterDVS) algorithms according to how they use slack times. In-

traDVS passes on slack times from the current task to itself in the next cycle [4, 13].

Usually, IntraDVS determines supply voltage off-line. InterDVS distributes the slack

times from the current task to the following tasks. Most currently existing approaches

belong to InterDVS [14, 12, 5, 3, 8]. Besides these two, researchers further incorporate

the strengths of IntraDVS and InterDVS and comprise a hybrid DVS (HybridDVS)

algorithm [7, 3, 8].

First DVS Algorithm was proposed by M. Weiser et al. [17]. This approach is

an average throughput-based DVS algorithm and only considers Soft Real-Time envi-

ronment. It cannot guarantee Hard Real-Time deadlines will be met. Shin and Choi

[14] considered delay overheads from power-down mode and voltage switching, and
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developed Low Power Fixed Priority Scheduling (LPFPS) with slight modification of

Real-Time scheduler, in which they combined off-line and on-line approaches. How-

ever, voltage switching incurs delay overhead. Therefore, their solution still needs a

trade-off analysis between increased task execution time and power consumption.

Similar to our approach, the scheme proposed by Manzak and Chakrabarti [11]

also tried to find the operating voltage for the processor while it executes each task.

They formulate their equation to minimize total energy consumption subject to a

constant total computation time. With the method of Lagrange Multiplier, Manzak

and Chakrabarti obtain a relationship among task voltages with the constraint of

minimum energy consumption. They further develop an iterative algorithm accord-

ingly to adjust task slack times and therefore adjust voltage assignments. For RM

scheduling, the iterative voltage assignments start until combined CPU utilization

reaches upper bound of RM test. Still, there is a trade off between energy/power

savings and the complexity of this algorithms.

Stachastic IntraDVS described by F. Gruian [4] not only scaled voltage to fill

static slack times but also concerned dynamic slack times caused by run-time task

executions and combined on-line slack distribution method to achieve the goal of

minimizing energy consumption while meeting all deadlines.

Swaminathan and Chakrabarty [15] took into consideration the effect of volt-

age switching times on the energy consumption of the task set and presented a

novel mixed-integer linear programming model called extended-low-energy earliest-

deadline-first (E-LEDF) for the NP-complete scheduling algorithm. Swaninathan
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and Chakrabarty’s approach is specified for non-preemptive Earliest-Deadline-First

(EDF) task set rather than preemptive RM task set.

Pillai and Shin [12] used a scaling factor obtained from lowest CPU frequencies

in a given task set for all tasks and the results show statically scaled RM tasks

cannot reduce energy consumption aggressively. Y. H. Tsai et al. [8] further exploited

Pillai and Shin’s static voltage scaling approach and incorporate with their Deferred-

Workload-based inter-task DVS (dwDVS).

Liu and Mok [10] defined the available cycle function (ACF) and the required

cycle function (RCF) to limit CPU speed so that there is no idle cycle when the

CPU executes and no job misses its deadline. To solve energy minimization problem,

they propose an off-line algorithm and an low complexity on-line dynamic algorithm

to reclaim dynamic slack cycles. Liu and Mok’s solution can be used with different

Real-Time schedulers.

Except that W. Kim et al. [13], A. Manzak and C. Chakrabarti [11] only used

off-line approaches, most of researchers combined on-line and off-line approaches to

achieve power savings. Shin and Choi [14] combined not only off-line, on-line ap-

proaches but also brought the processor to a power-down mode. Hakan et al. [5]

included an off-line solution to compute the optimal speed and presented on-line

speed adjustment mechanism to reclaim dynamic slack times and further predict task

future execution. Similarly, Gruian [4] addressed off-line task stretching to obtain

scaling factor and incorporated on-line slack distribution to further utilize dynamic

slack times.

7



2.3 Problems

Although off-line DVS algorithms have lower complexity and are easy to imple-

ment, on-line algorithms can result in even more energy savings; however, due to the

difficulty of run-time workload’s prediction as mentioned above, on-line approaches

also have higher complexity and higher chances to miss tasks deadlines. In order to

compromise with on-line approaches, researchers often speed up tasks to catch up with

their deadlines. Yet, accelerating tasks also presents increasing supply voltage from

CPU frequency. Therefore, it rarely guarantees the minimum power consumption;

instead, it has the risk to cause higher energy.

Also, even though some of above studies are for Hard Real-Time environment and

the task set is scheduled with RM algorithm, few of them mentioned if the combined

CPU utilization of task set passes the upper bound of RM test. In other words, it

could still meet all the deadlines of tasks in run-time but without assurance.
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Chapter 3

Formalization

Since this research is based on RM scheduling algorithm, the system model has

the same assumption as Liu and Layland’s [9]. Given a task set of n number of tasks

ti, i = 1, 2, . . . , n, we assume that the time period Ti, i = 1, 2, . . . , n, are periodic and

each deadline is equal to its period. All the tasks are independent and has its own

computation time Ci, i = 1, 2, . . . , n.

3.1 Rate Monotonic Schedulability Test

The combined CPU utilization u for multiprogramming in a Hard Real-Time

Embedded Operating System is:

u =
n∑

i=1

Ci

Ti
=

C1

T1
+

C2

T2
+ · · · + Cn

Tn
(3.1)

where Ci is the computation time, Ti is the time period and n is the number of tasks

in a task set.

For Rate Monotonic (RM) Scheduling Algorithm, if u ≤ n(2
1
n − 1), Liu and

Layland [9] indicated that the tasks ti, i = 1, 2, . . . , n, will be schedulable and will

not miss their deadlines and is called Rate Monotonic schedulability test (RM test).

Thus, the upper bound of RM test is n(2
1
n − 1). RM test “is said to be sufficient but

9



not necessary.” [1] On the other hand, if a task set passes RM test, it will meet all

deadlines; if it fails the test, it may or may not fail at run-time.

3.2 Power Consumption

The power consumed per CPU cycle is

p = αfNV 2 (3.2)

where p is the power dissipation, α is the average activity factor, f is the clock

frequency of processor or the CPU frequency, N is the switching capacitance of wires

and transistors gates and V is the supply voltage.

