This Is AuburnElectronic Theses and Dissertations

Enantioselective synthesis of 1,6-dihydropyridines with application to natural product synthesis; Racemic total synthesis of the fungal metabolite collybolide

Date

2023-08-09

Author

Spurlin, Sean

Type of Degree

PhD Dissertation

Department

Chemistry and Biochemistry

Restriction Status

EMBARGOED

Restriction Type

Auburn University Users

Date Available

08-09-2024

Abstract

Azaheterocycles, a common feature of many bioactive natural products, are still challenging motifs to construct in an asymmetric fashion. Dihydropyridines are advantageous intermediates in the synthesis of such heterocycles, but previous methods to synthesize such compounds usually required specialized starting materials. Dihydropyridines can be converted to the corresponding tetrahydropyridines and piperidines through functionalization reactions, or they can be rearomatized to form the corresponding pyridine. We investigated the use of boronic acid nucleophiles with rhodium catalysis to create 1,6-dihydropyridines for use as strategic intermediates in natural product synthesis. We have reported the formation of 1,6-dihydropyridines, which contain fully substituted stereogenic centers, using aryl and alkenyl boronic acids. Our dearomatization methodology has demonstrated a range of functional group tolerance that includes alkenes, free alcohols, ethers, amides, esters, halides, and other heterocycles. Next, we applied our methodology to the synthesis of the indoloquinolizine structural scaffold, a motif found in many polycyclic indole alkaloids. Digressing from azaheterocycle methodologies, we developed a 10-step racemic total synthesis of collybolide, as well as an asymmetric formal synthesis of collybolide, to facilitate the potential creation of unnatural derivatives. Although collybolide has been touted as a potent nonnitrogenous κ-opioid, independent analysis of our synthetic racemate indicates that the compound has no appreciable κOR activity.