Hardy space associated with flag-type singular integrals of three parameters
Metadata Field | Value | Language |
---|---|---|
dc.contributor.advisor | Han, Yongsheng | |
dc.contributor.author | Long, Yang | |
dc.date.accessioned | 2020-07-21T15:07:57Z | |
dc.date.available | 2020-07-21T15:07:57Z | |
dc.date.issued | 2020-07-21 | |
dc.identifier.uri | http://hdl.handle.net/10415/7365 | |
dc.description.abstract | The main purpose of this thesis is to establish a Hardy space theory associated with the flag-type singular integrals on Euclidean space. This theory is a continuation of those the classical one parameter, product setting and flag setting studied by Nagel-Ricci-Stein, and includes flag-type Hardy spaces $H^p_{\mathcal{F}}$, and the boundedness of singular integrals with flag-type kernels on these spaces. The main tool of our approach is the discrete Littlewood-Paley-Stein theory associated with the flag-type structure. | en_US |
dc.rights | EMBARGO_NOT_AUBURN | en_US |
dc.subject | Mathematics and Statistics | en_US |
dc.title | Hardy space associated with flag-type singular integrals of three parameters | en_US |
dc.type | PhD Dissertation | en_US |
dc.embargo.length | MONTHS_WITHHELD:60 | en_US |
dc.embargo.status | EMBARGOED | en_US |
dc.embargo.enddate | 2025-07-21 | en_US |
dc.contributor.committee | Glotov, Dmitry | |
dc.contributor.committee | Govil, Narendra | |
dc.contributor.committee | Liao, Ming | |
dc.contributor.committee | Lin, Yu |