From (3.2), the power dissipation p is proportional to CPU frequency f , switching

capacitance N and supply voltage V 2. Since switching capacitance N is proportional

to the numbers of transistors on the chip [16] and all the tasks use the same processor,

N is constant. We only consider to reducing CPU frequency f or the supply voltage

V here to achieve power reduction.

Since V is approximately proportional to CPU frequency f , reducing f also

reduces V proportionally [18]. We can say the power dissipation p is proportional to

the cube of its CPU frequency f .

p ∝ f3 (3.3)

Reducing the CPU frequency f by a factor 1
Xi

, where Xi is a scaling factor and is

always greater than or equal to 1, results in increasing the computation time Ci to

10



XiCi. Thus we have the new combined CPU utilization equation u′ as follows:

u′ =
n∑

i=1

XiCi

Ti

=
X1C1

T1

+
X2C2

T2

+ · · ·+ XnCn

Tn

≤ n(2
1
n − 1) (3.4)

3.3 Energy Consumption

The energy consumption Ei for executing task ti is:

Ei ∝ Ci × pi (3.5)

where Ci is the computation time of task ti, pi is the power dissipation of the processor.

According to (3.3), we could modify energy consumption equation Ei as the

following form

Ei ∝ Ci × fi
3 (3.6)

where fi is the CPU frequency.

Since f is reduced to f
Xi

, along with the equivalent scaling XiCi, the scaled energy

consumption E′
i becomes

E′
i ∝ XiCi × (

f

Xi
)3 =

Ci × f3

X2
i

(3.7)

3.4 Problem Definition

Based on the above derivations, we can restate our problem in the following form:

11



Given u =
n∑

i=1

Ci

Ti
≤ n(2

1
n − 1), our goal is to find X̂ := (X̂1, . . . , X̂n) which yields

min
n∑

i=1

Ci

X̂2
i

subject to the constraints
n∑

i=1

X̂iCi

Ti
≤ n(2

1
n − 1) and 1 ≤ X̂i ≤ Ti

Ci
.

Associated with our problem are the following parameters:

• u: combined CPU utilization

• n: number of tasks in a task set

• Ci: computation time of task ti

• Ti: time period of task ti

• Xi: scaling factor of task ti

12



Chapter 4

Solution to the optimization problem

4.1 Mathematical Statements and Proofs

Based on the above derivations, we restate the problem in the following mathe-

matical form:

Problem: Find X̂ := (X̂1, . . . , X̂n) which yields

min
n∑

i=1

Ci

X2
i

, (4.1)

where 0 < Ci for all i, subject to the constraints

1.
∑n

i=1
XiCi

Ti
≤ n(21/n − 1) with

∑n
i=1

Ci

Ti
≤ n(21/n − 1).

2. 1 ≤ Xi ≤ Ti

Ci
, i = 1, . . . , n.

Let

f(X) :=

n∑

i=1

Ci

X2
i

.

Here n is the number of tasks in a task set, Ci is the computation time of task ti, Ti

is the time period of task ti, and Xi is the scaling factor of task ti.

When n = 1 the minimization problem is trivial: f(X) = C1

X2
1

and its minimum

is attained at X = T1

C1
. So from now on we only need to consider n ≥ 2.

13



Remark 4.1. Set

S = {x ∈ Rn :
n∑

i=1

XiCi

Ti

≤ n(21/n − 1), 1 ≤ Xi ≤
Ti

Ci

}. (4.2)

The minimization problem can be written as: find X̂ ∈ S that gives

min
X∈S

f(X).

The condition
∑n

i=1
Ci

Ti
≤ n(21/n−1) ensures that the point (1, . . . , 1) is in the region.

So the constraint set S (the domain of the minimization problem) is nonempty. Notice

that S is a closed and bounded set in Rn, that is, S is a compact set. Moreover the

function f(X) is continuous on the compact set S and f is always positive over S.

By Weierstrass’s theorem [6], there is a minimum of f in S. So the minimization

problem (4.1) is solvable. However Weierstrass’s theorem does not provide a mean to

find the point(s) X̂ ∈ S such that f(X̂) is the minimum.

Lemma 4.2. The sequence h(n) := n(21/n − 1) is strictly monotonic decreasing and

limn→∞ h(n) = ln 2. Moreover h(n) < 1 for all positive integers n except n = 1;

h(1) = 1.

14



Proof. Clearly h(1) = 1. Let a := 2
1

n(n+1) > 1. By using the identity an − 1 =

(a− 1)(an−1 + an−2 + · · ·+ a + 1), we obtain

h(n)− h(n + 1) = n(2
1
n − 1) − (n + 1)(2

1
n+1 − 1)

= n

[(
2

1
n(n+1)

)n+1

− 1

]
− (n + 1)

[(
2

1
n(n+1)

)n

− 1
]

= (a− 1)
[
n(an + an−1 · · ·+ 1) − (n + 1)(an−1 + · · · + 1)

]

= (a− 1)[nan − (an−1 + · · ·+ 1)] ≥ 0

since an ≥ ai for i = 1, . . . , n− 1 as a > 1. So h(n) is strictly monotonic decreasing.

By l’Hospital’s rule,

lim
n→∞

h(n) = lim
n→∞

21/n − 1
1
n

= lim
n→∞

− 1
n2 21/n ln 2

− 1
n2

= lim
n→∞

21/n ln 2 = ln 2.

Remark 4.3. When n ≥ 2, one can rewrite the set S as

S = {x ∈ Rn :
n∑

i=1

XiCi

Ti
≤ n(21/n − 1), 1 ≤ Xi},

i.e., one can ignore the condition Xi ≤ Ti

Ci
in (4.2) since it follows from

∑n
i=1

XiCi

Ti
≤

n(21/n−1) < 1 by Lemma 4.2 and 1 ≤ Xi. But we keep using (4.2) as the description

of S.

15



Each X ∈ S must satisfy

Xi <
Ti

Ci

, i = 1, . . . , n, (4.3)

otherwise Xj =
Tj

Cj
for some j so that by Lemma 4.2 we would have

n∑

i=1

XiCi

Ti
≥ XjCj

Tj
= 1 > n(21/n − 1),

a contradiction.

