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THESIS ABSTRACT
THE EFFECTS OF STROBE LIGHT AND SOUND BEHAVIORAL OERRENT
SYSTEMS ON IMPINGEMENT OF AQUATIC ORGANISMS AT

PLANT BARRY, ALABAMA

Jeffery Kelley Baker
Master of Science, December 19, 2008
(B.S., University of Alabama, May 2001)
217 Typed Pages

Directed by J. S. Terhune

A hybrid and a sonic deterrent system were bo#uawed for their effectiveness
to repel fish from becoming impinged in a coolingter intake structure located at Plant
Barry (Mobile River, Mobile County, Alabama). Theghlnid deterrent system combined
strobe lights (300 flashes per minute), sonic sdtegliencies (0.4 — 4.0 kHz), and
ultrasonic sound frequencies (120 — 130 kHz). Tdrecsdeterrent consisted of random
tones at 0.4, 0.63, 1.00, 2.50, and 3.15 kHz. Ex¥®mlno of the hybrid deterrent system
began 1 May 2006 and ended 6 October 2006. Evatuafithe low frequency sound
burst deterrent began 15 November 2006 and end2@ &rcember 2006. The sound

and light was projected into the forebay of theliogowater intake structure.



Effectiveness of the deterrent systems was detedridly monitoring impingement
numbers.

Fish representing 26 taxa were captured duringtilngy. For total fish
impingement and for individual fish and non-fistesigs with sufficient numbers, a split-
plot analysis was performed on the sequentialireat (deterrent on) and control
(deterrent off) sampling events within each weekbt period. Temporal and
environmental variables were considered and aceduot through paired evaluations
during individual weeks. The split-plot analysis the paired treatment evaluation of the
total combined and the individual species showtiiate were no significant reductions
in impingement while either deterrent system wasparation. The results of the Hybrid
and Sonic fish deterrent testing demonstratedribtia¢ of the behavioral stimuli
evaluated (sonic sound, ultrasonic sound or stlighes) were capable of reducing the

impingement of freshwater organisms at Plant Barry.
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1 INTRODUCTION

Steam electric generating power facilities prodingemajority of electricity used
in the United States. A large percentage of theseep plants use a once-through cooling
water process. Water is withdrawn from a body ofenasuch as a river or reservoir,
pumped through condensers to provide cooling andeasation of waste steam by heat
exchange, and then discharged back into the same®arby water body (Veil 2002).
Water is withdrawn through cooling water intakaustures (CWISs) which include
pump houses and rotating screens. Water being raithdthrough these CWISs to cool
the facilities’ condensers carries living organisamsl debris into the intake structure
where objects larger than the screen mesh are gagi(or pressed against the screens).
This prevents those objects from reaching the coseletubes, which could cause the
tubes to become blocked. Objects smaller thandte=s mesh, such as larval fish, pass
through the screens and are considered to bemadrai the cooling water system before
being discharged to a receiving water body (Haddéril979; U.S. EPA 2002). The
blockage of condenser tubing reduces power plamtrgéion capacity and efficiency

and, if excessive, may lead to shutting down agboil

There is concern that adverse environmental impaatsresult if aquatic
organisms enter the CWIS and become impinged oaiaat (Lohner et al. 2000).
Impingement occurs when larger organisms are redaom the traveling water screens
located at the entrance of the intake structurey @®2; Lohner et al. 2000). Organisms

1



being impinged may be subject to gill compresseading to suffocation and other
mechanical damage such as scale loss or skin temergHadderingh 1979). However, a
recent study has shown that a significant numbé@npinged fish may have pre-existing
diseases that may have made them susceptible togerpent (Baker et al. 2007). In
addition, impinged organisms are often removed fthenscreens and discarded at
facilities that are not equipped with fish retutrustures. Entrainment takes place when
smaller aquatic organisms such as fish eggs, jleséish, fish larvae or shellfish larvae
pass through the intake screens and enter thengewhter circuit. Most of these
organisms will pass through the condenser anda¢xite cooling water discharge
(Hadderingh 1979; Lohner et al. 2000; U.S. EPA }9Within the cooling water

systems, these organisms are subject to physidah@nmal stresses (U.S. EPA 1977).

Due to the concerns over the potential effectsnpimgement and entrainment
losses, the Clean Water Act (CWA) Section 316(Qures that the U.S. Environmental
Protection Agency (U.S. EPA) regulate the locataesign, construction and capacity of
CWISs so that the structures reflect the best t@olyy available (BTA) for minimizing
adverse environmental impact (U.S. EPA 1977; S@peér). Under CWA Section
316(b), the EPA categorizes power plants into driree phases, with corresponding
rules associated with each phase. The rules fdr gaase are based on the size and age
of the facility, as well as whether it is classifias a steam electric generating facility.
Specifically, the Phase Il Rule applies to existiaglities that, as their primary activity,
generate electric power, withdray89.3 million liters (50 million gallons) per dagnd
use 25% or more of that water for cooling purpo3$és 2004 Phase Il rule requires

existing facilities to reduce impingement mortality 80 to 95% from a calculated
2



baseline where the impingement mortality would higptically occur if the facility had a
shoreline near-surface intake with a standard 9r6(én4 in.) mesh traveling screen (U.S.
EPA 2004). However, facilities that use closed-eyaoling are considered to have the
best technology available (BTA) for minimizing imgement (U.S. EPA 2004) and
entrainment. Also, facilities that have througheser design velocities of &5 fps are
considered to have BTA for impingement only. Initidd, the Phase Il Rule requires
facilities located on the Great Lakes, tidal esagror small rivers where power plant
cooling water withdraw > 5% of the mean annual floweduce the number of entrained
aquatic organisms by 60 to 90% from a calculatesd:loze (U.S. EPA 2004).
Approximately one-third of the existing power plaim the U.S. subject to the Phase Il
rule withdraw cooling water from freshwater resaersyor large rivers. These power

plants will only be subject to impingement reductevaluations (Federal Register 2002).

On 25 January 2007 the Second U.S. Circuit Couftppleals remanded several
provisions of the Phase Il Rule back to the U.SA HRiverkeeper, Inc. v. U.S. EPA, No.
04-6692, 2d Cir. 25 Jan. 2007). As a result, ti&. BPA suspended the entire rule
(Federal Register 2007) and is in the processwarfitiag it to comply with the Second
Circuit’s decision. Undoubtedly, the revised Phidsale will establish “best technology

available to minimize adverse environmental impadténever it is promulgated.

The Phase Il rule has other requirements whicludetonducting environmental
impact studies and other studies for any technotbglymay mitigate or reduce
impingement. However, given the multitude of enmimental variables that may affect
the rates of impingement, the ability to quantifypingement or entrainment rates is

challenging. Factors that may play a role in th@ses include temporal variations,
3



episodic events, water quality, and hydrological biological factors including fish
health. Accounting for these factors must be carsd when evaluating the

effectiveness of any potential mitigating techngltigat may reduce impingement.

Attempts to reduce impingement rates have inclutedievelopment of
exclusion devices that can be grouped in one ofdategories: physical and behavioral.
Physical devices typically surround an intake strrecand physically block the entrance
into the CWIS. However, physical barriers, suclrageling water screens, have
limitations which include occlusion due to the séten of small mesh sizes (Mueller et
al. 2001). Behavioral devices, on the other hareldasigned to act upon the fish’'s

senses with the intention of inducing an avoidaresponse.

Research has shown that unnatural stimuli suctr@aseslights tend to repel fish
whereas other stimuli including constant light s@srare attractants. (Coutant 2001b;
Nemeth and Anderson 1992; Wickham 1973). The ustrolbe lights and sound devices
covering a broad range of frequencies (infras@uaojc, and ultrasonic) to manipulate the
movement of fish has been well documented (Co@@0ia). However, studies
evaluating the use of sound in combination withttgas a hybrid deterrent have been
limited. In addition, studies on the use of lightsound deterrents in an attempt to modify
the behavior of an entire community of fish at CWEe not well documented. The
overall objective of this study was to evaluateeffeeacy of a full-scale underwater
strobe light and sound system as a behavioralm@eitetio reduce the impingement rates at
Plant Barry in south Alabama located along the NéoRiver. The effectiveness of the
strobe lights and sound deterrents were deternthmedigh the evaluation of traveling

screen impingement.



2 LITERATURE REVIEW

Many studies have evaluated the use of behavietalent devices in attempts to
modify fish movements. A number of laboratory aieddf studies have begun to evaluate
the applicability of using either light or soundl@havioral deterrents for fish. However,
few studies have evaluated the potential for combithese deterrents into a “hybrid”
(light and sound) behavioral deterrent system. Boppd Carlson (1998) suggest that the
combined use of light and sound stimuli to modighfbehavior may yield the most
promising results. The application of light and sdbehavioral deterrents relies on the
avoidance responses produced when fish perceinalsigmitted from the devices
through the senses of sight and hearing. Howelvemphysiology and behavior of fish

must be known before attempting to use a partiatlanulus to elicit a response.

2.1 Light and Sound Detection in Fish

Fish have a variety of sensory capabilities thabé&nthem to detect a wide range
of external stimuli. Fish react to these stimuliman assortment of behavioral responses.
However, fish may be limited in their ability totdet the full range of signals within a
given stimulus. For example, fish may not deteldtiash rates emitted from a strobe
light deterrent or all sound frequencies emitt@anfran acoustic behavioral deterrent. The

signals that a particular species of fish is ablddtect can be limited by the fish’s



receptors or the signal transmission propertigh@environment (Tavolga et al. 1981,
Ali and Klyne 1985, Popper and Carlson 1998, Bag0d7). Fish have also
demonstrated a preference for certain signals mvitie full range of possible signals

produced by a sensory stimulus (Sager 1985).

2.1.1 Light Detection

Fish exhibit a wide degree of sight capabilitiest tfeflect the different habitats,
taxa and life stages that exist among these ongani§he efficiency of the eye to detect
light is determined by the number, disposition, types of visual cells; connection of the
cells to the optic neurons; mechanisms for adjgdndifferent water qualities; and
effectiveness of the tapetum lucidum (Baron 200%g tapetum lucidum is a structure
composed of reflective guanine crystals that enbsinsual sensitivity under low light
conditions (Barton 2007). Sight capabilities dependods and cones located in the
retina. Rods function in dim light, whereas conesadapted to function in brighter light
and are responsible for color vision. There aleat two classes of cones responsible
for color vision, with each sensitive to differguurtions of the electromagnetic spectrum
(Hawryshyn 1998). Refer to Figure 1 for a represton of a fish eye, showing the

relationships of its parts.
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(Redrawn form Barton 2007.)



Vision is particularly critical to fish that liveniclear, well-lit waters. Fish living
in these waters rely more on the sense of sighpeoaa to those living in a light-
deprived habitat. Fish living in dimly-lit habitatsly primarily on olfactory senses,
mechanosensory, or electrosensory lateral linesys{Barton 2007). Sensitivity to light
also varies by species and life stage. Boehlei§12979) concluded that larvae and
juvenile splitnose rockfisBebastes diploproa stay near the surface for about a year
before migrating to deeper water. As the fish mmvdeeper waters their retinas adapt to
diminishing light conditions by decreasing conesignwhile increasing rod density. In
addition, photo- and light-sensitive pigment ralmsated on rods and cones may change
with different life stages in anadromous fisheghvai resultant shift in spectral
sensitivities. In observations of the sea lamgetyomyzon marinus and white perch
Morone americana, changes in pigmentation may maximize the visaphcities of these

fish to changing environments (Ali and Klyne 1985).

The difference in eye size relative to body sizeeaps to be related to the
importance of vision, with species more dependergight having larger eyes (Beukema
1968). Pankhurst (1989) also found that fishesftérént ecological niches or habitats
had varying visual abilities based on difference®ag photoreceptors and eye
morphology. Nocturnally active species lacked tiseaal acuity of diurnal species;
however, nocturnal species had better sensitigitight. Herbivores had smaller eyes
than carnivores relative to their body size, wher@éanktivores and nocturnal species

had relatively large eyes.

The ability of fish to detect a flashing (or stryplight source may be explained

through a phenomenon known as flicker fusion fregy&gFFF). A transient retinal
8



stimulus, such as a strobe light, is not extingegsimmediately after cessation of the
stimulus. The transient retinal stimulus persietsaf short interval depending on the state
of adaptation of the eye and the intensity of tiraidus. FFF occurs when the ability to
distinguish separate flashes in a flashing lightrse ceases (Ali and Klyne 1985).
Beyond FFF the sequential flashes of a strobe Wghild appear as a continuous light
source. Little is known of FFF in fish; however ik et al. (1982) reported that
American eels responded to strobe lights flashireyrate as high as 1090 flashes per

minute.

2.1.2 Sound Detection

Fish are generally grouped as being either “heasjpegialists” or “hearing
generalists” based on the presence or absenceof#iped structures that enhance
sensitivity to sound. Fish perceive sound throdnghdctavolateralis system that detects,
extracts, and processes information from both hygltamic and acoustic components of
the sound fields (Popper and Carlson 1998). Thatesy consists of the auditory,
equilibrium, and lateral line systems which usetliag cell for sensory reception
(Schellart and Wubbles 1998). The inner ear okfistunction primarily in balance and
sound reception via stimulation of hair cells bg tholith, while the lateral line system
functions as a mechanoreceptor through detectigaicle displacement of water and
to pressure via direct stimulation of hair cellsl @ssociated structures (Barton 2007).
The lateral line functions best in the zone nedressound source at frequencies < 200
Hz within a few body lengths of the fish (Carlsd®94; Popper and Platt 1993; Kalmijn
1988, 1989). Refer to Figure 2 for a visual repnéston of the octavolateralis system

components.
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Figure 2. Components of the octavolateralis system in teleost fish. (A) Theinner
ear, Smilar to most vertebrates, containsthree semicircular canals (equilibrium
function) and an acoustic labyrinth with three sacs, each with a small dense bony
otolith. (B) Cross-sectional view of thelateral line on thetrunk of a cyprinid
showing the distribution and innervation of neuromast receptorsand the location of
poresthat connect the canal to the external environment. (C) The neuromast is
composed of sensory hair cells, support cells, and innervating sensory neurons.
(Redrawn from Helfman et al. 1997.)
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The differences in hearing between species caitt feson the variability of size,
shape, and orientation of their otoliths workingcancert with the epithelium (Popper et.
al 1992; Popper and Platt 1993). Hearing specsatish detect sounds by sensing both
compression waves and particle displacement. Tlseyteve advantages in all areas of
hearing including localizations of sound sourceggdtion of a wider range of
frequencies; and higher sensitivity than fish withthese structures (Alexander 1962;
Allen et al. 1967; Blaxter et al. 1981; van Bergdip67). Hearing specialists include
Otophysans (catfishes and minnows) which haveiassef bones called Weberian
ossicles that physically connect the rostral enthefswimbladder to the fluid system of
the inner ear (Alexander 1962; van Bergeijk 196per and Coombs 1980) (Figure 3).
Members of the family Clupeidae (herrings and shhadse called prootic auditory bullae
that are divided by a membrane into a gas-filleghsent connected to the swim bladder
and fluid-filled segment connected to the inneraat head lateral line (Allen et al.
1976; Blaxter et al. 1981) (Figure 4). Perciforrfigsrches and basses) have a

swimbladder attached to the skull adjacent tonher ear (Platt and Popper 1981).

11



sacculus

swimbladder

inner ear
weberian ossicles

~ weberian ossicles

Figure 3. (top) Cyprinidshave a series of bones called Weberian ossicles that
acoustically couple the swimbladder with fluids of theinner ear bones. The
swimbladder servesasprimary transducer in receiving sound, transmitting
vibrationsto the Weberian ossicles and then to the sacculus of the inner ear.
(bottom) Dissected side view of a catfish showing linkage from the swim bladder
(opened) to thefirst seriesof Weberian ossicles. (Redrawn from Tavolga 1965.)
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Figure 4. Featuresof the clupeid acousticolateralis system include bullae (pressure-
displacement converters), hydrodynamical connections between the ear and lateral
line, and gas connections between the bullae and swimbladder which allow
adaptation to depth. (A) Position of two bullae, lateral line canals, and connections
between bullae and swim bladder. (B) Bulla and itsfenestra, elastic thread not
shown. (Redrawn from Tavolga et al. (eds) 1981.)

