This Is AuburnElectronic Theses and Dissertations

Show simple item record

Versatile and Potentially Scalable Method for Synthesis of Janus Nanoparticles


Metadata FieldValueLanguage
dc.contributor.advisorDavid, Allan E.en_US
dc.contributor.authorHanley, Alanen_US
dc.date.accessioned2016-05-04T21:22:41Z
dc.date.available2016-05-04T21:22:41Z
dc.date.issued2016-05-04
dc.identifier.urihttp://hdl.handle.net/10415/5129
dc.description.abstractResearchers are constantly working toward developing “smarter” materials that can be designed or programed to do a certain task. Examples of such tasks would be self-assembling into an organized structure or targeting a certain protein in the human body. Janus nanoparticles, nanoparticles with two distinct and different hemispheres, have been researched over the past few decades in the pursuit of developing smarter materials. While Janus nanoparticles can be designed to accomplish a number of tasks, they have no use to society as a whole if they cannot be produced at an industrial quantity. Another large problem that keeps research on Janus nanoparticles from moving forward is the rigid regulations regarding nanoparticle configurations inherent in all of the existing methods; the methods described in current publications are usually limited to producing one type of Janus nanoparticle. Due to this roadblock, we have developed a new method for producing Janus nanoparticles that has the potential for scalability as well as a high level of flexibility when designing the hemispheres. Essentially, this method has the potential to produce numerous different Janus nanoparticle configurations at quantities that can support an industrial demand. The purpose of this research is to develop a complete understanding of this method, then utilize it to examine different Janus nanoparticle configurations. With the development of this new synthesis method, Janus nanoparticles will finally have the opportunity to be elevated from laboratory experiments and utilized in real-world applications. Janus nanoparticles have applications in drug delivery, enhanced protective coatings, and ultra-thin-display screens, just to name a few.en_US
dc.rightsEMBARGO_GLOBALen_US
dc.subjectChemical Engineeringen_US
dc.titleVersatile and Potentially Scalable Method for Synthesis of Janus Nanoparticlesen_US
dc.typeMaster's Thesisen_US
dc.embargo.lengthMONTHS_WITHHELD:25en_US
dc.embargo.statusEMBARGOEDen_US
dc.embargo.enddate2018-05-07en_US
dc.contributor.committeeAshurst, W. Roberten_US
dc.contributor.committeeRadich, Jamesen_US

Files in this item

Show simple item record