This Is AuburnElectronic Theses and Dissertations

Show simple item record

The Numerical Approximation of Blow-Up Times for Fractional Reaction-Diffusion Equations


Metadata FieldValueLanguage
dc.contributor.advisorvan Wyk, Hans-Werner
dc.contributor.authorKhachatryan, Mariam
dc.date.accessioned2022-07-28T18:56:23Z
dc.date.available2022-07-28T18:56:23Z
dc.date.issued2022-07-28
dc.identifier.urihttps://etd.auburn.edu//handle/10415/8360
dc.description.abstractWe investigate the numerical estimation of blow-up phenomena of the space fractional reaction-diffusion equation \[ \partial_t u +(-\Delta)^{\alpha/2}u=f(u), \quad x \in \Omega, t>0 \] with non-negative initial and Dirichlet boundary conditions. First, we consider the full discretization of the fractional equation using the already existing novel and accurate finite difference method for the fractional operator. Next, we implement an auxiliary function $H$ to the blow-up. The numerical blow-up times are computed for the fractional reaction-diffusion equation with the reaction term $f(u)=u^2$ and $f(u)=e^u$. Convergence results are proven. Moreover, the numerical blow-up time computed for the fractional reaction-diffusion equation with $\alpha \to 2$ is compared with the numerical blow-up time for the classical reaction-diffusion equation with $\alpha=2$, and consistent results are obtained.en_US
dc.rightsEMBARGO_NOT_AUBURNen_US
dc.subjectMathematics and Statisticsen_US
dc.titleThe Numerical Approximation of Blow-Up Times for Fractional Reaction-Diffusion Equationsen_US
dc.typePhD Dissertationen_US
dc.embargo.lengthMONTHS_WITHHELD:12en_US
dc.embargo.statusEMBARGOEDen_US
dc.embargo.enddate2023-07-28en_US

Files in this item

Show simple item record