13



Hearing generalists are fish without specializedrvadders or other mediating
structures that enhance sound reception and thiy abihear at extended distances from
a sound source. They can only detect limited s@amplitudes and tend to have a
comparatively narrow range of sound frequenciesttiey can sense. (Popper and Platt

1993; Carlson 1994; Popper and Carlson 1998; B&0®7).

When referencing fish hearing the literature categs sound frequencies within

three ranges:

¢ infrasound (infrasonic) <100 Hz

¢ low frequency (sonic) 100 Hz - 20 kHz, human hegfimits

e high frequency (ultrasound or ultrasonic) >20 kHz

The variability in the range of frequencies overchhfish can hear has been

shown through many hearing threshold studies. &éwsethods have been developed to
study fish hearing. These methods include cardiaditioning and the auditory
brainstem response (ABR) (Otis et al. 1957, Kengioal. 1998). The cardiac
conditioning method proposed by Otis et al. (1958 classical conditioning method
that has commonly been used with fish. This metis®s$ a mild electric shock applied
shortly after a sound burst. Electrodes attachédedody of the fish detect a
conditioned change in cardiac rhythm. The hearsesis beat when the sound is heard.
However, when the sound is not heard, the heatresmhains the same until the shock
arrives. ABR is a recent approach to measure #sinihg that is less stressful to the test

subject (Kenyon et al. 1998).
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Yan (2001) used ABR to conclude that goldfi&rassius auratus can hear up to
4 kHz, with best hearing frequency between 50080@Hz. Other cyprinid species
including common caryprinus carpio, bighead carg\ristichthys nobilis, and silver
carpHypophthal michthys molitrix have also been shown to have adequate hearing at
frequencies up to approximately 3 kHz when tedteough the ABR approach (Kojima
et al. 2005; Lovell et al. 2006). Common carp wias ¢ested through avoidance
conditioning procedures (Popper 1972). Fathead omitf?imephal es promelas was
reported to have adequate hearing at frequenciés ajpproximately 4 kHz when tested
through the ABR approach (Sholik and Yan 2001)tudlg using ABR showed that
Black drumPogonias cromis can detect frequencies from <100 to 800 Hz, widatgst
sensitivity <500 Hz (Ramcharitar and Popper 200 lffe (1968) demonstrated that
pike perch_ucioperca sandra can detect frequencies up to 800Hz through eteshock
training. American shadlosa sapidissma have the greatest sensitivity to sounds
between 200 and 800 Hz, but also had sensitivityttasonic frequencies with an upper
limit at approximately 180 kHz (Mann et al. 199They used a classical conditioning
technique in which the fish learned to reduce theart rate when they detected a sound.
It has been suggested that the detection of ulradequencies bylosa involve the
utricle of the inner ear (Mann et al. 2001; Higtysle 2004; Popper et al. 2004). Another
clupeid, the gulf menhaddBrevoortia patronus, was also shown to be sensitive to
ultrasonic frequencies from 40 to 80 kHz when @ sheough the ABR approach (Mann
et al. 2001). However, other clupeids such as bahayAnchoa mitchilli, scaled
sardineHarengula jaguana, and Spanish sardir@ardinella aurita were only sensitive to
sonic frequencies, with bay anchovy being ablestect sounds up to 4 kHz. It has been

15



suggested that Atlantic cdsadus morhua have the ability to detect ultrasonic
frequencies (Astrup and Mohl 1993). In generah fiave optimal hearing capabilities
within the infrasonic and sonic regions from <20 ujizto approximately 700 Hz (Platt

and Popper 1981; Sand et al. 2001).

Fish perceive synthetic loud noises as unnatuiltlaese noises produce an
avoidance response (Coutant 2001b). Sounds mafighljyredators, such as marine
mammals, have also been used to effectively indno@ance responses (McKinley et
al. 1987). The ability of fish to detect these misrg sounds is generally expressed as a
minimal detectable level or threshold. The minimilmeshold is often defined through
trial studies as the sound pressure level to wiielfish will respond on a specified
proportion of presentations. The absolute heatingshold is not necessarily fixed for a
given species under predefined background noisdiooms. Rather, the hearing

threshold may change with age and physiologicé gtdawkins 1981).

Knowledge of the frequency ranges fish are ableetr, along with minimum
sound pressure levels (SPLs) at which fish carctigtese frequencies is important when
choosing frequencies especially when being usedehavioral deterring methodology.
In addition to identifying what fish can hear, pieys sound deterrent studies can also
provide valuable insight into which sound systenosiley prove successful at deterring a
given suite of species in a particular set of emvinental conditions. Hearing capabilities
for fish species or representative fish specieswbccur at a specific location may be
represented in graphical format. These graphsiwmle overlaid with frequencies and

SPLs to be used as a fish deterrent at thesedosattrigures 5-11 present the hearing
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thresholds for American shad, clupeids, bay andg\wayprinids, ictalurids, bluegill

Lepomis macrochirus and sciaenids.
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Figure5. Hearing thresholdsfor American shad Alosa sapidissima.

18



160

150 4

140 4

130 4

120 4

110 1

100 4

Sound Pressure Level (dB re 1m Pa)

©
o
L
{
\
\
\

©
o
L
»
<
\
\
\

~
o

0 500 1000 1500 2000

Frequency
— # — Atlantic herring (Enger 1967)
- - @ - - gulf menhaden (Mann et al. 2001)
—&— Pacific herring (Mann et al. 2005)
— 0— - American shad (Mann et al. 2001)
— % — scaled sardine (Mann et al. 2001)
— 0 — Spanish sardine (Mann et al. 2001)

Figure 6. Hearing thresholdsfor six clupeid species. Atlantic herring Clupea
harengus (Enger 1967) and Pacific herring Clupea pallasi (Mann et al. 2005), and
gulf menhaden Brevoortia patronus, American shad Alosa sapidissma, scaled
sardine Harengula jaguana, and Spanish sardine Sardinella aurita (Mann et al.
2001).

19



160 4

150 4

140 +

130 4

120 4

Sound Pressure Level (dB re 1m Pa)

110 4

100 \ \ \ \
0 500 1000 1500 2000

Frequency (Hz)

Figure7. Hearing thresholdsfor bay anchovy Anchoa mitchilli (Mann et al. 2001).

20



160 -
150 |
140
130 |
120 | x

110 1 =Rl

100 -

—— common carp
— & — |ake chub
-- & - - fathead minnow

©
o
-]

Sound Pressure Level (dB re 1m Pa)

80 - AT i
— » - silver carp
— © — bighead carp
70 A
60 T T T 1

o
-
o
o
o

2000 3000 4000
Frequency (Hz)

Figure 8. Hearing thresholdsfor five cyprinid species: common carp Cyprinus
carpio (Kojima et al. 2005), lake chub Couesius plumbeus (Popper et al. 2005),
fathead minnow Pimephales promelas (Sholik and Yan 2002), and silver carp
Hypophthalmichthys molitrix and bighead carp Aristichthys nobilis (Lovell et al.
2005).
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Figure 9. Hearing thresholdsfor two catfish species. channel catfish Ictalurus
punctatus (Fay and Popper 1975) and pictus cat Pimelodus ornatus (Amoser and
Ladich 2003).
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Figure 10. Hearing thresholdsfor bluegill Lepomis macrochirus (Sholik and Yan
2002).
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Figure 11. Hearing thresholdsfor two sciaenid species. Atlantic croaker
Micropogonias undulatus and black drum Pogonia cromus (Ramcharitar and
Popper 2004).
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Fish hearing is most acute in the infrasonic amdcs@anges of 0-1000 Hz where
ambient and manmade noise levels are highest (186k). Background noise in this
range is also ubiquitous in the underwater enviremisinear power plants (Anderson et
al. 1989). The detection of sound in the infras@md sonic regions is important for the
survival of the fish and may be produced by appnoarpredators or prey; the alarming
body motion of a startled neighbor; the vocalizasiof conspecifics; and other similar
sources (Anderson et al. 1989; Urick 1967). Dateatif sound may not be limited by
sensitivity but by the level of background noiseha environment. Several studies have
concluded that background noise has a maskingteffatlimits the detection of sounds.
When fish are presented with a sound in a noisyr@nment, such as in the vicinity of a
power plant, the threshold for hearing the sourgkedds on the intensity of
environmental noise. Sound must be at least 10bdBeabackground noise to be
detected (Tavolgo 1967, 1974; Buerkle 1968; CooamusFay 1989). Although, limited
data exist on a variety of fish species and thecefif a continuous background noise
source on fish hearing. Background noise must kentanto consideration and measured
before an appropriate sound deterrent is seleoted given location. The sound deterrent
must transmit sound at SPLs sufficiently greatantbackground noise levels in order to

be detectable by fish in the surrounding area.
2.2 Overview of Deterrent Systems

2.2.1 Light Deterrents

Strobe lights have been successful in alteringbfevior of fishes and are the
most widely used underwater light system for fighedrent purposes (Popper and

Carlson 1998; EPRI 1999; Bullen and Carlson 2088pbe lights used in behavioral
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deterrent studies have similar operating critecimss manufacturers. Most strobe lights
tested are high intensity; have the highest eneugyut in the violet-blue-green regions
(400-570 nm) of the spectrum; and are set at flasds of 300 flashes/minute or higher
(Coutant 2001a; EPRI 2004). However, the intend=tbpmance of a strobe light can be
affected by environmental conditions (turbidity, @ent light), target species, life stage,
and physiological state (Anderson 1988; FernaldBi8&meth and Anderson 1992;
Amaral et al 1998; Mueller et al. 2001). Flashimgl @onstant-intensity light may affect
the target species by acting as an attractantmesostances while repelling fish in
others cases. In general, strobe lights have Hemmrsto repel fish (Patrick 1982a,
1982b; Patrick et al. 1982, 1985; Sager et al. 1@®0tant 2001a), whereas constant
lighting may produce either an attraction or refuigWickham 1973; Nemeth and
Anderson 1992; Taft et al. 2001). Fish perceivelstrlights as unnatural and exhibit an
avoidance response (Coutant 2001b). A compreherswew of strobe light behavioral

guidance studies arranged by species is given peAgix 1

2.2.1.1 Laboratory StudiesUsing Light

A number of controlled laboratory studies have beeriormed to determine the
behavioral responses of fish exposed to strobemstant light sources and the findings
are mixed. Strobe lights have been shown to beteféein eliciting a response from a
wide variety of species (Taft et al. 2001), andehbgen proven more effective at
repelling fish than a continuous light source (@oti2001a). Jahn and Herbinson (2000)
investigated light attraction of northern anchd&ngraulis mordax, white croaker
Genyonemus lineatus, and Pacific sardingardinops sagax. They used a Y-shaped flume

in which batches of fish were given a choice betwedting on a lighted (steady or
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strobed) side or a dark side. Although results vimrenclusive for Pacific sardines, a
steady light source was reported to be ineffeciveroducing either an attraction or
aversion; however, use of a strobe light repelladercroaker. Northern anchovy showed
both an attraction and repulsion to strobe ligi8ER (2003) reported similar ambiguous
results when strobe lights were used to produahawioral response in weakfish
Cynoscion regalis. Weakfish in their flume study showed little beioa@l change for

trials with only strobe light and were possiblyratted.

Several other controlled laboratory studies haesls$robe light in attempts to
modify fish behavior. Konigson et al. (2002) exaetrthe behavior of whitefish
Coregonus lavaretus exposed to strobe lights. The fish responded byrig away from
the strobe light and increasing their swimming sbeéestudy evaluating gizzard shad
Dorosoma cepedianum, hybrid striped basislorone chrysops-saxatilis, largemouth bass
Micropterus salmoides, bluegill Lepomis macrochirus, walleyeSander vitreus, and
channel catfishctalurus punctatus using strobe lights resulted in all species, except
largemouth bass, demonstrating some level of amc&l@EPRI 1990). Walleye exhibited
the strongest avoidance response. Atlantic menhadsenortia tyrannus, spot
Leiostomus xanthurus, and white percMorone americana exhibited some level of
avoidance to strobe light. Their strengths of aao@k varied with turbidity conditions,
often increasing at higher turbidity levels, whistperplexing because increased turbidity
minimizes light transmission (Mclnnich and Hocu®8Y; Sager et al. 2000). Mclnnich
and Hocutt (1987) suggested that the increasedlanoé associated at higher tubidity
levels may have been associated with increasetidgdttering within the near field. In a

study evaluating two different illumination leveEsuropean eeldnguilla anguilla
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avoided strobe lights with increasingly highernfitnation levels (Hadderingh and
Smythe 1997). Patrick et al. (2001) demonstratatAlmerican eelénguilla rostrata
could also be repelled by a strobe light, regasdéd<lash rate (66-1090 flashes/min).
Juvenile American eel avoidance was immediate vaseaelults responded by exhibiting
marked avoidance only after several minutes exgosuthe strobe light source. Mueller
et al. (2001) tested the use of strobe lights dode avoidance movements in several
salmonid species. Wild chinook salm@®ncorhynchus tshawytscha demonstrated
avoidance movements in 60% of the tests; hatateemed chinook salmon showed
avoidance in 50% of the tests; rainbow tr@atorhynchus mykiss showed avoidance in
80% of the tests; and brook trdsdlvelinus fontinalis showed none to slight avoidance.
Other studies involving salmonids have demonstratede level of avoidance to strobe
light, with the types of behavioral reactions vagywith ambient light conditions

(Puckett and Anderson 1987; EPRI 1990; Nemeth amdefson 1992).

2.2.1.2 Controlled Field Studies Using Light

Attempts to modify fish behavior in controlled fie$tudies have shown varying
results dependent upon the species under invastig&onigson et al. (2002) examined
the behavior of whitefisCorigonus lavaretus enclosed in net pens exposed to strobe
lights. Fish were observed to increase their swingnspeed and their distance from the
light source. Ploskey and Johnson (2001) evaluatediance of juvenile coho salmon
Oncorhynchus kisutch and chinook salmon in net pens with lights mourited outside
the pen. Avoidance response was estimated to H®8%. Amaral et al. (2001) used
various behavioral stimuli in studies with cagesdicted in the forebay of the Roza

Dam irrigation diverson on the Yakima River, Wagfton. Smallmouth bass
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Micropterus dolomieu and yearling chinook salmon displayed avoidanspaases to
strobe light at night by rapidly moving to the esfdhe cage opposite the active strobe

lights.

2.2.1.3 Uncontrolled Field Studies Using Light

A study at Sanders Generating Station on the Strésce River used strobe
lights to effectively repel upstream migrating Amean eels. It was estimated that 65-
92% of the eels were repelled (Patrick et al. 1$8rick et al. 2001). At Four Mile Dam
in Michigan, entrainment of bullhead catfi8meiurus spp. and shineCyprinidae were

lower at dusk and dawn when the strobe lights weoperation (McCauley et al. 1996).

The use of strobe lights to modify the movementsabfonids has shown
positive results. Johnson et al. (2001) used stlights to reduce juvenile salmon spp.
densities by 87-96% in front of a filling culvetttae Hiram M. Chittenden Locks,
Seattle, Washington. Brown (1999) reported thatbsights were effective in repelling
sockeye salmo@®ncorhynchus nerka and land locked kokanee salmOnnerka.

Kokanee salmon demonstrated that response disteaxpositively correlated with
water clarity. Maiolie et al. (2001) also demongdathat strobe lights could be used to
repel free-ranging kokanee salmon in the pelagjoreof northern lakes. Densities of
kokanee were reduced by 72-100% near the strobis lig two Idaho lakes (Spirit Lake

and Lake Pend Oreille).