Lemma 4.4. The minimization problem (4.1) only has solution(s) in the compact

set R, where

R := {x ∈ Rn :
n∑

i=1

XiCi

Ti
= n(21/n − 1), 1 ≤ Xi <

Ti

Ci
} ⊂ S. (4.4)

Proof. Set

Xε := X + ε(1, . . . , 1) = (X1 + ε, . . . ,Xn + ε).

If the minimum of f(X) occurred at X over the region defined by

n∑

i=1

XiCi

Ti

< n(21/n − 1),

then by (4.3) for sufficiently small ε

16



1 ≤ (Xε)i ≤
Ti

Ci
i = 1, . . . , n

and
n∑

i=1

(Xε)iCi

Ti
=

n∑

i=1

(Xi + ε)Ci

Ti
=

n∑

i=1

XiCi

Ti
+ ε

n∑

i=1

Ci

Ti
< n(21/n − 1).

In other words, Xε ∈ S. Clearly f(Xε) < f(X), a contradiction.

From now on we set

K := n(21/n − 1).

By Lemma 4.4 the minimization problem 4.1 is reduced to: find X̂ ∈ R that gives

min
X∈R

f(X). (4.5)

The following result reveals a special ordering of the solution according to the ordering

of T ’s.

Theorem 4.5. Suppose that Tσ(1) ≥ · · · ≥ Tσ(n) with some permutation σ : {1, . . . , n} →

{1, . . . , n} and the minimization problem attains its minimum at X̂ = (X̂1, . . . , X̂n) ∈

R. Then X̂σ(1) ≥ · · · ≥ X̂σ(n) (≥ 1). In particular, if T1 ≥ · · · ≥ Tn, then

X̂1 ≥ · · · ≥ X̂n.

Proof. Without loss of generality, we may assume that σ is the identity, i.e., T1 ≥

· · · ≥ Tn. Suppose on the contrary that X̂j > X̂i (≥ 1) for some 1 ≤ i < j ≤ n. By

17



(4.3)

X̂i <
Ti

Ci
, i = 1, . . . , n.

Let

X̂i(δ) = X̂i + δ, X̂j(δ) = X̂j − δ
CiTj

CjTi

and X̂k(δ) = X̂k for all k 6= i, j. So

n∑

k=1

CkX̂k(δ)

Tk
=
∑

k 6=i,j

CkX̂k(δ)

Tk
+

CiX̂i(δ)

Ti
+

CjX̂j(δ)

Tj
= K.

Since X̂i(δ) < Ti

Ci
and 1 < X̂j(δ) for sufficiently small δ > 0, we have X̂(δ) ∈ R. Set

ϕ(δ) := f(X̂(δ))

=
C1

X̂2
1

+ · · ·+ Ci

(X̂i(δ))2
+ · · ·+ Cj

(X̂j(δ))2
+ · · ·+ Cn

X̂2
n

=
C1

X̂2
1

+ · · ·+ Ci

(X̂i + δ)2
+ · · ·+ Cj

(X̂j − δ
CiTj

CjTi
)2

+ · · ·+ Cn

X̂2
n

.

Now

dϕ(δ)

dδ
=

−2Ci

(X̂i + δ)3
+

2
CiTj

Ti

(X̂j − δ
CiTj

CjTi
)3

=
2Ci

[
(X̂i + δ)3 Tj

Ti
− (X̂j − δ

CiTj

CjTi
)3
]

(X̂i + δ)3(X̂j − δ
CiTj

CjTi
)3

.
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So

ϕ′(0) =
2Ci

[
X̂3

i
Tj

Ti
− X̂3

j

]

X̂3
i X̂3

j

< 0,

since 1 ≤ X̂i < X̂j and Ti ≥ Tj > 0. This contradicts the assumption that f(X̂) is

the minimum.

We will first solve a slightly different problem: find the X ∈ R′ that yields

min
X∈R′

f(X)

where

R′ = {X ∈ Rn :
n∑

i=1

XiCi

Ti
= K}.

In other words, we remove the condition 1 ≤ Xi ≤ Ti

Ci
from the original minimization

problem (4.1). Note that R ⊂ R′ and the region R′ is represented by the equation

n∑

i=1

XiCi

Ti
= K

and is a hyperplane in Rn. By the method of Lagrange Multiplier, set

∇f = λ∇g

which implies

−2Ci

X3
i

= λ
Ci

Ti
.

19



Since Ci 6= 0,

XL
i =

(
2Ti

−λ

)1/3

. (4.6)

Substitute (4.6) into
∑n

i=1
XiCi

Ti
= K to have

n∑

j=1

(
2Tj

−λ

)1/3
Cj

Tj
= K.

Thus we have

1

(−λ)1/3

n∑

j=1

(2Tj)
1/3Cj

Tj
= K. (4.7)

So from (4.6) and (4.7)

XL
i =

(2Ti)
1/3K

∑n
j=1(2Tj)1/3 Cj

Tj

=
T

1/3
i K

∑n
j=1 T

1/3
j

Cj

Tj

<
Ti

Ci
(4.8)

(since K < 1) which is the only critical point of f over R′. Moreover

f(XL) =
n∑

i=1

Ci

(XL
i )2

=
(
∑n

j=1 T
1/3
j

Cj

Tj
)2

K2
(

n∑

i=1

Ci

T
2/3
i

) (4.9)

is the local minimum value of f(X) over R′. Thus it is the global minimum over R′.

If T1 ≥ · · · ≥ Tn, then from (4.8)

XL
1 ≥ · · · ≥ XL

n .
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However we cannot conclude that 1 ≤ XL
i for all i = 1, . . . , n, i.e., XL may not be in

R since the second constraint of (4.1) is not satisfied. Nevertheless, it is clear that

f(XL) = min
X∈R′

f(X) ≤ min
X∈R

f(X). (4.10)

Theorem 4.6. Let T1 ≥ · · · ≥ Tn. Let X̂ = (X̂1, . . . , X̂n) ∈ R be a solution to the

minimization problem (4.5).

1. XL
n ≥ 1 if and only if X̂n ≥ 1. In this case, X̂ = XL is a solution to the

minimization problem (4.1).

