This Is AuburnElectronic Theses and Dissertations

Show simple item record

Concerning a Problem of K. Kuratowski


Metadata FieldValueLanguage
dc.contributor.advisorHeath, Jo
dc.contributor.advisorBrown, Jack B.en_US
dc.contributor.advisorDesouza, Geraldo S.en_US
dc.contributor.authorNguyen, Van-Trinhen_US
dc.date.accessioned2008-09-09T21:17:23Z
dc.date.available2008-09-09T21:17:23Z
dc.date.issued2006-05-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/394
dc.description.abstractSuppose (S,T) is a topological space and A is any subset of S. Then the functions f and g from the power set of S, P(S), into P(S) are defined as: f(A) is the closure of A and g(A) is the complement of A. In this thesis, our goal is proving that there are at most fourteen type of image from any subset of S by using finite compositions of the closure function f and the complement function g, including the null composition.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titleConcerning a Problem of K. Kuratowskien_US
dc.typeThesisen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record