Mixed results have been obtained when using stiights to deter clupeids.
American shad\losa sapidissma and alewifeA. pseudoharengus had negligible

responses to strobe lights, and in some casepdiaapd to be an attractant (Patrick et al.
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1988a; EPRI 1990). However, some studies have detmaded that American shad and

alewife can be repelled by strobe lights (PatrigB2b; Patrick et al. 1985; EPRI 1992).

Mixed results have also been obtained when tryongeter an entire community
of fish. Studies at Milliken Station, New York, tdi®d in some species being attracted to
strobe lights while others were repelled. Additibyneesponses varied by season and fish
age (Ichthyological Assoc.1994, 1997). Ability educe impingement of most
anadromous species at Roseton Generating StatewlbUNgh, New York was
accomplished with strobe lights alone or in combarawith a sound generating device
and an air bubble “curtain”. Greater reductionsen@oserved when devices were used in
combination (EPRI 1988). Another study found freater species abundance near
Ludington Pumped Storage Project (Ludington, Mieahigwere significantly lower
during periods when the strobe lights were opegatompared to periods when the lights
were off (EPRI 1990). In contrast, the use of strbiphts to reduce entrainment of
riverine fish species at White Rapids Hydroeled®ioject (Marinette, Wisconsin) was

not detectable (Michaud and Taft 1999).

2.2.2 Sound Deterrents

The use of sound as a fish deterrent may be désioabr other methods. Nester
et al. (1992) lists several advantages such asahy fish are startled by sound 2) short-
range propagation is minimally affected by turljidind 3) sounds can be used during
both day and night. Sound can also travel longadests, high rates of speed, and in all
directions through water (Popper and Carlson 1998)nd is used by fish to sense and

respond to potential hazards in their environm@aitrison 1994; Bullen and Carlson
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2003). Acoustic deterrents using infrasonic andcstvaquencies could potentially be
used for a multi-species repulsion system, give mhost fish are sensitive to sound in
these ranges (Sand et al. 2001). A comprehensn@v®f acoustical behavioral

guidance studies arranged by species is given peAgix 2.

2.2.2.1 Laboratory Studies Using Sound

Controlled laboratory studies have been exploreéagusound as a fish deterrent
for several species. Black druPogonias cromis placed in concrete raceways avoided
infrasonic frequencies in the range of 10-100 Hmuwmywing to the opposite end of the
tanks (Brown et al. 2006). In a study using a 10rthasonic frequency, avoidance
responses were observed in chinook salmon (40-4bwitmin cages placed in a
fiberglass tank (Mueller et al. 2001). Knudsenle{1097) also used an infrasonic
frequency at 10 Hz, within circular tanks, to cafigght and avoidance responses in
juvenile chinook salmon and rainbow trout. Karlg¢ml. (2004) concluded that juvenile
roachRutilus rutilus demonstrated escape responses to 6.7 Hz infrafseqitencies due
to similar particle acceleration and compressiardpced by an approaching predator.
Sonic frequencies of 100-3,000 Hz were used indlstadies to produce avoidance
behavior in bay anchovy, Atlantic croakdrcropogonias undulatus, and weakfish
(PSEG 2003). The authors also observed avoidanclietback herrind\losa aestivalis

to ultrasonic frequencies ranging from 80 to 12@ kH

2.2.2.2 Controlled Field Studies Using Sound

Sound has been shown to be a feasible fish detexpéion in controlled field

studies. Black drum stocked in ponds demonstrateazaidance displacement when
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exposed to pure tones of infrasonic frequencig¢barrange of 10 to 60 Hz (Brown et al.
2006). The response of riverine fishes to soundadigwas evaluated during cage tests
conducted at the Kingsford Hydroelectric Projectlue Menominee River in Wisconsin.
It was shown that rainbow trout avoided frequenocie® kHz; walleye avoided
frequencies between .6 to 3 kHz; yellow pePehca flavescens avoided frequencies
between .7 to 2 kHz; and largemouth bass avoidfuéncies between .3 to 5.5 kHz
(EPRI 1998b; Winchell et al. 1997; Michaud and Ti#©9). Holand and Walso used a
30 Hz infrasonic sound barrier to repel cod withinet pen at a tidal pool in
Sommaroyhamn, Norway. Caged northern pikeminRtyghocheilus oregonensis
strongly avoided infrasonic frequencies at <50 Htha forebay of the Roza Dam

irrigation diversion, Washington (Amaral et al. 200

2.2.2.3 Uncontrolled Field Studies Using Sound

In natural systems, sound deterrent systems havertstrated that fish
movement and behavior can be manipulated usingsafric, sonic, and ultrasonic
frequencies. Sonny et al. (2006) used an infrasio@griency of 16 Hz in a cyprinid
dominated lake in Norway. Results showed that thrabrers of cyprinid fishes entering a
nuclear power plant’s CWIS were significantly reddcin addition, the cyprinids failed
to show significant habituation to the deterrerite Buthors concluded that the degree of
avoidance was negatively correlated with wateraigleentering the CWIS. European
silver eels migrating downstream were significandyerred from an acoustic fish fence
operating at <35 Hz (Sand et al. 2001). PSEG (208&0l frequencies ranging from 100

Hz — 120 kHz in open water tests near the CWISars Generating Station, New
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Jersey. The authors reported avoidance responséseiback herring, American shad,

Atlantic menhaden, bay anchovy, and Atlantic sid#Menidia menidia.

Other field studies also have shown that soundcbeamsed to modify fish
behavior, with frequencies being species specfiudies have demonstrated that
Atlantic salmon have optimum sensitivity around 200(Hawkins and Johnstone 1978).
However, they have been shown to avoid an infrasibequency of 10 Hz, but not at
sonic frequencies in the 150 Hz range (Knudseh 4984). Maes et al. (2004) used
sound in the infrasonic and sonic range of 20-6@Q@d+educe the numbers of clupeids
from entering the CWIS at the Doel Nuclear PowanP({Antwerp, Belgium). Atlantic
herringClupea harengus and spraSprattus sprattus were reduced from entering the
CWIS by 94.7% and 87.9%, respectively. These aatalso demonstrated a significant
reduction in 7 other species or taxa including evbrteamAbramis bjoerkna (40.1%),
smeltOsmerus eperlanus (53.5%), European seabd3isentrarchus labrax (75.6%),
European percRerca fluviatilis (51.2%), common solfolea solea (46.6%), flounder

Platichthys flesus (37.7%), and gobigBomatoschistus spp. (46.1%).

Some freshwater clupeids in the geAlissa, on the other hand, are sensitive to
ultrasonic frequencies in the range of 80-150 khtx @licit avoidance responses to these
frequencies (Dunning et al. 1992; Nestler et 2@@2tPSEG 2003). Alewife impingement
was reduced by 80% using ultrasonic frequencie2-(Z8B kHz) at James A. FitzPatrick
Nuclear Power Plant on Lake Ontario (Ross et &6)9At the Annapolis Tidal
Generating Station, Nova Scotia, Canada, ultradosipiencies between 122 and 128
kHz were used to reduce American shad passagegthtarbines by 42% and alewife by

48% (Gibson and Myers 2002). On the Wye River ind&awaite shaélosa fallax
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fallax displayed avoidance behavior to sound transméate&tD0 kHz, but not at 420 kHz

(Gregory and Clabburn 2003).

2.2.3 Hybrid Deterrents

Behavioral deterrent systems have generally beet separately in past studies
to reduce impingement. These studies typically Imea single or limited number of
target species. With sensory perception and stimual@arying among species, it can be
presumed that a “multi-sensory” approach whereeckffit technologies are combined
will deter a greater number of fish species anddemrange of size classes under a more
diverse set of environmental and site conditioas tany singular barrier could (Coutant
2001b; Patrick et al. 2006). Coutant (2001b) sutggesing a combination of attraction
(i.e., turbulent attraction flows, mercury lights)d repulsion (i.e., strobe lights, sound)
techniques to take better advantage of fish sersapgbilities. For example, a deterrent
could be applied in the vicinity of an intake amdadtraction applied to a bypass.
However, an attraction/repulsion behavioral guigasystem would likely be designed
for a narrow range of species, because what repealtracts one species may not
produce the same response in other species. th&ehand, using a combination of
behavioral deterrent devices has resulted in dgredility to repel a single species of
fish and a greater diversity of fish than usindgp@itdeterrent device alone (Patrick et al.
1985, 2006; EPRI 1988; McCauley et al. 1996). Foylarid behavioral deterrent to be
successful, as with any single deterrent, it witlstnlikely depend on the primary fish
species to be protected and local hydraulic andtr@mwental conditions. Refer to
Appendix 3 for a comprehensive review of hybriddabral guidance studies arranged

by species.
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2.2.3.1 Laboratory StudiesUsing Hybrid Deterrents

Laboratory studies have shown encouraging resuieswsing a combination of
deterrent devices to repel fish. It was demongirtiat a strobe light used to illuminate
an air bubble curtain barrier could effectivelyatedlewife greater than the air bubble
curtain used alone. The hybrid strobe light andabble deterrent ranged in
effectiveness from 90 to 98%. This was up from38do 73% effectiveness observed
when using the air bubble curtain alone (Patricale1985). McIninch and Hocutt (1987)
reported similar results for spot, Atlantic menhadend white perch to strobe light, an
air bubble curtain, and a combined strobe lightdaloble curtain barrier. All tests, except
for spot, indicated an increased avoidance to yheidh strobe light/air bubble deterrent

than either deterrent alone.

Patrick et al. (2006) conducted a study using sti@ht, sound, and a combined
strobe light/sound deterrent to repel pelagic (@wgizzard shad, and shiner minnows)
and demersal (brown bullhead and white sucker)ispethe hybrid strobe light/sound
deterrent effectively repelled all species testepr than any deterrent alone. A species
specific response was observed with sound and/vest having a greater ability to repel
certain species over others. For example, the seystdm was more effective at
repelling pelagic species (80% effective) over desalg(15 and 64% effective for brown
bullhead and white sucker respectively) speciesaw@nage the strobe light deterrent

outperformed the sound deterrent as a multipleispeepellant.

35



2.2.3.2 Field StudiesUsing Hybrid Deterrents

The effectiveness of hybrid behavioral deterremtthe field has varied.
Regardless of effectiveness, combining deterresieilly demonstrates a greater ability
to repel fish than deterrents used alone. Combisirape light and air bubble barriers
have shown promising results. McCauley et al. (J28&d a strobe light/air bubble
barrier to effectively reduce turbine entrainmetrit@ur Mile Dam in northern Michigan.
Strobe lights with and without air bubbles sigrafitly reduced the number of fish
passing through the turbine. During combined stiwjtd/air bubble studies fish passage
was reduced, on average, by 81% across all spaeiesampling periods, while a 77%
reduction was seen when strobe lights were usetwalt Roseton Generating Station,
Hudson River, New York, a combined strobe lightlaibble deterrent was more
effective at lowering clupeids (American shad, blek herring) and white perch
impingement than either deterrent used alone (EPRB8). In this study the authors also
used a pneumatic gun and when combined with stiglhie resulted in highest overall
reductions in total fish impingement. However, nonbination of deterrents or a
deterrent used alone was an effective behaviorakbdor all fish species under all
conditions. The results showed that when all tleterrents were used in combination it

tended to attract fish.

A study conducted at Pickering Generating Stati@ke Ontario, Canada also
tested strobe light, pneumatic gun, and an air leutlrtain (Ontario Hydro and LMS
1989). The pneumatic gun when combined with théwalble curtain, resulted in highest
overall reduction in alwife dominated impingemeanbwever, the reduction was similar

to the pneumatic gun alone. Strobe light and bubbitain combination was more
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effective at reducing impingement rates than eitieterrent alone. Combining strobe
light with the pneumatic gun increased the abiitygtrobe light to reduce impingement,

but decreased the effectiveness of the pneumatiovipgn compared to its use alone.

Mckinley and Patrick (1988) tested strobe lightppaper, a hammer, and an air
bubble curtain for their ability to repel outmigrag sockeye salmon smolts at Seton
Hydroelectric Station, British Columbia, Canadantning strobe lights with the
popper resulted in the highest amount of deteriifiectiveness. However, the
effectiveness of the combined deterrent was onbyB percentage points greater than
when using the popper alone. Combining strobediglth the air bubble curtain resulted
in low effectiveness (about 11%). The combinatlumwever, proved to be more
effective than using the air bubble curtain alokeother study testing the effectiveness
of behavioral deterrent on salmonids was conduatétlntledge Generating Station,
Vancouver, British Columbia (Bengeyfield and Snii®#89). The combined use of a fish
hammer, a strobe light, and a steel chain failegpel outmigrating coho salmon smolt

from approaching the intake.

2.3 Possible FactorsInfluencing Effectiveness of Deterrents

Knowing the varying degrees of light and sound s®ity among fish, factors
such as species, age, physiological condition am@d@mental conditions may influence
the overall effectiveness of underwater strobetéigind sound as a fish deterrent (Popper
and Carlson 1998). Because the environment wheegrdats are used is rarely static,
deterrents can be influenced by a variety of diyseasonal, and periodic events. These

periods of change can behaviorally and physicdlbr éhe way fish respond to deterrents
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and, thus, their effectiveness. Other influentaitérs altering the effectiveness of
deterrents are likely the same as those that nfagtampingement rates. These factors
include temperature, time of day, wind action, aligsd oxygen, turbidity, water

velocity, habitat type, life stage, overall healfisease prevalence, and spawning events.
Characteristics of the deterrents themselves ssi¢lash rate for strobe lights and
frequency and pressure levels for sound are alportant factors influencing the

effectiveness of the deterrent systems.

Turbidity and diurnal light cycles are dominanttfars that could influence the
efficacy of an underwater strobe light deterrentlidhch and Hocutt 1987; EPRI 1994).
Turbidity is defined as an optical property of watderein suspended and dissolved
materials such as clay, silt, small organic andgaaic matter, plankton, and other
microscopic organisms cause light to be scattendcahsorbed, thereby influencing light
attenuation (APHA et al. 1980). Increasing turlyiditould diminish the strobe light
effectiveness by reducing light transmission. HosveWcinnich and Hocutt (1987)
found their test species demonstrated increasedana®e to strobe light with increasing
turbidity. Their findings could be attributed tacneased light scattering within the area
closest to the strobe lights, which resulted indhserved increase in avoidance. Diurnal
factors also influence the effectiveness of ustngbe lights in water (EPRI 1994).
Background illumination during the day often disifgght from the stimulus, making it
less effective; however, the ambient light is lowenight resulting in greater strobe light
efficacy (EPRI 1994). However, Johnson et al. (20@5ed that fish numbers increased

with decreasing distance to the strobe lightsfishtnear the lights exhibited avoidance
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responses. They postulated that fish may be fogagminvertebrate prey species

attracted to the strobe lights.

Low temperatures or a reduction in temperatures mradyce the efficiency of
sound as a fish deterrent. Alewives move into deejp¢er after spawning (Scott and
Crossman 1973) and those remaining in shallow wadter temperatures reach 13°C or
above are generally in poor condition (reduced beéight in comparison with length)
rendering them less responsive to ultrasonic freges and thus reducing the
effectiveness of the sound deterrent system (Roals #993; Ross et al. 1996). Alewifes
are also in poor condition, due to lack of feedamgl loss of equilibrium, during and
immediately after an unusually cold winter (O’Gomrend Schneider 1986). Cold
temperatures adversely affect other clupeid spesesgell. Studies conducted with
threadfin shad at southeastern power plants hagrsbignificant increases in
impingement rates as the temperature drops bel6@ (Griffith and Tomljanovich
1975; Loar et al. 1978; McLean et al. 1985). Cotdenperatures also cause other
temperate water species to be more sluggish arelreduced swimming ability (Griffith
and Tomljanovich 1975; Grimes 1975; Hoyt 1979). llewperatures have been shown
to cause a loss of equilibrium, disorientation, amattality in juvenile freshwater drum
Aplodinotus grunniens (Bodensteiner and Lewis 1992). With reduced swingnabilities,
alewife and other species loose the capacity ex¥ely avoid behavioral deterrents and

thus, reduce the deterrent’s efficiency.