2. If XL
n < 1, then

X̂1 ≥ · · · ≥ X̂r−1 > X̂r = · · · = X̂n = 1 (4.11)

for some r = 1, . . . , n. Moreover (X̂1, . . . , X̂r−1) is a solution to the following

minimization problem

min
r−1∑

i=1

Ci

X2
i

+
n∑

i=r

Ci

subject to the (new) conditions

(a) 1 ≤ Xi ≤ Ti

Ci
, i = 1, . . . , r − 1,

(b)
∑r−1

i=1
CiXi

Ti
≤ K̂, where K̂ := K −

∑n
i=r

Ci

Ti
.

Namely,

X̂i =
T

1/3
i K̂

∑r−1
j=1 T

1/3
j

Cj

Tj

, i = 1, . . . , r − 1. (4.12)
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In either case, X̂ is the unique solution to the minimization problem (4.5).

Proof. By Theorem 4.5 the solution X̂ ∈ R to the minimization problem (4.5) satisfies

X̂1 ≥ · · · ≥ X̂n.

(1) By (4.8) XL
1 ≥ · · · ≥ XL

n , XL
i < Ti

Ci
for all i = 1, . . . , n, and

∑n
i=1

XL
i Ci

Ti
= K.

So XL
n ≥ 1 if and only if XL ∈ R. In this case, it amounts to X̂ = XL by (4.10) and

it is the unique solution since we only have one critical point for the minimization

problem over R′.

(2) If XL
n < 1, then XL 6∈ R. Since XL is the only critical point in R′ and

R ⊂ R′, we conclude that the minimum point(s) of f over R must be in the boundary

∂R of R:

∂R := {x ∈ Rn :
n∑

i=1

XiCi

Ti
= K,Xi = 1 for some i or Xj =

Tj

Cj
for some j}.

Since Xi < Ti

Ci
for all i by (4.3), X̂ must occur in

∂̂R := {x ∈ Rn :

n∑

i=1

XiCi

Ti
= K,Xi = 1 for some i}.

In other words, via Theorem 4.5 we have (4.11), i.e.,

X̂1 ≥ · · · ≥ X̂r−1 > X̂r = · · · = X̂n = 1,
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for some r = 1, . . . , n. Because the region

Rr := {(X1, . . . ,Xr−1, 1, . . . , 1) ∈ Rn :
r−1∑

i=1

CiXi

Ti

+
n∑

i=r

Ci

Ti

= K, 1 ≤ Xi ≤
Ti

Ci

, i = 1, . . . , r−1}

is a subset of R, (X̂1, . . . , X̂r−1) is the solution to the following minimization problem

min
r−1∑

i=1

Ci

X2
i

+
n∑

i=r

Ci

subject to the (new) constraints

1. 1 ≤ Xi ≤ Ti

Ci
, i = 1, . . . , r − 1,

2.
∑r−1

i=1
CiXi

Ti
≤ K̂, where K̂ := K −

∑n
i=r

Ci

Ti
.

Since T1 ≥ · · · ≥ Tr−1 and X̂r−1 > 1, by Theorem 4.6(1) the minimum is attained at

(X̂1, · · · , X̂r−1) which is provided by the method of Lagrange multiplier, i.e.,

X̂i =
T

1/3
i K̂

∑r−1
j=1 T

1/3
j

Cj

Tj

> 1, i = 1, . . . , r − 1.

Moreover the solution is unique once r is fixed.

To show that X̂ is unique, it is sufficient to show that r is unique. Suppose

on the contrary that (X̂1, . . . , X̂r−1, 1, . . . , 1) ∈ Rn and (X̃1, . . . , X̃r′−1, 1, . . . , 1) ∈ Rn

both yield the minimum, i.e.,

f((X̂1, . . . , X̂r−1, 1, . . . , 1)) = f((X̃1, . . . , X̃r′−1, 1, . . . , 1)) = min
X∈R

f(X)
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but r 6= r′. In other words,

X̃i =
T

1/3
i K̃

∑r−1
j=1 T

1/3
j

Cj

Tj

> 1, i = 1, . . . , r′ − 1.

For definiteness, assume r < r′. Clearly Rr ⊂ Rr′ and (X̃1, . . . , X̃r′−1) is the unique

solution to the following minimization problem

min
r′−1∑

i=1

Ci

X2
i

+
n∑

i=r′

Ci

subject to the constraints

1. 1 ≤ Xi ≤ Ti

Ci
, i = 1, . . . , r′ − 1,

2.
∑r′−1

i=1
CiXi

Ti
≤ K̃, where K̃ := K −

∑n
i=r′

Ci

Ti
.

We would then have f((X̂1, . . . , X̂r−1, 1, . . . , 1)) > f((X̃1, . . . , X̃r′−1, 1, . . . , 1)), a con-

tradiction. So r is unique. Hence (X̂1, . . . , X̂r−1) and X̂ are unique.

When XL
n < 1, to solve Problem 4.1, it suffices to determine r − 1 which is the

largest index i such that X̂i > 1 and apply (4.12). The following is very useful with

respect to the determination of r − 1.

Proposition 4.7. Let T1 ≥ · · · ≥ Tn. Let r − 1 be the largest integer i such that

X̂i > 1 (r − 1 = 0 means that all X̂ ’s are 1). Then

r − 1 ≤ s1 (4.13)
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where s1 denotes the largest integer i such that XL
i > 1 (s1 = 0 means that all XL’s

are less than or equal to 1), i.e.,

XL
1 ≥ · · · ≥ XL

s1
> 1 ≥ XL

s1+1 ≥ · · · ≥ XL
n .

Evidently, if XL
n ≥ 1, then X̂ = XL and r − 1 = s1.

Proof. On the contrary suppose that r − 1 > s1. We would have r − 1 ≥ s1 + 1 so

that XL
r−1 ≤ 1. From (4.8)

XL
r−1 =

T
1/3
r−1K∑n

j=1 T
1/3
j

Cj

Tj

≤ 1⇐⇒ K ≤
∑n

j=1 T
1/3
j

Cj

Tj

T
1/3
r−1

.

