This Is AuburnElectronic Theses and Dissertations

Show simple item record

Palm Measure Invariance and Exchangeability for Marked Point Processes


Metadata FieldValueLanguage
dc.contributor.advisorKallenberg, Olav
dc.contributor.advisorLiao, Mingen_US
dc.contributor.advisorSzulga, Jerzyen_US
dc.contributor.advisorMeir, Amnon J.en_US
dc.contributor.advisorPate, Thomasen_US
dc.contributor.authorPeng, Manen_US
dc.date.accessioned2008-09-09T22:33:17Z
dc.date.available2008-09-09T22:33:17Z
dc.date.issued2008-12-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/1008
dc.description.abstractA random measure $\xi$ on a real interval $I$ is known to be exchangeable iff suitably reduced versions of the Palm distributions $Q_{t}$ are independent of $t \in I$. In this dissertation we prove a corresponding result where $\xi$ is a point process on $I$ with marks in some Borel space. For this case, the Palm distributions $Q_{s,t}$ depend on parameters $s \in S$ and $t \in I$, and we show that $\xi$ is exchangeable iff the reduced versions of $Q^{\prime}_{s,t}$ are independent of $t$.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titlePalm Measure Invariance and Exchangeability for Marked Point Processesen_US
dc.typeDissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record