Wind and wind-induced effects are strongly coreddip fish impingement
(Lifton and Storr 1978). When the fetch of a lakdarge, wind can have significant

effects on fish location. Lifton and Storr (1978ncluded that fish could be passively
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moved by wind-created currents toward intake stmas leading to increased
impingement rates. They also concluded that turpidcreased with increasing wind

action and caused fish to be at higher risk to mgpment due to decreased visibility.

Impingement also tends to vary inversely with digsd oxygen (DO)
concentrations (Lewis and Seegart 2000). Decread2® concentration generally
stimulate fish to search for higher concentratiornadjacent areas. The search for higher
concentrations of DO may expose fish to other emsuch as low temperatures or
cause them to be displaced closer to the CWIS (Bzidaer and Lewis 1992). Fish with
reduced physical conditions resulting from low DQaw temperature stress may
become subjected to suboptimal conditions rendehem incapable of producing the
desired avoidance reactions, causing the detesysteém to become less effective

(Bodensteiner and Lewis 1992; Knights et al. 1995).

Species-specific behavioral responses to stroheflgsh rate and sound
frequencies can determine how effective a detemwéhbe for a given location and
targeted species or suite of species. For exaitt@egreatest avoidance to strobe lights
was shown to be above 300 flashes per minute (®a@ér2000). Flash rates below 200
per minute were found to be significantly less effe than higher flash rates (Patrick
1982a). Given the wide range of hearing capalsliismong species, appropriate sound
frequencies should also be considered when chogsmgd as a deterrent. In addition,
sufficiently elevated SPLs are necessary to cauldarent response at these appropriate

sound frequencies.
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2.4 Evaluation of Behavioral Responsesto Deterrent Systems

The effectiveness of behavioral technologies ha® lewaluated through a variety
of methods in the field and laboratory settingsdRee techniques are generally used to
monitor fish in a laboratory setting. However, lre fiield fish may be monitored both

passively (e.g. hydroacoustics) and actively (eagpingement rate).

24.1 Laboratory Evaluations

The majority of behavioral guidance literatureigades that visual observations
and video cameras are the primary methods for atialuunder laboratory conditions,
with visual observations being most prevalent. #dgtconducted by Konigson et al.
(2002) used an infra-red (IR) lamp and an IR-canefdm the reactions of whitefish to
strobe lights without the interference of anothisible light source for filming purposes.
The IR-lamp radiated infrared light beams, whichrevavisible. The IR-camera was
sensitive to that radiation and enabled the autiaofitm in the dark. Mueller et al.

(2001) used high-resolution monochrome camerasawtiide-angle lens connected to an
8-mm camcorder to document and record the underwaieement of juvenile

salmonids and char in response to infrasonic freges and strobe lights.

2.4.2 Field Evaluations

Field studies have taken advantage of hydroacotgstimology to passively
evaluate the movements of fish. Ross et al. (1888)rmined the effect of an ultrasonic
behavioral deterrent on alwifd osa pseudoharengus densities near the CWIS at the
James A. FitzPatrick Nuclear Power Plant, Oswegry Mork. The authors used a

hydroacoustic system that included a 420 kHz eclider, two transducers, and a
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computerized echo counter. Sonny et al. (2006) aseunrad EY60 echosounder with a
composite 7° split-beam 200 kHz transducer to rootite response of fishes to
infrasonic frequencies at the intake of Tihange IslarcPower Plant on the Meuse River
in Belgium. Maiolie et al. (2001) used a Simrad B¥Split-beam scientific echosounder
with a 120 kHz transducer to document the repofg&ekanee salmon to strobe lights at
Dworshak Dam on the Clearwater River in northemhtn A split-beam echosounder
was used to determine the effect of sonic freque=nen fish densities at the Hiram M.

Chittenden Navigation Locks in Seattle, Washindi@oetz et al. 2001).

It is possible that hydroacoustic equipment cofiielca fish behaviors if the
frequencies being transmitted fall within the hiegniange of the fish species being
studied. The hydroacoustic frequencies used ipteeiously mentioned studies were
outside the upper hearing ranges of the fish spefi;terest (<380 Hz for salmon
(Hawkins and Johnstone 1978) and up to a poss#flekiHz for alwife (Mann et al.

1997)). Hydroacoustic equipment used for fisheagsessment has not shown avoidance
responses by fish primarily because the hydroamofisgjuencies commonly used (30 —
200 kHz) are outside the hearing capabilities o$infish (Simmonds and MacLennan
2005). However, hydroacoustic operating frequensieaild be considered when
monitoring species sensitive to ultrasonic frequesithat have overlapping hearing

ranges.

The accuracy and precision of hydroacoustic equipprhas been validated
through many field studies. Correlation betweenaagthes and hydroacoustics indicate
that hydroacoustic equipment can reliably be useeumost conditions to determine

fish densities. Net catch estimates were highlyedated to hydroacoustic estimates of
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smolt passage through hydropower dams in the CaluRiver basin (Ransom et al.
1996). Purse seine estimates also correlated vitbllhydroacoustic estimates of rainbow
trout and cutthroat trout in several lakes andrieses in Wyoming (Yule 2000). Ploskey
and Carlson (1999) found hydroacoustic counts afeglifish were significantly
correlated with concurrent gatewell dipnet catolben testing the efficiency of
submersible bar screens at John Day Dam on then®@uRiver. Hydroacoustic counts
of unguided fish were significantly correlated wiylke-net catches; however,
hydroacoustic sampling underestimated both guidelduaguided fish passage relative to

netting estimates.

The use of hydroacoustic target strengths (TSakutate fish lengths has been
well documented (Simmonds and MacLennan 2005).sizeeof the swimbladder, which
is proportional to fish size and depth, is recogdias having the most important effect
on fish TS. Foote (1980) studied the TS producefidhywith a swimbladder compared
to those without a swimbladder. He found that ntbes 90% of the backscattered
energy comes from the swimbladder. Other studige héso shown that most of the
backscattered energy can be attributed to gas-sifiictures in fish and other organisms.
(Furusawa 1988; Mukai and lida 1996; Simmonds aadlMnnan 2005). TSs are also
dependent on the depth of a fish, because deptimita@nce the size of a fish’s
swimbladder. The swimbladder is subject to Boyle&dsv. The pressure water exerts at
depth can reduce the size of a fish’'s swimbladgilezdmpression; however, the
swimmbladder expands as water pressure decreasestihfish ascends. The TS
produced by physostomous fish (those fish that laas@nnection between the

swimbladder and gut) is shown to be more depermiediepth because they typically
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lack a gas-secreting mechanism (Gunderson 1993n&mnus and MacLennan 2005).

Most TS experiments are expressed in terms ofdldyg ength L using the equation:
TS=mlogL+Db

where m and b are constants for a given speciésgenerally between 18 and 30, often
close to 20. Physostomous fish have an m whichnsistently close to 20. The length L
normally denotes the total length of the fish, nmeed from the front of the head to the

tip of the caudal fin (Simmonds and MacLennan 2005)

The predominant method of actively evaluating ttectiveness of behavioral
technologies at power production facilities hasnbgeough impingement rate
measurements. When measuring impingement ratesgrisfirst collected from the
intake screening device, usually a rotational stréée fish are then physically counted
and/or examined to the researcher’s specificatidfisr measurements have been taken,
the fish can be either returned to a safe locatiots environment, health permitting, or

discarded.

The overall objective of this study was to evaluateefficacy of an underwater
hybrid (sound and light) behavioral deterrent syst€his deterrent system was evaluated
as a mitigating technology to reduce impingemetgsréo comply with previously
required EPA performance standards under Secti6(b3df the Clean Water Act. The
effectiveness of the strobe lights and sounds wWetermined through traveling screen

impingement rates.
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3 METHODS

This field study evaluated the effectiveness oflarid (light and sound) and
sonic (sound only) deterrent system at Plant Baomy the spring to the winter of 2006.
Only one of the two CWISs evaluated was equippel thie deterrent systems. The
types of sound signals and strobe light flash rate® chosen based on the responses of
representative fish species that exist in theditee along with the advice of other
researchers. Impingement sampling was used tondetethe effectiveness of these
deterrent systems. Various environmental parameters also monitored to ensure that

these variables were not interfering with the eatatin of the deterrent systems.

3.1 SiteDescription

Barry Steam Plant (Plant Barry), which is owned apdrated by Alabama Power
Company, has a nominal rating of approximately 2 BBV. Five coal-fired units (Units
1-5) can generate up to 1,525 MW and use once-gihroaoling water. Additionally,
Plant Barry has two combined cycle electric gemegatnits (Units 6-7) with a heat
recovery steam generator. These combined cycle usé closed-cycle cooling and have
a combined nominal rating of approximately 1,100 MMie plant is located near Bucks,

Alabama on the Mobile River (Mobile County, AL) apgimately 49 km upstream from
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the confluence of the river with the Gulf of Mexiffeigure 12). The Mobile River at this

location is fresh water; however river stage isuhced by tidal fluctuations.
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Figure 12. Map of Alabama showing Plant Barry located on the M obile River near
Bucks, Alabama.

47



3.1.1 Description of CWISs

Two CWISs, one for Units 1-3 and one for Units 4k used to withdraw
cooling and service water for the five coal-firatts and makeup water for the two
combined cycle generating units. Both CWISs aratled within a man-made barge canal
that is perpendicular to the main river channel sepiarated by <61 m (Figure 13). At
low flow and low tide the canal has a depth of Samg the Mobile River at the junction

with the intake canal has a depth of 13 m and ahnaafl198 m.
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Figure 13. Aerial view of Plant Barry near Bucks, Alabama. Two separate cooling
water intake structures (CWIS), onefor Units 1-3 and one for Units4-5 arelocated
inside a man-made barge canal.
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Both CWISs are equipped with floating debris budférash racks, and traveling
screens to remove the high volume of debris froerMiobile River (Figure 14). The
debris buffer consists of a series of floating pontstructures with vertical rods
extending to a depth of 2 m and spaced 20 cm apaetpontoons are located about 6.1
m upstream of the trash racks. Six traveling sctgs for the Units 1-3 CWIS and five
traveling screen bays for the Units 4-5 CWIS asaied immediately downstream of the
trash racks (Figure 14). Each screen bay is apmately 3.4 m wide and houses a
stainless steel trash rack with 8.9 cm x 2.1 crs bad spaced 10.2 cm on-center with 8
cm clear openings. The trash racks are cleaneddailyato weekly frequency depending
on the extent of debris blockage. Each travelingestis 3.0 m wide with a 9.5 mm
screen mesh opening. The design through-screenityelsing normal water surface
elevation of 0.6 m above mean sea level (msl) p@pmately 0.5 m/s and 0.6 m/s for
Units 1-3 and Units 4-5, respectively. A high pressfront spray wash system is used to
remove fish and debris from the screens. This waskr then flows down a concrete
sluiceway into a basket which collects the delwisdisposal. At full load, Units 1-3
withdraw 1.772 x 19liters/day (I/d) and Units 4-5 withdraw 2.532 X1/ of cooling
water from the intake canal. Water passes throngltrash rack and into the plant via the
intake structure underflow opening. Screened cgokater for each CWIS then flows
into an intake tunnel that conveys water via catinly water pumps to the condensers for

cooling.
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Figure 14. General schematic of the cooling water intake structures (CW1Sg) at
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3.2 Description and Installation of Light and Sound Deterrents

Strobe light and sound deterrent systems were geglonly at the Units 4-5
CWIS which Units 1-3 CWIS serving as a spatial colnfThe study was also divided

into two phases to evaluate two separate detesystems:

(1) The hybrid deterrent which combined the usstfbe lights, sonic and

ultrasonic sound frequencies was conducted from MayNovember 14, 2006.

(2) The sonic deterrent which used low frequenaynsgidoursts as the only
deterrent was conducted over a shorter periodredf from November 15 - December 22,

2006.

3.2.1 Light Deterrent

The type of strobe lights and the selected flagdsrased in the hybrid deterrent
system were based on available light responsatiies for the species that are
commonly impinged at Plant Barry. Operational r@sts limited the placement of the
lights to the area immediately downstream and lakthie trash racks. The number and

placement of lights were based on the estimategmmesion of light through the water.

3.2.1.1 StrobelLight and Flash Rate Selection

The predominant species impinged at Plant Barrgwso Clupeidae species -
threadfin shadDorosoma petenense and gizzard shad; two Ictaluridae species - blue
catfishlctalurus furcatus and channel catfish; one Sciaenidae specieshviasr drum,
one Engraulidae species — bay anchovy and oned@elspecies — hogchoKgrnectes
maculatus. A review of the strobe light deterrent literatwkich reported flash rates

revealed that of the predominant species foundaait Barry, strobe lights have been
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tested on only gizzard shad, hogchocker, bay ancang channel catfish (Table 1).
Appendixes 1 and 3, respectively, reference atheflight and hybrid (including light)

deterrent studies.
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Table1l. Summary of studieswhich evaluated the responses of gizzard shad,
channd catfish, bay anchovy, and hogchoker to various strobe light flash rates.

Type of Avoidance Flash Rate
Species Reference Study Response (flashes/min)
Matousek et al. Yes, only effective
Gizzard Shad (1988) Field at dawn 200
Gizzard Shad Patrick (1980a Lab Yes unknown
Patrick et al.
Gizzard Shad (1980b) Lab Yes >800
Patrick et al.
Gizzard Shad (1985) Lab Yes 300
Channel
Catfish EPRI (1990) Lab Yes 300
Yes, only effective
Bay Anchovy Field during the day 200
Yes, effective both
Matousek et al. during the day anc
Hogchoker (1988) Field night 200
Flash rate avoidance response range reported from the literature 200 to >800
Flash rate used at Plant Barry 300

Flash head model used at Plant Barry: 30 Flash Technology Beacon (FTB) 920
strobe lightsystems with 13,000 effective lumens.
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The strobe light flash head model and flash ratéhie hybrid deterrent
evaluation were both chosen based upon resultioglance reactions produced by
previous strobe light deterrent studies which wsedlar equipment. A flash rate of 300
flashes per minute was chosen for Plant Barry (EFERD; Matousek et al. 1988; Patrick
1980a ; Patrick et al. 1980b, 1985). These studbed flash head models and flash rates
that were successful at deterring several speti@Rasto those which occur at Plant

Barry.

3.2.1.2 StrobeLight System Components, Installation and Operation

The placement of strobe lights was designed tmilhate the water column in the
vicinity of the trash racks. Based on historicabtdity values and secchi disk readings
from the Mobile River, it was estimated that ligiemetration thru the water column
would be approximately 3 feet in all directionsaaurbidity reading of 50 NTU and
approximately 5 feet at 20 NTU. Therefore, thelstroghts were spaced within 6 feet of
each other. With turbidity readings around 50 NTit¢, light spacing would have resulted

in total coverage at the entrance into the CWIS.

To achieve this coverage across all trash rackgl&h Technology Beacon
(FTB) 920 strobe light systems (Flash Technologgnklin, TN) were installed on Units
4-5. Similar strobe light systems produced avoidaesponses in 5 studies using 4
species presented in Table 1. Each system consistetlash-head and power converter.
Six flash-heads were mounted on each of 5 metaldsaFigure 15), one frame for each

intake bay placed in the stoplog slots immediatggtream from the traveling screens
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(Figure 16). The flash-heads used a horizontal bgamead of 360°, vertical beam spread

of 100°, effective lumen value of 13,000 lumeng| &40 volt-amperes (VA).

|+ 11 a” |
[+—35 14" —3 |+ 701427 H4— 35 1/2" —|
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Figure 15. Configuration and location of strobe lights mounted on a metal frame
showing placement of strobelightsin each intake screen bay.
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Figure 16. Locations of the strobe light frames within the stoplog slots of Units4-5
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A Flash Technology Controller 190 system (Flashhhedtogy, Franklin, TN)
provided control, monitoring and synchronizationtioe strobe light deterrent system.
Visual display from the controller provided reahé data on the operation of each flash-
head and power converter. Prior to each impingerseemiple, the operational status of
each flash-head was verified and recorded. Maimianaecords throughout the study

were also recorded to document system and indivmhraponent reliability.