So

K

(
n∑

j=r

T
1/3
j

Cj

Tj

)
≤

(∑n
j=1 T

1/3
j

Cj

Tj

)

T
1/3
r−1

(
n∑

j=r

T
1/3
j

Cj

Tj

)

=

(
n∑

j=r

(
Tj

Tr−1

)1/3
Cj

Tj

)(
n∑

j=1

T
1/3
j

Cj

Tj

)

≤
(

n∑

j=r

Cj

Tj

)(
n∑

j=1

T
1/3
j

Cj

Tj

)
(4.14)
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since T1 ≥ · · · ≥ Tn. Now

X̂r−1

XL
r−1

=


 T

1/3
r−1K

′

∑r−1
j=1 T

1/3
j

Cj

Tj





∑n

j=1 T
1/3
j

Cj

Tj

T
1/3
r−1K




=
K ′

K



∑n

j=1 T
1/3
j

Cj

Tj∑r−1
j=1 T

1/3
j

Cj

Tj




=

[
K −

∑n
j=r

Cj

Tj

K

]


∑n
j=1 T

1/3
j

Cj

Tj∑n
j=1 T

1/3
j

Cj

Tj
−
∑n

j=r T
1/3
j

Cj

Tj




=
K
(∑n

j=1 T
1/3
j

Cj

Tj

)
−
(∑n

j=r
Cj

Tj

)(∑n
j=1 T

1/3
j

Cj

Tj

)

K
(∑n

j=1 T
1/3
j

Cj

Tj

)
−K

(∑n
j=r T

1/3
j

Cj

Tj

)

By (4.14) we have X̂r−1 ≤ XL
r−1 ≤ 1, contradicting the fact that X̂r−1 > 1.

Proposition 4.7 leads to an algorithm for the determination of r − 1 and thus

X̂. In general we may not be able to locate r − 1 right after the first application of

Lagrange Multiplier (see Proposition 4.8). However we can repeat the process and

eventually will get to the value of r − 1. The following is an algorithm to compute

the solution to Problem (4.1).

The algorithm: Arrange T1, . . . , Tn so that T1 ≥ · · · ≥ Tn.

Step 1: By the method of Lagrange Multiplier, i.e., from (4.8)

X
(1)
i := XL

i =
T

1/3
i K

∑n
j=1 T

1/3
j

Cj

Tj

(4.15)
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so that X
(1)
1 ≥ · · · ≥ X

(1)
n by Theorem 4.6. Notice that

X
(1)
i =

T
1/3
i K

∑n
j=1 T

1/3
j

Cj

Tj

<
Ti

Ci
, i = 1, . . . , n, (4.16)

X
(1)
1 ≥ K

∑n
j=1

(
Tj

T1

)1/3
Cj

Tj

≥ K∑n
j=1

Cj

Tj

≥ 1 (4.17)

Then consider the cases:

(a) if X
(1)
n ≥ 1, then X̂ = (X

(1)
1 , . . . ,X

(1)
n ) by Theorem 4.6.

(b) if X
(1)
n < 1, i.e., there is 0 ≤ s1 ≤ n − 1 such that X

(1)
1 ≥ · · · ≥ X

(1)
s1 > 1 ≥

X
(1)
s1+1 ≥ · · · ≥ X

(1)
n then by (4.13) r − 1 ≤ s1, where

X̂1 ≥ · · · ≥ X̂r−1 > 1 = X̂r = X̂r+1 = · · · = X̂n

and r − 1 is obviously fixed and to be determined. In other words, we know

that X̂s1+1 = · · · = X̂n = 1.

Remark: s0 = 0 means that XL
i ≤ 1 for all i = 1, . . . , n. But it actually means that

XL
i = 1 for all i because g(XL) = K.

Then the problem is reduced to the following:

Find X
(2)
1 ≥ · · · ≥ X

(2)
s1 ≥ 1 (= X

(2)
s1+1 = · · · = X

(2)
n ), which yields

min

s1∑

i=1

Ci

X2
i

+

n∑

i=s1+1

Ci, or simply min

s1∑

i=1

Ci

X2
i

subject to the constraints
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1.
∑s1

i=1
XiCi

Ti
= K(2), where

K(2) := K −
n∑

i=s1+1

Ci

Ti

and obviously
∑s1

i=1
Ci

Ti
≤ K(2) (we may set K(1) := K in Step 1).

2. 1 ≤ Xi ≤ Ti

Ci
, i = 1, . . . , s1.

Step 2: Apply the method of Lagrange Multiplier to yield

X
(2)
i =

T
1/3
i K(2)

∑s1

j=1 T
1/3
j

Cj

Tj

, i = 1, . . . , s1 (4.18)

so that X
(2)
1 ≥ · · · ≥ X

(2)
s1 . Then consider the cases:

(a) if X
(2)
s1 ≥ 1, then X̂ = (X

(2)
1 , . . . ,X

(2)
s1 , 1, . . . , 1).

(b) if X
(2)
s1 < 1, i.e., there is 0 ≤ s2 ≤ s1 − 1 such that X

(2)
1 ≥ · · · ≥ X

(2)
s2 > 1 ≥

X
(2)
s2+1 ≥ · · · ≥ X

(2)
s1 , then the problem is reduced to the following problem:

Find X
(3)
1 ≥ · · · ≥ X

(3)
s2 ≥ 1 (= X

(3)
s2+1 = · · · = X

(3)
s1 = · · · = X

(3)
n ) with s2 < s1,

which yields

min
s2∑

i=1

Ci

X2
i

+
n∑

i=s2+1

Ci, or simply min
s2∑

i=1

Ci

X2
i

subject to the constraints
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1.
∑s2

i=1
XiCi

Ti
= K(3), where

K(3) := K −
n∑

i=s2+1

Ci

Ti

and obviously
∑s2

i=1
Ci

Ti
≤ K(3).

2. 1 ≤ Xi ≤ Ti

Ci
, i = 1, . . . , s2.

Step 3: ......

The process continues as long as some of iterated X’s is less than 1 and certainly

will stop since there are finitely many X’s. The process stops at the kth step if all

X
(k)
1 ≥ · · · ≥ X

(k)
sk ≥ 1 and X̂ = (X

(k)
1 , . . . ,X

(k)
sk , 1 . . . , 1).

The following describe a general property among consecutive iterations. The

proof is similar to that of (4.13) and is omitted. It implies that in general one

iteration is not enough in order to determine X̂ and r − 1.

Proposition 4.8. Suppose T1 ≥ · · · ≥ Tn. For each 1 ≤ i ≤ s` (X
(`)
i > 1), X

(`+1)
i <

X
(`)
i . In other words, each needed iteration will decrease X’s which are larger than 1.

