Show simple item record

dc.contributor.advisorHan, Yongsheng
dc.contributor.authorLong, Yang
dc.date.accessioned2020-07-21T15:07:57Z
dc.date.available2020-07-21T15:07:57Z
dc.date.issued2020-07-21
dc.identifier.urihttp://hdl.handle.net/10415/7365
dc.description.abstractThe main purpose of this thesis is to establish a Hardy space theory associated with the flag-type singular integrals on Euclidean space. This theory is a continuation of those the classical one parameter, product setting and flag setting studied by Nagel-Ricci-Stein, and includes flag-type Hardy spaces $H^p_{\mathcal{F}}$, and the boundedness of singular integrals with flag-type kernels on these spaces. The main tool of our approach is the discrete Littlewood-Paley-Stein theory associated with the flag-type structure.en_US
dc.rightsEMBARGO_NOT_AUBURNen_US
dc.subjectMathematics and Statisticsen_US
dc.titleHardy space associated with flag-type singular integrals of three parametersen_US
dc.typePhD Dissertationen_US
dc.embargo.lengthMONTHS_WITHHELD:60en_US
dc.embargo.statusEMBARGOEDen_US
dc.embargo.enddate2025-07-21en_US
dc.contributor.committeeGlotov, Dmitry
dc.contributor.committeeGovil, Narendra
dc.contributor.committeeLiao, Ming
dc.contributor.committeeLin, Yu


Files in this item

Show simple item record