Show simple item record

dc.contributor.advisorLindner, Charles
dc.contributor.authorHolmes, Amber
dc.date.accessioned2017-04-16T19:09:46Z
dc.date.available2017-04-16T19:09:46Z
dc.date.issued2017-04-16
dc.identifier.urihttp://hdl.handle.net/10415/5606
dc.description.abstractIn 1989, Gaetano Quattrocchi gave a complete solution of the intersection problem for maximum packings of K_(6n+5) with triples when the leave (a 4--cycle) is the same in each maximum packing. Quattrocchi showed that I[2]=2 and I[n]={0, 1, 2, ..., ((n choose 2)-4)/(3) = x \ {x-1, x-2, x-3, x-5} for all n=5 (mod 6)>5. We extend this result by removing the exceptions {x-1, x-2, x-3, x-5} when the leaves are not necessarily the same. In particular, we show that I[n]={0, 1, 2, ..., ((n choose 2)-4)/(3) for all n=5 (mod 6).en_US
dc.rightsEMBARGO_GLOBALen_US
dc.subjectMathematics and Statisticsen_US
dc.titleRevisiting the Intersection Problem for Maximum Packings of K_(6n+5) with Triplesen_US
dc.typeMaster's Thesisen_US
dc.embargo.lengthMONTHS_WITHHELD:26en_US
dc.embargo.statusEMBARGOEDen_US
dc.embargo.enddate2019-05-19en_US
dc.contributor.committeeHoffman, Dean
dc.contributor.committeeRodger, Chris


Files in this item

Show simple item record