Example 4.9. For instance, take a look at the following experimental example.

Suppose

T := (T1, T2, T3, T4) = (25391, 14905, 12913, 5758)

and

C := (C1, C2, C3, C4) = (4616, 6073, 575, 515).
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Notice that T1 ≥ T2 ≥ T3 ≥ T4.

ith iteration X
(i)
1 X

(i)
2 X

(i)
3 X

(i)
4

1 1.23 1.03 0.99 0.75
2 1.19 0.99 1 1
3 1.18 1 1 1

So three iterations are needed to get X̂ = (1.18, 1, 1, 1) and r − 1 = 1.

Remark 4.10. In case Theorem 4.6(2) occurs,

Y := (XL
1 , . . . ,XL

s1
, 1, . . . , 1) 6∈ R

since
∑n

i=1
YiCi

Ti
>
∑n

i=1
XL

i Ci

Ti
= K and because of (4.4). So Y is not a solution

to the minimization problem (4.1). Thus there is no contradiction though f(Y ) <

f(XL)(≤ minX∈R f(X)). Similar conclusion can be reached for consecutive iterations

with respect to Proposition 4.8.

The following is another description from a top-down view. Similar algorithm

can be derived from it.

Theorem 4.11. Let T1 ≥ · · · ≥ Tn. Suppose that the minimization problem (4.5)

has solution X̂ = (X̂1, . . . , X̂n) ∈ R.

1. XL
n ≥ 1 if and only if X̂n ≥ 1. In this case, X̂ = XL is the unique solution to

the minimization problem (4.1).
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2. If XL
n < 1, then the unique solution X̂1 ≥ · · · ≥ X̂r−1 > X̂r = · · · = X̂n = 1 has

r where r − 1 is the first integer i such that

T
1/3
i K(i)∑i

j=1 T
1/3
j

Cj

Tj

> 1 and
T

1/3
i+1K(i+1)∑i+1
j=1 T

1/3
j

Cj

Tj

≤ 1,

where K(k) := K −
∑n

j=k+1
Cj

Tj
.

To illustrate, let us consider the special case n = 2.

1. n = 2: We first arrange T ’s so that T1 ≥ T2.

The Lagrange Multiplier yields XL
i =

T
1/3
i K

∑2
j=1 T

1/3
j

Cj
Tj

, i = 1, 2. Notice that

XL
1 =

T
1/3
1 K

T
1/3
1

C1

T1
+ T

1/3
2

C2

T2

=
K

C1

T1
+ (T2

T1
)1/3 C2

T2

≤ KT1

C1
≤ T1

C1
, (4.19)

XL
2 =

T
1/3
2 K

T
1/3
1

C1

T1
+ T

1/3
2

C2

T2

=
K

(T1

T2
)1/3 C1

T1
+ C2

T2

≤ KT2

C2
≤ T2

C2
(4.20)

XL
1 =

K
C1

T1
+ (T2

T1
)1/3 C2

T2

≥ K
C1

T1
+ C2

T2

≥ 1. (4.21)

by K ≥ C1

T1
+ C2

T2
. Moreover

XL
1 ≥ XL

2 (4.22)

because T1 ≥ T2.

So it remains to check whether XL
2 ≥ 1.
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We take another approach and treat f as a function of X2. Since C1X1

T1
+ C2X2

T2
=

K, X2 = (K − C1X1

T1
) T2

C2
so that

f(X) = f(X2) =
C1

[(K − C2X2

T2
) T1

C1
]2

+
C2

X2
2

.

There are two singularities on R, namely X2 = 0, i.e., (X1,X2) = (KT1

C1
, 0), and

X2 = KT2

C2
, i.e, (X1,X2) = (0, KT2

C2
). Notice that [1, (K − C1

T1
) T2

C2
] is the range for

X2, according to the restrictions.

Consider f(X2):

1. On the open interval (−∞, 0), f is decreasing from ∞ to 0.

2. On the open interval (0, KT2

C2
), f has a minimum at

XL
2 =

K

(T1

T2
)1/3 C1

T1
+ C2

T2

≤ KT2

C2
≤ T2

C2

i.e.,

(XL
1 ,XL

2 ) = (
K

C1

T1
+ (T2

T1
)1/3 C2

T2

,
K

(T1

T2
)1/3 C1

T1
+ C2

T2

)

by the method of Lagrange Multiplier.

3. On the open interval (KT2

C2
,∞), f is decreasing from ∞ to 0.

Notice that the interval [1, (K− C1

T1
) T2

C2
] is a subset of the open interval (0, KT2

C2
). Recall

1 ≤ XL
1 ≤ T1

C1
, XL

2 ≤ T2

C2
, C1X1

T1
+ C2X2

T2
= K, and XL

1 ≥ XL
2 . So we only have the

following two cases:
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Case 1: XL
2 ≥ 1. Then (XL

1 ,XL
2 ) provides the min.

Note: Since
C1XL

1

T1
+

C2XL
2

T2
= K, XL

1 ≥ 1 implies
C2XL

2

T2
= K − C1XL

1

T1
≤ K − C1

T1
so

that

XL
2 ≤ (K − C1

T1
)
T2

C2
.

Similarly if XL
2 ≥ 1, then

XL
1 ≤ (K − C2

T2
)
T1

C1
.

Case 2: XL
2 < 1. The minimum must be obtained on the boundary ∂R. Now

d

dX2
f(X2) =

2C1
C2

T2

(K − C2X2

T2
)3( T1

C1
)2
− 2C2

X3
2

=
2C2

(K − C2X2

T2
)3X3

2

[
C3

1

T 2
1 T2
− (K − C2X2

T2
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so that d
dX2

f(X2) > 0. In other words, f is increasing on the interval. Hence

the minimum occurs at X2 = 1.

The following is a typical picture for n = 2 case.
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C1 = 9 T1 = 19; C2 = 8 T2 = 28; (k − (C1/T1)*T2)/C2 = 1.2416

Figure 4.1: Plot of f(X2)
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4.2 Scaling Factor Assignment Algorithm

On the basis of above proofs, we restate our solution as follows:

1. Sort time period Ti in descending order.

2. Compute scaling factor Xi by the method of Lagrange multiplier (X1 ≥ · · · ≥

Xn). If all of them are greater than or equal to 1, then they are the solution.