3.2.2 Sound Deterrent

Sonic and ultrasonic sound frequencies and taoygtdspressure levels (SPL)
were selected based on available information froewipus sound deterrent studies.
Acoustic modeling of the sound transmissions féecded underwater signals was
conducted by Alden Research Laboratory, Inc. (Alderd Scientific Solutions, Inc.

(SSI). This initial modeling dictated the numbensl placements of the transducers
selected for transmitting sonic and ultrasonic aignThe sound field was also mapped to
confirm the operation of the sound deterrent systbafore and during both of the

deterrent studies.

3.2.2.1 Sound Frequency and Pressure Level Selection

Deterrent response data for many of the speciesnoony impinged on the Plant
Barry intake screens are limited or not availaBleeview of the sound deterrent
literature which reports the frequencies and SRkeal that sound has been tested on
only two of the predominant species found at Pty (Table 2). Appendixes 2 and 3,

respectively, reference all of the sound and hybeterrent studies.
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Table2. Summary of studieswhich evaluated the avoidance responses of gizzard shad and bay anchovy to various

frequencies and sound pressure levels (SPL).

Type of Avoidance Frequency (Hz) SPL (dB)
Reference Species Study Response Min |  Max Min | M ax
Negative Responses
Gizzard Shad Fied No 122,000 128,000 170 >170
Consolidated Edison (1994) Bay Anchovy | Field & Cage No 122,000 128,000 170 >170
Positive Responses
120,000 120,000 154 170
100,000 100,000 153 167
90,000 90,000 154 163
Yes, all 80,000 80,000 147 159
frequencies used 100 500 72 134
PSEG (2005)* Bay Anchovy Field simultaneously 500 3,000 110 124
Taft et a. (1996) Bay Anchovy Cage Yes 100 5,000 154 unknown
Taft and Brown (1997) Bay Anchovy Cage Yes 100 5,000 154 unknown
McKinley et al. (1987) Bay Anchovy unknown Yes 300 900 unknown unknown
PSEG (2003) Bay Anchovy Lab Yes 100 3,000 80 136
Positive ultrasonic response ranges from the literature 80,000 120,000 147 170
Positive sonic response ranges from the literature 100 5,000 72 136
Ultrasonic sound levels modeled 120,000 130,000 138 138
Sonic sound levels modeled 400 3,000 154 154

Sound systems used at Plant Barry: Lubell Labs Inc. Model LL-9162 transducers with QSC power amplifiers and International Transducer
Corporation Model 3406 transducers with a Instruments L6 amplifier.

* same ultrasonic transducers as used in this study at Plant Barry

* |t has been reported that only genus Alosa respond to frequencies over 80,000 Hz (Mann et al.1997)




Hybrid Deterrent SignalsBased on the information gathered, the following

sound frequencies and pressure levels were selfestegtaluation during the hybrid

deterrent testing:

e Sonic sound frequency: band-limited random noetgben 400 and 3,000 Hz

e Ultrasonic frequency: band-limited random noiserMaen 120 and 130 kHz

Sound signals within both frequency ranges wermsstratted with a repetition rate of one
second (i.e., duty cycle of 33%) with source leveisthe sonic and ultrasonic signals at

approximately 154 and 146 dB re 1 pPa, respectively

Sonic Deterrent SignalsDuring sonic deterrent testing, the ultrasorgoals

were dropped and the sonic signals were modifiembtoprise the following:

e Tone burst frequencies of 400, 630, 1000, 160002&0d 3150 Hz.

Each burst was 100 milliseconds with 50 millisecbdtween bursts. The entire
sequence of tone bursts (i.e., all frequencies)treamsmitted at a 1.5 second repetition
rate and the sequence of frequencies was variédsaiirce levels at approximately 178

dBre 1 pPa.

3.2.2.2 Acoustic M odeling for Placement of Transducers

The acoustic modeling was conducted to developptimal configuration for the
three sonic and five ultrasonic transducers withenUnit 4-5 intake forebay based on
specified minimum sound pressure levels (SPLs)I$6ar1994). Sound pressure level
contours were developed using idealized computatioodels for an underwater sonic
transmitting system operating between 400 — 400@rdizan ultrasonic transmitting

system operating between 120 — 130 kHz.
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For the modeling effort, three omni-directional somansducers (Lubell Labs
Model LL-9162 or LL-916 and NRL Model J-11) weresimned at various locations in
the forebay one foot above the bottom. A uniformexvaepth of 17 ft was used for all
initial modeling work. The received levels at eaomputational field point included the
contribution due to the direct path from each tdacer as well as the contribution due to
the first surface bounce. The frequency type usethe computations was band-limited
white noise, flat across frequency from 400 — 4BI@0For the computations, this
frequency interval was divided into 30 sub-band® Tontribution of each sub-band to
the overall in-band received SPL was calculatdteatenter frequency of each sub-

interval as the coherent sum of the direct pathsamthce reflected path.

Based on hearing capabilities of abundant spetietat Barry or of similar
species (see hearing thresholds data presentetiin®2.1.2), the criterion for the sonic
signals was to have SPLs exceeding 130 dB througheudorebay. The predicted sonic
frequency SPLs for the initial configuration appeshto be relatively uniform at
approximately -10 dB from the assumed source le&B0 dB, except for “hot spots” in
the vicinity of the transducers. Based on deployneensiderations (e.g., accessibility
and positioning above substrate), the final comfigan consisted of one transducer
being located at either end of the intake trasksand one positioned on the middle
dolphin pier at the forebay entrance (Figure 1&cHof these transducers was located
0.3 m above the bottom. Additional modeling witistarrangement confirmed that

relative uniformity and minimum SPL criteria washaved.
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Pontoon supported
debris buffer T\

B = high and low frequency transducer locations

Figure 17. Locations of the 3 sonic and 5 ultrasonic sound frequency transducers
inside the intake forebay of the Units4-5 CWIS. One sonic and two ultrasonic
transducers arelocated on each side of theintake structure (A and C). Location B is
equipped with only one sonic and one ultrasonic transducer.
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The ultrasonic transducer system was designed lmastdte ITC Model 3046,
which are directive sources. The nominal beamwiolthhhese transducers is 45°. In the
frequency range of interest (120 — 130 kHz) theadbeamwidth is slightly less than
this. Recommended mounting locations and orientdtio the transducers were
developed by selecting an initial distribution lhe@ practical considerations (number
of transducers, utilization of existing equipmegdse of mounting, rigidity of mounting,
non-interference with trash rake traverse, eta)taen iteratively refining the
distribution based on model results to achieveifoum SPL distribution throughout the
forebay. The final configuration consisted of twanisducers on each end of the CWIS
(same location as sonic units) and one on the middiphin pier (Figure 17). All
transducers were positioned to transmit horizoptadross the forebay. The overall in-
band received SPL at each computational field psag computed as the in-coherent
sum of the direct path contribution from each @& tiwe ultrasonic transducers,
accounting for the beam radiation pattern and fopagation losses due to spherical

spreading.

3.2.2.3 Sound System Components, Installation and Operation

The primary components of the sonic sound systera theee Lubell Labs, Inc.
Model LL-9162 transducers and three QSC power diewdi The ultrasonic sound
system was comprised of five International Transd@orporation (ITC) Model 3406

transducers and an Instruments L6 amplifier.

The placement of the sonic and ultrasonic trangduoiowed the modeling

results whereby a sound field was produced withénintake forebay, between the
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pontoon supported debris buffer and the trash rackis sound pressure levels
sufficiently higher than background noise levelse Three sonic transducers were placed
0.3 m above the bottom while the five ultrasonamsducers were placed at a mid-water
depth of 2.6 m (Figure 17). The transducers weredrby amplifiers and mounted

within the intake forebay of CWIS Units 4-5.

3.2.2.4 Sound Field M easurements

Sound field measurements were recorded on thressioess to confirm proper
operation of the system and to map that SPLs irfaiteday to determine if minimum
levels were sufficient for detection by fish anthtive uniformity was being attained.
Background noise levels were also measured tordeterif sound deterrent SPLs were
sufficiently high to avoid masking of the transmdtsignals (i.e., signal-to-noise ratio

was high).

Sound measurements were recorded with a Reson M@#€113 hydrophone
connected to an lotech WaveBook/516E high-speea atjuisition system. An 8-pole
Bessel low pass filter with a corner frequency @ RHz was used for anti-aliasing and

buffering. A gain of 30 dB was used for all measoeats.

3.3 Impingement and Environmental M onitoring

The effectiveness of the hybrid and sonic detersgsitems were evaluated
through impingement monitoring. Various environnagifictors were also monitored to
determine if there may be possible effects on iggment rates between the hybrid or

sonic deterrent operation status.

3.3.1 Impingement Monitoring
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Impingement monitoring was performed during therapen of both deterrent
systems. The sampling design allowed for quantiboeof the seasonal, diurnal and

CWIS variability within and between deterrent opera status (on and off).

Impingement samples were collected from May 15 cdbaber 22, 2006 at both
intakes. Four 4-hour samples (morning, afternovaenig and night) were collected

within a 48 hour period (Table 3). The time pesidor sampling are as follows:

e Morning (0600-1200 hrs)

e Afternoon (1200-1800 hrs)

e Evening (1800-0000 hrs)

e Night (0000-0600 hrs)
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Table 3. Weekly schedule of deterrent system operation. Shaded samples represent
active sampling (treatment or control). No impingement sampling was performed
during timesfor unshaded areas.

Day Night
Sunday Acclimation Period — status change (turmedrdeft off)
Monday morning afternoon evening night
Tuesday morning afternoon | evening night
Wednesday Acclimation Period — status change (tLomeor left off)
Thursday morning afternoon evening night
Friday morning afternoon | evening night
Saturday Rest Period (system off)
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All organisms collected during each sampling eweerte backwashed off the
traveling screen into a 9.5 mm mesh sampling bagkegfanisms were removed from the
sampling basket, sorted, identified to speciespamated, and weighed. Total count and
weight were recorded for each species. Severelgyaeicanimals were discarded and not

included in the sample.

Impingement numbers and weights were standardedehburs when sampling a
collection period greater than or less than thgetad collection time. For example, if the
collection period was only 3 hours and 45 minugesorrection factor was applied to
adjust the numbers and weights up to a 4 hour iggrrent rate. A screen adjustment
factor was also applied to the number and weightsganisms to account for organisms
not recovered from inoperable traveling screensodiling water was flowing through a
screen that could not rotate due to mechanicairiila correction factor was applied to

account for organisms that were impinged but uneblge collected.

3.3.2 Environmental Monitoring

Water quality samples were collected at both irdak&ing each impingement
sampling event. Water quality parameters recordeldded: water temperature (°C), pH,
dissolved oxygen (mg/l), turbidity (ntu), and sgiecconductance (uS/cm). Water quality
measurements were taken from surface water sammiesdiately upstream from the
trash racks. Water in front of the CWIS was tholdygnixed and assumed to be
representative of the whole water column withinititake forebay area. A YSI 85 meter
(Yellow Springs Instruments, YSI Incorporated, ¥ellSprings, OH) was used to

measure dissolved oxygen and temperature. A LaN2@2® (LaMotte Company,
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Chestertown, MD) was used to measure turbidity. AWA340i meter (Wissenschattlich-
Technishe Werkstatten GmbH, Weilheim, Germany) ugesl to measure specific

conductance and pH.

River stage and discharge data were obtained fhentd6GS gage (02470629)
located approximately 0.8 km upstream from thetplatiake canal. In addition, the
CWIS flow volume (m3/s), CWIS through-screen floelacity (m/s), and the number of
circulating water pumps in operation were recordedaach collection period. River
stage, amount of surface area of the screen, anblime of water withdrawn from the

CWIS were used to calculate the CWIS flow velositie

3.4 Experimental Design and Statistical Analyses

The efficacy of the hybrid and sonic deterrentesyst were based on the ability
of these two systems to reduce impingement in itiaity of the Units 4-5 CWIS.
Differences in the various environmental parametene evaluated to determine if these
variables could be influencing impingement whenatang the treatment effects. Both
the hybrid and sonic deterrent systems were eveduaging the mixed procedure in
SPSS (Version 15.0 for Windows, SPSS, Chicagmpil). Differences were considered

significant at P < 0.05.

3.4.1 Impingement Analyses

The experimental design for determining the efficatimpingement reduction
for either the hybrid or sonic deterrent systemresented in Table 3. The treatment
system (deterrents on) operated continuously fdnoi#zs followed by a control period

(deterrents off) for 72 hours with the sequenceraditing every week. Sampling was not
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conducted during the first 24 hours of each treatmEghis time period was used to allow
the fish to become acclimated to either the dateoethe control. Therefore, sampling
was conducted during a Monday — Tuesday or Thursdayday time period within each
week. Sunday and Wednesday of each week were atdimperiods. The treatment
periods were observed in 4 quarterly diel perigdsrfing, afternoon, evening and

night).

The impingement data were analyzed using split-gloepeated measures
methods (Maceina et al. 1994). Random effects aéjested by accounting for the
interaction between treatments (deterrents onéwif) week of the year (temporal effects)
whereby the effects of each CWIS are nested weahoh week (Treatment x Week
(CWIS)). Because fish abundance and species cotigosi the vicinity of each CWIS
at Plant Barry fluctuate week to week, the CWIS edl/sampling unit was considered
the primary experimental unit of this sampling desiThe CWIS x Week units were
subdivided into 8 Treatment x Diel subunits (2 CW/KA Diel periods). The 2 levels of
CWIS creates the between units factor with weekidiog replication as a blocking
factor. The deterrent Treatment x Diel period pdegi the within week treatment
structure. The dependent variables for the analysie computed as the natural log (n +
1) transformation of the impingement rates forghedominant species individually and
for all species combined. In these analyses, theréwo important factors to be

considered:

1. The CWIS x Treatment interaction which assesseshgh¢he deterrent treatment
created a larger difference in impingement numbetke treatment CWIS than

was observed at the control CWIS.
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2. The CWIS x Treatment x Diel interaction which assebether the deterrent was
more effective at reducing impingement during &ipalar time of day (morning,

afternoon, evening and night) at the Units 4-5 CWIS

3.4.2 Environmental Analyses

Physical and chemical water monitoring was perfale@ncurrently with the fish
impingement monitoring. Therefore, these paramdteaser temperature, pH, dissolved
oxygen, turbidity, specific conductance and CWI®tigh-screen velocity) were

analyzed using the untransformed data in the saamnen as the impingement results.
In these analyses the important factors to consige

1. The CWIS x Treatment interaction which assess vdnalliferences in any of
these environmental factors may be affecting ofaxamding the impingement

results.

2. The CWIS x Treatment x Diel interaction which assebether any differences in
the environmental parameters may be affecting nfozmding the impingement

results.
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4 RESULTS

The hybrid deterrent system, which combined theafis¢robe lights, sonic (0.4 —
4.0 kHz) and ultrasonic sound frequencies (1200-kk3z), was deployed from May 15 -
November 14, 2006 at the Units 4-5 CWIS. In additile sonic deterrent system, which
only used intermittent sound frequencies (0.4, 01630, 2.50, and 3.15 kHz) was
deployed from November 15 - December 22, 2006eathhits 4-5 CWIS. Evaluations
of these deterrent systems, using impingement, rakisate that neither of these
behavioral deterrent systems effectively reducqungement rates for fish or
invertebratesNlacrobrachium spp. and blue crab€allinectes sapidus). There were no
differences in the environmental factors betweeatments (on or off) and therefore
these factors did not interfere in the evaluatibaither the hybrid or sonic deterrent

systems.

