Show simple item record

dc.contributor.advisorAlbrecht, Ulrich
dc.contributor.advisorGoeters, Herman
dc.contributor.advisorHetzer, Georg
dc.contributor.authorScible, Greggory
dc.date.accessioned2011-10-26T20:38:54Z
dc.date.available2011-10-26T20:38:54Z
dc.date.issued2011-10-26
dc.identifier.urihttp://hdl.handle.net/10415/2823
dc.description.abstractThe notion of a right chain ring, a ring whose lattice of right ideals is linearly ordered by inclusion, is a generalization of a valuation ring. In this work we investigate properties of right chain rings and the structure of modules over such rings. Several results that have been established for modules over valuation rings and domains are extended to modules over non-commutative right chain rings. In this discussion the notion of a right duo ring, a ring whose right ideals are two-sided, arises naturally.en_US
dc.rightsEMBARGO_NOT_AUBURNen_US
dc.subjectMathematics and Statisticsen_US
dc.titleFinitely Generated Modules Over Noncommutative Chain Ringsen_US
dc.typedissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US


Files in this item

Show simple item record