Then we are done. Otherwise, there are some X’s less than 1.

3. Then find those Xi less than or equal to 1 and set them to 1, i.e., Xr = 1,

r = i, i + 1, . . . , n.

4. Repeat 2 and 3 until all Xi ≥ 1.

Table 4.1 is the ScaleFactors pseudocode according to the above algorithm.
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1 Procedure ScaleFactors
2 Input: task set t = {< Ci, Ti >} of n elements
3 Output: Scale factor set {Xi} of n elements

4 Sort t in descending Ti

5 K ← n(21/n − 1)
6 r← n + 1
7 repeat
8 denom← 0,K ′ ← K

9 for j ← 0 to r − 1 do denom← denom + T
1/3
j ∗ Cj/Tj

10 for q← r to n do K ′ ← K ′ − Cq/Tq

11 trunc← false
12 for i← 1 to r − 1 do

13 Xi ← T
1/3
i ∗K ′/denom

14 if (Xi ≤ 1) then
15 r← i + 1, trunc← true
16 break
17 end if
18 end for
19 until (not trunc) or (r = 1)
20 for i← r to n do Xi ← 1
21 end ScaleFactors

Table 4.1: Procedure ScaleFactors Pseudocode

Let us analyze the ScaleFactors algorithm.

• Sorting task set t of n elements can take O(n lg n) time if we use Quicksort

algorithm.

• Initializing variable K and r at the beginning takes O(1) time, respectively.
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• There are three nested loops. The body of the first and second inner loops,

controlled by counter j and q, are executed together n times, for j = 0, . . . , r−1

and q = r, . . . , n; that is, O(n) times.

• Similarly, the body of the third inner loop, which is controlled by counter i, is

executed r − 1 times, depending on the current value of the variable r. Since r

is initialized with n + 1, and is never greater than n + 1, which implies that in

each iteration, the body of the for loop executes n+1 times at most. Therefore,

the statements in the second inner loop also takes O(n) times.

• The outer loop is not terminated until the variable trunc is false or r is set to

be 1. The best case occurs when the variable trunc never be assigned true or

r = 1, which takes O(1) time. However, the worst case occurs when r = n− 1

in the prior iteration each time and takes O(n) times.

In sum, the running time of ScaleFactors algorithm is given O(n lg n) + O(1) +

O(n2) = O(n2).
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However, since our goal is to find (X̂1, X̂2, . . . , X̂r−1) for some r = 1, . . . , n, if we

can get the first X less than 1 sooner in each iteration, we can improve the complexity

of the algorithm. Using divide-and-conquer paradigm in Table 4.2 to arrive at X̂r−1

takes O(n lg n) run-time and the complexity will be reduced to O(n lg n).

1 Procedure ScaleFactorsDnC
2 Input: task set t = {< Ci, Ti >} of n elements
3 Output: Scale factor set {Xi} of n elements

4 Sort t in descending Ti

5 K ← n(21/n − 1)
6 first← 0, last← n
7 while (first <= last) do
8 r← last
9 mid← (first + last)/2
10 denom← 0,K ′ ← K

11 for j ← 0 to r − 1 do denom← denom + T
1/3
j ∗ Cj/Tj

12 for q← r to n do K ′ ← K ′ − Cq/Tq

13 Xmid ← T
1/3
mid ∗K ′/denom

14 if (Xmid > 1) then
15 first← mid + 1
16 else
17 last← mid− 1
18 end if
19 end while

20 for i← 1 to r − 1 do Xi ← T
1/3
i ∗K ′/denom

21 for i← r to n do Xi ← 1
22 end ScaleFactorsDnC

Table 4.2: Procedure ScaleFactorsDnC Pseudocode
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4.3 Revised Scaling Factor Assignment Algorithm

If we look back into the mathematical form of our solution from (4.11), we would

find out that X̂i > 1 only when i ≤ r − 1. In other words, X̂i ≤ 1 when i > r − 1

according to Proposition 4.7. Therefore, we can also get X̂r−1 more efficiently if we

compute X’s backwards. We adjust above algorithm and list its pseudocode in Table

4.3.

1 Procedure ScaleFactorsBackward
2 Input: task set t = < Ci, Ti > of n elements
3 Output: Scale factor set Xi of n elements

4 Sort time periods in descending order.
5 K ← n(21/n − 1), denom← 0
6 for i← 1 to n do

7 denom← denom + T
1/3
i ∗ Ci/Ti

8 end for
9 for i← n down to 1 do

10 Xi = T
1/3
i ∗K/denom

11 if Xi ≤ 1 then
12 Xi ← 1
13 K ← K − Ci/Ti

14 denom← denom− T
1/3
i ∗ Ci/Ti

15 r← i
16 end if
17 end for
18 end ScaleFactorsBackward

Table 4.3: Procedure ScaleFactorsBackward Pseudocode

• As well, sorting task set t of n elements can take O(n lg n) time if we use

Quicksort algorithm.
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• Initializing variables K and denom takes O(1) time.

• The body of the first inner loop, controlled by counter i, is executed n times,

for i = 0, . . . , n − 1, that is, O(n) times.

• Similarly, the body of the second inner loop, which is controlled by counter i, is

executed n times, for i = n− 1, . . . , 0. Therefore, the statements in the second

inner loop takes O(n) times.

The ScaleFactorsBackwards then takes O(n lg n) + O(1) + O(n) + O(n) =

O(n lg n) times.

If we only consider the complexity of computing X̂i, the ScaleFactorsBackwards

takes only O(n) times to arrive at X̂r, yet the ScaleFactors takes O(n2) and Scale-

FactorsDnC takes O(n lg n) times. Therefore, the ScaleFactorsBackwards algorithm

is proven to have lowest complexity than the other two.
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Chapter 5

Result and Analysis

Consider the following task set:

Task Computation Time, C Time Period, T Utilization, U Priority
a 3 8 0.38 3
b 3 10 0.30 2
c 1 14 0.07 1

Table 5.1: Example Task Set A

Table 5.1 contains three tasks that are given priorities through RM algorithm.

