This Is AuburnElectronic Theses and Dissertations

Show simple item record

Nanoreinforced Shape Memory Polyurethane


Metadata FieldValueLanguage
dc.contributor.advisorPresley, Ann Beth Jenkins
dc.contributor.advisorBuschle-Diller, Gisela
dc.contributor.advisorSchwartz, Peter
dc.contributor.advisorAuad, Maria
dc.contributor.authorRichardson, Tara Beth
dc.date.accessioned2009-11-13T22:36:02Z
dc.date.available2009-11-13T22:36:02Z
dc.date.issued2009-11-13T22:36:02Z
dc.identifier.urihttp://hdl.handle.net/10415/1934
dc.description.abstractShape memory polymers (SMPs) are functional materials, which find applications in a broad range of temperature sensing elements and biological micro-electro-mechanical systems (MEMS). These polymers are capable of fixing a transient shape and recovering to their original shape after a series of thermo-mechanical treatments. Generally, these materials are thermoplastic segmented polyurethanes composed of soft segments, usually formed by a polyether macroglycol, and hard segments formed from the reaction of a diisocyanate with a low molecular mass diol. The hard segment content is a key parameter to control the final properties of the polymer, such as rubbery plateau modulus, melting point, hardness, and tensile strength. The long flexible soft segment largely controls the low temperature properties, solvent resistance, and weather resistance properties. The morphology and properties of polyurethanes (PU) are greatly influenced by the ratio of hard and soft block components and the average block lengths. However, in some applications, SMPs may not generate enough recovery force to be useful. The reinforcement of SMPs using nanofillers represents a novel approach of enhancing the performance of these materials. The incorporation of these fillers into SMPs can produce performance enhancements (particularly elastic modulus) at small nanoparticle loadings (~1-2 wt %). An optimal performance of nanofiller-polymer nanocomposites requires uniform dispersion of filler in polymers and good interfacial adhesion. The addition of nanofillers like cellulose nanofibers (CNF), conductive cellulose nanofibers (C-CNF), and carbon nanotubes (CNTs) allows for the production of stiffer materials with deformation capacity comparable to that of the unfilled polymer. Additionally, the use of conductive nanoreinforcments such as C-CNF and CNTs leads to new pathways for actuation of the shape memory effect. During this work, thermoplastic shape memory polyurethanes were synthesized with varying chemical composition and molecular weight. This was achieved by controlling the moles of reactants used, by using polyols with different molecular weights, and by using different diisocyanates. Using these controls, polymer matrices with different but controlled structures were synthesized and then reinforced with CNF, C-CNF, and CNTs in order to study the influence of chemical structure and polymer-nanoreinforcement interactions on polymer nanocomposite morphology, thermal and mechanical properties, and shape memory behavior.en
dc.rightsEMBARGO_NOT_AUBURNen
dc.subjectPolymer and Fiber Engineeringen
dc.titleNanoreinforced Shape Memory Polyurethaneen
dc.typedissertationen
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record