This Is AuburnElectronic Theses and Dissertations

Electrical and Nonlinear Optical Studies of Specific Organic Molecular and Nonconjugated Conductive Polymeric Systems

Date

2010-10-15

Author

Narayanan, Ananthakrishnan

Type of Degree

dissertation

Department

Mechanical Engineering

Abstract

In this research, structural, electrical and nonlinear optical characteristics of: (a) single crystal films involving a noncentrosymmetric molecule DAST and a laser dye IR125 and (b) specific nonconjugated conducting polymers including poly(β-pinene) and polynorbornene have been studied. 4’-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) is a well known second order nonlinear optical material. This material has exceptionally high electro-optic coefficients, high thermal stability and ultrafast response time. In this work single crystal films involving a combination of DAST and IR125 have been prepared using modified shear method and the films have been characterized using polarized optical microscopy, X-ray diffraction, polarization dependent optical absorption and photoluminescence spectroscopy. The electro-optic coefficient of these films measured at 633nm was found to be 300pm/V. Since IR-125 has a strong absorption band from 500nm to 800nm, these films are promising for various applications in nonlinear optics at longer wavelength and for light emission. Nonconjugated conducting polymers are a class of polymers that have at least one double bond in their repeat units. 1,4-cis polyisoprene, polyalloocimene, styrene butadiene rubber, poly(ethylenepyrrolediyl) derivatives, and poly(β-pinene) are some of the well known examples of nonconjugated conducting polymers. In this work, polynorborne, a new addition to the class of nonconjugated conducting polymers is discussed. Like other polymers in this class, polynorbornene exhibits increase in electrical conductivity by many orders of magnitude upon doping with iodine. The maximum electrical conductivity of this material is 0.01 S/cm. As shown by using FTIR microscopy, the C=C bonds are transformed into cation radicals when polynorborne is doped. This is due to the charge-transfer from the double bond to the dopant (iodine). These materials like other nonconjugated conducting polymers have significant applications in electro-optics and photonics. Electron paramagnetic resonance measurements on poly(β-pinene) before and after doping with iodine are reported in this work. The EPR signal of this polymer increases proportionally with the iodine concentration due to the formation of cation radicals upon doping and charge-transfer. The results agree well with the doping mechanism of nonconjugated conducting polymers discussed earlier in literature. Hyperfine splitting in heavily doped polymers is observed due to the reduced distance between the cation radical and the iodine anion. Off-resonant electro-optic measurements in doped poly(β-pinene) at 790nm, 800nm, 810nm and 1.55μm using field-induced birefringence technique have been studied. The results show that this material exhibits the highest cubic nonlinearities of all known materials. The Kerr coefficient measured at 1.55μm is 1.6x10-10 m/V2 which is about 30 times higher than that of conjugated polymers. Results of two photon measurements in this doped polymer using pumpprobe technique with a pulsed, mode-locked (150 fs pulses) beam from a Ti-Sapphire laser are reported. The measured value of α2 at 790 nm and 795 nm were found to be 2.28±0.1 cm/MW and 2.5±0.1 cm/MW respectively. The data confirms that the nonlinearity in this material is ultrafast and electronic in nature. Such large nonlinearities in these materials are attributed the charge confinement in these materials in a sub-nanometer domain (upon doping) resulting in a metal-like quantum dot structure. Photovoltaic measurements in a composite involving poly(β-pinene) and C60 are discussed. This is the first time a nonconjugated conducting polymer based photovoltaic cell has been fabricated. A composite involving 4% C60 by weight produced a photovoltage of 280mV for an incident light intensity of 6mW/sq.cm. These low cost devices have applications in solar cells, photodetectors etc. A nonlinear optical waveguide was prepared by casting a thin film of poly(β-pinene) on bare multi-mode optical fiber and doping it with iodine. The doped fibers were of excellent optical quality. Two-photon absorption experiments were conducted using these waveguides and large changes in transmission upto 28% was observed in 15cm long fiber. More work needs to be done to confirm this result. This is a significant step in the direction of making these materials a viable choice for ultrafast (femtosecond time-scale) optical devices. To summarize, these works included detailed investigations of structural, electrical and nonlinear optical characteristics of specific molecular crystal films and nonconjugated conducting polymers.