Computation time and time period are measured in the number of clock cycles per

second. Note that priority is presented in integer in descending order. Namely, the

higher the integer, the greater the priority.

Task a is given the highest priority since it has the shortest time period. Their

combined CPU utilization is 0.75 and passes RM test, which equals 0.78 from (3.1).
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Figure 5.1 is the time-line for task set A before scaling. Y -coordinate represents

clock frequency of the processor, and x-coordinate means task computation time. a2

is the deadline of task a; likewise, b2, c2 are the deadlines of tasks b and c. Notice

that all the three tasks finish their execution before their deadlines.

Figure 5.1: Time-line for Task Set A before scaling, where computation times are
specified at the maximum CPU frequency

After scaling all tasks computation time according to each corresponding scaling

factor from our solution, table 5.2 and table 5.3 show the results of energy reduction.

Task Computation Time, C Utilization, U CPU Frequency Energy
a 3 0.38 1.0
b 3 0.30 1.0 7
c 1 0.07 1.0

Table 5.2: Energy Consumption before Scaling for Task Set A

We suppose the maximum CPU frequency is 1.0. Energy in Tables 5.2 and 5.3

are calculated from (4.1) × CPU frequency.

42



Task Computation Time, C Utilization, U CPU Frequency, f Minimum Energy
a 3 0.38 1
b 3.21 0.32 0.94 6.35
c 1.19 0.08 0.84

Table 5.3: Energy Consumption after Scaling for Task Set A

As we see in Table 5.3, the CPU frequency and computation time of each task

change individually. For instance, CPU frequency and computation time of task a

remain the same after scaling, yet in task b, CPU frequency is slightly reduced to

0.94 and its computation time extends from 3 till 3.21. The CPU frequency of task

c is reduced even more. This phenomenon just illustrates the algorithm suggested in

Chapter 4, the longer the time period of a task, the greater its scaling factor.

The combined CPU utilization after scaling just reaches 0.78 (the upper bound

of RM test), but the scaled task set saves 17.79% energy.
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The scaled time-line is depicted in Figure 5.2. Note that not only both CPU

frequencies of tasks b and c are reduced, but slack time is also shortened. However,

each task still complete its execution before deadline. Therefore, we prove that the

task set can still be scheduled by RM algorithm.

Figure 5.2: Scaled Time-line for Task Set A

Consider another case:

Task Computation Time, C Time Period, T Utilization, U Priority
a 2 14 0.14 1
b 1 10 0.10 3
c 3 12 0.25 2

Table 5.4: Example Task Set B

Task b in table 5.4 is given the highest priority and task a the lowest. Their

combined CPU utilization is 0.49, much less than 0.78.

The time-lime scheduled by RM algorithm for task set B is as follows:
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Figure 5.3: Time-line for Task Set B

The slack time in task set B is much longer than in task set A, since its combined

CPU utilization is much less than in task set A. Task b has the greatest priority and

executes first. Again, we assume that every task executes at the maximum CPU

frequency 1.0.

Table 5.5 and Table 5.6 show the result of power reduction after scaling. The

scaled task set saves almost 60.22 % energy.

Task Computation Time, C Utilization, U CPU Frequency, f Energy
a 2 0.14 1.0
b 1 0.10 1.0 6
c 3 0.25 1.0

Table 5.5: Energy Consumption before Scaling for Task Set B
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Task Computation Time, C Utilization, U CPU Frequency, f Minimum Energy
a 3.32 0.24 0.60
b 1.58 0.16 0.67 2.39
c 4.45 0.37 0.63

Table 5.6: Energy Consumption after Scaling for Task Set B

Figure 5.4: Scaled Time-line for Task Set B

The time-line for task set B after CPU frequency scaling is in Figure 5.4.

The results show that the percentage of power saving varies dramatically because

this approach is independent of task sets. In general, the more difference between

CPU combined utilization and the upper bound of RM test, the more power reduction.

We should also consider the effect of the overhead of voltage switching because

voltage switching results in overhead in that CPU cannot execute any task [15]. We

could further incorporate our approach with different dynamic reclaiming algorithms.

We will extend this work in the real life examples as our future work.
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Chapter 6

Summary

In this thesis, we derive a minimum energy function for RM task sets and solve

this problem. Different from other approaches, our solution goes straightforward and

takes account of RM test united with power dissipation equation in CMOS circuits.

By using the method of Lagrange Multiplier, we are able to abtain each scaling factor

for corresponding task execution time.

We assume the processor can vary its supply voltage dynamically and ignore the

threshold voltage and voltage switching overhead. We also assume that every slack

time can be fully filled by extending each task’s WCET according to their specified

scaling factors.

For a task set containing n tasks, the scaling factors X̂i can be obtained by

iteratively using the following formula to test whether the scaling factor X̂i is less

than or equal to 1,

X̂i =
T

1/3
i K ′

∑r−1
j=1 T

1/3
j

Cj

Tj

, i = 1, . . . , r − 1, for some r = 1, . . . , n

K ′ := n(21/n − 1)−
n∑

i=r

Ci

Ti
.
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The experiment results show that minimum power consumption can be exactly

accomplished in the presence of all X̂i greater than or equal to 1. At the same time,

the RM task set is still guaranteed to meet all deadlines. Our solution is proven not

to violate tasks deadlines.
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Appendices

1 function y = MinEnergy(T,C)
. . .

9 [T,NDX] = sort(T,’descend’); % sort T in descending order
10 C = C(NDX); % sort C accordingly but not necessarily in descending order
11 unsort(NDX) = 1:n; % see http://blogs.mathworks.com/loren/?p=104
12 % inverse sort

13 K = n∗(2(̂1/n)−1); % upper bound of RM
14 C1 = C;
15 T1 = T;
16 i = 1;
17 while i <= n

18 D = sum((T1.̂(1/3)).*(C1./T1)); % Denominator

19 X(i) = (T1(i))̂(1/3)*K/D;
20 if X(i) <= 1
21 X(i) = 1;
22 K = K − sum((C1(i:n))./(T1(i:n)));
23 T1 = T1(1:i-1); C1 = C1(1:i-1);
25 n = i - 1; i = 1;
27 else
28 i = i + 1;
29 end
30 end
31 unsort;
32 X=X(unsort) % print the real X
33 end
34 end
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