This Is AuburnElectronic Theses and Dissertations

Analog Computation of a High Frequency Exactly Solvable Chaotic Communications System Using State Variable Networks




Beal, Aubrey

Type of Degree



Electrical Engineering


The design of a high frequency, chaotic oscillator and linear matched filter has been shown as a viable means of electronic communication. Although many chaotic systems are noted for complex or unpredictable behavior, a class of chaotic oscillators may be constructed by imposing elementary, iterated maps with unstable, linear oscillations. These simple hybrid systems exhibit closed-form solutions that allow expressions of the system’s symbolic dynamics. Previously, these exact solvable systems have been implemented at low frequencies (∼100Hz-10kHz). This work considers the design, simulation, fabrication and testing of these systems at higher frequencies (∼10kHz-2MHz). These designs contribute a frequency increase that effectively provides new applications for chaotic systems such as low probability of intercept radar and communications using linear matched filters and well defined symbolic dynamics. A treatment of theory, modeling, simulation and implementation is provided.