Palm Measure Invariance and Exchangeability for Marked Point Processes
Metadata Field | Value | Language |
---|---|---|
dc.contributor.advisor | Kallenberg, Olav | |
dc.contributor.advisor | Liao, Ming | en_US |
dc.contributor.advisor | Szulga, Jerzy | en_US |
dc.contributor.advisor | Meir, Amnon J. | en_US |
dc.contributor.advisor | Pate, Thomas | en_US |
dc.contributor.author | Peng, Man | en_US |
dc.date.accessioned | 2008-09-09T22:33:17Z | |
dc.date.available | 2008-09-09T22:33:17Z | |
dc.date.issued | 2008-12-15 | en_US |
dc.identifier.uri | http://hdl.handle.net/10415/1008 | |
dc.description.abstract | A random measure $\xi$ on a real interval $I$ is known to be exchangeable iff suitably reduced versions of the Palm distributions $Q_{t}$ are independent of $t \in I$. In this dissertation we prove a corresponding result where $\xi$ is a point process on $I$ with marks in some Borel space. For this case, the Palm distributions $Q_{s,t}$ depend on parameters $s \in S$ and $t \in I$, and we show that $\xi$ is exchangeable iff the reduced versions of $Q^{\prime}_{s,t}$ are independent of $t$. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Mathematics and Statistics | en_US |
dc.title | Palm Measure Invariance and Exchangeability for Marked Point Processes | en_US |
dc.type | Dissertation | en_US |
dc.embargo.length | NO_RESTRICTION | en_US |
dc.embargo.status | NOT_EMBARGOED | en_US |