4.1 Deterrent System Operational Results

The strobe lights were difficult to maintain thrdnogit the hybrid deterrent
evaluation; however, on average 88% of the lighesanoperational throughout this
evaluation. Surveys of the sound field inside titake forebay indicate that the targeted
ultrasonic (hybrid deterrent system) and sonicudesgies (hybrid and sonic deterrent

systems) along with the respective SPLs were aetieuring both evaluations.
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4.1.1 StrobelLight Operation Results

The strobe light portion of the hybrid deterrenéteyn was very problematic and
required intensive, unexpected maintenance onttbbeslights and on the power
converters. Almost biweekly repair or replacemdritash-heads and power converters
were required. Mid-way though the study, the mactuigr voluntarily exchanged and
refurbished all 30 flash-heads due to various @oisl Leading causes to strobe light
failures include blown flash tubes, faulty transh@rs inside the flash-head and faulty
underwater cable connectors. Failures associatitctina power converters include
transformer and capacitor failure, shorted dischdgards and blown fuses. The
dependability of the strobe light system was reedrals percent operational flash-heads.
The strobe light system dependability over therertybrid evaluation ranged from 73-
100% with a mean of 88 %. However, 54% of the samplere collected with less than

10% non-operational flash-heads.

4.1.2 Sound Field M easurement Results

Sound field measurements were recorded prior toi26) and during (June 29)
the hybrid deterrent evaluation. A third set of mm@aments were performed on
November 14 shortly after the sonic deterrent extéda was initiated. During each
sound field mapping effort, the intake forebay anes gridded into transects (Figure
18). Individual sound measurements were takenghdef 1.2, 2.4, and 3.7 m (depth
permitting) at 1.5 m intervals along each transébe sound survey data indicated sound
pressure levels (SPL) of > 150 decibels at a ret@devel of 1 micro-Pascal (dB re
1uPa) for the sonic sound and around 140 dBufalfor the ultrasonic sound. Recorded

peak SPL values for the sonic sound were aroundiB7@ 1.Pa and around 160 dB re
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1uPa for the ultrasonic sound. The results of thenxddield measurements are

summarized in Table 4.
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Floating Debris Boomsx

1% Hybrid transect A__ % Hybrid transect A____ Sonic transect A
_______ 1% Hybrid transect B______ ¥ Hybrid transect B.._.._  Sonic transect B
—.._.._ THybrid transectc . Sonic transect C
Figure 18. Sound field survey transects conducted in the forebay area of CWIS 4-5
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Table4. Mean minimum and maximum sound pressure levels (SPL) measured during the operation of the Hybrid and
Sonic deterrent systemswithin the intake forebay.

Hybrid Deterrent Sound Pressure Levels (SPL)

Sonic (band limited noise (400-3000 Hz)) Ultrasonic (band limited noise (120-130 kHz))
Depth | OA In-Band RMS SPL Peak SPL OA In-Band RMS SPL Peak SPL
(ft) (dB re 1 pPa) (dB re 1 pPa) (dB re 1 pPa) (dB re 1 yPa)
Mean 157.0 169.8 141.4 155.5
26- | Minimum | 1.2 to 1514 164.0 131.3 146.0
Apr | Maximum | 3.7 161.8 174.7 158.8 174.2
Mean 161.7 173.6 147.9 1615
29- | Minimum | 1.2to | 157.7 168.6 145.3 157.9
Jun | Maximum | 3.7 164.8 178.0 156.8 169.7
Sonic Deterrent Sound Pressure Levels (SPL)
Sonic
OA In-Band RMS SPL (dB re 1 yPa Peak SPL (dB re 1 yPa)
Depth | 400 630 1000 | 1600 | 2500 | 3150 400 630 1000 | 1600 | 2500 | 3150
(ft) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
Mean 147.2 | 158.5 | 168.5| 160.8 | 159.5 | 153.8 | 156.3 | 165.4 | 174.3 | 167.2 | 165.6 | 160.7
Minimum | 1.2to | 135.3 | 141.2 | 153.3 | 147.0 | 144.6 | 139.9 | 149.6 | 154.7 | 164.2 | 158.6 | 157.3 | 151.0
14-Nov | Maximum 3.7 161.4 | 171.8 | 187.1 | 178.6 | 1752 | 170.0 | 169.9 | 1774 | 190.7 | 182.7 | 178.8 | 174.5




4.2 Monitoring Results
4.2.1 Impingement Monitoring Results

Over 12,000 fish and 9,000 non-fish organisms were collected while evaluating
the hybrid deterrent system. During the evaluation, 268 4-hour impingement samples
were successfully obtained with approximately one-forth of the samples collected during
each of the four CWIS-Treatment combinations. Only 5 samples were missing due to
operational restraint within the split plot sample design. The split plot analyses of total
fish numbers and numbers of predominant individuals by species clearly indicates that
the hybrid deterrent system has little or no effect on the reduction of impinged fish at the

Unit 4-5 CWIS.

Over 29,000 fish and 800 non-fish organisms were collected while evaluating the
sonic deterrent system. During the evaluation of the sonic deterrent system, 73 4-hour
impingement samples were successfully obtained with approximately one-forth of the
samples collected during each of the four CWIS-Treatment combinations. Only 5
samples were missing due to operational restraint within the split plot sample design.
The split-plot analysis of total fish numbers and numbers of predominant individuals by
species clearly indicates that the sonic deterrent system also has little or no effect on the

reduction of impinged fish at the Unit 4-5 CWIS.

The average impingement rates during the hybrid and sonic deterrent evaluations
for fish and non-fish species are presented in Figures 19 and 20, respectively. There were
26 species of fish collected throughout both evaluations. Freshwater drum, blue catfish,

threadfin shad and bay anchovies collectively contributed more than 5% toward the
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overall impingement while evaluating both deterrent systems. Hogchoker contributed to
more than 5% of the impingement during the hybrid deterrent evaluation. Wheress,
macrobrachium, corbicula and blue crabs were the predominant non-fish species,
contributing more than 5% of the non-fish impingement while evaluating both deterrent

systems.

77
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Figure 19. Themean number of fish impinged every 4 hours by species during the
hybrid and sonic deterrent evaluations at Plant Barry, Alabama.
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Figure 20. Themean number of non-fish organismsimpinged every 4 hours by
species during the hybrid and sonic deterrent evaluations at Plant Barry, Alabama..
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The study sampling design allowed for a comparison of impingement rates when
the deterrent system was on (treatment) or off (control) at both CWIS 1-3 (spatial control)
and CWIS 4-5 (hybrid or sonic frequency pulse deterrent equipped). An evaluation of the
overall impingement rates for all fish combined or for any of the predominant species
impinged indicates that no meaningful reduction occurs when the deterrent systems

operate in a hybrid mode or in a sonic mode.

The rates of impingement at both intakes were variable and yet followed a strong
seasonal and diurnal trend (Figure 21 and 22). General rates of impingement were lower
during the time frame of the hybrid deterrent system evaluation than when evaluating the
sonic deterrent. In order to account for seasonal and diurnal variability the deterrent
systems (hybrid or sonic) were evaluated on a weekly basis, whereby the two different
treatments (on or off) would be paired and evaluated during individual weeks. The ability
of the experimental design to account for temporal variability is obviousin Figure 21. In
this Figure, the log-scale pairing of impingement rates clearly show close correlation
between sample periods within each of the weeks while the deterrent systems were either

on or off.
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Figure 21. Measured impingement rates for all fish species combined during each 4-
hr sample period during 2006.
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The sampling design also allows for a pairwise comparison of impingement rates
for the sequential treatment (deterrent on) and control (deterrent off) sampling events
within each of the weekly test periods using a split plot analyses. Figure 22 presents the
transformed means and 95% confidence intervals from the results of the MLE split plot

analyses using SPSS Mixed (SPSS 2006).
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Figure 22. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean overall fish impingement numbers.
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Table 5 presents the split plot impingement rate analyses for all of the combined
fish speciesin log scale. Split plot analyses of the transformed (natural log) impingement
rates found no significant reductions due to the operation of either the hybrid or sonic

systems.

Marginal difference in impingement rates during the hybrid system evaluation
existed between the two CWISs, whereby the Units 4-5 CWI'S impinged more fish than
the surrogate control Units 1-3 CWIS (p=0.066). However, the diel (samples. morning,
afternoon, evening and night) effects were quite significant (p<0.0001) and were not
consistent across the CWISs (p=0.003). The inconsistency of the diel effect between the
two CWIS units is that there was a greater difference between day and night at the Units
4-5 CWIS than at the Units 1-3 CWIS, but at both CWISs, more fish were impinged
during the evening and night periods. There is no evidence of atreatment effect that
would indicate that the hybrid deterrent system may be modifying impingement at the
Unit 4-5 CWIS and not at the surrogate control, Unit 1-3 CWIS (p=0.791). Thereisalso
no evidence suggesting that there was an increase in impingement due to a possible

attraction of fish to the strobe lights used during the hybrid evaluation.

Significant differences (p= 0.021) in impingement rates between CWISs existed
during the sonic evaluation, whereby Units 1-3 CWIS impinged more fish than the Units
4-5 CWIS. The main diel effect during the sonic evaluation was not as strong (p=0.106)
as during the hybrid system evaluation (p<0.0001). Changing diel effects are likely
associated with the time of year and the change in species of fish being impinged. The
sonic evaluation was performed during the early winter whereas the hybrid system was

evaluated throughout the warm season. As with the hybrid system, there is no evidence
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of atreatment effect that would indicate that the sonic deterrent system modifed
impingement at the Unit 4-5 CWIS and not at the surrogate control, Unit 1-3 CWIS

(p=0.878).
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Type Ill Tests of Fixed Effects &

Table5. Resultsof the MLE Split Plot analyses of the transformed (natural log)
impingement rates using the SPSS Mixed procedure.

Denominator

Deterrents Source Numerator df df F Sig.
Hybrid Deterrent Intercept 1 16.009 201.352 .000
Evaluation INTAKE 1 15.875 3.908 .066
TREATMENT 1 30.733 1.186 .285
Sample 3 186.305 70.882 .000
INTAKE * TREATMENT 1 30.733 .071 791
INTAKE * Sample 3 186.308 4.863 .003
Sample * TREATMENT 3 186.321 .148 .931
INTAKE * Sample *
TREATMENT P 3 186.322 2.002 115
Low Frequency Sound Intercept 1 4.035 132.885 .000
Burst Evaluation INTAKE 1 4.143 13.083 .021
TREATMENT 1 7.274 3.447 .104
Sample 3 41.190 2.170 .106
INTAKE * TREATMENT 1 7.190 .025 .878
INTAKE * Sample 3 41.320 .625 .603
Sample * TREATMENT 3 41.165 4.185 .011
INTAKE * Sample * 3 41.315 136 938

TREATMENT

a. Dependent Variable: In_total_num.
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Figures 23-29 present the transformed means and 95% confidence intervals from
the results of the MLE split plot analyses for each of the predominant species using SPSS
Mixed (SPSS 2006). Detailed split plot evaluations of log scale impingement rates for
each of the predominant fish species (freshwater drum, blue catfish, threadfin shad,
hogchoker and bay anchovy), revealed that there were no significant treatment effects at
the species level for the hybrid (p>0.490) or sonic (p>0.260) CWIS x Treatment
interactions. The same basic results were realized when evaluating the treatment effects
for each of the predominant Mobile non-fish species (blue crab and macrobrachium) for

the hybrid (p>0.227) or sonic (p>0.738) CWIS x Treatment interactions.
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Species: Freshwater Drum
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Figure 23. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor freshwater drum.
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Units 1-3 CWIS

Species: Blue Catfish
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Figure 24. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor blue catfish.
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Species: Threadfin Shad
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Figure 25. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor threadfin shad.
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Units 1-3 CWIS

Species: Hogchoker
Units 4-5 CWIS
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Figure 26. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor hogchoker.
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Figure 27. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor bay anchovy.
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Figure 28. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor blue crab.
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Species: Macrobrachium spp.
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Figure 29. Split plot 95% confidence intervalsfor comparison of CWIS, diurnal,
and treatment differencesin mean impingement numbersfor macrobrachium.
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4.2.2 Water Quality and Environmental Monitoring Results

The effect of flow and water quality parameters on the numbers of fish being
impinged or deterred was also considered when examining the effectiveness of the
deterrent systems. None of these environmental parameters are considered to have had
any meaningful effect on the impingement of fish while evaluating either the hybrid or

sonic deterrent systems.

Pairwise comparisons of the marginal means for each of these parameters (using a
Least Significant Difference) reveal that no significant differences in water temperature,
dissolved oxygen or conductivity existed between treatments (Tables 6 and 7). Mean
differences in pH were no greater than 0.162 pH units (p>0.013) for any of the CWIS x

Diel comparisons.
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Table 6. Mean, minimum, maximum and countsfor various environmental parameters measur ements collected during

every impingement sampling event while evaluating the Hybrid deterrent system.

Units 1-3 CWIS Units 4-5 CWIS Table Total
Deterrents Off Deterrents On Group Total Deterrents Off Deterrents On Group Total Deterrents Off

Temp (C) Mean 29.2 28.8 29.0 29.3 28.8 29.1 29.0
Minimum 21.6 21.9 21.6 225 22.3 22.3 21.6
Maximum 34.4 34.8 34.8 35.2 34.3 35.2 35.2
N N=67 N=68 N=135 N=66 N=67 N=133 N=268

DO (mg/l) Mean 7.36 7.31 7.33 7.41 7.33 7.37 7.35
Minimum 5.94 6.07 5.94 6.01 6.17 6.01 5.94
Maximum 9.39 8.52 9.39 9.22 8.56 9.22 9.39
N N=67 N=68 N=135 N=66 N=67 N=133 N=268

pH (units) Mean 7.34 7.32 7.33 7.33 7.30 7.32 7.32
Minimum 6.99 6.81 6.81 6.91 6.97 6.91 6.81
Maximum 7.83 7.77 7.83 7.74 7.75 7.75 7.83
N N=67 N=68 N=135 N=66 N=67 N=133 N=268

Specific Conductance  Mean 223.1 223.2 223.1 225.8 223.4 224.6 223.9

(microS/cm)
Minimum 146.0 147.0 146.0 156.0 145.0 145.0 145.0
Maximum 310.0 314.0 314.0 314.0 316.0 316.0 316.0
N N=67 N=68 N=135 N=66 N=67 N=133 N=268

Turbidity (ntu) Mean 19.9 26.2 23.1 20.0 15.7 17.8 20.5
Minimum 5.2 5.1 5.1 4.5 5.2 4.5 4.5
Maximum 117.9 663.0 663.0 124.3 57.1 124.3 663.0
N N=67 N=68 N=135 N=66 N=67 N=133 N=268

CWIS Flow (cms) Mean 193.50 191.66 192.58 315.04 315.43 315.24 253.45
Minimum 83.32 111.09 83.32 289.46 315.43 289.46 83.32
Maximum 220.56 220.56 220.56 315.43 315.43 315.43 315.43
N N=67 N=68 N=135 N=66 N=67 N=133 N=268

Throu_gh-Screen Mean n n n 69 69 69 55

Velocity (mps)
Minimum .13 .18 .13 .52 .53 .52 .13
Maximum .57 .55 .57 .87 .83 .87 .87
N N=67 N=68 N=135 N=66 N=67 N=133 N=268
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Table 7. Mean, minimum, maximum and countsfor various environmental parameters measur ements collected during
every impingement sampling event while evaluating the sonic deterrent system.

Units 1-3 CWIS Units 4-5 CWIS Table Total
Deterrents Off Deterrents On Group Total Deterrents Off Deterrents On Group Total Deterrents Off
Temp (C) Mean 13.8 14.4 14.0 13.9 14.4 14.1 14.1
Minimum 10.2 12.5 10.2 10.4 12.7 10.4 10.2
Maximum 17.0 16.1 17.0 17.0 16.4 17.0 17.0
N N=19 N=16 N=35 N=20 N=16 N=36 N=71
DO (mg/l) Mean 9.48 9.31 9.40 9.43 9.22 9.33 9.37
Minimum 8.16 8.11 8.11 8.29 7.91 7.91 7.91
Maximum 10.37 9.90 10.37 10.36 9.93 10.36 10.37
N N=19 N=16 N=35 N=20 N=16 N=36 N=71
pH (units) Mean 7.22 7.25 7.23 7.24 7.25 7.25 7.24
Minimum 6.96 7.15 6.96 7.04 7.09 7.04 6.96
Maximum 7.42 7.38 7.42 7.45 7.40 7.45 7.45
N N=19 N=16 N=35 N=20 N=16 N=36 N=71
Specific Conductance Mean 194.7 189.8 1925 195.6 189.4 192.9 192.7
(microS/cm)
Minimum 173.0 174.0 173.0 173.0 173.0 173.0 173.0
Maximum 216.0 210.0 216.0 217.0 209.0 217.0 217.0
N N=19 N=16 N=35 N=20 N=16 N=36 N=71
Turbidity (ntu) Mean 16.7 24.0 20.1 16.3 25.8 20.5 20.3
Minimum 11.0 10.0 10.0 9.5 9.8 9.5 9.5
Maximum 43.4 56.4 56.4 46.3 66.1 66.1 66.1
N N=19 N=16 N=35 N=20 N=16 N=36 N=71
CWIS Flow (cms) Mean 219.90 219.23 219.58 314.78 314.96 314.86 267.88
Minimum 214.39 202.32 202.32 302.45 307.39 302.45 202.32
Maximum 220.56 220.56 220.56 315.43 315.43 315.43 315.43
N N=19 N=17 N=36 N=20 N=17 N=37 N=73
Throu_gh-Screen Mean 52 51 52 66 66 66 59
Velocity (fps)
Minimum 48 46 46 .59 61 .59 46
Maximum 57 .60 .60 74 74 74 74
N N=19 N=17 N=36 N=20 N=17 N=37 N=73




Overall, turbidity values averaged 20.5 and 203 réspectively, for the hybrid
and sonic deterrent evaluations (Tables 6 andh@.strobe lights for the hybrid deterrent
system were designed for a turbidity maximum oh&fl The maximum turbidity value
recorded for the Units 4-5 CWIS was 124.3 ntu wthie hybrid deterrent (strobe light,
sonic and ultrasonic deterrents) was off and 5iulwile the hybrid deterrent was
operating (Table 6). However, the pairwise congmariof the mean differences in
turbidity at the Units 4-5 CWIS never exceededbbtween treatments and were not

significant for each diel period (p>0.691) duriig thybrid deterrent evaluation.

The differences in flow volume (cubic meters pexosel (cms)) or through-
screen velocities (meters per second (mps)) betiveatments are inconsequential
compared to the typical flows and velocities thatevcalculated. Mean cooling water
flows for the Units 1-3 CWIS were 193 and 219 cmsary the hybrid and sonic
deterrent evaluations, respectively. As expedtediows for the Units 4-5 CWIS were
greater. The mean flows were 315 cms for bothfeeid and sonic deterrent
evaluations. However, the pairwise comparisorth@flows for Units 1-3 CWIS never
exceeded 7.32 cms between treatments for eacle diehperiods (p>0.032). Mean
differences for flows at the Units 4-5 CWIS were significant and were calculated to
be less than 8 cfs for each of the diel periodse dalculated CWIS flows are closely
correlated with the calculated through-screen veésc Mean through-screen velocities
at the Units 1-3 CWIS were .41 mps for the hybnd &2 mps for the sonic deterrent
evaluation. The velocities were greater at thed 5 CWIS with .69 mps during the

hybrid and .66 mps during the sonic deterrent etan. Throughout both deterrent
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evaluations the mean treatment differences in #ieg through-screen velocities never

exceeded 0.09 fps (p>0.023).
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5 DISCUSSION AND CONCLUSION

The results of the hybrid and sonic fish detertesting demonstrated that none
of the behavioral stimuli evaluated (sonic sourtasonic sound or strobe lights) were
capable of reducing the impingement of freshwatganisms at Plant Barry. There is no
evidence that the impinged total fish numbers grimged individual species numbers
were reduced when the deterrent systems were operBoth deterrent systems
operated as designed with the light and soundsitiea equal to those which have been
reported to stimulate responses in some of the spe@es of fish commonly impinged
at Plant Barry. The evaluation of other environmaéparameters which may have
affected the results of this study has determihatithese variables were consistent
between the treatment periods (on or off) whenuatalg the performance of the
deterrent systems at the Plant Barry Units 4-5 CWIe impingement data set spanning
over 30 weeks (341 individual samples) allowedaioranalyses with a clear conclusion

of no reduction in impingement rates with detersent

The deterrent system components operating at orfukaapacity maintained the
integrity of this system as a potential deterrerthe exposed fish community. Although
the issues persisted with strobe light system reaarice, the time and attention given

allowed relatively fast corrections to be made amdimized non-operational flash head
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time so that an average of 88% of the strobes wjeeeational at 300 flashes/min
throughout the Hybrid evaluation. Strobe lightgglmment design was such that a solid
wall of light should have been achieved in eacthefCWIS openings (3 m x 3m) and
extended at least 1.0 m in all directions. Aftemparing with actual test conditions of
average turbidities of approximately 20 NTU (50 Ndiekign), the transmission of the
strobe lights should have been 0.6 m greater teaigd (1.5 m in all direction). The
Hybrid and Sonic behavioral deterrent systems dapdnaroperly at the following sound

frequencies:
e Hybrid evaluation (sonic and ultrasonic sound gitfobe lights)
¢ sonic frequencies (band-limited random noise, 40003Hz)
e ultrasonic frequencies (band-limited random nolf)-130 kHz)
e Sonic evaluation (sonic sound only)
e sonic frequencies (tone burst of 400, 630, 1000018500, and 3150 Hz)

The sound pressure levels (SPLs) for the hybridrdentt ranged from 157 to
161.7 dB for sonic frequencies and 141.4 to 14B.%od ultrasonic frequencies. The
sonic deterrent SPLs ranged from approximatelytd5070 dB for the 400 to 3,150 Hz
frequency range. The SPLs of the hybrid and sosierdent evaluations should have
been sufficient for fish entering the intake toet¢the sound. However, the signal to
noise ratio (SNR) appeared to be relatively low aray have been borderline for some
species to adequately detect them above backgrmisd levels. On the other hand, the

tone bursts used during the sonic deterrent evaluappear to have been considerably
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higher than background noise levels and would lepen readily detectable by fish

approaching the intake area.

Initial modeling showed that the predicted SPL oons for the ultrasonic sound
frequency had some non-uniformity through the vauwhthe forebay, with higher
levels at mid-water column than close to the bottom surface boundaries, and at
locations directly within the main lobe of a transdr than at locations within the nulls.
The computations also show a region of low SPLaugh6 ft out from the intake trash
racks. This occurred because this area is onlyrgfest by side lobe and backside
energy from the transducers. The initial requirethestablished for the ultrasonic
transmitting system was to achieve a uniform squiedsure level of 170 dB throughout
the forebay. The modeling results indicated thatoitild be difficult to create an
ultrasonic sound field with relatively uniform SPé&sceeding minimum criteria.
However, previous studies have demonstrated thas 88 low as 154 dB are sufficient
for repelling members of the Clupeiformes (TableT2)e modeling results demonstrated
that an ultrasonic sound system installed at FBanty could meet these minimum

criteria.

Studies using flash head models and flash rates swercessful at deterring
several species similar to those which occur attFBarry. Previous strobe light deterrent
studies with gizzard shad have shown avoidancensgs to flash rates ranging from
200 to >800 flashes/min (EPRI 1990; Matousek et 288; Patrick 1980a ; Patrick et al.
1980b, 1985). A review of strobe light deterrendgs involving other members of the
family Clupeidae reported mixed results (AppendixHowever, using flash rates of 300

flashes/min or greater generally resulted in avagaof the strobe light deterrent.
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The one study that used a strobe light with a ftasé of 300 flashes/min was
effective at producing an avoidance response inmdlecatfish (EPRI 1990). However,
other studies involving members of the family latadae (bullhead specidsneiurus

spp.) have shown mixed results (GLEC 1994; McCaulezle1996; Patrick et al. 2006).

Strobe light deterrents have produced encoura@sglts when attempting to
produce avoidance reactions in the family Sciaeni®x previous studies have shown
that Sciaenid species avoided a strobe light d=terwith the exception of a study
involving weakfish. The strobe light flash rateatttvere evaluated ranged from 90 to

600 flashes/min, with all studies but one usingHlaates at or above 300 flashes/min.

Little strobe light deterrent information is avéila on the Engraulidae and
Soleidae families. Studies with members of the Bualiglae family have demonstrated
mixed results; however, the one study conductea member (hogchoker) of the
Soleidae family resulted in an avoidance reactidhe study performed by Matousek et
al. (1988) involving bay anchovy and hogchoker sascessful at deterring both species

(Table 1). They evaluated a strobe light with allaate of 200 flashes/minute.

Sound frequencies and SPLs were chosen based yioraprevious sound
deterrent studies and studies evaluating the hgeaapabilities of the predominant
species or similar species that are found at Banty. The one study performed by
Consolidated Edison (1994) involving gizzard shaité@l to produce an avoidance
response at the evaluated ultrasonic frequenci@@2128 kHz (Table 2). Reviewing the
literature for other species within the family Céuglae showed th#losa species have

been repelled during lab and field studies withasibund (Appendix 2 and 3), while non-
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Alosa species have demonstrated little or no avoidamedttasound and moderate or
strong avoidance to sonic signals during fieldd¢esinducted in Europe (Maes et al.
2004). Because some members of the Clupeidae fégahusAlosa) have demonstrated
strong avoidance to ultrasonic frequencies (> 8@)kEn ultrasonic frequency was
selected specifically as a potential deterrentticgadfin and gizzard shad for the Plant
Barry hybrid deterrent evaluation. However, basedtudies that have evaluated the
hearing capabilities of several other clupeid spe¢Mann et al. 2001); information
provided by Dr. Arthur Popper (personal communamgti and previous sound deterrent
studies (Appendix 2 and 3), it was concluded tlet- Alosa clupeids, including threadfin
and gizzard shad, are not able to detect ultrasanddherefore ultrasound was not

evaluated during the Plant Barry sonic deterreatuation.

A review of the studies that measured the resposisesy anchovy to sound
deterrents found that no responses to ultrasoaduéncies were observed during the
Consolidated Edison study (1994). However, some bfiresponse to sound was
observed in a study which evaluated four ultrastmeiguencies ranging from 80 to 120
kHz and SPLs ranging from 147 to 170 dB. Sonicdeegies ranging from 100 to 5,000
Hz also produced avoidance responses in bay arehat/iSPLs ranging from 72 to 136
dB. Therefore, various sonic frequency rangesilairto those evaluated by PSEG

(2005), were evaluated during the Plant Barry ld/land sonic deterrent studies.

Hearing threshold studies performed on channeistaitidicate that sonic
frequencies ranging from 400 to 3,000 Hz shoulddtected if SPLs exceed 100 dB (Fay
and Popper 1975). Assuming that channel catfishcfware also commonly impinged at

Plant Barry) could serve as a surrogate for blafsta similar sonic frequencies with
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sufficient SPLs were used as a deterrent signamngltihe Plant Barry hybrid and sonic

deterrent evaluations.

Sound deterrent responses have not been reportedsbwater drum. However,
sound deterrents have produced encouraging regdis attempting to produce
avoidance reactions in the family Sciaenidae (ApipeB and 3). All of these previous
studies have shown that Sciaenid species avoidad sound frequencies ranging from

100 to 5,000 Hz.

Hearing capabilities for several species that oocare similar to those that
occur at Plant Barry are presented in Figures 5Fh&se figures demonstrate that the
frequency ranges selected during the hybrid and staterrent studies were assumed to
be within the hearing capabilities of a numberrefjiently impinged species at Plant
Barry based on a number of representative spebiesfigures also show that chosen
sound frequencies were transmitted at sound pressugls (SPLs) considerably higher

than minimum hearing thresholds.

Environmental variables that appeared to haveanfte the overall impingement
rates at Plant Barry were water temperature, dissobxygen, and time of day. The
impingement rate increased with higher dissolvegher, lower temperatures, and
during night-time hours. However, because thermisvidence of meaningful
differences in any of the environmental paramdbets/een the on and off treatment
periods there is no reason to expect that thesablas affected the proper evaluation of

these deterrent systems.
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Turbidity was an important design criterion govagthe placement of the strobe
lights. High turbidity greatly reduces the effeetirange of the strobe lights (Martin et al.
1991) due to the fact that increased turbidity miaes light transmission. Occasionally,
turbidity may have decreased the efficiency ofdtiebe light portion of the hybrid
deterrent system. With turbidity reducing the efifex distance of the strobe lights, the
fish may not have been able to overcome the watecity when finally able to detect
the strobe lights. Water velocities toward the kethave been shown to lower the
efficiency of behavioral barriers. Some fishes rdatect the behavioral deterrents,
however if the water velocities toward the intakee®d the fishes maximum swimming
speed then they cannot necessarily escape antdébame impinged (Maes et al. 2004).
At Plant Barry, the through-screen velocities fog CWIS equipped with the behavioral
deterrents ranged from 0.52 to 0.87 mps. Studigsweilocities in this range or lower
have been associated with a reduction in the effy of behavioral deterrent devices
(Sager et al. 2000; Pugh et al. 1970). It shoulddied that there is no evidence to
suggest that the strobe lights are attractingifishthe Units 4-5 CWIS. All statistical
tests show that there were no significant (p>0iu@&eases nor decreases in the

impingement rates for these data.

Following a discussion of water velocities and tditly effects, it is also
important to note that previous studies of fishimged at Plant Barry have documented
relatively high rates of fish disease when compaoetie control population. Diseased
or weakened fish exposed to a deterrent may not esaa healthy fish would or even
have the ability to avoid being impinged once ie bydraulic zone of influence (Baker

2007). This factor may have masked the true avaielaesponse by the healthy fish
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population. However, it was determined that tisedsed fish population, although likely

present, did not mask evidence of a deterrent anaiel response.

Based on impingement monitoring the use of soundstnobe lights as
configured in this study was not effective at dexera riverine fish community or fish
species available in this section of the MobileeRignd should not be considered as a
solution for reducing impingement at Plant Barryxadl results in deterring fish have
been reported in the literature when evaluatingabieinal deterrent devices such as those
reported in the literature review. From these misesllts, it can be concluded that there
may be some other factors involved such as siteHapeonditions or fish assemblages
present or exposed. However, this test indicabéls the hybrid and sonic deterrent
systems with the strobe light and sound equipmeditcanfigurations tested could not be
used as an effective technology option for redugimgngement at Plant Barry. As an
apparent result, the deterrent systems evaluatikimeport could not be selected as a

viable technology option for complying with the 3prule.
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APPENDIX 1. A summarized literaturereview of strobe light behavioral studies arranged by species.
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APPENDIX 2. A summarized literaturereview of sound behavioral studies arranged by species.
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fish drone (sonic vigrations were used to
excite a metdllic structure at a selected
resonance) and hammer

ITC model 3406
transducers

ITC model 3406
transducer

narrow and wide-
beam ultrasonic
transducers

Alosa pseudoharengus

Alosa sapidissima

Alosa sapidissima

Alosa sapidissima

alewife

American shad

American shad

American shad
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Taft et al. (1996) Taft and
Brown (1997)

RMC and Sonalysts (1993)

SWETS (1994)

Salem Generating Station
(Delaware River Estuary)

Vernon Hydroelectric Project (on the
Connecticut River in Hinsdale, New

Hampshire and Vernon, Vermont)

York Haven
Hydroelectric Project
(Susquehanna River,
Pennsvivania)
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Field (Hydroelectric)

transducer: ITC model
3406; Argotec Model 215;
U.S. Navy G34, F56, F33B,
F33I

ultrasonic transducer

narrow and wide-beam
ultrasonic transducers

Alosa sapidissima

Alosa sapidissima

Alosa sapidissima

American shad

American shad

American shad
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RMC and Sonalysts (1993)

Kynard and O'Leary
(1990)

Gibson and Myers 2002

Consolidated Edison
(1994)

Vernon Hydroelectric Project (on
the Connecticut River in Hinsdale,

New Hampshire and Vernon,
Vermont)

Hadley Falls
Hydroelectric Project
(Connecticut River,
Holvoke. Massachusetts)

Annapolis Tidal
Generating Station
(Nova Scotia, Canada)

Arthur Kill
Generating Station
(Staten Island, New
York)
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ultrasonic transducer

Wesmar $S-1465 scanning
sonar

ITC model 3406
transducers

narrow and wide-
beam ultrasonic
transducers

Alosa sapidissima

Alosa sapidissima

Clupea harengus
harengus

Clupea harengus
harengus

American shad

American shad

Atlantic herring

Atlantic herring
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Gibson and Myers

Consolidated Edison

Maes et al. (2004) PSEG (2005) 2002 (1994) PSEG (2003)
Doel Nuclear Power Salem Generating Anano'.ls Tidal . Arthur Kill Generating Salem .
i Generating Station R Generating
Plant (Scheldt Estuary, Station (Delaware g Station (Staten Island, .
Doel, Belgium) River Estuary) (Nova Scotia, New York) Station (Delaware
! Canada) River Estuarv)
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rojectors transducer transducers beam ultrasonic and ITC model
P transducers 3406 transducers
Clupea harengus Brevoortia Alosa aestivalis Alosa aestivalis Alosa aestivalis
harengus tyrannus
Atlantic herring Aflantic blueback herring blueback herring blueback herring
menhaden

169



Pickens (1992) Nestler et al.

PSEG (2005) Ross (1999) Ross (1999) (1995) Nestler et al. (1998) Schillt
and Ploskey (1997)
Salem Crescent . . Richard B. Russell Pumped
. . . Visher Ferry Hydroelectric R
Generating Hydroelectric Poject Poject (Mohawk River, New Storage Project (Savannah
Station (Delaware | (Mohawk River, New Y lk ! River, South Carolina and
|_River Estuarv) York) ork) Georaia)
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Field (Open

water)

Field (Hydroelectric)

Field (Hydroelectric)

Field (Hydroelectric)

ITC model 3406
transducer

ultrasonic transducers

ultrasonic transducers

ultrasonic transducers

Alosa aestivalis

Alosa aestivalis

Alosa aestivalis

Alosa aestivalis

blueback herring

blueback herring

blueback herring

blueback herring
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Pickens (1992) Nestler
et al. (1995) Nestler et
al. (1998) Schillt and
Ploskey (1997)

Taft et al. (1996) Taft and
Brown (1997)

Maes et al. (2004)

Consolidated Edison
(1994)

Richard B. Russell Lake
(South Carolina and
Georgia)

Salem Generating Station
(Delaware River Estuary)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)

Arthur Kill Generating
Station (Staten Island,
New York)
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sonic and ultrasonic
transducers

transducer: ITC model
3406; Argotec Model 215;
U.S. Navy G34, F56, F33B,
F33I

FGS Mk 11 30-600
sound projectors

narrow and wide-
beam ultrasonic
transducers

Alosa aestivalis

Alosa aestivalis

Sprattus sprattus

Dorosoma
cepedianum

blueback herring

blueback herring

European sprat

gizzard shad
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Sonny et al. (2006)

Sonny et al.
(2006)

Sonny et al.
(2006)

EPRI (1998a, 1998b)
Michaud and Taft (1999)

EPRI (1998a, 1998b)
Michaud and Taft (1999)

Tihange Nuclear
Power Plant (River

Lake Borrevann

Tihange Nuclear
Power Plant (River

White Rapids Hydroelectric
Project (Menominee River,

White Rapids Hydroelectric
Project (Menominee River,

) Norwa . . ! . !
Mevuse, Belgium) ( Y) Meuse, Belgium) Wisconsin) Wisconsin)
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Field (CWIS)

Field (open
water)

Field (CWIS)
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Field (Hydroelectric)

particle motion

particle motion

particle motion

generator (PMG) generator generator (PMG) U.S. Navy G34 transducers U.S. Navy G34 transducers
(PMG)

Alburnus alburnus Alburnus Abramis brama Cyprinus carpio Notropis atherinoides
alburnus

bleak bleak common bream common cdrp emerald shiner

Cyprinidae
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Patrick et al. (1988b) McKinley et al.
(1987)

Winchell et al. (1997) EPRI
(1998a, 1998b) Michaud
and Taft (1999)

NYPA et al. (1991)

Amaral et al. (1998,
2001)

Lennox Generating Station (Bay of
Quinte, Lake Ontario, Canada)

Kingsford Hydroelectric
Project (Menominee
River, Wisconsin)

flooded rock
quarry (near
Verplanck, New
York)

Roza Diversion Dam
(Yakima River,
Washington)
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X . HLF-6 sonic particle motion
excite a metdllic structure at a selected Model 215; U.S. Navy transducer enerator (PMG)
resonance) and hammer J13, G34, F56, F33B, F33I 9
Notemigonus Notemigonus Ptychocheilus

Notemigonus crysoleucas

crysoleucas

crysoleucas

oregonensis

golden shiner

golden shiner

golden shiner

northern
pikeminnow
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Sonny et al. Sonny et al.
(2008) Sonny et al. (2006) (2008) NYPA et al. (1991) Maes et al. (2004)
Tihange Nuclear flooded rock quarry Doel Nuclear Power
Lake Borrevann R Lake Borrevann
(Norway) Power Plant (River (Norway) (near Verplanck, Plant (Scheldt Estuary,
Y Meuse, Belgium) Y New York) Doel, Belgium)
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particle motion particle motion p:::l‘:::ohon HLF-6 sonic FGS Mk 1l 30-600
generator (PMG) | generator (PMG) (gPMG) transducer sound projectors
Scardinius
Rufilus rutilus Rutilus rutilus erythrophthala Notropis hudsonius Abramis bjoerkna
mus
roach roach rudd spottail shiner white bream
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PSEG (2005)

Consolidated Edison
(1994)

Taft et al. (1996) Taft and
Brown (1997)

McKinley et al.
(1987)

Consolidated Edison
(1994)

Salem Generating
Station (Delaware

Arthur Kill Generating
Station (Staten Island,

Salem Generating Station

Manimota Bay

Arthur Kill Generating
Station (Staten Island,

. Delaware River Estual Japan
River Estuary) New York) ( ") ({apan) New York)
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Field (Open X X . .
(©p Field (CWIS) Field (cage) Field (open water) Field (cage)

water)

ITC model 3406
transducer

narrow and wide-
beam ultrasonic
transducers

transducer: ITC model
3406; Argotec Model 215;
U.S. Navy G34, F56, F33B,
F33I

underwater
speakers

omni-directional sonic
and directional
ultrasonic transcucers

Anchoa mitchilli

Anchoa mitchilli

Anchoa mitchilli

Anchoa mitchilli

Anchoa mitchilli

bay anchovy

bay anchovy

bay anchovy

bay anchovy

bay anchovy

Engraulidae
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PSEG (2003)

NYPA et al. (1991)

Holand and

Gibson and Myers

Maes et al. (2004)

Walso (1988) 2002
. Annapolis Tidal
Salem Generating flooded rock quarry Sommaroyh . . Doel Nuclear Power
. Generating Station
Station (Delaware (near Verplanck, amn, g Plant (Scheldt Estuary,
River Est New York N (Nova Scotia, Doel, Belgi
iver Estuary) ew York) orway Canadal oel, Belgium)
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U.S. Navy J-11 HLF-6 sonic sohic ITC model 3406 FGS Mk Il 30-600
transducers transducer transducer transducers sound projectors
Anchoa mitchilli Microgadus tomcod Gaus s, Gasterosteus Pungitius pungitius
g Pp- wheatlandi g pung
. blackspotted . . .
bay anchovy Aflantic tomcod cod stickleback ninespine stickleback

Gadidae

Gasterosteidae
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Maes et al. (2004)

Maes et al. (2004)

Winchell et al. (1997)
EPRI (1998a, 1998b)
Michaud and Taft (1999)

Maes et al. (2004)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)

Kingsford Hydroelectric
Project (Menominee
River, Wisconsin)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)
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FGS Mk 11 30-600
sound projectors

FGS Mk 11 30-600
sound projectors

transducer: Argotec
Model 215; U.S. Navy
J13, G34, F56, F33B, F33I

FGS Mk 11 30-600
sound projectors

Gasterosteus
aculeatus

Pomatoschistus spp.

Ameiurus spp.

Dicentrarchus labrax

three-spined
stickleback

goby spp.

bullhead catfish

European seabass

Gobiidae

Ictaluridae

Moronidae
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NYPA et al. (1991)

PSEG (2005)

NYPA et al. (1991)

PSEG (2005)

Maes et al. (2004)

flooded rock quarry
(near Verplanck,

Salem Generating
Station (Delaware

flooded rock
quarry (near
Verplanck, New

Salem Generating
Station (Delaware

Doel Nuclear Power
Plant (Scheldt Estuary,

New York) River Estuary) Yorl) River Estuary) Doel, Belgium)
(%] (%]
o o o
2 H 2 = =
i N oy i NN
S T 3 T L]
2 e8¢ 2 98 % o
-3 =R - [CR-8 S
g~ Yoo g~ Yoo 2
S o RS S o N5 s
v 288 v 288 «
~—® ~—®
- - . - -
c c c c c
[ [ [ [ [
£ £ £ £ £
7] ] 7] 7] ]
- = - - =
7] 7] 7] 7] 7]
] ] ] ] ]
= w S = w S =
- -
wn
o o o o 1)
H H H H =
v
1 O~ 1 O~
oz o oz o oz
= ~3 = ~3 =
- -
© £ ) £ 5
‘2 2 E 2 2
< > - > =
) ) ) ) &
] ° ] °
X X X Field (Open X
Field (cage) Field (Open water) | Field (cage) wqier() P Field (CWIS)
HLF-6é sonic ITC model 3406 HLF-6 sonic ITC model 3406 FGS Mk Il 30-600
transducer transducer transducer transducer sound projectors
. . Morone Morone .
Morone saxatilis Morone saxatilis . . Liza ramada
americana americana

striped bass

striped bass

white perch

white perch

thinlip mullet

Mugilidae
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Maes et al. (2004)

Maes et al. (2004)

EPRI (1998a, 1998b)
Michaud and Taft (1999)

Maes et al. (2004)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)

White Rapids Hydroelectric
Project (Menominee River,
Wisconsin)

Doel Nuclear Power
Plant (Scheldt Estuary,
Doel, Belgium)
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FGS Mk 11 30-600
sound projectors

FGS Mk 11 30-600
sound projectors

U.S. Navy G34 transducers

FGS Mk Il 30-600 sound
projectors

Osmerus eperlanus

Perca fluvidtilis

Percina caprodes

Stizostedion lucioperca

European smelt

European perch

logperch

pike-perch

Osmeridae

Percidae
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EPRI (1998a,

1998b) Smith and Smith and Winchell et al. (1997) Winchell et al. (1997)
Michaud and | Anderson Anderson (1984) EPRI (1998, 1998b) EPRI (1998a, 1998b)
Taft (1999) (1984) Michaud and Taft (1999)
White Rapids Tionesta A"eghef‘y Kingsford Hydroelectric Kingsford Hydroelectric
X R Reservoir N X N X
Hydroelectric State Fish . Project (Menominee Project (Menominee
X (Pennsylvania and . N . . N .
Project Hatchery River, Wisconsin) River, Wisconsin)
Nev York)
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U.S. Navy J- transducer: Argotec transducer: Argotec
:fﬁ:ilt‘::yezu n :fﬁ:ilt‘::ye:;u Model 215; U.S. Navy Model 215; U.S. Navy
transducer J13, G34, F56, F33B, F33I J13, G34, F56, F33B, F33I
Sander vitreus Sfmder Sander vitreus Sander vitreus Sander vitreus
vitreus
walleye walleye walleye walleye walleye
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EPRI (1998a, 1998b)
Michaud and Taft (1999)

Patrick et al. (1988b) McKinley et al.
(1987)

Winchell et al. (1997) EPRI
(1998a, 1998b) Michaud
and Taft (1999)

White Rapids Hydroelectric
Project (Menominee River,
Wisconsin)

Lennox Generating Station

Kingsford Hydroelectric
Project (Menominee
River, Wisconsin)
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U.S. Navy G34 transducers

fish drone (sonic vigrations were used to
excite a metdllic structure at a selected
resonance) and hammer

transducer: Argotec
Model 215; U.S. Navy J13,
G234, F56, F33B, F33I

Pera flavescens

Pera flavescens

Pera flavescens

yellow perch

yellow perch

yellow perch
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Winchell et al. (1997) EPRI
(1998a, 1998b)

Maes et al. (2004)

Gibson and Myers
2002

Maes et al. (2004)

Kingsford Hydroelectric

Doel Nuclear Power

Annapolis Tidal

Doel Nuclear Power

Project (Menominee Plant (Scheldt Estuary, Generqhng. Station Plant (Scheldt
Ri Wi . Doel. Belgi (Nova Scotia, Estuary, Doel,
iver, Wisconsin) oel, Belgium) Canadal Belaium)
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transducer: Argotec
Model 215; U.S. Navy J13,

FGS Mk 11 30-600

ITC model 3406

FGS Mk 11 30-600

G34, F56, F33B, F33| sound projectors transducers sound projectors
Pera flavescens Lampetra fluvidtilis Urophycis spp. Limanda limanda
yellow perch European river hake dab

lamprey

Petromyzontidae Phycidae Pleuronectidae
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Nedwell and Knudsen et Knudsen et al. Sand et al.
Maes et al. (2004) PSEG (2005) Turnpenny (1997) | dl. (1992) (1994) (2001)
Doel Nuclear Power Generatin
Plant (Scheldt . 9 Fawley Aquatic University of Sandvikselven University of
Station . .
Estuary, Doel, Del Ri Research Station Oslo River (Norway) Oslo
Belaium) (Delaware River
S
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Field (Open Laboratol Field Laboratol
Field (CWIS) P Field ry (Hydroelectric ry
water) (pool) ) (pool)
FGS Mk 11 30-600 ITC model 3406 . .
X NR transducer piston piston
sound projectors transducer
Platichthys flesus Pomaf‘omus Salmo salar Salmo salar Salmo salar Salmo salar
saltatrix
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APPENDIX 3. A summarized literaturereview of hybrid behavioral studies arranged by species.
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mitchilli mitchilli mitchilli mitchilli nebulosus spp. americana

brown bullhead
bay anchov bay anchov bay anchov bay anchov N white perch
Y Y Y Y Y Y Y Y | bullhead catfish P
Engraulidae Ictaluridae Moronidae
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Morone Morone Morone Morone . .
. . . . Percina caprodes Sander vitreus
americana americana americana americana

white perch

white perch

white perch
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logperch

walleye

Percidae
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Oncorhynchus Oncorhynchus Oncorhynchus Leiostomus
Pera flavescens Salmo salar .
kisutch nerka nerka xanthurus
Aflantic sockey
yellow perch coho salmon sockey salmon spot
salmon salmon
Salmonidae Sciaenidae
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